

UNIVERSITÉ DE MONTRÉAL

CONTINUOUS/DISCRETE CO-SIMULATION INTERFACES

FROM FORMALIZATION TO IMPLEMENTATION

LUIZA GHEORGHE

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE

PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR (Ph.D.)

(GÉNIE INFORMATIQUE)

AOÛT 2009

© Luiza Gheorghe, 2009.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213616406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

CONTINUOUS/DISCRETE CO-SIMULATION INTERFACES

FROM FORMALIZATION TO IMPLEMENTATION

présentée par: GHEORGHE Luiza

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment accepté par le jury d’examen constitué de :

M. QUINTERO Alejandro, Doct., président

Mme. NICOLESCU Gabriela, Doct., membre et directrice de recherche

M. AIT MOHAMED Otmane, Ph. D., membre

M. VANGHELUWE Hans, Ph. D., membre

iii

DEDICATION

To my family

iv

ACKNOWLEDGMENTS

There are many generous people that made this work possible and to whom I want to

express my most heartfelt appreciation

My warmest thanks go to Mrs. Gabriela Nicolescu, my advisor, for her trust and support

during all these years. To her I owe a great debt of gratitude for the advices, the

confidence and the encouragement that helped me along the way. She has been a model

adviser, patient and genuinely collaborative. Without her example I would not be where

I am today.

Special thanks go to Mrs. Hanifa Boucheneb for her help, her advices and her selfless

availability. Thank you for helping me discover the world of abstractions and formal

representations.

I want to thank to Mr. Alejandro Quintero, Mr. Otmane Ait Mohammed, Mr. Hans

Vangheluwe and Mr. Christian Cardinal for accepting to be part of the jury.

I also want to thank the ones that believed in me and helped me fulfill one of my

dreams, that of teaching; Mrs. Gabriela Nicolescu, Mr. Guillaume-Alexandre Bilodeau

and Mr. Pierre Langlois my most sincere appreciation

I would also like to thank Mr. Ahmed Amine Jerraya, at the time head of SLS at TIMA

laboratory, for welcoming me in their group. Even though the time spent there was very

short, it was rich in information and knowledge.

A very special note of gratitude goes to Mr. Ian O’Connor – his work, his advancements

brought me to discover and helped me become interested in optical networks on chip.

The “Conseil de recherches en sciences naturelles et en genie du Canada” (CRSNG) was

very generous in providing me with scholarship assistance – thank you.

I want to mention my lab colleagues with whom I shared the lab and with whom I

worked with on different projects: Maimouna, Bruno, Alain, Taieb, Sebastien, Matthieu,

Essaid, Youcef and Faouzi. Thank you! It was a great privilege to have met and worked

with you and I hope our paths will meet in the future professionally and otherwise.

v

I would also like to thank my friends Ana, Vinnie and Joachim for understanding my

busy working schedule and therefore not being able to meet them when we wanted.

Thank you, guys!

And last but not least I would like to thank my family for putting up with me: my son

Alex, for being, my husband Michael for being so understanding and my mother who

gave me the discipline to go through difficult times, all of them have been very

supportive of my studies and my work. I only wish my father was still with us and

could be happy for me, however his life is always a beacon for me now and in the

future, may he rest in peace.

Thank you all and I sincerely apologize to anyone I have left out or omitted

inadvertently.

vi

ABSTRACT

Today’s systems-on-chip are growing in complexity as a result of a higher density of

components on the same chip, and also on account of the heterogeneity of different

modules that are particular to different application domains (i.e. mechanical,

electrical, optical, biological and chemical). These systems can be found in a broad

and diverse spectrum of applications in many industries, including but not limited to

Automotive, Aerospace, Health Care and, Consumer Electronics. These multi-domain

heterogeneous systems enable new applications and the creation of new markets.

This thesis focuses on the design and the simulation of heterogeneous embedded

systems, more specifically on continuous/discrete heterogeneous systems.

Continuous-time and discrete-event models are at the core of the design of multi-domain

systems. We present here a generic, language independent methodology for the design

of continuous/discrete heterogeneous systems. This methodology is the basis for design

of a new framework providing the interfaces that are in charge with the heterogeneous

components adaptation. The methodology was successfully used for the implementation

of different continuous/discrete systems such as: a glycemia level regulator, an

analog/digital converter, a PID controller, a production chain control system and wimax

system.

Parts of the proposed methodology were adapted for the formalization, modeling and

verification of an optical network on chip.

vii

RÉSUMÉ

Les systèmes sur puce sont de plus en plus complexes, pas seulement en terme de

densité de composants sur la même puce mais aussi en terme d‘hétérogénéité des

modules spécifiques pour différents domaines d’application (mécanique, électrique,

optique, biologique chimique). On retrouve ces systèmes dans un grand éventail

d’applications et dans divers industries tels que l’automobile, l’aéronautique, la santé,

l’électroniques et autres. Ces systèmes hétérogènes multi-domaine permettent de

nouvelles applications et la création de nouveaux marchés. Cette thèse se concentre sur

la conception et la simulation des systèmes hétérogènes embarqués.

Les modèles temps-continu et événement discret sont le noyau de la conception des

systèmes multi-domaine. On présente ici l’analyse de modèles d’exécution et modèles

de synchronisation des systèmes hétérogènes continu/discret, la définition d’une

méthodologie générique pour la conception des outils de co-simulation des systèmes

hétérogènes continus/discrets et la validation de la méthodologie par applications – la

réalisation d’un cadre de co-simulation pour les systèmes continu/discret. La

méthodologie exploite les techniques de vérification formelle et de la simulation. La

conception des outils de simulation est basée sur la définition d’une architecture

générique des interfaces de simulation ainsi que sur des modèles de synchronisation

vérifiés formellement. La méthodologie a été utilisée pour l’implémentation d’un

régulateur de niveau de glycémie. Une partie de la méthodologie a été adaptée pour la

formalisation, la modélisation et la vérification formelle d’un réseau optique sur puce.

viii

CONDENSÉ EN FRANÇAIS

Les systèmes sur puce sont de plus en plus complexes, pas seulement en terme de

densité de composants sur la même puce mais aussi en terme d‘hétérogénéité des

modules spécifiques pour différents domaines d’application (mécanique, électrique,

optique, biologique chimique). On retrouve ces systèmes dans un grand éventail

d’applications et dans divers industries tels que l’automobile, l’aéronautique, le médical,

l’électroniques et autres. Ces systèmes hétérogènes multi-domaine permettent de

nouvelles applications et la création de nouveaux marchés. Les modèles temps-continu

et événement discret sont le noyau de la conception des systèmes multi-domaine. Ce

projet s’articule autour d’un point clé pour la conception des systèmes continus/discrets

(C/D): la conception à partir d’un niveau haut d’abstraction. Le projet propose une

méthodologie indépendante des langages de programmation qui permet la conception

efficace des outils de co-simulation pour tels systèmes. La méthodologie a été utilisée

pour la conception d’un nouveau cadre qui fournit des interfaces en charge avec

l’adaptation des composants hétérogènes. Ce cadre a été utilisé pour l’implémentation

d’un régulateur de niveau de glycémie.

1. Problématique

L’intégration des composants hétérogènes à un niveau élevé d’abstraction nécessite un

nouveau cadre conceptuel pour l’abstraction des différentes interfaces qui réalisent

l’adaptation entre les composants hétérogènes ainsi que des nouvelles méthodologies

pour la validation. L’hétérogénéité implique l’utilisation des modèles en temps continu

ainsi que des modèles à événements discrets dans un modèle globale, donnant une vue

d’ensemble du système. Étant donnée l’hétérogénéité des concepts manipulés par ces

deux types de modèles, la validation globale demande des interfaces de simulation

capables de fournir des modèles de synchronisation qui peuvent accommoder le

domaine continu et le domaine discret. Dans le cas des outils de validation plusieurs

sémantiques d’exécution doivent être prises en considération pour réaliser la simulation

ix

globale. La technique de validation la plus souvent utilisée est la co-simulation. La co-

simulation permet l’exécution concurrente des différents simulateurs en parallèle. Cette

validation élimine la détection tardive des erreurs et réduit le temps de conception. Il est

donc nécessaire de définir un modèle d’exécution globale dont les éléments de base

sont :

- les modèles des composants du système hétérogène qui sont décrits en temps

continu ou bien dans le domaine des événements discrets

- les interfaces de co-simulation qui réalisent l’adaptation de chaque modèle au

bus de co-simulation, l’adaptation des différents protocoles de communication et

la synchronisation entre les deux modèles.

- le bus de co-simulation qui est responsable de l’interprétation des

interconnections entre les deux modèles composant le modèle global.

Les aspects qui rendent difficile la modélisation et la simulation des systèmes

continus/discrets sont [6]:

- pour le modèle discret le temps est une notion globale pour tous les modules du

système, il avance discrètement en passant par les instants discrets définis par les

temps de notification des événements discrets. Pour le modèle continu le temps

est une variable globale qui avance par le temps d’intégration (continu ou

variable);

- pour le modèle discret les processus sont sensibles aux événements alors que,

pour le modèle continu, les processus sont exécutés à chaque pas d’intégration;

- pour le modèle discret la communication est réalisée par ensembles

d’événements alors que pour le modèle continu, la communication est réalisée

par des signaux continus (un signal continu possède une valeur à touts instants);

- chaque modèle doit être capable de détecter, de localiser en temps et de réagir

aux événements envoyés par l’autre modèle.

La conception des interfaces de co-simulation est couteuse en termes de temps, est une

source d’erreurs, est difficile à déboguer, influence les performances de la simulation

x

globale et demande la compréhension exhaustive des simulateurs impliqués dans la co-

simulation. La clé de voûte consiste donc en la définition rigoureuse du comportement

et de l’architecture des interfaces de co-simulation pour la génération automatique.

Le modèle formel qui est la représentation abstraite, rigoureuse d’un modèle, représente

la base de la définition d’un outil générique de co-simulation qui fournit des modèles

globaux de co-simulation pour la validation des systèmes hétérogènes continus/discrets.

En représentant le modèle formel tous les requis du système sont précisément définis et

toutes les inconsistances et les ambigüités sont éliminées.

1.1 Objectives et contributions

Les objectifs du travail présenté ici sont :

- la définition d’une approche pour la conception des outils de validation efficaces

pour les systèmes hétérogènes

- l’intégration, dans l’étape de validation, de nouveaux aspects spécifiques pour la

nouvelle génération de systèmes hétérogènes multi-domaine : l’interaction entre

le modèle continu et le modèle discret

Les contributions plus spécifiques sont :

- l’analyse de modèles d’exécution et modèles de synchronisation des systèmes

hétérogènes continu/discret

- la définition d’une méthodologie générique pour la conception des outils de co-

simulation des systèmes hétérogènes continus/discrets.

- la validation de la méthodologie par applications – la réalisation d’un cadre de

co-simulation pour les systèmes continu/discret, l’implémentation d’un

régulateur de glycémie et la modélisation et la vérification formelle d’un réseau

optique passif, sur puce.

xi

2. Revue de littérature

Cette section est un survol de travaux existants. Ces travaux peuvent être divisés en

deux catégories : une basée sur la simulation et une basée sur la représentation formelle.

Dans la première catégorie il existe deux approches pour réaliser la co-simulation des

systèmes hétérogènes : une approche homogène et une approche hétérogène ([5]):

- L’approche homogène où les concepteurs utilisent un seul langage pour la

spécification complète du fonctionnement du système et donc les descriptions

des diverses parties sont réalisés dans un langage unique de simulation (tel que

le C pour accélérer les simulations) ([9], [10], [11],, [12] [13], [14], [15]) La

difficulté est d’être assuré que la traduction et la simulation du langage unique ne

change pas la sémantique des descriptions des diverses parties.

- L’approche hétérogène ou les concepteurs utilisent des langages spécifiques

pour la modélisation des différents modules d’un système complet et donc ils

conservent les descriptions spécifiques des diverses parties et exécutent en

parallèle les divers simulateurs ([18], [19], [20]). La communication et la

synchronisation entre simulateurs sont assurées par le bus de co-simulation.

Cette tache peut être difficile lorsque les modèles de simulation sont différents.

Ayant la description informelle du système, il est nécessaire d’avoir la description du

modèle dans une forme abstraite de spécification à base de règles. Cette forme

caractérise le modèle dans un langage mathématique, celui de la théorie des ensembles

ou de la théorie des systèmes ou un autre paradigme formalisé [4].

Dans les domaines des définitions formelles et du formalisme, on peut énumérer les

travaux de :

- l’Université de Berkeley [25] ou les auteurs proposent un cadre formel pour la

comparaison de plusieurs MoCs;

- « Royal Institute of Technology » de Stockholm [26], [27]ou l’auteur a proposé

un cadre formel qui sépare les aspects de communication /synchronisation et le

xii

comportement interne. Un processus est divisé en deux parties : le noyau du

processus qui est responsable du calcul et l’enveloppe (de l’anglais « shell ») du

processus en charge de la communication avec les autres processus;

- l’Université d’Arizona [28], [29] ou les auteurs définissent un formalisme

mathématique DEVS pour la spécification d’un système. Ce formalisme est une

représentation d’un système à « entrée-sortie » ayant une base de temps réel et

continu. Des travaux sur les modèles ou le système discret retourne en arrière

sont présentées dans [35] [36], [37] et [38].

Les travaux basés sur la simulation, l’approche homogène sont couteux en termes de

temps de développent des nouvelles bibliothèques de composants et temps

d’apprentissage pour les développeurs qui travaillent avec les outils. Dans le cas des

travaux basés sur la simulation, l’approche hétérogène les interfaces sont conçues ad-

hoc, ne sont pas vérifies formellement et ne se concentrent pas sur les domaines continu

et discret. Cette thèse propose une approche ou les développeurs travaillent avec des

outils très populaires et peuvent réutiliser des modèles qui existent dans des

bibliothèques déjà testées. Les interfaces sont vérifiées formellement et sont générées

automatiquement.

Les travaux basés sur la représentation formelle fournissent une base abstraite pour les

systèmes hétérogènes mais ils ne prennent pas en considération les interfaces de co-

simulation ou ils ne permettent pas la vérification formelle. Cette thèse se concentre sur

les interfaces de co-simulation et donne un mécanisme pour la représentation formelle et

la vérification formelle des interfaces de co-simulation,

3. Concepts de base

Cette section introduit les concepts de base qui seront utilisés dans ce travail : les

modèles d’exécution et les simulateurs continu et discret, le modèle de synchronisation

ainsi que la définition de l’environnement de simulation continu/discret.

xiii

3.1 Modèles d’exécution

3.1.1 Modèle à événements discrets

La simulation d’un modèle purement discret est basée sur les événements, elle est

généralement accomplie en utilisant un simulateur à événements discrets. Le rôle de

simulateur est de maintenir l'ordre des événements dans une file d’attente suivant leur

temps de notification. A chaque itération, le simulateur fait sortir de la file l’événement

qui a le temps de notification le plus proche et exécute les processus sensibles à cet

événement. L'exécution de ces processus peut générer d'autres événements entraînant

l'exécution d'autre processus. Si les événements dont le temps de notification égale au

temps actuel sont tous traités, le simulateur avance le temps pour le plus proche

événement planifié.

3.1.2 Modèle en temps continu

La simulation d’un modèle purement continu régi par des équations différentielles et

algébriques est basée sur la résolution numérique de ces équations. La plupart des

algorithmes de résolution discrétisent le temps en un ensemble d’instants. La différence

entre deux instants est appelée pas d'intégration ou pas de calcul et suivant l'algorithme

utilisé ce pas peut être fixe ou variable. Les critères utilisés pour le choix du pas

d'intégration sont : la précision, la stabilité et la continuité des signaux. Dans les cas où

la précision est la seule condition (le cas ou le modèle est stable et il n’y a pas de

discontinuités), il est possible d’utiliser un algorithme à pas fixe. L'utilisation d'un

algorithme à pas variable augmente les performances de simulation. Pour satisfaire les

critères de précision l'algorithme réduit le pas quand le modèle évolue rapidement. Pour

éviter les calculs qui ne sont pas nécessaires et améliorer la vitesse de simulation

l’algorithme augmente le pas quand le modèle évolue lentement,.

Pour une synchronisation rigoureuse, chaque simulateur impliqué dans la co-simulation

C/D doit considérer les événements provenant de l’environnement externe. Ils doivent

xiv

s’arrêter avec précision aux échantillons de temps de ces événements (détection des

événements). Ces échantillons de temps sont des points de communication entre les

deux simulateurs.

Le simulateur continu doit détecter le prochain événement discret planifié par le

simulateur discret. Cette détection implique l’ajustement des pas d’intégration pour le

simulateur continu. Le simulateur discret doit détecter les événements d’état. Un

événement d’état est un événement non prédictible qui est généré par le simulateur

continu et qui a une estampille de temps dépendante des valeurs des variables d’état

(comme par exemple les événements « passage a zéro » ou le dépassement d’un seuil).

La conséquence est le contrôle de l’avancement en temps des simulateurs discrets (au

lieu d’avancer le pas de simulation prévu, le simulateur avance précisément jusqu’au

moment de l’évènement d’état).

3.2 Modèles de synchronisation

Table 1. Modèles de synchronisation

Modèle de
synchronisation

Pas de
synchronisation

Avantages Désavantages

Le modèle
canonique

A chaque pas
discret et chaque
occurrence d’un

événement

Général
Surdébit de

synchronisation

Le modèle de
synchronisation
avec retour en

arrière

A chaque
occurrence des

événements de mise
à jour, événements
d’échantillonnage

et événements
d’état

Evénements de
mise à jour,
événements

d’échantillonn
age non-

périodiques,
efficace si le

modèle
continu ne

génère pas des
événements

d’état

Retour en arrière pour
le modèle discret est
requis ci le modèle
continu génère des
événements d’état.

xv

Ce projet est basé sur deux modèles de synchronisation :

- le modèle canonique – ou le simulateur continu avance le temps avant le

simulateur discret.

- le modèle de synchronisation avec retour en arrière (« rollback » en anglais) - ou

le simulateur discret avance le temps avant le simulateur continu.

Le Table 1 montre les deux modèles de synchronisation comparés de point de vue pas

de synchronisation ainsi que leurs avantages et désavantages.

4. Méthodologie de conception des outils de co-simulation

Cette section présente notre approche pour la spécification et la simulation des systèmes

hétérogènes continus/discrets. L’accent sera mis sur les interfaces de simulation et leur

génération automatique, le bus de co-simulation, ainsi que sur la communication et la

synchronisation entre le deux modèles.

Pour permettre la conception des outils de co-simulation, la méthodologie qu’on

propose est formée de deux étapes indépendantes des outils de co-simulation utilisés

pour simuler le modèle continu et le modèle discret (voir Figure 1). Pendant ces étapes

les interfaces de co-simulation sont définies dans un cadre conceptuel, leurs

fonctionnalités et l’architecture interne sont décrites à l’aide des formalismes existants et

logique temporelle.

Les deux étapes sont:

1. L’étape générique incluant les tâches suivantes:

- Définition de la sémantique opérationnelle des modèles de synchronisation pour

le modèle global de co-simulation.

- Distribution de la fonctionnalité de synchronisation entre les interfaces de co-

simulation.

- Formalisation et vérification du comportement des interfaces de co-simulation.

xvi

- Définition des éléments de la bibliothèque et l’architecture interne des interfaces

de co-simulation.

2. L’étape d’implémentation incluant les tâches suivantes:

- L’analyse des outils de simulation pour les intégrer dans le cadre de co-

simulation.

- L’implémentation des éléments spécifiques de la bibliothèque et validation de

l’implémentation.

Étape
implementation

Étape générique
Définition de la sémantique

opérationnelle de la synchronisation

Distribution de la fonctionnalité de

synchronisation entre les interfaces

Formalisation et vérification du

comportement des interfaces

Définition éléments de la bibliothèque et

de architecture interne des interfaces

Implémentation éléments

de la bibliothèque

Validation de

l’implémentation.

Analyse
outils de

simulation

Figure 1. Méthodologie générique pour la conception des outils de co-simulation

Les tâches de l’étape générique sont détaillées dans les sous-sections suivantes.

4.1 Définition de la sémantique opérationnelle des modèles de

synchronisation pour le modèle global de co-simulation

La sémantique opérationnelle est la représentation du comportement du système dans

une forme mathématique, rigoureuse, non-ambigüe. Ce modèle sert comme base pour

xvii

l’analyse et la vérification. Dans notre travail, pour définir la sémantique opérationnelle,

sous forme de règles, on a utilisée le formalisme proposé par [28], [29] – Discrete

Event System Specifications (DEVS). Nous avons définit la sémantique opérationnelle

des deux modèles de synchronisation présentés dans la section 3.2.

4.2 Distribution de la fonctionnalité de synchronisation entre les

interfaces de co-simulation

Apres la sémantique opérationnelle, la fonctionnalité de la synchronisation est distribuée

entre les interfaces de co-simulation. Le premier pas de cette opération consiste en

l’identification de la sémantique opérationnelle de chaque interface, à partir de la

sémantique globale. La fonctionnalité de chaque interface a été par la suite modélisée à

l’aide des automates temporisés.

4.3 Formalisation et vérification du comportement des interfaces de

co-simulation

La formalisation et vérification formelle des interfaces de co-simulation peut être

divisée en trois pas : la représentation formelle, la simulation du modèle formel et la

vérification formelle. Pour réaliser cette étape on a utilisé les automates temporisés

([46], [47]) et l’outil UPPAAL ([48]).

4.4 Définition des éléments de la bibliothèque et l’architecture interne

des interfaces de co-simulation

La vérification formelle du comportement des interfaces est suivie par la définition de

l’architecture interne des interfaces de co-simulation. Cette définition est une étape clé

pour la génération automatique des interfaces de co-simulation. Dans notre approche les

interfaces ont été représentées comme un ensemble de modules hiérarchiques, en se

basant sur des composants atomiques qui sont des éléments de la bibliothèque utilisée

pour la génération automatique.

xviii

4.5 L’analyse des outils de simulation pour les intégrer dans le cadre

de co-simulation

Des fonctionnalités spécifiques sont demandées pour les simulateurs continu et discret

et donc l’intégration des outils de simulation dans l’environnement de co-simulation

demande l’analyse des outils de simulation. Le simulateur continu doit détecter les

événements d’état, il doit envoyer des données pour la synchronisation vers le modèle

discret, permette des points d’interruption pendant la résolution des équations

différentielles et la mise à jour des points d’interruption. Le modèle discret doit détecter

la fin du cycle de simulation, doit permettre l’ajout/l’extraction de nouveaux

éventements dans/de la queue de l’ordonnanceur et doit envoyer les résultats du

traitement des données et l’information pour la synchronisation vers le simulateur

continu.

4.6 L’implémentation des éléments spécifiques de la bibliothèque et

validation de l’implémentation

Le dernier pas de la méthodologie est l’implémentation des éléments spécifiques de la

bibliothèque et validation de l’implémentation. Cette étape dépend des outils de

simulation choisis dans l’étape précédente, l’analyse des outils de simulation.

5. Résultats

A partir de la méthodologie présentée dans la section 3, l’outil de de co-simulation

CODIS a été créé. Cet outil permet la modélisation et la simulation précise d’un système

continu/discret. Les entrées dans le flot de simulation sont :

- le modèle continu (en Simulink [16]) qui est schématique

- le modèle discret (en SystemC [8]) qui est textuel.

La sortie du flot est le modèle global de simulation. Les interfaces de co-simulation sont

automatiquement générées par un générateur des interfaces qui reçoit à l’entrée des

xix

paramètres définis par utilisateur via un générateur de script. À la sortie on obtient le

modèle discret avec ses interfaces de simulation. Plus des détails sur CODIS peuvent

être trouvées dans l’annexe 2 ([51], [52]). L’outil CODIS a été utilisé pour valider

plusieurs applications, parmi eux, un régulateur de niveau de glycémie. Un régulateur de

niveau de glycémie est un système qui représente une alternative pratique au traitement

classique du diabète de type 1. Une technique plus avancée est la thérapie par pompe, un

traitement qui fournit au corps insuline ou glucose en se basant sur les valeurs en temps

réel de la glycémie. Cette application consiste dans la simulation d’un régulateur de

niveau de glycémie. Le système est formé par deux sous-systèmes – un sous-système

discret qui contrôle l’injection et un sous-système continu qui modélise le système

d’injections, le patient et l’assimilation de glucose et insuline dans le sang.

6. Réseaux optiques sur puce

Dans cette partie on présente des résultats ou le formalisme et la vérification formelle

sont appliqués pour la formalisation, la modélisation et la vérification d’un système

hétérogène, un réseau optique sur puce. Ces résultats qui sont des résultats

complémentaires, ou une partie de la méthodologie proposée a été appliquée sont

présentés dans l’annexe 1.

Les systèmes modernes sur puce intègrent plusieurs composants hétérogènes comme

différents processeurs, composants matériel et interconnexions complexes qui utilisent

différents protocoles de communication. Les interconnections sur puce sont limitatifs de

point de vue performance et consommation d’énergie. La croissance, en termes de

nombre, des composants intégrés sur une puce augmente l’impact des effets comme le

bruit causé par la diaphonie, les interférences électromagnétiques qui peuvent produire

des erreurs de données, les délais et autres [56]. Les réseaux optiques sur puce s’avèrent

une solution intéressante. Parmi les avantages des réseaux optiques on peut mentionner :

extensibilité, simplicité, surface réduite, guide d’ondes bidirectionnel, réduction de la

diaphonie, charge capacitive, et de la distorsion du signal, débit élevé dans le guide

xx

d’ondes. Les défis les plus importants sont l’accès au prototypage physique et la

difficulté d’influencer les processus standard existants. Par conséquence, la modélisation

et la simulation deviennent une alternative nécessaire pour l’exploration de ces

systèmes. Plus des détails sur les concepts de base des réseaux optiques sur puce

peuvent être trouvés dans l’annexe 2 de ce document.

Une partie de la méthodologie proposée dans ce travail a été utilisée pour aider les

concepteurs à réaliser des modèles complexes de tels systèmes. Dans ce document on a

proposé: la formalisation des interfaces opto-électriques a l’aide du formalisme DEVS1,

la formalisation des éléments passives de base composant un réseau optique1 et la

modélisation et la vérification formelle, pour la validation globale du comportement

d’un réseau optique passif sur puce.

