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ABSTRACT 

Today’s systems-on-chip are growing in complexity as a result of a higher density of 

components on the same chip, and also on account of the heterogeneity of different 

modules that are particular to  different  application  domains  (i.e. mechanical,  

electrical,  optical,  biological  and  chemical). These systems can be found in a broad 

and diverse spectrum of applications in many industries, including but not limited to 

Automotive, Aerospace, Health Care and, Consumer Electronics. These  multi-domain  

heterogeneous  systems  enable  new  applications  and  the  creation  of  new markets. 

This thesis focuses on the design and the simulation of heterogeneous embedded 

systems, more specifically on continuous/discrete heterogeneous systems.  

Continuous-time and discrete-event models are at the core of the design of multi-domain 

systems. We present here a generic, language independent methodology for the design 

of continuous/discrete heterogeneous systems. This methodology is the basis for design 

of a new framework providing the interfaces that are in charge with the heterogeneous 

components adaptation. The methodology was successfully used for the implementation 

of different continuous/discrete systems such as: a glycemia level regulator, an 

analog/digital converter, a PID controller, a production chain control system and wimax 

system.    

Parts of the proposed methodology were adapted for the formalization, modeling and 

verification of an optical network on chip. 
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RÉSUMÉ 

Les systèmes sur puce sont de plus en plus complexes, pas seulement en terme de 

densité de composants sur la même puce mais aussi en terme d‘hétérogénéité des 

modules spécifiques pour différents domaines d’application (mécanique, électrique, 

optique, biologique chimique). On  retrouve  ces systèmes dans un grand éventail 

d’applications et dans divers industries tels que l’automobile, l’aéronautique, la santé, 

l’électroniques et autres. Ces systèmes hétérogènes multi-domaine permettent de 

nouvelles applications et la création de nouveaux marchés. Cette thèse se concentre sur 

la conception et la simulation des systèmes hétérogènes embarqués. 

Les modèles temps-continu et événement discret sont le noyau de la conception des 

systèmes multi-domaine. On présente ici  l’analyse de modèles d’exécution et modèles 

de synchronisation des systèmes hétérogènes continu/discret, la définition d’une 

méthodologie générique pour la conception des outils de co-simulation des systèmes 

hétérogènes continus/discrets et la validation de la méthodologie par applications – la 

réalisation d’un cadre de co-simulation pour les systèmes continu/discret. La 

méthodologie exploite les techniques de vérification formelle et de la simulation. La 

conception des outils de simulation est basée sur la définition d’une architecture 

générique des interfaces de simulation ainsi que sur des modèles de synchronisation 

vérifiés formellement.  La méthodologie a été utilisée pour l’implémentation d’un 

régulateur de niveau de glycémie. Une partie de la méthodologie a été adaptée pour la 

formalisation, la modélisation et la vérification formelle d’un réseau optique sur puce.   
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CONDENSÉ EN FRANÇAIS  

Les systèmes sur puce sont de plus en plus complexes, pas seulement en terme de 

densité de composants sur la même puce mais aussi en terme d‘hétérogénéité des 

modules spécifiques pour différents domaines d’application (mécanique, électrique, 

optique, biologique chimique). On retrouve  ces systèmes dans un grand éventail 

d’applications et dans divers industries tels que l’automobile, l’aéronautique, le médical, 

l’électroniques et autres. Ces systèmes hétérogènes multi-domaine permettent de 

nouvelles applications et la création de nouveaux marchés. Les modèles temps-continu 

et événement discret sont le noyau de la conception des systèmes multi-domaine. Ce 

projet s’articule autour d’un point clé pour la conception des systèmes continus/discrets 

(C/D): la conception à  partir d’un niveau haut d’abstraction. Le projet  propose une 

méthodologie indépendante des langages de programmation qui permet la conception 

efficace des outils de co-simulation pour tels systèmes. La méthodologie a été utilisée 

pour la conception d’un nouveau cadre qui fournit des interfaces en charge avec 

l’adaptation des composants hétérogènes. Ce cadre a été utilisé pour l’implémentation 

d’un régulateur de niveau de glycémie.  

1. Problématique 

L’intégration des composants hétérogènes à un niveau élevé d’abstraction nécessite un 

nouveau cadre conceptuel pour l’abstraction des différentes interfaces qui réalisent 

l’adaptation entre les composants hétérogènes ainsi que des nouvelles méthodologies 

pour la validation. L’hétérogénéité implique l’utilisation des modèles en temps continu 

ainsi que des modèles à événements discrets dans un modèle globale, donnant une vue 

d’ensemble du système.  Étant donnée l’hétérogénéité des concepts manipulés par ces 

deux types de modèles, la validation globale demande des interfaces de simulation 

capables de fournir des modèles de synchronisation qui peuvent accommoder le 

domaine continu et le domaine discret. Dans le cas des outils de validation plusieurs 

sémantiques d’exécution doivent être prises en considération pour réaliser la simulation 
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globale.  La technique de validation la plus souvent utilisée est la co-simulation. La co-

simulation permet l’exécution concurrente des différents simulateurs en parallèle.  Cette 

validation élimine la détection tardive des erreurs et réduit le temps de conception. Il est 

donc nécessaire de définir un modèle d’exécution globale dont les éléments de base 

sont : 

- les modèles des composants du système hétérogène qui sont décrits en temps 

continu ou bien dans le domaine des événements discrets  

- les interfaces de co-simulation qui réalisent l’adaptation de chaque modèle au 

bus de co-simulation, l’adaptation des différents protocoles de communication et 

la synchronisation entre les deux modèles. 

- le bus de co-simulation qui est responsable de l’interprétation des 

interconnections entre les deux modèles composant le modèle global. 

Les aspects qui rendent difficile la modélisation et la simulation des systèmes 

continus/discrets sont  [6]: 

- pour le modèle discret le temps est une notion globale pour tous les modules du 

système, il avance discrètement en passant par les instants discrets définis par les 

temps de notification des événements discrets. Pour le modèle continu le temps 

est une variable globale qui avance par le temps d’intégration (continu ou 

variable); 

- pour le modèle discret les processus sont sensibles aux événements alors que, 

pour le modèle continu, les processus sont exécutés à chaque pas d’intégration; 

- pour le modèle discret la communication est réalisée par ensembles 

d’événements alors que pour le modèle continu, la communication est réalisée 

par des signaux continus (un signal continu possède une valeur  à touts instants); 

- chaque modèle doit être capable de détecter, de localiser en temps et de réagir 

aux événements envoyés par l’autre modèle.  

La conception des interfaces de co-simulation est couteuse en termes de temps, est une 

source d’erreurs, est difficile à déboguer, influence les performances de la simulation 
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globale et demande la compréhension exhaustive des simulateurs impliqués dans la co-

simulation. La clé de voûte  consiste donc en la définition rigoureuse du comportement 

et de l’architecture des interfaces de co-simulation pour la génération automatique.   

Le modèle formel qui est la représentation abstraite, rigoureuse d’un modèle, représente 

la base de la définition d’un outil générique de co-simulation qui fournit des modèles 

globaux de co-simulation pour la validation des systèmes hétérogènes continus/discrets. 

En représentant le modèle formel tous les requis du système sont précisément définis et 

toutes les inconsistances et les ambigüités sont éliminées.    

1.1 Objectives et contributions 

Les objectifs du travail présenté ici sont : 

- la définition d’une approche pour la conception des outils de validation efficaces 

pour les systèmes hétérogènes  

- l’intégration, dans l’étape de validation, de nouveaux aspects spécifiques pour la 

nouvelle génération de systèmes hétérogènes multi-domaine : l’interaction entre 

le modèle continu et le modèle discret  

Les contributions plus spécifiques sont : 

- l’analyse de modèles d’exécution et modèles de synchronisation des systèmes 

hétérogènes continu/discret 

- la définition d’une méthodologie générique pour la conception des outils de co-

simulation des systèmes hétérogènes continus/discrets.  

- la validation de la méthodologie par applications – la réalisation d’un cadre de 

co-simulation pour les systèmes continu/discret, l’implémentation d’un 

régulateur de glycémie et la modélisation et la vérification formelle d’un réseau 

optique passif, sur puce.  
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2. Revue de littérature 

Cette section est un survol de travaux existants. Ces travaux peuvent être divisés en 

deux catégories : une basée sur la simulation et une basée sur la représentation formelle.  

Dans la première catégorie il existe deux approches pour réaliser la co-simulation des 

systèmes hétérogènes : une approche homogène et une approche hétérogène ([5]):  

- L’approche homogène où les concepteurs utilisent un seul langage pour la 

spécification complète du fonctionnement du système et donc les descriptions 

des diverses parties sont réalisés dans un langage unique de simulation (tel que 

le C pour accélérer les simulations) ([9], [10], [11],, [12] [13], [14], [15]) La 

difficulté est d’être assuré que la traduction et la simulation du langage unique ne 

change pas la sémantique des descriptions des diverses parties.  

- L’approche hétérogène ou les concepteurs utilisent des langages spécifiques 

pour la modélisation des différents modules d’un système complet et donc ils 

conservent les descriptions spécifiques des diverses parties et exécutent en 

parallèle les divers simulateurs ([18], [19], [20]). La communication et la 

synchronisation entre simulateurs sont assurées par le bus de co-simulation. 

Cette tache peut être difficile lorsque les modèles de simulation sont différents. 

Ayant la description informelle du système, il est nécessaire d’avoir la description du 

modèle dans une forme abstraite de spécification à base de règles. Cette forme 

caractérise le modèle dans un langage mathématique, celui de la théorie des ensembles 

ou de la théorie des systèmes ou un autre paradigme formalisé [4].  

Dans les domaines des définitions formelles et du formalisme, on peut énumérer les 

travaux  de : 

- l’Université de Berkeley [25] ou les auteurs proposent un cadre formel pour la 

comparaison de plusieurs MoCs;  

- « Royal Institute of Technology » de Stockholm [26], [27]ou l’auteur a proposé 

un cadre formel qui sépare les aspects de communication /synchronisation et le 
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comportement interne. Un processus est divisé en deux parties : le noyau du 

processus qui est responsable du calcul et l’enveloppe  (de l’anglais « shell ») du 

processus en charge de la communication avec les autres processus; 

- l’Université d’Arizona [28], [29] ou les auteurs définissent un formalisme 

mathématique DEVS pour la spécification d’un système. Ce formalisme est une 

représentation d’un système à « entrée-sortie » ayant une base de temps réel et 

continu. Des travaux sur les modèles ou le système discret retourne en arrière 

sont présentées dans [35] [36], [37] et [38].    

Les travaux basés sur la simulation, l’approche homogène sont couteux en termes de 

temps de développent des nouvelles bibliothèques de composants et temps 

d’apprentissage pour les développeurs qui travaillent avec les outils. Dans le cas des 

travaux basés sur la simulation, l’approche hétérogène les interfaces sont conçues ad-

hoc, ne sont pas vérifies formellement et ne se concentrent pas sur les domaines continu 

et discret. Cette thèse propose une approche ou les développeurs travaillent avec des 

outils très populaires et peuvent réutiliser des modèles qui existent dans des 

bibliothèques déjà testées. Les interfaces sont vérifiées formellement et sont générées 

automatiquement.  

Les travaux basés sur la représentation formelle fournissent une base abstraite pour les 

systèmes hétérogènes mais ils ne prennent pas en considération les interfaces de co-

simulation ou ils ne permettent pas la vérification formelle. Cette thèse se concentre sur 

les interfaces de co-simulation et donne un mécanisme pour la représentation formelle et 

la vérification formelle des interfaces de co-simulation,  

3. Concepts de base  

Cette section introduit les concepts de base qui seront utilisés dans ce travail : les 

modèles d’exécution et les simulateurs continu et discret, le modèle de synchronisation 

ainsi que la définition de l’environnement de simulation continu/discret.  
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3.1 Modèles d’exécution  

3.1.1    Modèle à événements discrets 

La simulation d’un modèle purement discret est basée sur les événements, elle est 

généralement accomplie en utilisant un simulateur à événements discrets. Le rôle de 

simulateur est de maintenir l'ordre des événements dans une file d’attente suivant leur 

temps de notification. A chaque itération, le simulateur fait sortir de la file l’événement 

qui a le temps de notification le plus proche et exécute les processus sensibles à cet 

événement. L'exécution de ces  processus peut générer d'autres événements entraînant 

l'exécution d'autre processus. Si les événements dont le temps de notification égale au 

temps actuel sont tous traités, le simulateur avance le temps pour le plus proche 

événement planifié. 

3.1.2    Modèle en temps continu  

La simulation d’un modèle purement continu régi par des équations différentielles et 

algébriques est basée sur la résolution numérique de ces équations. La plupart des 

algorithmes de résolution discrétisent le temps en un ensemble d’instants. La différence 

entre deux instants est appelée  pas d'intégration ou pas de calcul et suivant l'algorithme 

utilisé ce pas peut être fixe ou variable. Les critères utilisés pour le choix du pas 

d'intégration sont : la précision, la stabilité et la continuité des signaux. Dans les cas où 

la précision est la seule condition (le cas ou le modèle est stable et il n’y a pas de 

discontinuités), il est possible d’utiliser un algorithme à pas fixe. L'utilisation d'un 

algorithme à pas variable augmente les performances de simulation. Pour satisfaire les 

critères de précision l'algorithme réduit le pas quand le modèle évolue rapidement. Pour 

éviter les calculs qui ne sont pas nécessaires et améliorer la vitesse de simulation 

l’algorithme augmente le pas quand le modèle évolue lentement,.  

Pour une synchronisation rigoureuse, chaque simulateur impliqué dans la co-simulation 

C/D doit considérer les événements provenant de l’environnement externe. Ils  doivent 
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s’arrêter avec précision aux échantillons de temps de ces événements (détection des 

événements). Ces échantillons de temps sont des points de communication entre les 

deux simulateurs.  

Le simulateur continu doit détecter le prochain événement discret planifié par le 

simulateur discret. Cette détection implique l’ajustement des pas d’intégration pour le 

simulateur continu. Le simulateur discret doit détecter les événements d’état. Un 

événement d’état est un événement non prédictible qui est généré par le simulateur 

continu et qui a une estampille de temps dépendante des valeurs des variables d’état 

(comme par exemple les événements « passage a zéro » ou le dépassement d’un seuil). 

La conséquence est le contrôle de l’avancement en temps des simulateurs discrets (au 

lieu d’avancer le pas de simulation prévu, le simulateur avance précisément jusqu’au 

moment de l’évènement d’état).  

3.2 Modèles de synchronisation 

Table 1. Modèles de synchronisation 

Modèle de 
synchronisation 

Pas de 
synchronisation 

Avantages Désavantages 

Le modèle 
canonique 

A chaque pas 
discret et chaque 
occurrence d’un 

événement  

Général 
Surdébit de 

synchronisation 

Le modèle de 
synchronisation  
avec retour en 

arrière 

A chaque 
occurrence des 

événements de mise 
à jour, événements 
d’échantillonnage 

et événements 
d’état 

Evénements de 
mise à jour, 
événements 

d’échantillonn
age non-

périodiques, 
efficace si  le 

modèle 
continu ne 

génère pas des 
événements 

d’état 

Retour en arrière pour 
le modèle discret est 
requis ci le modèle 
continu génère des 
événements d’état.  
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Ce projet est basé sur deux modèles de synchronisation : 

- le modèle canonique – ou le simulateur continu avance le temps avant le 

simulateur discret.  

- le modèle de synchronisation  avec retour en arrière (« rollback » en anglais) - ou 

le simulateur discret avance le temps avant le simulateur continu.  

Le Table 1 montre les deux modèles de synchronisation comparés de point de vue pas 

de synchronisation ainsi que leurs avantages et désavantages.  

4. Méthodologie de conception des outils de co-simulation 

Cette section présente notre approche pour la spécification et la simulation des systèmes 

hétérogènes continus/discrets. L’accent sera mis sur les interfaces de simulation et leur 

génération automatique, le bus de co-simulation, ainsi que sur la communication et la 

synchronisation entre le deux modèles.     

Pour permettre la conception des outils de co-simulation, la méthodologie qu’on 

propose est formée de deux étapes indépendantes des outils de co-simulation utilisés 

pour simuler le modèle continu et le modèle discret (voir Figure 1). Pendant ces étapes 

les interfaces de co-simulation sont définies dans un cadre conceptuel, leurs 

fonctionnalités et l’architecture interne sont décrites à l’aide des formalismes existants et 

logique temporelle.   

Les deux étapes sont:  

1. L’étape générique incluant les tâches suivantes:  

-  Définition de la sémantique opérationnelle des modèles de  synchronisation pour 

le modèle global de co-simulation. 

-  Distribution de la fonctionnalité de synchronisation entre les interfaces de co-

simulation. 

-  Formalisation et vérification du comportement des interfaces de co-simulation. 
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-  Définition des éléments de la bibliothèque et l’architecture interne des interfaces 

de co-simulation.  

2. L’étape d’implémentation incluant les tâches suivantes:  

-   L’analyse des outils de simulation pour les intégrer dans le cadre de co-

simulation.  

-  L’implémentation des éléments spécifiques de la bibliothèque et validation de 

l’implémentation.  

Étape
implementation

Étape générique
Définition de la sémantique 

opérationnelle de  la synchronisation 

Distribution de la fonctionnalité de 

synchronisation entre les interfaces 

Formalisation et vérification du 

comportement des interfaces 

Définition éléments de la bibliothèque et 

de architecture interne des interfaces 

Implémentation éléments  

de la bibliothèque 

Validation de 

l’implémentation. 

Analyse 
outils de 

simulation

 

Figure 1. Méthodologie générique pour la conception des outils de co-simulation 

Les tâches de l’étape générique sont détaillées dans les sous-sections suivantes. 

4.1 Définition de la sémantique opérationnelle des modèles de 

synchronisation pour le modèle global de co-simulation 

La sémantique opérationnelle est la représentation du comportement du système dans 

une forme mathématique, rigoureuse, non-ambigüe. Ce modèle sert comme base pour 
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l’analyse et la vérification. Dans notre travail, pour définir la sémantique opérationnelle, 

sous forme de règles, on a utilisée le formalisme proposé par  [28], [29] – Discrete 

Event System Specifications (DEVS). Nous avons définit la sémantique opérationnelle 

des deux modèles de synchronisation présentés dans la section 3.2.  

4.2 Distribution de la fonctionnalité de synchronisation entre les 

interfaces de co-simulation 

Apres la sémantique opérationnelle, la fonctionnalité de la synchronisation est distribuée 

entre les interfaces de co-simulation. Le premier pas de cette opération consiste en 

l’identification de la sémantique opérationnelle de chaque interface, à partir de la 

sémantique globale. La fonctionnalité de chaque interface a été par la suite modélisée à 

l’aide des automates temporisés.    

4.3 Formalisation et vérification du comportement des interfaces de 

co-simulation 

La formalisation et vérification formelle des interfaces de co-simulation peut être 

divisée en trois pas : la représentation formelle, la simulation du modèle formel et la 

vérification formelle. Pour réaliser cette étape on a utilisé les automates temporisés 

([46], [47]) et l’outil UPPAAL ([48]). 

4.4 Définition des éléments de la bibliothèque et l’architecture interne 

des interfaces de co-simulation 

La vérification formelle du comportement des interfaces est suivie par la définition de 

l’architecture interne des interfaces de co-simulation. Cette définition est une étape clé 

pour la génération automatique des interfaces de co-simulation. Dans notre approche les 

interfaces ont été représentées comme un ensemble de modules hiérarchiques, en se 

basant sur des composants atomiques qui sont des éléments de la bibliothèque utilisée 

pour la génération automatique. 
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4.5 L’analyse des outils de simulation pour les intégrer dans le cadre 

de co-simulation 

Des fonctionnalités spécifiques sont demandées pour les simulateurs continu et discret 

et donc l’intégration des outils de simulation dans l’environnement de co-simulation 

demande l’analyse des outils de simulation. Le simulateur continu doit détecter les 

événements d’état, il doit envoyer des données pour la synchronisation vers le modèle 

discret, permette des points d’interruption pendant la résolution des équations 

différentielles et la mise à jour des points d’interruption. Le modèle discret doit détecter 

la fin du cycle de simulation, doit permettre l’ajout/l’extraction de nouveaux 

éventements dans/de la queue de l’ordonnanceur et doit envoyer les résultats du 

traitement des données et l’information pour la synchronisation vers le simulateur 

continu.  

4.6 L’implémentation des éléments spécifiques de la bibliothèque et 

validation de l’implémentation 

Le dernier pas de la méthodologie est l’implémentation des éléments spécifiques de la 

bibliothèque et validation de l’implémentation. Cette étape dépend des outils de 

simulation choisis dans l’étape précédente, l’analyse des outils de simulation.   

5. Résultats 

A partir de la méthodologie présentée dans la section 3, l’outil de de co-simulation 

CODIS a été créé. Cet outil permet la modélisation et la simulation précise d’un système 

continu/discret. Les entrées dans le flot de simulation sont :  

- le modèle continu (en Simulink [16]) qui est schématique  

- le modèle discret (en SystemC [8]) qui est textuel.  

La sortie du flot est le modèle global de simulation. Les interfaces de co-simulation sont 

automatiquement générées par un générateur des interfaces qui reçoit à l’entrée  des 
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paramètres définis par utilisateur via un générateur de script. À la sortie on obtient le 

modèle discret avec ses interfaces de simulation. Plus des détails sur CODIS peuvent 

être trouvées dans l’annexe 2 ([51], [52]). L’outil CODIS a été utilisé pour valider 

plusieurs applications, parmi eux, un régulateur de niveau de glycémie. Un régulateur de 

niveau de glycémie est un système qui représente une alternative pratique au traitement 

classique du diabète de type 1. Une technique plus avancée est la thérapie par pompe, un 

traitement qui fournit au corps insuline ou glucose en se basant sur les valeurs en temps 

réel de la glycémie. Cette application  consiste dans la simulation d’un régulateur de 

niveau de glycémie. Le système est formé par deux sous-systèmes – un sous-système 

discret qui contrôle l’injection et un sous-système continu qui modélise le système 

d’injections, le patient et l’assimilation de glucose et insuline dans le sang.  

6. Réseaux optiques sur puce 

Dans cette partie on présente des résultats ou le formalisme et la vérification formelle 

sont appliqués pour la formalisation, la modélisation et la vérification d’un système 

hétérogène, un réseau optique sur puce. Ces résultats qui sont des résultats 

complémentaires, ou une partie de la méthodologie proposée a été appliquée sont 

présentés dans l’annexe 1. 

