

Reconfigurable Component Connectors

Christian Krause

Promotiecommissie

Promotor: Prof. Dr. F. Arbab Universiteit Leiden
Copromotor: Dr. E.P. de Vink TU Eindhoven

Other members: Prof. Dr. W.M.P. van der Aalst TU Eindhoven
Prof. Dr. F. de Boer Universiteit Leiden
Dr. M. Bonsangue Universiteit Leiden
Prof. Dr. J.N. Kok Universiteit Leiden
Prof. Dr. G. Taentzer Phillips Universität Marburg

The work in this thesis has been carried out at the Centrum Wiskunde & Informat-
ica (CWI), under the auspices of the research school IPA (Institute for Programming
research and Algorithmics). The author was funded by the NWO GLANCE project
Workflow Management for Large Parallel and Distributed Applications (WoMaLaPaDiA).

Copyright c© 2011 Christian Krause
ISBN: 978–90–6464–475–7
IPA Dissertation Series 2011–08
Printed by Ponsen & Looijen

Reconfigurable Component Connectors

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 21 juni 2011

klokke 15:00 uur

door

Christian Krause (geb. Köhler)

geboren te Chemnitz (Karl-Marx-Stadt), Duitsland

in 1981

The difficulty lies, not in the new ideas, but in escaping the old ones, which ramify,
for those brought up as most of us have been, into every corner of our minds.

John Maynard Keynes, 1987 (quoted in [33])

CONTENTS

Contents vii

1 Introduction 1
1.1 Coordination models . 1
1.2 Component connectors in Reo . 2
1.3 Dynamic reconfiguration . 2
1.4 Formal methods and their use . 3
1.5 Goals of this thesis . 4
1.6 Thesis overview and contributions . 5

2 Channel-based coordination with Reo 7
2.1 The Reo coordination language . 7

2.1.1 Channels . 7
2.1.2 Nodes . 8
2.1.3 Components . 9
2.1.4 Connectors and networks . 9

2.2 The Eclipse Coordination Tools . 12
2.2.1 Tools overview . 13
2.2.2 The Reo meta-model . 15
2.2.3 Custom primitives in ECT . 19

2.3 Conclusions . 23

3 Automata-based semantics for Reo 25
3.1 Constraint and port automata . 25

3.1.1 Definition . 26
3.1.2 Join and hiding operations . 26
3.1.3 Bisimulation . 27
3.1.4 Port automata . 28
3.1.5 From Reo to automata models . 30

3.2 Decomposition of port automata . 31
3.2.1 Stateless port automata . 31
3.2.2 General decomposition scheme . 33
3.2.3 Related work . 36

3.3 The Extensible Automata framework in ECT 38
3.3.1 The EA meta-model . 38
3.3.2 Extension providers . 39
3.3.3 Product providers . 40

vii

3.3.4 From Reo to automata models . 42
3.3.5 CA runtime and code generation . 43

3.4 Conclusions . 44
3.5 Discussion . 45

4 Verification by model checking 47
4.1 Overview . 47
4.2 The mCRL2 specification language . 49

4.2.1 Actions . 49
4.2.2 Processes . 49
4.2.3 Data types . 50
4.2.4 Tools . 50

4.3 Encoding Reo in mCRL2 . 50
4.3.1 Join and hiding operations . 52
4.3.2 General port automata encoding . 53
4.3.3 Encoding of the coloring semantics 55
4.3.4 Encoding context-dependency in port automata 58
4.3.5 Encoding of Timed Reo . 59

4.4 Verification tools in ECT . 60
4.4.1 The mCRL2 conversion tool . 60
4.4.2 The Vereofy model checker . 64
4.4.3 Bounded model checking for timed constraint automata 65
4.4.4 Stochastic analysis using PRISM . 66
4.4.5 Stochastic analysis based on discrete event simulation 66

4.5 Related work . 67
4.6 Conclusions . 67

5 Reconfiguration by graph transformation 69
5.1 Motivation . 69
5.2 Reconfiguration by graph transformation . 70

5.2.1 Reo networks as typed hypergraphs 71
5.2.2 Double pushout rewriting of Reo networks 72
5.2.3 Critical pair analysis in AGG . 75

5.3 Modeling dynamic reconfiguration . 76
5.3.1 State space analysis in Henshin . 77
5.3.2 Transparent dynamic reconfiguration 82

5.4 Support for reconfiguration in ECT . 84
5.5 Dynamic reconfiguration in ReoLive . 85
5.6 Reconfigurable coordination of YAWL workflows 86
5.7 Related work . 87
5.8 Conclusions . 88

6 Distributed networks and reconfiguration 89
6.1 Motivation . 89

6.2 Distributed graphs and Reo networks . 90
6.2.1 Distributed graphs . 90
6.2.2 Extended typing for distributed Reo networks 92

6.3 Reconfiguring distributed networks . 93
6.3.1 Local reconfigurations . 93
6.3.2 Synchronizing local reconfigurations 94
6.3.3 Coordinating local reconfigurations 97

6.4 Flattening of distributed graphs . 98
6.5 Related work . 99
6.6 Conclusions . 99

7 Distributed port automata 101
7.1 Overview . 101
7.2 The category of port automata . 102
7.3 The category of distributed port automata 106

7.3.1 Encoding of Reo networks . 107
7.3.2 Encoding of Petri nets . 108
7.3.3 Composing distributed port automata 108
7.3.4 Semantics of distributed port automata 110

7.4 Towards dynamic reconfiguration . 111
7.5 Related work . 112
7.6 Conclusions and future work . 113

8 Conclusions and further directions 115

Bibliography 117

A Proofs 127
A.1 Proof for Theorem 4.4 . 127
A.2 Proof for Theorem 6.9 . 129

B Listings 131
B.1 Vereofy library for context-dependent primitives 131

C Summary 133

D Samenvatting (dutch) 135

Chapter 1

Introduction

The large complexity of today’s software systems is caused not only by their sheer
size in terms of lines of code. In the age of service-oriented and cloud computing,
applications use and integrate functionality from third-party providers, which can be
distributed over the Internet, implemented in different languages and running on
different types of hardware. Therefore, interoperability and robustness have become
key requirements for building software. This raises the questions of not only how we
compose different pieces of software, and how we can reason about the properties
of the resulting systems, but also, how we can change or reconfigure applications at
runtime. The modeling and formal analysis of reconfigurable software is the topic of
this thesis.

1.1 Coordination models

The component-based and particularly the service-oriented design patterns are be-
coming increasingly relevant in modern software engineering. In both paradigms,
applications are composed out of a set of smaller functional building blocks, i.e.,
components and services, respectively. The step from components to services involves
–at the technical level– a proper handling of distribution and heterogeneity. Another
important difference between the two approaches is that services are loosely coupled
and the fact that they can be discovered dynamically, i.e., at runtime. However, the
core ideas of bundling and black-boxing of functional software artifacts is inherent
in both component-based and service-oriented systems. Thus, building software by
composing a set of services or components is –at the conceptual level– very similar.

A major challenge in component-based as well as service-oriented software is the
proper coordination of the active entities that comprise a system. Components are
essentially self-contained functional building blocks. Services, furthermore, can be
owned by third parties and are usually accessible only via published interfaces. There-
fore, it is a natural choice to use an additional, external coordination mechanism to
control the interaction between components and services from outside. Exogenous

1

2 Chapter 1. Introduction

coordination models and languages provide the means to specify this external coor-
dination mechanism explicitly. This is particularly important in order to avoid ad hoc
composition approaches. While the functional aspects of an application are imple-
mented using components, their coordination can be realized using so-called com-
ponent connectors, which control the way the components communicate with each
other. Component connectors provide the glue code that is required for describing the
interaction in component-based and service-oriented software systems.

The implementation of component connectors involves a number of technical de-
tails, e.g. the use of inter-platform communication protocols and interchange formats.
However, considering component connectors explicitly at the modeling level has the
advantage that the structural and behavioral properties of a system can be described
independently from its implementation. According to the paradigm of model-driven
engineering, this enables the use of code generation for deriving implementations.
Moreover, it also allows to use formal methods for verification. Thus, coordination
models provide an appropriate abstraction for studying the interaction in component-
based and service-oriented systems.

1.2 Component connectors in Reo

In this thesis, we study component connectors in the channel-based coordination
language Reo [1]. Component connectors in Reo are built compositionally out of
primitive channels that can be plugged together using nodes. These channel-based
connectors control the dataflow between the components and, thereby, enforce com-
munication protocols among them. This enforcement involves a number of different
dataflow aspects, such as synchronous vs. asynchronous communication, buffering,
filtering and data manipulation, causality, context-dependent behavior, and mobility.
Due to its feature-rich models, Reo offers powerful means for describing the coordi-
nation that turns a set of components or services into a coherent working application.

Since the notion of channels in Reo supports mobility, problems in the area of
dynamic reconfigurations can be studied concretely in the context of Reo. Moreover,
Reo has formal semantics which enables the use of formal methods for verification.

1.3 Dynamic reconfiguration

To re-configure an application, i.e., to change its configuration, is a common task in
all branches of software engineering and is not very challenging in itself. However,
nowadays more and more domains emerge where it is crucial to be able to perform
a reconfiguration dynamically, i.e., at runtime. This is particularly the case in areas
where the components and services cannot simply be shutdown or restarted.

An example are the complex embedded systems used in the automotive indus-
try. The software operating the hundreds of electronic control units in modern cars
is required to run in different modes in which specific configurations and schedul-
ing policies must be adhered to. Switching between different modes entails that all

1.4. Formal methods and their use 3

components are synchronously updated and that they form –together– a consistent
system state. This constitutes one of the key challenges in the area of dynamic recon-
figuration. Another, less critical, application involves service-oriented systems that use
third-party services which are not under the control of the owner of the application,
and thus cannot be restarted or reset in general. A reconfiguration of a service-based
application can become necessary if one of the used services suddenly becomes un-
available or its quality of service becomes unacceptable. In such a scenario, a recon-
figuration can be as simple as switching to an alternative service implementation, or
as challenging as to modify the complete application architecture.

While in some domains switching between a finite set of configurations is suffi-
cient, in others a rule-based approach for reconfiguration is more suitable. For in-
stance, the embedded software in modern cars, as mentioned above, usually operates
in a fixed set of predefined modes. However, if the number of components in a soft-
ware system is not known a priori (such as in peer-to-peer networks), switching be-
tween a finite set of configurations is not feasible. In such domains, reconfigurations
that modify a system property, e.g. the topology of a network, based on interpreted
reconfiguration rules are better suited. In general, rule-based reconfiguration pro-
vides a more powerful approach since it supports an unbounded number of different
configurations.

As mentioned above, component connectors facilitate the description of the inter-
action between the services or components that comprise an application. As one of the
central claims of this thesis, we believe that the study of systematic approaches for
reconfiguration of component connectors is of major relevance, because in modern
software, the assumptions of static configurations, protocols and even whole system
layouts are no longer tenable.

1.4 Formal methods and their use

When a computer scientist is asked about the relevance of formal methods, the an-
swer mainly depends on his or her personal opinion and background. While the need
for modeling in general is more or less accepted in many industrial branches of com-
puter science, the benefits of formal modeling and verification are to a large extent
still valued only in the academic environment. For instance, in the industry, software
specifications are commonly given in natural, rather than formal languages, and im-
plementations are validated using testing, rather than model checking or theorem
proving. Although the correctness of an application is considered as the most impor-
tant quality measure of software in general, the choice against formal methods is
often being justified by higher production costs or by the argument that they are not
feasible in industrial applications.

The acceptance of formal modeling techniques depends greatly on their expressive
power. For instance, in the area of embedded systems, issues involving real-time are
of major importance. In service-oriented systems, quantitative aspects are relevant for
quality of service assurances. However, the success of formal methods also depends to

4 Chapter 1. Introduction

a large extent on their usability and scalability. To apply formal methods in practice,
it is crucial to have efficient algorithms and proper tool support for verification.

In the context of this thesis, we apply formal methods to problems that exist in
the area of component coordination, with particular emphasis on verification of static
and dynamically reconfigurable component connectors. For this purpose, we exploit
methods from automata theory, process algebra, model checking, as well as graph
transformation and category theory. Each of these approaches provides a means to
solve a specific problem and is therefore properly motivated. As argued above, we
believe that it is important for the proposed methods to be applicable in practice and,
therefore, we focus on approaches with proper tool support. Although our examples
are not of industrial strength, the modeling and verification tools discussed in this
thesis have the potential of being applied in large scale settings.

1.5 Goals of this thesis

The central topic of this thesis is the formal modeling and analysis of Reconfigurable
Component Connectors in Reo. Our goals can be summarized as follows:

Verification of static connectors

Based on existing formal semantical models for Reo, we show that formal verification
of statically defined component connectors can –in practice– be done using model
checking techniques.

Reconfigurable connectors

While the existing semantic models for Reo provide a solid basis for analyzing static
connectors, we claim that they are inadequate for describing dynamically reconfig-
urable ones. As one of our central goals, we argue in this thesis that the theory of al-
gebraic graph transformation provides a powerful framework for formal modeling of
reconfigurable connectors. We justify the use of a formal approach to reconfiguration
by showing how to analyze dynamic reconfiguration, again using model checking.

Distributed connectors

Centralized approaches to component coordination have a limited range of applica-
tion. Therefore, we provide a framework for modeling distributed component con-
nectors and their reconfiguration based on the theory of distributed graph transfor-
mation.

Integration of structure and semantics

We argue in our approach for reconfigurable connectors, that modeling the execu-
tion and reconfiguration in the same formalism, i.e., as graph transformation rules,

1.6. Thesis overview and contributions 5

enables the use of model checking for formal verification of dynamic reconfigura-
tions This approach, however, cannot always be applied since it lacks composition-
ality. Moreover, issues involving state transfer and state consistency in dynamic re-
configuration cannot be handled properly. Therefore, we consider also an alternative
approach in which we integrate the graph transformation based techniques for recon-
figuration with an existing semantic automata model of Reo.

Tool support

Tool support is crucial for all formal and informal modeling approaches. The verifica-
tion techniques presented in this thesis are all implemented based on existing model
checking tools. To provide a uniform development framework, an integrated environ-
ment for modeling and analysis of Reo connectors based on the Eclipse platform [35]
has been implemented and is discussed in this thesis.

1.6 Thesis overview and contributions

We now give an overview of the contents of this thesis and sketch our contributions.

Chapter 2. In this chapter, we give an overview of the channel-based coordination
language Reo and, in its second part, introduce the Eclipse Coordination Tools
(ECT): a graphical development environment for Reo that has been imple-
mented in the context of this thesis.

Chapter 3. In this chapter, we recall the constraint automata semantics for Reo and
introduce port automata as an abstraction of constraint automata. We present a
decomposition scheme for port automata which can be used for synthesis of Reo
connectors. We then discuss a framework for automata-based models in ECT.

The decomposition scheme in this chapter is based on [90].

Chapter 4. In this chapter, we introduce an approach for model checking of Reo
connectors using the behavioral specification language mCRL2 [49], based on
the automata semantics presented in Chapter 3. Moreover, we give an overview
of the verification tools available in ECT.

The mCRL2-based verification approach in this chapter is based on [65, 62,
63, 64]. The author of this thesis further contributed to two approaches for
stochastic analysis in Reo, respectively based on so-called stochastic Reo au-
tomata [75, 74] and discrete event simulation [106]. Furthermore, the author
contributed to a paper that shows that context-dependency in Reo can be en-
coded in basic two-color models (cf. [55]). We give an overview of this and
related work.

Chapter 5. In this chapter, we present an approach for modeling and verification
of dynamically reconfigurable connectors using the theory of algebraic graph

6 Chapter 1. Introduction

transformation. Thus, we drop the restriction to static connectors which was
necessary for the verification approach in Chapter 4. To this end, we use the
AGG [87] and Henshin [6] tools, and furthermore exploit validation using
mCRL2 [49], CADP [43], PRISM [67] and OCL [76]. We consider behavioral,
structural, as well as quantitative analysis of dynamic reconfigurations.

The material on modeling and verification of dynamic reconfigurations in this
chapter is based on [98]. The Henshin transformation language and toolset
used in this chapter were introduced in [6]. Additional work by the author of
this thesis related to reconfiguration in Reo can be found in [91, 92, 93].

Chapter 6. In this chapter, we extend the modeling approach of Chapter 5 to dis-
tributed environments. Specifically, we show how to realize reconfiguration of
distributed Reo connectors based on the theory of distributed graph transfor-
mation. Moreover, we show in this chapter that the flattening operation of dis-
tributed graphs is compositional.

The distributed reconfiguration approach in this chapter is based on [89]. The
compositionality of the flattening functor was shown (among other things)
in [96].

Chapter 7. In this chapter, we introduce distributed port automata, which integrate
the automata based semantics in Chapter 3 and the graph transformation based
approach for reconfiguration in Chapter 5. We show compositionality of the
semantics of distributed port automata using a theorem for the flattening oper-
ation of distributed graphs presented in Chapter 6. The approach in this chapter
has applications in the area of dynamic reconfiguration. Specifically, it allows to
reason about the problems of state transfer and state consistency.

The results in this chapter are a generalization of the tailored approach in [95]
and were first presented in [96].

Chapter 8 contains concluding remarks and future directions.

Chapter 2

Channel-based coordination with Reo

In this chapter, we recall the most important features and concepts of the coordination
language Reo and give an introduction to the Eclipse Coordination Tools (ECT), which
is an integrated development environment for Reo that has been implemented in the
context of this thesis.

2.1 The Reo coordination language

The coordination paradigm [44] proposes to divide software systems into two orthog-
onal aspects:

(i) the computation performed by a set of autonomous components or services, and

(ii) their coordination using some kind of ‘glue code’.

Reo [1] is a channel-based coordination language that provides means to construct
such glue code. Coordination in Reo is performed using circuit-like connectors which
are built out of primitive channels and nodes. These connectors coordinate compo-
nents or services from outside and without their knowledge, which is also referred to
as exogenous coordination. Reo connectors define and implement the allowed interac-
tions between the active entities in a network by means of communication protocols.
This includes aspects of concurrency, buffering, ordering, data flow and manipulation.

In the following, we recall the basic notions of Reo and give some introductory
examples.

2.1.1 Channels

Channels in Reo are entities that have exactly two ends, which can be either source
or sink ends. Source ends accept data into, and sink ends dispense data out of their
channels. Reo allows directed channels as well as so-called drain and spout channels,
which have respectively two source and two sink ends. Channels impose constraints
on the data flow at their ends. In particular, they can synchronize or mutually exclude

7

8 Chapter 2. Channel-based coordination with Reo

Sync LossySync SyncDrain AsyncDrain FIFO1 Filter Transform

Table 2.1: graphical notations of some basic Reo channels

data flow, provide buffers or apply data transformations. Although channels can be
defined by users in Reo, a set of basic channels suffices to implement rather complex
coordination patterns.

A set of commonly used channels is summarized in Table 2.1. The Sync channel
consumes data items at its source end and dispenses them at its sink end. The I/O
operations are performed synchronously and without any buffering. Consequently,
the channel blocks if the party at the sink end is not ready to receive any data. The
LossySync channel behaves in the same way, except that it does not block the party at
its source end. Instead, the data item is consumed and destroyed by the channel if the
receiver is not ready to accept it. The SyncDrain channel is also a synchronous channel,
but it differs in the fact that it has two source ends through which it consumes and
destroys data items synchronously. Complementarily, the AsyncDrain consumes a data
item from only one of its source ends and can therefore be used to realize a mutual
exclusion. None of the channels considered so far buffer data items. Buffering can be
implemented using the FIFO1 channel, which is a directed, asynchronous channel with
a buffer of size one. The Filter channel uses a data constraint, e.g. a regular expression,
to decide whether a data item should be passed to the sink end or destroyed by the
channel. Finally, the Transform channel applies a function to all data items and can
therefore be used for data conversion.

2.1.2 Nodes

To construct connectors, channels can be joined together using nodes. A node can be
of one out of three types: source, sink or mixed, depending on whether all coinciding
channel ends are source ends, sink ends or a combination of both. Source and sink
nodes together form the boundary of a connector, allowing interaction with its en-
vironment. A source node acts as a synchronous replicator, i.e., it atomically copies
incoming data items to all of its outgoing source ends. On the other hand, a sink node
acts as a non-deterministic merger, i.e., it randomly chooses a data item from one of
the sink ends for delivery to its connected component. Mixed nodes combine both be-
haviors by atomically consuming a data item from one sink end and replicating it to
all source ends. This can be seen as a 1:n synchronization, as opposed to 1:1 synchro-
nizations (Milner style), or synchronizations of all coinciding channel ends (Hoare
style). It is also important to stress that nodes do not perform any buffering. As a con-
sequence, synchrony propagates through connectors, e.g. an arbitrarily long sequence
of Sync channels has the same qualitative behavior as a single Sync channel.

2.1. The Reo coordination language 9

2.1.3 Components

We use the term component for an active entity with a fixed interface that consists of a
number of source and sink ends. Therefore, components can be seen as a generaliza-
tion of channels where the requirement of having exactly two ends is dropped. The
difference between channels and components is somewhat similar to the step from
edges to hyperedges in graph theory. We refer to channels and components commonly
as primitives.

Regarding the behavior of components, we often interpret them as black boxes,
i.e., we do not make any assumptions about their behavior. However, for analysis it is
often beneficial to take into account the behavior of components as well, e.g. to detect
potential deadlocks or to validate temporal properties. For this purpose, we allow a
component to be annotated with a specification that reflects its semantics. In general,
we do not constrain the specification format. In practice, we mostly choose formal
specification formats that can be used either for analysis or execution. The formats
supported by our tools are discussed in detail in Section 2.2.3.

As the most basic examples of components we often consider simple Writers and
Readers, which have respectively a single sink and a single source end through which
they write and read data items. We allow these components to delay the data flow,
e.g. Writers can provide no data items and Readers may refuse to accept data items.
We do not make any fairness assumption in this context.