La modélisation et la vérification formelle ont été divisées en deux étapes. La première

étape consiste dans la vérification d’un routeur 4 X 4 λ a un haut niveau d’abstraction et

la deuxième étape a été la représentation du réseau a un bas niveau d’abstraction ou on a

considéré seulement un initiateur et un chemin du signal a travers du réseau optique. On

a vérifié les propriétés formelles pour les deux modèles. La vérification complète prend

2 secondes pour la première étape et 41 secondes/initiateur pour la deuxième étape.

7. Conclusions et perspectives

Cette thèse se concentre sur la conception et la simulation des systèmes hétérogènes

embarqués, plus spécifiquement sur les systèmes multi-domaine ou plusieurs

composants de différents domaines comme optique, électrique, mécanique, sont pris en

considération.

1 Ce travail a été réalisé en collaboration avec Ph.D Mathieu Brière et Prof. Dr. Ian O’Connor, École

Centrale de Lyon, France

xxi

7.1 Conclusion

Cette recherche a été motivée par le contexte courant des systèmes embarqués. On

retrouve ces systèmes dans un grand éventail d’applications et dans divers industries tels

que l’automobile, l’aéronautique, la santé, l’électroniques et autres. Ces systèmes

hétérogènes multi-domaine permettent de nouvelles applications et la création de

nouveaux marchés. Les modèles temps continu et événements discrets sont la base des

systèmes multi-domaine. Ce travail cible les systèmes hétérogènes continu/discret, plus

spécifiquement la conception d’un nouveau cadre qui fournit des interfaces de

simulation en charge avec l’adaptation de divers simulateurs.

Un sommaire des contributions majeures est présenté ci-dessous :

- l’analyse des modèles d’exécution des systèmes continus et discrets et la

définition des modèles d’exécution globaux basés sur deux modèles de

synchronisation

- la définition d’une méthodologie générique pour la conception des outils de co-

simulation des systèmes hétérogènes C/D. La méthodologie comporte deux

étapes :

- une étape générique ou la représentation des interfaces est raffinée d’un

modèle de synchronisation abstraite jusqu'à l’architecture interne des

interfaces de co-simulation

- une étape d’implémentation

- la validation de la méthodologie par applications – la réalisation d’un cadre de

co-simulation pour les systèmes C/D, l’implémentation d’un régulateur de

glycémie et la modélisation et la vérification formelle d’un réseau optique passif,

sur puce.

xxii

7.2 Perspectives

Cette thèse fait des progrès dans le développent d’une technique vérifiée pour la

conception d’outils de co-simulation des systèmes hétérogènes continu/discret et ouvre

des nouvelles directions pour les chercheurs qui travaillent dans la simulation au niveau

système. La méthodologie proposée permet de nouveaux développements dans la

génération automatique des interfaces de co-simulation pour les systèmes hétérogènes

continu/discrets. Une nouvelle direction de recherche ouverte par ce travail est la

vérification formelle de la composition des éléments de bibliothèque pour créer une

interface. Une autre direction est l’analyse des modèles continus et discrets a intégrer

pour vérifier la compatibilité en termes d’entrées, de sorties et de niveaux d’abstraction.

Ce travail peut être continué avec la modélisation et la simulation des systèmes

hétérogènes C/D aux différents niveaux d’abstraction et l’intégration du modèle de

synchronisation avec retour en arrière dans l’outil de co-simulation proposé. . Autres

outils spécifiques pour le domaine discret peuvent être intégrés pour valider le travail

(i.e SystemVerilog). Du travail peut être fait pour l’analyse de performance et

l’optimisation des systèmes.

Un autre domaine dans lequel le travail présenté peut être exploité est la modélisation et

la validation des réseaux optiques sur puce. Une direction pour les travaux futurs

pourrait être l’intégration des composants optiques passifs et actifs avec des circuits

intégrés, pour réaliser le modèle global d’exécution d’un réseau optique sur puce. A plus

long terme, les interconnexions optiques peuvent être intégrées avec plusieurs

processeurs sur la même puce et la méthodologie proposée peut être adaptée pour la

modélisation et la validation d’un tel système.

xxiii

TABLE OF CONTENT

DEDICATION... iii

ACKNOWLEDGMENTS ... iv

ABSTRACT…... vi

RÉSUMÉ…… .. vii

CONDENSÉ EN FRANÇAIS ... viii

TABLE OF CONTENT... xxiii

LIST OF TABLES... xxvi

LIST OF FIGURES .. xxvii

ABREVIATIONS ... xxx

LIST OF ANNEXES ... xxxi

INTRODUCTION .. 1

1. Heterogeneous Systems – Existing Context ... 1

2. Heterogeneous Systems - Problematic.. 2

3. Objectives and Contributions.. 4

3.1 The Analysis of Continuous and Discrete Execution Models and

Synchronization Models ... 5

3.2 The Definition of a Generic Methodology for the Efficient Design of

Continuous/Discrete Co-Simulation Tools ... 5

3.3 Application of the Methodology to the Design of a Validation Tool 6

4. Document Plan.. 6

CHAPTER 1. LITERATURE REVIEW .. 8

1.1 Simulation – Based Works.. 8

1.1.1 Homogeneous Approach... 8

1.1.2 Heterogeneous Approach.. 10

1.2 Formal Representation – Based Works... 14

xxiv

1.3 Research Project vs. Related Work... 16

1.4 Conclusion .. 17

CHAPTER 2. EXECUTION AND SYNCHRONIZATION MODELS 19

2.1 Global Execution Model ... 19

2.1.1 Discrete Execution Model... 20

2.1.2 Continuous Execution Model ... 22

2.2 Continuous/Discrete Synchronization Models ... 24

2.2.1 Continuous/Discrete Canonical Synchronization Model.............................. 25

2.2.2 Continuous/discrete rollback-based synchronization model 27

2.3 Events Update Schema ... 29

2.3.1 The Event Update Schema for the Canonical Discrete Simulator 30

2.3.2 The event update schema for the rollback-based discrete simulator 31

2.4 Conclusion .. 34

CHAPTER 3. GENERIC METHODOLOGY FOR THE DESIGN OF CO-

SIMULATION TOOLS.. 35

3.1 Generic Methodology ... 37

3.1.1 Definition of the Operational Semantics for the Synchronization in

Continuous/Discrete Global Execution Models.. 37

3.1.2 Distribution of the Synchronization Functionality to the Co-Simulation

Interfaces... 38

3.1.3 Formalization and Verification of the Simulation Interfaces Behavior 39

3.1.4 Definition of the Internal Architecture of the Simulation Interfaces 40

3.1.5 The Analysis of the Simulation Tools for the Integration in the Co-

Simulation Framework.. 41

3.1.6 The Implementation of the Library Elements Specific to Different

Simulation Tools... 42

xxv

3.2 Using Formal Methods for Co-Simulation Tools Design................................... 43

3.2.1 Basic Concepts.. 43

3.2.2 Definition of the Operational Semantics for the Synchronization in

Continuous/Discrete Global Execution Models.. 48

3.2.3 Distribution of the Synchronization Functionality to the Co-Simulation

Interfaces... 53

3.2.4 Formalization and Verification of the Co-Simulation Interfaces Behavior.. 62

3.2.5 Definition of the Internal Architecture of the Co-Simulation Interfaces 73

3.2.6 The Analysis of the Simulation Tools for the Integration in the Co-

Simulation Framework.. 77

3.2.7 The Implementation of the Library Elements Specific to Different

Simulation Tools... 77

3.3 Conclusion .. 78

CHAPTER 4. APPLICATION AND EXPERIMENTAL RESULTS 80

4.1 CODIS Framework ... 80

4.2 Validation of a Continuous/Discrete System, the Glycemia Level Regulator.... 82

4.3 Implementation and Results.. 84

4.4 Conclusion .. 86

CONCLUSION AND PERSPECTIVES.. 87

REFERENCES ... 91

ANNEXES …………………………………………………………………….…….....97

PUBLICATIONS ………………………………………………………..................... 130

xxvi

LIST OF TABLES

Table 1. Modèles de synchronisation... xiv

Table 2.1. Continuous system vs. discrete system ……………………………….…….24

Table 2.2. Synchronization in continuous/discrete heterogeneous systems …………...34

Table 3.1. Operational semantics for the C/D canonical synchronization model ……...50

Table 3.2. Operational semantics for the C/D rollback-based synchronization model ..52

Table 3.3. Operational semantics for the Discrete Simulation Interface (DSI) for the

canonical synchronization model …………………………………………..56

Table 3.4. Operational semantics for the DSI for the rollback-based synchronization

model ……………………………………………………………………….59

Table 3.5. Operational semantics for the Continuous Simulation Interface (CSI) …….62

Table 2. 4X4 λ-router truth table ……………………………………………………..106

xxvii

LIST OF FIGURES
Figure 1. Méthodologie générique pour la conception des outils de co-simulation xvi

Figure 2. Glycemia level regulator ... 2

Figure 3. Global co-simulation model .. 4

Figure 2.1. A continuous/discrete global execution model …………………………….19

Figure 2.2. Event update schema in a discrete simulator ([29]) ……………………….21

Figure 2.3. The canonical synchronization model ……………………………………..26

Figure 2.4. The rollback-based synchronization model ………………………………..28

Figure 2.5. The event update schema for the canonical discrete simulator ……………30

Figure 2.6 The event update schema for the rollback-based discrete simulator ……….32

Figure 3.1 A generic methodology for co-simulation tools design ……………………36

Figure 3.2. Design methodology in the flow for the automatic generation of co-

simulation models ………………………………………………………...36

Figure 3.3. The continuous/discrete system during the “Definition of the operational

semantics” stage …………………………………………………………..38

Figure 3.4. The continuous/discrete system during the “Distribution of the

synchronization functionality to the co-simulation interfaces” stage …….38

Figure 3.5. Hierarchical representation of the generic architecture of the co-simulation

model ……………………………………………………………………...41

Figure 3.6. Example of a timed automaton ……………………………………………46

Figure 3.7. The global formal simulation model ………………………………………53

Figure 3.8. Flowchart for the discrete domain interface for the canonical synchronization

model ……………………………………………………………………...55

Figure 3.9. State graph of the DSI for the canonical synchronization model represented

using DEVS ………………………………………………………………57

Figure 3.10. Flowchart for the discrete domain interface for the rollback-based

synchronization model ……………………………………………………58

xxviii

Figure 3.11. State graph of the DSI for the rollback-based synchronization model

represented using DEVS ………………………………………………….60

Figure 3.12. Flowchart for the continuous domain interface …………………………..61

Figure 3.13. State graph of the CSI represented using DEVS …………………………62

Figure 3.14. The DSI for the canonical synchronization model represented as a timed

automaton …………………………………………………………………63

Figure 3.15. The DSI for the rollback-based synchronization model represented as a

timed automaton …………………………………………………………..65

Figure 3.16. The CSI represented as a timed automaton ………………………………67

Figure 3.17. Formal model simulation screen capture …………………………………70

Figure 3.18. The hierarchical representation of the generic architecture of the co-

simulation model with elements of the co-simulation library defined

……………………………………………………………………………..73

Figure 3.19. Internal architecture of the continuous/discrete simulation interface ……74

Figure 4.1. Design flow for continuous models ………………………………………..81

Figure 4.2. The glycemia level regulator system ………………………………………83

Figure 4.3. State graph of the control sub-system represented using DEVS …………..84

Figure 4.4. State graph of the injection sub-system represented using DEVS ………...84

Figure 4.5. Patient’s insulinemia (a) and state event generation by CSI (b) …………..85

Figure 4.6. State event detection by DSI ………………………………………………86

Figure 4. ONoC overview (I=Initiator, T=Target).. 98

Figure 5. Optical transmitter architecture ... 99

Figure 6. Optical transmitter architecture with DEVS notations 99

Figure 7. Optical receiver architecture.. 102

Figure 8. Optical receiver architecture with DEVS notations 102

Figure 9. N x N λ-router architecture (a), 4-port optical switch architecture example (b)

……………………………………………………………………………104

Figure 10. Functional states of a 4-port optical switch ... 105

xxix

Figure 11. Point to point bidirectional optical connection with DEVS 107

Figure 12. Optical switch with DEVS notations... 108

Figure 13. State diagram of a 4-port optical switch.. 111

Figure 14. Optical switch with DEVS notations... 112

Figure 15. State diagram of a 4 x 4 λ-router... 112

Figure 16. 4 x 4 λ-router ... 113

Figure 17. Block schema of the passive optical 4 x 4 λ-router..................................... 115

Figure 18. Routing structure representation.. 116

Figure 19. λ-router simulation screen capture .. 117

Figure 20. Signal path in the 4 x 4 λ-router for one initiator.. 118

Figure 21. Overview of the CODIS flow.. 122

Figure 22. Continuous and discrete models integrating the co-simulation interfaces .. 125

Figure 23. Sync interface pseudo-code ... 127

Figure 24. Sim-Inter_Out interface pseudo-code.. 127

Figure 25. SC_inter_In interface code .. 128

Figure 26. SC_inter_Out interface code ... 129

xxx

ABREVIATIONS

AMS Analog mixed signal

API Application programming interface

C/D Continuous/Discrete

CDI Continuous domain interface

CMOS Complementary metal-oxide-semiconductor

CS Continuous simulator

CSP Communicating sequential processes

DDI Discrete domain interface

DEVS Discrete Event Specifications

DS Discrete simulator

FSM Finite state machine

HDL Hardware description language

IP Intellectual property

IPC Inter process communication

ISS Instruction set simulator

MoC Models of computation

MEMS Micro-electro-mechanical systems

MOEMS Micro-opto-electro-mechanical systems

MPSoC Multi-processors system on chip

ONoC Optical network on chip

SDL Specification and description language

SoC System-on-chip

SOI Silicone on insulator

VHDL VHSIC (Very High Speed Integrated Circuits) hardware description

language

xxxi

LIST OF ANNEXES

ANNEX 1 COMPLEMENTARY RESULTS OPTICAL NETWORK ON CHIP

MODELING AND VALIDATION.. 97

ANNEX 2 CODIS FRAMEWORK.. 122

1

INTRODUCTION

1. Heterogeneous Systems – Existing Context

System on chip (SoC) trends of the past decade observed the shrinking of the chips’ size

simultaneously with the growth in complexity. In response to the challenges of systems

miniaturization, the International Technology Roadmap for Semiconductors (ITRS)

emphasizes the More Than Moore's Law Movement that focuses on system integration

rather than increasing transistor density and leads to a functional diversification in

integrated systems [1]. Thus, system-on-chip are currently characterized by the

heterogeneity of different modules that are particular to different application domains

such as optical, electronical, mechanical, hydraulics and biological. These multi-domain

systems are the main driver of the development of a wide range of products across a

broad and diverse spectrum of applications in many industries, but not limited to

Automotive, Aerospace, Health Care, Consumer Electronics, and others. These

heterogeneous systems enable new applications and create new markets. ITRS states that

heterogeneity is “a form of diversity that arises with respect to system-level SoC

integration” and the design specification and validation are extremely challenging,

particularly with respect to complex operating contexts [1].

Continuous-time and discrete-event models are at the core of the design of multi-domain

systems. For instance Figure 2 gives an example of a glycemia level regulator that

illustrates the above mentioned aspects. The electronics domain components can be

found in this application in the control block. This block controls the injection of insulin

and glucose. These injections are pumps, therefore they have mechanical fluidics

components. The environment is the actual patient that is injected with insulin or

glucose.

2

Discrete

Controller

Continuous
Patient &

Insulin/Glucose
Injection http://www.cozmore.com

Discrete

Controller

Continuous
Patient &

Insulin/Glucose
Injection

Discrete

Controller

Continuous
Patient &

Insulin/Glucose
Injection http://www.cozmore.com

Figure 2. Glycemia level regulator

The control part is generally realized in the discrete domain using simulators for

hardware and/or software components (i.e VHDL [6] or SystemC [8]).The patient, the

pumps and the injection process are modeled in the continuous time domain using

equations (an illustrative example is the utilization of a differential equation modeling

the process of insulin assimilation in the human body). For the continuous components

simulators integrating equation solvers are exploited (i.e. Simulink [16]).

2. Heterogeneous Systems - Problematic

The integration of continuous-discrete systems implies the cooperation between different

teams with different cultures, using different specification languages and simulators.

Given the diversity of concepts manipulated, the global design specification and the

validation are extremely challenging; their heterogeneity makes more difficult the

elaboration of a global execution model for the overall validation. Such a model may be

very complex.

Currently, there are two techniques used for the validation of heterogeneous systems: the

formal verification and the simulation.

In order to validate a system through formal verification, its behavior needs to be

represented using a formal model. This representation has to clearly define the

computation and the communication (and implicitly the synchronization) for the global

model and verify the behavior of the interfaces. This approach has the advantage of a

rigorous and unambiguous representation of the system’s behavior. This allows for the

exhaustive verification of an ensemble of system’s properties. The challenge is however

3

the system’s complexity that is difficult to manage and that has impact on the time and

the cost.

The validation by simulation is currently the most popular validation technique and can

be defined as the execution of a global representation of a heterogeneous system. The

simulation was adopted by the designers for its advantages in terms of time invested for

the validation and the facility of the utilization. However the choice of simulation has

an incidence on the quality of the validation – it is well known that the simulation

technique does not provide an exhaustive validation.

The simulation-based validation for heterogeneous systems is often referred as co-

simulation. The co-simulation enables joint simulation of heterogeneous components

with different execution models. Each heterogeneous component can be developed using

a well known, domain-specific language and the resulting model can be reused later. The

reusability advantages are: the development time, the time-to-market and the costs are

reduced [3]. The co-simulation approach requires the elaboration of a global simulation

model (Figure 3). The co-simulation interfaces have to provide efficient synchronization

models for the adaptation of the domain specific models. This results in a complex

behavior of the interfaces since their design is time consuming and a significant source

of errors, they are difficult to debug and have impact on overall simulation

performances. Moreover, co-simulation interfaces specification requires a deep

understanding of the internal mechanism of the simulators involved in the co-simulation.

Therefore, their automatic generation is very suitable.

New validation tools are required to facilitate the co-simulation during the design

process. These tools generate automatically the global simulation model and

consequently the co-simulation interfaces that adapt the heterogeneous models. The

main role of these tools is to guarantee the correctness of the generated model, in order

to accomplish this, the formal verification technique can be used during the co-

simulation tools design.

4

Figure 3. Global co-simulation model

3. Objectives and Contributions

The global objective of this thesis is the definition of new solutions that reduce the time

and cost of the validation stage during the design flow of heterogeneous systems. The

specific objectives are:

- The definition of an approach (technique, procedure) for the design of efficient

validation tools for heterogeneous systems.

- The integration in the validation stage of new aspects specific to the next

generation of multi-domain heterogeneous systems: the tight interaction between

the continuous and discrete models.

The main contributions of this work are:

- The analysis of the continuous and discrete execution models and the definition

of global continuous/discrete (C/D) execution models based on synchronization

models.

- The definition of a generic methodology for the efficient design of C/D co-

simulation tools. This methodology exploits the advantages of the formal

verification-based and simulation-based validation techniques.

- The application of the methodology for the design of a validation tool.

These contributions are detailed in the next three sub-sections.

5

3.1 The Analysis of Continuous and Discrete Execution Models and

Synchronization Models

The execution model can be viewed as the interpretation of a model of computation. In

this work, we considered the continuous/discrete heterogeneous systems and their global

execution model. Discrete and continuous systems are characterized by different

physical properties and modeling paradigms. A global execution model has to take into

account all these paradigms. As mentioned in the previous section, the elements that

compose the global model are the execution models for the different components (the

continuous execution model and the discrete execution model also called in this work

simulators), the co-simulation interfaces and the co-simulation bus. In this thesis, the

global execution model as well as the components execution models are analyzed.

Moreover, the co-simulation interfaces have to provide efficient synchronization models

for the modules adaptation. The two simulators have to detect, locate and retract events

that are generated by the other simulator. While the discrete events are saved in a queue

and their time stamp is already known, the continuous simulator can generate events at

times that are not known beforehand (named here state events). The discrete simulator

must react to these events. This requirement has to be accomplished by the

synchronization. This thesis discusses two synchronization models: the canonical

synchronization model and the rollback-based synchronization model.

3.2 The Definition of a Generic Methodology for the Efficient Design

of Continuous/Discrete Co-Simulation Tools

This thesis proposes a methodology for the efficient design of continuous/discrete co-

simulation tools. The methodology is composed of two main stages: a generic stage and

an implementation stage. In order to enable the design of co-simulation tools, the generic

stage of the methodology is refined through several steps that are independent of the

simulation tools used for the continuous and discrete components of the system. During

6

these generic steps, the co-simulation interfaces are defined in a conceptual framework;

their functionality and the internal structure of co-simulation interfaces are expressed

using existing formalisms and temporal logic. After the rigorous definition of the

required functionality for co-simulation interfaces, the designer will start the steps

related to the implementation stage of the library elements using languages specific to

different co-simulation tools. We emphasize here that the methodology is generic; the

first stage is independent of the implementation languages of the co-simulation library.

3.3 Application of the Methodology to the Design of a Validation

Tool

The proposed methodology was applied for the design of a co-simulation tool – CODIS

(Continuous DIscrete Simulation) – that integrates the discrete simulator SystemC [8]

and the continuous simulator Simulink [16]. This tool was exploited for the validation

of different heterogeneous systems such as glycemia level regulator, an analog/digital

converter, a PID controller, a production chain control system and wimax system. In this

thesis, we present the glycemia level regulator. Moreover, parts of the methodology

were adapted for the formalization, the modeling and the validation of elements of an

optical network on chip. This complementary work is presented in Annex 1.

4. Document Plan

This thesis is structured in five chapters, an introduction and a final section for

conclusions and perspectives. Chapter 1 presents a survey of the existing works in the

continuous/discrete heterogeneous systems modeling and validation. Both, formal

verification-based and simulation-based approaches will be taken into consideration.

Chapter 2 presents the basic concepts concerning the global execution model of

continuous/discrete heterogeneous systems, their synchronization models and events

update schema for the synchronization models. Chapter 3 introduces the methodology

for the generation of global execution models. This chapter includes the validation of a

7

synchronization models with rollback (called here the rollback-based model) and

without rollback (called here the canonical model). Chapter 4 shows the application of

the methodology and the results of the implementation of a glycemia regulator where the

continuous model was implemented in Simulink® and the discrete model was

implemented in SystemC. Finally, the last section gives the conclusions. A part of the

proposed methodology was applied for a passive optical network on chip and its

implementation results are given in Annex 1 as complementary results.

8

CHAPTER 1. LITERATURE REVIEW

The existing works in the continuous/discrete systems validation field can be roughly

divided into the following classes: simulation-based and formal representation-based

approaches. This chapter presents a survey of the existing works and it is structured in

four sections: the first section presents the simulation-based works, the second section

discusses the formal representation-based works and the third compares the work

proposed in this thesis with the related work. The last section gives the conclusions.

1.1 Simulation – Based Works

The components that form a heterogeneous system are specific to different application

domains. In a heterogeneous design environment the co-simulation requires significant

test and modeling capabilities, not only for the specific technologies (continuous or

discrete-only domains) but also for the technologies combination. There are two

opinions regarding the co-simulation of heterogeneous systems: one that supports a

homogeneous approach and the second one that supports a heterogeneous approach [5].

1.1.1 Homogeneous Approach

The homogeneous approach consists of the use of only one language for the global

specification of the behavior of the system; hence the representation of different parts is

realized in one simulation language. The language has to have a rich and consistent

semantics in order to support the heterogeneity of a complex system. The main

challenge of this approach is the difficulty to find such languages and this leads to the

development of new languages and this is costly in terms of training time and

development of new libraries time. One can observe two strategies (techniques):

- The extension of existing tools and languages. Most of the tools created using

this approach started from classical HDLs (i.e. VHDL ([6]), Verilog ([7])) to

which new concepts specific to other domains such as Analog Mixed Signal

9

(AMS) are added (i.e. the IEEE standards VHDL-AMS ([9], [10], [11]) and

Verilog-AMS ([12], [13]).)

- The addition of an executable extension to a language that exists already (i.e

SystemC ([14], [15]) that is an extension of C++).

VHDL-AMS is an extension of VHDL that can be used for modeling and validation of

continuous/discrete systems. The modeling can be realized according to few categories

of models: functional, behavioral, structural and physical. The VHDL scheduler was

modified in order to take into account the analog solver. The developers added new

objects and types and also new attributes for signals. VHDL-AMS is useful for the

design of analog/digital systems but it is not powerful enough for higher levels of

abstraction. [9] presents a behavioral model realized with VHDL-AMS. The authors add

new concepts such as data types, analog and digital, functionality in continuous time,

functionality controlled by events as well as analog-digital interactions.

Verilog-AMS ([13]) allows the designers to create and use modules that can encapsulate

behavioral descriptions at high levels of abstraction as well as structural description of

systems and components.

SystemC-AMS ([14]) is an extension of SystemC that was developed for continuous

time systems modeling and simulation. Between other requirements, it has to provide a

way to manage the interactions between the different models of computation and to

support existing continuous time simulators. Therefore, the developers have to

implement a library of components and solvers able to solve differential and algebraic

equations. However, even if SystemC is a viable option for high level modeling and its

AMS extension will improve its capabilities to provide a global co-simulation model for

a continuous/discrete heterogeneous system, it is difficult to make it more powerful than

the existing tools for analog simulation such as Matlab - Simulink® ([16]), mostly on

the simulation precision level, availability of libraries. The examples provided in [15]

are limited to the communication and signal treatment domains where the time

advancement is realized with fix steps. However, this is not the case with other fields

10

like mechanical, electrical, micro-electro-mechanical systems (MEMS) or optical micro-

systems where solvers with a variable step are required. This approach is interesting

because it gives the possibility to use a synchronization mechanism for other systems’

integration and a solver for complex systems and for levels of abstraction that are not

normally covered by SystemC-AMS [15].

In [17] Patel and Shukla propose the extension of the modeling and simulation

framework of SystemC by adding a number of cores specific for different models of

computation: Syncronous Data Flow (SDF), Communicating Sequential Processes

(CSP) and Finite State Machine (FSM). The simulation core of SystemC is implemented

mostly for Discrete Event (DE) semantics. The cores proposed by [17] can be used with

the SystemC discrete events core and it allows the developers to model and simulate

specific heterogeneous systems such as SDF, CSP and FSM. The authors show with few

examples that when using the specific cores, SystemC precision improved and

simulation efficiency increased.