Les systèmes modernes sur puce intègrent plusieurs composants hétérogènes comme 

différents processeurs, composants matériel et interconnexions complexes qui utilisent 

différents protocoles de communication. Les interconnections sur puce sont limitatifs de 

point de vue performance et consommation d’énergie. La croissance, en termes de 

nombre, des composants intégrés sur une puce augmente l’impact des effets comme le 

bruit causé par la diaphonie, les interférences électromagnétiques qui peuvent produire 

des erreurs de données, les délais et autres [56]. Les réseaux optiques sur puce s’avèrent 

une solution intéressante. Parmi les avantages des réseaux optiques on peut mentionner : 

extensibilité, simplicité, surface  réduite, guide d’ondes bidirectionnel, réduction de la 

diaphonie, charge capacitive, et de la distorsion du signal, débit élevé dans le guide 
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d’ondes. Les défis les plus importants sont l’accès au prototypage physique et la 

difficulté d’influencer les processus standard existants. Par conséquence, la modélisation 

et la simulation deviennent une alternative nécessaire pour l’exploration de ces 

systèmes. Plus des détails sur les concepts de base des réseaux optiques sur puce 

peuvent être trouvés dans l’annexe 2 de ce document.     

Une partie de la méthodologie proposée dans ce travail a été utilisée pour aider les 

concepteurs à réaliser des modèles complexes de tels systèmes. Dans ce document on a 

proposé: la formalisation des interfaces opto-électriques a l’aide du formalisme DEVS1, 

la formalisation des éléments passives de base composant un réseau optique1 et la 

modélisation et la vérification formelle, pour la validation globale du comportement 

d’un réseau optique passif sur puce.  

La modélisation et la vérification formelle ont été divisées en deux étapes. La première 

étape consiste dans la vérification d’un routeur 4 X 4 λ  a un haut niveau d’abstraction et 

la deuxième étape a été la représentation du réseau a un bas niveau d’abstraction ou on a 

considéré seulement un initiateur et un chemin du signal a travers du réseau optique. On 

a vérifié les propriétés formelles pour les deux modèles. La vérification complète prend 

2 secondes pour la première étape et 41 secondes/initiateur pour la deuxième étape.  

7. Conclusions et perspectives 

Cette thèse se concentre sur la conception et la simulation des systèmes hétérogènes 

embarqués, plus spécifiquement sur les systèmes multi-domaine ou plusieurs 

composants de différents domaines comme optique, électrique, mécanique, sont pris en 

considération.  

                                                 

1 Ce travail a été réalisé en collaboration avec Ph.D Mathieu Brière et Prof. Dr. Ian O’Connor, École 

Centrale de Lyon, France 
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7.1    Conclusion 

Cette recherche a été motivée par le contexte courant des systèmes embarqués. On 

retrouve ces systèmes dans un grand éventail d’applications et dans divers industries tels 

que l’automobile, l’aéronautique, la santé, l’électroniques et autres. Ces systèmes 

hétérogènes multi-domaine permettent de nouvelles applications et la création de 

nouveaux marchés. Les modèles temps continu et événements discrets sont la base des 

systèmes multi-domaine. Ce travail cible les systèmes hétérogènes continu/discret, plus 

spécifiquement la conception d’un nouveau cadre qui fournit des interfaces de 

simulation en charge avec l’adaptation de divers simulateurs.  

Un sommaire des contributions majeures est présenté ci-dessous : 

- l’analyse des modèles d’exécution des systèmes continus et discrets et la 

définition des modèles d’exécution globaux basés sur deux modèles de 

synchronisation  

- la définition d’une méthodologie générique pour la conception des outils de co-

simulation des systèmes hétérogènes C/D. La méthodologie comporte deux 

étapes :  

- une étape générique ou la représentation des interfaces est raffinée  d’un 

modèle de synchronisation abstraite jusqu'à l’architecture interne des 

interfaces de co-simulation 

- une étape d’implémentation  

- la validation de la méthodologie par applications – la réalisation d’un cadre de 

co-simulation pour les systèmes C/D, l’implémentation d’un régulateur de 

glycémie et la modélisation et la vérification formelle d’un réseau optique passif, 

sur puce.  
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7.2    Perspectives 

Cette thèse fait des progrès dans le développent d’une technique vérifiée pour la 

conception d’outils de co-simulation des systèmes hétérogènes continu/discret et ouvre 

des nouvelles directions pour les chercheurs qui travaillent dans la simulation au niveau 

système. La méthodologie proposée permet de nouveaux développements dans la 

génération automatique des interfaces de co-simulation pour les systèmes hétérogènes 

continu/discrets. Une nouvelle direction de recherche ouverte par ce travail est la 

vérification formelle de la composition des éléments de bibliothèque pour créer une 

interface. Une autre direction est l’analyse des modèles continus et discrets a intégrer 

pour vérifier la compatibilité en termes d’entrées, de sorties et de niveaux d’abstraction.  

Ce travail peut être continué avec la modélisation et la simulation des systèmes 

hétérogènes C/D aux différents niveaux d’abstraction et l’intégration du modèle de 

synchronisation avec retour en arrière dans l’outil de co-simulation proposé. . Autres 

outils spécifiques pour le domaine discret peuvent être intégrés pour valider le travail 

(i.e SystemVerilog). Du travail peut être fait pour l’analyse de performance et 

l’optimisation des systèmes. 

Un autre domaine dans lequel le travail présenté peut être exploité est la modélisation et 

la validation des réseaux optiques sur puce.  Une direction pour les travaux futurs 

pourrait être l’intégration des composants optiques passifs et actifs avec des circuits 

intégrés, pour réaliser le modèle global d’exécution d’un réseau optique sur puce. A plus 

long terme, les interconnexions optiques peuvent être intégrées avec plusieurs 

processeurs sur la même puce et la méthodologie proposée peut être adaptée pour la 

modélisation et la validation d’un tel système.  
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INTRODUCTION 

1. Heterogeneous Systems – Existing Context 

System on chip (SoC) trends of the past decade observed the shrinking of the chips’ size 

simultaneously with the growth in complexity. In response to the challenges of systems 

miniaturization, the International Technology Roadmap for Semiconductors (ITRS) 

emphasizes the More Than Moore's Law Movement that focuses on system integration 

rather than increasing transistor density and leads to a functional diversification in 

integrated systems [1]. Thus, system-on-chip are currently characterized by the 

heterogeneity of different modules that are particular to different application domains 

such as optical, electronical, mechanical, hydraulics and biological. These multi-domain 

systems are the main driver of the development of a wide range of products across a 

broad and diverse spectrum of applications in many industries, but not limited to 

Automotive, Aerospace, Health Care, Consumer Electronics, and others. These 

heterogeneous systems enable new applications and create new markets. ITRS states that 

heterogeneity is “a form of diversity that arises with respect to system-level SoC 

integration” and the design specification and validation are extremely challenging, 

particularly with respect to complex operating contexts [1].  

Continuous-time and discrete-event models are at the core of the design of multi-domain 

systems. For instance Figure 2 gives an example of a glycemia level regulator that 

illustrates the above mentioned aspects. The electronics domain components can be 

found in this application in the control block. This block controls the injection of insulin 

and glucose. These injections are pumps, therefore they have mechanical fluidics 

components. The environment is the actual patient that is injected with insulin or 

glucose.   
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Figure 2. Glycemia level regulator 

The control part is generally realized in the discrete domain using simulators for 

hardware and/or software components (i.e VHDL [6] or SystemC [8]).The patient, the 

pumps and the injection process are modeled in the continuous time domain using 

equations (an illustrative example is the utilization of a differential equation modeling 

the process of insulin assimilation in the human body). For the continuous components 

simulators integrating equation solvers are exploited (i.e. Simulink [16]).  

2.     Heterogeneous Systems - Problematic 

The integration of continuous-discrete systems implies the cooperation between different 

teams with different cultures, using different specification languages and simulators. 

Given the diversity of concepts manipulated, the global design specification and the 

validation are extremely challenging; their heterogeneity makes more difficult the 

elaboration of a global execution model for the overall validation. Such a model may be 

very complex.  

Currently, there are two techniques used for the validation of heterogeneous systems: the 

formal verification and the simulation.  

In order to validate a system through formal verification, its behavior needs to be 

represented using a formal model. This representation has to clearly define the 

computation and the communication (and implicitly the synchronization) for the global 

model and verify the behavior of the interfaces. This approach has the advantage of a 

rigorous and unambiguous representation of the system’s behavior. This allows for the 

exhaustive verification of an ensemble of system’s properties. The challenge is however 
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the system’s complexity that is difficult to manage and that has impact on the time and 

the cost.   

The validation by simulation is currently the most popular validation technique and can 

be defined as the execution of a global representation of a heterogeneous system. The 

simulation was adopted by the designers for its advantages in terms of time invested for 

the validation and the facility of the utilization.  However the choice of simulation has 

an incidence on the quality of the validation – it is well known that the simulation 

technique does not provide an exhaustive validation.  

The simulation-based validation for heterogeneous systems is often referred as co-

simulation. The co-simulation enables joint simulation of heterogeneous components 

with different execution models. Each heterogeneous component can be developed using 

a well known, domain-specific language and the resulting model can be reused later. The 

reusability advantages are: the development time, the time-to-market and the costs are 

reduced [3]. The co-simulation approach requires the elaboration of a global simulation 

model (Figure 3). The co-simulation interfaces have to provide efficient synchronization 

models for the adaptation of the domain specific models. This results in a complex 

behavior of the interfaces since their design is time consuming and a significant source 

of errors, they are difficult to debug and have impact on overall simulation 

performances. Moreover, co-simulation interfaces specification requires a deep 

understanding of the internal mechanism of the simulators involved in the co-simulation. 

Therefore, their automatic generation is very suitable. 

New validation tools are required to facilitate the co-simulation during the design 

process. These tools generate automatically the global simulation model and 

consequently the co-simulation interfaces that adapt the heterogeneous models. The 

main role of these tools is to guarantee the correctness of the generated model, in order 

to accomplish this, the formal verification technique can be used during the co-

simulation tools design.   
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Figure 3. Global co-simulation model 

3. Objectives and Contributions 

The global objective of this thesis is the definition of new solutions that reduce the time 

and cost of the validation stage during the design flow of heterogeneous systems. The 

specific objectives are:  

- The definition of an approach (technique, procedure) for the design of efficient 

validation tools for heterogeneous systems. 

- The integration in the validation stage of new aspects specific to the next 

generation of multi-domain heterogeneous systems: the tight interaction between 

the continuous and discrete models.  

The main contributions of this work are:  

- The analysis of the continuous and discrete execution models and the definition 

of global continuous/discrete (C/D) execution models based on synchronization 

models.  

- The definition of a generic methodology for the efficient design of C/D co-

simulation tools. This methodology exploits the advantages of the formal 

verification-based and simulation-based validation techniques.   

- The application of the methodology for the design of a validation tool. 

These contributions are detailed in the next three sub-sections.  
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3.1 The Analysis of Continuous and Discrete Execution Models and 

Synchronization Models  

The execution model can be viewed as the interpretation of a model of computation. In 

this work, we considered the continuous/discrete heterogeneous systems and their global 

execution model. Discrete and continuous systems are characterized by different 

physical properties and modeling paradigms. A global execution model has to take into 

account all these paradigms. As mentioned in the previous section, the elements that 

compose the global model are the execution models for the different components (the 

continuous execution model and the discrete execution model also called in this work 

simulators), the co-simulation interfaces and the co-simulation bus. In this thesis, the 

global execution model as well as the components execution models are analyzed. 

Moreover, the co-simulation interfaces have to provide efficient synchronization models 

for the modules adaptation. The two simulators have to detect, locate and retract events 

that are generated by the other simulator. While the discrete events are saved in a queue 

and their time stamp is already known, the continuous simulator can generate events at 

times that are not known beforehand (named here state events). The discrete simulator 

must react to these events. This requirement has to be accomplished by the 

synchronization. This thesis discusses two synchronization models: the canonical 

synchronization model and the rollback-based synchronization model.   

3.2 The Definition of a Generic Methodology for the Efficient Design 

of Continuous/Discrete Co-Simulation Tools  

This thesis proposes a methodology for the efficient design of continuous/discrete co-

simulation tools. The methodology is composed of two main stages: a generic stage and 

an implementation stage. In order to enable the design of co-simulation tools, the generic 

stage of the methodology is refined through several steps that are independent of the 

simulation tools used for the continuous and discrete components of the system. During 
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these generic steps, the co-simulation interfaces are defined in a conceptual framework; 

their functionality and the internal structure of co-simulation interfaces are expressed 

using existing formalisms and temporal logic. After the rigorous definition of the 

required functionality for co-simulation interfaces, the designer will start the steps 

related to the implementation stage of the library elements using languages specific to 

different co-simulation tools. We emphasize here that the methodology is generic; the 

first stage is independent of the implementation languages of the co-simulation library. 

3.3 Application of the Methodology to the Design of a Validation 

Tool 

The proposed methodology was applied for the design of a co-simulation tool – CODIS 

(Continuous DIscrete Simulation) – that integrates the discrete simulator SystemC [8] 

and the continuous simulator Simulink [16]. This tool was exploited for the validation 

of different heterogeneous systems such as glycemia level regulator, an analog/digital 

converter, a PID controller, a production chain control system and wimax system. In this 

thesis, we present the glycemia level regulator. Moreover, parts of the methodology 

were adapted for the formalization, the modeling and the validation of elements of an 

optical network on chip. This complementary work is presented in Annex 1.  

4. Document Plan 

This thesis is structured in five chapters, an introduction and a final section for 

conclusions and perspectives. Chapter 1 presents a survey of the existing works in the 

continuous/discrete heterogeneous systems modeling and validation. Both, formal 

verification-based and simulation-based approaches will be taken into consideration. 

Chapter 2 presents the basic concepts concerning the global execution model of 

continuous/discrete heterogeneous systems, their synchronization models and events 

update schema for the synchronization models. Chapter 3 introduces the methodology 

for the generation of global execution models. This chapter includes the validation of a 
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synchronization models with rollback (called here the rollback-based model) and 

without rollback (called here the canonical model). Chapter 4 shows the application of 

the methodology and the results of the implementation of a glycemia regulator where the 

continuous model was implemented in Simulink® and the discrete model was 

implemented in SystemC. Finally, the last section gives the conclusions. A part of the 

proposed methodology was applied for a passive optical network on chip and its 

implementation results are given in Annex 1 as complementary results.  
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CHAPTER 1. LITERATURE REVIEW 

The existing works in the continuous/discrete systems validation field can be roughly 

divided into the following classes: simulation-based and formal representation-based 

approaches. This chapter presents a survey of the existing works and it is structured in 

four sections: the first section presents the simulation-based works, the second section 

discusses the formal representation-based works and the third compares the work 

proposed in this thesis with the related work. The last section gives the conclusions. 

1.1 Simulation – Based Works 

The components that form a heterogeneous system are specific to different application 

domains. In a heterogeneous design environment the co-simulation requires significant 

test and modeling capabilities, not only for the specific technologies (continuous or 

discrete-only domains) but also for the technologies combination. There are two 

opinions regarding the co-simulation of heterogeneous systems: one that supports a 

homogeneous approach and the second one that supports a heterogeneous approach [5]. 

1.1.1 Homogeneous Approach 

The homogeneous approach consists of the use of only one language for the global 

specification of the behavior of the system; hence the representation of different parts is 

realized in one simulation language. The language has to have a rich and consistent 

semantics in order to support the heterogeneity of a complex system. The main 

challenge of this approach is the difficulty to find such languages and this leads to the 

development of new languages and this is costly in terms of training time and 

development of new libraries time. One can observe two strategies (techniques): 

- The extension of existing tools and languages. Most of the tools created using 

this approach started from classical HDLs (i.e. VHDL ([6]), Verilog ([7])) to 

which new concepts specific to other domains such as Analog Mixed Signal 
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(AMS) are added (i.e. the IEEE standards VHDL-AMS ([9], [10], [11]) and 

Verilog-AMS ([12], [13]).) 

- The addition of an executable extension to a language that exists already (i.e 

SystemC ([14], [15]) that is an extension of C++). 

VHDL-AMS is an extension of VHDL that can be used for modeling and validation of 

continuous/discrete systems. The modeling can be realized according to few categories 

of models: functional, behavioral, structural and physical. The VHDL scheduler was 

modified in order to take into account the analog solver. The developers added new 

objects and types and also new attributes for signals. VHDL-AMS is useful for the 

design of analog/digital systems but it is not powerful enough for higher levels of 

abstraction. [9] presents a behavioral model realized with VHDL-AMS. The authors add 

new concepts such as data types, analog and digital, functionality in continuous time, 

functionality controlled by events as well as analog-digital interactions.  

Verilog-AMS ([13]) allows the designers to create and use modules that can encapsulate 

behavioral descriptions at high levels of abstraction as well as structural description of 

systems and components.  

SystemC-AMS ([14]) is an extension of SystemC that was developed for continuous 

time systems modeling and simulation. Between other requirements, it has to provide a 

way to manage the interactions between the different models of computation and to 

support existing continuous time simulators. Therefore, the developers have to 

implement a library of components and solvers able to solve differential and algebraic 

equations. However, even if SystemC is a viable option for high level modeling and its 

AMS extension will improve its capabilities to provide a global co-simulation model for 

a continuous/discrete heterogeneous system, it is difficult to make it more powerful than 

the existing tools for analog simulation such as Matlab - Simulink® ([16]), mostly on 

the simulation precision level, availability of libraries. The examples provided in [15] 

are limited to the communication and signal treatment domains where the time 

advancement is realized with fix steps. However, this is not the case with other fields 
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like mechanical, electrical, micro-electro-mechanical systems (MEMS) or optical micro-

systems where solvers with a variable step are required. This approach is interesting 

because it gives the possibility to use a synchronization mechanism for other systems’ 

integration and a solver for complex systems and for levels of abstraction that are not 

normally covered by SystemC-AMS [15].  

In [17] Patel and Shukla propose the extension of the modeling and simulation 

framework of SystemC by adding a number of cores specific for different models of 

computation: Syncronous Data Flow (SDF), Communicating Sequential Processes 

(CSP) and Finite State Machine (FSM). The simulation core of SystemC is implemented 

mostly for Discrete Event (DE) semantics. The cores proposed by [17] can be used with 

the SystemC discrete events core and it allows the developers to model and simulate 

specific heterogeneous systems such as SDF, CSP and FSM. The authors show with few 

examples that when using the specific cores, SystemC precision improved and 

simulation efficiency increased.  

In all the tools presented in this section, the extensions are usually designed from 

scratch and by consequence their libraries are not as strong as the well established tools 

for the continuous field (i.e., Simulink®). 

1.1.2 Heterogeneous Approach 

The heterogeneous approach consists of the use of different languages that are specific 

for different sub-systems domains, therefore, they conserve the domain specific 

descriptions of the modules and the models are simulated in parallel. This task can be 

difficult because the simulation models are different and the global co-simulation 

requires a model that describes the synchronization and the interconnections between 

the sub-systems. The advantage of this approach is that each model can be described 

with a specific language and this allows for the exploitation of the best performances of 

the existing languages.  
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Some of the tools that use this approach are: Ptolemy developed by University of 

California at Berkeley ([18]), Chatoyant developed by University of Pittsburgh ([19], 

[20]) and the work realized at Techniques of Informatics and Microelectronics for 

integrated systems Architecture Laboratory (TIMA) in France ([5], [21], [22]). 

Ptolemy ([18]) is a flexible design base that the developers can use to build prototyping 

environments. It supports heterogeneity and provides a tool to explore different design 

methodologies that support different types of design and implementation technologies. 

The models are built with different models of computation that characterize the behavior 

of the different parts of the system. Ptolemy II introduces the notion of director that 

encapsulates the behavior of a model of computation. Some of the supported directors 

are DE, SDF for the behavior of discrete events and synchronous data flow and CT - 

continuous time modeling. In terms of design, the models are implemented as an 

ensemble of components that communicate, named actors. The actors can communicate 

one with each other and they can execute simultaneously, the components are defined 

using an actor oriented approach. The communication is done via channels and the 

connection is through actors’ ports. The only interaction between the actors is through 

their channels. Ptolemy II also supports the hierarchical actors notion where actors can 

contain other actors and that are connected by external ports.  

The components can be developed to work with multiple data types. One of the types 

introduced here is the behavioral type. The components and the domains support 

interface definitions that describe not only the static structure like the traditional systems 

but also the dynamical behavior. HyVisual is a hybrid systems modeler built on top of 

Ptolemy II [23] that supports the construction of hierarchal hybrid systems for 

continuous-time dynamical systems and hybrid systems. 

Even though Ptolemy II is an open source code and it is an extension of Java, it is a new 

language and using it requires learning time for the user. The different sub-systems and 

components need to be developed in the same environment in order to be compatible 

thus they do not solve the problem of IP reuse in system design. Moreover, Ptolemy is 
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based on formal representation, but the formal verification of the simulation models is 

not considered. It also lacks of consistency for analysis and verification during 

conception stage ([18], [24]). Moreover the execution angles (hardware) are not taken 

into consideration.  

Chatoyant ([19], [20]) is a simulation environment that is an extension of Ptolemy 

environment based on an architecture design methodology at system level. The system 

is decomposed into component modules that are individually characterized. The 

information exchanged between the modules is determined by the components: optical, 

electrical and mechanical. The tool can realize static and dynamical end to end 

simulations. The static simulations analyze the mechanical tolerances, power loss and 

the dynamical simulations are executed to analyze the data flow with techniques like 

noise analysis.  

One of Chatoyant applications is the modeling of optical interconnects. Its optical 

libraries include passive and active optical components, optical detectors and light 

sources. The optical signals are represented using “linear discrete events” techniques. In 

order to support micro-opto-electro-mechnical (MOEM) systems, Chatoyant was 

extended as follows:  

- Introduction of modeling techniques for diffractive optics that allow the use of 

diffractive models in cases where the Gaussian approximations are not valid.  

- Introduction of new models for micro-lenses, micro-mirrors and mechanical 

actuators that allow the global simulation of the system in one mixed signal 

frame. 

- Implementation of a Monte Carlo tolerance package to determine the worst 

tolerance case and the mechanical stability.  

The researchers from TIMA Laboratory defined a new model for the global 

representation of heterogeneous systems by automatic generation of co-simulation 

instances [21]. The heterogeneity is given by the co-existence of different modules 

described at different levels of abstraction, using, for the modules specification, 
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different languages. This concept makes possible the systems validation during different 

stages in the design flow. The methodology implies the generation of the simulation 

bus, the simulation interfaces as well as the communication interfaces at each level of 

abstraction [5]. The methodology also allows the description of each module in a 

language specific to its domain (i.e. SDL, VHDL, ISS) and at given level of abstraction.        

The researchers from TIMA introduced the concept of virtual architecture that is a non 

executable model that represents the first step of the methodology of the automatic 

generation of the co-simulation models. One of the basic concepts proposed is the 

module’s wrap that represents the abstraction of the interconnects between two 

heterogeneous components. Each wrap has a set of two ports: internal ports that are the 

module’s ports and external ports that are the ports that allow the connection with the 

communication channels. A module and its wrap form a virtual component. The 

different communication channels connected to a virtual port can be grouped in virtual 

channels. Using these concepts the systems will be represented by a virtual architecture 

as a set of virtual components interconnected. For the automatic generation of co-

simulation models at input of the design flow we have the description of the virtual 

architecture of a heterogeneous system and with elements from the co-simulation 

library, the co-simulation instances are generated. The strategy consists of the assembly 

of the existing elements into a co-simulation library. The main steps of the automatic 

generation of co-simulation models flow are: 

- The first step consists in the analysis of the virtual architecture in order to collect 

the in formations necessary for the following steps.  