2.1.4 Connectors and networks

As elucidated above, channels and nodes can be used to construct connectors, which
have a well-defined interface, i.e., their set of source and sink nodes. A connector can
be considered as an open system, in that it offers interaction points to its environment
which is not further specified. However, for analysis it is often beneficial to also have
the knowledge of the components that are coordinated by the connector. We refer to
a system of components and connectors without any dangling interfaces as a network,
which contrary to connectors are closed systems where all constituents are known a
priori. In the following, we discuss three example networks.

REMARK 2.1 (boundary nodes). For clarity, we depict boundary nodes as open circles
and mixed nodes as filled circles in all diagrams. 5

EXAMPLE 2.2 (exclusive router). Figure 2.1 shows a network containing three simple
Writer and Reader components, which are coordinated by a connector called exclusive
router (cf. [10]). This connector routes data items synchronously from the Writer to
exactly one of the two Readers. If both of them are ready to accept data, the choice
of where the data item goes is made non-deterministically. This is due to the fact that
node D merges its inputs without priority, i.e., exactly one of the Sync channels is ac-
tivated, the data item on the active side is replicated to the corresponding Reader and
the data item on the other side is destroyed by its LossySync. Note that this connector
never loses data items. 4

10 Chapter 2. Channel-based coordination with Reo

Figure 2.1: example network: exclusive router

EXAMPLE 2.3 (ordering). Figure 2.2 shows a network of two Writers, one Reader and
a connector referred to as ordering or alternator (cf. [1]). This connector enforces an
ordered output of the data items provided by the two Writers. The SyncDrain is used to
synchronize the inputs. The FIFO1 stores the data item from B and makes it available
in the next execution step. Since the FIFO1 cannot store more than one data item, a
stored data item has to be released first before new data items can be read. This way,
an alternating output is guaranteed. 4

Figure 2.2: example network: ordering

EXAMPLE 2.4 (instant messenger). Figure 2.3 depicts three variations of a simple
instant messenger application. Two Client components exchange messages via a con-
nector. In variant 2.3a messages are simply exchanged using two buffered channels,
in this case two FIFO1 channels. In variant 2.3b an additional SyncDrain is used to en-
sure that message retrievals are synchronized, i.e., one client may receive a message
only if it also sends one to the other client. Finally, variant 2.3c shows a case where
the clients get –as an acknowledgment– a copy of their own message when the other
client has successfully received it. 4

2.1. The Reo coordination language 11

(a) simple message passing using FIFO1 buffers

(b) synchronized message retrieval

(c) messenger with automatic acknowledgments

Figure 2.3: example network: instant messenger

The above examples show how various coordination patterns can be achieved in
Reo with a small set of primitive channels. Note also that data dependencies and ma-
nipulations can also be directly modeled in Reo using Filter and Transform channels.
Furthermore, there also exist channels for modeling context and time-dependent be-
havior in Reo. An example of a context-dependent channel is the LossySync which
loses data items only when the party at its sink end is not ready to accept data
(see [26, 64]). Timed behavior on the other hand can be modeled using the Timer
channel (see [2, 63]).

An important aspect of Reo’s approach to component coordination is that the coor-
dinated entities are unaware of their environment and that the coordination protocols
are enforced by the connector from outside of the components. This enables a clear
separation of concerns between (i) the computation performed by the components
and (ii) their exogenous coordination realized by the connectors.

In the following section we introduce the Eclipse Coordination Tools (ECT), which
is a comprehensive and extensible implementation of Reo in the Eclipse development
environment.

12 Chapter 2. Channel-based coordination with Reo

2.2 The Eclipse Coordination Tools

The Eclipse Coordination Tools (ECT) is a set of integrated plug-ins for the Eclipse
platform, which offer a graphical development environment for the specification,
analysis and execution of component-based software systems using the coordination
language Reo. Among other applications, the ECT have been used in the EU projects
Credo [30, 48] and COMPAS [27]. The features of ECT can be summarized as follows:

• graphical definition of connectors and networks with hierarchical structuring,

• definition of user-defined component and channel types,

• automatic generation of connector and network semantics,

• reusability of components and connectors using libraries,

• definition and execution of reconfigurations,

• code generation and deployment onto a distributed execution engine,

• qualitative analysis using model checking and animation,

• performance evaluation using stochastic model checking and simulation.

Figure 2.4 depicts the Eclipse environment with a typical ECT set-up. In the follow-
ing, we give an overview of the toolset as a whole and discuss its architecture, the
underlying models and some of its design principles.

Figure 2.4: editing and analyzing Reo connectors in ECT

2.2. The Eclipse Coordination Tools 13

2.2.1 Tools overview

Since ECT contains a large variety of different tools implemented by a number of
programmers at the CWI and other research institutes, we give here an overview of
the toolset as a whole and describe the functionalities of the different tools. Some of
the tools will be discussed in more detail later. For the rest we give references here
for further reading.

Graphical Reo editor

The top-left part of Figure 2.4 shows the graphical Reo editor which supports the basic
channel types from Table 2.1. The editor has been implemented using the Graphical
Modeling Framework (GMF) and is based on the Reo meta-model which is defined
using the Eclipse Modeling Framework (EMF). We discuss the Reo meta-model in
detail in Section 2.2.2. The Reo meta-model and the graphical editor were written
the author of this thesis.

Animation tool

The tool on the right-hand side of Figure 2.4 is the animation tool which can be used
to generate Adobe R Flash R animations of Reo networks on-the-fly. The animation
tool is integrated into the graphical Reo editor and provides a quick and intuitive way
of simulating connectors and networks. The tool is based on the animation seman-
tics introduced by Costa et al. [29], which can be seen as an extension of the Reo’s
coloring semantics [26] (see also Section 4.3.3) with data flow actions. These ani-
mations essentially visualize the token game in Reo connectors. Figure 2.5 shows the
animation tool in more detail. The coloring and animation semantics, as well as the
animation tool itself have been implemented by the author of this thesis.

Figure 2.5: the messenger network animated using the ECT animation tool

14 Chapter 2. Channel-based coordination with Reo

mCRL2 conversion tool

The bottom part in Figure 2.4 is the mCRL2 [49] conversion tool used for model
checking in ECT. While the animation tool gives an intuition about the behavior of a
network, the mCRL2 converter can be used to do formal verification based on model
checking and state space visualization. The tool is based on an encoding of Reo in the
mCRL2 specification language, which we discuss in detail in Chapter 4. Note that the
mCRL2 converter can handle data-, context- and time-dependent behavior, which is
to the best of our knowledge not provided by any other comparable tool. Note also
that the mCRL2 specifications are automatically derived from Reo models specified in
the graphical Reo editor in ECT. The mCRL2 converter was written by the author of
this thesis.

The Extensible Automata (EA) framework

A large number of semantical models exist for Reo and most of them are automata
models. ECT therefore contains the Extensible Automata (EA) framework which pro-
vides a unified framework for deriving automata-based models from Reo. The frame-
work contains a graphical automata editor and can also be used outside of the context
of Reo. We discuss the EA framework in detail in Section 3.3. The following persons
have made contribution to the EA framework: Stephanie Kemper, Ziyan Maraikar,
Young-Joo Moon and the author of this thesis.

Stochastic modeling and analysis

For performance evaluation, there are two tools available in ECT. On the one hand
there is a tool that generates automata models with stochastic information from
graphical Reo models. These so-called quantitative intensional automata (QIA) can
be used to generate Continuous Time Markov Chains (CTMCs) which can then be
fed into the PRISM model checker [67] for further analysis. This approach has been
developed and implemented by Young-Joo Moon within the EA framework discussed
above. An alternative approach for stochastic analysis is based on a simulator for Reo.
Similar to the animation tool, the simulator is based on Reo’s coloring semantics [26].
This approach has been implemented by Oscar Kanters in his Master’s thesis [56]. We
give a more detailed overview of both tools in Section 4.4.

Execution engines

Currently there exist two implementations for executing Reo connectors. On the one
hand, a code generation framework and runtime based on constrained automata (see
Section 3.1) can be used to derive centralized implementations of Reo. This approach
was implemented by Ziyan Maraikar and is further discussed in Section 3.3.5. Related
to this implementation, the ReoLive web service discussed in Section 5.5 provides a
dynamically reconfigurable implementation of Reo using standard web service tech-

2.2. The Eclipse Coordination Tools 15

nologies, on top of a centralized constraint automata based coordinator implementa-
tion. This engine for Reo was written by Ziyan Maraikar and the author of this thesis.

An alternative approach is provided by the distributed engine written by José
Proença, for which we refer to [83] for more details.

Conversion tools

Reo can serve as a formal basis of other high-level modeling languages, too. ECT
therefore contains conversion tools from various modeling languages to Reo. Most im-
portantly, conversion from BPEL, BPMN, and UML2 sequence diagrams is supported.
For more information we refer to [24]. The conversion tools have been developed by
Behnaz Changizi in the context of the EU COMPAS project [27].

Vereofy

The Vereofy tool [105] provides a powerful means for model checking Reo connec-
tors. Vereofy is developed by the group of Christel Baier at the Technical University of
Dresden. Vereofy is a standalone tool and not part of ECT. However, it includes also
an integration with ECT and can therefore be used directly within ECT. We discuss
some of the unique features of Vereofy in Section 4.4.2.

In the next part of this section we introduce the Reo meta-model. It not only forms
the core of ECT, but also provides a formal view on the underlying structural models.

2.2.2 The Reo meta-model

Following the model-driven approach to software engineering, we have defined and
implemented Reo based on a meta-model. We used the Eclipse Modeling Framework
(EMF) [40], which is the standard modeling framework in Eclipse, offering powerful
code generation and runtime based on purely structural meta-models. The core of the
Reo meta-model is depicted in Figure 2.6. The shown classes and interfaces are part
of the package cwi.reo. For brevity, multiplicities of associations are omitted if they
are 0..1. In the following, we explain the Reo meta-model in detail.

Core package

The abstract class Composite represents a collection of connectors. There are two con-
crete implementations of this class: Module and Network. Both of these classes have
references to Component and Connector. However, these references are of contain-
ment type for modules, but not for networks. Modules serve indeed as containers for
components and connectors and usually correspond one-to-one with Reo files. Net-
works on the other hand are runtime objects which describe an interconnected graph
of connectors and components. Its method update() is used to compute the transitive
closure of the current contents of a Network. Note that a module can include multi-
ple, logically disconnected networks and vice versa, a network can span over multiple

16 Chapter 2. Channel-based coordination with Reo

Figure 2.6: Reo meta-model, package cwi.reo

2.2. The Eclipse Coordination Tools 17

modules and hence multiple files. Thus, a module serves as a mere container object,
whereas a network describes a closed, transient system that can be used for execution
and analysis.

The class Connector represents a collection of nodes and primitives (channels or
internal components). The class Component is a concrete implementation of the ab-
stract class Primitive. Connectors are essentially containers for nodes and primitives
and can be nested using the containment reference subConnectors. On the bottom of
Figure 2.6 the abstract class PrimitiveEnd together with its concretizations SourceEnd
and SinkEnd are shown. Primitive ends serve as connection points between primitives
and nodes. A primitive end contains a reference to at most one node and at most one
primitive. As indicated by its name, a primitive end always belongs to a primitive,
never to a node. This is witnessed by the fact that the associations from Primitive to
SourceEnd and SinkEnd are containments. Thus, the ends of a primitive can be seen as
its public interface. Most types of primitives have a fixed interface, which can be ini-
tialized using the method initializeEnds(). The method isConnected() checks whether
all ends of this primitive are connected to a node. The method disconnectEnds() can
be used to disconnect the primitive from all its adjacent nodes.

For nodes it can be checked whether they are source, sink or mixed nodes. We con-
sider nodes as source nodes if they are not connected to a sink end, or if the sink end
belongs to an external component, and analogously for sink nodes. Moreover, nodes
have a type attribute, which can have the values REPLICATE, ROUTE or JOIN. The
first one of these represents Reo’s default merger-replicator semantics of nodes. The
second type models an exclusive router, i.e., incoming data items are merged and
non-deterministically routed to one of the outgoing ends. The third type of node joins
the inputs of all incoming ends into a tuple and forwards it to one of the outgoing
ends. From a mere synchronization point of view, join nodes are the dual of the de-
fault node semantics of Reo. Nodes and primitives implement the common interface
Connectable, which can be used to access the source and sink ends of an entity, re-
gardless of whether it is a node or a primitive. This interface also contains a method
for accessing all primitive ends together. Primitive ends, nodes, components and mod-
ules all implement the interface Nameable which can be used to assign names to these
entities. Primitives also have a name attribute, but it is derived and can be accessed
only using the method getName().

The interface CustomPrimitive indicates that a primitive is user-defined. This can
include its interface (source and sink ends), as well as its semantics. Custom prim-
itives are dynamic entities and can be either defined inline or by reference. We dis-
cuss custom primitives in detail in Section 2.2.3. The interface PropertyHolder is not
shown for clarity in the diagram in Figure 2.6. This interface is implemented by all
important classes, including Module, Connector, Primitive, Node and PrimitiveEnd. It
can be used to annotate entities with simple key-value pairs, which for instance can
be used to associate semantics to a component or to supply information needed for
code generation.

18 Chapter 2. Channel-based coordination with Reo

Figure 2.7: Reo meta-model, package cwi.reo.channels

2.2. The Eclipse Coordination Tools 19

Channels package

Channels are defined in the package cwi.reo.channels, which is depicted in Figure 2.7.
The abstract class Channel extends Primitive and defines two references to Primi-
tiveEnd, representing the two channel ends of the channel. Note that these refer-
ences specialize the sourceEnds and sinkEnds containment references in Primitive. The
channel class is further specialized into the abstract classes DirectedChannel, Drain-
Channel and SpoutChannel, which define references to SourceEnd and SinkEnd which
further specialize the aforementioned references to PrimitiveEnd.

The bottom of Figure 2.7 contains the concrete implementations of the three basic
channel types, including all channels from Table 2.1. It also defines three concrete
classes for custom channels, which all implement CustomPrimitive. Just like compo-
nents, custom channels can be used to define new types of primitives.

2.2.3 Custom primitives in ECT

The pre-defined channel types provide a rich framework for defining complex connec-
tors and communication protocols, including synchrony and asynchrony, buffering,
sorting, data manipulation, and data and time-dependent behavior. Moreover, the
Reo meta-model allows horizontal and hierarchical structuring of connectors. How-
ever, for a true modularization already defined functionalities should be reusable in a
different context, without copying the underlying connectors. Moreover, for full flex-
ibility, users should be allowed to define their own components and channel types
from scratch or using existing artifacts. Both aspects are supported by ECT using the
concept of custom primitives.

Custom primitives are ordinary primitives that additionally implement the inter-
face CustomPrimitive and that can be annotated with semantical information. Con-
crete classes for custom primitives are Component, CustomDirectedChannel, Cus-
tomDrainChannel and CustomSpoutChannel. For the latter three, the interface is fixed,
whereas a component may have an arbitrary number of source and sink ends.

Semantical annotations for custom primitives

The semantics for normal primitives is fixed already at compile time. For custom prim-
itives, semantics can be defined at runtime by annotating the component or custom
channel with behavioral specifications. The format of the specification is not fixed.
Currently supported formats are:

• coloring tables and animation specifications,

• constraint automata (Section 3.1),

• mCRL2 specifications (Section 4.2), and

• RSL and CARML code using the Vereofy plug-in [7, 8] (Section 4.4.2).

For a given custom primitive, multiple specifications in different formats can be made.
Because of the different types of semantics and expressiveness, consistency between

20 Chapter 2. Channel-based coordination with Reo

Figure 2.8: deriving components from connectors in ECT

the specifications has to be ensured by the user. However, conversion from constraint
automata into the coloring model with two colors has been implemented and can be
used to generate animations on-the-fly, without specifying an animation semantics.

Deriving custom primitives from connectors

A typical task is to generate a component or a custom channel from a given Reo
connector. The idea is to derive a custom primitive with the same interface and the
same behavior as the connector. In ECT, this functionality has been implemented in
an extensible framework and can be invoked directly in the graphical Reo editor. Fig-
ure 2.8 depicts an example where a connector called Valve in the top-left part of the
editor has been converted to a component with the same interface in the top-right
part. Moreover, the derived component contains semantical annotations that describe
its behavior, e.g. in terms of an animation specification as shown in the bottom of Fig-
ure 2.8. To generate these behavioral descriptions automatically, for every semantical
specification format there exists a so-called textual semantics provider, which is regis-
tered in the runtime of ECT. The conversion from a connector to a custom primitive
is then performed in three steps:

(i) instantiate a custom primitive with the same interface as the given connector,

(ii) invoke all semantics providers to generate textual representations of the con-
nectors semantics, and

2.2. The Eclipse Coordination Tools 21

(iii) annotate the new custom primitive with the generated specifications.

In this way, new custom primitives can be obtained from existing ones in a modular
way. Note that in step (ii), providers may have to incorporate behavioral specifications
of other custom primitives. The above scheme has been fully implemented for coloring
tables and animation specifications, as well as constraint automata.

Converting a connector into a primitive using the above scheme always produces
a self-contained entity which has no relationship to the original connector anymore.
The behavioral specifications are bound to that particular primitive since they are
directly attached as annotations. Custom primitives derived or directly specified in
this way are therefore called inline primitives. Note that inline primitives can also be
defined from scratch.

Custom primitives with type references

A complementary approach is to define the semantics of a primitive by reference. In
ECT, custom primitives have an attribute called type URI, which can be used for this
very purpose. Using this property, primitives can be defined externally and reused
without copying them. A custom primitive with a set type URI essentially serves as
a stub that can be resolved to an inline primitive, which in turn can be used for
analysis and execution. The resolution of custom primitives is implemented using
a lazy loading scheme: the primitive is resolved only when necessary. This strategy
saves resources and can in fact be found everywhere in the Eclipse platform, e.g. in
the proxy concept of EMF, where a proxy object is resolved when its contents are
accessed for the first time.

The content type of the artifact located at the type URI is not fixed. It can be one of
the above mentioned specification formats, but also a Reo artifact itself. In the latter
case, the URI must point to a Reo file and include a unique identifier in that file. This
identifier can be the name of a primitive or a connector. If it is a primitive, the stub is
simply resolved to that primitive. If it is a connector, the connector is first converted
into a primitive, as described above, and then this derived primitive is used. Note that
this is done on demand, as opposed to the inline approach.

EXAMPLE 2.5 (Components with type references). Figure 2.9 shows an example of
components with type references in the animation tool. The upper part contains a
connector called Counter. This connector has two source nodes increase and reset,
and one sink node count. It moreover contains nodes with exclusive router semantics
(cf. Example 2.2). The semantics of this connector can be described as follows: on
every second token at increase, a token is produced at count, unless there was a token
at reset before. This essentially models a 2-counter with reset.

The bottom part of Figure 2.9 shows a network that has been animated using
ECT’s animation tool. This network contains two components with type references,
i.e., they both contain a property ‘type=#Counter’. The value of this property is a rela-
tive URI pointing to an artifact with name Counter in the same Reo file. Thus, it refers
to the counter connector in the upper part. To compute an animation as shown in this

22 Chapter 2. Channel-based coordination with Reo

Figure 2.9: components with type references

example, the animation tool resolves the two components Counter1 and Counter2 to
the connector Counter and generates an animation based on the connector semantics.
Note that since this is a definition by reference, changes in Counter are immediatly re-
flected in the network semantics. In this particular example we have built a 4-counter
with reset using two 2-counters with reset. 4

Note that not only components but also custom channels can be used in such a way,
i.e., the semantics of a custom channel can be defined using a connector. The con-
cept of textual semantics providers in ECT, moreover, allows to use arbitrary formats
for the specification of custom primitives. Currently implemented semantics providers
support the definition of custom primitives using Reo artifacts (components or con-
nectors), constraint automata, and CARML and RSL code using the Vereofy plug-
in [105]. Note also that since the type reference is given in terms of a URI, virtu-
ally arbitrary locations can be used to store definitions. For instance, it is possible
to directly access Reo artifacts located on websites using http-URIs. Thus, type refer-
ences can be used to associate behavior to black-boxed components in a modular and
reusable way. This is in particular useful for defining and structuring large networks.

2.3. Conclusions 23

2.3 Conclusions

Reo is an expressive coordination language offering the possibility of defining cus-
tom channels and components with potentially data-, context- and time-dependent
behavior. Extensive tool support for Reo is provided in the Eclipse Coordination Tools
(ECT). In ECT, connectors can be used directly or as black-boxes for the definition
of components and channels, providing a powerful abstraction mechanism. Further-
more, connectors can be structured hierarchically and reused in other contexts. Cus-
tom primitives, i.e., user-defined channels and components may be defined inline or
by reference. Multiple formats for the specification of primitives are supported using
a modular and extensible specification framework in ECT. Moreover, the animation
tool in ECT provides means for visualizing network and connector behavior in an in-
tuitive way. Note also that many other extensions and tools exist for formal analysis
and execution of Reo models, which we will present in more detail later.

Chapter 3

Automata-based semantics for Reo

In this chapter, we discuss two automata-based semantics for Reo which will serve
as the basis for the verification approach in Chapter 4. We first recall constraint au-
tomata as one of the standard semantics for Reo. We then introduce port automata as
an abstraction of constraint automata and present a decomposition scheme for it. Fi-
nally, we discuss an extensible implementation for automata-based semantics in ECT,
including conversion from Reo to various automata types, and an automata-based,
centralized execution engine for Reo.

3.1 Constraint and port automata

The use of an automata-based semantics for Reo is motivated by the fact that con-
nectors in general are stateful entities and their behavior can be expressed in terms
of data flow events on their ports1. Somewhat similar to Petri nets, Reo allows true
concurrency, i.e., multiple ports can fire together synchronously, as opposed to merely
interleaved semantics. However, since Reo is a data flow oriented model, an explicit
handling of data dependencies and transformations is also required.

Constraint automata [10] are a widely used semantical model for Reo, which
capture the most important aspects of channels and connectors, i.e., synchrony vs.
asynchrony, state, and data constraints. The constraint automata model is, moreover,
compositional, in the sense that it comes equipped with well-behaved product and
hiding operators.