In all the tools presented in this section, the extensions are usually designed from

scratch and by consequence their libraries are not as strong as the well established tools

for the continuous field (i.e., Simulink®).

1.1.2 Heterogeneous Approach

The heterogeneous approach consists of the use of different languages that are specific

for different sub-systems domains, therefore, they conserve the domain specific

descriptions of the modules and the models are simulated in parallel. This task can be

difficult because the simulation models are different and the global co-simulation

requires a model that describes the synchronization and the interconnections between

the sub-systems. The advantage of this approach is that each model can be described

with a specific language and this allows for the exploitation of the best performances of

the existing languages.

11

Some of the tools that use this approach are: Ptolemy developed by University of

California at Berkeley ([18]), Chatoyant developed by University of Pittsburgh ([19],

[20]) and the work realized at Techniques of Informatics and Microelectronics for

integrated systems Architecture Laboratory (TIMA) in France ([5], [21], [22]).

Ptolemy ([18]) is a flexible design base that the developers can use to build prototyping

environments. It supports heterogeneity and provides a tool to explore different design

methodologies that support different types of design and implementation technologies.

The models are built with different models of computation that characterize the behavior

of the different parts of the system. Ptolemy II introduces the notion of director that

encapsulates the behavior of a model of computation. Some of the supported directors

are DE, SDF for the behavior of discrete events and synchronous data flow and CT -

continuous time modeling. In terms of design, the models are implemented as an

ensemble of components that communicate, named actors. The actors can communicate

one with each other and they can execute simultaneously, the components are defined

using an actor oriented approach. The communication is done via channels and the

connection is through actors’ ports. The only interaction between the actors is through

their channels. Ptolemy II also supports the hierarchical actors notion where actors can

contain other actors and that are connected by external ports.

The components can be developed to work with multiple data types. One of the types

introduced here is the behavioral type. The components and the domains support

interface definitions that describe not only the static structure like the traditional systems

but also the dynamical behavior. HyVisual is a hybrid systems modeler built on top of

Ptolemy II [23] that supports the construction of hierarchal hybrid systems for

continuous-time dynamical systems and hybrid systems.

Even though Ptolemy II is an open source code and it is an extension of Java, it is a new

language and using it requires learning time for the user. The different sub-systems and

components need to be developed in the same environment in order to be compatible

thus they do not solve the problem of IP reuse in system design. Moreover, Ptolemy is

12

based on formal representation, but the formal verification of the simulation models is

not considered. It also lacks of consistency for analysis and verification during

conception stage ([18], [24]). Moreover the execution angles (hardware) are not taken

into consideration.

Chatoyant ([19], [20]) is a simulation environment that is an extension of Ptolemy

environment based on an architecture design methodology at system level. The system

is decomposed into component modules that are individually characterized. The

information exchanged between the modules is determined by the components: optical,

electrical and mechanical. The tool can realize static and dynamical end to end

simulations. The static simulations analyze the mechanical tolerances, power loss and

the dynamical simulations are executed to analyze the data flow with techniques like

noise analysis.

One of Chatoyant applications is the modeling of optical interconnects. Its optical

libraries include passive and active optical components, optical detectors and light

sources. The optical signals are represented using “linear discrete events” techniques. In

order to support micro-opto-electro-mechnical (MOEM) systems, Chatoyant was

extended as follows:

- Introduction of modeling techniques for diffractive optics that allow the use of

diffractive models in cases where the Gaussian approximations are not valid.

- Introduction of new models for micro-lenses, micro-mirrors and mechanical

actuators that allow the global simulation of the system in one mixed signal

frame.

- Implementation of a Monte Carlo tolerance package to determine the worst

tolerance case and the mechanical stability.

The researchers from TIMA Laboratory defined a new model for the global

representation of heterogeneous systems by automatic generation of co-simulation

instances [21]. The heterogeneity is given by the co-existence of different modules

described at different levels of abstraction, using, for the modules specification,

13

different languages. This concept makes possible the systems validation during different

stages in the design flow. The methodology implies the generation of the simulation

bus, the simulation interfaces as well as the communication interfaces at each level of

abstraction [5]. The methodology also allows the description of each module in a

language specific to its domain (i.e. SDL, VHDL, ISS) and at given level of abstraction.

The researchers from TIMA introduced the concept of virtual architecture that is a non

executable model that represents the first step of the methodology of the automatic

generation of the co-simulation models. One of the basic concepts proposed is the

module’s wrap that represents the abstraction of the interconnects between two

heterogeneous components. Each wrap has a set of two ports: internal ports that are the

module’s ports and external ports that are the ports that allow the connection with the

communication channels. A module and its wrap form a virtual component. The

different communication channels connected to a virtual port can be grouped in virtual

channels. Using these concepts the systems will be represented by a virtual architecture

as a set of virtual components interconnected. For the automatic generation of co-

simulation models at input of the design flow we have the description of the virtual

architecture of a heterogeneous system and with elements from the co-simulation

library, the co-simulation instances are generated. The strategy consists of the assembly

of the existing elements into a co-simulation library. The main steps of the automatic

generation of co-simulation models flow are:

- The first step consists in the analysis of the virtual architecture in order to collect

the in formations necessary for the following steps.

- The second step consists in the selection of the library elements from the co-

simulation library and the generation of the co-simulation interfaces. The

selection is done using the results of the analysis of the system’s specifications.

- The third step consists of the assembly of the system’s components needed for a

co-simulation instance. During this stage the co-simulation interfaces and the co-

simulation bus are considered (introduced) in the initial structure of the system.

14

With this approach the verification/validation is realized by co-simulation. The static

analysis is to check function coherence and to minimize the inter-functions coupling [5].

TIMA approach is used for hardware/software co-simulation and not for

continuous/discrete models.

1.2 Formal Representation – Based Works

Formalism-based approaches model systems using a mathematical language like sets

theory or systems theory or other formalized paradigm [4]. The integration is addressed

as a composition of models of computation. These approaches propose a single main

formalism to represent different models and the main concern is building interfaces

between different Models of Computation (MoC). These approaches bring a deep

conceptual understanding of each MoC.

The works that can be included in the formal representation – based approach were done

at the University of California at Berkeley [25], the Royal Institute of Technology from

Stockholm [26], [27] and the University of Arizona [28], [29] and briefly presented in

this section.

In [25] a formal framework for comparing different models of computation used in

heterogeneous models is presented. The authors propose a formal classification

framework that makes possible to compare and express the differences between them.

The framework was used to compare certain features of various MoCs such as dataflow,

sequential processes and concurrent sequential processes with rendezvous, Petri nets,

and discrete-event systems. The intent is “to be able to compare and contrast its notions

of concurrency, communication, and time with those of other models of computation”

[25].

The role of the model of computation in abstracting functionalities of complex

heterogeneous systems was given in [27]. A study on the use of different models of

computation for the formalization of complex heterogeneous systems functionalities is

presented in [26]. The author proposes a formal framework by separating the

15

communication and the computation aspects. The process is divided into two parts: the

core that is in charge with the computation and the process shell in charge with the

communication with other processes. This separation gives a better comprehension of

different problems. The designers do not have to take into consideration the problems

raised by process computation while they are working on other subjects such as the

communication the synchronization or the concurrence. Moreover, from a practical

point of view, each part can be developed separately, integrated easier and also reused

for other applications. All these elements are taken into consideration for the models of

computation classification from a denotational point of view: untimed models of

computation, timed models of computation, and synchronous models of computation.

However, the interfaces between domains were not taken into consideration.

A meta-model named Rugby [26] that can be used for elements representation in terms

of domains, levels of abstraction was defined. Rugby identifies four sub-domains:

computation, communication, domain and time. The domains can be represented at

different abstraction levels, from physical level to more abstract system levels (i.e. the

time can be represented as continuous, discrete, clock and a causality relation).

DEVS (Discrete Event Systems Specifications), defined in [28], [29] is a mathematical

formalism for systems representation and simulation where the time advances on a

continuous time base. This approach is based on the systems theory: a system with a

time base, inputs, states, outputs. Given the current states and the inputs, functions are

implemented to determine the next states and the outputs. DEVS is a formal approach

to build the models, using a hierarchical and modular approach and more recently it

integrates object-oriented programming techniques. Based on this formalism, [30] has

proposed a tool for the modeling and simulation of hybrid systems using Modelica and

DEVS. The models are “created using Modelica standard notation and a translator

converts them into DEVS models” [30]. In [31], the authors propose a heterogeneous

simulation framework using DEVS BUS. Non-DEVS-compliant models are converted

through a conversion protocol into DEVS-compliant models. CD++ [32] is a general

16

toolkit written in C++ that allows the definition of DEVS and Cell-DEVS models.

DEVS coupled models and Cell-DEVS models can be defined using a high level

specification language. PythonDEVS [33] is a tool for constructing DEVS models and

generating Python code. A model is described by deriving coupled and/or atomic DEVS

descriptive classes from this architecture, and arranging them in a hierarchical manner

through composition. DEVSim++ [34] is an environment for Object-Oriented Modeling

of Discrete Event Systems.

However, DEVS allows the definition of the operational semantics for a system but not

its formal verification.

The rollback is also presented in several works. [35] proposes a rollback algorithm for

optimistic distributed simulation systems. In [36] and [37] the authors detail different

checkpoint mechanisms that allow the system’s rollback in order to recover the data.

[38] presents the ”time warping” algorithm that allows the rollback to a point where data

consistency is guaranteed. However, the formalization and verification of the rollback

mechanism in the context of C/D was never addressed.

1.3 Research Project vs. Related Work

Compared with the existing works, this thesis combines the two approaches: simulation-

based and formal representation-based validation. We define here a generic

methodology for the efficient design of continuous/discrete co-simulation tools that will

improve upon some of the deficiencies observed in the works prior presented.

The homogenous simulation–based approaches imply the development of new

languages that are costly in terms of training time and development of new libraries. In

the case of the heterogeneous simulation-based approach the interfaces are developed

ad-hoc and they are not formally verified. Moreover the developers do not focus on the

continuous/discrete interfaces. This thesis introduces an approach where the developers

can use for each domain existing powerful tools and reuse models that were already

17

tested in the simulation context. The interfaces are formally verified and automatically

generated.

The formal representation-based approaches provide an abstract base for heterogeneous

systems’ representation but they do not take into consideration the co-simulation

interfaces or they do not allow for the formal verification. In our work, we focus on the

co-simulation interfaces and we provide a mechanism for the formal representation and

formal verification of the co-simulation interfaces.

The advantage of this methodology is the convergence of the formal representation and

the co-simulation in the context of global validation of continuous/discrete systems. We

combine here the rapidity of the co-simulation technique with the completeness of the

formal verification.

The methodology includes the definition of the operational semantics for

continuous/discrete synchronization models as well as the formal representation and

verification of the behavior of continuous/discrete co-simulation interfaces and their

internal architecture. Moreover, it allows the representation of the continuous and the

discrete in well established languages and by consequence the use of the libraries that

are already tested and used. The users do not need to learn new languages and can reuse

IPs in system design.

1.4 Conclusion

This chapter presented a survey of the existing works proposed for the heterogeneous

systems validation. There are roughly two strategies that are widely accepted:

simulation-based and formal-based representation approaches. Some of the simulation-

based validation tools use a single language for the specification continuous/discrete

system (homogenous simulation-based validation). These tools may be obtained by

extension of existing HDLs (VHDL-AMS, Verilog-AMS and SystemC-AMS). Other

simulation-based validation tools assemble together different components in order to

18

generate the global system (heterogeneous simulation-based validation). Some of these

tools are Ptolemy, Chatoyant and the model developed by TIMA Laboratory

The formal representation-based approaches propose different definitions for

heterogeneous systems modeling. The works briefly presented in this chapter were

realized at the University of California at Berkeley [23], the Royal Institute of

Technology from Stockholm [26], [27] and the University of Arizona [28], [29].

This thesis introduces a new perspective: it unifies these two approaches. The result is a

new generic methodology for the design of efficient continuous/discrete co-simulation

tools that has the advantages of both techniques mentioned above.

19

CHAPTER 2. EXECUTION AND SYNCHRONIZATION MODELS

This chapter presents the global execution models of continuous/discrete heterogeneous

systems. The chapter is organized in four sections. Section 1 defines the global

execution model for a continuous/discrete heterogeneous system. Section introduces the

synchronization models: the canonical model and the rollback-based model. Section 3

presents the events update schemas for the discrete simulator and Section 4 gives the

conclusion.

2.1 Global Execution Model

Figure 2.1(a) shows a generic C/D system and Figure 2.1(b) shows its corresponding

global execution model.

Figure 2.1. A continuous/discrete global execution model

There are three types of basic elements that compose this model [21] :

- The execution models of the different components constituting the

heterogeneous system (corresponding to Continuous component and Discrete

component in Figure 2.1).

20

- The co-simulation bus.

- The co-simulation interfaces.

The co-simulation bus is in charge of interpreting the interconnections between the

different components of the system.

The co-simulation interfaces enable the communication of different components

through the simulation bus. They are in charge of the adaptation of different simulators

to the co-simulation bus in order to guarantee the transmission of information between

simulators executing the different components of the heterogeneous systems. They also

have to provide efficient synchronization models for the modules adaptation.

The co-simulation backplane is the element of the global execution model that

guarantees the synchronization and the communication between the different

components of the system. It is composed of the above mentioned simulation interfaces

and the simulation bus.

The implementation and the simulation of an execution model in a given context is

called co-simulation instance. Several instances may correspond to the same execution

model and these instances may use different simulators and may present different

characteristics (e.g. accuracy and performances).

2.1.1 Discrete Execution Model

The execution model for a discrete system is a model where changes in the state of the

system occur at discrete points in the execution time.

The discrete system can be described by the state-space equations [38]:

with d k 1 d k k k 0 0

k d k k k

 x (t) f(x (t), u(t), t) x(t) x

 y(t) g(x (t), u(t), t)

+ = =


=
 (1)

Where f and g are transformations, xd is the discrete state vector, u the input signal

vector, and y the output signal vector.

A system modeled through (1) is said to be linear if and only if the functions g(·)and f (·)

are both linear ([38]).

21

For the linear discrete systems, (1) becomes:

.
)u(tD)(txC)y(t

)u(tB)(txA)(tx

kdkddk

kdkdd1kd





+=

+=+
 (2)

where Ad, Bd, Cd and Dd are matrixes that can be time-varying and describe the dynamics

of the system.

If we conside n state variables, m output variables, and p input variables, then Ad(tk) is

an n × n matrix, Bd(tk) is a n × p matrix, Cd(tk) is a m × n matrix, and Dd(tk) is a m × p

matrix. The class of linear systems is a small subset of all possible systems but it covers

many cases of interest, or provides adequate approximations can be used [38].

A discrete-event system execution concentrates on processing events, each event having

assigned a time stamp. Each event computation can modify the state variables, schedule

new events or retract existing events. The unprocessed events are stored in a pending

events list. The events are processed in the order of their time stamp. Figure 2.2 shows a

possible update event schema.

Figure 2. 2. Event update schema in a discrete simulator ([29])

22

At each simulation cycle, the first event with the smallest time stamp is processed and

the processes sensitive to this event are executed. If several processes are sensitive to

one or several events (with the same time occurrence) then these processes have to be

executed in parallel. Executions often occur on sequential machines that can only

execute one instruction at a time (therefore, one process). The consequence is that this

execution cannot parallelize the processes. The solution consists in emulating the

parallelism, where the processes are executed as if the parallelism is real and the

environment (its inputs) does not change while executing other processes. Thus, the

process execution order loses its importance and everything takes place as if a parallel

execution occurred. This requires that shared variables (signals) between processes keep

their values until the execution of all parallel processes ends. Once all events with

discrete time stamp equal to the current time have been treated, the simulator advances

the time to the nearest scheduled discrete event.

Illustrative examples of discrete-time simulators are: SystemC [8], VHDL [6], Verilog

[7], SystemVerilog [39].

2.1.2 Continuous Execution Model

The continuous time execution model is described by the state space equations:

.
u(t)D (t)xC y(t)

u(t)B (t)xA(t)x

ccc

cccc








+=

+=
•

 (3)

where xc is the state vector, u the input signal vector, y the output signal vector and Ac,

Bc, Cc and Dc are constant matrixes that describe the dynamic of the system. The

execution of continuous model, described by differential and algebraic equations,

requires solving numerically these equations. A widely used class of algorithms [40]

discretizes the continuous time line into an increasing set of discrete time instants, and

computes numerically values of state variables at these ordered time instants. The

interval between two consecutive time instants is called integration step, and can be

23

fixed or variable. The criteria used for the choice of the integration step are the accuracy,

the stability and the continuity of the signals. The next state of derivative systems

cannot be specified directly but the derivative functions are used to specify the rate of

change of state variables [29].

The execution of a continuous system raises problems because given a state qk and a

vector x for a time tk, the derivative offers information only for dqk/dt but not the

system’s behavior over time. For a nonzero interval [tk, tk+1] the computation has to be

realized without knowing the behavior in the interval (tk, tk+1). This problem can be

solved using numerical integration methods. Some of the most commonly used methods

are [29]:

- Euler method that consists in signal integration:

h

)t(q)ht(q

h

lim

dt

dq(t) −−−−++++

∞∞∞∞→→→→
====

For an h small enough (in order to obtain accurate results), the following

approximation can be used:

)t(d

)t(dq
*h)t(q)ht(q ++++====++++

This solution has low efficiency and does not have stability problems for small

enough h and it is very robust.

- Causal methods that are a linear combination of states and derivative values at

time instants with coefficients chosen to minimize errors from the computed

estimate to the real value. This solution has high efficiency but it has stability

and robustness problems.

- Noncausal methods that use “future” values of states, derivative and inputs. In

order to do that, the model is executed past the needed time and the values that

are necessary are stored, to estimate the present values.

Table 2.1 shows the difference between the basic concepts for the continuous and

the discrete models.

24

Table 2.1. Continuous system vs. discrete system

Model\Concept Time Communication
means

Processes
activation rules

Discrete
It advances
discretely

Set of events
Processes are

sensitive to events

Continuous
It advances by

integration steps
Piecewise

continuous signals

Processes are
executed at each
integration step

The concepts taken into consideration here are the time, the communication means and

the processes activation rules.

Illustrative examples of continuous-time simulators are: Simulink [16] and SPICE

[41].

2.2 Continuous/Discrete Synchronization Models

This section proposes two synchronization models for the global execution of C/D

heterogeneous systems:

- the canonical model where the continuous simulator advances before the discrete

simulator.

- the rollback-based model where the discrete simulator advances before the

continuous simulator.

For these models we consider [tk,tk+1] as the time interval. The input signal vector for

the continuous domain is the output signal vector from the discrete domain and vice

versa. The simulation of discrete models is based on events [42]. At each simulation

cycle, the first event with the smallest time stamp is processed and the processes

sensitive to this event are executed. This may generate other events causing execution of

other processes. Once all events with discrete time stamp equal to the current time have

been treated, the simulator advances the time to the nearest discrete scheduled event.

The events exchanged between the discrete and the continuous simulators are [42]:

25

- discrete events are timed events scheduled by the discrete simulator. The events

sent by the discrete simulator can be signals update events that are caused by the

change of its input discrete signals or sampling events that are pure events

(defined only by their time stamps) and indicate the sampling events time

stamps.

- state events are unpredictable events generated by the continuous simulator.

Their time stamp depends on the values of state variables (e.g. a zero-passing or

a threshold crossing).

When stepping ahead in time, a simulator must consider the events time stamps coming

from the external world and it must reach accurately these time stamps of events (called

here events detection). These time stamps are the synchronization and communication

points between the different simulators involved in a global simulation. For a rigorous

synchronization each simulator has to detect, locate in time and react to events sent by

the other simulator.

2.2.1 Continuous/Discrete Canonical Synchronization Model

This sub-section details the C/D canonical synchronization model. In order to avoid the

discrete simulator backtracking we have to detect the state events generated by the

continuous simulator before the advance of the discrete simulator time, therefore the

continuous simulator has to advance before the discrete simulator [43].

Figure 2.3 presents the synchronization model in the continuous/discrete co-simulation

interfaces without state event (Figure 2.3(a)) and with state event (Figure 2.3(b)). At a

given time the discrete simulator is in the state sdk that is the tuple (xdk,tk) where xdk is the

location and tk is the k-th discrete time (that can be seen also as the k
-th event in the queue

of events in the discrete domain). At this point the discrete simulator had executed all

the processes sensitive to the event and sends the time of the next event tk+1 and the data

to the continuous simulator and switches the context from the discrete to the continuous

simulator before advancing the time (arrow 1 in Figure 2.3(a) and Figure 2.3(b)).

26

Figure 2.3. The canonical synchronization model

The state of the continuous simulator is qk that is the tuple (xck,tk) and the advance in

time of the simulator cannot be further than tk+1, the time sent by the discrete simulator.

The behavior of the continuous interface can be described by the following transition

state equation (arrow 2 in Figure 2.3(a) and Figure 2.3(b)):

() ck 1 k 1 k 1

ck k

se k 1

(x ,t) if t t
x ,t .

(se,t) if t t

+ + +

+

=
→

<

(4)

(5)

where t is the time in the continuous domain, (xck+1, tk+1) is the state of the continuous

simulator when no state event was generated in the time interval [tk, ,tk+1]. The state qse

that is the tuple (se,tse) represents the state of the continuous simulator when a state

event se was generated and tse represents the time when the state event occurred. In both

situations the continuous simulator will stop and send the data to the discrete simulator

and then switch the context to the time tk (arrow 3 in Figure 2.3(a) and Figure 2.3(b)).

The event taken into consideration is the event generated within the time interval

[tk,tk+1], after the context switch from the discrete domain to the continuous domain at

the time tk. This event can be a state event or the detection of an event scheduled by the

discrete simulator (and consequently a synchronization point).

27

In the case described by equation (4), after switching the context, the discrete simulator

will advance to the time tk+1 that is the next synchronization point, where it will execute

all the processes sensitive to this event. Before switching the context to the continuous

interface the discrete simulator sends the data and the time of the next scheduled event

tk+2 (also the next synchronization point) and the cycle restarts (arrow 4 in Figure

2.3(a)).

Equation (5) describes the case where a state event occurred. The continuous simulator

will send not only the data but also the time when the state event occurred tse (arrow 3 in

Figure 2.3(b)). The discrete simulator will advance to this time (state event detected by

the discrete simulator) where it will execute all the processes sensitive to the event.

Before switching the context to the continuous simulator the discrete interface will send

the data and the recalculated time of the next scheduled event tk (arrow 4 in Figure

2.3(b)). The time stamp can change after a state event. This time stamp can take any

value bigger than tse .The advantage of this model is that it avoids any need of rollback

even if a state event was generated.

2.2.2 Continuous/discrete rollback-based synchronization model

Figure 2.4 presents the light rollback synchronization model for the C/D simulation

interfaces.

At a given time the discrete simulator is in the state sdk that is the tuple (xdk,tk) where xdk

the location and tk the k
-th discrete time (that can be seen also as the k

-th event in the

queue of events in the discrete domain). At this point the discrete simulator had

executed all the processes sensitive to the event, advances to the time of the next event

tk+1 (arrow 1 in Figure 2.4(a) and Figure 2.4(b)) and a new state sdk+1 that is the tuple

(xdk+1,tk+1), sends the data and the time of the event tk+1 to the continuous simulator and

switches the context to the continuous simulator (arrow 2 in Figure 2.4(a) and Figure

2.4(b)).

28

Figure 2.4. The rollback-based synchronization model

The state of the continuous simulator is qk that is (xck,tk) and the advance in time of the

simulator cannot be further then tk+1, the time sent by the discrete simulator.

The behavior of the continuous interface can be described by the same transition state

equation that was presented for the canonical synchronization model.

The case described by equation (4) is the case when the continuous simulator does not

send state events. In this case the continuous simulator will behave like in the case of

the canonical synchronization model (the equation (4) was already presented in section

2.2.1) and is represented in Figure 2.4(a). Equation (6) describes the case where a state

event occurred. In the case of the rollback-based synchronization model the continuous

simulator will send not only the data but also the time when the state event occurred tse

(arrow 4 in Figure 2.4(b)). The discrete simulator will backtrack to the previous state sdk

(arrow 5 in Figure 2.4(b)) and restores the saved data for the time stamp tk. This

backtrack where only a backup of memory data segment, processor registers as well as

input and output signal values will be made for each discrete event is called here light

rollback. After the initial state restoration, the simulator starts over, taking into account

the state events and advances to the time stamp tse (state event detected by the discrete

29

simulator) where will execute all the processes sensitive to the event (arrow 6 in Figure

2.4(b)). The cycle restarts, the discrete time advances to the next discrete event. The

time stamp of this event can change after a state event; it can take any value bigger than

tse .

2.3 Events Update Schema

In both synchronization models a key point is represented by the events update schema

in the discrete domain. This section presents step by step these schemas for a discrete

simulator integrated in a continuous/discrete co-simulation environment. The elements

used in this representation respect the definitions introduced in [38]:

- The system maintains a Scheduled Event List L={(xdk,tk)} with k=1,2,3,...n. The

list is ordered on the smallest-first basis.

- The queue of events is ordered by the events lifetimes, from the smallest to the

largest. The lifetime vk is the length of the time interval between two successive

occurrences of an event (vk=tk+1-tk).

Considering that the list is reordered each time the context is switched from the

continuous domain to the discrete domain, some events will become undetectable so

they have to be deleted from the list or new events will be generated and therefore they

have to be added to the list. There are two possible behaviors of the scheduler, both of

them depending on the behavior of the continuous domain:

- When no state event occurred in the continuous domain;

- When a state event was generated in the continuous domain.

In both cases State is initialized to a given value x0 and the simulation time Time is

initialized to 0. The Clock Structure is a set of clock sequences, one for each event.

The next two sub-sections present the events update schema for both models of

synchronization: the canonical model and the rollback-based model.

30

2.3.1 The Event Update Schema for the Canonical Discrete Simulator

Figure 2.5 presents the event update schema for a canonical discrete simulator integrated

in a continuous/discrete co-simulation environment. This figure is inspired by [38]. In

[38] the author proposed the event update schema for a purely discrete event system.

Figure 2.5 extends this schema with the interaction in terms of

communication/synchronization (through the events exchanged) between the discrete

and the continuous simulators.