- The second step consists in the selection of the library elements from the co-

simulation library and the generation of the co-simulation interfaces. The 

selection is done using the results of the analysis of the system’s specifications.  

- The third step consists of the assembly of the system’s components needed for a 

co-simulation instance. During this stage the co-simulation interfaces and the co-

simulation bus are considered (introduced) in the initial structure of the system.    
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With this approach the verification/validation is realized by co-simulation. The static 

analysis is to check function coherence and to minimize the inter-functions coupling [5]. 

TIMA approach is used for hardware/software co-simulation and not for 

continuous/discrete models.    

1.2 Formal Representation – Based Works 

Formalism-based approaches model systems using a mathematical language like sets 

theory or systems theory or other formalized paradigm [4]. The integration is addressed 

as a composition of models of computation. These approaches propose a single main 

formalism to represent different models and the main concern is building interfaces 

between different Models of Computation (MoC). These approaches bring a deep 

conceptual understanding of each MoC.  

The works that can be included in the formal representation – based approach were done 

at the University of California at Berkeley [25], the Royal Institute of Technology from 

Stockholm [26], [27] and the University of Arizona [28], [29] and briefly presented in 

this section.  

In [25] a formal framework for comparing different models of computation used in 

heterogeneous models is presented. The authors propose a formal classification 

framework that makes possible to compare and express the differences between them. 

The framework was used to compare certain features of various MoCs such as dataflow, 

sequential processes and concurrent sequential processes with rendezvous, Petri nets, 

and discrete-event systems. The intent is “to be able to compare and contrast its notions 

of concurrency, communication, and time with those of other models of computation” 

[25]. 

The role of the model of computation in abstracting functionalities of complex 

heterogeneous systems was given in [27]. A study on the use of different models of 

computation for the formalization of complex heterogeneous systems functionalities is 

presented in [26]. The author proposes a formal framework by separating the 
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communication and the computation aspects. The process is divided into two parts: the 

core that is in charge with the computation and the process shell in charge with the 

communication with other processes. This separation gives a better comprehension of 

different problems. The designers do not have to take into consideration the problems 

raised by process computation while they are working on other subjects such as the 

communication the synchronization or the concurrence. Moreover, from a practical 

point of view, each part can be developed separately, integrated easier and also reused 

for other applications. All these elements are taken into consideration for the models of 

computation classification from a denotational point of view: untimed models of 

computation, timed models of computation, and synchronous models of computation. 

However, the interfaces between domains were not taken into consideration.   

A meta-model named Rugby [26] that can be used for elements representation in terms 

of domains, levels of abstraction was defined. Rugby identifies four sub-domains: 

computation, communication, domain and time. The domains can be represented at 

different abstraction levels, from physical level to more abstract system levels (i.e. the 

time can be represented as continuous, discrete, clock and a causality relation). 

DEVS (Discrete Event Systems Specifications), defined in [28], [29] is a mathematical 

formalism for systems representation and simulation where the time advances on a 

continuous time base. This approach is based on the systems theory: a system with a 

time base, inputs, states, outputs. Given the current states and the inputs, functions are 

implemented to determine the next states and the outputs.  DEVS is a formal approach 

to build the models, using a hierarchical and modular approach and more recently it 

integrates object-oriented programming techniques.  Based on this formalism, [30] has 

proposed a tool for the modeling and simulation of hybrid systems using Modelica and 

DEVS. The models are “created using Modelica standard notation and a translator 

converts them into DEVS models” [30]. In [31], the authors propose a heterogeneous 

simulation framework using DEVS BUS. Non-DEVS-compliant models are converted 

through a conversion protocol into DEVS-compliant models. CD++ [32] is a general 
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toolkit written in C++ that allows the definition of DEVS and Cell-DEVS models. 

DEVS coupled models and Cell-DEVS models can be defined using a high level 

specification language. PythonDEVS [33] is a tool for constructing DEVS models and 

generating Python code. A model is described by deriving coupled and/or atomic DEVS 

descriptive classes from this architecture, and arranging them in a hierarchical manner 

through composition. DEVSim++ [34] is an environment for Object-Oriented Modeling 

of Discrete Event Systems.  

However, DEVS allows the definition of the operational semantics for a system but not 

its formal verification. 

The rollback is also presented in several works. [35] proposes a rollback algorithm for 

optimistic distributed simulation systems. In [36] and [37] the authors detail different 

checkpoint mechanisms that allow the system’s rollback in order to recover the data. 

[38] presents the ”time warping” algorithm that allows the rollback to a point where data 

consistency is guaranteed.  However, the formalization and verification of the rollback 

mechanism in the context of C/D was never addressed.  

1.3 Research Project vs. Related Work 

Compared with the existing works, this thesis combines the two approaches: simulation-

based and formal representation-based validation. We define here a generic 

methodology for the efficient design of continuous/discrete co-simulation tools that will 

improve upon some of the deficiencies observed in the works prior presented.  

The homogenous simulation–based approaches imply the development of new 

languages that are costly in terms of training time and development of new libraries. In 

the case of the heterogeneous simulation-based approach the interfaces are developed 

ad-hoc and they are not formally verified. Moreover the developers do not focus on the 

continuous/discrete interfaces. This thesis introduces an approach where the developers 

can use for each domain existing powerful tools and reuse models that were already 
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tested in the simulation context. The interfaces are formally verified and automatically 

generated.  

The formal representation-based approaches provide an abstract base for heterogeneous 

systems’ representation but they do not take into consideration the co-simulation 

interfaces or they do not allow for the formal verification. In our work, we focus on the 

co-simulation interfaces and we provide a mechanism for the formal representation and 

formal verification of the co-simulation interfaces.   

The advantage of this methodology is the convergence of the formal representation and 

the co-simulation in the context of global validation of continuous/discrete systems. We 

combine here the rapidity of the co-simulation technique with the completeness of the 

formal verification.  

The methodology includes the definition of the operational semantics for 

continuous/discrete synchronization models as well as the formal representation and 

verification of the behavior of continuous/discrete co-simulation interfaces and their 

internal architecture. Moreover, it allows the representation of the continuous and the 

discrete in well established languages and by consequence the use of the libraries that 

are already tested and used. The users do not need to learn new languages and can reuse 

IPs in system design.   

1.4 Conclusion 

This chapter presented a survey of the existing works proposed for the heterogeneous 

systems validation. There are roughly two strategies that are widely accepted: 

simulation-based and formal-based representation approaches. Some of the simulation-

based validation tools use a single language for the specification continuous/discrete 

system (homogenous simulation-based validation). These tools may be obtained by 

extension of existing HDLs (VHDL-AMS, Verilog-AMS and SystemC-AMS). Other 

simulation-based validation tools assemble together different components in order to 
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generate the global system (heterogeneous simulation-based validation). Some of these 

tools are Ptolemy, Chatoyant and the model developed by TIMA Laboratory  

The formal representation-based approaches propose different definitions for 

heterogeneous systems modeling. The works briefly presented in this chapter were 

realized at the University of California at Berkeley [23], the Royal Institute of 

Technology from Stockholm [26], [27] and the University of Arizona [28], [29].  

This thesis introduces a new perspective: it unifies these two approaches. The result is a 

new generic methodology for the design of efficient continuous/discrete co-simulation 

tools that has the advantages of both techniques mentioned above. 
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CHAPTER 2. EXECUTION AND SYNCHRONIZATION MODELS 

This chapter presents the global execution models of continuous/discrete heterogeneous 

systems. The chapter is organized in four sections. Section 1 defines the global 

execution model for a continuous/discrete heterogeneous system. Section introduces the 

synchronization models: the canonical model and the rollback-based model. Section 3 

presents the events update schemas for the discrete simulator and Section 4 gives the 

conclusion.  

2.1 Global Execution Model 

Figure 2.1(a) shows a generic C/D system and Figure 2.1(b) shows its corresponding 

global execution model. 

 

 

 

 

 

Figure 2.1. A continuous/discrete global execution model 

There are three types of basic elements that compose this model [21] : 

- The execution models of the different components constituting the 

heterogeneous system (corresponding to Continuous component and Discrete 

component in Figure 2.1). 
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- The co-simulation bus. 

- The co-simulation interfaces.   

The co-simulation bus is in charge of interpreting the interconnections between the 

different components of the system.  

The co-simulation interfaces enable the communication of different components 

through the simulation bus. They are in charge of the adaptation of different simulators 

to the co-simulation bus in order to guarantee the transmission of information between 

simulators executing the different components of the heterogeneous systems. They also 

have to provide efficient synchronization models for the modules adaptation.  

The co-simulation backplane is the element of the global execution model that 

guarantees the synchronization and the communication between the different 

components of the system.  It is composed of the above mentioned simulation interfaces 

and the simulation bus. 

The implementation and the simulation of an execution model in a given context is 

called co-simulation instance. Several instances may correspond to the same execution 

model and these instances may use different simulators and may present different 

characteristics (e.g. accuracy and performances).  

2.1.1 Discrete Execution Model 

The execution model for a discrete system is a model where changes in the state of the 

system occur at discrete points in the execution time.  

The discrete system can be described by the state-space equations [38]: 

with d k 1 d k k k 0 0

k d k k k

  x (t ) f( x (t ), u(t ), t )     x(t ) x                                                                    

  y(t )  g(x (t ), u(t ), t )

+ = =


=
           (1) 

Where f and g are transformations, xd is the discrete state vector, u the input signal 

vector, and y the output signal vector. 

A system modeled through (1) is said to be linear if and only if the functions g(·)and f (·) 

are both linear ([38]).  
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For the linear discrete systems, (1) becomes: 
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where Ad, Bd, Cd and Dd are matrixes that can be time-varying and describe the dynamics 

of the system. 

If we conside n state variables, m output variables, and p input variables, then Ad(tk) is 

an n × n matrix, Bd(tk) is a n × p matrix, Cd(tk) is a m × n matrix, and Dd(tk)  is a m × p 

matrix. The class of linear systems is a small subset of all possible systems but it covers 

many cases of interest, or provides adequate approximations can be used [38]. 

A discrete-event system execution concentrates on processing events, each event having 

assigned a time stamp. Each event computation can modify the state variables, schedule 

new events or retract existing events. The unprocessed events are stored in a pending 

events list. The events are processed in the order of their time stamp. Figure 2.2 shows a 

possible update event schema.  

 

Figure 2. 2. Event update schema in a discrete simulator ([29]) 
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At each simulation cycle, the first event with the smallest time stamp is processed and 

the processes sensitive to this event are executed. If several processes are sensitive to 

one or several events (with the same time occurrence) then these processes have to be 

executed in parallel. Executions often occur on sequential machines that can only 

execute one instruction at a time (therefore, one process). The consequence is that this 

execution cannot parallelize the processes. The solution consists in emulating the 

parallelism, where the processes are executed as if the parallelism is real and the 

environment (its inputs) does not change while executing other processes. Thus, the 

process execution order loses its importance and everything takes place as if a parallel 

execution occurred. This requires that shared variables (signals) between processes keep 

their values until the execution of all parallel processes ends. Once all events with 

discrete time stamp equal to the current time have been treated, the simulator advances 

the time to the nearest scheduled discrete event.  

Illustrative examples of discrete-time simulators are: SystemC [8], VHDL [6], Verilog 

[7], SystemVerilog [39].  

2.1.2 Continuous Execution Model 

The continuous time execution model is described by the state space equations:  

.
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cccc
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                                                                                             (3) 

where xc is the state vector, u the input signal vector, y the output signal vector and Ac, 

Bc, Cc and Dc are constant matrixes that describe the dynamic of the system. The 

execution of continuous model, described by differential and algebraic equations, 

requires solving numerically these equations. A widely used class of algorithms [40] 

discretizes the continuous time line into an increasing set of discrete time instants, and 

computes numerically values of state variables at these ordered time instants. The 

interval between two consecutive time instants is called integration step, and can be 
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fixed or variable. The criteria used for the choice of the integration step are the accuracy, 

the stability and the continuity of the signals. The next state of derivative systems 

cannot be specified directly but the derivative functions are used to specify the rate of 

change of state variables [29].  

The execution of a continuous system raises problems because given a state qk and a 

vector x for a time tk, the derivative offers information only for dqk/dt but not the 

system’s behavior over time. For a nonzero interval [tk, tk+1] the computation has to be 

realized without knowing the behavior in the interval (tk, tk+1). This problem can be 

solved using numerical integration methods. Some of the most commonly used methods 

are [29]:  

- Euler method that consists in signal integration: 

h

)t(q)ht(q
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For an h small enough (in order to obtain accurate results), the following 

approximation can be used: 

 )t(d

)t(dq
*h)t(q)ht(q ++++====++++

  

This solution has low efficiency and does not have stability problems for small 

enough h and it is very robust. 

- Causal methods that are a linear combination of states and derivative values at 

time instants with coefficients chosen to minimize errors from the computed 

estimate to the real value. This solution has high efficiency but it has stability 

and robustness problems. 

- Noncausal methods that use “future” values of states, derivative and inputs. In 

order to do that, the model is executed past the needed time and the values that 

are necessary are stored, to estimate the present values.  

Table 2.1 shows the difference between the basic concepts for the continuous and 

the discrete models. 
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Table 2.1. Continuous system vs. discrete system 

Model\Concept Time Communication  
means 

Processes 
activation rules 

Discrete 
It advances 
discretely 

Set of events 
Processes are 

sensitive to events 

Continuous 
It advances by 

integration steps 
Piecewise 

continuous signals  

Processes are 
executed at each 
integration step 

 

The concepts taken into consideration here are the time, the communication means and 

the processes activation rules.   

Illustrative examples of continuous-time simulators are: Simulink [16] and SPICE 

[41].  

2.2 Continuous/Discrete Synchronization Models 

This section proposes two synchronization models for the global execution of C/D 

heterogeneous systems:  

- the canonical model where the continuous simulator advances before the discrete 

simulator.  

- the rollback-based model where the discrete simulator advances before the 

continuous simulator.  

For these models we consider [tk,tk+1] as the time interval. The input signal vector for 

the continuous domain is the output signal vector from the discrete domain and vice 

versa. The simulation of discrete models is based on events [42]. At each simulation 

cycle, the first event with the smallest time stamp is processed and the processes 

sensitive to this event are executed. This may generate other events causing execution of 

other processes. Once all events with discrete time stamp equal to the current time have 

been treated, the simulator advances the time to the nearest discrete scheduled event.  

The events exchanged between the discrete and the continuous simulators are [42]:   
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- discrete events are timed events scheduled by the discrete simulator. The events 

sent by the discrete simulator can be signals update events that are caused by the 

change of its input discrete signals or sampling events that are pure events 

(defined only by their time stamps) and indicate the sampling events time 

stamps.  

- state events are  unpredictable events generated by the continuous simulator. 

Their time stamp depends on the values of state variables (e.g. a zero-passing or 

a threshold crossing).  

When stepping ahead in time, a simulator must consider the events time stamps coming 

from the external world and it must reach accurately these time stamps of events (called 

here events detection). These time stamps are the synchronization and communication 

points between the different simulators involved in a global simulation.  For a rigorous 

synchronization each simulator has to detect, locate in time and react to events sent by 

the other simulator.  

2.2.1 Continuous/Discrete Canonical Synchronization Model  

This sub-section details the C/D canonical synchronization model. In order to avoid the 

discrete simulator backtracking we have to detect the state events generated by the 

continuous simulator before the advance of the discrete simulator time, therefore the 

continuous simulator has to advance before the discrete simulator [43].  

Figure 2.3 presents the synchronization model in the continuous/discrete co-simulation 

interfaces without state event (Figure 2.3(a)) and with state event (Figure 2.3(b)). At a 

given time the discrete simulator is in the state sdk that is the tuple (xdk,tk) where xdk is the 

location and tk is the k-th discrete time (that can be seen also as the k
-th event in the queue 

of events in the discrete domain). At this point the discrete simulator had executed all 

the processes sensitive to the event and sends the time of the next event tk+1 and the data 

to the continuous simulator and switches the context from the discrete to the continuous 

simulator before advancing the time (arrow 1 in Figure 2.3(a) and Figure 2.3(b)).  
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Figure 2.3. The canonical synchronization model 

The state of the continuous simulator is qk that is the tuple (xck,tk) and the advance in 

time of the simulator cannot be further than tk+1, the time sent by the discrete simulator. 

The behavior of the continuous interface can be described by the following transition 

state equation (arrow 2 in Figure 2.3(a) and Figure 2.3(b)): 

( ) ck 1 k 1 k 1

ck k

se k 1

(x ,t ) if t t
x ,t .

(se,t )  if t t    

+ + +

+

=
→

<
                                                                            

(4)

(5)  

where t is the time in the continuous domain, (xck+1, tk+1) is the state of the continuous 

simulator when no state event was generated in the time interval [tk, ,tk+1]. The state qse 

that is the tuple (se,tse) represents the state of the continuous simulator when a state 

event se was generated and tse represents the time when the state event occurred. In both 

situations the continuous simulator will stop and send the data to the discrete simulator 

and then switch the context to the time tk (arrow 3 in Figure 2.3(a) and Figure 2.3(b)). 

The event taken into consideration is the event generated within the time interval 

[tk,tk+1], after the context switch from the discrete domain to the continuous domain at 

the time tk. This event can be a state event or the detection of an event scheduled by the 

discrete simulator (and consequently a synchronization point). 
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In the case described by equation (4), after switching the context, the discrete simulator 

will advance to the time tk+1 that is the next synchronization point, where it will execute 

all the processes sensitive to this event. Before switching the context to the continuous 

interface the discrete simulator sends the data and the time of the next scheduled event 

tk+2 (also the next synchronization point) and the cycle restarts (arrow 4 in Figure 

2.3(a)). 

Equation (5) describes the case where a state event occurred. The continuous simulator 

will send not only the data but also the time when the state event occurred tse (arrow 3 in 

Figure 2.3(b)). The discrete simulator will advance to this time (state event detected by 

the discrete simulator) where it will execute all the processes sensitive to the event. 

Before switching the context to the continuous simulator the discrete interface will send 

the data and the recalculated time of the next scheduled event tk (arrow 4 in Figure 

2.3(b)). The time stamp can change after a state event. This time stamp can take any 

value bigger than tse .The advantage of this model is that it avoids any need of rollback 

even if a state event was generated.  

2.2.2 Continuous/discrete rollback-based synchronization model  

Figure 2.4 presents the light rollback synchronization model for the C/D simulation 

interfaces.  

At a given time the discrete simulator is in the state sdk that is the tuple (xdk,tk) where xdk 

the location and tk the k
-th discrete time (that can be seen also as the k

-th event in the 

queue of events in the discrete domain). At this point the discrete simulator had 

executed all the processes sensitive to the event, advances to the time of the next event 

tk+1 (arrow 1 in Figure 2.4(a) and Figure 2.4(b)) and a new state sdk+1 that is the tuple 

(xdk+1,tk+1), sends the data and the time of the event tk+1 to the continuous simulator  and 

switches the context to the continuous simulator (arrow 2 in Figure 2.4(a) and Figure 

2.4(b)).  
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Figure 2.4. The rollback-based synchronization model 

The state of the continuous simulator is qk that is (xck,tk) and the advance in time of the 

simulator cannot be further then tk+1, the time sent by the discrete simulator. 

The behavior of the continuous interface can be described by the same transition state 

equation that was presented for the canonical synchronization model.  

The case described by equation (4) is the case when the continuous simulator does not 

send state events. In this case the continuous simulator will behave like in the case of 

the canonical synchronization model (the equation (4) was already presented in section 

2.2.1) and is represented in Figure 2.4(a). Equation (6) describes the case where a state 

event occurred. In the case of the rollback-based synchronization model the continuous 

simulator will send not only the data but also the time when the state event occurred tse 

(arrow 4 in Figure 2.4(b)). The discrete simulator will backtrack to the previous state sdk 

(arrow 5 in Figure 2.4(b)) and restores the saved data for the time stamp tk. This 

backtrack where only a backup of memory data segment, processor registers as well as 

input and output signal values will be made for each discrete event is called here light 

rollback. After the initial state restoration, the simulator starts over, taking into account 

the state events and advances to the time stamp tse (state event detected by the discrete 
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simulator) where will execute all the processes sensitive to the event (arrow 6 in Figure 

2.4(b)). The cycle restarts, the discrete time advances to the next discrete event. The 

time stamp of this event can change after a state event; it can take any value bigger than 

tse .  

2.3 Events Update Schema 

In both synchronization models a key point is represented by the events update schema 

in the discrete domain. This section presents step by step these schemas for a discrete 

simulator integrated in a continuous/discrete co-simulation environment.  The elements 

used in this representation respect the definitions introduced in [38]:   

- The system maintains a Scheduled Event List L={(xdk,tk)} with k=1,2,3,...n. The 

list is ordered on the smallest-first basis. 

- The queue of events is ordered by the events lifetimes, from the smallest to the 

largest. The lifetime vk is the length of the time interval between two successive 

occurrences of an event (vk=tk+1-tk). 

Considering that the list is reordered each time the context is switched from the 

continuous domain to the discrete domain, some events will become undetectable so 

they have to be deleted from the list or new events will be generated and therefore they 

have to be added to the list. There are two possible behaviors of the scheduler, both of 

them depending on the behavior of the continuous domain:  

- When no state event occurred in the continuous domain;  

- When a state event was generated in the continuous domain.  

In both cases State is initialized to a given value x0 and the simulation time Time is 

initialized to 0. The Clock Structure is a set of clock sequences, one for each event. 

The next two sub-sections present the events update schema for both models of 

synchronization: the canonical model and the rollback-based model.  
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2.3.1 The Event Update Schema for the Canonical Discrete Simulator  

Figure 2.5 presents the event update schema for a canonical discrete simulator integrated 

in a continuous/discrete co-simulation environment. This figure is inspired by [38]. In 

[38] the author proposed the event update schema for a purely discrete event system.  

Figure 2.5 extends this schema with the interaction in terms of 

communication/synchronization (through the events exchanged) between the discrete 

and the continuous simulators. 

 

 

Figure 2.5. The event update schema for the canonical discrete simulator 

For the case when no state event is generated the following steps are executed (see 

Figure 2.5): 

Step1 - First entry in the list (xdk,tk) is removed from the list. 

Step2 - Time is updated to a new time. 

Step3 - State is updated according with the transition function, xdk+1=f(q,xdk) where q is 

the data from the continuous domain. 

Step4 - The events that became unfeasible after the data is received from the continuous 

domain are deleted from the list. 
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Step5 - New feasible events that are a consequence of the data received from the 

continuous domain are added to the list. 

Step6 - The list is reordered on the smallest-first basis. 

The procedure repeats with step 1 for the new list. In this case the clock structure is 

controlled by the discrete domain; the events queue is reordered by the discrete kernel. 

When the continuous domain generates a state event the sequence of steps is the 

following (Figure 2.5): 

Step1 - First entry in the list (xdk,tk) is removed from the list.  

Step2 - Time is updated to a new time tse < tk+1. 

Step3 - State is updated according with the transition function, xse=f(se,xdk) with q the 

data from the continuous domain. 