Regarding their use in tools, constraint automata form the basis for a centralized
execution engine, as we discuss in Section 3.3.5. Furthermore, there exist three anal-
ysis tools that internally use or encode constraint automata:

• the mCRL2 converter (Section 4.4.1),

• the Vereofy model checker (Section 4.4.2), and

• an analysis tool based on symbolic execution [82].

1 We use the term port as a synonym for primitive ends in semantical settings.

25

26 Chapter 3. Automata-based semantics for Reo

3.1.1 Definition

Before giving the formal definition of constraint automata, we first need to recall
the language for data constraints to be used. Given a finite set of port names N =
{A1, . . . , An} and a finite data domain Data = {d1, . . . dm}. The language of data con-
straints DC(N , Data), or just DC for short, is defined using the following grammar:

g ::= ⊥ | > | data(A) = d | g1 ∨ g2 | g1 ∧ g2

where data: N → Data is a partial data-assignment function. Following the notation
of [10], we often abbreviate data(A) as dA and write expressions like dA = dB for

∨

d∈Data

(data(A) = d ∧ data(B) = d) .

We now formally define constraint automata, as introduced in [10].

DEFINITION 3.1 (constraint automaton). Given a finite data domain Data. A con-
straint automaton CA= (Q, N , T, q0) consists of a set of states Q, a set of port names N ,
a transition relation T ⊆Q× 2N ×DC(N , Data)×Q, and an initial state q0 ∈Q. ◊

We usually write transitions as p
S,g
−→ q with p, q ∈ Q source and target states, S ⊆ N

the set of synchronously firing ports, and g the enabled data constraint or guard. We
require that guards refer to firing ports only, i.e., g ∈ DC(S, Data).

The constraint automata for the basic channels are summarized in Table 3.1.
Note that we also include two primitives each with three ports: the Merger and the
Replicator. They can be used to compositionally construct the behavior of nodes (cf. [26]).
Note also that the constraint automaton for the FIFO1 is with respect to the data do-
main Data= {0, 1} and that it can be adapted for any other finite data domain.

3.1.2 Join and hiding operations

In the following, we recall the join operator for constraint automata, which is the
most important ingredient for the compositionality of the constraint automata model.

DEFINITION 3.2 (join of constraint automata). Given two constraint automata CA1 =
(Q1, N1, T1, q1

0) and CA2 = (Q2, N2, T2, q2
0). The constraint automaton CA1 ./ CA2 is de-

fined as:
CA1 ./ CA2 =

�

Q1 ×Q2, N1 ∪ N2, T, 〈q1
0, q2

0〉
�

where the transition relation T is defined by the following rules:

q1
S1,g1−−→1p1 S1 ∩ N2 = ;

〈q1, q2〉
S1,g1−−→ 〈p1, q2〉

q2
S2,g2−−→1p2 S2 ∩ N1 = ;

〈q1, q2〉
S2,g2−−→ 〈q1, p2〉

(3.1)

q1
S1,g1−−→1p1 q2

S2,g2−−→1p2 S1 ∩ N2 = S2 ∩ N1

〈q1, q2〉
S1∪S2,g1∧g2−−−−−−→ 〈p1, p2〉

(3.2)

◊

3.1. Constraint and port automata 27

While rules (3.1) describe an interleaving of actions, rule (3.2) models a synchronous
and hence truly concurrent firing of ports. Note that, for applying any of the rules,
every port shared by the two automata must be either enabled or disabled in both
transitions, as captured by the condition S1 ∩ N2 = S2 ∩ N1.

Another important operation for constraint automata is hiding, which intuitively
removes all occurrences of a set of given port names from the automaton.

DEFINITION 3.3 (hiding for constraint automata). Let CA = (Q, N , T, q0) be a con-
straint automaton and M ⊆ N . The constraint automaton CA\M is defined by CA\M =
(Q, N\M , T1, q0) where T1 is given by:

q
S,g
−→ p ⇔ q

S\M ,g\M
−−−−−→1 p ◊

Note that g\M is the guard where every term in g that involves a port in M is re-
placed by true. We mention also that our notion of hiding is simpler than the one used
in [10] and that it may lead to τ-steps, modeling internal behavior. For examples of
applications of the join and hiding operators we refer to [10].

3.1.3 Bisimulation

To reason about constructions we further need a notion of behavioral equivalence
for constraint automata. Again, we follow [10] and use strong bisimulation [71] as
behavioral equivalence. In essence, two states in the same or in two different au-
tomata or labeled transition systems are bisimilar if they cannot be distinguished by
an external observer.

DEFINITION 3.4 (constraint automata bisimulation). Let CA1 = (Q1, N , T1, q1
0) and

CA2 = (Q2, N , T2, q2
0) be two constraint automata. A relation R ⊆ Q1 ×Q2 is called a

bisimulation if for all 〈q1, q2〉 ∈ R:

(i) if q1
S,g1−−→1p1 then there exists p2 ∈Q2 and q2

S,g2−−→2p2 with g1 ≡ g2 and 〈p1, p2〉 ∈ R,

(ii) if q2
S,g2−−→2p2 then there exists p1 ∈Q1 and q1

S,g1−−→1p1 with g1 ≡ g2 and 〈p1, p2〉 ∈ R.

Two states q1 ∈ Q1, q2 ∈ Q2 are called bisimilar, written as q1 ∼ q2, if there exists
a bisimulation R with 〈q1, q2〉 ∈ R. The two constraint automata CA1 and CA2 are
bisimilar, written as CA1 ∼ CA2, if q1

0 ∼ q2
0. ◊

Bisimilarity of constraint automata qualifies as a notion for behavioral equivalence
since it is a congruence for join and hiding, as summarized in the following lemma.

LEMMA 3.5. Bisimilarity is a congruence for the join and hiding operators:

(i) CA1∼ CA2 and CA′1∼ CA′2 ⇒
�

CA1./ CA′1
�

∼
�

CA2./ CA′2
�

.

(ii) CA1∼ CA2 ⇒
�

CA1\M
�

∼
�

CA2\M
�

.

28 Chapter 3. Automata-based semantics for Reo

PROOF. For showing (i) we observe that the relation
¬¬

q1, q′1
¶

,
¬

q2, q′2
¶¶

∈ R ⇔ q1 ∼ q2 and q′1 ∼ q′2

defines a bisimulation on the joined automata. For (ii) it suffices to show that a bisim-
ulation remains a bisimulation after a removal of ports. �

3.1.4 Port automata

Constraint automata are an expressive model for capturing data flow dependencies.
However, to allow an easier way of reasoning we introduce an abstraction where data
constraints are omitted. To avoid confusion, we explicitly call these automata port
automata.

DEFINITION 3.6 (port automaton). A constraint automaton CA = (Q, N , T, q0) is also

called a port automaton if for every transition q
S,g
−→ p it holds that g ≡>. ◊

Join, hiding and bisimulation are inherited from constraint automata and it is easy to
show that port automata form a closed subclass of constraint automata, as stated in
the following, trivially provable, lemma.

LEMMA 3.7. Port automata are closed under join, hiding and bisimilarity. �

Because of the suppressed guards, we use a slightly different set of primitives for
the port automata model. To distinguish them from the constraint automata in Fig-
ure 3.1 we use a different font for the name of primitives in the port automata model.
Figure 3.2 depicts a set of basic port automata.

Note that in the port automata setting, the channels Sync, SyncDrain and Transform
are modeled using the same automaton, i.e., Sync. Moreover, the Filter behaves like
a LossySync. We also introduce a new primitive, called XOR, which models both the
Merger and the exclusive router presented in Example 2.2. Finally, the FIFO1 channel
is reduced to the port automaton FIFO1 which has just two states, respectively mod-
eling that the FIFO1 is empty or full. Formally, this port automaton can be derived
from the corresponding constraint automaton in Table 3.1 by first setting all con-
straints to true and then minimizing it modulo bisimulation. Moreover, we introduce
a new primitive with four ports, called FlipFlop. This primitive can be interpreted as
a FIFO1 that can be tested for its current state using the additional ports C and D. As
we will show in the following section, the FlipFlop primitive arises as an intermediate
result of a decomposition scheme for port automata.

3.1. Constraint and port automata 29

Sync(A, B) = {A, B}
dA = dB

LossySync(A, B) =

{A, B}
dA = dB

{A}

SyncDrain(A, B) = {A, B} AsyncDrain(A, B) =
{A}

{B}

Filter(A, B) =

{A, B}
c(dA)∧ (dA = dB)

{A}
¬c(dA)

Transform(A, B) = {A, B}
dB = f (dA)

Merger(A, B, C) =

{A, C}
dA = dC

{B, C}
dB = dC

Replicator(A, B, C) = {A, B, C}
dA = dB = dC

FIFO1(A, B) =

{A}
dA = 0

{B}
dB = 0

{A}
dA = 1

{B}
dB = 1

Table 3.1: constraint automata for common primitives

Sync(A, B) = {A, B} LossySync(A, B) =
{A, B}

{A}

Async(A, B) =
{A}

{B}
XOR(A, B, C) =

{A, B}

{A, C}

FIFO1(A, B) =
{A}

{B}

FlipFlop(A, B, C , D) =
{A}

{B}

{C} {D}

Table 3.2: port automata for common primitives

30 Chapter 3. Automata-based semantics for Reo

3.1.5 From Reo to automata models

The constraint automata or port automata semantics of a Reo connector or network
is derived in two steps: (i) use the join operator to compose the automata of all prim-
itives, and (ii) remove internal ports using the hiding operator. Note that the result is
uniquely determined because the join operator is associative and commutative.

EXAMPLE 3.8 (port automaton for instant messenger). We consider the instant mes-
senger network depicted in Figure 3.1. For simplicity, we compute the port automaton
for the connector only, and omit the clients. Moreover, we do not model the Replicators
at the nodes X and Y explicitly, since the same effect can be achieved by using a sin-
gle port name for all coinciding channel ends. The Mergers at the nodes B and C
must be modeled explicitly though. We denote the incoming channel ends of these
Mergers by B1, B2 and C1, C2, respectively, and their outgoing ends by B and C . We can
now compute the port automaton for the complete connector by joining all primitive
port automata and hiding the internal port names. Formally, we construct the port
automaton as shown in Figure 3.2. The states in the resulting port automaton are a
combination of the states of the two involved FIFO1 buffers, e.g. states ee and ff are
the states in which both FIFO1 are respectively empty and full. 4

Figure 3.1: instant messenger network (see also Example 2.4)

Messenger(A, B, C , D) =

�

FIFO1(A, X) ./ FIFO1(D, Y)
./ Sync(X , C1) ./ Sync(X , B1)
./ Sync(Y, B2) ./ Sync(Y, C2)
./ XOR(B, B1, B2) ./ XOR(C , C1, C2)

�

\
�

X , Y, B1, B2, C1, C2
	

(a) construction

ee ef

fe ff

{D}

{A}

{B, C}

{B, C} {A}{B, C}

{D}

{B, C}

{A, D}

(b) result

Figure 3.2: deriving the port automaton for the instant messenger connector

3.2. Decomposition of port automata 31

3.2 Decomposition of port automata

For a compositional language such as Reo a natural question that arises is whether
there exists a finite set of primitives that, when composed in the right way, are expres-
sive enough to model any possible behavior. If yes, one may also ask for an efficient
synthesis algorithm that ideally yields a compact and human-readable system specifi-
cation. In this section, we show how an arbitrary port automaton can be decomposed
into a compact representation based on a finite set of of primitives and the join and
hiding operators. This decomposition is a tailor-made approach in which the port au-
tomata are examined directly. This has the advantage that the language generated by
an automaton does not have to be taken into account.

In the context of Reo, our result means that a finite number of channel types is suf-
ficient to implement every behavior expressible in port automata. Moreover, we show
that the decomposition yields a very compact representation of the system, which can
be easily extended to a connector synthesis algorithm. We propose a decomposition
scheme in two steps. First, we show how stateless port automata –port automata with
just one state– can be decomposed into XORs. In the second step, we consider the
full class of port automata and show how they can be efficiently decomposed using
just two primitives, i.e., XORs and FIFO1s.

3.2.1 Stateless port automata

In this part, we show how stateless port automata, i.e., port automata with just one
state, can be decomposed into a collection of XORs. As an example, consider the
following decompositions of some basic stateless port automata.

EXAMPLE 3.9 (stateless port automata decompositions).

LossySync(A, B) = XOR(A, B, X) \ {X }
Async(A, B) = XOR(X , A, B) \ {X }
Sync(A, B) =

�

XOR(A, X , Y) ./ XOR(B, X , Y)
�

\ {X , Y } 4

From these examples, it appears that the XOR is a possible candidate primitive for a
general decomposition scheme for stateless port automata. XORs can be composed in
multiple ways. To illustrate this, we use a connector-like notation in which XORs are
represented as , and hidden and normal ports are depicted by ◦ and •, respectively.
We distinguish two specific ways of composition, as shown in Figure 3.3.

Figure 3.3a shows how to build an n-ary XOR out of binary ones. This type of
composition essentially splits a transition with firing ports S∪{X } into two transitions
with respective firing sets S ∪

�

B2
	

and S ∪
�

B3
	

. This construction yields a mutual
exclusion of ports B2 and B3. In the following, we will use the notation XOR(A,B) to
describe an n-ary XOR with B=

�

B1, . . . , Bn
	

, which can be built in this way.
The second possibility of composing XORs is depicted in Figure 3.3b. This con-

struction uses the internal and mutually excluded ports to synchronize the external
ports. In this particular example, ports A and B can be activated only together, either

32 Chapter 3. Automata-based semantics for Reo

A
(a)

B1

X

B2

B3

A(b)

X

Y

B

Figure 3.3: two ways of composing XORs using join and hiding

via port X or Y . The resulting port automaton coincides with Sync(A, B), as shown in
Example 3.9. In the following, we show how these two simple constructions can be
used to build any stateless port automaton.

LEMMA 3.10 (decomposition of stateless port automata). Let PA = (
�

q
	

, N , T, q) be a
finite, stateless port automaton with N =

�

A1, . . . , An
	

and T =
�

〈q, S1, q〉, . . . , 〈q, Sm, q〉
	

.
Let D and X=

�

X1, . . . , Xm
	

be fresh port names and define for every A∈ N the set

XA =
§

X i ∈ X | ∃ (q
Si−→ q): A∈ Si

ª

Then the following equivalence holds:

PA ∼
�

XOR(D,X) ./ XOR(A1,XA1
) .// XOR(An,XAn

)
�

\ ({D} ∪X)

PROOF. The ports of the constructed automaton are the same as in PA, since D and
all ports in X are hidden. The constructed port automaton is also stateless. Moreover,

every new port X i ∈ X corresponds to the PA-transition q
Si−→ q in the following way:

A∈ Si ⇔ X i ∈ XA,

i.e., port X i is enabled exactly when all A ∈ Si are enabled. Hence, X i synchronizes
the ports in Si . Moreover, X i ∈ X can be enabled only if D is enabled and whenever D
is enabled exactly one X i ∈ X is enabled. Hence, no concurrent activation of the port
sets Si is possible. �

EXAMPLE 3.11 (stateless port automaton decomposition). Consider the following de-
composition of a stateless port automaton into XORs (again in connector notation):

{A}

{A, B}

{B}

∼
A

X1

X2

X3

B

D

3.2. Decomposition of port automata 33

There is a one-to-one correspondence between the created ports X=
�

X1, X2, X3
	

and
the transitions in the original automaton, i.e., X1 represents the transition {A}, X2 rep-
resents {A, B}, and finally X3 stands for the transition {B}. The XOR from D ensures
that no concurrent activation of these ports is possible. Formally, the automaton is
constructed as:
�

XOR(A,
�

X1, X2
	

) ./ XOR(B,
�

X2, X3
	

) ./ XOR(D,
�

X1, X2, X3
	

)
�

\
�

X1, X2, X3, D
	

4

We have seen that, using join and hiding, every stateless port automaton can be rep-
resented using (binary) XORs. In the following section we will extend this decompo-
sition to the full class of port automata.

3.2.2 General decomposition scheme

We consider now the full class of port automata and start again with an example.

EXAMPLE 3.12 (sequencer). The Sequencer (cf. [1]) is a connector that activates a
collection of ports A1, . . . , An sequentially, one after another. The corresponding port
automaton is given by:

q1 q2 q3 . . . qn

�

A1
	 �

A2
	 �

A3
	 �

An−1
	

�

An
	

If we would try to build a connector with this behavior, we could simply compose n
FIFO1 channels in a loop and make the last one full, i.e., it already carries a token
in the beginning. Intuitively, the token moves from one FIFO1 channel to another in
one step and starts from the beginning after n steps. In the port automata model,
the difference between empty and full FIFO1s is realized by switching the ports, so
that FIFO1(B, A) models a full FIFO1 from A to B. Hence, we can construct the n-ary
Sequencer in the port automata model as follows:

Sequencer(A1, . . . , An) = FIFO1(A1, A2) ./ FIFO1(A2, A3) ./ . . .

./ FIFO1(An−1, An) ./ FIFO1(A1, An)

where the last FIFO1 is full. Note that this construction also introduces some unreach-
able states which are not shown in the automaton above. 4

The general decomposition of an arbitrary port automaton involves the following
three steps, which do not change the behavior of the automaton, up to bisimilarity.
Step (i) removes all parallel transitions, and labels every transition uniquely. Step (ii)
breaks the resulting automaton into a product of port automata each containing not
more than two states and four transitions. There is only a finite number of such au-
tomata; we show that the largest of these, which we will call FlipFlop, suffices. Finally,
step (iii) reduces this automaton to XORs and FIFO1s, completing the decomposition
scheme.

34 Chapter 3. Automata-based semantics for Reo

Step (i) – Removing parallel transitions

Given an arbitrary port automaton PA, construct a new port automaton PA′ which has
the same number of states. For all parallel transitions between each pair of states:

q p· · ·

S1

Sn

in PA introduce a single transition q
{X }
−→ p in PA′ where X is a fresh port. The port set

of PA′ consists exactly of these ports: N ′ =
�

X1, . . . , Xm
	

. For X ∈ N ′ corresponding to
transitions with labels S1, . . . , Sn, construct the following stateless port automaton:

. . .
{X } ∪ S1

{X } ∪ Sn

Joining these stateless port automata with PA′ and hiding the newly introduced ports
yields the original automaton:

PA ∼
�

PA′ ./ PAX1
.// PAXm

�

\ N ′

up to a change of state names. The stateless automata PAX i
can be further decom-

posed into XORs, as described above. The automaton PA′ has the property that every
transition in it is labeled with a singleton port name set and every port name occurs
in exactly one transition (there is a one-to-one correspondence between transitions
and port names). We call an automaton with this property singleton port automaton.

Step (ii) – Splitting singleton port automata

Let PA = (Q, N , T, q0) be a singleton port automaton with more than 2 states. The
following steps decompose it into two singleton port automata, one with 2 states, the
other with d|Q|/2e states.

If the number of states in the automaton is odd, introduce an unreachable dummy
state to make the total number of states even. Let n be the new total number of states.
Now organize the states into a 2×(n/2) grid with dimensions {a, b} and {1,2, . . . , n/2},
where position (a, 1) is reserved for the initial state, and the remainder of the states
of PA are placed arbitrarily in the grid. Now construct two port automata:

PA1 =
�

{a, b} , N , T1, {a}
�

,

PA2 =
�

{1, . . . , n/2} , N , T2, {1}
�

using the following rule:

〈i, j〉
{X }
−→ 〈i′, j′〉 i, i′ ∈ {a, b} j, j′ ∈ {1, . . . , n}

i
{X }
−→1i′ j

{X }
−→2 j′

3.2. Decomposition of port automata 35

It is clear from the construction that PA ∼
�

PA1./ PA2
�

and that they are both again
singleton port automata.

By repeating this step one can decompose a singleton port automaton into a prod-
uct of singleton port automata with not more than two states. By applying step (i) to
these automata, the number of transitions can be reduced to at most four, since all
parallel transitions are removed. The largest of these two-state automata, i.e., the one
with four transitions coincides with the FlipFlop primitive (cf. Table 3.2). All other
possible port automata of this shape can be constructed by removing transitions from
this one. Transitions can be removed by first creating a new transition using an XOR

and then synchronizing it with the transition to be removed, as shown in the following
example.

EXAMPLE 3.13 (two-state port automaton decomposition).

{A}

{C} {D}

∼
�

FlipFlop(A, B, C , D) ./ XOR(A, A1, A2) ./ Sync(A2, B)
�

\
�

B, A1, A2
	

4

Hence, an arbitrary port automaton can be decomposed into FlipFlops and XORs
(the Sync can be replaced by two XORs, as shown in Example 3.9). Note also that
the number of required FlipFlops is dlog ne, where n is the number of states of the
original automaton to be decomposed. However, as the FlipFlop does not correspond
to a channel in Reo, we decompose it now further into ordinary FIFO1s.

Step (iii) – Removing self loops

The final decomposition step replaces all occurences of FlipFlops by ordinary FIFO1s.
In essence, the difference between the two is that FIFO1s have no self loop tran-
sitions. Figure 3.4 shows how to unroll such self loops, resulting in an automa-
ton with four states. A more general version of this automaton, where each transi-
tion is uniquely labeled, and its further decomposition are depicted in Figure 3.5.
The original can be regained by composing it with XOR(A, A1, A2), XOR(B, B1, B2),
XOR(C , C1, C2) and XOR(D, D1, D2), and hiding

�

A1, A2, B1, B2, C1, C2, D1, D2
	

. Each of
the four remaining primitives in Figure 3.5 can be constructed using a FIFO1 and
two binary XORs. For example, the top left hand automaton is equivalent to:

�

FIFO1(A, B) ./ XOR(A, A1, C1) ./ XOR(B, B1, C2)
�

\ {A, B}

Note that this step is an instance of a more general construction, wherein any port au-
tomaton without self loops can be directly constructed from FIFO1s and XORs which
more or less encode the automaton structure using the FIFO1 buffers.2 However, the
number of FIFO1s required in this construction is linear in the number of states and
hence the resulting connector becomes unnecessarily large in practice.