Figure 2.5. The event update schema for the canonical discrete simulator

For the case when no state event is generated the following steps are executed (see

Figure 2.5):

Step1 - First entry in the list (xdk,tk) is removed from the list.

Step2 - Time is updated to a new time.

Step3 - State is updated according with the transition function, xdk+1=f(q,xdk) where q is

the data from the continuous domain.

Step4 - The events that became unfeasible after the data is received from the continuous

domain are deleted from the list.

31

Step5 - New feasible events that are a consequence of the data received from the

continuous domain are added to the list.

Step6 - The list is reordered on the smallest-first basis.

The procedure repeats with step 1 for the new list. In this case the clock structure is

controlled by the discrete domain; the events queue is reordered by the discrete kernel.

When the continuous domain generates a state event the sequence of steps is the

following (Figure 2.5):

Step1 - First entry in the list (xdk,tk) is removed from the list.

Step2 - Time is updated to a new time tse < tk+1.

Step3 - State is updated according with the transition function, xse=f(se,xdk) with q the

data from the continuous domain.

Step4 - The state event is added in the list always as the next entry to be removed from

the list.

Sep5 - The events that became unfeasible as a consequence of the detection of a state

event (which in an unpredictable event) are deleted from the list.

Step6 - New feasible events that are a consequence of the state event are added to the

list

Step7 - The list is reordered on the smallest-first basis.

This procedure repeats with step 1 for the new list. In this case the clock structure is

controlled by the continuous solver, the time of the state event is sent by the continuous

domain and the first consequence is the re-start of the discrete simulator at a time tse,

before the expected time tk+1.

2.3.2 The event update schema for the rollback-based discrete

simulator

Figure 2.6 presents the event update schema for a rollback-based discrete simulator

integrated in a continuous/discrete co-simulation environment. For the first case when

no state event is generated the following steps are executed (see Figure 2.6):

32

Step1 - First entry in the list (xk,tk) is removed from the list.

Step2 - Time is updated to a new time.

Step3 - State is updated according with the transition function, xdk+1=f(qk,xdk) with qk the

data from the continuous domain (a particular case of this step is the initial transition

function when from (x0,t0) to (x1,t1) where x1=f(x0)).

Step4 - The events that became unfeasible after the data is received from the continuous

domain are deleted from the list.

Step5 - New feasible events that are a consequence of the data received from the

continuous domain are added to the list.

Step6 - The list is reordered on the smallest-first basis.

State

Time

Update time

tdk+2=tdk ; t’d=tse

Add new events in the list and

reorder (xdk,tdk) and (xse,tse)

xse

t’d

s

e

tse

Delete events in
the list (xdk+1,tdk+1)

State event

Update state
xdk+2=xdk

xdse=f(se, xdk)

Scheduled

events list

xdk tdk

xdk+1 tdk+1

...

...

xdk+2 � xdk tdk+2 � tdk

xdse tse

...

...

xdk

xse xdk
tdk+2

t’d tdk+2

State

Update time
t’d=tdk+1

Add new event in the list

and reorder (xdk+n,tdk+n)

t’d

Delete events in
the list (xdk+n,tdk+n)

No state event

Update state

Xdk+1=f(qk, xdk)

Scheduled
events list

xdk tdk

xdk+1 tdk+1

... ...

... ...

xdk

xdk

t’d

Time

Initialize

discrete

Initialize

continuous

Continuous
solver

Clock
structure vdn

Clock
structure tse

EventGot

xd0 td0
xd1 td1

Scheduled
events list

Figure 2.6 The event update schema for the rollback-based discrete simulator

The procedure repeats with step 1 for the new list. In this case the clock structure is

controlled by the discrete domain; the events queue is reordered by the discrete kernel.

33

When the continuous domain generates a state event the sequence of steps is the

following:

Step1 - First entry in the list (xk,tk) is removed from the list

Step2 – Time is updated to a new time.

Step3 - The second entry in the list (xk+1,tk+1) is removed from the list.

Step4 - Time is updated to a new time.

Step5 - State is updated according with the transition function, xse=f(se,xdk) where q is

the data from the continuous domain.

Step6 – First entry in the list (xk,tk) is added back to the list (data is recovered).

Step7 – Time is updates to a new time.

Step8 - The state event is added in the list always as the next entry to be removed from

the list.

Step9 - The events that became unfeasible as a consequence of the detection of a state

event (which in an unpredictable event) are deleted from the list.

Step10 - New feasible events that are a consequence of the state event are added to the

list.

Step11 - The list is reordered on the smallest-first basis.

This procedure repeats with step 1 for the new list. In this case the clock structure is

controlled by the continuous solver, the time of the state event is sent by the continuous

domain and the first consequence is the re-start of the discrete simulator at a time tse,

before the expected time xtk+1.

The synchronization models in C/D heterogeneous systems are presented in Table 2.2.

We also give here the advantages and the disadvantages for each of the presented

models.

34

Table 2.2. Synchronization in continuous/discrete heterogeneous systems

Synchronization
model

Synchronization
step

Advantages Disadvantages

Canonical
synchronization

model

At each discrete step
and state event

occurrence

Can be applied
for all systems

Synchronization
overhead

Rollback-based
synchronization

model

At each update and
sampling events and

state event
occurrence

Non-periodic
update/sample

events, it is
efficient when

no state
events occurs

Rollback for discrete
model is required if

the continuous
model generates

state events

2.4 Conclusion

This chapter presented the global execution model of continuous/discrete heterogeneous

systems. The first section introduced the main components of the global execution

models: the domain specific execution models, the co-simulation bus and the co-

simulation interfaces. The co-simulation interfaces have to provide efficient

synchronization models. The second section of this chapter details two synchronization

models: the canonical model and the rollback-based model. In the case of the canonical

model the continuous domain simulator advances before the discrete domain simulator.

The need for rollback is completely eliminated. In the case of the rollback-based model

the discrete simulator advances before the continuous simulator and, if a state event is

generated by the continuous domain, the discrete model will backtrack to the previous

stable state.

This last section of the chapter presented the events update schema for the discrete

simulator for both synchronization models.

35

CHAPTER 3. GENERIC METHODOLOGY FOR THE DESIGN OF

CO-SIMULATION TOOLS

This chapter proposes a new methodology for the design of continuous/discrete co-

simulation tools (as shown in Figure 3.1) divided in two stages: a generic stage and an

implementation stage. This methodology presents several steps that are independent of

the simulation tools used for the continuous and discrete components of the system.

During these generic steps, the co-simulation interfaces are defined in a conceptual

framework; their functionality and the internal structure of simulation interfaces are

expressed using existing formalisms and temporal logic. After the rigorous definition of

the required functionality for simulation interfaces, the designer will start the steps

related to the implementation.

The main stages of the proposed methodology (illustrated in Figure 3.1) are:

1. A generic stage including the following steps:

- Definition of the operational semantics for the synchronization in

continuous/discrete global execution models.

- Distribution of the synchronization functionality to the simulation interfaces.

- Formalization and verification of the simulation interfaces behavior.

- Definition of the library elements and the internal architecture of the simulation

interfaces.

2. An implementation stage including the following steps:

- The analysis of the simulation tools for the integration in the co-simulation

framework.

- The implementation of the library elements specific to different simulation tools

and the implementation validation.

36

Figure 3.1. A generic methodology for co-simulation tools design

These steps will be detailed in the sub-sections of this chapter.

Figure 3.2. Design methodology in the flow for the automatic generation of co-

simulation models

37

Figure 3.2 presents the proposed design methodology in the context of the automatic

generation of execution models.

We emphasize here that the methodology is generic; the first stage is independent of the

implementation languages of the co-simulation library.

Sub-section 3.1 “Generic Methodology” of this chapter generally presents the proposed

methodology. Sub-section 3.2 “Using formal methods for co-simulation tools design”

gives details on how this methodology can be applied, using existing formalism and

tools.

3.1 Generic Methodology

This section focuses on the generic methodology and its stages. Each of the following

sub-sections will detail these steps.

3.1.1 Definition of the Operational Semantics for the Synchronization

in Continuous/Discrete Global Execution Models

The first step of the methodology for co-simulation tools design is the definition of the

operational semantics for the synchronization in continuous/discrete global execution

models. An operational semantics gives a detailed description of the system’s behavior

in mathematical terms. This model serves as a basis for analysis and verification. The

description provides a clear language independent model that can serve as a reference

for different implementations.

The operational semantics for continuous/discrete systems requires the rigorous

representation of the relation between the simulators (communication/synchronization

and data exchanged between the continuous and the discrete simulators) as well as their

high level and dynamic representations.

Figure 3.3 shows a view of the continuous/discrete heterogeneous during the “definition

of the operational semantics for the synchronization” stage.

38

Discrete Continuous

Synchronization

Figure 3.3. The continuous/discrete system during the “Definition of the operational

semantics” stage

3.1.2 Distribution of the Synchronization Functionality to the Co-

Simulation Interfaces

Based on the operational semantics, we can now define the synchronization

functionality between the continuous and the discrete simulators. This functionality is

insured by the interfaces that are the link between the different execution models and the

co-simulation bus (see Figure 2.1). They are each in charge with a part of the

synchronization between the two models. To insure system’s flexibility, the

synchronization functionality has to be distributed to the simulation interfaces.

Moreover, each computation step has to be thoroughly specified. Figure 3.4 shows a

view of the continuous/discrete heterogeneous during the “distribution of the

synchronization functionality to the co-simulation interfaces” stage.

Discrete Continuous

Simulation

Interface

Simulation

Interface

Simulation Bus

Simulation

Interface

Simulation

Interface

Simulation Bus

Figure 3.4. The continuous/discrete system during the “Distribution of the

synchronization functionality to the co-simulation interfaces” stage

39

3.1.3 Formalization and Verification of the Simulation Interfaces

Behavior

The formalization and verification of the simulation interfaces behavior stage can be

roughly divided into three steps: formalization (that can be the formal specification of

the heterogeneous system), the validation by model simulation and the formal

verification. The two main techniques that can be used for the formal verification of the

interfaces are [44] :

- model checking where the system descriptions are given as automata, the

specification formulas are given as temporal logic formulas and the checking

consists of the verification that all models of a given system description satisfy a

given specification formula. It focuses mainly on automatic verification.

Completeness and termination guarantee of model checking are some features of

this technique, as well as it enables the tool to guarantee the correctness of a

given property, or produce a counterexample otherwise.

- theorem proving where the verification plan is manually designed and the

correctness of the steps in the plan is verified using theorem provers. Completely

automatic decision procedures are impossible because the input language (the

model and the specification) is of higher order logic and that eliminates the

decidability. Moreover, everything has to be translated in higher order logic,

and, therefore, the structure of the system may be lost and its representation can

become large and difficult to work with.

Considering that the system is dynamic, it is necessary to use a formalism that allows

the expression of dynamic properties (the state of a system changes and by consequence

the properties of the state also change). The temporal logic handles formalization where

the properties evolve over time and in general uses:

- propositions that describe the states (i.e., elementary formulas and logical

connectors), and

40

- temporal operators that allow the expression of the properties of the states

successions (called executions).

The differences between the logics are in terms of temporal operators and objects on

which they are interpreted (such as sequences or state trees) [45].

The most commonly used logics are Linear Temporal Logic (LTL), Computation Tree

Logic (CTL* and CTL, both of them untimed temporal logics) and their timed

extensions TCTL and Metric Interval Temporal Logic (MITL).

- CTL* allows the use of all temporal and branching operators but the property

verification is very complex. For this reason, most of the tools actually used

allow the verification of fragments of CTL*.

- LTL is a fragment of CTL* that excludes the trajectory quantifiers. In this case

only the trajectory predicates are considered. LTL does not provide a means for

considering the existence of different possible behaviors starting from a given

state (sequential) [45].

- CTL is also a fragment of CTL* and it is obtained when every occurrence of a

temporal operator is immediately preceded by a branching operator. In the case

of CTL we have state trees.

- TCTL is a timed temporal logic that is an extension of CTL obtained by

subscribing the modalities with time intervals specifying time restrictions on

formulas.

For our formal model, the properties that need to be checked are branching properties

that are expressed using CTL or TCTL logics.

3.1.4 Definition of the Internal Architecture of the Simulation

Interfaces

The formalization of the simulation interfaces behavior step is naturally followed by the

definition of their internal architecture. This definition eases the automatic generation of

41

the simulation interfaces. We present in Figure 3.5 the hierarchical representation of the

global simulation model used in our approach.

Figure 3.5. Hierarchical representation of the generic architecture of the co-simulation

model

At the top hierarchical level, the global model is composed of the continuous and

discrete models and of the C/D simulation interface required for the global simulation.

The second hierarchical level of the global simulation model includes the domain

specific simulation interfaces and the co-simulation bus in charge of the data transfer

between these interfaces.

The bottom hierarchical level includes the elements from the co-simulation library that

are the atomic modules of the domain specific simulation interface. These atomic

components implement basic functionalities of the synchronization model.

3.1.5 The Analysis of the Simulation Tools for the Integration in the

Co-Simulation Framework

The considerations presented in the previous steps of the methodology show that

specific functionalities are required for the co-simulation of continuous and discrete

42

models. Therefore, the integration of a simulation tool in the co-simulation environment

requires their analysis. Thus, in the case of continuous simulator integration in the co-

simulation tool, this simulator has to provide APIs enabling the following controls:

- State event detection and location.

- Setting break points during differential equation solving.

- On-line update of the breakpoints settings.

- Sending processing results and information for synchronization (i.e., the time

step of the state event) to the discrete simulator. This implies generally the

possibility to integrate C-code and Inter-Process Communications (IPC).

For the integration of a discrete simulator in the co-simulation tool, the simulator has to

allow the addition of the following functionalities:

- Detection of the end of the discrete simulation cycle that guarantees that the

simulation control is transferred to the continuous simulator only after the

stabilization of discrete simulator.

- Insertion and retraction of new events (state events) in the scheduler’s queue.

This must be done before the advancement of the simulator time.

- Sending processing results and information for synchronization to the

continuous simulator (i.e., the time stamp of its next discrete event).

3.1.6 The Implementation of the Library Elements Specific to

Different Simulation Tools

The last step of the methodology for the design of co-simulation tools for

continuous/discrete systems is the implementation of the library elements that are

specific to different simulation tools. This step depends highly on the simulation tools

chosen in the previous step, the analysis of the simulation tools.

43

3.2 Using Formal Methods for Co-Simulation Tools Design

This section gives more details on the steps that compose the generic stage (as presented

in the previous section) as well as their implementation.

Before giving the details of a possible application of the methodology we present the

basic concepts that are used in our specific methodology are introduced: Discrete Event

System Specification (DEVS) [28], [29], timed automata [46], [47] and UPPAAL [48].

The following sub-sections present an example of utilization of the proposed

methodology.

3.2.1 Basic Concepts

Discrete event system specifications

Discrete Event Systems Specifications (DEVS) is a formalism supporting a full range of

dynamic system representation, with hierarchical and modular model development. The

abstraction separates modeling from simulation and provides atomic models that can be

used to build complex models that allow the integration of continuous and discrete-

event models [28], [29]. It also provides all the mechanisms for the definition of an

operational semantics for the continuous/discrete synchronization model, the high level

representation of the global formal model.

A DEVS is defined as a structure [28], [29] :

DEVS = ‹X, S, Y, δint, δext, λ, ta› where

X = {(pd, vd)|pd∈ InPorts, vd ∈ X pd } set of input ports and their values in the discrete

event domain,

S - set of sequential states

Y = {(pd, vd)|pd, ∈ OutPorts, vd ∈ Y pd } set of output ports and their values in the

discrete event domain.

δint : S→ S the internal transition function

44

δext: QxX→ S the external transition function, where:

 Q={(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total state,

 e is the time elapsed since the last transition

λ:S→Y output function

ta:S→R
+

0,∞ set of positive reals with 0 and ∞.

The system’s state at any time is s. There are two possible situations:

- case 1 – where we assume that no external events occur. In this case the system

stays in this state s for the time ta(s). When the elapsed time e equals ta(s) (that is

the time allocated for the system to stay in state s), the system outputs the value

λ(s). The state s changes to the state s’ as a result of the transition δint(s). We

emphasize here that the output is possible only before the internal transitions.

We propose the definition of this type of transition using the following rule of

the form
sConclusion

Premises :

,0)(s'e)(s,

(s)δs'(s)te
λ(s)!

inta

 →→→→

====∧∧∧∧==== where ‘!’ represents the send operator.

- case 2 – where there is an external event x before the expiration time, ta(s) (the

system is in state (s,e), with e≤ ta(s)), the system’s state changes to state s’ as a

result of the transition δext(s,e,x). For the definition of this type of transition, we

propose the following rule:

)0,'(),(
),,(')(

?
ses

xessste
x

exta

→

=∧≤ δ where ‘?’ represents the receive operator.

Thus, the internal transition function dictates the system’s new state when no

external events occurred since the last transition while the external transition

function dictates the system’s new state when an external event occurs – this

state is determined by the input x, the current state s and how long the system has

been in this state, e. In both cases the system is then in some new state s’ with

some new expiration time ta(s’).

45

We also give here DEVS coupled models as defined by the same formalism. For the

case where we have ports, the specification includes external interfaces with input and

output ports and values, and coupling relations.

N = (X,Y,D, {Md|d ∈ D}, EIC,EOC,IC) where:

X = {(p, v)|p ∈ InPorts, v ∈ Xp} set of input ports and values,

Y = {(p, v)|p ∈ OutPorts, v ∈ Yp} set of output ports and values

D = set of components names

Md=(Xd , S, Yd, δint, δext, λ, ta) is a DEVS with Xd , Yd the set of input/output ports and

values

EIC (External Input Coupling) = the coupling between the input in the coupled model

and the external environment

EOC (External Output Coupling) = the coupling between the output from the coupled

model and the external environment

IC (Internal Coupling) = the coupling between the modules that compose the coupled

module

In our work we used the parallel DEVS coupled formalism. Each module composing the

interface performs a different task accordingly to the continuous/discrete

synchronization models.

Timed automata and UPPAAL

In this section we briefly introduce timed automata. A timed automaton [46] is a

formalism for modeling and verification of real time systems. It can be seen as classical

finite state automata with clock variables and logical formulas on the clock (temporal

constraints) [47]. The constraints on the clock variables are used to restrict the behavior

of the automaton. The logical clocks in the system are initialized to zero when the

system is started and then increase at the uniform rate counting time with respect to a

fixed global time frame. Each clock can be separately reset to zero. The clocks keep

track of the time elapsed since the last reset [46]. There are two types of clock

46

constraints: constraints associated with transitions and constraints associated with

locations. A transition can be taken when the clocks’ values satisfy the guard labeled

on it. Figure 3.6 illustrates an example of a timed automaton. The constraints associated

with locations are called invariants and they specify the amount of time that may be

spent in a location. The invariant “true” for a location means there are no constraints for

the time spent in the location.

Figure 3.6. Example of a timed automaton

The process shown in Figure 3.6 starts at the location p with all its clocks (x and y)

initialized to 0. The values of the clocks increase synchronously with time at the

location q.

At any time, the process can change the location following a transition qp
ra;g; → if

the current values of the clocks satisfy the enabling condition g (guard). A guard is a

Boolean combination of integer bounds on clocks and clock-differences. With this

transition, the variables are updated by r (reset) which is an action performed on

clocks. The actions are used for synchronization and are expressed by a

(action)[47]. A synchronization label is of the form Expression? or Expression!

where ! represents the operator send and ? represents the operator receive.

47

The semantics for a time automaton are defined as “a transition system where a state or

configuration consists of the current location and the current values of clocks” [47].

Thus, the state is represented by the tuple: (l, v) where l is the location and v is the

clock valuation (a function that associates a real positive value, including zero, to

each clock). Given the system, we can have two types of transitions between locations: a

delay transition when the automaton may delay for some time or an action transition

when the transition follows an enabled transition.

The transition showing the time passing is)v',(l'v)(l,
t

→→→→ if and only if:

.
Inv(l) verifies)t'(v t],[0,t'

tvv'





+∈∀

+=
 (8)

where Inv(l) is the invariant in the location l, l=l’, v’=v + t showing that for all clocks x,

v’(x)=v(x)+t .

For the discrete transitions)v'(q,v)(p,
ra;g;

 →→→→ v’ has to satisfy the invariant of q. v’ is

obtained from v by resetting the clocks indicated by the reset r.

Timed automata have the following characteristics that make them desirable for our

formal model:

- Ease and flexibility of systems’ modeling.

- Existence of a whole range of powerful tools that are already implemented and

that allow different verification techniques.

- Adequate expressivity in order to model time constrained concurrent systems.

Our formal model needs to support concurrency between continuous/discrete systems

thus it was represented as a parallel composition of several timed automata with no

constraints regarding the time spent in the locations.

UPPAAL [48] is an integrated tool environment for modeling, simulation and

verification of timed automata developed jointly by Aalborg University in Denmark and

the Uppsala University in Sweden. It consists of three parts: a model descriptor, a

simulator and a model-checker. The descriptor models systems that can be represented

as a collection of non-deterministic processes with finite control structure and real-

48

valued clocks (i.e. timed automata), communicating through channels and (or) shared

data structures. A model consists of one or more concurrent processes (also named here

simulators), local and global variables, and channels. There are three types of locations

in UPPAAL: normal locations with or without invariants, urgent locations and

committed locations. No delay is allowed in urgent or committed locations. The

transitions out from an urgent location have higher priority than that of time progress.

The expressions cover clocks and integer variables and are used with the labels: guards,

synchronization, assignments or invariant. The models synchronize with each other via

channels. In UPPAAL the assignments are evaluated sequentially (not concurrently). On

synchronizing transitions, the assignments on the !-side (the emitting side) are evaluated

before the ?-side (the receiving side).

The model checker engine in UPPAAL is based on the theory of timed automata and the

query language is a subset of computational tree logic, the timed computational tree

logic (TCTL). The query language [48] consists in path formulae and state formulae.

The states formulae describe individual states while the path quantifies over traces of the

model.

The main advantage of UPPAAL is that the product automaton is computed on-the-fly

during verification. This reduces the computation time and the required memory space.

It also allows interleaving of actions as well as hand-shake synchronization. In our

approach UPPAAL was used for the formal representation of the simulation interfaces.

3.2.2 Definition of the Operational Semantics for the Synchronization

in Continuous/Discrete Global Execution Models

DEVS allows for the definition of the operational semantics of the behavior of the co-

simulation interfaces with respect to the synchronization models presented in Chapter 2.

Definition of the Operational Semantics for the canonical

synchronization in Continuous/Discrete Global Execution Models

49

The operational semantics for the continuous/discrete canonical synchronization model

is given by the set of rules presented in Table 3.1. DataToCSI (also DataFromDSI) is

the output function from the discrete domain simulation interface λ(sd), and DataToDSI

(also DataFromCSI) is the output function from the continuous domain interface λ(sc).

The semantics of the global variable flag is related to the context switch between the

continuous and discrete simulators. When flag is set to ‘1’, the discrete simulator is

executed. When it is ‘0’, the continuous simulator is executed. The global variable synch

is used to impose the order of the different operations expressed by the rules.

For a better explanation, we present in detail the first rule, corresponding to arrow 1 in

Figure 2.3(a) and Figure 2.3(b). The premises of this rule are: the variable synch has the

value ‘1’, the variable flag has the value ‘1’, and we have an external transition function

(δext) for the continuous model. The discrete model is initially in the total state (sdk, edk),

this means it has been in the state sdk for the time edk . In this state, the discrete simulator

performs the following actions:

- send the data and the value of its next time stamp (this action is expressed by

!(DataToCSI, ta(sdk))

- switch the simulation context to the continuous model (this action is expressed

by flag = 0).

For the same rule, the continuous model is in state qk and performs the following

actions:

- receive the data and the value of the time stamp from the discrete simulator

(expressed by ?((DataFromDSI, ta(sdk)).

- set the global variable synch to ‘0’ (action expressed by synch=0) in order to

respect the premise of the rule corresponding to the arrow 4.

The actions expressed by this rule will be executed by the discrete simulator when the

context will be switched to it.

50

Table 3.1. Operational semantics for the C/D canonical synchronization model

Rule
 - Arrows in

Figure 2.3

 - Description

a d k a dk

k ext k

!(DataToCSI ,t (s)); flag: 0 ?(DataFromDSI ,t (s));synch: 0

d k dk dk dk k k

synch 1 flag 1 q (q)

(s ,e) (s ,e);q q

δ
= =

= ∧ = ∧ =

→ →

- Arrow 1 fig.
2.3(a) and 2(b)

- Context
switch discrete
to continuous

int

k 1 int k

! DataToDSI ; flag : 1

k k 1 k 1

flag 0 stateevent(t) q (q)

q q q
δ

δ+

=

+ +

= ∧ ¬ ∧ =

→ →

- Arrow 2 and
3 in fig 2.3(a)

- Continuous
time advance
and context

switch
continuous to
discrete when
no state event

int d (k 1) d (k 1)a dk dk

d (k 1) ext dk

? DataFromCDI ; (s); (s);synch: 1t (s) e

dk dk dk a dk d (k 1)

synch 0 flag 1 stateevent s (s)

(s ,e) (s ,t (s)) (s ,0)
δ λ

δ
+ +

+

=−

+

= ∧ = ∧ ¬ ∧ =

→ →

- Arrow 4 in
figure 2.3(a)

- Discrete time
advance when
no state event

se

k 1 int k

! DataToDSI ;! t ; flag: 1! DataToDSI

k k 1 k 1

flag 1 stateevent q (q)

q q q

δ+

=

+ +

= ∧ ∧ =

→ →

- Arrow 2 and
3 in fig 2.3(b)

- Continuous
time advance
and context

switch
continuous to
discrete when

state event

se int se se

d(k 1) ext dk ,

?t ? DataFromCSI ; (s); (s);synch: 1

dk dk dk se se

synch 0 flag 1 stateevent s (s t)

(s ,e) (s ,t) (s ,0)
δ λ

δ+

=

= ∧ = ∧ ∧ =

→ →

- Arrow 4 fig.
2.3(b)

- Discrete time
advance when

state event

51

Definition of the operational semantics for rollback-based

synchronization in continuous/discrete global execution models

The operational semantics for the light rollback synchronization model is given by the

set of rules presented in Table 3.2. This table respects the notations used for the

canonical synchronization model presented in the section above. The semantic of the

global variable flag is again related to the context switch between the continuous and

discrete simulators. When flag is set to ‘1’, the discrete simulator is executed. When it is

‘0’, the continuous simulator is executed. For the rollback-based synchronization model,

besides the global variable synch we introduce a new global variable back. These

variable are used to impose the order of the different operations expressed by the rules

(i.e when back is 1 the discrete simulator advances to the next time stamp while when it

is 0, it backtracks to the previous time stamp).