Step4 - The state event is added in the list always as the next entry to be removed from 

the list. 

Sep5 - The events that became unfeasible as a consequence of the detection of a state 

event (which in an unpredictable event) are deleted from the list. 

Step6 - New feasible events that are a consequence of the state event are added to the 

list 

Step7 - The list is reordered on the smallest-first basis. 

This procedure repeats with step 1 for the new list. In this case the clock structure is 

controlled by the continuous solver, the time of the state event is sent by the continuous 

domain and the first consequence is the re-start of the discrete simulator at a time tse, 

before the expected time tk+1.  

2.3.2 The event update schema for the rollback-based discrete 

simulator  

Figure 2.6 presents the event update schema for a rollback-based discrete simulator 

integrated in a continuous/discrete co-simulation environment. For the first case when 

no state event is generated the following steps are executed (see Figure 2.6): 
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Step1 - First entry in the list (xk,tk) is removed from the list. 

Step2 - Time is updated to a new time. 

Step3 - State is updated according with the transition function, xdk+1=f(qk,xdk) with qk the 

data from the continuous domain (a particular case of this step is the initial transition 

function when from (x0,t0) to (x1,t1) where x1=f(x0)). 

Step4 - The events that became unfeasible after the data is received from the continuous 

domain are deleted from the list. 

Step5 - New feasible events that are a consequence of the data received from the 

continuous domain are added to the list. 

Step6 - The list is reordered on the smallest-first basis. 
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Figure 2.6 The event update schema for the rollback-based discrete simulator 

The procedure repeats with step 1 for the new list. In this case the clock structure is 

controlled by the discrete domain; the events queue is reordered by the discrete kernel. 
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When the continuous domain generates a state event the sequence of steps is the 

following: 

Step1 - First entry in the list (xk,tk) is removed from the list 

Step2 – Time is updated to a new time. 

Step3 - The second entry in the list (xk+1,tk+1)  is removed from the list. 

Step4 - Time is updated to a new time. 

Step5 - State is updated according with the transition function, xse=f(se,xdk) where q is 

the data from the continuous domain. 

Step6 – First entry in the list (xk,tk) is added back to the list (data is recovered).  

Step7 – Time is updates to a new time. 

Step8 - The state event is added in the list always as the next entry to be removed from 

the list. 

Step9 - The events that became unfeasible as a consequence of the detection of a state 

event (which in an unpredictable event) are deleted from the list. 

Step10 - New feasible events that are a consequence of the state event are added to the 

list. 

Step11 - The list is reordered on the smallest-first basis. 

This procedure repeats with step 1 for the new list. In this case the clock structure is 

controlled by the continuous solver, the time of the state event is sent by the continuous 

domain and the first consequence is the re-start of the discrete simulator at a time tse, 

before the expected time xtk+1.  

The synchronization models in C/D heterogeneous systems are presented in Table 2.2. 

We also give here the advantages and the disadvantages for each of the presented 

models. 
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Table 2.2. Synchronization in continuous/discrete heterogeneous systems 

Synchronization 
model 

Synchronization 
step 

Advantages Disadvantages 

Canonical  
synchronization  

model 

At each discrete step 
and state event 

occurrence 

Can be applied 
for all systems 

Synchronization 
overhead 

Rollback-based 
synchronization 

model  

At each update and 
sampling events and 

state event 
occurrence 

Non-periodic 
update/sample 

events, it is 
efficient when 

no state  
events occurs 

Rollback for discrete 
model is required if 

the continuous 
model generates 

state events 
 

2.4 Conclusion 

This chapter presented the global execution model of continuous/discrete heterogeneous 

systems. The first section introduced the main components of the global execution 

models: the domain specific execution models, the co-simulation bus and the co-

simulation interfaces. The co-simulation interfaces have to provide efficient 

synchronization models. The second section of this chapter details two synchronization 

models: the canonical model and the rollback-based model. In the case of the canonical 

model the continuous domain simulator advances before the discrete domain simulator. 

The need for rollback is completely eliminated. In the case of the rollback-based model 

the discrete simulator advances before the continuous simulator and, if a state event is 

generated by the continuous domain, the discrete model will backtrack to the previous 

stable state. 

This last section of the chapter presented the events update schema for the discrete 

simulator for both synchronization models.  
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CHAPTER 3. GENERIC METHODOLOGY FOR THE DESIGN OF 

CO-SIMULATION TOOLS 

This chapter proposes a new methodology for the design of continuous/discrete co-

simulation tools (as shown in Figure 3.1) divided in two stages: a generic stage and an 

implementation stage. This methodology presents several steps that are independent of 

the simulation tools used for the continuous and discrete components of the system. 

During these generic steps, the co-simulation interfaces are defined in a conceptual 

framework; their functionality and the internal structure of simulation interfaces are 

expressed using existing formalisms and temporal logic. After the rigorous definition of 

the required functionality for simulation interfaces, the designer will start the steps 

related to the implementation.  

The main stages of the proposed methodology (illustrated in Figure 3.1) are:  

1. A generic stage including the following steps:  

- Definition of the operational semantics for the synchronization in 

continuous/discrete global execution models. 

- Distribution of the synchronization functionality to the simulation interfaces. 

- Formalization and verification of the simulation interfaces behavior. 

- Definition of the library elements and the internal architecture of the simulation 

interfaces.  

2. An implementation stage including the following steps: 

- The analysis of the simulation tools for the integration in the co-simulation 

framework.  

- The implementation of the library elements specific to different simulation tools 

and the implementation validation.   
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Figure 3.1. A generic methodology for co-simulation tools design 

These steps will be detailed in the sub-sections of this chapter. 

 

Figure 3.2. Design methodology in the flow for the automatic generation of co-

simulation models 
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Figure 3.2 presents the proposed design methodology in the context of the automatic 

generation of execution models. 

We emphasize here that the methodology is generic; the first stage is independent of the 

implementation languages of the co-simulation library.  

Sub-section 3.1 “Generic Methodology” of this chapter generally presents the proposed 

methodology. Sub-section 3.2 “Using formal methods for co-simulation tools design” 

gives details on how this methodology can be applied, using existing formalism and 

tools.   

3.1 Generic Methodology  

This section focuses on the generic methodology and its stages. Each of the following 

sub-sections will detail these steps. 

3.1.1 Definition of the Operational Semantics for the Synchronization 

in Continuous/Discrete Global Execution Models 

The first step of the methodology for co-simulation tools design is the definition of the 

operational semantics for the synchronization in continuous/discrete global execution 

models. An operational semantics gives a detailed description of the system’s behavior 

in mathematical terms. This model serves as a basis for analysis and verification. The 

description provides a clear language independent model that can serve as a reference 

for different implementations.   

The operational semantics for continuous/discrete systems requires the rigorous 

representation of the relation between the simulators (communication/synchronization 

and data exchanged between the continuous and the discrete simulators) as well as their 

high level and dynamic representations.  

Figure 3.3 shows a view of the continuous/discrete heterogeneous during the “definition 

of the operational semantics for the synchronization” stage.  
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Discrete Continuous

Synchronization 

 

Figure 3.3. The continuous/discrete system during the “Definition of the operational 

semantics” stage 

3.1.2 Distribution of the Synchronization Functionality to the Co-

Simulation Interfaces 

Based on the operational semantics, we can now define the synchronization 

functionality between the continuous and the discrete simulators. This functionality is 

insured by the interfaces that are the link between the different execution models and the 

co-simulation bus (see Figure 2.1). They are each in charge with a part of the 

synchronization between the two models. To insure system’s flexibility, the 

synchronization functionality has to be distributed to the simulation interfaces. 

Moreover, each computation step has to be thoroughly specified. Figure 3.4 shows a 

view of the continuous/discrete heterogeneous during the “distribution of the 

synchronization functionality to the co-simulation interfaces” stage. 

Discrete Continuous

Simulation

Interface

Simulation

Interface

Simulation Bus

Simulation

Interface

Simulation

Interface

Simulation Bus  

Figure 3.4. The continuous/discrete system during the “Distribution of the 

synchronization functionality to the co-simulation interfaces” stage 



 

 

39 

 

3.1.3 Formalization and Verification of the Simulation Interfaces 

Behavior  

The formalization and verification of the simulation interfaces behavior stage can be 

roughly divided into three steps: formalization (that can be the formal specification of 

the heterogeneous system), the validation by model simulation and the formal 

verification. The two main techniques that can be used for the formal verification of the 

interfaces are [44] : 

- model checking where the system descriptions are given as automata, the 

specification formulas are given as temporal logic formulas and the checking 

consists of the verification that all models of a given system description satisfy a 

given specification formula. It focuses mainly on automatic verification. 

Completeness and termination guarantee of model checking are some features of 

this technique, as well as it enables the tool to guarantee the correctness of a 

given property, or produce a counterexample otherwise. 

- theorem proving where the verification plan is manually designed and the 

correctness of the steps in the plan is verified using theorem provers. Completely 

automatic decision procedures are impossible because the input language (the 

model and the specification) is of higher order logic and that eliminates the 

decidability. Moreover, everything has to be translated in higher order logic, 

and,  therefore, the structure of the system may be lost and its representation can 

become large and difficult to work with.  

Considering that the system is dynamic, it is necessary to use a formalism that allows 

the expression of dynamic properties (the state of a system changes and by consequence 

the properties of the state also change). The temporal logic handles formalization where 

the properties evolve over time and in general uses: 

- propositions that describe the states (i.e., elementary formulas and logical 

connectors), and 



 

 

40 

 

- temporal operators that allow the expression of the properties of the states 

successions (called executions). 

The differences between the logics are in terms of temporal operators and objects on 

which they are interpreted (such as sequences or state trees)  [45]. 

The most commonly used logics are Linear Temporal Logic (LTL), Computation Tree 

Logic (CTL* and CTL, both of them untimed temporal logics) and their timed 

extensions TCTL and Metric Interval Temporal Logic (MITL).  

- CTL* allows the use of all temporal and branching operators but the property 

verification is very complex. For this reason, most of the tools actually used 

allow the verification of fragments of CTL*.  

- LTL is a fragment of CTL* that excludes the trajectory quantifiers. In this case 

only the trajectory predicates are considered. LTL does not provide a means for 

considering the existence of different possible behaviors starting from a given 

state (sequential) [45]. 

- CTL is also a fragment of CTL* and it is obtained when every occurrence of a 

temporal operator is immediately preceded by a branching operator. In the case 

of CTL we have state trees. 

- TCTL is a timed temporal logic that is an extension of CTL obtained by 

subscribing the modalities with time intervals specifying time restrictions on 

formulas.  

For our formal model, the properties that need to be checked are branching properties 

that are expressed using CTL or TCTL logics. 

3.1.4 Definition of the Internal Architecture of the Simulation 

Interfaces 

The formalization of the simulation interfaces behavior step is naturally followed by the 

definition of their internal architecture. This definition eases the automatic generation of 
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the simulation interfaces. We present in Figure 3.5 the hierarchical representation of the 

global simulation model used in our approach.  

 

Figure 3.5. Hierarchical representation of the generic architecture of the co-simulation 

model 

At the top hierarchical level, the global model is composed of the continuous and 

discrete models and of the C/D simulation interface required for the global simulation.  

The second hierarchical level of the global simulation model includes the domain 

specific simulation interfaces and the co-simulation bus in charge of the data transfer 

between these interfaces.  

The bottom hierarchical level includes the elements from the co-simulation library that 

are the atomic modules of the domain specific simulation interface. These atomic 

components implement basic functionalities of the synchronization model.  

3.1.5 The Analysis of the Simulation Tools for the Integration in the 

Co-Simulation Framework 

The considerations presented in the previous steps of the methodology show that 

specific functionalities are required for the co-simulation of continuous and discrete 
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models. Therefore, the integration of a simulation tool in the co-simulation environment 

requires their analysis. Thus, in the case of continuous simulator integration in the co-

simulation tool, this simulator has to provide APIs enabling the following controls:  

- State event detection and location.  

- Setting break points during differential equation solving. 

- On-line update of the breakpoints settings. 

- Sending processing results and information for synchronization (i.e., the time 

step of the state event) to the discrete simulator. This implies generally the 

possibility to integrate C-code and Inter-Process Communications (IPC). 

For the integration of a discrete simulator in the co-simulation tool, the simulator has to 

allow the addition of the following functionalities:  

- Detection of the end of the discrete simulation cycle that guarantees that the 

simulation control is transferred to the continuous simulator only after the 

stabilization of discrete simulator. 

- Insertion and retraction of new events (state events) in the scheduler’s queue. 

This must be done before the advancement of the simulator time.  

- Sending processing results and information for synchronization to the 

continuous simulator (i.e., the time stamp of its next discrete event). 

3.1.6 The Implementation of the Library Elements Specific to 

Different Simulation Tools 

The last step of the methodology for the design of co-simulation tools for 

continuous/discrete systems is the implementation of the library elements that are 

specific to different simulation tools. This step depends highly on the simulation tools 

chosen in the previous step, the analysis of the simulation tools.  



 

 

43 

 

3.2 Using Formal Methods for Co-Simulation Tools Design 

This section gives more details on the steps that compose the generic stage (as presented 

in the previous section) as well as their implementation. 

Before giving the details of a possible application of the methodology we present the 

basic concepts that are used in our specific methodology are introduced: Discrete Event 

System Specification (DEVS) [28], [29], timed automata [46], [47] and UPPAAL [48]. 

The following sub-sections present an example of utilization of the proposed 

methodology.  

3.2.1 Basic Concepts 

Discrete event system specifications  

Discrete Event Systems Specifications (DEVS) is a formalism supporting a full range of 

dynamic system representation, with hierarchical and modular model development. The 

abstraction separates modeling from simulation and provides atomic models that can be 

used to build complex models that allow the integration of continuous and discrete-

event models [28], [29]. It also provides all the mechanisms for the definition of an 

operational semantics for the continuous/discrete synchronization model, the high level 

representation of the global formal model.  

A DEVS is defined as a structure [28], [29] : 

DEVS = ‹X, S, Y, δint, δext, λ, ta› where  

X = {(pd, vd)|pd∈ InPorts, vd ∈ X pd } set of input ports and their values in the discrete 

event domain, 

S - set of sequential states 

Y = {( pd, vd)|pd, ∈ OutPorts, vd ∈ Y pd } set of output ports and their values in the 

discrete event domain. 

δint : S→ S the internal transition function 
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δext: QxX→ S the external transition function, where: 

       Q={(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total state, 

       e is the time elapsed since the last transition  

λ:S→Y output function 

ta:S→R
+

0,∞ set of positive reals with 0 and ∞. 

The system’s state at any time is s. There are two possible situations: 

- case 1 – where we assume that no external events occur. In this case the system 

stays in this state s for the time ta(s). When the elapsed time e equals ta(s) (that is 

the time allocated for the system to stay in state s), the system outputs the value 

λ(s). The state s changes to the state s’ as a result of the transition δint(s). We 

emphasize here that the output is possible only before the internal transitions. 

We propose the definition of this type of transition using the following rule of 

the form
sConclusion

Premises :  

,0)(s'e)(s,

(s)δs'(s)te
λ(s)!

inta

 →→→→

====∧∧∧∧====  where ‘!’ represents the send operator. 

- case 2 – where there is an external event x before the expiration time, ta(s) (the 

system is in state (s,e), with e≤ ta(s)), the system’s state changes to state s’ as a 

result of the transition δext(s,e,x). For the definition of this type of transition, we 

propose the following rule: 

)0,'(),(
),,(')(

?
ses

xessste
x

exta

→

=∧≤ δ  where ‘?’ represents the receive operator. 

Thus, the internal transition function dictates the system’s new state when no 

external events occurred since the last transition while the external transition 

function dictates the system’s new state when an external event occurs – this 

state is determined by the input x, the current state s and how long the system has 

been in this state, e. In both cases the system is then in some new state s’ with 

some new expiration time ta(s’). 
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We also give here DEVS coupled models as defined by the same formalism. For the 

case where we have ports, the specification includes external interfaces with input and 

output ports and values, and coupling relations. 

N = (X,Y,D, {Md|d ∈ D}, EIC,EOC,IC ) where: 

X = {(p, v)|p ∈ InPorts, v ∈ Xp} set of input ports and values, 

Y = {(p, v)|p ∈ OutPorts, v ∈ Yp} set of output ports and values 

D = set of components names 

Md=( Xd , S, Yd, δint, δext, λ, ta ) is a DEVS with Xd , Yd the set of input/output ports and 

values 

EIC (External Input Coupling) = the coupling between the input in the coupled model 

and the external environment  

EOC (External Output Coupling) = the coupling between the output from the coupled 

model and the external environment  

IC (Internal Coupling) = the coupling between the modules that compose the coupled 

module 

In our work we used the parallel DEVS coupled formalism. Each module composing the 

interface performs a different task accordingly to the continuous/discrete 

synchronization models.  

Timed automata and UPPAAL 

In this section we briefly introduce timed automata. A timed automaton [46] is a 

formalism for modeling and verification of real time systems.  It can be seen as classical 

finite state automata with clock variables and logical formulas on the clock (temporal 

constraints) [47]. The constraints on the clock variables are used to restrict the behavior 

of the automaton. The logical clocks in the system are initialized to zero when the 

system is started and then increase at the uniform rate counting time with respect to a 

fixed global time frame. Each clock can be separately reset to zero. The clocks keep 

track of the time elapsed since the last reset [46]. There are two types of clock 
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constraints: constraints associated with transitions and constraints associated with 

locations.  A transition can be taken when the clocks’ values satisfy the guard labeled 

on it. Figure 3.6 illustrates an example of a timed automaton. The constraints associated 

with locations are called invariants and they specify the amount of time that may be 

spent in a location. The invariant “true” for a location means there are no constraints for 

the time spent in the location. 

 

Figure 3.6. Example of a timed automaton 

The process shown in Figure 3.6 starts at the location p with all its clocks (x and y) 

initialized to 0. The values of the clocks increase synchronously with time at the 

location q. 

At any time, the process can change the location following a transition qp
ra;g; →  if 

the current values of the clocks satisfy the enabling condition g (guard). A guard is a 

Boolean combination of integer bounds on clocks and clock-differences. With this 

transition, the variables are updated by r (reset) which is an action performed on 

clocks. The actions are used for synchronization and are expressed by a 

(action)[47]. A synchronization label is of the form Expression? or Expression! 

where ! represents the operator send and ? represents the operator receive.  
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The semantics for a time automaton are defined as “a transition system where a state or 

configuration consists of the current location and the current values of clocks” [47]. 

Thus, the state is represented by the tuple: (l, v) where l is the location and v is the 

clock valuation (a function that associates a real positive value, including zero, to 

each clock). Given the system, we can have two types of transitions between locations: a 

delay transition when the automaton may delay for some time or an action transition 

when the transition follows an enabled transition.  

The transition showing the time passing is )v',(l'v)(l,
t

→→→→  if and only if: 

.
Inv(l) verifies )t'(v t],[0,t'  

                                                     
tvv'  





+∈∀

+=
                                                                                     (8) 

where Inv(l) is the invariant in the location l, l=l’, v’=v + t showing that for all clocks x, 

v’(x)=v(x)+t .  

For the discrete transitions )v'(q,v)(p,
ra;g;

 →→→→  v’ has to satisfy the invariant of q. v’ is 

obtained from v by resetting the clocks indicated by the reset r.  

Timed automata have the following characteristics that make them desirable for our 

formal model: 

- Ease and flexibility of systems’ modeling. 

- Existence of a whole range of powerful tools that are already implemented and 

that allow different verification techniques. 

- Adequate expressivity in order to model time constrained concurrent systems.  

Our formal model needs to support concurrency between continuous/discrete systems 

thus it was represented as a parallel composition of several timed automata with no 

constraints regarding the time spent in the locations. 

UPPAAL [48] is an integrated tool environment for modeling, simulation and 

verification of timed automata developed jointly by Aalborg University in Denmark and 

the Uppsala University in Sweden. It consists of three parts: a model descriptor, a 

simulator and a model-checker. The descriptor models systems that can be represented 

as a collection of non-deterministic processes with finite control structure and real-
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valued clocks (i.e. timed automata), communicating through channels and (or) shared 

data structures. A model consists of one or more concurrent processes (also named here 

simulators), local and global variables, and channels. There are three types of locations 

in UPPAAL: normal locations with or without invariants, urgent locations and 

committed locations. No delay is allowed in urgent or committed locations. The 

transitions out from an urgent location have higher priority than that of time progress. 

The expressions cover clocks and integer variables and are used with the labels: guards, 

synchronization, assignments or invariant. The models synchronize with each other via 

channels. In UPPAAL the assignments are evaluated sequentially (not concurrently). On 

synchronizing transitions, the assignments on the !-side (the emitting side) are evaluated 

before the ?-side (the receiving side).  

The model checker engine in UPPAAL is based on the theory of timed automata and the 

query language is a subset of computational tree logic, the timed computational tree 

logic (TCTL). The query language [48] consists in path formulae and state formulae. 

The states formulae describe individual states while the path quantifies over traces of the 

model.  

The main advantage of UPPAAL is that the product automaton is computed on-the-fly 

during verification. This reduces the computation time and the required memory space.  

It also allows interleaving of actions as well as hand-shake synchronization. In our 

approach UPPAAL was used for the formal representation of the simulation interfaces.  

3.2.2 Definition of the Operational Semantics for the Synchronization 

in Continuous/Discrete Global Execution Models 

DEVS allows for the definition of the operational semantics of the behavior of the co-

simulation interfaces with respect to the synchronization models presented in Chapter 2.  

Definition of the Operational Semantics for the canonical 

synchronization in Continuous/Discrete Global Execution Models 
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The operational semantics for the continuous/discrete canonical synchronization model 

is given by the set of rules presented in Table 3.1. DataToCSI (also DataFromDSI) is 

the output function from the discrete domain simulation interface λ(sd), and DataToDSI 

(also DataFromCSI) is the output function from the continuous domain interface λ(sc). 

The semantics of the global variable flag is related to the context switch between the 

continuous and discrete simulators. When flag is set to ‘1’, the discrete simulator is 

executed. When it is ‘0’, the continuous simulator is executed. The global variable synch 

is used to impose the order of the different operations expressed by the rules. 

For a better explanation, we present in detail the first rule, corresponding to arrow 1 in 

Figure 2.3(a) and Figure 2.3(b). The premises of this rule are: the variable synch has the 

value ‘1’, the variable flag has the value ‘1’, and we have an external transition function 

(δext) for the continuous model. The discrete model is initially in the total state (sdk, edk), 

this means it has been in the state sdk for the time edk . In this state, the discrete simulator 

performs the following actions: 

- send the data and the value of its next time stamp (this action is expressed by 

!(DataToCSI, ta(sdk)) 

- switch the simulation context to the continuous model (this action is expressed 

by flag = 0).  

For the same rule, the continuous model is in state qk and performs the following 

actions:  

- receive the data and the value of the time stamp from the discrete simulator 

(expressed by ?((DataFromDSI, ta(sdk)). 

- set the global variable synch to ‘0’ (action expressed by synch=0) in order to 

respect the premise of the rule corresponding to the arrow 4. 