2Based on an idea of Christel Baier.

36 Chapter 3. Automata-based semantics for Reo

In summary, we have shown that arbitrary port automata can be decomposed
into XORs and FIFO1s. The number of required FIFO1s is 4dlog ne, since we need
four FIFO1s to encode one FlipFlop. For example, an n-Sequencer requires n FIFO1s
in the original construction, or dlog ne FlipFlops or 4dlog ne FIFO1s using our tech-
niques. For an 8-Sequencer, the required stateful primitives are 8 (original), 3 (using
FlipFlops), and 12 (after encoding FlipFlops), whereas for a 16-Sequencer, the num-
bers are 16, 4, and 16, after which even our encoding using FIFO1s becomes superior
to the original.

3.2.3 Related work

Decomposition results for (deterministic) finite automata have a very long history,
starting with the Krohn-Rhodes Theorem [66] from 1965. The collection of primitive
automata underlying the Krohn-Rhodes Theorem include a FlipFlop, similar to but
not the same as ours. By treating the labels of our automata as letters of the alphabet,
these results apply to our automata, but do not give the results presented here. The
key difference is that our labels have structure and our product and hiding operations
manipulate that structure.

Port automata are an abstraction of constraint automata [10]. Arbab et al. [3]
show how to synthesize Reo connectors from constraint automata, based on a small
set of Reo primitives (hence, a small set of constraint automata). The approach, how-
ever, takes a side step through scheduled-data expressions (effectively, regular ex-
pressions for constraint automata), and hence the resulting connectors are large and
unwieldy, and the resulting automata are not bisimilar to the original automata. As
their approach deals with data, a larger number of primitives (9) are required. Our
approach directly encodes automata in terms of other automata, which can then be
represented as Reo connectors, requires a smaller number of primitives (2), and its
encoding produces a bisimilar result.

An algebra for stateless connectors [22] was suggested by Bruni et al. The authors
give a completeness result by showing that a finite number of primitives is sufficient to
model all stateless connectors of Reo in this framework, although their axiomatization
is not finite. The two main differences between this work and our model is that we
do not consider the direction of data flow and that the approach of Bruni is restricted
to stateless connectors only.

Expressions in Milner’s SCCS [70] have actions corresponding to a multiset of
atomic actions (elements of an Abelian group). Synchronization is built into the
model automatically via the group’s product operation. Hiding of names corresponds
to matching actions with their co-action (inverse in the group). Synchronization in
our model is different, based on the correspondence of names in the two automata
being joined. We are unaware of any decomposition theorems for SCCS.

3.2. Decomposition of port automata 37

p0 p1

r0 r1

{A}

{B}

{A}

{B}

{C}{C} {D}{D}∼q1q0

{A}

{B}

{C} {D}

Figure 3.4: unrolling the self loops in a FlipFlop

p0 p1

r0 r1

�

A1
	

�

B1
	

�

A2
	

�

B2
	

�

C1
	�

C2
	 �

D1
	�

D2
	

∼ q0 q1

�

A1
	

�

C1
	

�

B1
	

�

C2
	

./ q0 q1

�

A1
	

�

D2
	

�

B1
	

�

D1
	

./

q0 q1

�

B2
	

�

C1
	

�

A2
	

�

C2
	

./ q0 q1

�

A2
	

�

D1
	

�

B2
	

�

D2
	

Figure 3.5: decomposing the unrolled automaton

38 Chapter 3. Automata-based semantics for Reo

3.3 The Extensible Automata framework in ECT

To support automata-based semantics for Reo in ECT, we have implemented the Ex-
tensible Automata (EA) framework. As its name suggests, extensibility was the guid-
ing requirement for the design of this framework. This is due to the fact that besides
constraint and port automata, there exist a number of variations of constraint au-
tomata and other automata models for Reo. The following list of automata types are
currently supported by the EA tools:

• Port automata (PA) [90]

• Constraint automata (CA) [10]

• Constraint automata with memory (CAM) (see [82])

• Timed constraint automata (TCA) [2]

• Quantitative constraint automata (QCA) [5]

• Intensional automata (IA) [29]

• Quantitative intensional automata (QIA) [4]

• Reo automata (RA) [18]

Since many of these automata models are variations of each other, we chose to im-
plement our automata tools in an extensible way. The EA framework consists of a
meta-model for automata, together with an extensible implementation of product
and hiding operations and a graphical automata editor. In the following we describe
the architecture of this extensible framework in detail. The core of the EA framework
was written by the author of this thesis.

3.3.1 The EA meta-model

The Extensible Automata framework in ECT is based on the EA meta-model, which is
divided into two packages: cwi.ea.automata and cwi.ea.extensions, respectively shown
in Figures 3.6 and 3.7.

The core automata model depicted in Figure 3.6 contains classes for automata,
states and transitions, as well as modules, which serve as container objects for au-
tomata. The classes for states, transitions and automata all extend the abstract base
class ExtensibleElement from the package cwi.ea.extensions. This package contains the
two interfaces IExtensible and IExtension which form the core of the framework. An
instance of IExtensible owns a number of extensions, which are typed using an ID.
The method �ndExtension() in IExtensible can be used to find an extension based
on its ID. The method updateExtension() adds or replaces an extension. The package
moreover contains abstract classes for extensible and extension elements, as well as
some basic extension implementations. Extensions are essentially annotations in the
form of key-value pairs, where the key is an ID and the value can be of a custom
type. As can be seen from Figure 3.6, automata, states and transitions are extensible
in this way. Table 3.3 summarizes all currently available extension types in the EA

3.3. The Extensible Automata framework in ECT 39

Figure 3.6: EA meta-model, package cwi.ea.automata

framework. Note that it is also possible to define dependencies between extensions,
e.g. the port names extension for transitions always requires the port names extension
for automata as well.

3.3.2 Extension providers

Extensions, i.e., instances of IExtension are mere data objects that are used as an-
notations in automata models. The life cycle of these data objects is managed using
so-called extension providers. Extension providers are classes that implement the in-
terface IExtensionProvider and that are registered in the EA runtime. For each of the
extension types in Table 3.3 there exists a separate extension provider. The EA run-
time uses these extension provides for the following tasks:

• instantiating default extensions,

• parsing and pretty-printing of extensions,

• pairwise joining of extensions,

• validating extensions.

Optionally, an extension provider can customize the graphical representation of states,
transitions or automata to display their extensions. Figure 3.8 depicts the constraint
automaton for the FIFO1 in the graphical EA editor.

Validation of extensions is useful to automatically detect problems in the graphical
editor. For instance, validation is used to ensure that data constraints in a transition
refer only to enabled ports, or that state memory cells are always properly initialized.

40 Chapter 3. Automata-based semantics for Reo

Figure 3.7: EA meta-model, package cwi.ea.extensions

The EA runtime also uses extension providers to compute the product or join of
automata in a compositional manner. Every extension provider contains a method
that checks whether two extension objects can be joined together and, if that is the
case, returns the joint extension. However, different automata types usually come
with different product definitions. We, therefore, define product implementations also
using an extensible mechanism.

3.3.3 Product providers

Product providers are classes that implement the functionality to join two automata,
defined in the interface IProductProvider. Product providers can be implemented
specifically for a particular automata type, or in a generic way. In the latter case,
the product provider uses the extension providers to join two extensions. This has the
advantage that the product implementation is completely reusable.

There are three different product implementations available in the EA tools. All
automata types that we consider are used as semantics for Reo. The informal seman-
tics of Reo describes truly concurrent, as well as interleaved behavior. Therefore, we
have implemented a default product implementation that computes the join of two
automata of the same type by:

(i) pairwise joining the automaton extensions,

(ii) computing the cartesian product of the state sets and pairwise joining the state
extensions,

(iii) computing the cartesian product of the transition sets and pairwise joining of
the transition extensions,

(iv) joining all transitions with dummy τ-transitions in the other automaton.

Step (iii) computes the concurrent firing of two transitions, whereas step (iv) takes
care of the interleaved firing semantics. This product implementation is generic since

3.3. The Extensible Automata framework in ECT 41

Extension type Data type Enable for Automaton types

Initial states boolean states PA,CA,CAM,QCA,TCA,RA,IA,QIA
Port names (automata) string list automata PA,CA,CAM,QCA,TCA,RA,IA,QIA
Port names (transitions) string list transitions PA,CA,CAM,QCA,TCA,RA
Intensional port names custom transitions IA,QIA
Data constraints custom transitions CA,CAM,TCA,QCA
State memory string list states CAM
Clocks string list automata TCA
Clock guards custom transitions TCA
Clock updates string list transitions TCA
Clock state invariants custom states TCA
Cost algebras custom automata QCA
Cost values custom transitions QCA
Guards custom transitions RA

Table 3.3: list of available automata extension types

it uses the corresponding extension providers and makes no assumption on the au-
tomaton type. The pairwise joining of extensions is the key to generic product defini-
tions. Examples for pairwise joining of extensions include:

• logical ‘and’ for initial state extensions,

• set union for port name extensions,

• conjunction for data constraints.

It is important to note that the pairwise joining of extensions may not succeed because
extension specific conditions are not fulfilled. In that case, the two automata, states
or transitions cannot be joined. An example of such a condition can be found in the
premise of rule 3.2 in the definition of the join operator for constraint automata.
This particular condition is implemented in the extension provider for port name
extensions on transitions.

The default product implementation described above can yield unreachable states
in the product automaton. One reason for this is that it is oblivious to the concept
of initial states – it treats them just like any other extension. However, for efficiency
reasons, it can be beneficial to compute the product state space by starting from the
initial states and traversing the automata along their transitions. If two transitions
cannot be joined because an extension specific requirement is not fulfilled, the prod-
uct implementation can discard the rest of the current path. Thereby, no unreachable
states are computed. We have implemented such a product definition in the EA tools.
It is generic like the default product, except that it requires and interprets the initial
state extensions.

There exists a third product implementation which is not compatible with the
generic ones described above. This product has been specifically implemented for

42 Chapter 3. Automata-based semantics for Reo

Figure 3.8: constraint automaton for FIFO1 in the graphical EA editor

(quantitative) intensional automata. It includes a refinement operator which has been
defined specifically for this type of automata. Moreover, Reo automata [18] also re-
quire an additional synchronization operator which has not been implemented yet in
the EA framework.

All product implementations can be invoked programmatically and from the graph-
ical EA editor.

3.3.4 From Reo to automata models

Although it provides tools for semantical models of Reo connectors, the Extensible
Automata framework does not have any dependencies on ECT’s core tools for Reo.
To derive semantical automata models from Reo diagrams we have implemented an
additional framework in the plug-in cwi.reo2ea. Given a Reo connector or network
and a target automaton type, the runtime of this framework performs the following
steps to derive an automaton of that type:

(i) map every primitive in the connector or network to a primitive automaton,

(ii) join all primitive automata using a product implementation, and

(iii) hide internal ports (optional).

The primitive automata are defined in templates. The mapping from primitives to
automata is performed based on the type of the primitive. If the primitive is user-
defined, the conversion tool looks for semantical annotations in the primitive or tries
to resolve its type to a known primitive. This way, pre-defined as well as user-defined
primitives are supported by the conversion.

Since all of our product definitions are associative and commutative, the order in
which we join them does not matter. However, for performance reasons, the joining is
done in a binary, bottom-up fashion. Automata that have a larger set of overlapping
port names are joined first, since they potentially contain more synchronous behavior
and therefore yield a smaller product automaton.

3.3. The Extensible Automata framework in ECT 43

1 public in ter face Sink<T> extends Port<T> {
2

3 /∗∗
4 ∗ Write data to t h i s por t
5 ∗ @param o Ob j e c t to be w r i t t e n
6 ∗/
7 void wri te (T data) throws In te r rup tedExcep t ion ;
8

9 /∗∗
10 ∗ Write data to t h i s por t with a t imeout
11 ∗ @param o the o b j e c t to be w r i t t e n
12 ∗ @param t imeout in nanoseconds
13 ∗/
14 void wri te (T o , long t imeout) throws In te r ruptedExcept ion ,
15 TimeoutException ;
16 }

Listing 3.1: interface ‘Sink’ of the constraint automata runtime

The conversion from Reo to automata models can be invoked from the graphical
Reo editor and programmatically. The conversion tool was written by Ziyan Maraikar
and Young-Joo Moon.

3.3.5 CA runtime and code generation

Constraint automata not only allow formal reasoning about Reo connectors, but they
can be also used to execute them as finite state machines. In this approach, a con-
nector is first converted into a constraint automaton which is then executed by an
interpreter engine or generated code, which serve as a centralized coordinator.

A constraint automaton specifies the set of ports that must be active to trigger
a transition from a state. Once a transition is triggered, synchronous data transfer
specified by its constraint occurs between the active ports. The blocking semantics of
ports is implemented using so-called synchronization points, which are equivalent to
Hoare’s CSP channels [54]. Synchronization points can be implemented using com-
mon concurrency primitives such as mutexes and condition variables. Components
communicate with the coordinator using basic read and write operations on their
ports. The interface for sink ports is given in Listing 3.1. Source ports are defined
analogously. Both the generated code and the interpreter depend on a lightweight
and self-contained runtime library which provides an implementation of synchroniza-
tion points, using language-specific synchronization primitives. The code generator
and interpreter support user-defined predicates in constraints which are needed to
implement Filter channels. Similarly, data transformations using the Transform chan-
nel are also supported.

44 Chapter 3. Automata-based semantics for Reo

Figure 3.9: Java code generator in ECT

Currently the code generator produces Java code, but the entire code generation
framework is retargetable. Defining a new code generation target involves implement-
ing a set of code generation templates and porting the runtime library which contains
the implementation of synchronization points. An experimental support for C as tar-
get platform is also available. The code generation can be invoked either from the
graphical automata editor or the Reo editor itself. In the latter case, a constraint au-
tomaton is first derived from the Reo connector, as described above. An example of
generated Java code for the counter connector is shown in Figure 3.9. The constraint
automata runtime and code generation have been implemented by Ziyan Maraikar
and are located in the package cwi.ea.runtime.

3.4 Conclusions

Port automata, as introduced in the beginning of this chapter, can be considered as the
most basic semantical model for Reo. Although they abstract away data constraints,
they already capture some of the key concepts required for defining channels and
other primitives, i.e., synchrony, mutual exclusion and state. Moreover, they are com-
positional. Thus, the semantics of a connector or network can be derived using the
join and hiding operators for port automata.

Port automata have been introduced as an abstraction of constraint automata [10]
and offer a possibility for better comparison with other semantical models, such as
Reo automata [18]. Because of their simplicity, we also use port automata in Chap-
ter 4 for an encoding into the mCRL2 specification language, and in Chapter 7 in the
context of dynamic reconfigurations.

3.5. Discussion 45

In recent work (cf. [55]) we have also shown that port and constraint automata
are in fact sufficiently expressive to model context-dependency in Reo (cf. [26, 18,
29]). We discuss this result further in Section 4.3.4 and show in Section 4.4.2 how it
can be used to validate context-dependent connectors in the Vereofy model checker,
which is based on the constraint automata semantics of Reo.

In Section 3.2, we have shown using a decomposition scheme that in the port
automata model, only two primitives (FIFO1 and XOR) are required for decomposing
an arbitrary port automaton. Moreover, this decomposition scheme produces a very
compact representation of the network and can thus be used for connector synthesis.

The Extensible Automata framework in ECT provides a powerful means to define
automata models in an extensible way. Various automata formats are supported and
can be automatically derived from Reo models. These automata models can be used
for further analysis or can serve as a basis for generating executable code.

3.5 Discussion

The EA framework as presented in Section 3.3 provides a unifying implementation of
a number of different automata-based semantics for Reo. The rather large number of
different semantical (mostly automata-based) models for Reo can be justified by the
argument that each of these models serves a particular modeling aspect (e.g. context-
dependent, timed or probabilistic behavior) or improves some of the drawbacks of
another model.

However, we believe that a unified semantical model for Reo can be of great use,
since it would fix the formal semantics and remove inconsistencies between the dif-
ferent models. Furthermore, it is the authors believe that basic models such as port
or constraint automata provide in fact already enough expressiveness for a core se-
mantics of Reo. Supporting evidence is the result of [55], which shows that context-
dependency in Reo, the key motivation for the coloring semantics [26] and Reo au-
tomata [18], can in fact be expressed in these basic models.

In the area of stochastic analysis for Reo, two main modeling approaches can be
distinguished, i.e., the rather low-level quantitative intensional automata [4], and the
more recently developed stochastic Reo automata [75]. In the opinion of the author of
this thesis, it is still an open question which of these two approaches is more suitable.
On the one hand, stochastic Reo automata are much more compact and there are
more theoretical results on their correctness and compositionality readily available.
On the other hand, quantitative intensional automata have the advantage that they
are much closer to the Markovian models that serve as the final stochastic semantics
in both approaches.

In this chapter, we have discussed only automata-based models for Reo. A Petri net
semantics for Reo was considered, e.g., in [84]. However, Petri nets have a rather local
notion of synchronization, i.e. the propagation of synchrony (or context-dependency,
for that matter) in Reo cannot be properly modeled in Petri nets, at least not in a com-
positional manner. For example, a natural choice to model a Sync channel as a Petri

46 Chapter 3. Automata-based semantics for Reo

net is to use a simple transition, connecting an input place A with an output place B.
Such a transition indeed models a synchronous data transfer from A to B. However,
this synchrony is lost as soon this channel is composed with another channel, e.g. a
Sync channel between B and C , modeled using another transition.

The lack of compositionality of Petri net semantics for Reo is the main motivation
for us to use automata-based or process algebra models (e.g. the encoding in mCRL2
that we introduce in Chapter 4). Both approaches provide a more suitable notion of
synchronization which is, moreover, compositional. In a nutshell, supporting evidence
for the claim that automata-based and process-algebraic models provide a solid basis
for formal modeling and verification in Reo are the existence of:

(i) theoretical results on their correctness and compositionality (see Chapter 3 and 4),

(ii) efficient formal verification techniques using model checkers (see Chapter 4),

(iii) engine implementations based on these models (see Section 3.3.5 and 5.5).

In conclusion, we believe that when it comes to formal modeling and analysis,
simplicity and compositionality of a semantic model should be valued higher than a
(seemingly) larger expressive power.

Chapter 4

Verification by model checking

In this chapter, we discuss verification of Reo connectors and networks using model
checking. We do this by encoding Reo primitives into the mCRL2 specification lan-
guage. Our encoding is compositional and based on the constraint automata seman-
tics. We use the mCRL2 toolset to generate and visualize the corresponding state
space and to validate behavioral properties. We show the correctness of the encoding
with respect to the port automata semantics and discuss an alternative encoding that
supports context-dependency. Finally, we present our tool support in ECT including
additional analysis tools for qualitative and quantitative behavioral properties.

4.1 Overview

Verification of connector and network behavior can be done in ECT by generating
animations and automata models. However, these two techniques do not scale very
well and thus must be used with caution in larger applications. Furthermore, they
do not provide any means for automatic validation of system properties. This can be
crucial for ensuring correctness of an application.

We therefore propose another way to verify the behavior of connectors. We encode
the behavior of Reo primitives in mCRL2, a behavioral specification language that is
based on the process algebra ACP, with additional support for data and time [49].
Specifications in this language can be analyzed using an extensive set of model check-
ing, simulation and visualization tools available in the mCRL2 toolset. A specification
can also be converted into a labeled transition system (LTS) in various formats and
subsequently used as input for external model checking tools, in particular CADP [43].
Both mCRL2 and CADP have proven their suitability for analyzing large scale applica-
tions of industrial strength. The mCRL2 specification language also supports algebraic
data types and user-defined functions, which are essential features for a data-aware
analysis of connectors. This includes full support for filtering and transforming struc-
tured data elements produced by components or services. Another important aspect
of this approach is its compositionality: we encode Reo primitives as well as the join

47

48 Chapter 4. Verification by model checking

Figure 4.1: an auction process in Reo and the derived mCRL2 specification

and hiding operator in mCRL2. The generation of the state space of the whole system
can then be efficiently handled by mCRL2 itself. Our encoding is based on the con-
straint and port automata semantics of Reo. To support context dependency, we also
provide an alternative encoding based on the coloring semantics [26]. Furthermore,
we show how timed Reo channels can be modeled as well.

An encoding such as we propose here is of theoretical value, since it gives an in-
sight into the expressiveness of the original model. However, our goal is to provide
an actual tool that scales well and that is of practical use. We therefore implemented
a conversion tool that takes Reo models as input and produces mCRL2 code. This
conversion is highly customizable and optimized for an efficient processing by the
mCRL2 tools. The specifications are generated fully automatically and do not require
any manual refinement. Just like the other analysis tools in ECT, the mCRL2 con-
verter is tightly integrated with the rest of development environment. This includes
invocation of mCRL2 toolchains through a simple user interface.

Organization

The rest of this chapter is organized as follows. In Section 4.2 we recall the basic
concepts of the mCRL2 specification language. In Section 4.3 we present our encoding
of Reo in mCRL2 and prove its correctness. In Section 4.4 we discuss the general tool
support for verification in ECT, but with emphasis on the mCRL2 conversion tool. A
screenshot of this tool is shown in Figure 4.1. We discuss optimizations and a small
case study and compare the verification approach using mCRL2 with other existing
solutions. Section 4.5 and 4.6 contain related work and conclusions.

4.2. The mCRL2 specification language 49

4.2 The mCRL2 specification language

In this section, we give a brief overview of the mCRL2 specification language and
toolset. For more details we refer to [49] and to the mCRL2 website [69].

4.2.1 Actions

The most basic notion in mCRL2 are actions, which represent atomic events and can
be parameterized with data. A distinguishing feature between mCRL2 and its prede-
cessor µCRL is its support for multiactions, which allow modeling of truly concurrent
behavior. Multiactions are constructed from other actions or multiactions using the
synchronization operator |, e.g. the multiaction a|b represents a concurrent firing of
the atomic actions a and b. A special τ-construct is used to refer to an internal unob-
servable action.