For a better explanation, we detail here the first rule, corresponding to the arrow 1 in

Figure 2.4. The premises of this rule are: the variables synch, flag and back have the

value ‘1’, and we have an external transition function (δext) for the continuous model.

The discrete model is initially in the total state (sdk, edk), this means it is in the state sdk

for the time edk. sd is the tuple (xdk, tk). In this state, the discrete simulator performs the

following actions:

- send the data and the value of its next time stamp (this action is expressed by

!(DataToCSI, ta(sdk))

- switch the simulation context to the continuous model (this action is expressed

by flag = 0).

52

Table 3.2. Operational semantics for the C/D rollback-based synchronization model

Rule
- Arrows in
Figure 2.4

- Description

int dk a dk

d(k 1) int dk

(s) !(DataToCSI ,t (s)); flag: 0

dk dk d(k 1) d (k 1) a dk

synch 1 flag 1 back 1 s (s)

(s ,e) (s ,0) (s ,t (s))
δ

δ+

=

+ +

= ∧ = ∧ = ∧ =

→ →

- Arrow 1 in Figure
2.4(a) and 2.4(b)
- Discrete time

advance

a dk

k ext k

?(DataFromCSI ,t (s));synch: 0

k k

synch 1 flag 0 q (q)

q q

δ
=

= ∧ = ∧ =

→

- Arrow 2 in Figure
2.4(a) and (b)

- Context switch
discrete to cont.

int

k 1 int k

! DataToDSI ; flag: 1

k k 1 k 1

synch 0 flag 0 back 1 statevent(t) q (q)

q q q
δ

δ+

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→ →

- Arrows 3 and 4
Figure 2.4(a)

-Cont. time advance
and context switch

cont. to discrete
when no state event

d (k 1)

d (k 1) ext d (k 1)

? DataFromCSI ; (s);synch: 1

d (k 1) a dk d (k 1)

synch 0 flag 1 back 1 statevent s (s)

(s ,t (s)) (s ,0)
λ

δ
+

+ +

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→

- Arrow 4 receiving
end DSI fig. 2.4(a)
- Context switch
cont. to discrete

when no state event

int k se

(k 1) int k

(q) ! DataToDSI ;! t ; flag: 1

k (k 1) (k 1)

synch 0 flag 0 back 1 statevent q (q)

q q q
δ

δ+

=

+ +

= ∧ = ∧ = ∧ ∧ =

→ →

- Arrow 3 and 4
Figure 2.4(b)

- Cont. time advance
and context switch

cont. to discrete
when state event

se d (k 1)

d(k 1) ext d (k 1),

? DataFromCSI ;?t ; (s);synch: 1;back: 0

d(k 1) d (k 1) d(k 1)

synch 0 flag 1 back 1 statevent s (s t)

(s ,e) (s ,0)
λ

δ
+

+ +

= =

+ + +

= ∧ = ∧ = ∧ ∧ =

→

- Arrow 4 receiving
end DSI fig. 2.4(b)
- Context switch
cont. to discrete
when state event

)e,s()e,s(

)s(s0back1flag1synch

dkdk

1:back);s(

)1k(d)1k(d

)1k(dintdk

)1k(dint  →→→→

====∧∧∧∧====∧∧∧∧====∧∧∧∧====
====

++++++++

++++

++++δδδδ

δδδδ

- Arrow 5 Fig. 2.4(b)
- Rollback in the
discrete domain

int dk a se

se int dk

(s) !(DataFromBus,t (s)); flag: 0

dk se se d(k 1) a se

synch 1 flag 1 back 1 s (s)

(s ,t) (s ,0) (s ,t (s))
δ

δ
=

+

= ∧ = ∧ = ∧ =

→ →

- Arrow 6 and 7
Figure 2.4 (b)
- Discrete time

advance when state
event

53

3.2.3 Distribution of the Synchronization Functionality to the Co-

Simulation Interfaces

The second step of the methodology consists in the distribution of the synchronization

functionality to the simulation interfaces. The synchronization functionality was

presented in Section 3.1.3. Only the discrete domain interface changes with the

synchronization model. This sub-section will present the two discrete simulation

interfaces and the continuous domain interface. Before giving the distribution of the

synchronization functionality in the co-simulation interfaces we present, for a better

understanding of the notations used further, the global formal execution model.

The continuous/discrete global formal model

The global model proposed is formed by four sub-models (processes): the continuous

domain simulator (Cont), the continuous simulation interface (CSI), the discrete domain

simulator (Disc) and the discrete simulation interface (DSI).

Figure 3.7 shows the global formal model including the continuous domain and the

discrete domain simulators and their interaction. The transitions show the

synchronizations between the simulators and interfaces as well as the synchronization

between the interfaces.

Figure 3.7. The global formal simulation model

54

The initial location for the global formal model is the discrete simulator; however, the

continuous simulator is the first that advances in time. For a better understanding of the

behavior of the simulation interfaces we used the following name conventions:

DataFromDisc - Data sent by the discrete simulator (Disc) to the discrete simulation

interface (DSI)

DataToDisc – Data sent by DSI to Disc

DataFromCont - Data sent by the continuous simulator (Cont) to the continuous

simulation interface (CSI)

DataToCont - Data sent by CSI to Cont

DataToCSI – Data sent by the discrete simulation interface (DSI) to the continuous

simulation interface (CSI)

DataFromDSI – Data received by CSI from DSI

One can observe that DataToCSI and DataFromDSI are the same but for an ease in

understanding the rules that will be presented in the following sections we will use both

notations: DataToCSI for the representation from the discrete simulation interface point

of view and DataFromDSI for the representation from the continuous simulator point of

view.

DataToDSI – Data sent by CSI to DSI

DataFromCSI – Data received by DSI from CSI

In this case we make the same comment – DataToDSI and DataFromCSI are the same

but for the reason presented above we will use both notations.

The discrete domain simulation interface for the canonical

synchronization model

This section presents the behavior and the operational semantics of the Discrete

Simulation Interfaces (DSI). The behavior of the discrete domain interface can be

described by a few processing steps detailed in Figure 3.8.

The interface is in charge of:

- exchanging data between the simulators (send/receive),

55

- sending the time stamps of the next events,

- considering the state events and

- the context switch to the continuous interface.

Figure 3.8. Flowchart for the discrete domain interface for the canonical synchronization

model

More detailed, after starting, the tasks of the interface are:

- get data from the discrete simulator. This data is sent to the co-simulation bus

- detect the end of discrete simulation cycle. The time of the next event is sent to

the co-simulation bus.

- wait for event from the co-simulation bus. If a state event was generated, the

interface gets the time of the state event and the data from the co-simulation bus

and sends them to the discrete simulator. If no state event was generated the

interface sends to the discrete simulator, only the data from the continuous

interface. Only now the time in the discrete simulator advances to the next

event/state event

56

- wait for data the continuous simulator - the cycle restarts.

The semantics was defined using DEVS formalism. Table 3.3 presents a set of rules that

show the transition between states. The first rule covers arrow 1 in Figure 2.3(a) and

Figure 2.3(b). The second and third rules correspond to arrows 3 (on the receiving part)

and 4 in Figure 2.3(a) respectively Figure 2.3(b).

Table 3.3. Operational semantics for the Discrete Simulation Interface (DSI) for the

canonical synchronization model

Rule

k 1 dk

dk ext dk

!(data ,t ((s))); flag : 0? DataFromDisc

dk dk dk d (k 1)

synch 1 flag 1 s (s ,0,x)
(1)

(s ,) (s ,0) ((s),t)

δ
+ =

+

= ∧ = ∧ =

∞ → →

dk ext dk

?data;synch: 1? Event ! DataToDisc

dk dk dk dk d(k 1) dk 1

synch 0 flag 1 stateevent s (s ,0,x)
(2)

(s ,e) (s ,0) (s ,0) (s ,e)

δ
=

+ +

= ∧ = ∧ ¬ ∧ =

→ → →

dk ext dk

?(data ,tse);synch: 1 !(DataToDisc,tse)? Event

dk dk dk dk se se

synch 0 flag 1 stateevent (s) ((s),0,x)
(3)

(s ,e) (s ,0) (s ,0) (s ,e)

δ
=

= ∧ = ∧ ∧ =

→ → →

In order to clarify, we detail here the first rule. The premises of this rule are: the synch

variable has value ‘1’, the flag variable has value ‘1’, and we have an external transition

function (δext) for the DSI.

This rule expresses the following actions of the discrete simulator interface:

- receiving data from the discrete model. This is an external transition (δext)

expressed by ?(DataFromDisc).

- sending data to the Continuous Simulator Interface (CSI) (!DataToCSI). The

data sent to the CSI is the output function λ(sdk) and it is possible, according

with DEVS formalism, only as a consequence of an internal transition (δint). In

our case the output is represented by !(data,td(k+1)(sdk). This transition

corresponds to arrow 1 in Figure 2.3(a) and 2.3(b).

57

- switching the simulation context from the discrete to the continuous domain

(action expressed by flag:=0).

All the other rules presented in this table follow the same format.

From these rules we can trace the state graph of the DSI for the canonical

synchronization model as shown in Figure 3.9. The dashed lines represent internal

transitions and the corresponding states and the plain lines represent external transitions

and the corresponding states.

Start

Data
Got

Wait

Event
GotState

Event

Wait

?DataFromCSI

?DataFromDisc !DataToCSI

?DataFromCSI
?EventTime

δext

δext

δext

δint

δext

δext

δint

Figure 3.9. State graph of the DSI for the canonical synchronization model represented

using DEVS

The discrete domain simulation interface for the rollback-based

synchronization model

The behavior of the discrete domain interface in the case of the rollback-based

synchronization model can be described by a few processing steps detailed in Figure

3.10.

The interface is in charge of:

- exchanging data between the simulators (send/receive),

- sending the time stamps of the next events,

- advancing the time to the next discrete event

- restoring the previous state if a state event was generated by the continuous

simulator

- considering the state events and

58

- the context switch to the continuous interface.

Figure 3.10. Flowchart for the discrete domain interface for the rollback-based

synchronization model

More detailed, after starting, these tasks are:

- get data from the discrete simulator. This data is sent to the co-simulation bus

- detect the end of discrete simulation cycle. The time of the next event is sent to

the co-simulation bus. Time advances to the next discrete event.

- wait for event from the co-simulation bus. If a state event was generated, the

interface gets the time of the state event and the data from the co-simulation bus

and sends them to the discrete simulator. The discrete simulator backtracks to

the previous stable state. If no state event was generated the interface sends to

the discrete simulator, only the data from the continuous interface.

- wait for data the continuous simulator - the cycle restarts.

Table 3.4 presents a set of rules that show the transition between states. Rule number 4

covers arrow 1 in both Figure 2.4(a) and 2.4(b). Rule 5 corresponds to the arrow 4 – no

59

state event- (on the receiving part) in Figure 2.4(a). Rules 6, 7 and 8 show the behavior

for the discrete simulator backtracking and advancing to the state event time tse (arrows

5, 6, 7 in Figure 2.4(b)).

Table 3.4. Operational semantics for the DSI for the rollback-based synchronization

model

Rule

a dk k

d (k 1) int dk

!(DataToCSI ,t (s ,t)); flag: 0? DataFromDisc

dk dk d (k 1) d(k 1) a dk

synch 1 flag 1 back 1 s (s)
(4)

(s ,e) (s ,0) ((s),t (s))

δ+

=

+ +

= ∧ = ∧ = ∧ =

→ →

d (k 1)

d (k 1) ext d (k 1)

? DataFromCSI ; (s);synch: 1

d (k 1) a dk d (k 1)

synch 0 flag 1 back 1 statevent s (s)
(5)

(s ,t (s)) (s ,0)
λ

δ
+

+ +

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→

se d (k 1)

d (k 1) ext d (k 1),

? DataToCSI ;?t ; (s);synch: 1;back : 0

d(k 1) d(k 1) d(k 1)

synch 0 flag 1 back 1 statevent s (s t)
(6)

(s ,e) (s ,0)
λ

δ
+

+ +

= =

+ + +

= ∧ = ∧ = ∧ ∧ =

→

int d (k 1)

dk int d(k 1)

(s);back: 1

d(k 1) d(k 1) dk dk

synch 1 flag 1 back 0 statevent s (s)
(7)

(s ,e) (s ,e)
δ

δ
+

+

=

+ +

= ∧ = ∧ = ∧ ∧ =

→

int dk a dse

se int dk

(s) !(DataToCSI ,t (s)); flag: 0

dk se dse d(k 1) a se

synch 1 flag 1 back 1 statevent s (s)
(8)

(s ,t) (s ,0) (s' ,t (s))
δ

δ
=

+

= ∧ = ∧ = ∧ ∧ =

→ →

In order to clarify, we detail here the first rule. The premises of this rule are: the synch

variable has value ‘1’, the flag variable has value ‘1’, the back variable has also value

‘1’and we have an external transition function (δext) for the DSI. These variables insure

the correct transitions for the simulator during the context switch. For example if there

is no state event the next transition in the discrete domain is from time tk+1 to time tk+2

(the variables synch, flag and back have all value ‘1’). If the continuous simulator

generates a state event the next transition in the discrete domain is from time tk+1 to time

tk (the arrow 5 in the Figure 2.4) and variables synch and flag have the value ‘1’ while

the variable back has the value ‘0’. This rule expresses the following actions of the

discrete simulator interface:

60

- receiving data from the discrete model. This is an external transition (δext)

expressed by ?(DataFromDisc).

- sending data to the Continuous Simulator Interface (CSI) (!DataToCSI). The

data sent to the CSI is the output function λ(sdk) and it is possible, according

with DEVS formalism, only as a consequence of an internal transition (δint).

- switching the simulation context from the discrete to the continuous domain

(action expressed by flag:=0).

All the other rules presented in this table follow the same format.

From these rules we can trace the state graph of the DSI for the canonical

synchronization model as shown in Figure 3.11. The dashed lines represent internal

transitions and the corresponding states and the plain lines represent external transitions

and the corresponding states.

Figure 3.11. State graph of the DSI for the rollback-based synchronization model

represented using DEVS

The continuous domain simulation interface

The behavior of the continuous domain interface can also be described by a few

processing steps detailed in Figure 3.12.

This interface handles:

- exchanging data between the simulators (send/receive),

- sending the time stamps of the next events,

61

- the indication (to the discrete interface) of the occurrence of a state event, and

- the context switch to the discrete interface.

More detailed, after starting, the tasks of the continuous domain simulation interface

are:

- get data and time of next discrete event from the co-simulation bus. This data is

sent to the continuous simulator

- get data from the continuous simulator. If a state event was generated by the

continuous simulator, the interface sends the time of the state event and the data

to the co-simulation bus. If no state event is generated, the continuous interface

sends only data to the co-simulation bus.

- wait for data/time from the discrete simulator; the cycle restarts.

Figure 3.12. Flowchart for the continuous domain interface

62

The operational semantics for the CSI is given by the set of rules presented in Table 3.5.

In these rules, the data notation refers to the data exchanged between the DSI and the

discrete simulator.

Table 3.5. Operational semantics for the Continuous Simulation Interface (CSI)

From these rules we can trace the state graph of the CSI as shown in Figure 3.13

Figure 3.13. State graph of the CSI represented using DEVS

3.2.4 Formalization and Verification of the Co-Simulation Interfaces

Behavior

In [49] the authors demonstrate the equivalence between a DEVS model and the timed

automata. The timed-automata model completes the DEVS graph with the addition of

Rule

d (k 1) a dk

k ext k

?(data ,t);synch: 0 !(DataToCont ,t (s))

k k k

synch 1 flag 1 q (q),0,x)
(9)

q q q

δ
+ =

= ∧ = ∧ =

→ →

k 1 int k

?(DataFromCont) !(data); flag: 1

k k (k 1)

synch 0 flag 0 stateevent q (q)
(10)

q q q

δ+

=

+

= ∧ = ∧ ¬ ∧ =

→ →

se

k 1 int k

!(data ,t); flag : 1?(DataFromCont)

k k se

synch 0 flag 0 stateevent q (q)
(11)

q q q

δ+
=

= ∧ = ∧ ∧ =

→ →

63

the timing evolution notions. In this work, both models of synchronization were

formalized and verified. The continuous domain simulation interface is the same for

both models. This sections present the formal representation for each discrete interface

as well as for the continuous interface.

The formalization of the discrete domain simulation interface for the

canonical synchronization

Figure 3.14 shows the formal model for the discrete domain interface, using timed

automata. The model has only one initial location (marked in Figure 3.14 by a double

circle) Start.

Figure 3.14. The DSI for the canonical synchronization model represented as a timed

automaton

The discrete interface will change location from Start to NextTimeGot following the

transition DataFromDisc?
Start NextTimeGot→ . This is an external transition realized in zero

time and it is triggered by receiving the data (that is also synchronization between the

discrete simulator and the interface) from the discrete simulator (DataFromDisc?).

Here the interface receives the data from the discrete simulator and the time of the next

event in the discrete domain.

The location changes to WaitEvent following the transition:

64

DataToCSI!, NextTime cycle, cycle:int[0,period]NextTimeGot WaitEvent=→

In order to change the location, the continuous interface sends the time of the next event

(occurred/scheduled event) in discrete (the synchronization DataToCSI!) to the

discrete interface. The variable NextTime is the time of the next event in the discrete

domain. This variable takes, in this mode, the value cycle. The theory normally

assumes equidistant sampling intervals. This assumption is not usually achieved in

practice. For an accurate simulation we assume that cycle takes random values in an

interval defined here as [0, period]. In WaitEvent location, the context is switched from

the discrete to the continuous simulator.

When the context is switched back to the discrete simulator, the location is changed to

EventGot following the synchronization transition: EventGotWaitEvent
Event? → .

During this transition the discrete interface receives from the continuous interface the

synchronization Event?. In this location the occurrence of a state event in the

continuous domain is considered. EventGot is an urgent location (as defined in section

3.2.1). This will not allow the discrete model to miss a state event generated by the

continuous model. Two cases are possible:

 - When no state event was generated by the continuous domain, the location changes

from EventGot to NoStEv. The transition StateEvent 0
EventGot NoStEv

==→ is annotated

in this case only with the guard StateEvent==0.

 - When a state event was generated by the continuous domain the location changes

from EventGot to StEvDetect following the transition:

 StEvDetectEventGot
StEvTime NextTime,StateEvent

 →
= .

This transition is annotated with a guard (StateEvent) and the update of the

NextTime in the discrete domain as the time when the state event occurred in the

continuous domain StEvTime (for a rigorous synchronization, the discrete domain

has to consume this event and stop at the time when it was generated by the continuous

domain interface). This is the time of the next event that is going to be sent to the

65

continuous simulator. From both locations StEvDetect and NoStEv, the system can reach

the next location: TimeOfStEvDisc. In both cases the model performs synchronization

(DataFromCSI?). At this point the discrete interface will synchronize and send data

to the discrete simulator (DataToDisc!) and changes the location to

WaitDataFromCont. The next location is Start, the discrete time variables is initialized

on this channel (td=NextTime) and the cycle restarts.

The formalization of the discrete domain simulation interface for the

rollback-based synchronization

Figure 3.15 shows the formal model (using timed automata) for the discrete domain

interface. The model has only one initial location (a double circle in Figure 3.15) Start.

The discrete interface will change location from Start to NextTimeGot following the

transition tNextTimeGoStart
sc?DataFromDi
 → . This is an external transition realized with

zero time and it is triggered by the receiving of the data (that is also synchronization

between the discrete simulator and the interface) from the discrete simulator

(DataFromDisc?). Here the interface receives the data from discrete simulator and

the time of the current event in the discrete domain.

U

U U

U
DataToDisc !

DataFromCSI? DataFromCSI?

Start

NextTimeGot

WaitEvent EventGot

NoStEv StEvDetect

TimeOfStEvDiscStateRestoration

WaitDataFromCont

td =NextTime td =StEvTime

StateEvent StateEvent ==0

Event ?

DataFromDisc ?

DataToCSI!

cycle : int[0 , period]
NextTime = cycle

tdn = NextTime

Figure 3.15. The DSI for the rollback-based synchronization model represented as a

timed automaton

66

The location changes then to WaitEvent. The discrete interface sends to the continuous

interface the time of the current event (the synchronization DataToCSI!). The

variable NextTime represents the time of the events in the discrete domain. This

variable takes the value cycle. This values is then assigned to the variable tdn that

represents the time stamp of the event. The theory normally assumes equidistant

sampling intervals. This assumption is not usually achieved in practice. For an accurate

simulation we assume that cycle takes random values in an interval defined here as [0,

period]. In WaitEvent location, the context is switched from the discrete to the

continuous simulator. When the context is switched back to the discrete simulator, the

location is changed to EventGot following the synchronization transition:

EventGotWaitEvent
Event? → . During this transition the discrete interface receives from the

continuous interface the synchronization Event?. In this location the occurrence of a

state event in the continuous domain is considered. EventGot is an urgent location. This

will not allow the discrete model to miss a state event generated by the continuous

model. Two cases are possible:

- When no state event was generated by the continuous domain, the location changes

from EventGot to NoStEv. The transition NoStEvEventGot
0 StateEvent

 →
== is

annotated in this case only with the guard StateEvent==0. This state changes to

TimeOfStEvDisc (that is an urgent location) following the transition

 DiscTimeOfStEvNoStEv
DataToBus? →→→→ . This is an external transition realized with

zero time and it is triggered by the receiving of the data (that is also synchronization

between the discrete and the continuous interfaces) from the continuous interface

(DataFromCSI?). During this transition the data from continuous discrete simulator.

The system will immediately change the state to WaitDataFromCont while updating the

time in discrete with the time stamp of the current event (td=NextTime).

- When a state event was generated by the continuous domain the location changes from

EventGot to StEvDetect following the transition: StEvDetectEventGot
 StateEvent →→→→ . This

67

transition is annotated with a guard (StateEvent). This state changes to

StateRestoration following the transition DataFromCSI?
StEvDetect StateRestoration→ . This is also

an external transition realized with zero time. During this transition only the data is sent

to the discrete simulator. The system will immediately change the state to

WaitDataFromCont while updating the time in discrete with the time stamp of the state

event (td=StEvTime).

From WaitDataFromCont state the location changes to Start. The discrete interface

sends to the discrete simulator the data and the time of the events (state event or discrete

event) and is represented here by the synchronization DataToDisc! and the cycle

restarts.

The formalization of the continuous domain simulation interface

Figure 3.16 shows the formal model (using timed automata) for the continuous domain

interface. The model also has only one initial location (marked in Figure 3.16 by a

double circle) Start.

Figure 3.16. The CSI represented as a timed automaton

68

The continuous interface will leave the initial location Start following the transition:

DataFromDSI?Start ReceiveDataFromBus→ . This is also an external transition realized

with zero time and it is triggered by the reception of the data from the discrete interface

(DataFromDSI?) that is also the first synchronization point between the discrete

interface and the continuous interface. The interface receives the data from the discrete

simulator and the time of the next event in the discrete model. From the

ReceiveDataFromBus location the process moves to the next location SendDataToCont

following the transition

The value NextTime, the time of the next event (occurred/scheduled event) in the

discrete simulator is assigned to tcn, the next time in the continuous simulator. In our

model, the synchronization on this transition is between CSI and Cont (where Cont is

the continuous domain simulator), the interface sends data received from DSI and the

time of the next event in the discrete domain to the simulator.

The system changes the location from SendDataToCont to ReceiveDataFromCont

following the synchronization transition:

DataFromCont?
SendDataToCont ReceiveDataFromCont.   → During this

transition the continuous interface receives data from the continuous simulator and, if a

state event occurred, the time of the state event. In the ReceiveDataFromCont location,

the continuous interface evaluates if a state event was generated. Two cases are

possible:

 - When no state event is generated, the location changes from ReceiveDataFromCont to

TimeOfStEv following the

transition Event!StateEvent 0
ReceiveDataFromCont TimeOfStEv

=→ . The transition is

annotated in this case by the synchronization Event! and with the update StateEvent=0.

 - When a state event is generated, the location changes from ReceiveDataFromCont to

StEvDetect following the transition:

 Cont SendDataToR NextTimetcn
 , ! DataToCont          →  = FromBus eceiveData

69

 StEvDetectaFromContReceiveDat
 period]int[0,:tse tcn,:tcn)?tsetseStEvTime1,StateEvent Event!

 →
<== (

This transition is annotated with a synchronization (Event!) and three variable

updates: StateEvent=1 (for the detection of a state event),

StEvTime=(tse<tcn)? tse:tcn, tse:int[0,period] (for the time of the

state event that occurs during the time interval [0,period]; this time will be sent to the

discrete simulator). StEvDetect is an urgent location. The location StEvDetect changes to

TimeOfStEv following the transition TimeOfStEvStEvDetect
StEvTimetcn

 →
= .

At this point there is no synchronization, only an update of the time in the continuous

domain having assigned the time of the state event StEvTime: tcn=StEvTime.

TimeOfStEv location is common for both cases, StateEvent=0 or StateEvent=1.

This location changes to WaitDataFromDisc. The system performs synchronization

(DataToDSI!) between the continuous interface and the continuous simulator. The

next location is Start, the continuous time variables is initialized on this channel

(tc=tcn) and the cycle restarts.

Formal model simulation

The UPPAAL tool allows the validation of the system’s expected behavior regarding

functionality: synchronization, conflicts, and communication. We simulated all the

possible dynamic executions of our model. Figure 3.17 shows a screenshot of the

simulator.

We observe that the left panel is the simulation control window. It highlights the

enabled transition as well as the symbolic traces. The middle panel shows the variables.

It displays the values of the data and clock variables in the current location or transition

selected in the trace of the simulation control panel (the symbolic traces). The right

panel allows the visualization of the message sequence chart (also known as simulator).

The vertical lines in the simulator window in Figure 3.17 represent the transitions

between the locations while the horizontal lines are the synchronization points. In this

figure the communication between the interfaces as well as the communication between

70

the simulators and the domain specific interfaces are represented by the same horizontal

lines.