The actions expressed by this rule will be executed by the discrete simulator when the 

context will be switched to it. 
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Table 3.1. Operational semantics for the C/D canonical synchronization model 

Rule 
 - Arrows in 

Figure 2.3 

 - Description 

a d k a dk

k ext k

!( DataToCSI ,t ( s )); flag: 0 ?( DataFromDSI ,t ( s ));synch: 0

d k dk dk dk k k

synch 1 flag 1 q ( q )

( s ,e ) ( s ,e );q q

δ
= =

= ∧ = ∧ =

→ →

 

- Arrow 1 fig. 
2.3(a) and 2(b) 

- Context 
switch discrete 
to continuous 

int

k 1 int k

! DataToDSI ; flag : 1

k k 1 k 1

flag 0 stateevent( t ) q ( q )

q q q
δ

δ+

=

+ +

= ∧ ¬ ∧ =

→ →  

- Arrow 2 and 
3 in fig 2.3(a) 

- Continuous 
time advance 
and context 

switch 
continuous to 
discrete when 
no state event  

int d ( k 1 ) d ( k 1 )a dk dk

d ( k 1 ) ext dk

? DataFromCDI ; ( s ); ( s );synch: 1t ( s ) e

dk dk dk a dk d ( k 1 )

synch 0 flag 1 stateevent s ( s )

( s ,e ) ( s ,t ( s )) ( s ,0 )
δ λ

δ
+ +

+

=−

+

= ∧ = ∧ ¬ ∧ =

→ →

 

- Arrow 4 in 
figure 2.3(a) 

- Discrete time 
advance when 
no state event 

se

k 1 int k

! DataToDSI ;! t ; flag: 1! DataToDSI

k k 1 k 1

flag 1 stateevent q ( q )

q q q

δ+

=

+ +

= ∧ ∧ =

→ →  

- Arrow 2 and 
3 in fig 2.3(b) 

- Continuous 
time advance 
and context 

switch 
continuous to 
discrete when 

state event 

se int se se

d( k 1 ) ext dk ,

?t ? DataFromCSI ; ( s ); ( s );synch: 1

dk dk dk se se

synch 0 flag 1 stateevent s ( s t )

( s ,e ) ( s ,t ) ( s ,0 )
δ λ

δ+

=

= ∧ = ∧ ∧ =

→ →  

- Arrow 4 fig. 
2.3(b) 

- Discrete time 
advance when 

state event 
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Definition of the operational semantics for rollback-based 

synchronization in continuous/discrete global execution models 

The operational semantics for the light rollback synchronization model is given by the 

set of rules presented in Table 3.2. This table respects the notations used for the 

canonical synchronization model presented in the section above. The semantic of the 

global variable flag is again related to the context switch between the continuous and 

discrete simulators. When flag is set to ‘1’, the discrete simulator is executed. When it is 

‘0’, the continuous simulator is executed. For the rollback-based synchronization model, 

besides the global variable synch we introduce a new global variable back. These 

variable are used to impose the order of the different operations expressed by the rules 

(i.e when back is 1 the discrete simulator advances to the next time stamp while when it 

is 0, it backtracks to the previous time stamp).  

For a better explanation, we detail here the first rule, corresponding to the arrow 1 in 

Figure 2.4. The premises of this rule are: the variables synch, flag and back have the 

value ‘1’, and we have an external transition function (δext) for the continuous model. 

The discrete model is initially in the total state (sdk, edk), this means it is in the state sdk 

for the time edk. sd is the tuple (xdk, tk). In this state, the discrete simulator performs the 

following actions: 

- send the data and the value of its next time stamp (this action is expressed by 

!(DataToCSI, ta(sdk)) 

- switch the simulation context to the continuous model (this action is expressed 

by flag = 0).  
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Table 3.2. Operational semantics for the C/D rollback-based synchronization model 

Rule 
- Arrows in 
Figure 2.4 

- Description  

int dk a dk

d( k 1 ) int dk

( s ) !( DataToCSI ,t ( s )); flag: 0

dk dk d( k 1 ) d ( k 1 ) a dk

synch 1 flag 1 back 1 s ( s )

( s ,e ) ( s ,0 ) ( s ,t ( s ))
δ

δ+

=

+ +

= ∧ = ∧ = ∧ =

→ →

 

- Arrow 1 in Figure 
2.4(a) and 2.4(b) 
- Discrete time 

advance 

a dk

k ext k

?( DataFromCSI ,t ( s ));synch: 0

k k

synch 1 flag 0 q ( q )

q q

δ
=

= ∧ = ∧ =

→  

- Arrow 2 in Figure 
2.4(a) and (b) 

- Context switch 
discrete to cont. 

int

k 1 int k

! DataToDSI ; flag: 1

k k 1 k 1

synch 0 flag 0 back 1 statevent( t ) q ( q )

q q q
δ

δ+

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→ →
 

- Arrows 3 and 4 
Figure 2.4(a) 

-Cont. time advance 
and context switch 

cont. to discrete 
when no state event 

d ( k 1 )

d ( k 1 ) ext d ( k 1 )

? DataFromCSI ; ( s );synch: 1

d ( k 1 ) a dk d ( k 1 )

synch 0 flag 1 back 1 statevent s ( s )

( s ,t ( s )) ( s ,0 )
λ

δ
+

+ +

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→
 

- Arrow 4 receiving 
end DSI fig. 2.4(a) 
- Context switch 
cont. to discrete 

when no state event 

int k se

( k 1 ) int k

( q ) ! DataToDSI ;! t ; flag: 1

k ( k 1 ) ( k 1 )

synch 0 flag 0 back 1 statevent q ( q )

q q q
δ

δ+

=

+ +

= ∧ = ∧ = ∧ ∧ =

→ →
 

- Arrow 3 and 4 
Figure 2.4(b) 

- Cont. time advance 
and context switch 

cont. to discrete 
when state event 

se d ( k 1 )

d( k 1 ) ext d ( k 1 ),

? DataFromCSI ;?t ; ( s );synch: 1;back: 0

d( k 1 ) d ( k 1 ) d( k 1 )

synch 0 flag 1 back 1 statevent s ( s t )

( s ,e ) ( s ,0 )
λ

δ
+

+ +

= =

+ + +

= ∧ = ∧ = ∧ ∧ =

→
 

- Arrow 4 receiving 
end DSI fig. 2.4(b) 
- Context switch 
cont. to discrete 
when state event 

)e,s()e,s(

)s(s0back1flag1synch

dkdk

1:back);s(

)1k(d)1k(d

)1k(dintdk

)1k(dint  →→→→

====∧∧∧∧====∧∧∧∧====∧∧∧∧====
====

++++++++

++++

++++δδδδ

δδδδ
 

- Arrow 5 Fig. 2.4(b) 
- Rollback in the 
discrete domain 

int dk a se

se int dk

( s ) !( DataFromBus,t ( s )); flag: 0

dk se se d( k 1 ) a se

synch 1 flag 1 back 1 s ( s )

( s ,t ) ( s ,0 ) ( s ,t ( s ))
δ

δ
=

+

= ∧ = ∧ = ∧ =

→ →
 

- Arrow 6 and 7 
Figure 2.4 (b) 
- Discrete time 

advance when state 
event 
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3.2.3 Distribution of the Synchronization Functionality to the Co-

Simulation Interfaces 

The second step of the methodology consists in the distribution of the synchronization 

functionality to the simulation interfaces. The synchronization functionality was 

presented in Section 3.1.3. Only the discrete domain interface changes with the 

synchronization model. This sub-section will present the two discrete simulation 

interfaces and the continuous domain interface. Before giving the distribution of the 

synchronization functionality in the co-simulation interfaces we present, for a better 

understanding of the notations used further, the global formal execution model.  

The continuous/discrete global formal model  

The global model proposed is formed by four sub-models (processes): the continuous 

domain simulator (Cont), the continuous simulation interface (CSI), the discrete domain 

simulator (Disc) and the discrete simulation interface (DSI).  

Figure 3.7 shows the global formal model including the continuous domain and the 

discrete domain simulators and their interaction. The transitions show the 

synchronizations between the simulators and interfaces as well as the synchronization 

between the interfaces.  

 

Figure 3.7. The global formal simulation model 
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The initial location for the global formal model is the discrete simulator; however, the 

continuous simulator is the first that advances in time. For a better understanding of the 

behavior of the simulation interfaces we used the following name conventions: 

DataFromDisc - Data sent by the discrete simulator (Disc) to the discrete simulation 

interface (DSI) 

DataToDisc – Data sent by DSI  to Disc 

DataFromCont - Data sent by the continuous simulator (Cont) to the continuous 

simulation interface (CSI) 

DataToCont - Data sent by CSI to Cont 

DataToCSI – Data sent by the discrete simulation interface (DSI) to the continuous 

simulation interface (CSI) 

DataFromDSI – Data received by CSI from DSI 

One can observe that DataToCSI and DataFromDSI are the same but for an ease in 

understanding the rules that will be presented in the following sections we will use both 

notations: DataToCSI for the representation from the discrete simulation interface point 

of view and DataFromDSI for the representation from the continuous simulator point of 

view. 

DataToDSI – Data sent by CSI to DSI 

DataFromCSI – Data received by DSI from CSI 

In this case we make the same comment – DataToDSI and DataFromCSI are the same 

but for the reason presented above we will use both notations.  

The discrete domain simulation interface for the canonical 

synchronization model  

This section presents the behavior and the operational semantics of the Discrete 

Simulation Interfaces (DSI). The behavior of the discrete domain interface can be 

described by a few processing steps detailed in Figure 3.8.  

The interface is in charge of: 

- exchanging  data between the simulators (send/receive), 
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- sending the time stamps of the next events,  

- considering the state events and 

- the context switch to the continuous interface. 

 

Figure 3.8. Flowchart for the discrete domain interface for the canonical synchronization 

model 

More detailed, after starting, the tasks of the interface are:  

- get data from the discrete simulator. This data is sent to the co-simulation bus  

- detect the end of discrete simulation cycle. The time of the next event is sent to 

the co-simulation bus. 

- wait for event from the co-simulation bus. If a state event was generated, the 

interface gets the time of the state event and the data from the co-simulation bus 

and sends them to the discrete simulator. If no state event was generated the 

interface sends to the discrete simulator, only the data from the continuous 

interface. Only now the time in  the discrete simulator advances to the next 

event/state event  
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- wait for data the continuous simulator  - the cycle restarts.  

The semantics was defined using DEVS formalism. Table 3.3 presents a set of rules that 

show the transition between states. The first rule covers arrow 1 in Figure 2.3(a) and 

Figure 2.3(b). The second and third rules correspond to arrows 3 (on the receiving part) 

and 4 in Figure 2.3(a) respectively Figure 2.3(b). 

Table 3.3. Operational semantics for the Discrete Simulation Interface (DSI) for the 

canonical synchronization model 

Rule 

k 1 dk

dk ext dk

!( data ,t (( s ))); flag : 0? DataFromDisc

dk dk dk d ( k 1 )

synch 1 flag 1 s ( s ,0,x )
( 1 )

( s , ) ( s ,0 ) (( s ),t )

δ
+ =

+

= ∧ = ∧ =

∞ → →
 

dk ext dk

?data;synch: 1? Event ! DataToDisc

dk dk dk dk d( k 1 ) dk 1

synch 0 flag 1 stateevent s ( s ,0,x )
( 2 )

( s ,e ) ( s ,0 ) ( s ,0 ) ( s ,e )

δ
=

+ +

= ∧ = ∧ ¬ ∧ =

→ → →
 

dk ext dk

?( data ,tse );synch: 1 !( DataToDisc,tse )? Event

dk dk dk dk se se

synch 0 flag 1 stateevent ( s ) (( s ),0,x )
( 3 )

( s ,e ) ( s ,0 ) ( s ,0 ) ( s ,e )

δ
=

= ∧ = ∧ ∧ =

→ → →
 

 

In order to clarify, we detail here the first rule. The premises of this rule are: the synch 

variable has value ‘1’, the flag variable has value ‘1’, and we have an external transition 

function (δext) for the DSI.  

This rule expresses the following actions of the discrete simulator interface: 

- receiving data from the discrete model. This is an external transition (δext) 

expressed by ?(DataFromDisc).  

- sending data to the Continuous Simulator Interface (CSI) (!DataToCSI). The 

data sent to the CSI is the output function λ(sdk) and it is possible,  according 

with DEVS formalism, only as a consequence of an internal transition (δint). In 

our case the output is represented by !(data,td(k+1)(sdk). This transition 

corresponds to arrow 1 in Figure 2.3(a) and 2.3(b).  
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- switching the simulation context from the discrete to the continuous domain 

(action expressed by flag:=0). 

All the other rules presented in this table follow the same format.  

From these rules we can trace the state graph of the DSI for the canonical 

synchronization model as shown in Figure 3.9. The dashed lines represent internal 

transitions and the corresponding states and the plain lines represent external transitions 

and the corresponding states.  

Start

Data 
Got

Wait

Event
GotState

Event

Wait

?DataFromCSI

?DataFromDisc !DataToCSI

?DataFromCSI
?EventTime

δext

δext

δext

δint

δext

δext

δint

 

Figure 3.9. State graph of the DSI for the canonical synchronization model represented 

using DEVS 

The discrete domain simulation interface for the rollback-based 

synchronization model  

The behavior of the discrete domain interface in the case of the rollback-based 

synchronization model can be described by a few processing steps detailed in Figure 

3.10.  

The interface is in charge of: 

- exchanging  data between the simulators (send/receive), 

- sending the time stamps of the next events,  

- advancing the time to the next discrete event 

- restoring the previous state if a state event was generated by the continuous 

simulator 

- considering the state events and 
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- the context switch to the continuous interface. 

 

Figure 3.10. Flowchart for the discrete domain interface for the rollback-based 

synchronization model 

More detailed, after starting, these tasks are:  

- get data from the discrete simulator. This data is sent to the co-simulation bus  

- detect the end of discrete simulation cycle. The time of the next event is sent to 

the co-simulation bus. Time advances to the next discrete event. 

- wait for event from the co-simulation bus. If a state event was generated, the 

interface gets the time of the state event and the data from the co-simulation bus 

and sends them to the discrete simulator. The discrete simulator backtracks to 

the previous stable state. If no state event was generated the interface sends to 

the discrete simulator, only the data from the continuous interface.  

- wait for data the continuous simulator  - the cycle restarts.  

Table 3.4 presents a set of rules that show the transition between states. Rule number 4 

covers arrow 1 in both Figure 2.4(a) and 2.4(b). Rule 5 corresponds to the arrow 4 – no 
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state event- (on the receiving part) in Figure 2.4(a). Rules 6, 7 and 8 show the behavior 

for the discrete simulator backtracking and advancing to the state event time tse (arrows 

5, 6, 7 in Figure 2.4(b)). 

Table 3.4. Operational semantics for the DSI for the rollback-based synchronization 

model 

Rule 

a dk k

d ( k 1 ) int dk

!( DataToCSI ,t ( s ,t )); flag: 0? DataFromDisc

dk dk d ( k 1 ) d( k 1 ) a dk

synch 1 flag 1 back 1 s ( s )
( 4 )

( s ,e ) ( s ,0 ) (( s ),t ( s ))

δ+

=

+ +

= ∧ = ∧ = ∧ =

→ →
 

d ( k 1 )

d ( k 1 ) ext d ( k 1 )

? DataFromCSI ; ( s );synch: 1

d ( k 1 ) a dk d ( k 1 )

synch 0 flag 1 back 1 statevent s ( s )
( 5 )

( s ,t ( s )) ( s ,0 )
λ

δ
+

+ +

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→
 

se d ( k 1 )

d ( k 1 ) ext d ( k 1 ),

? DataToCSI ;?t ; ( s );synch: 1;back : 0

d( k 1 ) d( k 1 ) d( k 1 )

synch 0 flag 1 back 1 statevent s ( s t )
(6 )

( s ,e ) ( s ,0 )
λ

δ
+

+ +

= =

+ + +

= ∧ = ∧ = ∧ ∧ =

→
 

int d ( k 1 )

dk int d( k 1 )

( s );back: 1

d( k 1 ) d( k 1 ) dk dk

synch 1 flag 1 back 0 statevent s ( s )
(7 )

( s ,e ) ( s ,e )
δ

δ
+

+

=

+ +

= ∧ = ∧ = ∧ ∧ =

→
 

int dk a dse

se int dk

( s ) !( DataToCSI ,t ( s )); flag: 0

dk se dse d( k 1 ) a se

synch 1 flag 1 back 1 statevent s ( s )
( 8 )

( s ,t ) ( s ,0 ) ( s' ,t ( s ))
δ

δ
=

+

= ∧ = ∧ = ∧ ∧ =

→ →
 

 

In order to clarify, we detail here the first rule. The premises of this rule are: the synch 

variable has value ‘1’, the flag variable has value ‘1’, the back variable has also value 

‘1’and we have an external transition function (δext) for the DSI. These variables insure 

the correct transitions for the simulator during the context switch. For example if there 

is no state event the next transition in the discrete domain is from time tk+1 to time tk+2 

(the variables synch, flag and back have all value ‘1’). If the continuous simulator 

generates a state event the next transition in the discrete domain is from time tk+1 to time 

tk (the arrow 5 in the Figure 2.4) and variables synch and flag have the value ‘1’ while 

the variable back has the value ‘0’. This rule expresses the following actions of the 

discrete simulator interface: 
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- receiving data from the discrete model. This is an external transition (δext) 

expressed by ?(DataFromDisc).  

- sending data to the Continuous Simulator Interface (CSI) (!DataToCSI). The 

data sent to the CSI is the output function λ(sdk) and it is possible,  according 

with DEVS formalism, only as a consequence of an internal transition (δint).  

- switching the simulation context from the discrete to the continuous domain 

(action expressed by flag:=0). 

All the other rules presented in this table follow the same format.  

From these rules we can trace the state graph of the DSI for the canonical 

synchronization model as shown in Figure 3.11. The dashed lines represent internal 

transitions and the corresponding states and the plain lines represent external transitions 

and the corresponding states.  

 

Figure 3.11. State graph of the DSI for the rollback-based synchronization model 

represented using DEVS 

The continuous domain simulation interface  

The behavior of the continuous domain interface can also be described by a few 

processing steps detailed in Figure 3.12.  

This interface handles: 

- exchanging data between the simulators (send/receive), 

- sending the time stamps of the next events,  
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- the indication (to the discrete interface) of the occurrence of a state event, and  

- the context switch to the discrete interface. 

More detailed, after starting, the tasks of the continuous domain simulation interface 

are:  

- get data and time of next discrete event from the co-simulation bus. This data is 

sent to the continuous simulator 

- get data from the continuous simulator. If a state event was generated by the 

continuous simulator, the interface sends the time of the state event and the data 

to the co-simulation bus. If no state event is generated, the continuous interface 

sends only data to the co-simulation bus.     

- wait for data/time from the discrete simulator; the cycle restarts. 

 

Figure 3.12. Flowchart for the continuous domain interface 
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The operational semantics for the CSI is given by the set of rules presented in Table 3.5. 

In these rules, the data notation refers to the data exchanged between the DSI and the 

discrete simulator.  

Table 3.5. Operational semantics for the Continuous Simulation Interface (CSI) 

 

From these rules we can trace the state graph of the CSI as shown in Figure 3.13 

 

 

Figure 3.13. State graph of the CSI represented using DEVS 

3.2.4 Formalization and Verification of the Co-Simulation Interfaces 

Behavior  

In [49] the authors demonstrate the equivalence between a DEVS model and the timed 

automata. The timed-automata model completes the DEVS graph with the addition of 

Rule 

d ( k 1 ) a dk

k ext k

?( data ,t );synch: 0 !( DataToCont ,t ( s ))

k k k

synch 1 flag 1 q ( q ),0,x )
( 9 )

q q q

δ
+ =

= ∧ = ∧ =

→ →
 

k 1 int k

?( DataFromCont ) !( data ); flag: 1
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synch 0 flag 0 stateevent q ( q )
(10 )
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+

= ∧ = ∧ ¬ ∧ =
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q q q
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=

= ∧ = ∧ ∧ =

→ →
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the timing evolution notions. In this work, both models of synchronization were 

formalized and verified. The continuous domain simulation interface is the same for 

both models. This sections present the formal representation for each discrete interface 

as well as for the continuous interface.  

The formalization of the discrete domain simulation interface for the 

canonical synchronization  

Figure 3.14 shows the formal model for the discrete domain interface, using timed 

automata. The model has only one initial location (marked in Figure 3.14 by a double 

circle) Start. 

 

Figure 3.14. The DSI for the canonical synchronization model represented as a timed 

automaton 

The discrete interface will change location from Start to NextTimeGot following the 

transition DataFromDisc?
Start NextTimeGot→ . This is an external transition realized in zero 

time and it is triggered by receiving the data (that is also synchronization between the 

discrete simulator and the interface) from the discrete simulator (DataFromDisc?). 

Here the interface receives the data from the discrete simulator and the time of the next 

event in the discrete domain. 

The location changes to WaitEvent following the transition: 
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DataToCSI!, NextTime cycle, cycle:int[0,period]NextTimeGot WaitEvent=→  

In order to change the location, the continuous interface sends the time of the next event 

(occurred/scheduled event) in discrete (the synchronization DataToCSI!) to the 

discrete interface. The variable NextTime is the time of the next event in the discrete 

domain. This variable takes, in this mode, the value cycle. The theory normally 

assumes equidistant sampling intervals. This assumption is not usually achieved in 

practice. For an accurate simulation we assume that cycle takes random values in an 

interval defined here as [0, period]. In WaitEvent location, the context is switched from 

the discrete to the continuous simulator.  

When the context is switched back to the discrete simulator, the location is changed to 

EventGot following the synchronization transition: EventGotWaitEvent
Event? → . 

During this transition the discrete interface receives from the continuous interface the 

synchronization Event?. In this location the occurrence of a state event in the 

continuous domain is considered. EventGot is an urgent location (as defined in section 

3.2.1). This will not allow the discrete model to miss a state event generated by the 

continuous model. Two cases are possible: 

  - When no state event was generated by the continuous domain, the location changes 

from EventGot to NoStEv. The transition StateEvent 0 
EventGot NoStEv

==→ is annotated 

in this case only with the guard StateEvent==0. 

  - When a state event was generated by the continuous domain the location changes 

from EventGot to StEvDetect following the transition: 

 StEvDetectEventGot
StEvTime NextTime,StateEvent

 →
= .  

This transition is annotated with a guard (StateEvent) and the update of the 

NextTime in the discrete domain as the time when the state event occurred in the 

continuous domain StEvTime (for a rigorous synchronization, the discrete domain 

has to consume this event and stop at the time when it was generated by the continuous 

domain interface). This is the time of the next event that is going to be sent to the 
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continuous simulator. From both locations StEvDetect and NoStEv, the system can reach 

the next location: TimeOfStEvDisc. In both cases the model performs synchronization 

(DataFromCSI?). At this point the discrete interface will synchronize and send data 

to the discrete simulator (DataToDisc!) and changes the location to 

WaitDataFromCont. The next location is Start, the discrete time variables is initialized 

on this channel (td=NextTime) and the cycle restarts. 