4.2.2 Processes

Processes in mCRL2 are defined by process expressions, which are essentially com-
positions of other processes and atomic (multi)actions at the lowest level. The basic
operators for defining processes in mCRL2 are:

• deadlock or inaction δ, which does not display any behavior;

• alternative composition, written as P +Q, which represents a non-deterministic
choice between the processes P and Q;

• sequential composition, written as P ·Q, which means that Q is executed after P,
given that P terminates;

• conditional or if-then-else construct, written as c → P � Q, where c is a data
expression that evaluates to true or false;

• summation Σd:D P, where P is a process expression in which the data variable d
may occur, used as a for-all quantifier over a data domain D;

• the ‘at’-operator a@t, indicating that the action a happens at time t;

• parallel composition or merge, written as P ‖Q, which interleaves and synchro-
nizes the actions of P with those of Q;

• restriction ∇V (P), where V specifies which actions from P are allowed to occur;

• encapsulation ∂H(P), where H is a set of action that are not allowed to occur;

• renaming ρR(P), where R is a set of renamings of the form a 7→ b, meaning that
every occurrence of action a in P is replaced by the action b;

• communication ΓC(P), where C is a set of communications of the form a0|...|an 7→
c, which means that every group of actions a0|...|an within a multiaction is re-
placed by c;

• hiding τM (P), which hides all actions in M in all multiactions in P.

50 Chapter 4. Verification by model checking

4.2.3 Data types

The mCRL2 language provides a number of built-in data types such as Booleans,
natural and positive numbers, integers and real numbers. All standard arithmetic op-
erations for them are predefined. Custom data type definitions in mCRL2 allow users
to declare new sorts, constructors and functions. A structured data type is declared in
mCRL2 in the following way:

S = struct c1(p
1
1:S1

1 , . . . , pk1
1 :Sk1

1)?r1 | . . . | cn(p
1
n:S1

n , . . . , pkn
n :Skn

n)?rn

This construct defines the type S together with constructors ci : S1
i × . . . × Ski

i → S,
projections p j

i : S → S j
i , and recognizers ri : S → Bool. Various examples of data type

definitions can be found in the mCRL2 language reference.

4.2.4 Tools

The mCRL2 toolset contains a large number of tools that can be used to verify systems
specified in the mCRL2 language. The toolset includes a tool for converting an mCRL2
specification into a so-called linear process specification (LPS), which is a compact,
symbolic representation of the system that can be used for subsequent analysis. A
linear process specification can be used directly for model checking, or converted into
a labeled transition system (LTS), if it is finite. The mCRL2 toolset contains utilities
to compare and minimize labeled transitions systems based on various notions of
equivalence, such as strong and branching bisimulation or trace equivalence. A tool
for visualization of labeled transition systems is also included.

For model checking purposes, system properties are specified as formulas in a
variant of the modal µ-calculus, extended with regular expressions, data and time.
In combination with an LPS, such a formula is transformed into a parameterized
Boolean equation system (PBES) and can be solved with the tools from the mCRL2
toolset. Model checking of labeled transition systems is not supported by mCRL2.
However, the CADP [43] toolbox can be used for this purpose.

4.3 Encoding Reo in mCRL2

Our encoding reflects the constraint automata semantics of Reo. For every channel
we define a process based on two atomic actions that model the data flow events at
its respective ends. Analogously, we map a node to a process and corresponding ac-
tions for all adjacent channel ends. An important aspect of our encoding is that data
constraints are translated faithfully. We therefore extend the actions corresponding
to channel and node ends with data parameters. In the context of a given connec-
tor, we assume a global datatype, which we model as a sort Data in mCRL2, which
makes sense since most of the channel types in Reo are agnostic to the actual type of
data items they carry. Based on such a global type, we can use the summation opera-
tor in mCRL2 to define data constraints imposed by channels. These are already the
ingredients required for an encoding of the basic channel types.

4.3. Encoding Reo in mCRL2 51

Sync= Σd:Data A(d)|B(d) · Sync

LossySync= Σd:Data (A(d)|B(d) + A(d)) · LossySync

SyncDrain= Σd1,d2:Data A(d1)|B(d2) · SyncDrain

AsyncDrain= Σd:Data (A(d) + B(d)) · AsyncDrain

FIFO(b:DataFIFO) = Σd:Data(isEmpty(b)→ A(d) · FIFO(full(d))

� B(e(b)) · FIFO(empty))

Filter= Σd:Data (pred(d)→ A(d)|B(d) � A(d)) · Filter

Transform= Σd:Data A(d)|B(func(d)) · Transform

Merger= Σd:Data (A(d)|C(d) + B(d)|C(d)) ·Merger

Replicator= Σd:Data A(d)|B(d)|C(d) · Replicator

Table 4.1: mCRL2 encoding for channels and nodes

The encodings for the basic channel types, together with Merger and Replicator
primitives for encoding nodes, are summarized in Table 4.1. Note that the encoding
of the SyncDrain requires a double summation, since it allows to drain two arbitrary
data items synchronously. The Filter and Transform use additional data expressions,
i.e., a predicate pred for filtering, and a user-defined function func for transforming
data items. As in the constraint automata model, the LossySync non-deterministically
loses or passes data in the mCRL2 version. The encoding of the FIFO1 channel includes
a parameter for modeling the state of its buffer, for which we need to introduce a new
datatype, defined as follows:

DataFIFO= struct empty?isEmpty | full(e:Data)?isFull

An element of this data type allows to specify whether the buffer of the FIFO1 is empty
or full, and if it is full, the value stored in it. We have argued already that nodes can
be encoded using basic Merger and Replicator primitives, as included in Table 4.1.
However, in our tool we generate a single process for a given node by examining
the number of incoming and outgoing channel ends. Similarly, our tool can directly
encode nodes with exclusive router semantics. In practice, a third type of node comes
in handy, which implements a tupling of incoming data items, as described informally
in Section 2.2.2. We refer to this type of node as a tuple node here. To encode it
in mCRL2 we need to extend our global data type with tuples. In the following, we
assume that the global datatype is the union of n user-defined datatypes, which we
refer to as D1, . . . ,Dn. In practice, they are defined by the coordinated components or
services. Given that, we define the global datatype as:

Data= struct D1
�

e1:D1
�

| ... | Dn
�

en:Dn
�

| tuple
�

p1:Data, p2:Data
�

This definition allows us to instantiate elements of any basic type as well as binary
tuples, thus forming tree-like structures. Note that this datatype is suitable for tuple

52 Chapter 4. Verification by model checking

nodes that have two incoming ends only. In the general case, for every tuple node with
k incoming ends a tuplek(p1:Data, ..., pk:Data)must be added to the definition. Based
on this extended global data type we can encode a tuple node with two incoming
ends A and B, and two outgoing end C and D as follows:

TupleNode= Σd1,d2:Data
�

(A(d1)|B(d2)|C(tuple(d1, d2)) +

(A(d1)|B(d2)|D(tuple(d1, d2))
�

· TupleNode

4.3.1 Join and hiding operations

After generating process definitions for all channels and nodes, we need to compose
them into one joint process which models the whole connector. We do this in three
steps:

(i) forming the parallel composition of all channel and node processes,

(ii) synchronizing the actions for coinciding channel and node ends, and

(iii) hiding the internal actions (optional).

Step (ii) is achieved by an application of two mCRL2 operators: communication and
blocking. The communication is used to merge a multiaction of two coinciding chan-
nel and node ends into one basic action. The blocking operator is then used to dis-
allow unsynchronized events at the channel / node ends. The hiding operator can
finally be used to abstract from internal data flow. We illustrate this composition us-
ing an example.

EXAMPLE 4.1 (connector construction in mCRL2). We consider the following simple
connector which consists of two channels (LossySync and FIFO1) and three nodes:

For simplicity, we assume that the channel ends at A and B form the boundary of the
connector, without explicit nodes. Thus, the system we want to model consists of two
channels and one node which are encoded by the following three processes:

LossySync= Σd:Data
�

A(d)|X1(d) + A(d)
�

· LossySync

Node = Σd:Data X2(d)|Y2(d) · Node

FIFO(b:DataFIFO) = Σd:Data isEmpty(b)→ Y1(d) · FIFO
�

full(d)
�

� B(e(b)) · FIFO(empty)

Note that we use the projection e of the data type DataFIFO to access the data element
stored in b. For obtaining the process for the connector as a whole, we first form
the parallel composition of the three processes. Then we add communications for
connected channel and node ends and block unsynchronized actions. In the last step

4.3. Encoding Reo in mCRL2 53

we hide the actions representing the data flow at the internal node. In the mCRL2
syntax, this reads as follows:

LossyFIFO= τ{X ,Y }

�

∂{X1,X2,Y1,Y2}
�

Γ{X1|X2 7→X ,Y1|Y2 7→Y}
�

LossySync ‖Node ‖ FIFO
�

��

In practice, however, this direct approach of naively running all processes in parallel
and then performing the communication, synchronization and optionally the hiding
operator leads to a state space explosion during the linearization. To overcome this
problem, we add processes one by one and immediately apply the composition and
hiding operators. The LossyFIFO connector can thus be constructed also as follows:

LossyFIFO1 = τ{X }
�

∂{X1,X2}
�

Γ{X1|X2 7→X}
�

LossySync ‖ LossyFIFO2
�

��

LossyFIFO2 = τ{Y }
�

∂{Y1,Y2}
�

Γ{Y1|Y2 7→Y} (Node ‖ FIFO)
��

Here we first compose the node and the FIFO, synchronize and hide their connected
ends yielding LossyFIFO2, and then continue with the rest of the connector. The actual
performance gain in the runtime for this optimization is discussed in Section 4.4.1.4

4.3.2 General port automata encoding

We now show the correctness of our mCRL2 encoding with respect to a simpler, but
more general port automata encoding. However, the step from port to constraint au-
tomata is only of technical nature. The important points are that the constructed pro-
cesses exhibit the same behavior and that join and hiding operations are preserved.

Let PA = (Q, N , T, q0) be an arbitrary port automaton. We interpret the elements
of N as atomic actions and subsets as multiactions. For each state q ∈Q we now define
the process proc

�

q
�

by:
proc

�

q
�

=
∑

q
S→ p

S ·proc
�

p
�

(4.1)

where S =
∏

x∈S x represents the multiaction composed from all ports in the sets. In
this view, it comes natural to have for the synchronization S1|S2 of actions S1 and S2
the union of the underlying port names S1∪S2. States with no outgoing transitions are
mapped to δ. The process proc(q0) corresponds to the initial process of the resulting
specification.

EXAMPLE 4.2 (mCRL2 port automata encoding).

q0 q1

{A}

{B}

{A, B} ⇒
�

proc
�

q0
�

= A · proc
�

q1
�

proc
�

q1
�

= A|B · proc
�

q1
�

+ B · proc
�

q0
�

4

54 Chapter 4. Verification by model checking

We can now verify the correctness of our mapping. We do this by showing bisimi-
larity of the states in the port automaton with the operational semantics of the derived
processes. The operational semantics of mCRL2 is defined in [49] using SOS rules in
the style of Plotkin [78, 79].

THEOREM 4.3 (correctness of mCRL2 port automata encoding). Given an arbitrary
port automaton PA = (Q, N , T, q0) and the encoding proc

�

q
�

of a state q ∈ Q, defined
in (4.1), it holds that q ∼ proc

�

q
�

.

PROOF. The relation R =
�

〈q, proc
�

q
�

〉 | q ∈Q
	

is a strong bisimulation according to
Definition 3.4:

(i) Suppose q
S−→ p in PA. Then by (4.1), proc

�

q
�

= . . .+ S · proc
�

p
�

+ . . . where this
transition is mapped to the process expression S · proc

�

p
�

. From the semantics

of · we obtain S · proc
�

p
� S−→ proc

�

p
�

, and 〈p, proc
�

p
�

〉 ∈ R.

(ii) Suppose proc
�

q
� S−→ P. Then, by (4.1), this can be caused only by a term S ·

proc
�

p
�

in the definition of proc
�

q
�

for some state p ∈Q and a transition q
S−→ p.

Therefore we have symmetrically P = proc
�

p
�

, and 〈p, proc
�

p
�

〉 ∈ R. �

This shows that our simple encoding indeed preserves the port automata semantics.
However, since our mapping also uses composition and hiding operators of mCRL2,
we need to make sure that they correctly implement the join and hiding operators for
constraint or port automata. We show this in the following.

THEOREM 4.4 (mCRL2 encoding of join). Let PAi = (Q i , Ni , Ti , qi
0) for i ∈ {1, 2} be two

port automata. We define two sets of port name renamings Ri as:

Ri =
�

x 7→ 〈x , i〉 | x ∈ N1∩ N2
	

Let PAR
i be the two port automata derived from PAi by applying the renamings Ri ,

• proc
�

qi
�

the process corresponding to the state qi in PAR
i , and

• proc
�

q1, q2
�

the process corresponding to the state 〈q1, q2〉 in PA1 ./ PA2.

Further, we define B the set of blockings and C the set of communications as follows:

B =
�

〈x , i〉 | x ∈ N1∩ N2
	

C =
�

〈x , 1〉|〈x , 2〉 7→ x | x ∈ N1∩ N2
	

Then the following equivalence holds:

proc
�

q1, q2
�

∼ ∂B
�

ΓC
�

proc
�

q1
�

‖ proc
�

q2
���

PROOF. A detailed proof is given in Appendix A.1. �
In the following we show that the encoding of hiding is also correct.

4.3. Encoding Reo in mCRL2 55

THEOREM 4.5 (mCRL2 encoding of hiding). Let PA= (Q, N , T, q0) and q ∈Q. Let q′ the
corresponding state in PA\M with M ⊆ N . Then the following holds:

proc
�

q′
�

∼ τM
�

proc
�

q
��

PROOF. The semantics of τM is given in [49] by:

p
S−→ p′

τM (p)
θM (S)−−−→ τM (p′)

where θM removes all occurrences of elements in M from the multiaction S. This
corresponds exactly to the hiding operator for constraint or port automata in Defini-
tion 3.3. Therefore, bisimilarity is easily established. �

4.3.3 Encoding of the coloring semantics

Constraint automata have one drawback: they lack support for context-dependent
behavior, as for instance required for the LossySync channel. Intuitively, the LossySync
should lose data items only if the party at the receiving end is not ready to accept
it. This type of context-dependent behavior of connectors has mainly been studied
by Clarke et al. and has led to various formal models. Most notably, intensional
(constraint) automata [29], the coloring model [26], and most recently, Reo au-
tomata [18] have been introduced to grasp the concept of context-dependency.

Since context-dependency is an important feature of Reo, we consider it also in
our verification approach using mCRL2. Mainly for its simplicity, we chose to encode
the coloring semantics in mCRL2. However, since the concepts are very similar in all
three models, it should be straight-forward to use a different model instead.

The coloring semantics

The basic idea of the coloring semantics is to associate flow and no-flow colors to
primitive ends. Clarke et al. showed in [26] that one flow color and two no-flow colors
are sufficient to model context-dependency as for instance required by the LossySync.
The names and graphical representations of these colors are shown in Table 4.2.

The color flow represents ordinary data flow, just like in constraint automata. The
other two colors model both no-flow. Additionally they encode a direction of the
reason for the fact that no flow is possible. Intuitively, no-flow-provide-reason models
the fact that the receiving or sending party is not ready to perform an I/O operation.
Conversely, no-flow-require-reason says that the party is ready to accept data, but for
some other reason the data flow is not possible. Valid behaviors of channels are then
described as colorings of their respective ends. Table 4.3 depicts the colorings of the
Sync, LossySync and Merger primitive.

Note that the colors are always read from the perspective of the adjacent nodes.
For instance, in coloring (4.3) of the Sync the sink node at the right end provides a
reason for no flow, whereas the source node on the left requires a reason. This models

56 Chapter 4. Verification by model checking

Name Symbol

flow
no-flow-provide-reason
no-flow-require-reason

Table 4.2: colors and their graphical representations

Sync LossySync Merger

(4.2)
(4.3)
(4.4)
(4.5)

(4.6)
(4.7)
(4.8)
(4.9)

(4.10) (4.11)

(4.12) (4.13)

Table 4.3: example colorings for some Reo primitives

the behavior where data is available at the source end but the receiver at the sink end
is not ready to accept data. Similarly, in coloring (4.4) there is no flow, because there
is no data available at the source end. Finally, coloring (4.5) models the situation
where no data is available and the receiver is also not ready to accept any data.1

The encoding of the LossySync differs from the one of the Sync only in one coloring,
i.e., coloring (4.7) where the sink node is not ready to accept data, but there is data
available at the source end. In this situation the LossySync permits flow at the source
end and loses the data item. Otherwise, no-flow behaviors are possible only when no
data is available at the source end.

Nodes are encoded in the same way as channels in the coloring semantics. As
usual, we can build nodes out of mergers and replicators. Table 4.3 also depicts the
valid colorings of the Merger primitive.2 An interesting fact here is that intuitively
the colorings allow a propagation of no-flow reasons through the connector. We refer
to [26] for a formal description of the composition operator in the coloring model.

Colorings in mCRL2

In mCRL2 we can encode color by simple data parameters of actions. Therefore, we
need to introduce a new datatype:

Colored= struct flow(data:Data) | provide | require

1This behavior is implied by the so-called flip rule in [26].
2Colorings implied by the flip rule are not required for nodes, since the channels already allow a

‘collision’ of no-flow reasons, e.g. in coloring (4.5). This helps to remove equivalent colorings and, thus, to
keep the number of valid colorings of a connector or a network small.

4.3. Encoding Reo in mCRL2 57

where Data is the global datatype as introduced before. The idea is that we explic-
itly model no-flow actions and wrap actual data items into flow actions. We use
provide and require as abbreviations for respectively no-flow-provide-reason and no-
flow-require-reason. With this setup the encoding of the primitives is straightforward.
For instance, the Sync, LossySync and Merger primitives can be written as follows,
where each line corresponds to a coloring in Table 4.3.

Sync=
�

Σd:Data A(flow(d))|B(flow(d)) + (4.2)

A(require)|B(provide) + (4.3)

A(provide)|B(require) + (4.4)

A(provide)|B(provide)
�

· Sync (4.5)

LossySync=
�

Σd:Data A(flow(d))|B(flow(d)) + (4.6)

A(flow(d))|B(provide) + (4.7)

A(provide)|B(require) + (4.8)

A(provide)|B(provide)
�

· LossySync (4.9)

Merger=
�

Σd:Data A(flow(d))|B(provide)|C(flow(d)) + (4.10)

A(provide)|B(flow(d))|C(flow(d)) + (4.11)

A(require)|B(require)|C(provide) + (4.12)

A(provide)|B(provide)|C(require)
�

·Merger (4.13)

EXAMPLE 4.6 (colorings in mCRL2). The LossyFIFO connector, which we have con-
sidered already in Example 4.1, is a standard example where context-dependency is
required (cf. [26]). Figure 4.2 depicts the corresponding labeled transition systems
for the basic constraint automata encoding (a), as well as the encoding based on the
coloring semantics (b). For simplicity, we use the singleton set Data= {x} as our data
domain. The crucial point here is that in the initial state q0, the constraint automata
version can lose data (loop A(x)), which is unintended behavior. However, in the col-
oring encoding, there is no such behavior. Note that the loops in the colored version
represent no-flow action only. 4

Using the coloring semantics we can properly represent Reo’s context-dependency
in mCRL2. In contrast to [26], our encoding also reflects the state of the connec-
tors and can further include data-dependency at the same time. Note also that even
though the coloring encoding includes extra transitions for no-flow actions, the num-
ber of states is equal to its constraint automata version.

58 Chapter 4. Verification by model checking

q0 q1

A(x)
A(x)

A(x)

B(x)
A(x)|B(x)

(a) constraint automata encoding

q0 q1

A(provide)|B(require)
A(provide)|B(provide)

A(flow(x))|B(provide)
A(flow(x))|B(require)

A(flow(x))|B(provide)
A(provide)|B(provide)

A(provide)|B(flow(x))
A(flow(x))|B(flow(x))

(b) coloring encoding

Figure 4.2: labeled transition systems for the LossyFIFO connector

4.3.4 Encoding context-dependency in port automata

The semantical models for Reo that support context-dependency, such as the coloring
semantics used above or Reo automata [18], incorporate additional context infor-
mation, i.e., the presence or absence of I/O request on the ports. In the coloring
semantics this information is encoded using a second no-flow color. In Reo automata,
the context is modeled using guards on transitions. This additional information is re-
quired to properly model context-dependent primitives, such as the LossySync channel,
whose encoding in the port and constraint automata models can only approximate its
intended behavior as a non-deterministic choice.

However, context information can in fact also be encoded in the basic port au-
tomata model. Instead of enriching the semantical model itself, we can simply en-
code context information using additional port names, which model the absence of
dataflow. It goes without saying that we need to adapt our primitives for this purpose.

EXAMPLE 4.7 (context-dependent LossyFIFO as a port automaton). Figure 4.3 depicts
an adaption of the LossySync and the FIFO primitives in the port automata model,
along with their composition using join and hiding. To incorporate context informa-
tion for port X , we added one extra port, called X , which models the absence of
dataflow on X . The LossySync and the FIFO now not only synchronize on X , but
also on X . The resulting port automaton on the right correctly models the LossyFIFO
primitive, i.e., it permits to lose data at A in the full state q02, but not in the empty
state q01. 4

Thus, port and constraint automata are per se expressive enough to model context-
dependent behavior. However, the assumption that a firing port name models the fact
that dataflow occurs on that port must then be dropped. For the formal constructions
of this encoding we refer to [55]. Note that this approach also enables model checking
of context-dependent connectors using port or constraint automata based verification
tools. We discuss an extension of the Vereofy model checker in Section 4.4.2.