Figure 3.17. Formal model simulation screen capture

As shown here, the simulation was stopped by the user after the detection of a state

event in the continuous domain. The state event was indicated to the discrete simulator

and the time of the state event (StEvTime) is to be sent from the continuous to the

discrete interface. The variable panel shows that the variable StateEvent=1, the time of

the state event StEvTime=2, and the NextTime=10. The discrete simulator, instead of

advancing the time to 10, will advance only to StEvTime.

The verification of the execution model

The formal verification consists of checking properties of the system for a broad class of

inputs [44]. In our work we checked properties that fall into three classes:

- Safety properties - the system does not reach an undesirable configuration, (e.g.,

deadlock) [50].

71

- Liveness properties - some desired configuration will be visited eventually or

infinitely (e.g., expected response to an input) [50].

- Reachability properties – the system always has the possibility of reaching a

given situation (some particular situation can be reached) [44].

The properties verified in order to validate the synchronization models are described

below. Properties P0 to P4 were checked for both synchronization models. Property P5

was checked only for the canonical synchronization model because the backtracking in

the rollback based synchronization model.

P0 Absence of deadlock (safety property)

Deadlock exists among a set of processes if every process is waiting for an event that

can be caused only by another process in the set. In UPPAAL deadlock is expressed by

a formula using the keyword deadlock. A state is a deadlock state if there are no

outgoing action transitions either from the state itself or any of its delay successors [44].

A[] not deadlock

P1 State event detected by the discrete domain (liveness property)

The indication of a state event by the continuous interface and its detection by the

discrete interface is very important for continuous/discrete heterogeneous systems. We

defined a liveness property in order to check this behavior that is stated as follows:

Definition: A state event detected in the continuous domain leads to a state event

detected in the discrete.

IContinu.StEvDetect --> IDiscrete.StEvDetect

P2 No state event in discrete if no state event in continuous domain (safety property)

In order to avoid false responses from the discrete simulators, we defined a safety

property to verify if the system will “detect” a state event in the discrete simulator when

it was not generated (and indicated) by the continuous domain:

Definition: Invariantly a state event detected in the discrete domain imply state

event in the continuous.

A[](IDiscrete.StEvDetect imply StateEvent)

72

P3 Synchronization between the interfaces (reachability property)

One of the most important properties characterizing the interaction between the

continuous and the discrete domains is the communication and implicitly the

synchronization. This property verifies that after a cycle executed by each model, both

are at the same time stamp (and by consequence are synchronized)

Definition: Invariantly both processes in the Start location (initial state) imply the

time in the continuous domain tc is equal with the time in the discrete domain td.

A[]((IDiscrete.Start and IContinu.Start) imply (

IContinu.tc - IDiscrete.td <= period))

P4 Synchronization between the interfaces when a state event was detected (reachability

property)

This property verifies that there is synchronization between the interfaces even when a

state event is detected.

Definition: The discrete process in the StateRestoration location and the continuous

process in the StEvDetect location leads to the time in the continuous tc is equal with

the time in the discrete td.

(IDiscrete.StateRestoration and IContinu.StEvDetect) -->

(IContinu.tc- IDiscrete.td == 0)

P5 Causality principle (liveness property) – checked only for the canonical

synchronization model

The causality can be defined as a cause and effect relationship. The causality of two

events describes to what extent one event is caused by the other. The causality is already

verified by P3 for scheduled events. However, when a state event is generated by the

continuous domain, the discrete domain has to detect this event at the same precise time

(the cause precedes or equals the effect time) and not some other possible event existing

at a different time in the continuous domain.

Definition: Invariantly both processes in the StEvDetect location (detection of state

event) imply the time in the continuous tc is equal with the time in the discrete td.

73

A[]((IDiscrete.Start and IContinu.Start) imply (

IContinu.tc - IDiscrete.td == 0))

3.2.5 Definition of the Internal Architecture of the Co-Simulation

Interfaces

The overall continuous/discrete simulation interface is formally defined using the DEVS

formalism. As shown in Figure 3.5, the interface is described as a set of coupled models:

the continuous domain interface (CDI), the discrete domain interface (DDI) and the co-

simulation bus. Figure 3.18 shows the atomic modules composing the interface used in

our implementation.

Figure 3.18. The hierarchical representation of the generic architecture of the co-

simulation model with elements of the co-simulation library defined

The specific functionalities of the interfaces were presented in section 3.1.2. In terms of

internal architecture, the blocks assuring these features are:

For the Continuous Model Simulation Interface

- The State Event Indication and Time Sending block (SETS)

- The Signal Conversion and Data Exchange block (SCDE)

- The Event Detection block (DED)

74

- The Context Switch block (CS)

For the Discrete Model Simulation Interface

- The End of Discrete Simulation Cycle Detection and Time Sending block

(DDTS)

- The Data Exchange block (DE)

- The Event Detection block (DEC)

- The Context Switch block (CS)

These atomic modules are forming the co-simulation library and the co-simulation tools

enable their parameterization and their assembly in order to generate a new co-

simulation instance.

Figure 3.19 presents the atomic modules interconnection in each domain specific

simulation interface as well as the signals and interactions between the interfaces.

Figure 3.19. Internal architecture of the continuous/discrete simulation interface

The internal architecture is defined as a set of coupled modules that respect the coupled

modules DEVS formalism as presented in section 3.2.1:

- Ninterface=(X,Y, D, {Md|d ∈ D}, EIC,EOC,IC)

- X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd }

- Y = {(pd, vd)|pd ∈ OutPorts, vd ∈ Y pd }

- X pd, Y pd = values for input ports, respectively output ports

75

- InPorts = Pin,c ∪ Pin,d ∪ Pin,td ∪ Pin,tse ∪Pin,flag where

Pin,c – set of ports receiving data from the continuous model; Pin,d – set of ports

receiving data from the discrete model (via the co-simulation bus);

Ptd – port receiving the time stamp of the next discrete event

Pin,flag – port receiving the command for the context switch

- OutPorts = Pout,c ∪ Pout,d ∪ Pout,td ∪ Pout,tse∪Pout,flag

Pout,flag, Pout,c, Pout,d are defined similarly to Pin,flag, , Pin,c and Pin,d

- D = {“Continuous Domain Interface” (with associated model NinterfaceCDI), “Discrete

Domain Interface” (with associated model NinterfaceDDI), “co-simulation bus” (with

associated model Mcosim)}

- Md=(NinterfaceCDI, MinterfaceDDI, Mcosim)

- EIC = {((Ninterface, “inc,1”),(NinterfaceCDI, “inc,1”)); ...;

 ((Ninterface, “inc,n”),(NinterfaceCDI, “inc,n”));

 ((Ninterface, “ind,0”),(NinterfaceDDI, “ind,0”)); ...;

 ((Ninterface, “ind,m”),(NinterfaceDDI, “ind,m”))}

- EOC = {((NinterfaceCDI, “outc,1”),(Ninterface, “outc,1”)); ...;

 ((NinterfaceCDI,“ outc,p”),(Ninterface, “outc,p”));

 ((NinterfaceDDI,“outd,1”),(Ninterface, “outd,1”)); ...;

 ((NinterfaceDDI,“ outd,q”),(Ninterface, “outd,q”))}

- IC = {((NinterfaceCDI,opCDI),(Mcosim,ipcosim))| NinterfaceCDI,

 - Mcosim ∈ D, opCDI ∈OutPortsCDI, ipcosim ∈ InPortscosim} ∪

 {((NinterfaceDDI,opDDI),(Mcosim,ipcosim))| NinterfaceDDI,

 Mcosim ∈ D, opDDI ∈OutPortsDDI, ipcosim ∈ InPortscosim}∪

 {((Mcosim,opcosim),(NinterfaceCDI,ipCDI))| NinterfaceCDI,

 Mcosim ∈ D, opcosim ∈ OutPortscosim, ipCDI ∈InPortsCDI,} ∪

 {((Mcosim,opcosim),(NinterfaceDDI,ipDDI))| NinterfaceDDI,

 - Mcosim ∈ D, opcosim ∈ OutPortscosim, ipDDI ∈InPortsDDI,}

76

We show here the atomic module co-simulation bus that can be formally defined as

follows:

- X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd }

- Y = {(pd, vd)|pd ∈ OutPorts, vd ∈ Y pd }

- InPorts = Pin,c ∪ Pin,d ∪ Pin,td ∪ Pin,tse ∪Pin,flag

- OutPorts = Pout,c ∪ Pout,d ∪ Pout,td ∪ Pout,tse ∪Pout,flag

where Pin,c, Pin,d Pin,td, Pin,tse, Pin,flag Pout,c, Pout,d, Pout,td, Pout,tse, Pout,flag as well as X pd , Y pd

were previously defined.

States triplet S: (phase * σ * job) where:

 phase: (“passive”, “active”)

 σ : +ℜ0 advance time

 job: (“store”, “respond”)

S = {“passive”, “active”} * +ℜ0 * {“store”, “respond”}

δext ((“passive” * σ * job), e, x))=

(“passive”, σ –e, x), if x=0

(“active”, σ –e, job), if x!=0

δint (s)= (“active”, σ, job)

λ (“active”, σ, job) = {“store”, “respond” }

ta(phase, σ, job) = σ

The architecture of the discrete domain interface and the continuous domain interface

are also formally defined as a set of coupled modules. Formal descriptions for DDI and

CDI respect the coupled module DEVS formalism. Each element of the structure

follows the concepts presented in Section 3.2.1 and that were applied for the overall

continuous/discrete simulation interface.

77

3.2.6 The Analysis of the Simulation Tools for the Integration in the

Co-Simulation Framework

The previous steps that describe the gradual formal definition of the simulation

interfaces and the required library elements are independent of the different simulation

tools and specification languages used generally for the specification/execution of the

continuous and discrete sub-systems. After the analysis of the existing tools we found

that Simulink® is an illustrative example of a continuous simulator enabling the control

functionalities that were presented in Section 3.1.5. These functionalities can be added

in generic library blocks and a given Simulink® model may be prepared for the co-

simulation by parameterization and addition of these blocks.

Several discrete simulators present the characteristics detailed in Section 3.1.5. SystemC

is an illustrative example. Since it is open source, SystemC enables the addition of the

presented functionalities in an efficient way – the scheduler can be modified and

adapted for co-simulation. In this way, the co-simulation overhead may be minimized.

However, the addition of simulation interfaces is more difficult than in Simulink®

because the specifications in SystemC are textual and a code generator is required in

order to facilitate the addition of simulation interfaces. The automatic generation of the

co-simulation interfaces is very suitable, since their design is time consuming and an

important source of errors. The strategy currently used is based on the configuration of

the components and their assembly. These components are selected from a co-

simulation library.

3.2.7 The Implementation of the Library Elements Specific to

Different Simulation Tools

The implementation for the validation of continuous/discrete systems was realized using

SystemC for the discrete simulation models and Simulink® for the continuous

simulation models.

78

For Simulink®, the interfaces are functional blocks programmed in C++ using S-

Functions [16]. These blocks are manipulated like all other components of the

Simulink® library. They contain input/output ports compatible with all model ports that

can be connected directly using Simulink® signals. The user starts by dragging the

interfaces from the interface components library into the model’s window, then

parameterizes them, and finally connects them to the inputs and the outputs of his

model.

For SystemC, in order to increase the simulation performance, part of the

synchronization functionality has been implemented at the scheduler’s level, which is a

part of the state event management and the end of the discrete cycle detection (detects

that there are no more delta cycles at the current time). For the generation of the co-

simulation interfaces for SystemC, the implementation of a code generator was

necessary. This script has as input user-defined parameters such as sampling periods,

number and type of ports, and synchronization ports.

3.3 Conclusion

This chapter presented a generic methodology for the design of efficient

continuous/discrete co-simulation tools. The methodology can be divided into two main

stages: (1) a generic stage, defining simulation interfaces functionality in a conceptual

framework when formal methods for the specification and validation are used, and (2) a

stage that provides the implementation of the rigorously defined functionality. Given the

importance of the co-simulation interfaces, the methodology concentrates on the co-

simulation interfaces, their behavior, as well as two synchronization models that are

assured by the interfaces.

The definition of the library elements and the internal architecture of the co-simulation

interfaces step represents the foundation for the generation of the co-simulation library

and implicitly for the co-simulation interfaces generation. The definition of the

operational semantics, and the distribution of the synchronization functionality as well

79

as their behavior play an important role at the output flow with the behavior of the co-

simulation interfaces and the synchronization model. The analysis of the simulation

tools for the integration in the co-simulation framework helped choosing the tools that

were used for the modeling of the continuous and the discrete simulators while the

“implementation of the library elements specific to different simulation tools”

constitutes the final implementation of the libraries.

80

CHAPTER 4. APPLICATION AND EXPERIMENTAL RESULTS

This chapter illustrates the application of the proposed methodology for the design of a

co-simulation tool called CODIS2. The validation of a real continuous/discrete system, a

glycemia-level regulator using CODIS is also proposed.

4.1 CODIS Framework

CODIS is a co-simulation tool designed in our laboratory using the generic

methodology proposed in Chapter 3 ([51], [52]). This tool allows continuous/discrete

simulation. Simulink® [16] is used for the modeling of the continuous execution model

and SystemC [8] for the modeling of the discrete execution model. The co-simulation

interfaces that are specific for each domain are automatically generated by selecting

components, from a co-simulation library. The inputs in the flow are the continuous

model in Simulink® and the discrete model in SystemC which are schematic and textual

models, respectively. The output of the flow is the global simulation model (co-

simulation model) instance.

For Simulink®, the interfaces can be parameterized starting with their dialog box.

Figure 4.1 shows the design flow for the continuous domain model, including the

continuous co-simulation interfaces. The user starts by dragging the interfaces from the

interface components library into the model’s window, then parameterizes them, and

finally connects them to the inputs and the outputs of the model. Before the simulation,

the functionalities of these blocks are loaded by Simulink® from the .dll libraries. The

parameters of the interfaces are the number of input and respectively output ports, their

type, and the number of state events.

2 This work was realized in collaboration with Ph. D Faouzi Bouchhima from Ecole Polytechnique de

Montreal

81

Simulink input specification

Simulink Specification with

co-simulation interfaces

Co-Simulation Library

Figure 4.1. Design flow for continuous models

For SystemC, the blocks forming the library are state event management blocks and

communication blocks. The interfaces are automatically generated by a script generator

that has as input the user-defined parameters. The interface parameters are: the names,

the number and the data type of the discrete model inputs ports, and the sampling

periods. The tool also generates the function sc_main (or modifies the existing sc_main)

that connects the interfaces to the user model. The model is compiled and the link editor

calls the library from SystemC and a static library. More details on CODIS can be found

in annex 2 ([51], [52]).

The CODIS framework was used to implement a glycemia level regulator that is

detailed in the following sections.

82

4.2 Validation of a Continuous/Discrete System, the

Glycemia Level Regulator

The glycemia level regulator is a system enabling a more convenient alternative to the

classical therapy for type one diabetes. Type one diabetes, also known as diabetes

mellitus (or insulin-dependent) is a permanent condition that takes place when the

body’s immune system attacks the beta cells that produce insulin in the pancreas and

destroy them. The pancreas cannot produce insulin anymore and by consequence the

cells cannot use the glucose; a glucose excess builds in the blood. The conventional

therapy consists in injections that do not replace the pancreas. A long time supply

injection does not answer anymore to the patients needs that can change during the day

(because of the alimentation or different effort levels). A new technique is insulin

therapy by infusion when a pump infuses insulin or glucose to the patient based on real

time values of his glycemia. This application consists in the simulation of a glycemia

regulator.

The glycemia system includes two sub-systems, a discrete sub-system, the Control sub-

system, for the injection control and a continuous sub-system, the Injection sub-system,

for the insulin or glucose injections and the patient model and the glucose assimilation

in the blood (as shown in Figure 4.2).

The co-simulation interfaces perform models’ adaptation, provide the communication

adaptation and the synchronization to accommodate the continuous and the discrete

domain. They were generated with respect to the semantics presented in Chapter 2,

section 2.2.1, the canonical synchronization model.

83

Control sub -
system

(Discrete model)

Injection sub - system (Continuous model)

Insulin
Injection

Glucose
Injection

Patient Glucose
pump

Insulin
pump

External influence

Discrete Simulation
Interface

Continuous Simulation Interface

State event - hypoglicemia

State event - normal level glycemia reached

Control signal

data

Model SystemC

Model Simulink

Figure 4.2. The glycemia level regulator system

The patient glycemia level (that is the level of glucose in the blood) is read and

compared with the normal level in the “Injection sub-system” and the result is sent to

the “Control sub-system”. Depending on the value the “Control sub-system” activates

either the insulin or the glucose pump. If the level of the glycemia drops under 60mg/dl,

this corresponds to the state of hypoglycemia, and the glucose pump will be activated

immediately. In the case of this application, two types of state events are generated:

- the state events generated when a normal level of glycemia is reached (120 mg/dl).

- the state events generated when the glycemia drops under a reference value (60 mg/dl)

- hypoglycemia.

Figure 4.3 and Figure 4.4 show the state graph of the Control sub-system and the

Injection sub-system, respectively, represented using DEVS. The internal and external

transitions illustrate the module’s evolution during the simulation.

84

Figure 4.3. State graph of the Control sub-system represented using DEVS

in
t

in
t

Figure 4.4. State graph of the Injection sub-system represented using DEVS

4.3 Implementation and Results

In the Injection sub-system we have two simulation interfaces for the communication

with the discrete sub-system (the Control sub-system), the glucose and the insulin

injection sub-modules, the patient model and the block in charge with the state events

detection. The state events in this case are generated when a normal level of glycemia is

reached or when the glycemia drops under a lower value (hypoglycemia). This module

was implemented using Simulink® [16].

85

The Control sub-system is formed by the two simulation interfaces and a control block

that controls if an injection is necessary or not. This module was implemented using

SystemC [8].

Figure 4.5(a) and 4.5(b) illustrate the evolution of the patient’s insulinemia (units of

insulin/dl) during 24 hours monitoring respectively the generation of a state event. The

state event is generated at the time 22.2481 when the patient’ glycemia reaches the

normal level (120mg/dl) (see Figure 4.5(b)). We observe from Figure 4.5(a) that the

insulin injection stops at the same time 22.2481, as a consequence of the state event

detection. Figure 4.6 shows the messages displayed by the SystemC simulator

signalizing the state event detection and the insulin injection.

22.2481

(a)

(b)

22.2481

(a)

(b)

Figure 4.5. Patient’s insulinemia (a) and state event generation by CSI (b)

86

Compared to previous work, a purely discrete control as opposed to a continuous control

offers not only a wider range of control features for the pumps but also a more accurate

response for events that take place during the injections (like a reference limit of

glycemia reached or a hypoglycemia alert followed by glucose injection).

Figure 4.6. State event detection by DSI

4.4 Conclusion

This chapter presented the application of the methodology detailed in Chapter 3. The

result of the methodology is a co-simulation framework that allows the modeling and

the validation of continuous/discrete heterogeneous systems – CODIS. This framework

was validated by implementing a glycemia level regulator. We presented here the results

of the co-simulation.

87

CONCLUSION AND PERSPECTIVES

This research is motivated by the current context in multi-domain embedded systems,

where several components from different domains including optical, electrical,

mechanical or biological are taken into consideration The unparalleled flexibility of

computation has been a key driver in the development of this wide range of products

across a broad and diverse spectrum of applications in many industries, but not limited

to Automotive, Aerospace, Health Care, Consumer Electronics, and others. These multi-

domain heterogeneous systems enable new applications and create new markets.

Continuous-time and discrete-event models are at the core of the design of multi-domain

systems.

In this last part of this document we present the summary of the thesis and the directions

for future research.

1. Summary of the Thesis

Chapter 1 presented a review of the existing works in the modeling and validation of

continuous/discrete heterogeneous systems. These works were classified in two

extensive categories: simulation-based and formal representation-based approaches. The

first category can also be divided into two separate classes:

- A homogeneous approach that consists of the use of only one language for the

global specification of the behavior of the system;

- A heterogeneous approach that consists of the use of different languages that are

specific for the different sub-systems domains, therefore, they conserve the

domain specific descriptions of the modules and the models are simulated in

parallel.

The formal representation-based category consists of the representation of the

heterogeneous system in a pragmatical mathematical language. The model’s validation

88

is realized by formal verification using different techniques such as theorem proving or

model checking.

Chapter 2 defined the global execution model of continuous/discrete heterogeneous

systems as well as the execution models for each simulator: the discrete execution

model and the continuous execution model. An execution model can be viewed as the

interpretation of a computation model. This chapter also details two synchronization

models that can be taken into consideration when co-simulating the C/D systems:

- Canonical synchronization model – when the continuous simulator advances

before the discrete simulator. In this case, if a state event is generated by the

continuous simulator, the need of rollback (and also supplementary resources) is

eliminated.

- Rollback-based synchronization model – when the discrete simulator advances

before the continuous simulator. In this case, if the continuous simulator

generates a state event, the discrete simulator will backtrack to the previous

known stable state (light rollback).

When an unpredictable event is generated by the continuous simulator, the discrete

simulator has to update the events in its events queue. This chapter also presents the

update events schema for both synchronization models.

Chapter 3 proposed a generic methodology for the development of C/D co-simulation

tools that is independent of the languages used to implement the two simulators (i.e.

Simulink® or Spice for the continuous simulator and SystemC, SystemVerilog, VHDL

for discrete simulator). The methodology is divided into two stages: a generic stage

where the model is gradually refined from its operational semantics (that gives a

pragmatic description) to the definition of the internal architecture of the co-simulation

interfaces and the library elements. The second stage is the implementation stage where

the simulation tools are analyzed, the library elements are implemented and the model is

validated. The methodology was demonstrated using DEVS formalism, timed automata

89

and UPPAAL for the generic stage and SystemC and Simulink® for the discrete,

respective continuous models for the implementation stage.

In Chapter 4 we presented the application of the methodology for the definition of a

framework for the modeling and simulation of C/D heterogeneous systems – CODIS.

This framework was used for several concrete applications such as: control systems,

continuous systems. In this thesis we present a glycemia regulator implemented using

SystemC and Simulink®. The results of the co-simulation are presented in Chapter 4.

A summary of the major contributions is listed below:

- The analysis of the execution models and the synchronization models for

continuous/discrete systems.

- The definition of a generic methodology for the efficient design of continuous/discrete

co-simulation tools. Before the implementation stage, the methodology suggests several

steps enabling the gradual formal definition of the simulation interfaces functionality

and internal architecture:

- The definition of the operational semantics for a continuous/discrete

synchronization model.

- The formal representation of the behavior of continuous/discrete co-simulation

interfaces, with respect to a synchronization model.

- The formal verification of the behavior of continuous/discrete interfaces.

- The description of the internal architecture of the continuous/discrete co-

simulation interfaces.

- The application of the methodology – the development of a co-simulation framework –

CODIS and the implementation of a glycemia level regulator. Parts of the methodology

were also used for the formalization, the modeling and the verification of components of

an Optical Network on Chip (ONoC). This work is detailed in annex 1.

90

2. Directions for Future Research

This thesis makes strides toward the development of a generic methodology for the

design of continuous/discrete heterogeneous systems co-simulation tools and opens new

directions important for the researchers that work in system level simulation. The

methodology proposed here allows for new developments in the automatic generation of

the co-simulation interfaces for continuous/discrete heterogeneous systems. A new

research direction opened by this work is the formal verification of the composition of

the elements of the library in order to create an interface. Another area that can be

covered is the analysis of the continuous and discrete models to be integrated in order to

verify their compatibility in terms of inputs, outputs, abstraction levels.

This work can be continued with modeling and simulation of C/D heterogeneous

systems at different levels of abstraction and the integration of the rollback-based

synchronization model in the co-simulation framework. New domain specific simulation

tools (such as SystemVerilog for the discrete domain) can be integrated in order to

validate the genericity of the methodology. Some work might also be conduct for

performances analysis and methodology optimization.

Another area in which the presented work can be used is ONoC modeling and

validation. The next step in this direction is the integration of the passive and the active

optical devices and IC in order to realize the global execution model of the ONoC.

Moreover, interconnects play a significant role for MPSoC design. Integrated optical

interconnects are interesting alternative to traditional interconnects because they

overcome current limitations like bandwidth, contention and latency. The access to

physical prototyping of ONoC is challenging therefore high-level modeling and

validation are mandatory. On a long term the methodology proposed here can be

adapted for the modeling and validation of MPSoC integrating ONoC.

91

REFERENCES

[1] International Technology Roadmap for Semiconductor Design (ITRS) [Online].

Available: http://public.itrs.net/.

[2] S. Romitti, C. Santoni, P. Francois, P. “A Design Methodology and a Prototyping

Tool Dedicated to Adaptive Interface Generation”, in Proceedings of the 3rd ERCIM

Workshop on "User Interfaces for All", Obernai, 1997.

[3] M. Keating, P., Bricaud, “Reuse methodology manual for system-on-a-chip

designs.” Kluwer Academic Publishers, Boston, 2002.

[4] Y. Monsef, Modelisation et simulation des systèmes complexes. Lavoisier tec et

doc, Paris, 1996.

[5] A. A. Jerraya, Conception de haut niveau des systèmes monopuces. Hermès Science

Publications, Paris, 2002.

[6] VHDL [Online], Available: http://www.vhdl.org/vhdl-200x/.

[7] Verilog [Online]. Available: http://www.verilog.com/IEEEVerilog.html.

[8] SystemC 2.0.1 Language Reference Manual Revision 1.0, 2003, [Online]

Available: http://www.SystemC.org.

[9] A. Doboli, R. Vemuri, “Behavioral modeling for high-level synthesis of analog and

mixed-signal systems from VHDL-AMS”, in IEEE Transactions On Computer Aided

Design of Integrated Circuits and Systems , vol.22, no. 11, Nov. 2003.

[10] IEEE Standard VHDL Analog and Mixed-Signal Extensions, IEEE Std 1076.1-

1999, 23 Dec. 1999.

[11] J.-J. Charlot, N. Milet-Lewis, T. Zimmer, H. Levi. “VHDL-AMS for mixed

technology and mixed signal, an overview”, in MED’01, Dubrovnik, Croatia, 27-29

June 2001.