The formalization of the discrete domain simulation interface for the 

rollback-based synchronization  

Figure 3.15 shows the formal model (using timed automata) for the discrete domain 

interface. The model has only one initial location (a double circle in Figure 3.15) Start. 

The discrete interface will change location from Start to NextTimeGot following the 

transition tNextTimeGoStart
sc?DataFromDi
 → . This is an external transition realized with 

zero time and it is triggered by the receiving of the data (that is also synchronization 

between the discrete simulator and the interface) from the discrete simulator 

(DataFromDisc?). Here the interface receives the data from discrete simulator and 

the time of the current event in the discrete domain.    

 

U 

U U 

U 
DataToDisc !

DataFromCSI?  DataFromCSI? 

Start 

NextTimeGot 

WaitEvent EventGot 

NoStEv StEvDetect 

TimeOfStEvDiscStateRestoration 

WaitDataFromCont

td =NextTime td =StEvTime

StateEvent StateEvent ==0 

Event ? 

DataFromDisc ? 

DataToCSI!  

cycle : int[ 0 , period ] 
NextTime = cycle

tdn = NextTime 

 

Figure 3.15. The DSI for the rollback-based synchronization model represented as a 

timed automaton 
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The location changes then to WaitEvent. The discrete interface sends to the continuous 

interface the time of the current event (the synchronization DataToCSI!). The 

variable NextTime represents the time of the events in the discrete domain. This 

variable takes the value cycle. This values is then assigned to the variable tdn that 

represents the time stamp of the event. The theory normally assumes equidistant 

sampling intervals. This assumption is not usually achieved in practice. For an accurate 

simulation we assume that cycle takes random values in an interval defined here as [0, 

period]. In WaitEvent location, the context is switched from the discrete to the 

continuous simulator. When the context is switched back to the discrete simulator, the 

location is changed to EventGot following the synchronization transition: 

EventGotWaitEvent
Event? → . During this transition the discrete interface receives from the 

continuous interface the synchronization Event?. In this location the occurrence of a 

state event in the continuous domain is considered. EventGot is an urgent location. This 

will not allow the discrete model to miss a state event generated by the continuous 

model. Two cases are possible: 

- When no state event was generated by the continuous domain, the location changes 

from EventGot to NoStEv. The transition NoStEvEventGot
0 StateEvent

 →
== is 

annotated in this case only with the guard StateEvent==0. This state changes to 

TimeOfStEvDisc (that is an urgent location) following the transition 

 DiscTimeOfStEvNoStEv
DataToBus? →→→→ .  This is an external transition realized with 

zero time and it is triggered by the receiving of the data (that is also synchronization 

between the discrete and the continuous interfaces) from the continuous interface 

(DataFromCSI?).  During this transition the data from continuous discrete simulator. 

The system will immediately change the state to WaitDataFromCont while updating the 

time in discrete with the time stamp of the current event (td=NextTime). 

- When a state event was generated by the continuous domain the location changes from 

EventGot to StEvDetect following the transition: StEvDetectEventGot
 StateEvent →→→→ . This 
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transition is annotated with a guard (StateEvent). This state changes to 

StateRestoration following the transition DataFromCSI?
StEvDetect StateRestoration→ . This is also 

an external transition realized with zero time. During this transition only the data is sent 

to the discrete simulator. The system will immediately change the state to 

WaitDataFromCont while updating the time in discrete with the time stamp of the state 

event (td=StEvTime). 

From WaitDataFromCont state the location changes to Start. The discrete interface 

sends to the discrete simulator the data and the time of the events (state event or discrete 

event) and is represented here by the synchronization DataToDisc! and the cycle 

restarts. 

The formalization of the continuous domain simulation interface  

Figure 3.16 shows the formal model (using timed automata) for the continuous domain 

interface. The model also has only one initial location (marked in Figure 3.16 by a 

double circle) Start.  

 

Figure 3.16. The CSI represented as a timed automaton 
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The continuous interface will leave the initial location Start following the transition: 

DataFromDSI?Start ReceiveDataFromBus→ . This is also an external transition realized 

with zero time and it is triggered by the reception of the data from the discrete interface 

(DataFromDSI?) that is also the first synchronization point between the discrete 

interface and the continuous interface. The interface receives the data from the discrete 

simulator and the time of the next event in the discrete model. From the 

ReceiveDataFromBus location the process moves to the next location SendDataToCont 

following the transition  

 

The value NextTime, the time of the next event (occurred/scheduled event) in the 

discrete simulator is assigned to tcn, the next time in the continuous simulator. In our 

model, the synchronization on this transition is between CSI and Cont (where Cont is 

the continuous domain simulator), the interface sends data received from DSI and the 

time of the next event in the discrete domain to the simulator. 

The system changes the location from SendDataToCont to ReceiveDataFromCont 

following the synchronization transition: 

DataFromCont?
SendDataToCont ReceiveDataFromCont.   →  During this 

transition the continuous interface receives data from the continuous simulator and, if a 

state event occurred, the time of the state event. In the ReceiveDataFromCont location, 

the continuous interface evaluates if a state event was generated. Two cases are 

possible:  

 - When no state event is generated, the location changes from ReceiveDataFromCont to 

TimeOfStEv following the 

transition Event!StateEvent 0  
ReceiveDataFromCont TimeOfStEv

=→ . The transition is 

annotated in this case by the synchronization Event! and with the update StateEvent=0.  

 - When a state event is generated, the location changes from ReceiveDataFromCont to 

StEvDetect following the transition:  

    Cont SendDataToR NextTimetcn
  , ! DataToCont          →  = FromBus eceiveData
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 StEvDetectaFromContReceiveDat
 period]int[0,:tse tcn,:tcn)?tsetseStEvTime1,StateEvent Event!

 →
<== (

 

This transition is annotated with a synchronization (Event!) and three variable 

updates: StateEvent=1 (for the detection of a state event), 

StEvTime=(tse<tcn)? tse:tcn, tse:int[0,period] (for the time of the 

state event that occurs during the time interval [0,period]; this time will be sent to the 

discrete simulator). StEvDetect is an urgent location. The location StEvDetect changes to 

TimeOfStEv following the transition TimeOfStEvStEvDetect
StEvTimetcn

 →
= . 

At this point there is no synchronization, only an update of the time in the continuous 

domain having assigned the time of the state event StEvTime: tcn=StEvTime.  

TimeOfStEv location is common for both cases, StateEvent=0 or StateEvent=1. 

This location changes to WaitDataFromDisc. The system performs synchronization 

(DataToDSI!) between the continuous interface and the continuous simulator. The 

next location is Start, the continuous time variables is initialized on this channel 

(tc=tcn) and the cycle restarts. 

Formal model simulation 

The UPPAAL tool allows the validation of the system’s expected behavior regarding 

functionality: synchronization, conflicts, and communication. We simulated all the 

possible dynamic executions of our model. Figure 3.17 shows a screenshot of the 

simulator. 

We observe that the left panel is the simulation control window. It highlights the 

enabled transition as well as the symbolic traces. The middle panel shows the variables.  

It displays the values of the data and clock variables in the current location or transition 

selected in the trace of the simulation control panel (the symbolic traces). The right 

panel allows the visualization of the message sequence chart (also known as simulator). 

The vertical lines in the simulator window in Figure 3.17 represent the transitions 

between the locations while the horizontal lines are the synchronization points. In this 

figure the communication between the interfaces as well as the communication between 
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the simulators and the domain specific interfaces are represented by the same horizontal 

lines. 

 

Figure 3.17. Formal model simulation screen capture 

As shown here, the simulation was stopped by the user after the detection of a state 

event in the continuous domain. The state event was indicated to the discrete simulator 

and the time of the state event (StEvTime) is to be sent from the continuous to the 

discrete interface. The variable panel shows that the variable StateEvent=1, the time of 

the state event StEvTime=2, and the NextTime=10. The discrete simulator, instead of 

advancing the time to 10, will advance only to StEvTime. 

The verification of the execution model  

The formal verification consists of checking properties of the system for a broad class of 

inputs [44]. In our work we checked properties that fall into three classes: 

- Safety properties - the system does not reach an undesirable configuration, (e.g., 

deadlock) [50]. 
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- Liveness properties - some desired configuration will be visited eventually or 

infinitely (e.g., expected response to an input) [50]. 

- Reachability properties – the system always has the possibility of reaching a 

given situation (some particular situation can be reached) [44].  

The properties verified in order to validate the synchronization models are described 

below. Properties P0 to P4 were checked for both synchronization models. Property P5 

was checked only for the canonical synchronization model because the backtracking in 

the rollback based synchronization model.    

P0  Absence of deadlock (safety property) 

Deadlock exists among a set of processes if every process is waiting for an event that 

can be caused only by another process in the set. In UPPAAL deadlock is expressed by 

a formula using the keyword deadlock. A state is a deadlock state if there are no 

outgoing action transitions either from the state itself or any of its delay successors [44].  

A[] not deadlock 

P1 State event detected by the discrete domain (liveness property) 

The indication of a state event by the continuous interface and its detection by the 

discrete interface is very important for continuous/discrete heterogeneous systems. We 

defined a liveness property in order to check this behavior that is stated as follows:  

Definition: A state event detected in the continuous domain leads to a state event 

detected in the discrete.  

IContinu.StEvDetect --> IDiscrete.StEvDetect 

P2  No state event in discrete if no state event in continuous domain (safety property) 

In order to avoid false responses from the discrete simulators, we defined a safety 

property to verify if the system will “detect” a state event in the discrete simulator when 

it was not generated (and indicated) by the continuous domain: 

Definition: Invariantly a state event detected in the discrete domain imply state 

event in the continuous.  

A[](IDiscrete.StEvDetect imply StateEvent) 
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P3 Synchronization between the interfaces (reachability property) 

One of the most important properties characterizing the interaction between the 

continuous and the discrete domains is the communication and implicitly the 

synchronization. This property verifies that after a cycle executed by each model, both 

are at the same time stamp (and by consequence are synchronized) 

Definition: Invariantly both processes in the Start location (initial state) imply the 

time in the continuous domain tc is equal with the time in the discrete domain td. 

A[]( (IDiscrete.Start and IContinu.Start)  imply ( 

IContinu.tc - IDiscrete.td <= period)) 

P4 Synchronization between the interfaces when a state event was detected (reachability 

property) 

This property verifies that there is synchronization between the interfaces even when a 

state event is detected.  

Definition: The discrete process in the StateRestoration location and the continuous 

process in the StEvDetect location leads to the time in the continuous tc is equal with 

the time in the discrete td. 

(IDiscrete.StateRestoration and IContinu.StEvDetect) --> 

(IContinu.tc- IDiscrete.td == 0) 

P5 Causality principle (liveness property) – checked only for the canonical 

synchronization model 

The causality can be defined as a cause and effect relationship.  The causality of two 

events describes to what extent one event is caused by the other. The causality is already 

verified by P3 for scheduled events. However, when a state event is generated by the 

continuous domain, the discrete domain has to detect this event at the same precise time 

(the cause precedes or equals the effect time) and not some other possible event existing 

at a different time in the continuous domain. 

Definition: Invariantly both processes in the StEvDetect location (detection of state 

event) imply the time in the continuous tc is equal with the time in the discrete td. 
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A[]( (IDiscrete.Start and IContinu.Start )  imply  ( 

IContinu.tc - IDiscrete.td == 0))  

3.2.5 Definition of the Internal Architecture of the Co-Simulation 

Interfaces 

The overall continuous/discrete simulation interface is formally defined using the DEVS 

formalism. As shown in Figure 3.5, the interface is described as a set of coupled models: 

the continuous domain interface (CDI), the discrete domain interface (DDI) and the co-

simulation bus. Figure 3.18 shows the atomic modules composing the interface used in 

our implementation.  

 

Figure 3.18. The hierarchical representation of the generic architecture of the co-

simulation model with elements of the co-simulation library defined 

The specific functionalities of the interfaces were presented in section 3.1.2. In terms of 

internal architecture, the blocks assuring these features are: 

For the Continuous Model Simulation Interface  

- The State Event Indication and Time Sending block (SETS) 

- The  Signal Conversion and Data Exchange block (SCDE) 

- The Event Detection block (DED) 
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- The Context Switch block (CS) 

For the Discrete Model Simulation Interface  

- The End of Discrete Simulation Cycle Detection and Time Sending block 

(DDTS) 

- The Data Exchange block (DE) 

- The Event Detection block (DEC) 

- The Context Switch block (CS) 

These atomic modules are forming the co-simulation library and the co-simulation tools 

enable their parameterization and their assembly in order to generate a new co-

simulation instance.  

Figure 3.19 presents the atomic modules interconnection in each domain specific 

simulation interface as well as the signals and interactions between the interfaces. 

 

Figure 3.19. Internal architecture of the continuous/discrete simulation interface 

The internal architecture is defined as a set of coupled modules that respect the coupled 

modules DEVS formalism as presented in section 3.2.1: 

- Ninterface=(X,Y, D, {Md|d ∈ D}, EIC,EOC,IC ) 

- X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd }  

- Y = {( pd, vd)|pd ∈ OutPorts, vd ∈ Y pd }  

- X pd, Y pd = values for input ports, respectively output ports 
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- InPorts = Pin,c ∪ Pin,d ∪ Pin,td ∪ Pin,tse ∪Pin,flag  where 

Pin,c – set of ports receiving data from the continuous model; Pin,d  – set of ports 

receiving data from the discrete model (via the co-simulation bus); 

Ptd –  port receiving the time stamp of the next discrete event 

Pin,flag – port receiving the command for the context switch 

- OutPorts = Pout,c ∪ Pout,d ∪ Pout,td ∪ Pout,tse∪Pout,flag 

Pout,flag, Pout,c, Pout,d are defined similarly to Pin,flag, , Pin,c and Pin,d   

- D = {“Continuous Domain Interface” (with associated model NinterfaceCDI), “Discrete 

Domain Interface” (with associated model NinterfaceDDI), “co-simulation bus” (with 

associated model Mcosim)} 

- Md=( NinterfaceCDI, MinterfaceDDI, Mcosim)  

- EIC  = {(( Ninterface, “inc,1”),(NinterfaceCDI, “inc,1”));  ...;  

             ((Ninterface, “inc,n”),(NinterfaceCDI, “inc,n”)); 

             ((Ninterface, “ind,0”),(NinterfaceDDI, “ind,0”)); ...; 

             ((Ninterface, “ind,m”),( NinterfaceDDI, “ind,m”))}    

- EOC = {((NinterfaceCDI, “outc,1”),( Ninterface, “outc,1”)); ...;       

             ((NinterfaceCDI,“ outc,p”),( Ninterface, “outc,p”));  

             ((NinterfaceDDI,“outd,1”),( Ninterface, “outd,1”)); ...;  

             ((NinterfaceDDI,“ outd,q”),( Ninterface, “outd,q”))} 

- IC = {((NinterfaceCDI,opCDI),(Mcosim,ipcosim))| NinterfaceCDI,  

 - Mcosim ∈ D, opCDI ∈OutPortsCDI, ipcosim ∈ InPortscosim} ∪ 

        {((NinterfaceDDI,opDDI),(Mcosim,ipcosim))| NinterfaceDDI,  

           Mcosim ∈ D, opDDI ∈OutPortsDDI, ipcosim ∈ InPortscosim}∪ 

        {(( Mcosim,opcosim),( NinterfaceCDI,ipCDI))| NinterfaceCDI,  

 Mcosim ∈ D, opcosim ∈ OutPortscosim, ipCDI ∈InPortsCDI,} ∪ 

        {(( Mcosim,opcosim),( NinterfaceDDI,ipDDI))| NinterfaceDDI,  

 - Mcosim ∈ D, opcosim ∈ OutPortscosim, ipDDI ∈InPortsDDI,}  
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We show here the atomic module co-simulation bus that can be formally defined as 

follows:  

- X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd }  

- Y = {( pd, vd)|pd ∈ OutPorts, vd ∈ Y pd }  

- InPorts = Pin,c ∪ Pin,d ∪ Pin,td ∪ Pin,tse ∪Pin,flag 

- OutPorts = Pout,c ∪ Pout,d ∪ Pout,td ∪ Pout,tse ∪Pout,flag 

where Pin,c, Pin,d Pin,td, Pin,tse, Pin,flag  Pout,c, Pout,d, Pout,td, Pout,tse, Pout,flag  as well as X pd , Y pd  

were previously defined.  

States triplet S: (phase * σ * job) where: 

           phase: (“passive”, “active”) 

           σ : +ℜ0 advance time  

           job: (“store”, “respond”)  

S = {“passive”, “active”} * +ℜ0  * {“store”, “respond”} 

δext ((“passive” * σ * job), e, x))= 

(“passive”, σ –e, x), if x=0   

(“active”, σ –e, job), if x!=0  

δint (s)=  (“active”, σ, job)  

λ  (“active”, σ, job) = {“store”, “respond” } 

ta(phase, σ, job) = σ 

The architecture of the discrete domain interface and the continuous domain interface 

are also formally defined as a set of coupled modules. Formal descriptions for DDI and 

CDI respect the coupled module DEVS formalism. Each element of the structure 

follows the concepts presented in Section 3.2.1 and that were applied for the overall 

continuous/discrete simulation interface.  
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3.2.6 The Analysis of the Simulation Tools for the Integration in the 

Co-Simulation Framework 

The previous steps that describe the gradual formal definition of the simulation 

interfaces and the required library elements are independent of the different simulation 

tools and specification languages used generally for the specification/execution of the 

continuous and discrete sub-systems. After the analysis of the existing tools we found 

that Simulink® is an illustrative example of a continuous simulator enabling the control 

functionalities that were presented in Section 3.1.5. These functionalities can be added 

in generic library blocks and a given Simulink® model may be prepared for the co-

simulation by parameterization and addition of these blocks.  

Several discrete simulators present the characteristics detailed in Section 3.1.5. SystemC 

is an illustrative example. Since it is open source, SystemC enables the addition of the 

presented functionalities in an efficient way – the scheduler can be modified and 

adapted for co-simulation. In this way, the co-simulation overhead may be minimized. 

However, the addition of simulation interfaces is more difficult than in Simulink® 

because the specifications in SystemC are textual and a code generator is required in 

order to facilitate the addition of simulation interfaces. The automatic generation of the 

co-simulation interfaces is very suitable, since their design is time consuming and an 

important source of errors. The strategy currently used is based on the configuration of 

the components and their assembly. These components are selected from a co-

simulation library.    

3.2.7 The Implementation of the Library Elements Specific to 

Different Simulation Tools  

The implementation for the validation of continuous/discrete systems was realized using 

SystemC for the discrete simulation models and Simulink® for the continuous 

simulation models.  



 

 

78 

 

For Simulink®, the interfaces are functional blocks programmed in C++ using S-

Functions [16]. These blocks are manipulated like all other components of the 

Simulink® library. They contain input/output ports compatible with all model ports that 

can be connected directly using Simulink® signals. The user starts by dragging the 

interfaces from the interface components library into the model’s window, then 

parameterizes them, and finally connects them to the inputs and the outputs of his 

model. 

For SystemC, in order to increase the simulation performance, part of the 

synchronization functionality has been implemented at the scheduler’s level, which is a 

part of the state event management and the end of the discrete cycle detection (detects 

that there are no more delta cycles at the current time). For the generation of the co-

simulation interfaces for SystemC, the implementation of a code generator was 

necessary.  This script has as input user-defined parameters such as sampling periods, 

number and type of ports, and synchronization ports.  

3.3 Conclusion 

This chapter presented a generic methodology for the design of efficient 

continuous/discrete co-simulation tools. The methodology can be divided into two main 

stages: (1) a generic stage, defining simulation interfaces functionality in a conceptual 

framework when formal methods for the specification and validation are used, and (2) a 

stage that provides the implementation of the rigorously defined functionality. Given the 

importance of the co-simulation interfaces, the methodology concentrates on the co-

simulation interfaces, their behavior, as well as two synchronization models that are 

assured by the interfaces.  

The definition of the library elements and the internal architecture of the co-simulation 

interfaces step represents the foundation for the generation of the co-simulation library 

and implicitly for the co-simulation interfaces generation. The definition of the 

operational semantics, and the distribution of the synchronization functionality as well 
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as their behavior play an important role at the output flow with the behavior of the co-

simulation interfaces and the synchronization model. The analysis of the simulation 

tools for the integration in the co-simulation framework helped choosing the tools that 

were used for the modeling of the continuous and the discrete simulators while the 

“implementation of the library elements specific to different simulation tools” 

constitutes the final implementation of the libraries.      
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CHAPTER 4. APPLICATION AND EXPERIMENTAL RESULTS 

This chapter illustrates the application of the proposed methodology for the design of a 

co-simulation tool called CODIS2. The validation of a real continuous/discrete system, a 

glycemia-level regulator using CODIS is also proposed.  

4.1 CODIS Framework 

CODIS is a co-simulation tool designed in our laboratory using the generic 

methodology proposed in Chapter 3 ([51], [52]). This tool allows continuous/discrete 

simulation. Simulink® [16] is used for the modeling of the continuous execution model 

and SystemC [8] for the modeling of the discrete execution model. The co-simulation 

interfaces that are specific for each domain are automatically generated by selecting 

components, from a co-simulation library. The inputs in the flow are the continuous 

model in Simulink® and the discrete model in SystemC which are schematic and textual 

models, respectively. The output of the flow is the global simulation model (co-

simulation model) instance. 

For Simulink®, the interfaces can be parameterized starting with their dialog box. 

Figure 4.1 shows the design flow for the continuous domain model, including the 

continuous co-simulation interfaces. The user starts by dragging the interfaces from the 

interface components library into the model’s window, then parameterizes them, and 

finally connects them to the inputs and the outputs of the model. Before the simulation, 

the functionalities of these blocks are loaded by Simulink® from the .dll libraries. The 

parameters of the interfaces are the number of input and respectively output ports, their 

type, and the number of state events.  

                                                 

2 This work was realized in collaboration with Ph. D Faouzi Bouchhima from Ecole Polytechnique de 

Montreal 
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Simulink input specification 

Simulink Specification with 

co-simulation interfaces 

Co-Simulation Library  

 

Figure 4.1. Design flow for continuous models 

For SystemC, the blocks forming the library are state event management blocks and 

communication blocks. The interfaces are automatically generated by a script generator 

that has as input the user-defined parameters. The interface parameters are: the names, 

the number and the data type of the discrete model inputs ports, and the sampling 

periods. The tool also generates the function sc_main (or modifies the existing sc_main) 

that connects the interfaces to the user model. The model is compiled and the link editor 

calls the library from SystemC and a static library. More details on CODIS can be found 

in annex 2 ([51], [52]). 