4.3. Encoding Reo in mCRL2 59

q0 ./ q1 q2 \
¦

X , X
©

= q01 q02

{A, X }
¦

A, X
©

{X }

{B}
¦

B, X
©

¦

X
©

{A}

{B}
{A}

{A, B}

MyLossySync(A, X) MyFIFO(X , B) LossyFIFO(A, B)

Figure 4.3: context-dependent LossyFIFO modeled as a port automaton

4.3.5 Encoding of Timed Reo

Timed Reo is an extension of Reo with support for timed behavior, which can be
incorporated using special Timer channels. Timer channels are asynchronous channels
with internal states: they consume any value of sort Data, delay the output for a
predefined amount of time, and return a special ‘timeout’ value at their sink ends. For
an encoding of these channels, a new data structure has to be added. For example,
for specifying a t-timer with off- and reset options, reacting in a special way to ‘reset’
and ‘off’ data items, the following sort is needed:

DataTimer= struct reset?isReset | off?isOff | timeout | other(e:Data)?isOther

The channel behaves differently depending on whether the timer is switched on or
off. In mCRL2, timed actions can be defined using the @ (‘at’) operator. Using this
operator and the above data structure, the t-timer with off- and reset options can be
specified as the following parameterized process:

Timer(isOff :Bool, x:Real, t:Real) =
isOff →

�

Σd:DataTimer isOther(d)→ A(d) · Timer(false, 0, t)
�

�
�

(x < t)→
�

Σd:DataTimer

isReset(d)→ A(d) · Timer(false, 0, t) +
isOff(d)→ A(d) · Timer(true, x , t) +
tick@x · Timer(false, x + 1, t)

�

� B(timeout) · Timer(true, x , t)
�

where isOff :Bool indicates whether the timer is off or on, x is the current time, t is
the timer delay, A and B are source and sink ends of the channel, and the action tick
occurring at time x represents the progress of time. Note that by hiding the tick action
we can abstract from the time again and get an untimed model.

The operational model for time-aware Reo is given by Timed Constraint Automata
(TCA) [2], which is essentially an extension of constraint automata with clock assign-
ments and constraints. Timer channels are supported in ECT and are translated to
mCRL2 as described above. For a detailed discussion we refer to [63].

60 Chapter 4. Verification by model checking

4.4 Verification tools in ECT

In ECT, a number of verification tools can be used to analyze the behavior of Reo
connectors. In this section, we give a brief overview of the available analysis tools.
The mCRL2 conversion tool was written by this author of the thesis. All other tools
presented here have been implemented by other researchers – either from the CWI
or the TU-Dresden. Note also that in most cases third-party model checkers such
as mCRL2 and PRISM are used as back-ends. However, all tools mentioned in the
sequel are integrated in ECT and therefore provide powerful means for analyzing
Reo connectors. Note that we do not further discuss the animation tool in ECT, since
it does not cater for model checking or similar formal analysis. We now discuss the
following verification tools in ECT:

• the mCRL2 conversion tool [65],

• the Vereofy model checker [9, 105],

• a tool for bounded model checking of timed constraint automata [59],

• a conversion tool to PRISM [67], and

• a discrete event simulator for Reo [55].

4.4.1 The mCRL2 conversion tool

The Reo to mCRL2 conversion tool is part of the Reo core tools in ECT. Using this
conversion tool, an mCRL2 specification can be obtained automatically from a given
connector, simply by selecting it in the graphical Reo editor. Screenshots of the tool
are shown in Figure 4.1 and 4.4. The code generation can be customized using various
options. For instance, enabling the option with components will add and incorporate
process definitions for the components attached at the boundary of a connector. The
option with data enables the data-aware encoding. If not enabled, data parameters
and constraints are omitted. Furthermore, the option with colors can be used to add
support for context-dependency as described in Section 4.3.3. Moreover, data types
of components or services coordinated by Reo, as well as data constraints for data
dependent channels such as the Filter or Transform channel can be defined using the
same interface. Note that this information is saved as annotations in the Reo model,
which are automatically merged in when generating the final mCRL2 specification.
This way it is possible to regenerated the mCRL2 code at any point without manual
changes.

The tool further includes an integration with mCRL2’s model checking and state
space visualization tools. Particularly, we use the mcrl22lps tool for generating lin-
ear process specifications from mCRL2 code, lps2lts and ltsconvert for generat-
ing and minimizing labeled transitions systems, lps2pbes for model checking formu-
las specified in modal µ-calculus, and finally ltsgraph for visualizing state spaces.
As an alternative model checker back-end, CADP [43] can be used as well. However,
mCRL2 is still required to compute a labeled transition system, which is subsequently
model checked using CADP.

4.4. Verification tools in ECT 61

Runtime optimizations

In our encoding of Reo in mCRL2 every primitive (channels, nodes and components)
is translated to a separate process, all of which are then run in parallel. Every primi-
tive end corresponds to an action in this setting. Therefore, the derived specifications
usually consist of a rather large number of processes and an even larger number
of actions. However, the interaction among all these processes is rather local, e.g. a
channel communicates only with its source and target nodes. Consequently, we ob-
serve a major performance loss in the generation of linear process specification with
the mcrl22lps tool, caused by a state space explosion. To overcome this problem,
we can construct the connector in a stepwise fashion by adding processes one by one
and immediately applying the composition and hiding operators. We have explained
this principle already in Example 4.1.

Using this adaption of the original approach, the intermediate state spaces remain
relatively small and mcrl22lps can process them more efficiently. Furthermore, we
can use the topology of the connector to determine an order for the processes that
significantly improves the runtime of the linearization algorithm. In our experiments,
a depth-first traversal on the connector graph yielded the best results.

EXAMPLE 4.8 (mCRL2 encoding benchmark). Table 4.4 summarizes the runtimes of
two example connectors:

(a) n parallel FIFO1s, the source ends of all of which are connected to a common
exclusive router node, with their sink ends all connected to a common normal
node. This connector implements an unordered buffer (a bag) of size n.

(b) n FIFO1s in a sequence, connected using normal nodes. This connector imple-
ments a FIFO-n.

n naive BFS DFS

4 0.73 0.09 0.07
5 12.89 0.20 0.08
6 408.61 0.66 0.11
7 3.20 0.14
8 21.67 0.19
9 229.80 0.27

10 0.37
...

...

28 22.38
29 26.57
30 30.99

(a) parallel FIFO1s

n naive BFS/DFS

4 1.22 0.07
5 71.28 0.08
6 0.12
7 0.18
8 0.26
9 0.40

10 0.71
11 1.24
12 2.30
13 4.52
14 9.31
15 20.09

(b) sequential FIFO1s

Table 4.4: runtimes of the mcrl22lps tool in seconds

62 Chapter 4. Verification by model checking

The benchmarks were performed on a desktop computer with a 2.40GHz quad-core
CPU and 8GB memory, running Linux 2.6.27 and the development version of mCRL2
(revision 8013). The two tables show the number of FIFOs and the runtimes of
mcrl22lps in seconds. The three columns show the results, respectively, for the naive
encoding and two stepwise constructions based on a breadth-first search (BFS) and a
depth-first search (DFS) on the connector graph. Empty cells mean that the compu-
tation took more than ten minutes. The example of n parallel FIFOs (a) shows that
a breadth-first search can already improve the runtime. However, the growth is still
exponential by a factor of 10 approximately, whereas the depth-first traversal yields
much better results by a factor of around 1.2. In example (b), DFS and BFS coincide
and have a factor of about 2. Note that in (b) the state space in fact grows exponen-
tially, whereas in (a) it is linear in the number of FIFOs. 4

The mCRL2 converter in ECT provides a powerful means for verifying data-, context-
and time-dependent behavior. To the best of our knowledge, there exists no other
modeling tool that provides such functionality for verifying connector behavior.

Case study

We briefly discuss a web-service example which illustrates the formal process model-
ing and verification using Reo and mCRL2. This example was studied in a research
conducted in the EU COMPAS project [27]. The Reo connector that we consider here
was generated from a business process specification in BPMN using a conversion tool
in ECT, which we described in Section 2.2.1.

We consider a typical Loan Request scenario where the decision to approve or
reject a client’s application for a loan depends on the details of the request, say, the
client’s salary, the required loan amount and the period. A Reo connector for this
scheme is shown in the upper part of Figure 4.4. In this model, a client’s request is
specified as a data item request(amount:Pos, salary:Pos, period:Pos) provided by a Writer
component. FIFO1 channels represent basic (atomic) activities that constitute the pro-
cess. The request is denied if the salary during the loan period is half of the required
loan amount, and approved if it is three times bigger than this amount. These condi-
tions are modeled using two Filter channels. Another Writer represents a bank clerk
(Alice or Bob) who, in principle, may process the request. However, the condition of
the filter channel filter(login, authorized) allows only Alice to login into the system and
process the request.

Actually, the process discussed contains a structural error. If the approval condition
regarding the loan does not hold, the process deadlocks. Figure 4.5 shows the reduced
LTS, minimized modulo branching bisimilarity [50], for different instances of the
process, namely, for loan requests with the amount of 10.000, period of one year and
client’s salaries of 1.000, 2.000 and 3.000. The LTS for the first and second process
instances contain deadlocks (states 10 and 5, respectively), automatically detectable
by our set-up of model checking tools.

4.4. Verification tools in ECT 63

Figure 4.4: Reo to mCRL2 conversion plug-in

(a) salary=1.000, deadlock state 10

(b) salary=2.000, deadlock state 5 (c) salary=3.000, no deadlock

Figure 4.5: LTS for different instances of the Loan Request scenario

64 Chapter 4. Verification by model checking

4.4.2 The Vereofy model checker

Vereofy [9, 105] is a model checking tool for the analysis of Reo connectors and is de-
veloped by the group of Christel Baier at the Technical University of Dresden. Vereofy
uses two input languages, the Reo Scripting Language (RSL), and a guarded com-
mand language called the Constraint Automata Reactive Module Language (CARML)
which are textual versions of Reo and constraint automata, respectively. Scripts in
these languages can be generated from graphical Reo models and are used for the
verification of temporal properties expressed in LTL and CTL-like logics, as well as
bisimulation equivalence checks (cf. [16]). Connectors specified using RSL scripts can
be also exported into the ECT Reo format, enabling graphical editing and animation.

Compared to the mCRL2-based approach, the main advantage of Vereofy is that
it can generate counterexamples and show them as paths or even as animations in
ECT’s animation tool. This is possible using an Eclipse plug-in that integrates Vereofy
with ECT. However, since the mCRL2 converter in ECT also supports analysis using
CADP, it is in principle possible to extract counterexamples as well. This belongs to our
future work. Note also that at present, timed behavior is not supported by the Vereofy
model checker toolsuite. Moreover, Vereofy expects the user to define a global data
domain eligible to all connectors and components in the model instead of generating
it automatically as done in our approach. Also, Vereofy cannot handle recursive type
definitions which we need to deal with, e.g., tuple nodes.

Figure 4.6: Vereofy trace explorer in ECT

Context-dependency in Vereofy

As indicated in Section 4.3.4 and formally shown in [55], context-dependency in Reo
can also be encoded in basic two-color models, specifically using port or constraint
automata. This encoding enables model checking of context-dependent connectors in
Vereofy. For this purpose, we adapted Vereofy’s library for built-in primitives. The new
version of this library contains context-dependent variants of some of the basic Reo
primitives and is shown in Listing B.13 in Appendix B.

3CD-Library and examples available at: http://reo.project.cwi.nl/vereofy_CD.tar.gz

http://reo.project.cwi.nl/vereofy_CD.tar.gz

4.4. Verification tools in ECT 65

1 #include "builtin"
2

3 // Non-deterministic LossyFIFO:
4 CIRCUIT LOSSY_FIFO_ND {
5 new LOSSY_SYNC_ND(A;B);
6 new FIFO1(B;C);
7 B = NULL;
8 }

1 #include "builtin_CD.carml"
2

3 // Context-dependent LossyFIFO:
4 CIRCUIT LOSSY_FIFO_CD {
5 new LOSSY_SYNC_CD(A,nB;B,nA);
6 new FIFO1_CD(B,nC;C,nB);
7 B = NULL; nB = NULL;
8 }

{C} {A,C}{A}

{A}

{A}

FULL

EMPTY

{C} {A,C}{A} {A,nC}

{nC} {A} {A,nC}

{nC}

FULL

EMPTY

Figure 4.7: non-deterministic (left) vs. context-dependent (right) LossyFIFO in Vereofy

As an example, Figure 4.7 depicts a listing (top) of the non-deterministic and the
context-dependent version of the LossyFIFO example, and two port automata gener-
ated from them using Vereofy (bottom). For simplicity we have hidden the internal
node B, used a singleton set as data domain, and removed all data constraints in the
generated automata. The port automata on the left and right correspond to the non-
deterministic and the context-dependent versions, respectively. The latter uses the
context-dependent primitives defined in Listing B.1. The crucial difference between
the two is that the non-deterministic version contains an illegal transition via port A
in the EMPTY state. This corresponds to the connector losing a data item in a situation
where the FIFO1 buffer is empty and should, in any case, accept the data item. In the
context-depended version, however, this illegal transition does not exists.

4.4.3 Bounded model checking for timed constraint automata

A SAT-based approach [59] for bounded model checking of timed constraint au-
tomata [2] is implemented in the EA framework of ECT. In this approach, the behav-
ior of a timed constraint automaton is represented as a formula in propositional logic
with linear arithmetic, which can be analyzed by various SAT solvers. Since timed
constraint automata provide operational semantics for Timed Reo, this approach can
be used for model checking timed properties of Reo connectors. Timed constraint au-
tomata can be specified in the graphical EA editor. The conversion to propositional
logic can be invoked from a context-menu entry, which generates code for the SAA-
tRe [60] abstraction refinement model checker for timed automata. At the moment
there is no tool for generating TCA from Reo connectors. The development of such a

66 Chapter 4. Verification by model checking

plug-in for data-aware Reo will require tools for analyzing data constraints and func-
tions used in Filter and Transform channels. The timed constraint automata extension
and the conversion to propositional formulas was written by Stephanie Kemper and
is described in detail in [58].

In our work on the mCRL2 semantics of Reo, we map each channel separately
to a process and exploit the composition and hiding operators in mCRL2 to obtain
a semantical model of the whole connector or network in terms of an LTS where
transitions are labeled with names parametrized with data observed in these ports.
Moreover, our approach can handle data manipulation using Transform channels with
associated non-linear functions.

4.4.4 Stochastic analysis using PRISM

For performance evaluation, Reo connectors can be annotated with stochastic infor-
mation such as data item arrival rates at boundary nodes and processing delays of
channels. Moon et al. describe an approach where these Stochastic Reo models are
translated to automata models which can subsequently be used for stochastic analysis.
In particular, so-called quantitative intensional automata [4] (QIA) and stochastic Reo
automata [75] (SRA) can be derived from Stochastic Reo models. In a second step,
these automata models can be converted to continuos time Markov chains (CTMCs)
which can then be fed into Matlab or PRISM [67] – a probabilistic symbolic model
checker. PRISM can then be used, for instance, to analyze the blocking probability of
a port or compute steady state probabilities.

The conversion tool is part of the EA framework in ECT and was written by Young-
Joo Moon. For more details we refer to [73].

4.4.5 Stochastic analysis based on discrete event simulation

A second approach for stochastic analysis in ECT (cf. [106, 56]) is based on discrete
event simulation and uses the coloring semantics as its underlying model. The advan-
tage over the Markov chain based analysis approach is that the simulator does not
impose the requirement of exponential distributions, but allows the use of general
distributions for the arrival rates at nodes and, more importantly, for the processing
delays in channels. Typical performance properties that can be analyzed are steady-
state probabilities, channel and buffer utilizations, end-to-end delays, inter-arrival
times at end points, loss ratios in LossySync channels and routing statistics in Mergers.
In comparison to the automata-based approach using PRISM, the discrete event sim-
ulator also has the advantage that the state space can be computed on-the-fly, which
permits to handle larger models.

The discrete event simulator for Reo was written by Oscar Kanters. A screenshot of
the tool showing an instant messenger example in Reo (cf. Example 2.4) is depicted
in Figure 4.8.

4.5. Related work 67

Figure 4.8: discrete event simulator in ECT

4.5 Related work

Khosravi et al. [61] establish a mapping of Reo to Alloy, a lightweight modeling lan-
guage based on first-order relational logic. To check the correctness of a circuit, they
express the desired properties in terms of assertions which are closely related to LTL
and checked by the Alloy Analyzer. This approach deals with context dependency in
Reo by defining special relations that enforce maximal progress in circuit execution.
However, the actual values of data passed through the channels are not considered
in this work. Moreover, the authors admit to have considerable problems with perfor-
mance.

Bonsangue and Izadi [19] defined the semantics of context-dependent Reo con-
nectors in terms of Büchi automata and generalized standard automata based model
checking algorithms to enable verification of LTL formulas for Reo connectors. How-
ever, this work is purely theoretical and, currently, is not supported by any existing
software tool.

4.6 Conclusions

In this chapter we have presented an approach for verifying Reo connectors using
the mCRL2 model checker suite. Our mapping from Reo to the mCRL2 specification
language is compositional and optimized for efficient processing. We have shown the
correctness of our encoding with respect to the port automata semantics. However,
our approach can also include data, based on the constraint automata model. Fur-
thermore, we have encoded the coloring semantics for context-dependent behavior.
A mapping of the Timer channel provides means for verifying timed behavior as well.
To the best of our knowledge, the combination of these features is not supported by
any other comparable tool.

68 Chapter 4. Verification by model checking

The mCRL2 converter is implemented as a plug-in in ECT. We have also men-
tioned a number of other verification tools in ECT, e.g. the Vereofy model checker, a
tool for bounded model checking of timed constraint automata, and stochastic anal-
ysis using PRISM and discrete event simulation. We have also indicated that context-
dependency in Reo can be encoded in basic two-color models (formally shown in [55])
and extended the Vereofy model checker with context-dependency based on this ob-
servation. All in all, we have shown that ECT provides a powerful environment for
modeling and analyzing component connector and networks based on the Reo coor-
dination language.

Chapter 5

Reconfiguration by graph transformation

In this chapter, we introduce a rule-based approach for modeling reconfiguration of
Reo connectors using graph transformation concepts. We show how confluence checks
can be used to verify that reconfiguration rules do not interfere which each other. By
additionally modeling the execution semantics of connectors using graph transfor-
mation we can analyze dynamic reconfiguration as well. In particular, the approach
enables us to find unintended and potentially harmful interplay of execution and re-
configuration using model checking. We utilize the AGG tool for graph transformation
and the Henshin framework for in-place model transformation.

5.1 Motivation

The language reference of Reo [1] describes channels as mobile entities. Their ends
(and thereby the nodes they connect) can transparently be moved to other physical
locations. Even more relevant for our work is the fact that channels can be created
and destroyed, and nodes can be joined or split at runtime. In essence, Reo provides
low-level operations for dynamically reconfiguring connectors.

The need for dynamic reconfiguration does not exclusively arise in highly adap-
tive environments such as peer-to-peer networks or multi-agent systems. In a simple
component-based system, a typical scenario for dynamic reconfiguration is to ap-
ply hot-fixes to eliminate bugs that, for instance, cause security vulnerabilities. In
the service-oriented setting, dynamic reconfiguration can be necessary if a used ser-
vice suddenly becomes unavailable, its quality of service becomes unacceptable, or it
changes its (behavioral) interfaces. In practice, reconfiguration tends to be more com-
plex, especially when global changes are involved, e.g. when performing refactorings
or adapting the system architecture itself. At the same time, the developers have only
little control over the services that comprise the application, e.g., they usually cannot
restart or reset a service.

In real-world applications, switching between a finite set of system configurations
to accommodate the new requirements may not be feasible because the number of

69

70 Chapter 5. Reconfiguration by graph transformation

components is often not fixed a priori. A standard example for a system with an un-
bounded number of components are peer-to-peer networks. In such applications, a
rule-based approach for reconfiguration is better suited to perform structural changes
in the system layout. Moreover, atomicity of complex reconfigurations must be en-
sured since they are usually performed as a series of low-level operations on primi-
tives, e.g. the creation of a channel in Reo. When performing reconfiguration dynami-
cally (at runtime), currently executing actions must be suspended or alternatively the
reconfiguration has to be delayed until all pending actions are finished. Furthermore,
when performing dynamic reconfiguration, two issues have to be dealt with: (i) the
structural and logical integrity of the system has to be maintained, and (ii) it must be
ensured that the system is in a consistent state after the reconfiguration (state trans-
fer). For example, it should be guaranteed that the reconfiguration is not performed
within a critical section (e.g. a transaction), and that the system is not brought into a
deadlock. All these requirements are crucial in dynamically reconfigurable systems.

For the coordination language Reo we propose here a framework that provides
theoretical and practical means (formalisms and implementations, respectively) for
the definition, analysis and execution of dynamic reconfiguration. The underpinning
formal framework for our approach is the theory of graph transformation.

5.2 Reconfiguration by graph transformation

In our approach we model possible reconfigurations of a network using a set of graph
transformation rules. A graph transformation rule consists of a pattern which must be
matched, and a template which describes the changes to be performed to the system.
Additional application conditions (positive or negative) may restrict the applicability
of a transformation rule further. A major advantage of this rewriting approach is
that it allows to specify concretely in which situations and how a system should be
changed, including possible dependencies that must be updated. Furthermore, these
rules can not only be applied locally, but also globally, i.e., wherever the patterns
match. Another important aspect of this approach is the granularity of changes that
are made. Instead of sequentially performing low-level modifications on primitives,
complex structural reconfigurations can be achieved in an atomic step.

In the previous chapter we elaborated the formal semantics of Reo connectors and
networks. Their structural aspects, however, were treated rather informally. In order
to correctly model and reason about reconfiguration, we need to introduce a formal
model that captures the structural aspects of Reo connectors and networks as well.
We will use a running example in this chapter, introduced below.