92

[12] P. Frey, D. O'Riordan, “Verilog-AMS: Mixed-signal simulation and cross domain

connect modules”, in Proceedings of BMAS IEEE/ACM International Workshop, 2000.

[13] Verilog-AMS LRM version 2.3,[Online]. Available:

http://www.accellera.org/activities/verilog-ams/VAMS-LRM-2-3.pdf.

[14] A. Vachoux, C. Grimm, K. Einwich, “SystemC-AMS requirements, design

objectives and rationale”, Proceedings of the DATE (DATE’03), 2003.

[15] A. Vachoux, C. Grimm, K. Einwich, “Analog and mixed signal modeling with

SystemC-AMS”, Circuits and Systems, Proceedings of ISCAS'03, 2003.

[16] Matlab-Simulink, [Online]. Available http://www.mathworks.com.

[17] D.H. Patel, S. K. Shukla: “SystemC Kernel – Extensions for heterogeneous System

Modeling” Kluwer Academic Publishers, Boston. 2004.

[18] Ptolemy, University of California, Berkeley, [Online]. Available:

www.ptolemy.eecs.berkeley.edu/ ptolemyII/.

[19] T. Kurzweg, S. Levitan, P. Marchand, et al “Modeling an Simulating Optical

MEMS Using Chatoyant”, Design, Test, and Microfabrication of MEMS/MOEMS,

Paris, 1999.

[20] S. Levitan, J. Martinez, T. Kurzveg, P. Marchand, D. Chiarulli, “Multi technology

system-level simulation” Design Test Integration and Packaging of MEMS/MOEMS

(DTIP 2000), May 2000.

[21] G. Nicolescu, Y. Sungjoo, A. Bouchhima, A. A. Jerraya, “Validation in a

component-based design flow for multicore SoCs” in Proceedings of the 15th ISSS

(ISSS’02) Kyoto, Japan 2002.

[22] G. Nicolescu, S. Martinez, L. Kriaa, W. Youssef, S. Yoo, B. Charlot, A.A. Jerraya,

"Application of Multi-domain and Multi-language Cosimulation to an Optical MEM

Switch Design ", ASP-DAC 2002, Bangalore, India, January 2002.

93

[23] E. A. Lee, and H. Zheng, “Operational Semantics of Hybrid Systems” in Hybrid

Systems: Computation and Control: 8th International Workshop, HSCC, 2005.

[24] G. Bosman, “A survey of Co-design Ideas and Methodologies”, thesis report, 2003,

[Online] Available: http://www.guusbosman.nl/downloads/thesis20030225.pdf.

[25] E.A. Lee, and A.L. Sangiovanni-Vincentelli: “Comparing Models of Computation”,

In: Proceedings of the ICCAD’96, IEEE Computer Society, 1996.

[26] A. Jantsch, Modeling Embedded Systems and SoC’s – Concurrency and time in

Models of Computation, Morgan Kaufmann Publishers, San Francisco, 2004.

[27] A. Jantsch, and I. Sander, “Models of Computation and Languages for Embedded

System Design”, IEE Proc.-Comput. Digit. Tech., vol. 152, 2005.

[28] B. P. Zeigler, Theory of modeling and simulation, Wiley Interscience, 1976.

[29] B. P. Zeigler, H. Praehofer and T. G. Kim, Modeling and Simulation – Integrating

Discrete Event and Continuous Complex dynamic Systems, Academic Press, San Diego,

2000.

[30] M. D'Abreu and G. Wainer, “M/CD++ : modeling continuous systems using

Modelica and DEVS”, in Proc. of the IEEE Int. Symposium of MASCOTS’05, 2005, pp

229 – 238.

[31] Y. J. Kim, J. H. Kim, and T. G. Kim, “Heterogeneous simulation Framework using

DEVS-BUS”, in: Simulation, the Society for Modeling and Simulation International,

vol. 79, 2003, pp. 3-18.

[32] G. Wainer: “Modeling and Simulation of Complex Systems with Cell-DEVS”.

Winter Simulation Conference 2004, pp 49-60.

[33] J-S Bolduc, H. Vangheluwe “The modelling and simulation package PythonDEVS

for classical hierarchical” DEVS. MSDL technical report MSDL-TR-2001-01, McGill

University, June 2001.

94

[34] T. G. KIM, DEVSim++ User’s Manual, SMSLab, Dept. of EECS, KAIST, 1994,

[Online]. Available: http://smslab.kaist.ac.kr .

[35] V. Madisetti, J. Walrand, and D. Messerschmitt, “WOLF: A rollback algorithm for

optimistic distributed simulation systems” in: Proc of the 1988 Winter Simulation

Conference, 1988 pp. 296-305.

[36] T. H. Feng and E. A. Lee, “ Incremental checkpointing with application to

distributed discrete event simulation” in: Proc of the 2006 Winter Simulation

Conference,2006.

[37] J. Fleischmann et al. “Comparative Analysis of Periodic State Saving Techniques

in Time Warp Simulators”, in Parallel and Distributed Simulation, 1995.

[38] C.G. Cassandras, Discrete event systems: Modeling and performance analysis.

Richard Irwin, New York, 1993.

[39] SystemVerilog, [Online] Available: http://www.systemverilog.org/.

[40] G. K. Gupta, R. Sacks-Davis, P. E. Tischer, “A review of recent developments in

solving ODES”, in Proceedings of the CSUR, vol. 17, issue 1, 1985.

[41] SPICE, [Online]. Available: http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/.

[42] F.E. Cellier, “Combined Continuous/Discrete System Simulation Languages -

Usefulness, Experiences and Future Development”, Methodology in Systems Modeling

and Simulation, North-Holland, Amsterdam, 1979, pp.201-220.

[43] H. R. Ghasemi, “An effective VHDL-AMS simulation algorithm with event”,

International Conference on VLSI Design, 2005.

[44] F. Wang, ”Formal verification of times systems: a survey and perspective” , in

Proc. of the IEEE, vol. 92, 2004, pp 1283-1305.

[45] J-F. Monin, Understanding Formal Methods. Springer, 2003.

95

[46] R. Alur and D. Dill, “Automata for modeling real-time systems”, in Proc. 17-th Int.

Colloquium on Automata, Languages and Programming, vol. 443, 1990, pp. 322-335 .

[47] J. Bengtsson, and W. Yi, “Timed automata: Semantics, Algorithms and Tools”,

Uppsala University. Denmark,1996.

[48] G. Behrmann, A. David and K. Larsen, “A Tutorial on UPPAAL”, Real-Time

Systems Symposium, Miami, 2005.

[49] N. Giambiasi, J-L. Paillet, F. Chane, ”From timed automata to DEVS”, in Proc. of

the 2003 Winter Simulation Conference, 2003.

[50] S. Edwards, L. Lavagno, E. Lee and A.L. Sangiovanni-Vincentelli, “Design of

Embedded Systems: Formal Models, Validation, and Synthesis” in Proc. of the IEEE,

vol. 85, 1997, pp. 366-390.

[51] F. Bouchhima, G. Nicolescu, M. Aboulhamid and M. Abid. “Discrete–Continuous

Simulation Model for Accurate Validation in Component-Based Heterogeneous SoC

Design”, Rapid Systems prototyping, 2005, pp 181-187.

[52] F. Bouchhima, G. Nicolescu, M. Aboulhamid and M. Abid, “Generic discrete–

continuous simulation model for accurate validation in heterogeneous systems design”,

in Microelectronics Journal, vol. 38, 2007, pp 805-815.

[53] M. Brière, L. Gheorghe, G. Nicolescu, I. O’Connor, G. Wainer. “Towards the high

level design of optical networks on chip. Formalization of opto-electrical interfaces”, in

Proc. of the IEEE ICECS, Morocco, 2007.

[54] M. Briere, L. Carrel, T. Michalke, F. Mieyeville, I. O’Connor and F. Gaffiot.

“Design and behavioral modeling tools for optical network-on-chip”, in Proc. of the

DATE, 2004.

96

[55] M. Briere, E. Drouard, F. Mieyeville, D. Navarro, I. O’Connor and F. Gaffiot.:

Heterogeneous Modeling of an Optical Network-on-Chip with SystemC in Proc.of the

Rapid System Prototyping (RSP), 2005.

[56] L. Benini, G. Di Micheli, “Networks on chips: a new SoC paradigm”, Computer,

vol. 35, no.1, 2002, pp. 70-77.

[57] I. O’Connor, “Optical solutions for system-level interconnect”, in Proc. of the

International workshop on SLIP, Paris France, 2004.

[58] Celoxica available online at http://www.celoxica.com/methodology .

[59] A. Kazmierczak, et al., “Design, Simulation and Characterization of a Passive

Optical Add-Drop Filter in Silicon-On-Insulator Technology”, in IEEE Photonic Tech.

Lett., vol. 17, 2005, pp. 1447 – 1449.

[60] M. Kobrinsky, M. et al. “On-chip optical interconnects”, in Intel Technology

Journal, vol. 8, no. 2, 2004, pp. 129-142.

97

ANNEX 1 – COMPLEMENTARY RESULTS

OPTICAL NETWORK ON CHIP MODELING AND VALIDATION

This annex presents: the formalization of optical-electrical interfaces using DEVS3, the

formalization of basic elements of an optical network on chip using DEVS3 and the

modeling and the formal verification for the global validation of the behavior of a

passive optical network on chip using timed automata ([53], [54] and [55]).

1 Optical Networks on Chip

Many of the modern Systems-on-Chip integrate a high density of heterogeneous

components such as different processors, a wide range of hardware components, as well

as complex interconnects that use different communication protocols. On-chip physical

interconnections represent a limiting factor for performance and energy consumption.

Energy and device reliability impose small logic swings and power supplies. Moreover,

the growth of the number of components that are integrated on-chip increases the impact

of the deep sub-micron effects (ex. electrical noise due to crosstalk, electromagnetic

interference can produce data errors). By consequence, transmitting data on wires may

be in some cases unreliable and nondeterministic [56]. New interconnect challenges are

added when moving to 65nm and beyond: interconnect delay becomes larger than gate

delay and the interconnect area becomes much larger than the gate area [56]. Designers

also face deep sub-micron effects like voltage isolation and wave reflection. Optical

Networks on Chip (ONoC) are promising because of their scalability, simplicity and

low real estate (0.00425 mm2 for passive network) [57]. However, the access to physical

prototyping for multi-technology SoCs is a major challenge because of its significant

cost and the difficulty to influence standard processes. Modeling and simulation become

3 This work was realized in collaboration with Ph. D Mathieu Brière et Prof. Dr. Ian O’Connor, Ecole

Centrale de Lyon, France

98

necessary alternatives in the design space exploration for these systems. Today, in many

application designs the most costly task in terms of time and human resources is the

design verification. Formal methodologies emerge as a more structured verification

approach [1]. This implies that the design model is more thorough checked and more

cases are taken into consideration.

The methodology presented in Chapter 3 of this thesis can help the designer to achieve

the complex design of these systems, and thus reduce the design process.

The integrated optical communication system studied in this work, also called Optical

Network on Chip (ONoC) [57] is composed of three types of blocks: i) a transmitter

interface circuits (for the electro-optical conversion) ii) a passive integrated photonic

routing structure (named λ- router) and iii) a receiver interface circuit (for the opto-

electrical conversion).

Figure 4 presents an overview of this ONoC plugging initiators and targets (also called

cores). The ONoC is a heterogeneous structure that can be represented as a combination

of passive and active optical devices as well as mixed analog/digital integrated circuits.

Figure 4. ONoC overview (I=Initiator, T=Target)

99

2 Formalization of Optical-Electrical Interfaces

This section presents the DEVS formalism applied to optical-electrical interfaces. We

take into consideration only the functional conversion interfaces in order to prove the

DEVS efficiency for the optical formalism. This methodology can be then applied to

easily design more complex systems using DEVS coupled models.

2.1 Transmitter Architecture

Each SoC core (initiator and target) requires a transmitter block which enables the

electro-optical conversion (as shown in Figure 5). This block is mainly composed of a

laser to emit light at a given wavelength and optical power, and its driver for the

modulation and polarization.

 Driver electrical
current

Laser
light

to λ-router data

Figure 5. Optical transmitter architecture

Figure 6 shows the optical transmitter architecture with respect for the DEVS

formalism, including the internal and external events with the Is/Os.

Laser Modulation 1 im

Command Emission

h ν δ int
out 1 in 1 in 1 in 1

out 1 out 1
δ int X

δ ext
(data)

(wave)

Polarization

ip

in 2

out 2

Command

δ int

1
in 2 in 1

δ int X

δ ext
(select)

1 δ int

in 2

out 1

Y

Figure 6. Optical transmitter architecture with DEVS notations

100

Next equations give the formal description of the optical transmitter (electro-optical

conversion) using DEVS:

DEVSTX = (X, Y, S, δext, δint, λ, ta)

(6)

with :

inputs: InPorts = {‘data’, ‘select’}

input set: X = {(p,v)|p∈InPorts,v∈Xp} with Xp = {data_to_send}|{activation}

and,

outputs: OutPorts = {‘wave’}

output set: Y = {(p,v)|p∈OutPorts,v∈Yp} with Yp = wave_value∈{wavelength, power}

The states are: S = {‘idle’, ‘conversion’}

(7)

The internal events are:

δint(phase, σ, local_inport, local_value, inport, value):S→S

= (‘modulation’, σ, p, v, latency_mod)

if phase = ‘conversion’ and p = modulation_port and v = {data_to_send}

= (‘polarization’, σ, p, v, latency_pol)

if phase = ‘conversion’ and p = polarization_port and v = {active}

or if phase = ‘idle’ and p = polarization_port and v = {no_active}

= (‘emission’, σ, p, v, latency_laser)

if phase = ‘conversion’ and p = laser_port and v = wave_value (with power

proportional with the modulation current Im and the polarization current Ip of the laser

driver).

= (‘idle’, σ, p, v) else.

The external events are:

δext(phase, σ, e, x):Q×X→S

= (‘idle’, e, p, v)

if phase = ‘idle’ and p = activation and v = off

101

= (‘busy_active’, process_time, p, v)

if phase = ‘conversion’ and p = activation and v = on

= (‘busy_send’, process_time, p, v)

if phase = ‘conversion’ and p = data and v = data_to_send

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)}

The output functions are:

λ(phase, σ, local_inport, wave_value, wave):S→Y

= (out, wave_value)

if phase = ‘conversion’ and local_inport = laser_port

= (out, 0·exp(0))

if phase = ‘idle’

The state advancing time is:

ta(phase,σ):S→ℜ+
0,∞ = σ = latency | time_next_data

(8)

with latency = latency_mod | latency_pol | latency_laser

The transmitter’s behavior (as seen in (7)) is characterized by two states: idle (no

conversion) and conversion (data is sent through the interface). There are 4 internal

events: modulation (to modulate the laser with the data to convert), polarization (to

polarize the laser), light (for the light emission at a given optical power and wavelength)

and idle (no light emission); and 3 external events: idle, (no conversion) selection

(conversion activation) and data (data to convert). The state advancing time shown in

(8) is mainly composed of latencies extracted from physical design (IC) or datasheet

(laser).

2.2 Receiver Architecture

Similar to the transmitter block, each SoC core requires a receiver block which enables

the opto-electronic conversion (as shown Figure 7). This block is mainly composed of a

102

photodiode (conversion of flow of photons into photocurrent), a TransImpedance

Amplifier (TIA), a decision circuit (digital signal regeneration).

 electrical
current

TIA &
Comparator

Photodiode light

from λ-router data

Figure 7. Optical receiver architecture

Figure 8 shows an optical receiver architecture, including the internal and external

events with the Is/Os, with respect to the DEVS formalism.

TIA Photodiode 1 i

Amplifier Detection

h ν
in 1 out 1 in 1 in 1 out 1 out 1

δ int δ int X δ ext
(wave) (data)

Decision
circuit

ADC
out 1

V Y

Figure 8. Optical receiver architecture with DEVS notations

DEVSRX = (X, Y, S, δext, δint, λ, ta) (9)

with:

inputs: InPorts = {‘wave’}

input set: X = {(p,v)|p∈InPorts,v∈Xp} with Xp = wave_value∈{wavelength, power}

and,

output: OutPorts = {‘data’}

output set: Y = {(p,v)|p∈OutPorts,v∈Yp}

with Yp = {data_to_receive}

The states are: S = {‘idle’, ‘conversion’} (10)

The internal events are:

δint(phase, σ, local_inport, local_value, inport, value):S→S

103

= (‘detection’, σ, p, v, latancy_pdiode)

if phase = ‘conversion’ and p = pdiode_port and v = wave_value

= (‘amplifier’, σ, p, v, latency_TIA)

if phase = ‘conversion’ and p = TIA_port and v = photocurrent

= (‘ADC’, σ, p, v, latency_ADC)

if phase = ‘conversion’ and p = ADC_port and v = photocurrent·gain

= (‘idle’, σ, p, v) else.

The external events are:

δext(phase, σ, e, x):Q×X→S

= (‘idle’, e, p, v)

if phase = ‘idle’ and p = wave and v = 0·exp(0)

= (‘busy_receive’, process_time, p, v)

if phase = ‘conversion’ and p = wave and v = wave_value

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)}

The output functions are:

λ(phase, σ, local_inport):S→Y

= (out, data_to_receive)

if phase = ‘conversion’ and data_to_receive = bit_value and local_inport =

ADC_port

= (out, ‘X’) if phase = ‘idle’

The state advancing time is:

ta(phase,σ):S→ℜ+
0,∞ = σ = latency (11)

with latency = latency_pdiode | latency_TIA | latency_ADC

The two states (that characterize the receiver’s behavior) were taken into as shown in

(10): idle (there is no conversion) and conversion (data is detected through the

interface). However, the behavior of the receiver is easier than the receiver. There are 4

internal events: photoconversion (for the light conversion in photocurrent), amplify (for

the amplification of the the current and the conversion in voltage), CAN (for the analog-

104

to-digital conversion) and idle (no light to detect); and 2 external events: idle, (no

conversion) and data (light to convert). The state advancing time shown in (11) is

mainly composed of latencies extracted from physical design (IC) or datasheet

(photodiode).

2.3 Passive Photonic Devices

The λ - router is a passive optical network (as shown in Figure 9(a)) composed of 4-port

optical switches based on add-drop filters (as shown in Figure 9(b)) designed to route

data through SoC components ([53], [54], [55]). These add-drop filters operate in a

similar way to classical electronic switches. An optical filter is characterized by a

specific wavelength, called resonant wavelength (λi in the Figure 9) depending on filter

geometry and material. Figure 9(a) presents an example of a N × N λ-router architecture

(each grey square representing an add-drop filter) and a physical architecture example of

the filter is shown Figure 9(b). The add-drop is bidirectional and compact devices have

been demonstrated in CMOS compatible Silicon on Insulator (SOI) technology (Si/SiO2

structures accept 1.3-1.55 µm wavelength) [59].

λ1

λ1

λ1

λ2

λ2

λ2

λi

λi

λi

λN

λN

λN

I1

I2

I3

IN-1

IN

T1

T2

T3

TN-1

TN

Si

Micro-resonator

4-port optical
switch example

waveguide

λ-router

(a) (b)

Figure 9. N x N λ-router architecture (a), 4-port optical switch architecture example (b)

105

As illustrated in Figure 10, there are three possible switch states depending on the input

signal:

- Straight state 10(a) occurs when specific wavelengths, called resonant wavelengths (λi,

depending on micro-resonator geometry and material) are injected in the filter and are

routed through the micro-resonator.

- Diagonal state 10(b) occurs when other wavelengths (λj) are injected in the filter and

are not routed through the micro-resonator.

- Cumulative state 10(c) occurs when signals of both resonant and non-resonant

wavelengths (λi and λj) are injected into the filter using the WDM technique4 and are

either routed or not routed through the micro-resonator. Because of this property and the

fact that the four add-drop ports can be used simultaneously, a contention-free network

can be built.

- Possible exploitation of the optical switch is shown in 10(d). This example shows both

unidirectional and bidirectional behaviors (several wavelengths simultaneously injected

in opposite way).

Waveguide

Light signal trajectory

λi
 λ i

λ j

λj

λ i

λ i

λ

1

λ1

λ1

λ1 ,
 λ2

(a) Straight State . (b) Diagonal State .
λi

λ

1

λ i

i

λ

i

λ

i λ j

λ i ,

λ j

λ 1 ,

λ 2

 (c) Cumulative State. (d) Working Example .

 λ

Figure 10. Functional states of a 4-port optical switch

4 Wavelength Division Multiplexing. Several signals at different wavelengths can be injected into the

same waveguide.

106

The main advantage of this architecture is its high scalability.

Table 2. 4X4 λ-router truth table

I/T T1 T2 T3 T4

I1 λ2 λ3 λ1 λ4

I2 λ3 λ4 λ2 λ1

I3 λ1 λ2 λ4 λ3

I4 λ4 λ1 λ3 λ2

Currently, up to 32 cores (16 initiators and 16 targets) can be plugged onto an ONoC,

where the limit is due to the lithographical tolerance in add-drop manufacturing. In a λ-

router, only one physical path associated with one wavelength exists between an

initiator Ii and a target Tj. The broadcast is also possible with this architecture.

In Table 2 we give the truth table for a 4 × 4 network. For example, if I2 communicates

with T4, data must use the wavelength λ1 to be sent through the λ-router. At the same

time I1 can communicate with T1 using the wavelength λ2. These optical switches and λ-

router have been manufactured and tested. The observed network routing corresponds to

theory [60].

This section presents two basic passive photonic devices composing a λ – router: a

simple point to point connection and a basic 4-port optical switch. We also detail a 4 × 4

λ-router using these elementary blocks.

2.3.1 Point to Point Optical Connection

Figure 11 shows a point to point bidirectional optical connection with respect to the

DEVS formalism notations. A point to point connection can be a straight optical

waveguide or a curve for example.

107

out 1

in 1 in 2

out 2

λ in / out λ out / in
δ int

1 # 2
X

δ ext

Y Y

X
δ int

δ ext

Figure 11. Point to point bidirectional optical connection with DEVS

DEVSP2P = (X, Y, S, δint, λ ,ta) (12)

with:

inputs: InPorts = {‘in1’, ‘in2’}

input set: X = {(p,v)|p∈InPorts,v∈Xp}

with: Xp = wave_value∈{wavelength, power}

and,

output: OutPorts = {‘out1’, ‘out2’}

output set: Y = {(p,v)|p∈OutPorts,v∈Yp}

with: Yp = wave_value∈{wavelength, power}

The states are: S = {‘idle’, ‘communication’} (13)

The internal events are:

δint(phase, σ, inport, wave_value):S→S

= (‘busy’, σ, p, v)

if phase = ‘communication’ and p∈InPorts and v∈Xp

= (‘idle’, σ, p, v) else.

The external events are:

δext(phase, σ, e, x):Q×X→S

= (‘idle’, e, p, v)

if phase = ‘idle’ and p = wave and v = 0·exp(0)

= (‘in_light’, process_time, p, v)

if phase = ‘communication’ and p = wave and v = wave_value·P2Pdefects

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)}

108

The output functions are:

λ(phase, σ, inport, wave_value):S→Y

= (out2, wave_value·P2Pdefects)

if phase = ‘communication’ and inport = in1

= (out1, wave_value·P2Pdefects)

 if phase = ‘communication’ and inport = in2

The state advancing time is:

ta(σ):S→ℜ+
0,∞ = σ = bit_propagation_time (14)

Two states characterize the point to point connection behavior, as seen in (13): idle (no

conversion) and communication (light is transported through the optical waveguide).

There are 2 internal events: busy (light is present), idle (no light through the

waveguide); and 2 external events: idle (no light) and in_light (light in one of the

inputs). The state advancing time shown in (14) is due to the light transport in a

waveguide depending on its length and its manufacture materials. This description must

take into account the attenuation in the point to point connection due to its defects

(P2Pdefects). These defects attenuate the optical power value at the outputs.

2.3.2 Four Port Optical Switch

Figure 12 shows a point to point bidirectional optical connection with respect to the

DEVS formalism notations [53], [54], [55].

λ i

λ i

λ in
λ out

λ out

δ int
2

out 1

in 1

1
X

δ ext

Y

out 3

in 3

3
X

δ ext

Y

out 2

in 2 X
δ ext

Y

4

out 2

in 2 X
δ ext

Y

Figure 12. Optical switch with DEVS notations

109

DEVSOS = (X, Y, S, δint, λ, ta)

(15)

with:

inputs: InPorts = {‘in1’, ‘in2’, ‘in3’, ‘in4’}

input set: X = {(p,v)|p∈InPorts,v∈Xp}

with: Xp = wave_value∈{wavelength, power}

and,

output: OutPorts = {‘out1’, ‘out2’, ‘out3’, ‘out4’}

output set: Y = {(p,v)|p∈OutPorts,v∈Yp}

with: Yp = wave_value∈{wavelength, power}

The states are: S = {‘idle’, ‘communication’}·InPorts (16)

The internal events are:

δint(phase, σ, inport, wave_value, wavelength_OS):S→S

= (‘busy’, σ, p, v)

 if phase = ‘communication’ and p∈InPorts and v∈Xp

= (‘idle’, σ, p, v) else.

The external events are:

δext(phase, σ, e, x):Q×X→S

= (‘idle’, e, p, v)

if phase = ‘idle’ and p = wave and v = 0·exp(0)

= (‘in_light’, process_time, p, v)

if phase = ‘communication’ and p = wave and v = wave_value·OSdefects

with Q = {(s,e)|s∈S,0 ≤ e ≤ ta(s)}

The output functions are:

λ(phase, σ, inport, wave_value, wavelength_OS):S→Y

= (out2, wave_value·OSdefects)

110

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and

inport = in1

= (out4, wave_value·OSdefects)

if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and

inport = in1

= (out1, wave_value·OSdefects)

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and

inport = in2

= (out3, wave_value·OSdefects)

if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and

inport = in2

= (out4, wave_value·OSdefects)

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and

inport = in3

= (out2, wave_value·OSdefects)

 if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and

inport = in3

= (out3, wave_value·OSdefects)

if phase = ‘communication’ and wave_wavelength_value = wavelength_OS and

inport = in4

= (out1, wave_value·OSdefects)

if phase = ‘communication’ and wave_wavelength_value ≠ wavelength_OS and

inport = in4

= (out,’X’) if phase = ‘idle’ with out∈OutPorts

The state advancing time is:

ta(σ):S→ℜ+
0,∞ = σ = bit_propagation_time (17)

Two states characterize the 4-port optical switch behavior, as shown in (16): idle (no

conversion) and communication (light is routed through the optical switch, either in the

111

cross state or either bar state as seen in Figure 13). There are 2 internal events: busy

(light is present), idle (no light through the switch); and 2 external events: idle (no light)

and in_light (light in one of the inputs). The state advancing time is shown in (17) and is

due to the light routing in the microresonator and in the waveguide depending on its

geometry and its manufacture materials. As for the point to point connection, this DEVS

description must take into account the attenuation in the switch due to its defects

(OSdefects).

 start (λk in input #p)

end (λk in output #p’)

cross bar cross bar

λk = λ j λk = λ i λk = λ j λk = λ i

λk in #even∈{2,4} λk in #odd∈{1,3}

λk in #odd∈{3,1} λk in #odd∈{1,3} λk in #even∈{4,2} λk in #even∈{2,4}

Figure 13. State diagram of a 4-port optical switch

Figure 13 presents the state flow of a 4-port optical switch. This diagram takes into

account the DEVS events seen previously.