The CODIS framework was used to implement a glycemia level regulator that is 

detailed in the following sections.  
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4.2 Validation of a Continuous/Discrete System, the 

Glycemia Level Regulator  

The glycemia level regulator is a system enabling a more convenient alternative to the 

classical therapy for type one diabetes. Type one diabetes, also known as diabetes 

mellitus (or insulin-dependent) is a permanent condition that takes place when the 

body’s immune system attacks the beta cells that produce insulin in the pancreas and 

destroy them. The pancreas cannot produce insulin anymore and by consequence the 

cells cannot use the glucose; a glucose excess builds in the blood. The conventional 

therapy consists in injections that do not replace the pancreas. A long time supply 

injection does not answer anymore to the patients needs that can change during the day 

(because of the alimentation or different effort levels). A new technique is insulin 

therapy by infusion when a pump infuses insulin or glucose to the patient based on real 

time values of his glycemia. This application consists in the simulation of a glycemia 

regulator.  

The glycemia system includes two sub-systems, a discrete sub-system, the Control sub-

system, for the injection control and a continuous sub-system, the Injection sub-system, 

for the insulin or glucose injections and the patient model and the glucose assimilation 

in the blood (as shown in Figure 4.2).  

The co-simulation interfaces perform models’ adaptation, provide the communication 

adaptation and the synchronization to accommodate the continuous and the discrete 

domain. They were generated with respect to the semantics presented in Chapter 2, 

section 2.2.1, the canonical synchronization model.   
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Figure 4.2. The glycemia level regulator system 

The patient glycemia level (that is the level of glucose in the blood) is read and 

compared with the normal level in the “Injection sub-system” and the result is sent to 

the “Control sub-system”. Depending on the value the “Control sub-system” activates 

either the insulin or the glucose pump. If the level of the glycemia drops under 60mg/dl, 

this corresponds to the state of hypoglycemia, and the glucose pump will be activated 

immediately. In the case of this application, two types of state events are generated: 

- the state events generated when a normal level of glycemia is reached (120 mg/dl).  

- the state events generated when the glycemia drops under a reference value (60 mg/dl) 

- hypoglycemia.   

Figure 4.3 and Figure 4.4 show the state graph of the Control sub-system and the 

Injection sub-system, respectively, represented using DEVS.  The internal and external 

transitions illustrate the module’s evolution during the simulation.  
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Figure 4.3. State graph of the Control sub-system represented using DEVS 

in
t

in
t

 

Figure 4.4. State graph of the Injection sub-system represented using DEVS 

4.3 Implementation and Results 

In the Injection sub-system we have two simulation interfaces for the communication 

with the discrete sub-system (the Control sub-system), the glucose and the insulin 

injection sub-modules, the patient model and the block in charge with the state events 

detection.  The state events in this case are generated when a normal level of glycemia is 

reached or when the glycemia drops under a lower value (hypoglycemia). This module 

was implemented using Simulink®  [16]. 
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The Control sub-system is formed by the two simulation interfaces and a control block 

that controls if an injection is necessary or not. This module was implemented using 

SystemC [8].  

Figure 4.5(a) and 4.5(b) illustrate the evolution of the patient’s insulinemia (units of 

insulin/dl) during 24 hours monitoring respectively the generation of a state event. The 

state event is generated at the time 22.2481 when the patient’ glycemia reaches the 

normal level (120mg/dl) (see Figure 4.5(b)). We observe from Figure 4.5(a) that the 

insulin injection stops at the same time 22.2481, as a consequence of the state event 

detection. Figure 4.6 shows the messages displayed by the SystemC simulator 

signalizing the state event detection and the insulin injection.   

22.2481

(a)

(b)

22.2481

(a)

(b)

 

Figure 4.5. Patient’s insulinemia (a) and state event generation by CSI (b) 
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Compared to previous work, a purely discrete control as opposed to a continuous control 

offers not only a wider range of control features for the pumps but also a more accurate 

response for events that take place during the injections (like a reference limit of 

glycemia reached or a hypoglycemia alert followed by glucose injection).  

 

Figure 4.6. State event detection by DSI 

4.4 Conclusion 

This chapter presented the application of the methodology detailed in Chapter 3. The 

result of the methodology is a co-simulation framework that allows the modeling and 

the validation of continuous/discrete heterogeneous systems – CODIS. This framework 

was validated by implementing a glycemia level regulator. We presented here the results 

of the co-simulation.  
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CONCLUSION AND PERSPECTIVES 

This research is motivated by the current context in multi-domain embedded systems, 

where several components from different domains including optical, electrical, 

mechanical or biological are taken into consideration The unparalleled flexibility of 

computation has been a key driver in the development of this wide range of products 

across a broad and diverse spectrum of applications in many industries, but not limited 

to Automotive, Aerospace, Health Care, Consumer Electronics, and others. These multi-

domain heterogeneous systems enable new applications and create new markets. 

Continuous-time and discrete-event models are at the core of the design of multi-domain 

systems. 

In this last part of this document we present the summary of the thesis and the directions 

for future research. 

1. Summary of the Thesis 

Chapter 1 presented a review of the existing works in the modeling and validation of 

continuous/discrete heterogeneous systems. These works were classified in two 

extensive categories: simulation-based and formal representation-based approaches. The 

first category can also be divided into two separate classes:  

- A homogeneous approach that consists of the use of only one language for the 

global specification of the behavior of the system;  

- A heterogeneous approach that consists of the use of different languages that are 

specific for the different sub-systems domains, therefore, they conserve the 

domain specific descriptions of the modules and the models are simulated in 

parallel. 

The formal representation-based category consists of the representation of the 

heterogeneous system in a pragmatical mathematical language. The model’s validation 
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is realized by formal verification using different techniques such as theorem proving or 

model checking.  

Chapter 2 defined the global execution model of continuous/discrete heterogeneous 

systems as well as the execution models for each simulator: the discrete execution 

model and the continuous execution model. An execution model can be viewed as the 

interpretation of a computation model. This chapter also details two synchronization 

models that can be taken into consideration when co-simulating the C/D systems: 

- Canonical synchronization model – when the continuous simulator advances 

before the discrete simulator. In this case, if a state event is generated by the 

continuous simulator, the need of rollback (and also supplementary resources) is 

eliminated.   

- Rollback-based synchronization model – when the discrete simulator advances 

before the continuous simulator. In this case, if the continuous simulator 

generates a state event, the discrete simulator will backtrack to the previous 

known stable state (light rollback).   

When an unpredictable event is generated by the continuous simulator, the discrete 

simulator has to update the events in its events queue. This chapter also presents the 

update events schema for both synchronization models.  

Chapter 3 proposed a generic methodology for the development of C/D co-simulation 

tools that is independent of the languages used to implement the two simulators (i.e. 

Simulink® or Spice for the continuous simulator and SystemC, SystemVerilog, VHDL 

for discrete simulator). The methodology is divided into two stages: a generic stage 

where the model is gradually refined from its operational semantics (that gives a 

pragmatic description) to the definition of the internal architecture of the co-simulation 

interfaces and the library elements. The second stage is the implementation stage where 

the simulation tools are analyzed, the library elements are implemented and the model is 

validated. The methodology was demonstrated using DEVS formalism, timed automata 



 

 

89 

 

and UPPAAL for the generic stage and SystemC and Simulink® for the discrete, 

respective continuous models for the implementation stage. 

In Chapter 4 we presented the application of the methodology for the definition of a 

framework for the modeling and simulation of C/D heterogeneous systems – CODIS. 

This framework was used for several concrete applications such as: control systems, 

continuous systems. In this thesis we present a glycemia regulator implemented using 

SystemC and Simulink®. The results of the co-simulation are presented in Chapter 4. 

A summary of the major contributions is listed below: 

- The analysis of the execution models and the synchronization models for 

continuous/discrete systems.  

- The definition of a generic methodology for the efficient design of continuous/discrete 

co-simulation tools. Before the implementation stage, the methodology suggests several 

steps enabling the gradual formal definition of the simulation interfaces functionality 

and internal architecture: 

- The definition of the operational semantics for a continuous/discrete  

synchronization     model. 

-  The formal representation of the behavior of continuous/discrete co-simulation 

interfaces, with respect to a synchronization model.  

- The formal verification of the behavior of continuous/discrete interfaces. 

- The description of the internal architecture of the continuous/discrete co-

simulation interfaces.  

- The application of the methodology – the development of a co-simulation framework – 

CODIS and the implementation of a glycemia level regulator. Parts of the methodology 

were also used for the formalization, the modeling and the verification of components of 

an Optical Network on Chip (ONoC). This work is detailed in annex 1. 
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2. Directions for Future Research 

This thesis makes strides toward the development of a generic methodology for the 

design of continuous/discrete heterogeneous systems co-simulation tools and opens new 

directions important for the researchers that work in system level simulation. The 

methodology proposed here allows for new developments in the automatic generation of 

the co-simulation interfaces for continuous/discrete heterogeneous systems. A new 

research direction opened by this work is the formal verification of the composition of 

the elements of the library in order to create an interface. Another area that can be 

covered is the analysis of the continuous and discrete models to be integrated in order to 

verify their compatibility in terms of inputs, outputs, abstraction levels.  

This work can be continued with modeling and simulation of C/D heterogeneous 

systems at different levels of abstraction and the integration of the rollback-based 

synchronization model in the co-simulation framework. New domain specific simulation 

tools (such as SystemVerilog for the discrete domain) can be integrated in order to 

validate the genericity of the methodology. Some work might also be conduct for 

performances analysis and methodology optimization. 

Another area in which the presented work can be used is ONoC modeling and 

validation. The next step in this direction is the integration of the passive and the active 

optical devices and IC in order to realize the global execution model of the ONoC. 

Moreover, interconnects play a significant role for MPSoC design. Integrated optical 

interconnects are interesting alternative to traditional interconnects because they 

overcome current limitations like bandwidth, contention and latency. The access to 

physical prototyping of ONoC is challenging therefore high-level modeling and 

validation are mandatory. On a long term the methodology proposed here can be 

adapted for the modeling and validation of MPSoC integrating ONoC.  
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ANNEX 1 – COMPLEMENTARY RESULTS                                

OPTICAL NETWORK ON CHIP MODELING AND VALIDATION 

This annex presents: the formalization of optical-electrical interfaces using DEVS3, the 

formalization of basic elements of an optical network on chip using DEVS3 and the 

modeling and the formal verification for the global validation of the behavior of a 

passive optical network on chip using timed automata ([53], [54] and [55]).  

1 Optical Networks on Chip  

Many of the modern Systems-on-Chip integrate a high density of heterogeneous 

components such as different processors, a wide range of hardware components, as well 

as complex interconnects that use different communication protocols. On-chip physical 

interconnections represent a limiting factor for performance and energy consumption. 

Energy and device reliability impose small logic swings and power supplies. Moreover, 

the growth of the number of components that are integrated on-chip increases the impact 

of the deep sub-micron effects (ex. electrical noise due to crosstalk, electromagnetic 

interference can produce data errors). By consequence, transmitting data on wires may 

be in some cases unreliable and nondeterministic [56]. New interconnect challenges are 

added when moving to 65nm and beyond: interconnect delay becomes larger than gate 

delay and the interconnect area becomes much larger than the gate area [56]. Designers 

also face deep sub-micron effects like voltage isolation and wave reflection. Optical 

Networks on Chip (ONoC) are promising because of their scalability, simplicity and 

low real estate (0.00425 mm2 for passive network) [57]. However, the access to physical 

prototyping for multi-technology SoCs is a major challenge because of its significant 

cost and the difficulty to influence standard processes. Modeling and simulation become 

                                                 

3 This work was realized in collaboration with Ph. D Mathieu Brière et Prof. Dr. Ian O’Connor, Ecole 

Centrale de Lyon, France 
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necessary alternatives in the design space exploration for these systems. Today, in many 

application designs the most costly task in terms of time and human resources is the 

design verification. Formal methodologies emerge as a more structured verification 

approach [1]. This implies that the design model is more thorough checked and more 

cases are taken into consideration.  

The methodology presented in Chapter 3 of this thesis can help the designer to achieve 

the complex design of these systems, and thus reduce the design process.   

The integrated optical communication system studied in this work, also called Optical 

Network on Chip (ONoC) [57] is composed of three types of blocks: i) a transmitter 

interface circuits (for the electro-optical conversion) ii) a passive integrated photonic 

routing structure (named λ- router) and iii) a receiver interface circuit (for the opto-

electrical conversion). 

Figure 4 presents an overview of this ONoC plugging initiators and targets (also called 

cores). The ONoC is a heterogeneous structure that can be represented as a combination 

of passive and active optical devices as well as mixed analog/digital integrated circuits. 

   

 

Figure 4. ONoC overview (I=Initiator, T=Target) 
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2 Formalization of Optical-Electrical Interfaces  

This section presents the DEVS formalism applied to optical-electrical interfaces. We 

take into consideration only the functional conversion interfaces in order to prove the 

DEVS efficiency for the optical formalism. This methodology can be then applied to 

easily design more complex systems using DEVS coupled models. 

2.1  Transmitter Architecture 

Each SoC core (initiator and target) requires a transmitter block which enables the 

electro-optical conversion (as shown in Figure 5). This block is mainly composed of a 

laser to emit light at a given wavelength and optical power, and its driver for the 

modulation and polarization. 

 Driver electrical 
current 

Laser 
light 

to λ-router data 

 

Figure 5. Optical transmitter architecture 

Figure 6 shows the optical transmitter architecture with respect for the DEVS 

formalism, including the internal and external events with the Is/Os.  
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Figure 6. Optical transmitter architecture with DEVS notations 
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Next equations give the formal description of the optical transmitter (electro-optical 

conversion) using DEVS: 

DEVSTX = (X, Y, S, δext, δint, λ, ta)                                                                                    

(6) 

with : 

inputs: InPorts = {‘data’, ‘select’} 

input set: X = {(p,v)|p∈InPorts,v∈Xp} with Xp = {data_to_send}|{activation} 

and, 

outputs: OutPorts = {‘wave’} 

output set: Y = {(p,v)|p∈OutPorts,v∈Yp} with Yp = wave_value∈{wavelength, power}  

The states are: S = {‘idle’, ‘conversion’}                                                                        

(7) 

The internal events are:  

δint(phase, σ, local_inport, local_value, inport, value):S→S 

= (‘modulation’, σ, p, v, latency_mod)  

if phase = ‘conversion’ and p = modulation_port and v = {data_to_send} 

= (‘polarization’, σ, p, v, latency_pol)  

if phase = ‘conversion’ and p = polarization_port and v = {active} 

or if phase = ‘idle’ and p = polarization_port and v = {no_active} 

= (‘emission’, σ, p, v, latency_laser)  

if phase = ‘conversion’ and p = laser_port and v = wave_value (with power 

proportional with the modulation current Im and the polarization current Ip of the laser 

driver). 

= (‘idle’, σ, p, v) else. 

The external events are:  

δext(phase, σ, e, x):Q×X→S 

= (‘idle’, e, p, v)  

if phase = ‘idle’ and p = activation and v = off 
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= (‘busy_active’, process_time, p, v)  

if phase = ‘conversion’ and p = activation and v = on  

= (‘busy_send’, process_time, p, v)  

if phase = ‘conversion’ and p = data and v = data_to_send 

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)} 

The output functions are: 

λ(phase, σ, local_inport, wave_value, wave):S→Y 

= (out, wave_value)  

if phase = ‘conversion’ and local_inport = laser_port 

= (out, 0·exp(0))  

if phase = ‘idle’ 

The state advancing time is:  

ta(phase,σ):S→ℜ+
0,∞ = σ = latency | time_next_data                                                 

(8) 

with latency = latency_mod | latency_pol | latency_laser 

The transmitter’s behavior (as seen in (7)) is characterized by two states: idle (no 

conversion) and conversion (data is sent through the interface). There are 4 internal 

events: modulation (to modulate the laser with the data to convert), polarization (to 

polarize the laser), light (for the light emission at a given optical power and wavelength) 

and idle (no light emission); and 3 external events: idle, (no conversion) selection 

(conversion activation) and data (data to convert). The state advancing time shown in 

(8) is mainly composed of latencies extracted from physical design (IC) or datasheet 

(laser). 

2.2 Receiver Architecture 

Similar to the transmitter block, each SoC core requires a receiver block which enables 

the opto-electronic conversion (as shown Figure 7). This block is mainly composed of a 
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photodiode (conversion of flow of photons into photocurrent), a TransImpedance 

Amplifier (TIA), a decision circuit (digital signal regeneration). 

 electrical 
current 

TIA & 
Comparator 

Photodiode light 

from λ-router data 

 

Figure 7. Optical receiver architecture 

Figure 8 shows an optical receiver architecture, including the internal and external 

events with the Is/Os, with respect to the DEVS formalism. 
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Figure 8. Optical receiver architecture with DEVS notations 

DEVSRX = (X, Y, S, δext, δint, λ, ta)                                                                                   (9) 

with: 

inputs: InPorts = {‘wave’} 

input set: X = {(p,v)|p∈InPorts,v∈Xp} with Xp = wave_value∈{wavelength, power} 

and, 

output: OutPorts = {‘data’} 

output set: Y  = {(p,v)|p∈OutPorts,v∈Yp} 

with Yp = {data_to_receive} 

The states are: S = {‘idle’, ‘conversion’}                                                                 (10) 

The internal events are:  

δint(phase, σ, local_inport, local_value, inport, value):S→S 
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= (‘detection’, σ, p, v, latancy_pdiode)  

if phase = ‘conversion’ and p = pdiode_port and v = wave_value 

= (‘amplifier’, σ, p, v, latency_TIA)  

if phase = ‘conversion’ and p = TIA_port and v = photocurrent 

= (‘ADC’, σ, p, v, latency_ADC)  

if phase = ‘conversion’ and p = ADC_port and v = photocurrent·gain 

= (‘idle’, σ, p, v) else. 

The external events are:  

δext(phase, σ, e, x):Q×X→S 

= (‘idle’, e, p, v)  

if phase = ‘idle’ and p = wave and v = 0·exp(0) 

= (‘busy_receive’, process_time, p, v)  

if phase = ‘conversion’ and p = wave and v = wave_value 

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)} 

The output functions are: 

λ(phase, σ, local_inport):S→Y 

= (out, data_to_receive)  

if phase = ‘conversion’ and data_to_receive = bit_value and local_inport = 

ADC_port 

= (out, ‘X’) if phase = ‘idle’ 

The state advancing time is:  

ta(phase,σ):S→ℜ+
0,∞ = σ = latency                                                                              (11) 

with latency = latency_pdiode | latency_TIA | latency_ADC 

The two states (that characterize the receiver’s behavior) were taken into as shown in 

(10): idle (there is no conversion) and conversion (data is detected through the 

interface). However, the behavior of the receiver is easier than the receiver. There are 4 

internal events: photoconversion (for the light conversion in photocurrent), amplify (for 

the amplification of the the current and the conversion in voltage), CAN (for the analog-
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to-digital conversion) and idle (no light to detect); and 2 external events: idle, (no 

conversion) and data (light to convert). The state advancing time shown in (11) is 

mainly composed of latencies extracted from physical design (IC) or datasheet 

(photodiode). 

2.3 Passive Photonic Devices  

The λ - router is a passive optical network (as shown in Figure 9(a)) composed of 4-port 

optical switches based on add-drop filters (as shown in Figure 9(b)) designed to route 

data through SoC components ([53], [54], [55]). These add-drop filters operate in a 

similar way to classical electronic switches. An optical filter is characterized by a 

specific wavelength, called resonant wavelength (λi in the Figure 9) depending on filter 

geometry and material. Figure 9(a) presents an example of a N × N λ-router architecture 

(each grey square representing an add-drop filter) and a physical architecture example of 

the filter is shown Figure 9(b). The add-drop is bidirectional and compact devices have 

been demonstrated in CMOS compatible Silicon on Insulator (SOI) technology (Si/SiO2 

structures accept 1.3-1.55 µm wavelength) [59]. 
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Figure 9. N x N λ-router architecture (a), 4-port optical switch architecture example (b) 
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As illustrated in Figure 10, there are three possible switch states depending on the input 

signal: 

- Straight state 10(a) occurs when specific wavelengths, called resonant wavelengths (λi, 

depending on micro-resonator geometry and material) are injected in the filter and are 

routed through the micro-resonator. 

- Diagonal state 10(b) occurs when other wavelengths (λj) are injected in the filter and 

are not routed through the micro-resonator. 

- Cumulative state 10(c) occurs when signals of both resonant and non-resonant 

wavelengths (λi and λj) are injected into the filter using the WDM technique4 and are 

either routed or not routed through the micro-resonator. Because of this property and the 

fact that the four add-drop ports can be used simultaneously, a contention-free network 

can be built. 

- Possible exploitation of the optical switch is shown in 10(d). This example shows both 

unidirectional and bidirectional behaviors (several wavelengths simultaneously injected 

in opposite way). 
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Figure 10. Functional states of a 4-port optical switch 

                                                 
4 Wavelength Division Multiplexing. Several signals at different wavelengths can be injected into the 

same waveguide. 



   

 

 

106 

The main advantage of this architecture is its high scalability.  

Table 2. 4X4 λ-router truth table 

I/T T1 T2 T3 T4 

I1 λ2 λ3 λ1 λ4 

I2 λ3 λ4 λ2 λ1 

I3 λ1 λ2 λ4 λ3 

I4 λ4 λ1 λ3 λ2 

 

Currently, up to 32 cores (16 initiators and 16 targets) can be plugged onto an ONoC, 

where the limit is due to the lithographical tolerance in add-drop manufacturing. In a λ-

router, only one physical path associated with one wavelength exists between an 

initiator Ii and a target Tj. The broadcast is also possible with this architecture.  

In Table 2 we give the truth table for a 4 × 4 network. For example, if I2 communicates 

with T4, data must use the wavelength λ1 to be sent through the λ-router. At the same 

time I1 can communicate with T1 using the wavelength λ2. These optical switches and λ-

router have been manufactured and tested. The observed network routing corresponds to 

theory [60]. 

This section presents two basic passive photonic devices composing a λ – router: a 

simple point to point connection and a basic 4-port optical switch. We also detail a 4 × 4 

λ-router using these elementary blocks.  

2.3.1  Point to Point Optical Connection  

Figure 11 shows a point to point bidirectional optical connection with respect to the 

DEVS formalism notations. A point to point connection can be a straight optical 

waveguide or a curve for example. 
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Figure 11. Point to point bidirectional optical connection with DEVS 

DEVSP2P = (X, Y, S, δint, λ ,ta)                                                                             (12) 

with: 

inputs: InPorts = {‘in1’, ‘in2’} 

input set: X = {(p,v)|p∈InPorts,v∈Xp} 

with: Xp = wave_value∈{wavelength, power} 

and, 

output: OutPorts = {‘out1’, ‘out2’} 

output set: Y = {(p,v)|p∈OutPorts,v∈Yp} 

with: Yp = wave_value∈{wavelength, power} 

The states are: S = {‘idle’, ‘communication’}                                                     (13) 

The internal events are:  

δint(phase, σ, inport, wave_value):S→S 

= (‘busy’, σ, p, v)  

if phase = ‘communication’ and p∈InPorts and v∈Xp 

= (‘idle’, σ, p, v) else. 