EXAMPLE 5.1 (resource mediator). Figure 5.1 depicts a resource mediator network in
Reo. Two worker components require mutually exclusive access to a resource, stored
in the FIFO1 channel in the middle. The workers can consume the resource via the
source end acquire. The exclusive router node C ensures that only one of the workers
can acquire the resource at a time. An administrative token is kept in a separate FIFO1.
Once the worker has released the resource again, the copied resource is destroyed and

5.2. Reconfiguration by graph transformation 71

Figure 5.1: a resource mediator network in Reo

the released resource is stored again in the middle FIFO1. Note that node D is also an
exclusive router because we want to be able to add more resources later. 4

The example can be further extended by replacing the outgoing Sync channels from
node C with Filter channels. The data constraints of the Filter channels can be used to
define a pattern that the resource must match in order to be suitable for processing by
a specific worker. Consider, for instance, that the resource is given in terms of a URI.
If the workers can understand only certain protocols, such as http, ftp etc., the data
constraint can ensure that the scheme of the URI matches that protocol. Moreover, we
can also consider a scenario where the workers are allowed to modify the resource
(either directly its data or the pointer that references the actual data). The resulting
system can be compared to a so-called tuple space, which is a type of distributed
shared memory and the central concept in the coordination language Linda [45].

5.2.1 Reo networks as typed hypergraphs

In the following, we formalize the structure of Reo connectors and networks using
typed hypergraphs. Reo nodes are represented by vertices, whereas (hyper-)edges
represent channels and components. Note that a hypergraph model can capture the
notion of undirected (i.e. drain and spout) channels directly. An encoding into or-
dinary graphs with directed edges is in principle possible, but it is not a natural
representation of this concept. Moreover, hyperedges are an appropriate model for
components in our framework. Components have a fixed interface consisting of a
number of source and target ends, and they are treated exactly like channels. The
following definition formalizes the notion of hypergraphs.

DEFINITION 5.2 (hypergraph). A hypergraph G = (V, E, s, t) consists of a set of ver-
tices V , a set of edges E and source and target functions s, t:E→ V ∗. ◊

72 Chapter 5. Reconfiguration by graph transformation

The source function s models the source ends of a channel or a component. The target
function t is used to model the sink ends. Whether a hyperedge e ∈ E is a channel
or component is merely based on the number of its source and sink ends. Note also
that the ends are ordered since the codomain of both s and t is the set V ∗ of words
over V . Since the graph transformation approach we use in the following is based on
categorical concepts, we further need to recall the notion of hypergraph morphisms.

DEFINITION 5.3 (hypergraph morphism). A hypergraph morphism f :G1 → G2 is a
pair of functions f = (fV , fE) with fV :V1→ V2 and fE:E1→ E2, such that f ∗V ◦ s1 = s2 ◦ fE
and f ∗V ◦ t1 = t2 ◦ fE where f ∗V :V ∗1 → V ∗2 is the free monoid morphism induced by fV . ◊

Hypergraphs and their morphisms form a category, denoted by HGraph in the se-
quel. As pointed out above, hypergraphs naturally model the structure of connectors.
However, for a complete representation, a typing mechanism is required to differ-
entiate between multiple channel and component types. For this purpose, we con-
sider hypergraphs together with morphisms into a fixed typegraph, denoted by Reo.
This typegraph defines all allowed types of nodes, channels and components. Let
(Gi , typei: Gi → Reo) for i ∈ {1,2} be two Reo graphs. Then a morphism f : G1 → G2
is an ordinary hypergraph morphism, that additionally satisfies the equation type2 =
f ◦ type1. We denote the category of Reo graphs by HGraphReo. Hence our final struc-
tural model for Reo connectors is typed hypergraphs. In our examples, the types of
channels and nodes are indicated by their graphical representations, whereas the
types of components are determined by their names.

The resource mediator network in Example 5.1 is formally modeled as a typed
hypergraph that consists of six vertices (A-F) and in total seven hyperedges, modeling
five channels and two components of type Worker. The exclusive routers C and D are
modeled using an additional node type. However, we can also use the symbol as
an abbreviation for the hypergraph of the actual exclusive router in Example 2.2. We
consider both encodings as valid models in our context.

5.2.2 Double pushout rewriting of Reo networks

We use the so-called double pushout (DPO) approach [28, 37] to graph transfor-
mation. The most important concept in the DPO approach is the rule-based graph
rewriting, as schematically depicted in Figure 5.2.

A transformation rule consists of a left-hand side (LHS), a right-hand side (RHS)
and a partial mapping between them. An application of a rule to a source graph results
in a modified target graph. Note that this modification is performed in-place, i.e., the
source graph is modified directly. This is an important criterion for applicability in
dynamic reconfiguration scenarios, since at runtime it is in most cases not desirable
to redeploy the complete system. Note also that a single rule can describe complex
reconfigurations, which are performed in an atomic step. This is a major advantage
of graph transformation over conventional approaches for reconfiguration, where a
series of low-level operations must be performed and the consistency of the result
has to be ensured through additional mechanisms. Moreover, rules may be extended

5.2. Reconfiguration by graph transformation 73

LHS RHS

Source Target

Rule

Figure 5.2: rule-based graph rewriting

with (negative) application conditions, for instance to make reconfiguration state- or
context-dependent. If a single rule is not sufficient, a grammar consisting of multiple
rules, which can be applied using additional control-flow mechanisms can be used.
Thereby, graph transformation provides a powerful framework for realizing dynamic
reconfiguration of graph-based connector models.

Formally, a transformation rule or production p in the DPO approach is defined as
a span of injective morphisms –in our case– in the category HGraphReo:

p = L
`←− K

r−→ R

The left-hand side L defines the structural pattern that must be matched to apply the
rule. The so-called gluing graph K contains all elements that are not removed by the
rule and R additionally includes those elements that should be added to the graph,
which in our case represents a Reo network. To reconfigure a given network M we
have to apply a transformation rule p using a morphism m:L→ M , called match. This
match defines in which part of the network, M , the reconfiguration should take place
and ensures further that the required structural patterns exist. The actual reconfigu-
ration of the network M using the rule p with the match m is formally defined as the
following diagram where (1) and (2) are pushouts.

L

m
��

(1)

K`oo r //

��
(2)

R

��
M Coo // N

Operationally, the network M is reconfigured by (i) removing the occurrence of L\`(K)
in M , yielding the intermediate network C , and (ii) adding a copy of R\r(K) to C . This
is the core of the double pushout approach, which has been applied to many high-
level structures, such as typed attributed graphs, hypergraphs and Petri nets.

REMARK 5.4 (reconfiguration rules). In the following, we depict reconfiguration rules
just by their left-hand and right-hand sides. The gluing graph K is defined as the
intersection of the two (L and R) and the mappings ` and r are implicitly given by the
labels and the relative positions of the nodes and edges. 5

74 Chapter 5. Reconfiguration by graph transformation

EXAMPLE 5.5 (reconfiguration rule AddWorker). Figure 5.3 depicts the reconfigura-
tion rule AddWorker for the resource mediator network. The rule matches an existing
worker and resource, and creates a new worker and wires it to the connector. Note
that it is still valid to consider the node C not as a vertex in the graph but just as an
abbreviation for the exclusive router. This is possible because we can define, without
much effort, a rule that adds another outgoing end to an exclusive router. 4

⇒

Figure 5.3: reconfiguration rule AddWorker

EXAMPLE 5.6 (reconfiguration rule AddResource). So far, only a single resource was
managed by the connector. To allow more than one resource we define the reconfig-
uration rule AddResource, depicted in Figure 5.4. This rule adds another FIFO1 to the
connector, which stores the new resource. We abstract here from the actual content
of the resource. We assume that when this rule is applied in practice, the resource
is given as a parameter to the rule, e.g. using a URI. Together with AddWorker, this
rule enables us to dynamically add workers and resources to the basic network of
Figure 5.1. The reconfigurable network now effectively ensures mutually exclusive
access by n worker components to m resources. 4

⇒

Figure 5.4: reconfiguration rule AddResource

5.2. Reconfiguration by graph transformation 75

5.2.3 Critical pair analysis in AGG

An important technique for formal verification of graph transformation systems is
the so-called critical pair analysis, which originates in term rewriting and is used to
statically check local confluence of transformation systems. The theory has been gen-
eralized to hypergraphs [80], term graphs [81] and to typed attributed graphs [51].
A critical pair is a pair of two conflicting rule applications in a minimal context. Es-
sentially, in a critical pair one rule application disables the other rule application. The
most common reason for a conflict is that one rule deletes an object which is matched
by the other rule (so-called delete-use conflict).

Regarding reconfiguration, critical pair analysis is a useful tool for reasoning about
sets of reconfiguration rules. As an example we have encoded the reconfiguration
rules AddWorker, AddResource and DelWorker, DelResource, which are respectively de-
fined as the inverses of the former rules, in the Attributed Graph Grammar (AGG)
tool [87]. AGG implements the double pushout approach and has built-in support for
critical pair analysis. The results of the analysis for our example are given in Table 5.1.
From these results, it becomes evident that the rules AddWorker and AddResource are
not in conflict with any rule. In fact, for AddWorker and AddResource there are no crit-
ical pairs at all, which means that all pairs of applications of these rules to the same
graph are parallel independent, i.e., they can be applied in arbitrary order, yielding the
same result. However, applications of DelWorker and DelResource can circumvent the
applicability of the other rules.

first \ second AddWorker AddResource DelWorker DelResource
AddWorker 0 0 0 0

AddResource 0 0 0 0
DelWorker 2 2 16 3

DelResource 7 7 8 24

Table 5.1: results of critical pair analysis in AGG

The two critical pairs for DelWorker – AddWorker are shown in Figure 5.5. To
make the encoding more compact, we have modeled the Sync channels as edges. The
FIFO1s are encoded as vertices so that we can associate a boolean attribute for their
states. Both critical pairs show essentially the same problem of our rules: since they
all need a worker in their match, deleting a worker can destroy the original match.
The parts that are deleted by DelWorker and matched by AddWorker are highlighted
in the bottom parts in Figure 5.5.

We have to note here that critical pair analysis is a very expensive operation,
since all possible overlappings of two rule patterns have to be generated. Even for
our simple example the critical pair analysis with enabled type graph and multiplicity
constraints in AGG v1.6.6 took already about 45 minutes to finish on a standard desk-
top computer. However, if applicable, critical pair analysis can give valuable insights
about possibly unintended dependencies between multiple reconfiguration rules.

76 Chapter 5. Reconfiguration by graph transformation

Figure 5.5: critical pairs for DelWorker – AddWorker generated by AGG

5.3 Modeling dynamic reconfiguration

As a complementary approach to critical pair analysis, model checking can be used
as well for verifying reconfiguration. As a matter of fact, we show now that using
a model checking approach, we are able to analyze dynamic reconfiguration, i.e.,
reconfiguration at runtime. A typical verification task for a dynamically reconfigurable
system is to check whether there is a potentially harmful interplay of the execution,
on the one hand, and the dynamic reconfiguration, on the other.

One way of analyzing the interplay of execution and dynamic reconfiguration is by
encoding both behavioral aspects in the same formalism and then apply, e.g. model
checking.1 For our running example, we can refine the reconfiguration rules to ex-
plicitly incorporate state information. In fact, we have done this already for the FIFO1
channels, since our rules contain information about whether they are full or empty.
Additionally, we now use a boolean attribute active to store the state of the worker
components. Figure 5.6 shows the refined reconfiguration rule AddWorker. Here, the
variable x is used to maintain the state of the matched worker. To analyze the com-
plete dynamics of the network, we additionally need to model its execution semantics.
In general, this is a non-trivial task, since the execution rules must correctly model
the behavior of the network even if it has been reconfigured already. However, for
our simple example, the execution can be easily modeled. Figure 5.7 depicts the rule
StartWorker, which models the action of assigning a resource to a worker and starting
it. We define the rule StopWorker as its inverse. Now we have defined the complete
dynamics (execution and reconfiguration) of the system using graph transformation
rules. We can, thereby, analyze the network and the method we use to do that is
model checking.

1Another approach is to integrate the formal models for execution and reconfiguration. We use this ap-
proach in Chapter 7, where we integrate the port automata semantics of Reo with the graph transformation
model for reconfiguration.

5.3. Modeling dynamic reconfiguration 77

⇒

Figure 5.6: refined reconfiguration rule AddWorker

⇒

Figure 5.7: execution rule StartWorker

5.3.1 State space analysis in Henshin

Henshin [6, 53] is an in-place model transformation language for the Eclipse plat-
form. Henshin is based on graph transformation concepts and provides means for
defining endogenous as well as exogenous model transformations for the Eclipse Mod-
eling Framework (EMF) [40]. The Henshin transformation language and toolset are
currently developed in a joint effort of the CWI Amsterdam, the Technical University
of Berlin and the Philipps-University Marburg. Henshin is an incubation project for
EMF and is implemented in the context of the Eclipse Modeling Framework Technol-
ogy (EMFT) [41] project.

One distinguishing feature of Henshin is its toolset for state space analysis, includ-
ing a graphical state space exploration tool, which can be used to generate, visualize
and model check state spaces. Once a state space for a set of transformation rules and
initial states has been generated, Henshin provides interfaces to third-party model
checkers including mCRL2 [49], CADP [43] and PRISM [67]. The first two enable a
validation of temporal properties specified in the modal µ-calculus, whereas PRISM
can be used for probabilistic analysis. Furthermore, Henshin supports checking of
state invariants defined as OCL [76] constraints.

78 Chapter 5. Reconfiguration by graph transformation

0
1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

AddWorker

AddResource

StartWorker

AddWorker

AddResource

StartWorker

AddWorker

AddResource

DelResource

StartWorker

StopWorker

AddResource

StartWorker

AddWorker

AddResource

DelResource

StartWorker

StopWorker

AddWorker

DelResource

StartWorker

StopWorker AddResource

DelResource

StartWorker

StopWorker

AddWorker
DelResource

StartWorker

AddWorker

AddResource

StartWorker

StopWorker

StopWorker

DelResource

StartWorker
AddResource

StartWorkerStopWorker

AddWorker
DelResource

StartWorker

StopWorker

StopWorker

DelResource

StartWorker
StopWorker

StopWorker

StopWorker

StartWorkerStopWorker

StopWorker

Figure 5.8: state space for resource mediator generated with Henshin

We have encoded our refined reconfiguration rules together with the execution
rules StartWorker and StopWorker in Henshin, based on the Reo meta-model, which
we have introduced in Section 2.2.2. To obtain a finite state space, we have added
so-called negative application conditions (NACs) to the rules AddWorker and Add-
Resource, which allow to give a bound for the maximum number of workers and
resources in the network. We chose an upper bound of three workers / resources
here. For better readability we have also left out rule DelWorker. As the initial state,
we have chosen the resource mediator network with one resource and one inactive
worker. We then used Henshin’s graphical state space explorer to generate a labeled
transition system where the states are essentially attributed graphs modeling the con-
figurations of the network, and transitions are rule applications – in our case either
execution or dynamic reconfiguration steps. We used Henshin’s state space explorer
to automatically layout the generated state space and exported it to LATEX. The result
is shown in Figure 5.8. Note that this state space is –for illustration– very small and
that Henshin is capable of handling state spaces with millions of states.

Once a state space has been successfully generated, we can use Henshin’s support
for third-party model checkers. In the following, we consider:

(i) structural invariant checking with OCL,

(ii) qualitative model checking with CADP and mCRL2, and

(iii) probabilistic model checking with PRISM.

5.3. Modeling dynamic reconfiguration 79

State invariant checking with OCL

OCL [76] is a constraint language for MOF [72] and EMF [40] based models. In
state spaces generated with Henshin, every state corresponds to a distinct EMF model
instance. Therefore, OCL can be used to validate structural state invariants.

In our example we can, for instance, verify that there are always enough empty
FIFO1s for storing the resources in the network. We do this using the following OCL
constraint, which we can directly check in Henshin’s state space explorer:

• FIFO.allInstances()→select(f | f.name=‘resource’ and not f.full)→size() ≥
Worker.allInstances()→select(w | w.active)→size()

This invariant is satisfied. Note that we need to mark those FIFO1s that are actually
used for storing the resources. We use here the static method allInstances() to obtain
all known instances of type FIFO and Worker, and compute a subset using the select-
construct in OCL. An example for an invariant that is not satisfied is:

• Worker.allInstances()→select(w | w.active)→size() ≤ 1

which states that there is at most one active worker in the network. The Henshin state
space explorer finds as a counterexample a path into state 18, in which this constraint
does not hold anymore.

Model checking with CADP and mCRL2

In Section 5.2.3 we used the critical pair analysis of AGG tool to verify the local
confluence of applications of AddWorker and AddResource. This local confluence holds
also for the refined version of the rules. In the state space the local confluence causes
the typical diamond shape between AddWorker and AddResource transitions.

Using the CADP [43] and mCRL2 [49] model checker back-ends of Henshin, we
can now also verify temporal properties specified as modal µ-calculus formulas. For
instance, we can verify freedom of deadlock using the formula:

• [true∗]〈true〉true

Furthermore, we can also confirm that after a StartWorker action there is always a
StopWorker action using the following formula:2

• 〈true∗.StartWorker.true∗.StopWorker〉true

In general, the state space in Figure 5.8 is very symmetric and shows that there are
no harmful interactions between reconfiguration and execution steps, e.g. the square
of states 5-12-16-11 shows how adding and removing resources do not conflict with

2Note that the development version of Henshin also supports to model check parameterized actions,
i.e., to quantify over nodes (cf. http://wiki.eclipse.org/Henshin_Statespace_Explorer). In our
running example, this feature can be used to check that once a specific worker has been started, this worker
is eventually stopped again.

http://wiki.eclipse.org/Henshin_Statespace_Explorer

80 Chapter 5. Reconfiguration by graph transformation

0

1

2

3

4

5

6

7

8

9

10

11 12

13 14

15

AddWorker

AddResource

StartWorker

AddResource

StartWorker

AddWorker

DelResource
StartWorker

AddWorker

AddResource
StopWorker

DelResource
StartWorker

AddResource
StopWorker

AddWorker

DelResource

DelResource

StopWorker

DelResource

DelResource

StartWorker

StopWorker

AddWorker

AddResource

AddResource
StartWorker

DelResourceStopWorker

AddWorker

DelResource

AddResource

StopWorker

DelResource

DelResource

StopWorker

AddResourceDelResource

Figure 5.9: state space for the adapted reconfiguration rules

starting and stopping a worker. However, such a well-behaved system is not always a
given. To illustrate the potentially harmful interactions of execution and reconfigura-
tion actions, we have adapted our example by removing the state information of the
FIFO1s and worker components in the LHS of the reconfiguration rules AddWorker,
AddResource and DelWorker. One critical aspect in this modification is that DelRe-
source may now delete empty FIFO1s whose tokens are still being used by a worker.
For simplicity, we have set an upper bound of two workers and two resources now.
The resulting labeled transition system is depicted in Figure 5.9.

The left part of the labeled transition system contains the ‘cube’ of adding / re-
moving resources and starting / stopping workers, similar to the original version in
Figure 5.8. The rest of the state space, however, is somewhat more asymmetric. In
fact, it contains a connected island of states 14 and 15, from which the rest of the LTS
is not reachable anymore. Moreover, the rules StartWorker and StopWorker are not
enabled here anymore and we can see also that two workers have been started, but
cannot be stopped anymore. To understand this problem we follow a trace into this
region of the labeled transition system:

(i) initial state 0: one worker and one resource. The worker is inactive and the
resource is stored in a FIFO1.

(ii) AddWorker 0→ 1: a second inactive worker is added.

(iii) AddResource 1→ 4: a second resource stored in a FIFO1 is added.

(iv) 2×StartWorker 4 → 7 → 10: both workers become active. The resources are
removed from the two FIFO1s.

(v) DelResource 10→ 12: one of the empty FIFO1s is deleted.

(vi) AddResource 12→ 13: a new full FIFO1 is added.

(vii) DelResource 13→ 14: the other empty FIFO1 is deleted.

5.3. Modeling dynamic reconfiguration 81

Thus, in states 14 and 15 there are respectively one and two FIFO1s in the network
that already carry a resource. However, both workers are running already at this point
and cannot release their resource anymore, which therefore results in a livelock.

Probabilistic analysis with PRISM

As mentioned already in the introduction, Henshin also supports probabilistic analysis
using PRISM. For this purpose we need to annotate rules with positive real numbers
which describe the rate of an exponentially distributed delay of its application. Fol-
lowing the approach of stochastic graph transformation, as introduced by Heckel et
al. [52], the state space generated with Henshin together with the rule rates give rise
to a Continuous Time Markov Chain (CTMC). The state space explorer in Henshin
can produce such a CTMC in the input format of PRISM, thus allowing to perform
stochastic analysis as well.

Rule Rate Rule Rate Rule Rate

StartWorker 3600 AddResource 30 AddWorker 6
StopWorker 3600 DelResource 12 DelWorker 1

Table 5.2: rates for rule applications in the resource mediator network

For the example of the resource mediator network with upper bounds of respec-
tively three workers and resources, we chose the rates shown in Table 5.2. For sim-
plicity, we use integers here. We assume that starting and stopping a worker takes the
same amount of time. We therefore associate the same rates to StartWorker and Stop-
Worker. In general, we assume that reconfiguration steps occur much more scarcely
than execution steps. Adding workers or resources is assumed to happen more often
than deleting. This can be caused by a reconfiguration policy which adds workers and
resources on demand, for instance based on the size of a task queue. We also assume
that adding resources to the network happens more frequently than adding workers.
In this example, we interpret the rates as execution or reconfiguration actions per
hour. Thus, the mean time between starting workers, or between stopping workers,
is one second. The mean time between adding new resources is 2 minutes and be-
tween deleting is 5 minutes. Finally, we assume that the average delay of adding new
workers is 10 minutes and that workers are deleted again only once per hour.

Using a validation front-end in Henshin’s state space explorer we are now able
to perform some stochastic analysis with PRISM. We use the original version of the
reconfiguration rules, as in Figure 5.8. However, this time we also include the rule Del-
Worker. As a standard test, we computed the steady-state probabilities of the gener-
ated CTMC. The rounded results are shown in Table 5.3, where we have omitted all
states with a probability of less than 1%.

