555 research outputs found

    Parameterized Synthesis

    Full text link
    We study the synthesis problem for distributed architectures with a parametric number of finite-state components. Parameterized specifications arise naturally in a synthesis setting, but thus far it was unclear how to detect realizability and how to perform synthesis in a parameterized setting. Using a classical result from verification, we show that for a class of specifications in indexed LTL\X, parameterized synthesis in token ring networks is equivalent to distributed synthesis in a network consisting of a few copies of a single process. Adapting a well-known result from distributed synthesis, we show that the latter problem is undecidable. We describe a semi-decision procedure for the parameterized synthesis problem in token rings, based on bounded synthesis. We extend the approach to parameterized synthesis in token-passing networks with arbitrary topologies, and show applicability on a simple case study. Finally, we sketch a general framework for parameterized synthesis based on cutoffs and other parameterized verification techniques.Comment: Extended version of TACAS 2012 paper, 29 page

    Verification of Branching-Time and Alternating-Time Properties for Exogenous Coordination Models

    Get PDF
    Information and communication systems enter an increasing number of areas of daily lives. Our reliance and dependence on the functioning of such systems is rapidly growing together with the costs and the impact of system failures. At the same time the complexity of hardware and software systems extends to new limits as modern hardware architectures become more and more parallel, dynamic and heterogenous. These trends demand for a closer integration of formal methods and system engineering to show the correctness of complex systems within the design phase of large projects. The goal of this thesis is to introduce a formal holistic approach for modeling, analysis and synthesis of parallel systems that potentially addresses complex system behavior at any layer of the hardware/software stack. Due to the complexity of modern hardware and software systems, we aim to have a hierarchical modeling framework that allows to specify the behavior of a parallel system at various levels of abstraction and that facilitates designing complex systems in an iterative refinement procedure, in which more detailed behavior is added successively to the system description. In this context, the major challenge is to provide modeling formalisms that are expressive enough to address all of the above issues and are at the same time amenable to the application of formal methods for proving that the system behavior conforms to its specification. In particular, we are interested in specification formalisms that allow to apply formal verification techniques such that the underlying model checking problems are still decidable within reasonable time and space bounds. The presented work relies on an exogenous modeling approach that allows a clear separation of coordination and computation and provides an operational semantic model where formal methods such as model checking are well suited and applicable. The channel-based exogenous coordination language Reo is used as modeling formalism as it supports hierarchical modeling in an iterative top-down refinement procedure. It facilitates reusability, exchangeability, and heterogeneity of components and forms the basis to apply formal verification methods. At the same time Reo has a clear formal semantics based on automata, which serve as foundation to apply formal methods such as model checking. In this thesis new modeling languages are presented that allow specifying complex systems in terms of Reo and automata models which yield the basis for a holistic approach on modeling, verification and synthesis of parallel systems. The second main contribution of this thesis are tailored branching-time and alternating time temporal logics as well as corresponding model checking algorithms. The thesis includes results on the theoretical complexity of the underlying model checking problems as well as practical results. For the latter the presented approach has been implemented in the symbolic verification tool set Vereofy. The implementation within Vereofy and evaluation of the branching-time and alternating-time model checker is the third main contribution of this thesis

    SAVCBS 2003: Specification and Verification of Component-Based Systems

    Get PDF
    These are the proceedings for the SAVCBS 2003 workshop. This workshop was held at ESEC/FSE 2003 in Helsinki Finland in September 2003

    Capsule-oriented programming

    Get PDF
    Explicit concurrency should be abolished from all higher-level programming languages (i.e. everything except - perhaps- plain machine code.). Dijkstra [1] (paraphrased). A promising class of concurrency abstractions replaces explicit concurrency mechanisms with a single linguistic mechanism that combines state and control and uses asynchronous messages for communications, e.g. active objects or actors, but that doesn\u27t remove the hurdle of understanding non-local control transfer. What if the programming model enabled programmers to simply do what they do best, that is, to describe a system in terms of its modular structure and write sequential code to implement the operations of those modules and handles details of concurrency? In a recently sponsored NSF project we are developing such a model that we call capsule-oriented programming and its realization in the Panini project. This model favors modularity over explicit concurrency, encourages concurrency correctness by construction, and exploits modular structure of programs to expose implicit concurrency

    Coordinating multicore computing

    Get PDF

    Extrapolation-based Path Invariants for Abstraction Refinement of Fifo Systems

    Get PDF
    Rapport de Recherche RR-1459-09 LaBRIThe technique of counterexample-guided abstraction refinement (Cegar) has been successfully applied in the areas of software and hardware verification. Automatic abstraction refinement is also desirable for the safety verification of complex infinite-state models. This paper investigates Cegar in the context of formal models of network protocols, in our case, the verification of fifo systems. Our main contribution is the introduction of extrapolation-based path invariants for abstraction refinement. We develop a range of algorithms that are based on this novel theoretical notion, and which are parametrized by different extrapolation operators. These are utilized as subroutines in the refinement step of our Cegar semi-algorithm that is based on recognizable partition abstractions. We give suffcient conditions for the termination of Cegar by constraining the extrapolation operator. Our empirical evaluation confirms the benefit of extrapolation-based path invariants

    On the Limits and Practice of Automatically Designing Self-Stabilization

    Get PDF
    A protocol is said to be self-stabilizing when the distributed system executing it is guaranteed to recover from any fault that does not cause permanent damage. Designing such protocols is hard since they must recover from all possible states, therefore we investigate how feasible it is to synthesize them automatically. We show that synthesizing stabilization on a fixed topology is NP-complete in the number of system states. When a solution is found, we further show that verifying its correctness on a general topology (with any number of processes) is undecidable, even for very simple unidirectional rings. Despite these negative results, we develop an algorithm to synthesize a self-stabilizing protocol given its desired topology, legitimate states, and behavior. By analogy to shadow puppetry, where a puppeteer may design a complex puppet to cast a desired shadow, a protocol may need to be designed in a complex way that does not even resemble its specification. Our shadow/puppet synthesis algorithm addresses this concern and, using a complete backtracking search, has automatically designed 4 new self-stabilizing protocols with minimal process space requirements: 2-state maximal matching on bidirectional rings, 5-state token passing on unidirectional rings, 3-state token passing on bidirectional chains, and 4-state orientation on daisy chains

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types
    corecore