2.3.3 4 X 4 λλλλ-Router

Figure 14 presents the DEVS description of a 4 × 4 λ-router ([53], [54], [55]). To

simplify the read, and since the 4 × 4 λ-router behavior is a combination of point to

point connection and 4-port optical switch behavior (as defined in sub-section 2.3) a

state diagram is only shown in Figure 15. Ci represents the connection between any

input ports with the i
th output port.

112

 in 1

in 3

in 5

in 7

out 2

out 4

out 6

out 8

N

A

B

C

D

E

F

out 2
out 1

out 3

out 5

out 7

in 2

in 4

in 6

in 8

out 3

in 1
in 2 out 1

in 3 out 4
in 4

in 1
in 2 out 1

in 3 out 4
in 4 out 3

out 2

in 1
in 2 out 1

in 3 out 4
in 4 out 3

out 2

in 1
in 2 out 1

in 3 out 4
in 4 out 3

out 2

in 1
in 2 out 1

in 3 out 4
in 4 out 3

out 2

in 1
in 2 out 1

in 3 out 4
in 4 out 3

out 2

1

3

5

7

2

4

6

8

Y

Y

Y

Y
X

X

X

X
δ ext

δ ext

δ ext

δ ext

X
Y

Y

Y

Y

X

X

X

δ ext

δ ext

δ ext

δ ext

Figure 14. Optical switch with DEVS notations

C1 C4

end (λk in output #p’)

λk in #odd

∈{1,3,5,7}

λk in #even

∈{6,8,2,4}

C1 C4

λk in #even

∈{2,4,6,8}

λk in #odd

∈{5,7,1,3}

C2 C3 C2 C3

λk = λOS1 λk = λOS2 λk = λOS4 λk = λOS3

start (λk in input #p)

λk = λOS1 λk = λOS2 λk = λOS4 λk = λOS3

λk in #odd

∈{1,5,3,7}
λk in #odd

∈{3,1,7,5}
λk in #odd

∈{7,3,5,1}
λk in #even

∈{2,6,4,8}
λk in #even

∈{4,2,8,6}
λk in #even

∈{8,4,6,2}

Figure 15. State diagram of a 4 x 4 λ-router

3 Modeling and Formal Verification for the Global

Validation of the Behavior of a Passive ONoC

This section presents the modeling and the formal verification for the global validation

of the behavior of a passive optical network on chip. The model was realized using

timed-automata and was validated through simulation using UPPAAL toolbox. Its

formal verification was realized by defining and checking its main properties. One of

113

the most important characteristics of the optical network is the non contention. This

particularity requires complex models: the number of timed-automata increases and by

consequence the verification becomes time consuming. To cope with this complexity,

the modeling and the formal verification were realized in two steps. The first step

consists of the modeling of the behavior of the network at high level of abstraction. For

the second step, the abstraction level was lowered and the formal verification was

realized on segments of the network. By doing so, the deadline verification time was

reduced from more then 12 hours to 41 sec.

5.4.1 Optical Network on Chip Modeling

Contention occurs in a network when two nodes attempt to access a communication

channel at the same time. The contention-free property of the optical network on chip

increases the complexity of the modeling process. Thus, modeling the transmission of

different wavelength in the same time requires a larger number of automata. This makes

ONoC models very complex, comparing to other models representing an electrical

network for instance that does not provide parallelism.

The routing in the optical network presented here is realized by a 4 X 4 λ-router (as

presented in Figure 16 ([53], [54] and [55])). In order to model and validate its behavior

we used the timed automata ([46] and [47]) and the UPPAAL tool [48].

λ1

1λ

I

I

I

I
2λ

λ3

λ3

4λ

T

T

T

T

1

2

4

3

1

2

3

4

I/T T1 T2 T3 T4

I1 λλλλ2222 λλλλ3333 λλλλ1111 λλλλ4444

I2 λλλλ3333 λλλλ4444 λλλλ2222 λλλλ1111

I3 λλλλ1111 λλλλ2222 λλλλ4444 λλλλ3333

I4 λλλλ4444 λλλλ1111 λλλλ3333 λλλλ2222

I/T T1 T2 T3 T4

I1 λλλλ2222 λλλλ3333 λλλλ1111 λλλλ4444

I2 λλλλ3333 λλλλ4444 λλλλ2222 λλλλ1111

I3 λλλλ1111 λλλλ2222 λλλλ4444 λλλλ3333

I4 λλλλ4444 λλλλ1111 λλλλ3333 λλλλ2222

λ1

1λ

I

I

I

I
2λ

λ3

λ3

4λ

T

T

T

T

1

2

4

3

1

2

3

4

I/T T1 T2 T3 T4

I1 λλλλ2222 λλλλ3333 λλλλ1111 λλλλ4444

I2 λλλλ3333 λλλλ4444 λλλλ2222 λλλλ1111

I3 λλλλ1111 λλλλ2222 λλλλ4444 λλλλ3333

I4 λλλλ4444 λλλλ1111 λλλλ3333 λλλλ2222

I/T T1 T2 T3 T4

I1 λλλλ2222 λλλλ3333 λλλλ1111 λλλλ4444

I2 λλλλ3333 λλλλ4444 λλλλ2222 λλλλ1111

I3 λλλλ1111 λλλλ2222 λλλλ4444 λλλλ3333

I4 λλλλ4444 λλλλ1111 λλλλ3333 λλλλ2222

(a) Truth table (b) 4X4 λ-router

Figure 16. 4 x 4 λ-router

114

Due to the parallelism that is expected in an optical network, the system is represented

with 44 processes (and consequently 44 automata), divided in subsystems as follows:

four to represent the initiators, 16 for the targets (for each target in Figure 16(b) we

needed four processes, one for each wavelength) and 24 for the routing structure. One of

the most useful properties to check in a system is reachability meaning that one wants to

check if all the states of an automaton are reachable, meaning for our model that we

need to check that there exists an execution starting at the initial state that is the set of

initiators {I1, I2, I3, I4} and reaching all the targets {T1, T2, T3, T4} for all the

wavelength {λ1, λ2, λ3, λ4}. Our experiments showed that the verification of the

reachability for this implementation becomes costly in terms of time and can take more

than 12 hours because of the state explosion. Therefore, in order to improve the

performances of the optical network model, its modeling and formal verification were

realized in two steps:

- The first step consists of modeling and verification of the global network and for

this representation we raised the level of abstraction.

- The second step consists of modeling and verification of the behavior of the

router at a lower level of abstraction when only one initiator and four targets are

used.

This methodology allowed the verification of the contention in the global network,

between initiators and mode detailed between the different signals generated by the

same initiator when the signals have different wavelengths.

The complete checking takes only 2 seconds for the first step and 41 seconds per

initiator for the second step. As one can see the verification time is drastically reduced

using the proposed approach. Next sections detail these two steps.

Global model for 4 X 4 λλλλ-router

Figure 17(a) shows the global network at its initial level of abstraction (as a set of four

switches and Figure 17(b) shows the equivalent λ-router at a higher level of abstraction.

115

 (a) 4 X 4 λ-router architecture (b) Equivalent abstract λ-router

Figure 17. Block schema of the passive optical 4 x 4 λ-router

The abstract router (shown in Figure 17(b)) is modeled as a set of four processes also

named here Routing Structures. The four processes model the parallelism provided by

the optical network: all the initiators can send data concurrently and all this data will be

routed in parallel to the targets by the λ-router. Due to this parallelism, the same target

can receive data from the four initiators in the same time. To respect this behavior the

abstract router has four inputs (one from each initiator) and 16 outputs (four for each

target). Each routing structure connects one initiator with the wavelength corresponding

targets. Furthermore, the model has to verify the truth table shown in Figure 16(a),

therefore, each target has to have four inputs, one for each wavelength.

As a result, the global model of the 4 X 4 λ-router is represented using 24 processes:

four processes are used for the initiators, 16 for the targets (as they were previously

explained) and four processes for the routing structure, one for each initiator.

Figure 18 shows the timed-automata model, in UPAAL, for one of the four parallel

routing structures that connects an initiator to the targets. The left pane presents all 24

processes. The model has only one initial location (a double circle in Figure 18) Start.

The router will change location from Start to ReceiveDataFromInitiator(n) (where is the

number of the initiator from 1 to 4) following the transition

atoraFromInitiReceiveDat
lambda4]1,int[lambda:lambda

ch?DataToSwit
Start >

. This transition is realized with zero time

and it is triggered by the receiving of the data (that is also synchronization between the

116

initiator and the router) from the initiator (DataToSwitch?). The transition also

allows the random selection of a wavelength between the four wavelengths of the

network λ1, λ2, λ3 and λ4, using lambda:int[lambda1,lambda4]. The location

changes then to one of locations ToTarget1, ToTarget2, ToTarget3, ToTarget4,

depending of the lambda selection. Each of this transition to a different target is

determine by the value of lambda and for each transition there is synchronization

DataToTarget! between the router and the corresponding target. The data is received

by the corresponding target and the simulation context changes to the processes named

here Target that are identified by different indexes. Each one of these processes

receives data from the router (DataToTarget?).

Figure 18. Routing structure representation

Figure 19 presents a screenshot with the simulation of the abstract λ-router. This figure

shows the parallelism between the different targets (Target1, Target2 and Target3) and

the parallelism between signals of different wavelength (λ3, and λ4) in the same target

– Target1.

117

Figure 19. λ-router simulation screen capture

Model for a signal path generated by one initiator

Figure 20 shows the model of the path of the signal generated by one initiator (in this

example the initiator I1) at its original level of abstraction. The signal is routed through

the four λ-routers in order to reach the designated targets. The dashed lines and λ-

routers represent the paths that are not reached by the signal sent by the initiator I1.

Moreover, the model verifies the truth table presented in Figure 16(a) and Table 2. In

the first step I1 can send to the λ-router λ1 four signals corresponding to four different

wavelengths. Here the signal corresponding to the wavelength λ1 is sent to λ3 and the

remaining three signals are sent to the λ-router λ2 where a new selection is made.

118

Figure 20. Signal path in the 4 x 4 λ-router for one initiator

As shown in Figure 20, in order to represent the exact path of the signal from the

initiator to the targets, the model requires 12 processes: one for the initiator, 4 for the

targets (each one with its own wavelength) and seven processes for the routing. The

UPPAAL representation for this model is similar with the one where all initiators were

represented. The simulation of the second step of the passive ONoC showed the

parallelism between the different signals of different wavelength in the same switch.

5.4.2 Optical Network on Chip Formal Verification

Using UPPAAL, the models were simulated and formally verified. This is a verification

of the functionality of the models.

Formal verification of global 4 X 4 λλλλ - router

The following properties were verified for the global model where all the routers were

abstract into one router that summed the behavior of the whole network.

P0 Absence of deadlock (safety property)

Deadlock exists among a set of processes if every process is waiting for an event that

can be caused only by another process in the set.

A[] not deadlock

119

P1 Absence of contention in the global model (reachability property)

Definition: simultaneous wavelength can be sent through the network in the same time.

E<> Switch1.TransmissionToTarget and

Switch3.TransmissionToTarget and

Switch3.TransmissionToTarget and

Switch4.TransmissionToTarget

P2 All locations in the automaton representing the switch are eventually taken

(liveness property)

Definition: whenever a wavelength takes the ReceiveDataFromInitiator1 location in the

Switch1, it will eventually take the TransmissionToTarget location in the same switch.

A<> Switch1.ReceiveDataFromInitiator1 imply

Switch1.TransmissionToTarget

 P2 Verification of the truth table (safety property)

Definition: there is one and only one wavelength that connects one initiator with one

target (truth table in Figure 16(a)). We give here the syntax for only one of the initiators;

the properties for the other three were verified in the same manner.

A[] Switch1.TransmissionToTarget and lambda==lambda1 imply

Target3_1.StartTarget3

A[] Switch1.TransmissionToTarget and lambda==lambda2 imply

Target1_2.StartTarget1

A[] Switch1.TransmissionToTarget and lambda==lambda3 imply

Target2_3.StartTarget2

A[] Switch1.TransmissionToTarget and lambda==lambda3 imply

Target4_4.StartTarget4

Formal verification of a 4 X 4 λλλλ - router

The following properties for the model where the signal generated by one initiator is

routed through all λ– routers that form the optical network were verified:

120

P0 Absence of deadlock (safety property)

A[] not deadlock

P1 Absence of contention in the network (reachability property)

Definition: simultaneous wavelength can be sent through the router, from the same

initiator, in the same time. For one initiator the parallelism in the same switch is

encountered in the switches with λ3 and λ4. We verified here the parallelism for both

situations:

E<> Switch3a_1.DataToTarget1 and

Switch3a_2.DataToSwitch4 and Switch3b.DataOutSwitch3b

E<> Switch4_1.DataToTarget3 and Switch4_2.DataToTarget2

P2 Verification of the truth table (safety property)

Definition: the truth table shown Figure 16(a) was also verified for one initiator. This

property validates also the connection between one initiator and four targets.

A[] Switch1.TransmissionToTarget and lambda==lambda1 imply

Target3.StartTarget3

A[] Switch1.TransmissionToTarget and lambda==lambda2 imply

Target1.StartTarget1

A[] Switch1.TransmissionToTarget and lambda==lambda3 imply

Target2.StartTarget2

A[] Switch1.TransmissionToTarget and lambda==lambda4 imply

Target4.StartTarget4

5.5 Conclusion

In this chapter we proposed a novel approach that enables: the possibility to formalize

very recent technologies using DEVS approach and the use of this formalization to

validate and debug complex systems as optical-electrical interfaces and the modeling,

the simulation and the formal verification for the global validation of the behavior of a

passive integrated photonic routing structure using models that are based on timed

121

automata. We presented the formalization of three types of blocks that form a ONoC: a

transmitter interface circuits (for the electro-optical conversion), a passive integrated

photonic routing structure (named λ- router) and a receiver interface circuit (for the

opto-electrical conversion). The formalization was then completed with the modeling,

the simulation and the formal verification of a passive integrated photonic routing

structure. The modeling as well as the simulation and the formal verification were

divided in two steps. The first step consisted of the verification of the global 4 X 4 λ –

router at a high level of abstraction, as one router behavior while the second step was the

representation at a lower level of abstraction of one initiator and the signal path through

the optical network. Formal properties were defined and checked for both models. The

complete checking takes only 2 seconds for the first step and 41 seconds per initiator for

the second step. As one can see the verification time is drastically reduced using the

proposed approach.

122

ANNEX 2 – CODIS FRAMEWORK

CODIS is a tool which can automatically produce the global simulation model instances

for discrete/continuous systems simulation using SystemC and Simulink simulators.

This is done by generating and providing interfaces which implement the simulation

model layers and building the co-simulation bus. Figure 21 gives an overview of the

flow of the instances generation in the case of CODIS ([51], [52]).

Figure 21. Overview of the CODIS flow

The inputs in the flow are the continuous model in Simulink and the discrete model in

SystemC which are, respectively, schematic and textual models. The output of the flow

is the global simulation model (co-simulation model) instance. For Simulink, the

interfaces can be parameterized starting with their dialog box. The parameters of

Sim_inter_In and Sim_inter_Out interfaces are the number of input and respectively

output ports. State interface has a parameter defining the state events number. The user

starts by dragging the interfaces from the interface components library into his model’s

123

window, then parameterizes them and finally connects them to the inputs and the

outputs of his model. Before the simulation, the functionalities of these blocks are

loaded by Simulink from the .dll libraries. For SystemC, the SC_inter_In parameters

are: (1) the names, the number and the data type of the discrete model inputs ports and

(2) the sampling periods. The SC_inter_out parameters are the names, the number and

the data type of the discrete model outputs ports. The interfaces are automatically

generated by a script generator that has as input the user-defined parameters. The tool

generates also the function sc_main (or modifies the existing sc_main) that connects the

interfaces to the user model. The model is compiled and the link editor calls the library

from SystemC and a static library (the simulation library in Figure 21). The

implementation was performed in the case of SystemC as a discrete event simulator and

Simulink as a continuous simulator.

In this annex we detail the model of interaction between the continuous and the discrete

simulators and present the interfaces implementation. One must note that the interfaces

between SystemC and Simulink have been previously proposed for pure digital

systems [58] but not for discrete–continuous systems. For a better explanation, we start

by presenting briefly the SystemC and Simulink simulators.

1. SystemC Simulator

SystemC [8] simulator is an effective and relatively simple scheduler. Its task is to

determine processes execution order by considering their sensitivity lists and events

time stamps. Events are ordered in a special queue and classified into two types: zero-

delayed and timed events. The scheduler uses the notion of delta cycle. At a particular

discrete time, multiple delta cycles may occur until the simulated model becomes stable:

no signals to change, or in a general way, no more zero-delayed events to consider at the

current time. Then, the scheduler consults its queue to extract the next event (next

discrete time) if any, otherwise it stops. This cycle is repeated until the end of

simulation.

124

2. Simulink Simulator

Simulink [16] simulator solves system equations and updates states and outputs of

blocks once per integration step, which can be fixed or variable. The order in which the

blocks are updated is critical for results validity. If the block’s outputs are a function of

its inputs, the block must be updated after the blocks that drive its inputs (e.g. adder or

gain computing block). Simulink uses minor and major steps. Minor step are used to

improve the accuracy of result at major steps. Signals are updated only at major steps.

3. The Simulation Interfaces

Figure 22 shows the continuous and the discrete models with the simulation interfaces.

The interfaces implement the co-simulation layers. They represent the software

components required to integrate the two simulators with respect to the simulation

model. For Simulink, the interfaces are S-functions blocks. These blocks are

manipulated like all other components of the Simulink library. They contain

input/output ports compatible with all model ports, which can be connected directly by

using Simulink signals.

They are classified into four types:

- The Sync interface implements the critical part of the ‘‘Discrete events detection’’

layer. It creates break points, which must be reached accurately by a solver (a variable

step solver). These points are the time stamps of the received events (sampling events or

signals update events). When an event is received, this interface makes its next

activation time equal to this event time stamp. Once this time stamp is reached, the Sync

is executed to set its next activation time equal to the new received event time stamp,

etc. The interface is executed at t = 0 to fix its first activation time.

125

Figure 22. Continuous and discrete models integrating the co-simulation interfaces

- The Sim_inter_In interface implements the communication layer (input function), the

‘‘Context switch’’ layer and a part of the ‘‘Discrete events detection’’ layer, which is

responsible in detecting the passage of the solver by the time stamps of the sampling

events (breakpoints). Once this passage is detected, the interface switches the simulation

context and executes the communication layer (reads signals).

- The Sim_inter_Out interface implements the communication layer (output function),

the ‘‘Context switch’’ layer and a part of the ‘‘Discrete events detection’’ layer, which

is responsible in detecting the passage of the solver by the sampling events time stamps

(breakpoints). Once this passage is detected, the interface executes the communication

layer (sends signals) and switches the simulation context.

- The State interface implements the ‘‘Detection and sending of sate events’’ and the

‘‘Context switch’’ layers.

For SystemC, the interfaces are programmed as SystemC modules. They are classified

into two types:

- The SC_inter_In interface implements the input communication function and ensures

synchronization with input data and state events. It can be viewed as a sampler circuit

126

and can be auto clocked or have an external clock supplied by the discrete model. The

interface has two types of signals:

 - Data signals, which are sc_signal or sc_fifo type. If the discrete model input

ports are bits vectors then the interface add functionality converting double data to bit

vector data.

 - State events signals, which are boolean type (bit). Each time the continuous

simulator sends a state event, the corresponding state event signal is set to ‘‘1’’.

- The SC_inter_Out interface implements the output communication function and

ensures synchronization with output data. If the discrete model output ports are bits

vectors then the interface add functionality that converts bits vector data to double data.

4. The Interaction Between SystemC and Simulink

Simulink interacts with SystemC through its interfaces. These interfaces and the user

model’s blocks are executed at each integration step. The execution order respects the

data dependency rule. SystemC interacts with Simulink through its interfaces and its

scheduler. The scheduler integrates the ‘‘End of discrete simulation cycle detection and

events sending’’ layer and the ‘‘State events consideration’’ layer.

5. Interfaces Implementation

Example of Simulink interfaces

For Simulink, the interfaces are S-functions programmed in C++. An S-function is

programmed using a number of predefined functions. In our case, five functions are

used. The user adds its code to these predefined functions. For example, a code used to

initialize the simulation is added to the MdlInitializeSizes function, a code used to

compute output signals is added to the MdlOutputs function, etc. The pseudo-code of

two interfaces is given by Figure 23 and Figure 24 (only the principal functions are

shown).

127

Figure 23. Sync interface pseudo-code

Figure 24. Sim-Inter_Out interface pseudo-code

128

In Figure 23 sync interface uses a special time mode, which is the

variable_sample_time. With this mode, one can choose the next execution time of the S-

function equal to the next discrete event sent by SystemC synchronization layer. In this

case, Simulink adjusts the integration steps to satisfy the criteria of resolution and to

reach with exactitude the time execution of this S-function (which is the time stamp of

the SystemC event).

SystemC interfaces

The interfaces are implemented as SystemC modules programmed in C++. For each

interface, this sub-section gives the .h and .cpp files, classically used to describe

SystemC modules.

Figure 25. SC_inter_In interface code

129

Examples of SC_inter_In and SC_inter_Out interfaces are given in Figure 25 and Figure

26 respectively.

Figure 26. SC_inter_Out interface code

130

PUBLICATIONS

1. L. Gheorghe, G. Nicolescu, H. Boucheneb: “Semantics for Rollback-Based

Continuous/Discrete Simulation” IEEE Int’l Behavioral Modeling and Simulation

Conference, BMAS 2008.

2. E. Bensoudane, D. Tonietto, L Gheorghe, G. Nicolescu: “System-Level Design of

Continuous/Discrete-Time Heterogeneous Systems Applied to High-Speed Serial

Link” IEEE Newcas-Taisa Conference, 2008

3. L. Gheorghe, F. Bouchhima, G. Nicolescu, H. Boucheneb: “Semantics for Model-

Based Validation of Continuous/Discrete Systems” in Design Automation and Test

in Europe (DATE’08), 2008.

4. M. Briere, L. Gheorghe, G. Nicolescu, I. O’Connor, G. Wainer: “Towards the High-

Level Design of Optical Networks on-Chip. Formalization of Opto-Electrical

Interfaces” in IEEE Int’l conference on Electronics, Circuits and Systems, 2007.

5. L. Gheorghe, F. Bouchhima, G. Nicolescu, H. Boucheneb: “A Formalization of

Global Simulation Models for Continuous/Discrete Systems” in Proc of the 2007

Summer Computer Simulation Conference (SCSC’07), 2007.

6. G. Nicolescu, H. Boucheneb, L. Gheorghe, F. Bouchhima: “Methodology for

efficient design of continuous/discrete-events co-simulation tools” High Level

Simulation Languages and Applications (HLSLA’07), 2007.

7. L. Gheorghe, F. Bouchhima, G. Nicolescu, H. Boucheneb: “Formal definitions of

simulation interfaces in a continuous/discrete co-simulation tool” In: Proc. IEEE

Workshop on Rapid System Prototyping (RSP’06), 2006.

8. G. Nicolescu, F. Bouchhima, L. Gheorghe: “CODIS-A framework for

continuous/discrete systems co-simulation” 2nd IFAC Conference on Analysis and

Design of Hybrid Systems (ADHS’06), 2006

131

9. L. Gheorghe and G. Nicolescu: “MP SoCs incuding optical interconnect.

Technological progresses and challenges for CAD tools design” at International

Workshop SoC for Real Time Applications (IWSOC’05), 2005

Book Chapters

10. F. Bouchhima, L. Gheorghe, G. Nicolescu, E. Aboulhamid, M. Abid: “The anatomy

of a continuous/discrete execution model for timed execution heterogeneous

systems” in “Global Specification and Validation of Embedded Systems” Springer,

2007 .

11. L. Gheorghe, G. Nicolescu, H. Boucheneb: ”A Generic Methodology for the Design

of Continuous/Discrete Co-simulation Tools” in “Model-based design for Embedded

Systems” CRC Press, to appear in 2009

12. L.Gheorghe, G. Nicolescu, I. O’Connor: “Modeling and Validation of Optical

Networks on Chip” in “Discrete Event System Specifications - DEVS” CRC Press,

to appear in 2009

Submitted Papers

13. L. Gheorghe, F. Bouchhima, G. Nicolescu, H. Boucheneb: “A Generic Methodology

for the Design of Continuous/Discrete Simulation Tools” submitted to IEEE

Transactions on Computers.

14. L. Gheorghe, G. Nicolescu, I. O’Connor: “Modeling and Formal Verification of a

Passive Optical Network on Chip Behavior” submitted to Design Automation

Conference DAC’09.

15. B. Girodias, L. Gheorghe, Y. Bouchebaba, G. Nicolescu, E. Aboulhamid, M.

Langevin, P. Paulin: “Combining Memory Optimization with Mapping of

Multimedia Applications for Multiprocessors System on chip” submitted to ISSS

CODES 2009

132

16. B. Girodias, L. Gheorghe, Y. Bouchebaba, G. Nicolescu, E. Aboulhamid, P. Paulin ,

M. Langevin, "Integrating Memory Optimization with Mapping

Algorithms for Multi-Processors System-on-Chip" submitted to TECS Journal.

