314 research outputs found

    VHDL-AMS modeling of self-organizing neural systems

    Get PDF
    This paper presents VHDL-AMS models and simulation results for a complex, self-organizing neural system based on the adaptive resonance theory. Such neural systems exhibit both discrete and continuous dynamic behavior and consist of a large number of analog equations, a digital controller with analog and digital feedback paths resulting in the complexity that would prohibit analysis with conventional mixed-signal simulation tools

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    System-Level Modelling and Simulation of MEMS-Based Sensors

    Get PDF

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Analog Defect Injection and Fault Simulation Techniques: A Systematic Literature Review

    Get PDF
    Since the last century, the exponential growth of the semiconductor industry has led to the creation of tiny and complex integrated circuits, e.g., sensors, actuators, and smart power. Innovative techniques are needed to ensure the correct functionality of analog devices that are ubiquitous in every smart system. The ISO 26262 standard for functional safety in the automotive context specifies that fault injection is necessary to validate all electronic devices. For decades, standardization of defect modeling and injection mainly focused on digital circuits and, in a minor part, on analog ones. An initial attempt is being made with the IEEE P2427 draft standard that started to give a structured and formal organization to the analog testing field. Various methods have been proposed in the literature to speed up the fault simulation of the defect universe for an analog circuit. A more limited number of papers seek to reduce the overall simulation time by reducing the number of defects to be simulated. This literature survey describes the state-of-the-art of analog defect injection and fault simulation methods. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow, allowing for a systematic and complete literature survey. Each selected paper has been categorized and presented to provide an overview of all the available approaches. In addition, the limitations of the various approaches are discussed by showing possible future directions

    Moving Towards Analog Functional Safety

    Get PDF
    Over the past century, the exponential growth of the semiconductor industry has led to the creation of tiny and complex integrated circuits, e.g., sensors, actuators, and smart power systems. Innovative techniques are needed to ensure the correct functionality of analog devices that are ubiquitous in every smart system. The standard ISO 26262 related to functional safety in the automotive context specifies that fault injection is necessary to validate all electronic devices. For decades, standardizing fault modeling, injection and simulation mainly focused on digital circuits and disregarding analog ones. An initial attempt is being made with the IEEE P2427 standard draft standard that started to give this field a structured and formal organization. In this context, new fault models, injection, and abstraction methodologies for analog circuits are proposed in this thesis to enhance this application field. The faults proposed by the IEEE P2427 standard draft standard are initially evaluated to understand the associated fault behaviors during the simulation. Moreover, a novel approach is presented for modeling realistic stuck-on/off defects based on oxide defects. These new defects proposed are required because digital stuck-at-fault models where a transistor is frozen in on-state or offstate may not apply well on analog circuits because even a slight variation could create deviations of several magnitudes. Then, for validating the proposed defects models, a novel predictive fault grouping based on faulty AC matrices is applied to group faults with equivalent behaviors. The proposed fault grouping method is computationally cheap because it avoids performing DC or transient simulations with faults injected and limits itself to faulty AC simulations. Using AC simulations results in two different methods that allow grouping faults with the same frequency response are presented. The first method is an AC-based grouping method that exploits the potentialities of the S-parameters ports. While the second is a Circle-based grouping based on the circle-fitting method applied to the extracted AC matrices. Finally, an open-source framework is presented for the fault injection and manipulation perspective. This framework relies on the shared semantics for reading, writing, or manipulating transistor-level designs. The ultimate goal of the framework is: reading an input design written in a specific syntax and then allowing to write the same design in another syntax. As a use case for the proposed framework, a process of analog fault injection is discussed. This activity requires adding, removing, or replacing nodes, components, or even entire sub-circuits. The framework is entirely written in C++, and its APIs are also interfaced with Python. The entire framework is open-source and available on GitHub. The last part of the thesis presents abstraction methodologies that can abstract transistor level models into Verilog-AMS models and Verilog- AMS piecewise and nonlinear models into C++. These abstracted models can be integrated into heterogeneous systems. The purpose of integration is the simulation of heterogeneous components embedded in a Virtual Platforms (VP) needs to be fast and accurate
    corecore