The external events are:  

δext(phase, σ, e, x):Q×X→S 

= (‘idle’, e, p, v)  

if phase = ‘idle’ and p = wave and v = 0·exp(0) 

= (‘in_light’, process_time, p, v)  

if phase = ‘communication’ and p = wave and v = wave_value·P2Pdefects 

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)} 
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The output functions are: 

λ(phase, σ, inport, wave_value):S→Y 

= (out2, wave_value·P2Pdefects)  

if phase = ‘communication’ and inport = in1 

= (out1, wave_value·P2Pdefects) 

 if phase = ‘communication’ and inport = in2 

The state advancing time is:  

ta(σ):S→ℜ+
0,∞ = σ = bit_propagation_time                                                                 (14) 

Two states characterize the point to point connection behavior, as seen in (13): idle (no 

conversion) and communication (light is transported through the optical waveguide). 

There are 2 internal events: busy (light is present), idle (no light through the 

waveguide); and 2 external events: idle (no light) and in_light (light in one of the 

inputs). The state advancing time shown in (14) is due to the light transport in a 

waveguide depending on its length and its manufacture materials. This description must 

take into account the attenuation in the point to point connection due to its defects 

(P2Pdefects). These defects attenuate the optical power value at the outputs. 

2.3.2  Four Port Optical Switch 

Figure 12 shows a point to point bidirectional optical connection with respect to the 

DEVS formalism notations [53], [54], [55]. 
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Figure 12. Optical switch with DEVS notations 
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DEVSOS = (X, Y, S, δint, λ, ta)                                                                                              

(15) 

with: 

inputs: InPorts = {‘in1’, ‘in2’, ‘in3’, ‘in4’} 

input set: X = {(p,v)|p∈InPorts,v∈Xp} 

with: Xp = wave_value∈{wavelength, power} 

and, 

output: OutPorts = {‘out1’, ‘out2’, ‘out3’, ‘out4’} 

output set: Y = {(p,v)|p∈OutPorts,v∈Yp} 

with: Yp = wave_value∈{wavelength, power} 

The states are: S = {‘idle’, ‘communication’}·InPorts                                         (16) 

The internal events are:  

δint(phase, σ, inport, wave_value, wavelength_OS):S→S 

= (‘busy’, σ, p, v) 

 if phase = ‘communication’ and p∈InPorts and v∈Xp 

= (‘idle’, σ, p, v) else. 

The external events are:  

δext(phase, σ, e, x):Q×X→S 

= (‘idle’, e, p, v)  

if phase = ‘idle’ and p = wave and v = 0·exp(0) 

= (‘in_light’, process_time, p, v)  

if phase = ‘communication’ and p = wave and v = wave_value·OSdefects 

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)} 

The output functions are: 

λ(phase, σ, inport, wave_value, wavelength_OS):S→Y 

= (out2, wave_value·OSdefects)  
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if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and 

inport = in1 

= (out4, wave_value·OSdefects)  

if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and 

inport = in1 

= (out1, wave_value·OSdefects)  

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and 

inport = in2 

= (out3, wave_value·OSdefects)  

if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and 

inport = in2 

= (out4, wave_value·OSdefects)  

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and 

inport = in3 

= (out2, wave_value·OSdefects) 

 if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and 

inport = in3 

= (out3, wave_value·OSdefects)  

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and 

inport = in4 

= (out1, wave_value·OSdefects)  

if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and 

inport = in4 

= (out,’X’) if phase = ‘idle’ with out∈OutPorts 

The state advancing time is:  

ta(σ):S→ℜ+
0,∞ = σ = bit_propagation_time                                                     (17) 

Two states characterize the 4-port optical switch behavior, as shown in (16): idle (no 

conversion) and communication (light is routed through the optical switch, either in the 
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cross state or either bar state as seen in Figure 13). There are 2 internal events: busy 

(light is present), idle (no light through the switch); and 2 external events: idle (no light) 

and in_light (light in one of the inputs). The state advancing time is shown in (17) and is 

due to the light routing in the microresonator and in the waveguide depending on its 

geometry and its manufacture materials. As for the point to point connection, this DEVS 

description must take into account the attenuation in the switch due to its defects 

(OSdefects).  

  start (λk in input #p) 

end (λk in output #p’) 

cross bar cross bar 

λk = λ j λk = λ i λk = λ j λk = λ i 

λk in #even∈{2,4} λk in #odd∈{1,3} 

λk in #odd∈{3,1} λk in #odd∈{1,3} λk in #even∈{4,2} λk in #even∈{2,4} 

 

Figure 13. State diagram of a 4-port optical switch 

Figure 13 presents the state flow of a 4-port optical switch. This diagram takes into 

account the DEVS events seen previously. 

2.3.3   4 X 4 λλλλ-Router 

Figure 14 presents the DEVS description of a 4 × 4 λ-router ([53], [54], [55]). To 

simplify the read, and since the 4 × 4 λ-router behavior is a combination of point to 

point connection and 4-port optical switch behavior (as defined in sub-section 2.3) a 

state diagram is only shown in Figure 15. Ci represents the connection between any 

input ports with the i
th output port. 
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Figure 14. Optical switch with DEVS notations 
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Figure 15. State diagram of a 4 x 4 λ-router 

3 Modeling and Formal Verification for the Global 

Validation of the Behavior of a Passive ONoC 

This section presents the modeling and the formal verification for the global validation 

of the behavior of a passive optical network on chip. The model was realized using 

timed-automata and was validated through simulation using UPPAAL toolbox. Its 

formal verification was realized by defining and checking its main properties. One of 
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the most important characteristics of the optical network is the non contention. This 

particularity requires complex models: the number of timed-automata increases and by 

consequence the verification becomes time consuming.  To cope with this complexity, 

the modeling and the formal verification were realized in two steps. The first step 

consists of the modeling of the behavior of the network at high level of abstraction. For 

the second step, the abstraction level was lowered and the formal verification was 

realized on segments of the network. By doing so, the deadline verification time was 

reduced from more then 12 hours to 41 sec. 

5.4.1  Optical Network on Chip Modeling 

Contention occurs in a network when two nodes attempt to access a communication 

channel at the same time. The contention-free property of the optical network on chip 

increases the complexity of the modeling process. Thus, modeling the transmission of 

different wavelength in the same time requires a larger number of automata. This makes 

ONoC models very complex, comparing to other models representing an electrical 

network for instance that does not provide parallelism.  

The routing in the optical network presented here is realized by a 4 X 4 λ-router (as 

presented in Figure 16 ([53], [54] and [55])). In order to model and validate its behavior 

we used the timed automata ([46] and [47]) and the UPPAAL tool [48].  
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(a) Truth table     (b) 4X4 λ-router 

Figure 16. 4 x 4 λ-router 
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Due to the parallelism that is expected in an optical network, the system is represented 

with 44 processes (and consequently 44 automata), divided in subsystems as follows: 

four to represent the initiators, 16 for the targets (for each target in Figure 16(b) we 

needed four processes, one for each wavelength) and 24 for the routing structure. One of 

the most useful properties to check in a system is reachability meaning that one wants to 

check if all the states of an automaton are reachable, meaning for our model that we 

need to check that there exists an execution starting at the initial state that is the set of 

initiators {I1, I2, I3, I4} and reaching all the targets {T1, T2, T3, T4} for all the 

wavelength {λ1, λ2, λ3, λ4}. Our experiments showed that the verification of the 

reachability for this implementation becomes costly in terms of time and can take more 

than 12 hours because of the state explosion. Therefore, in order to improve the 

performances of the optical network model, its modeling and formal verification were 

realized in two steps: 

- The first step consists of modeling and verification of the global network and for 

this representation we raised the level of abstraction.  

- The second step consists of modeling and verification of the behavior of the 

router at a lower level of abstraction when only one initiator and four targets are 

used.  

This methodology allowed the verification of the contention in the global network, 

between initiators and mode detailed between the different signals generated by the 

same initiator when the signals have different wavelengths.  

The complete checking takes only 2 seconds for the first step and 41 seconds per 

initiator for the second step. As one can see the verification time is drastically reduced 

using the proposed approach. Next sections detail these two steps. 

Global model for 4 X 4 λλλλ-router  

Figure 17(a) shows the global network at its initial level of abstraction (as a set of four 

switches and Figure 17(b) shows the equivalent λ-router at a higher level of abstraction.  



   

 

 

115 

  

 

                    (a) 4 X 4 λ-router architecture          (b) Equivalent abstract λ-router  

Figure 17. Block schema of the passive optical 4 x 4 λ-router 

The abstract router (shown in Figure 17(b)) is modeled as a set of four processes also 

named here Routing Structures. The four processes model the parallelism provided by 

the optical network: all the initiators can send data concurrently and all this data will be 

routed in parallel to the targets by the λ-router. Due to this parallelism, the same target 

can receive data from the four initiators in the same time. To respect this behavior the 

abstract router has four inputs (one from each initiator) and 16 outputs (four for each 

target). Each routing structure connects one initiator with the wavelength corresponding 

targets. Furthermore, the model has to verify the truth table shown in Figure 16(a), 

therefore, each target has to have four inputs, one for each wavelength.   

As a result, the global model of the 4 X 4 λ-router is represented using 24 processes: 

four processes are used for the initiators, 16 for the targets (as they were previously 

explained) and four processes for the routing structure, one for each initiator.  

Figure 18 shows the timed-automata model, in UPAAL, for one of the four parallel 

routing structures that connects an initiator to the targets. The left pane presents all 24 

processes.  The model has only one initial location (a double circle in Figure 18) Start. 

The router will change location from Start to ReceiveDataFromInitiator(n) (where is the 

number of the initiator from 1 to 4) following the transition  

atoraFromInitiReceiveDat
lambda4]1,int[lambda:lambda

ch?DataToSwit
Start >

. This transition is realized with zero time 

and it is triggered by the receiving of the data (that is also synchronization between the 
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initiator and the router) from the initiator (DataToSwitch?). The transition also 

allows the random selection of a wavelength between the four wavelengths of the 

network λ1, λ2, λ3 and λ4, using lambda:int[lambda1,lambda4]. The location 

changes then to one of locations ToTarget1, ToTarget2, ToTarget3, ToTarget4, 

depending of the lambda selection. Each of this transition to a different target is 

determine by the value of lambda and for each transition there is synchronization 

DataToTarget! between the router and the corresponding target. The data is   received 

by the corresponding target and the simulation context changes to the processes named 

here Target that are identified by different indexes. Each one of these processes 

receives data from the router (DataToTarget?).   

 

 

Figure 18. Routing structure representation 

Figure 19 presents a screenshot with the simulation of the abstract λ-router. This figure 

shows the parallelism between the different targets (Target1, Target2 and Target3) and 

the parallelism between signals of different wavelength (λ3, and  λ4) in the same target 

– Target1.  
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Figure 19. λ-router simulation screen capture 

Model for a signal path generated by one initiator  

Figure 20 shows the model of the path of the signal generated by one initiator (in this 

example the initiator I1) at its original level of abstraction. The signal is routed through 

the four λ-routers in order to reach the designated targets.  The dashed lines and λ-

routers represent the paths that are not reached by the signal sent by the initiator I1. 

Moreover, the model verifies the truth table presented in Figure 16(a) and Table 2.  In 

the first step I1 can send to the λ-router λ1 four signals corresponding to four different 

wavelengths. Here the signal corresponding to the wavelength λ1 is sent to λ3 and the 

remaining three signals are sent to the λ-router λ2 where a new selection is made.  
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Figure 20. Signal path in the 4 x 4 λ-router for one initiator 

As shown in Figure 20, in order to represent the exact path of the signal from the 

initiator to the targets, the model requires 12 processes: one for the initiator, 4 for the 

targets (each one with its own wavelength) and seven processes for the routing. The 

UPPAAL representation for this model is similar with the one where all initiators were 

represented.  The simulation of the second step of the passive ONoC showed the 

parallelism between the different signals of different wavelength in the same switch. 

5.4.2  Optical Network on Chip Formal Verification 

Using UPPAAL, the models were simulated and formally verified. This is a verification 

of the functionality of the models.  

Formal verification of global 4 X 4 λλλλ - router   

The following properties were verified for the global model where all the routers were 

abstract into one router that summed the behavior of the whole network.  

P0  Absence of deadlock (safety property) 

Deadlock exists among a set of processes if every process is waiting for an event that 

can be caused only by another process in the set.  

A[] not deadlock 
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P1  Absence of contention in the global model  (reachability property) 

Definition: simultaneous wavelength can be sent through the network in the same time.  

E<> Switch1.TransmissionToTarget and 

Switch3.TransmissionToTarget and 

Switch3.TransmissionToTarget and 

Switch4.TransmissionToTarget 

P2 All locations in the automaton representing the switch are eventually taken 

(liveness property) 

Definition: whenever a wavelength takes the ReceiveDataFromInitiator1 location in the 

Switch1, it will eventually take the TransmissionToTarget location in the same switch.  

A<> Switch1.ReceiveDataFromInitiator1 imply      

Switch1.TransmissionToTarget 

  P2 Verification of the truth table (safety property) 

Definition: there is one and only one wavelength that connects one initiator with one 

target (truth table in Figure 16(a)). We give here the syntax for only one of the initiators; 

the properties for the other three were verified in the same manner. 

A[] Switch1.TransmissionToTarget and lambda==lambda1 imply 

Target3_1.StartTarget3    

A[] Switch1.TransmissionToTarget and lambda==lambda2 imply 

Target1_2.StartTarget1    

A[] Switch1.TransmissionToTarget and lambda==lambda3 imply 

Target2_3.StartTarget2 

A[] Switch1.TransmissionToTarget and lambda==lambda3 imply 

Target4_4.StartTarget4   

Formal verification of a 4 X 4 λλλλ - router   

The following properties for the model where the signal generated by one initiator is 

routed through all λ– routers that form the optical network were verified:  
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P0  Absence of deadlock (safety property) 

A[] not deadlock 

P1  Absence of contention in the network  (reachability property) 

Definition: simultaneous wavelength can be sent through the router, from the same 

initiator, in the same time.  For one initiator the parallelism in the same switch is 

encountered in the switches with λ3 and λ4. We verified here the parallelism for both 

situations: 

E<> Switch3a_1.DataToTarget1 and       

Switch3a_2.DataToSwitch4 and Switch3b.DataOutSwitch3b 

E<> Switch4_1.DataToTarget3 and Switch4_2.DataToTarget2 

P2 Verification of the truth table (safety property) 

Definition: the truth table shown Figure 16(a) was also verified for one initiator. This 

property validates also the connection between one initiator and four targets. 

A[] Switch1.TransmissionToTarget and lambda==lambda1 imply 

Target3.StartTarget3    

A[] Switch1.TransmissionToTarget and lambda==lambda2 imply 

Target1.StartTarget1 

A[] Switch1.TransmissionToTarget and lambda==lambda3 imply 

Target2.StartTarget2   

A[] Switch1.TransmissionToTarget and lambda==lambda4 imply 

Target4.StartTarget4  

5.5  Conclusion  

In this chapter we proposed a novel approach that enables: the possibility to formalize 

very recent technologies using DEVS approach and the use of this formalization to 

validate and debug complex systems as optical-electrical interfaces and the modeling, 

the simulation and the formal verification for the global validation of the behavior of a 

passive integrated photonic routing structure using models that are based on timed 
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automata. We presented the formalization of three types of blocks that form a ONoC: a 

transmitter interface circuits (for the electro-optical conversion), a passive integrated 

photonic routing structure (named λ- router) and a receiver interface circuit (for the 

opto-electrical conversion). The formalization was then completed with the modeling, 

the simulation and the formal verification of a passive integrated photonic routing 

structure. The modeling as well as the simulation and the formal verification were 

divided in two steps. The first step consisted of the verification of the global 4 X 4 λ –

router at a high level of abstraction, as one router behavior while the second step was the 

representation at a lower level of abstraction of one initiator and the signal path through 

the optical network. Formal properties were defined and checked for both models. The 

complete checking takes only 2 seconds for the first step and 41 seconds per initiator for 

the second step. As one can see the verification time is drastically reduced using the 

proposed approach.   
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ANNEX 2 – CODIS FRAMEWORK 

CODIS is a tool which can automatically produce the global simulation model instances 

for discrete/continuous systems simulation using SystemC and Simulink simulators. 

This is done by generating and providing interfaces which implement the simulation 

model layers and building the co-simulation bus. Figure 21 gives an overview of the 

flow of the instances generation in the case of CODIS ([51], [52]).  

 

Figure 21. Overview of the CODIS flow 

The inputs in the flow are the continuous model in Simulink and the discrete model in 

SystemC which are, respectively, schematic and textual models. The output of the flow 

is the global simulation model (co-simulation model) instance. For Simulink, the 

interfaces can be parameterized starting with their dialog box. The parameters of 

Sim_inter_In and Sim_inter_Out interfaces are the number of input and respectively 

output ports. State interface has a parameter defining the state events number. The user 

starts by dragging the interfaces from the interface components library into his model’s 
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window, then parameterizes them and finally connects them to the inputs and the 

outputs of his model. Before the simulation, the functionalities of these blocks are 

loaded by Simulink from the .dll libraries. For SystemC, the SC_inter_In parameters 

are: (1) the names, the number and the data type of the discrete model inputs ports and 

(2) the sampling periods. The SC_inter_out parameters are the names, the number and 

the data type of the discrete model outputs ports. The interfaces are automatically 

generated by a script generator that has as input the user-defined parameters. The tool 

generates also the function sc_main (or modifies the existing sc_main) that connects the 

interfaces to the user model. The model is compiled and the link editor calls the library 

from SystemC and a static library (the simulation library in Figure 21). The 

implementation was performed in the case of SystemC as a discrete event simulator and 

Simulink as a continuous simulator.  

In this annex we detail the model of interaction between the continuous and the discrete 

simulators and present the interfaces implementation. One must note that the interfaces 

between SystemC and Simulink have been previously proposed for pure digital 

systems [58] but not for discrete–continuous systems. For a better explanation, we start 

by presenting briefly the SystemC and Simulink simulators. 

1.      SystemC Simulator 

SystemC [8] simulator is an effective and relatively simple scheduler. Its task is to 

determine processes execution order by considering their sensitivity lists and events 

time stamps. Events are ordered in a special queue and classified into two types: zero-

delayed and timed events. The scheduler uses the notion of delta cycle. At a particular 

discrete time, multiple delta cycles may occur until the simulated model becomes stable: 

no signals to change, or in a general way, no more zero-delayed events to consider at the 

current time. Then, the scheduler consults its queue to extract the next event (next 

discrete time) if any, otherwise it stops. This cycle is repeated until the end of 

simulation.  
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2.      Simulink Simulator 

Simulink [16] simulator solves system equations and updates states and outputs of 

blocks once per integration step, which can be fixed or variable. The order in which the 

blocks are updated is critical for results validity. If the block’s outputs are a function of 

its inputs, the block must be updated after the blocks that drive its inputs (e.g. adder or 

gain computing block). Simulink uses minor and major steps. Minor step are used to 

improve the accuracy of result at major steps. Signals are updated only at major steps. 

3.      The Simulation Interfaces 

Figure 22 shows the continuous and the discrete models with the simulation interfaces. 

The interfaces implement the co-simulation layers. They represent the software 

components required to integrate the two simulators with respect to the simulation 

model. For Simulink, the interfaces are S-functions blocks. These blocks are 

manipulated like all other components of the Simulink library. They contain 

input/output ports compatible with all model ports, which can be connected directly by 

using Simulink signals.  

They are classified into four types: 

- The Sync interface implements the critical part of the ‘‘Discrete events detection’’ 

layer. It creates break points, which must be reached accurately by a solver (a variable 

step solver). These points are the time stamps of the received events (sampling events or 

signals update events). When an event is received, this interface makes its next 

activation time equal to this event time stamp. Once this time stamp is reached, the Sync 

is executed to set its next activation time equal to the new received event time stamp, 

etc. The interface is executed at t = 0 to fix its first activation time.  
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Figure 22. Continuous and discrete models integrating the co-simulation interfaces 

- The Sim_inter_In interface implements the communication layer (input function), the 

‘‘Context switch’’ layer and a part of the ‘‘Discrete events detection’’ layer, which is 

responsible in detecting the passage of the solver by the time stamps of the sampling 

events (breakpoints). Once this passage is detected, the interface switches the simulation 

context and executes the communication layer (reads signals).  

- The Sim_inter_Out interface implements the communication layer (output function), 

the ‘‘Context switch’’ layer and a part of the ‘‘Discrete events detection’’ layer, which 

is responsible in detecting the passage of the solver by the sampling events time stamps 

(breakpoints). Once this passage is detected, the interface executes the communication 

layer (sends signals) and switches the simulation context.  

- The State interface implements the ‘‘Detection and sending of sate events’’ and the 

‘‘Context switch’’ layers.  

For SystemC, the interfaces are programmed as SystemC modules. They are classified 

into two types: 

- The SC_inter_In interface implements the input communication function and ensures 

synchronization with input data and state events. It can be viewed as a sampler circuit 
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and can be auto clocked or have an external clock supplied by the discrete model. The 

interface has two types of signals:  

 - Data signals, which are sc_signal or sc_fifo type. If the discrete model input 

ports are bits vectors then the interface add functionality converting double data to bit 

vector data. 

 - State events signals, which are boolean type (bit). Each time the continuous 

simulator sends a state event, the corresponding state event signal is set to ‘‘1’’. 

- The SC_inter_Out interface implements the output communication function and 

ensures synchronization with output data. If the discrete model output ports are bits 

vectors then the interface add functionality that converts bits vector data to double data. 

4.      The Interaction Between SystemC and Simulink 

Simulink interacts with SystemC through its interfaces. These interfaces and the user 

model’s blocks are executed at each integration step. The execution order respects the 

data dependency rule. SystemC interacts with Simulink through its interfaces and its 

scheduler. The scheduler integrates the ‘‘End of discrete simulation cycle detection and 

events sending’’ layer and the ‘‘State events consideration’’ layer.  

5.      Interfaces Implementation 

Example of Simulink interfaces 

For Simulink, the interfaces are S-functions programmed in C++. An S-function is 

programmed using a number of predefined functions. In our case, five functions are 

used. The user adds its code to these predefined functions. For example, a code used to 

initialize the simulation is added to the MdlInitializeSizes function, a code used to 

compute output signals is added to the MdlOutputs function, etc. The pseudo-code of 

two interfaces is given by Figure 23 and Figure 24 (only the principal functions are 

shown).  
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Figure 23. Sync interface pseudo-code 

 

Figure 24. Sim-Inter_Out interface pseudo-code 
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In Figure 23 sync interface uses a special time mode, which is the 

variable_sample_time. With this mode, one can choose the next execution time of the S-

function equal to the next discrete event sent by SystemC synchronization layer. In this 

case, Simulink adjusts the integration steps to satisfy the criteria of resolution and to 

reach with exactitude the time execution of this S-function (which is the time stamp of 

the SystemC event). 

SystemC interfaces 

The interfaces are implemented as SystemC modules programmed in C++. For each 

interface, this sub-section gives the .h and .cpp files, classically used to describe 

SystemC modules.  

 

Figure 25. SC_inter_In interface code 
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Examples of SC_inter_In and SC_inter_Out interfaces are given in Figure 25 and Figure 

26 respectively.  

 

Figure 26. SC_inter_Out interface code 
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