This shows that the configuration with three worker and three resources has with
76.8% the highest probability. Note that starting and stopping workers has no measur-
able effect on the average network configuration. The second most likely configura-

82 Chapter 5. Reconfiguration by graph transformation

tion consists of two workers and three resources, or three worker and two resources.
Note that the actual results computed by PRISM indicated a very small difference in
the probabilities for these two network configurations. However, since this difference
is very small, we did not reflect it in the probabilities in Table 5.3.

States Probability

14, 18, 21, 22 19.2%
9, 11, 15, 16, 19, 20 3.2%

Configuration Probability

3 workers, 3 resources 76.8%
2 workers, 3 resources

or 3 workers, 2 resources
19.2%

Table 5.3: steady-state probabilities computed by PRISM

Observations

Even our very basic example shows that a careful design of reconfiguration rules is
crucial. In particular, it is important that the reconfiguration rules contain constraints
on the state information of the elements that are involved in the reconfiguration. We
have shown that by modeling the reconfiguration and execution semantics as graph
transformations we can analyze the complete dynamics of a network. State space
analysis reveals potential problems and can be used to eliminate design failures. In
particular, we can use model checking to verify structural and behavioral, and in fact
even combined structural and behavioral invariants of a network. The analysis results
can then be used to create a safe reconfiguration policy, which states precisely when
and how a dynamic reconfiguration can be applied.

5.3.2 Transparent dynamic reconfiguration

The execution of a dynamic reconfiguration is not trivial. Assume a network of dis-
tributed components that communicate with each other via a centralized connector
implementation, which we also refer to as the coordinator in the sequel. The compo-
nents perform blocking I/O operations on their ports which implement synchroniza-
tion point semantics for their corresponding coordinator ports, equivalent to Hoare’s
CSP channels. Additionally, I/O operations on ports may timeout. We have briefly dis-
cussed an implementation of this approach for Reo based on constraint automata in
Section 3.3.5.

The coordinator monitors the I/O requests on its ports. When all synchroniza-
tion and data constraints are fulfilled for one of the next possible transitions, the
coordinator performs an atomic execution step in which data flow occurs between
the components and/or memory cells of the coordinator. The I/O operations of the
components involved in this step succeed and the components can spawn new I/O
requests on their ports.

To perform a dynamic reconfiguration of such a system consisting of a set of active
and autonomous components and a centralized coordinator, we need to be able to ex-
ecute the reconfiguration while there are I/O requests pending on the ports. This is

5.3. Modeling dynamic reconfiguration 83

:Component :Port :Coordinator :ReconfEngine :Admin

read

read

InterruptedError

reconfigure

interrupt

update

resume

retry

read

Result

Result

Figure 5.10: executing reconfigurations within a pending I/O operation

due to the fact that the coordination is done exogenously and that, thus, the coordina-
tor has no control over the components. In our scenario, we consider an administrator
that can decide at any point in time to reconfigure the connector. Note that we as-
sume that the reconfiguration rules themselves contain conditions on the states of the
involved primitives as described in the previous section. The reconfiguration can then
be performed as shown in the message sequence chart in Figure 5.10.

The following parties are involved in the reconfiguration: the centralized coordi-
nator, a number of autonomous components that communicate with the coordinator
via ports, a reconfiguration engine that performs rule-based reconfigurations using
graph transformation, and an administrator that initiates the reconfiguration. The
following actions are shown in the message sequence chart:

(i) A component performs a blocking read operation on a port. The port redirects
the read operation to the coordinator.

(ii) The administrator initiates a reconfiguration.

(iii) The reconfiguration engine interrupts all pending I/O request on the coordina-
tor. All ports are suspended.

(iv) The reconfiguration engine reconfigures the connector and resumes the coordi-
nator when finished.

84 Chapter 5. Reconfiguration by graph transformation

(v) All ports are resumed and their pending I/O operations are now performed on
the reconfigured coordinator.

(vi) The read operation of the component succeeds.

This approach has two major advantages: (i) a reconfiguration can be performed with
pending I/O requests, and (ii) the components are oblivious to the reconfiguration. As
far as they are concerned, they just perform normal I/O operations and do not notice
that a reconfiguration occurred. Thus, our approach enables transparent dynamic
reconfiguration.

In the message sequence chart in Figure 5.10, the actual reconfiguration action is
abstracted in the update operation which the reconfiguration engine performs on the
coordinator. In the centralized implementation of Reo described in Section 3.3.5, the
whole connector is compiled into a constraint automaton first, which is then directly
executed as a state-machine. A reconfiguration, in this case, is performed on the con-
nector model, which is then recompiled into a constraint automaton and restarted.
However, the state of the coordinator must be restored in this case. To that end, the
contents of memory cells (FIFO1 buffers) as well as the actual current state in the
automaton must be restored. The latter is non-trivial, because it cannot be expected
that there is any correlation between the constraint automaton before and after a
reconfiguration. However, the best approximation is to restore the states of the prim-
itives that are not changed by the reconfiguration and to use the default initial states
of the newly created primitives. This can be implemented by storing the projections
from the constraint automaton for the whole connector into the constraint automata
of the primitives. This is essentially a method for handling the state transfer between
the coordinator before and after the reconfigurations.

In distributed implementations such as the one described in [83], state transfer is
not a problem, since state information is stored locally in the primitives. Thus, in the
distributed case, reconfigurations can be performed directly on the deployed connec-
tor. However, performing reconfigurations on a distributed, and particularly, decen-
tralized system requires a distributed scheme. We address this problem in Chapter 6.

5.4 Support for reconfiguration in ECT

To support reconfiguration in ECT we have extended the Reo meta-model with the
possibility of associating reconfiguration (e.g. create and delete) actions with primi-
tives and nodes. Additional validation code ensures the well-formedness of reconfig-
uration rules according to the formal model of rules in the double pushout approach.
Through the extension of the Reo meta-model, it is possible to define reconfiguration
rules in ordinary Reo files. Rules can have a local scope, or can be registered in a
global registry. To edit reconfiguration rules, the so-called properties view in Eclipse
can be used to define primitives and nodes augmented with reconfiguration actions.
The graphical Reo editor automatically highlights parts of a connector that are aug-
mented with reconfiguration actions. The graphical representation of a reconfigura-
tion rule in the Reo editor is essentially an integrated view on its LHS and RHS. As an

5.5. Dynamic reconfiguration in ReoLive 85

Figure 5.11: editing and executing reconfiguration rules in ECT

example, Figure 5.11 depicts the integrated notation of rule AddWorker in the Reo ed-
itor, together with the properties view. The green part of the network is the part that is
added by the rule. We have implemented a prototypical reconfiguration engine which
takes as input a reconfiguration rule, such as the one in Figure 5.11, and applies it to a
given Reo network. The reconfiguration engine is essentially a DPO hypergraph trans-
formation engine that natively operates on Reo connector / network models. This has
the advantage that the underlying hypergraph model is more high-level and therefore
a more natural encoding of Reo. However, since the Reo meta-model is defined using
EMF, we can also translate reconfiguration rules directly into Henshin transformation
rules and then use the far more efficient engine of Henshin. Reconfiguration rules can
be applied directly in the graphical Reo editor or programmatically.

5.5 Dynamic reconfiguration in ReoLive

An prototypical implementation of transparent dynamic reconfiguration as described
in Section 5.3.2 is the ReoLive web service3. ReoLive is essentially a wrapper for the
constraint automata based interpreter engine of Reo. Deployment of connectors in
ReoLive is simply done by uploading Reo files. The application automatically gen-
erates a constraint automaton from the Reo model which can then be executed on
the ReoLive server. Components can connect and communicate with ReoLive using
SOAP. Thus, ReoLive is a centralized implementation of Reo where the components
are distributed. A prototypical implementation of transparent dynamic reconfigura-
tion as described in Section 5.3.2 has been implemented in ReoLive. The execution of
reconfiguration rules as well as starting, stopping, and monitoring the execution, can
be done using a web interface in ReoLive. ReoLive was written by the author of this

3ReoLive web service: http://reo.project.cwi.nl/live

http://reo.project.cwi.nl/live

86 Chapter 5. Reconfiguration by graph transformation

Figure 5.12: user front-end of the ReoLive web service

thesis and uses the constraint automata interpreter which was implemented by Ziyan
Maraikar. A screenshot of the web front-end of ReoLive is shown in Figure 5.12.

5.6 Reconfigurable coordination of YAWL workflows

YAWL (Yet Another Workflow Language) [104] is a workflow language developed in a
joint effort between the TU Eindhoven in the Netherlands and the Queensland Uni-
versity of Technology in Brisbane, Australia. YAWL is based on Petri nets and adds
mechanisms to more directly support complex workflow patterns4. The implementa-
tion of YAWL5 comprises a complete workflow management system, which is central-
ized though, i.e., a YAWL engine has full control over all process instances and does
not interact with other engines.

To overcome the limitations inherent in centralized workflow systems, we imple-
mented a prototype of a so-called adapter task for YAWL, which allows to coordinate
using Reo different workflows, possibly running in different, distributed YAWL en-
gines. Workflows in YAWL consist on the lowest level of atomic, executable entities,
called tasks. In our approach, we implemented a specific type of task, viz. a web ser-
vice, which performs a basic, blocking I/O operation at a Reo connector deployed in a
ReoLive engine. A schematic overview of this approach is depicted in Figure 5.13. An
adapter task essentially serves as a port between a Reo connector and YAWL workflow
and allows to synchronize and exchange data between different YAWL workflows,
possibly running in different engines. In this way, adapter tasks enable a seamless, yet
simple integration of YAWL and Reo, without the need for changing the underlying
implementations of YAWL or ReoLive. Moreover, ReoLive supports dynamic reconfig-
uration as described in the previous section. Thus, the integration with YAWL can
benefit from this feature as well. For example, consider a workflow that, at a specific

4For a survey on workflow patterns we refer to [103].
5See http://www.yawlfoundation.org

http://www.yawlfoundation.org

5.7. Related work 87

Figure 5.13: schematic overview of the integration of YAWL and Reo

point, requires data produced by some external workflows, possibly running in dif-
ferent YAWL engines. In this scenario, a simple Reo channel can be used to transfer
the data from one of the producer tasks to the consumer task. Moreover, dynamic
reconfiguration can be used here to wire the Reo channel to another producer task
on certain events, e.g. when the current producer sends a special end-of-data signal.
Even in this simple example, dynamic reconfiguration offers a powerful and also very
natural means to realize adaptable coordination patterns. Moreover, this dynamic
adaption can be done transparently, as described in Section 5.3.2, enabling a seam-
less integration and coordination of (in this case) YAWL workflows using Reo in a
truely distributed and dynamically changing environment.

5.7 Related work

A graph transformation based reconfiguration approach for Reo in which dataflow
events are used to trigger reconfiguration is considered in [91]. The approach is rather
powerful and promises interesting applications. However, validation of such models
(as presented here) is not considered.

A basic logic for reasoning about connector reconfiguration in Reo, including a
model checking algorithm is considered in [25]. Different to our approach, the author
uses a formalization of connectors, which is particularly not a graph model. Moreover,
the reconfiguration operations are rather low-level and provide no means for rule-
based reconfiguration.

In a more general setting, dynamic reconfiguration has been studied for a number
of Petri net variants. For instance, open Petri nets [11] extend the original model
by a notion of open places, representing an interface to their environment. As in
our approach, reconfigurations of open Petri nets are modeled using double pushout
rewriting. Behavior preserving reconfigurations of open Petri nets are studied in [12].

A typical application of (open) Petri nets are workflow nets [99] and interorgani-
zational workflows [100]. Dynamic changes in workflow nets are discussed in [101].
The so-called dynamic change bug refers to a problem of ensuring a consistent system

88 Chapter 5. Reconfiguration by graph transformation

state after a reconfiguration. This has some similarities to the notions of structural and
behavioral invariants in our work. While in our approach invariants are application-
specific and basically user-defined, the consistency for workflow nets ensures a basic
notion of correctness, i.e., a reconfiguration is valid if the state after the reconfig-
uration could have been reached from the initial state. Their proposed solution is
to calculate a safe change region and to allow reconfigurations only in these states.
Related to the dynamic change bug, [102] introduces inheritance-preserving transfor-
mation rules for workflows which guarantee well-behaved reconfigurations.

Architectural Style Rewriting (ADR) [21] is a framework for modeling reconfig-
urable software architectures. This approach uses hyperedge replacement for defining
hierarchical structures. Contrary to our approach, term rewriting is used for reconfig-
urations in ADR. Generally, the focus in ADR is on style-preservation, i.e., structural
(and not behavioral) properties of reconfigurations.

5.8 Conclusions

Reconfiguration provides a powerful means for adapting a system configuration to
accomodate for changes in the environment, component failure or insufficient quality
of service. Due to the graph structure inherent in Reo networks, methods from graph
transformation are well-suited to model and implement reconfiguration in Reo. Im-
portant aspects of this approach include rule-based definition and atomic execution
of complex reconfiguration steps. For verification purposes, we have shown how the
AGG system can be utilized to detect conflicting reconfiguration rules using critical
pair analysis. The Henshin toolkit can be further used to generate state spaces and
to do qualitative and quantitative model checking. We have also shown that in cases
where the execution of Reo networks can be defined in terms of graph transformation
rules as well, we can use Henshin’s state space analysis tool to reason about dynamic
reconfiguration. In particular, we have shown that naive implementations of reconfig-
uration rules may interfere with the execution semantics of the network and result in
system failure. The analysis tools in AGG and Henshin can help to circumvent such de-
sign errors. Specifically, the rule-based approach for defining reconfigurations should
be used in such a way that state information is included in the application conditions
of reconfiguration rules. This ensures that a reconfiguration can be performed only in
states where it is safe to reconfigure the network.

Regarding the execution of reconfigurations, we presented an approach in which
networks are reconfigured transparently, i.e., without the knowledge or cooperation
of the involved components. Thus, the components do not have to be sent into a
stand-by mode or provide any extra functionalities for handling reconfiguration. A
prototypical implementation of transparent reconfiguration is provided in the ReoLive
web service. Reconfiguration rules can be defined directly in the graphical Reo editor
in ECT. A naive implementation of a reconfiguration engine is also provided in ECT.
For efficient execution of reconfiguration rules, we plan an automatic mapping into
the Henshin format for in-place model transformation.

Chapter 6

Distributed networks and reconfiguration

In this chapter, we provide a formal framework for modeling distributed component
connectors and their reconfiguration. We show how distribution can be used for logi-
cal structuring and encapsulation. In our approach, a reconfiguration of a distributed
network is defined and executed locally. Therefore, no global knowledge is required
to specify or carry out a reconfiguration. We utilize the theory of distributed graph
transformation and present a new result on compositionality of flattening, which we
also apply in Chapter 7.

6.1 Motivation

The need for considering distributed connectors and networks arises from two con-
cerns. On the one hand, connectors are often structured into logically separate parts,
each of which defines a specific subprotocol. On the other hand, connectors may be
deployed on different physical locations in a distributed network. In both cases, the
concept of distribution facilitates and promotes the use of black-boxed subconnectors
in a larger context.

In this chapter, we therefore propose a framework for modeling reconfigurable,
distributed Reo connectors. We consider connectors that are distributed over a net-
work and are encapsulated, i.e., their internals are hidden from the outside world, and
communicate only via their published interfaces. Connectors are linked together via
the interfaces that they share. Reconfiguration of a network is achieved by reconfig-
uring its constituent connectors. Ultimately, reconfiguration is defined and performed
locally (that is to say, in the scope of a single connector), although it can be either
triggered from the inside or invoked from the outside. Reconfiguring a connector may
involve a change in its interfaces and may require connectors in its neighborhood to
reconfigure as well. This implies a need for synchronizing local reconfigurations into
a consistent reconfiguration of the connector as a whole. It goes without saying that
in a distributed setting, we cannot assume the existence of a (centralized) third party

89

90 Chapter 6. Distributed networks and reconfiguration

that monitors and coordinates local reconfigurations. Therefore, other mechanisms
should be in place to assure the consistency of a reconfigured network.

We utilize the well-studied framework of distributed graph transformation [86,
38] for modeling distributed connectors and reconfiguration here. Moreover, we show
how reconfiguration can be defined and performed locally using a synchronization
mechanism based on the notion of amalgamation [17, 28, 88]. Finally, we propose a
distributed strategy to organize the stepwise reconfiguration of large networks.

6.2 Distributed graphs and Reo networks

To model reconfigurations of distributed Reo connectors, we use the framework of
distributed graph transformation, as proposed by Taentzer [86]. A generalization
from distributed graphs to a notion of distributed objects was considered by Ehrig
et al. [38]. In the following, we recall the notions of this framework that are relevant
to our present setting and apply them to Reo. We assume some familiarity with basic
notions from category theory, most relevant here are the concepts of pushouts and
functors. For a comprehensive introduction to category theory we refer to [68].

6.2.1 Distributed graphs

Distribution of graphs can be described by adding a second layer of abstraction,
namely by modeling the topology of a system using a so-called network graph. The
nodes in a network graph consist of local graphs and the edges are morphisms of local
graphs. The idea is that a node models a physical or logical location of a local graph,
whereas an edge indicates an occurrence of the source graph in the target graph.
In particular, multiple outgoing edges from one local graph model the fact that the
source graph is shared among the target graphs. Formally, we consider distributed
graphs as defined in the following.

DEFINITION 6.1 (distributed graph). A distributed graph (N , D) consists of a graph N ,
called network graph, and a commutative functor D: N → Graph, where the graph N
is interpreted as a category. ◊

The network graph N describes the topology of the network. The functor or diagram D
associates to every node n in N a local graph D(n) and to every edge n

e−→ n′ in N
a graph morphism D(e): D(n)→ D(n′). Following [38], this functor is required to be
commutative, i.e., for any two paths p1, p2: n

∗−→ n′ in N , it must hold that D(p1) =
D(p2). This arises from the assumption that the morphisms associated with edges
represent the sharing of the local graphs.

Due to the categorical definition, the concept of distribution can be easily general-
ized to other structures as well, e.g. we can consider distributed typed hypergraphs for
modeling distributed Reo networks by using diagrams D: N → HGraphReo, extending
the model introduced in Chapter 5.

6.2. Distributed graphs and Reo networks 91

Figure 6.1: distributed version of the resource mediator network

EXAMPLE 6.2 (distributed mediator). Figure 6.1 depicts a distributed Reo graph for
the resource mediator network from Example 5.1. The network graph consists of four
nodes modeling the mediator connector, a worker pool and two interface nodes to
connect the former. The local morphisms are the obvious inclusions. Since the inter-
faces are embedded into both the mediator and the worker pool, these two local con-
nectors are considered to be connected along their shared interfaces. This model pro-
vides a logical separation of the mediator connector, on the one hand, and a worker
pool, on the other. 4

Note that the graphical representation we use here for distributed networks is bor-
rowed from ECT. However, the means for structuring in ECT are not based on dis-
tributed graphs. The main difference is that the blue connector nodes in ECT are
essentially hierarchical containers for nodes and primitives, whereas in our model
there are only two levels of abstraction: the network and the local layer. We now
recall the definition of morphisms for distributed graphs.

DEFINITION 6.3 (distributed graph morphism). For two distributed graphs (N1, D1)
and (N2, D2), a morphism f = (fN , fD): (N1, D1) → (N2, D2) consists of a graph mor-
phism fN : N1→ N2 and a natural transformation fD: D1→ D2 ◦ fN . ◊

For brevity, we will just write f for the network morphism fN . By definition, the
natural transformation fD assigns to every node n of the network graph N1 a graph
morphism fn: D1(n) → D2(f (n)) which is is called the local graph morphism of n.
Furthermore, for every edge n

e−→ n′ in N1 the following diagram commutes.

D1(n)
D1(e) //

fn

��

D1(n′)

fn′

��
D2(f (n))

D2(f (e)) // D2(f (n′))

(6.1)

EXAMPLE 6.4 (distributed graph morphism / transformation rule). An example mor-
phism of distributed Reo graphs is shown in Figure 6.2. The morphism is injective
on the local and the network layer. The mappings are indicated by the relative posi-
tions and channel types and node names. We can interpret this morphism also as a

92 Chapter 6. Distributed networks and reconfiguration

⇒

Figure 6.2: example morphism / transformation rule p1 of distributed Reo graphs

transformation rule in the double pushout approach. This rule creates a new Interface
network node, extends the mediator connector, and wires the new interface with the
connector. 4

Following the notation of [38], we denote the category of distributed Reo graphs as
Dis(HGraphReo). The category HGraphReocan be embedded by using network graphs
with a single node and no edges.

6.2.2 Extended typing for distributed Reo networks

We can extend the typing mechanism of Dis(HGraphReo) for a proper modeling of
distributed Reo networks. When Reo networks are considered as distributed typed
graphs, i.e., objects (N , D) with D: N → HGraphReo, only the local graphs are typed.
Applied to Reo, typing information at the network level can be useful as well.

For instance, we can use the network type graph in Figure 6.3 for a more detailed
specification of the mediator network example. This type graph defines three types of
local connectors on the network layer: Mediator, Interface and WorkerPool. It, more-
over, ensures that edges can exist only from interfaces to mediators and worker pools.
It is not possible to connect mediators and worker pools directly, but only via an in-
terface. However, this typing information is limited to the network layer only. Type
constraints that relate the local and the network layer still cannot be expressed. For
the mediator network, we would like to be able to enforce the additional constraint
that interfaces may consist only of nodes. Furthermore, we want to distinguish two
types of nodes: acquire and release. This additional type information helps to ensure
that a node in an interface is mapped to the right node in a connector.

To model type constraints that relate the local and network layer we switch to
a slightly different distributed graph model. We consider typed distributed graphs, as
opposed to distributed typed graphs that we had before. In Dis(HGraphReo) we had a

6.3. Reconfiguring distributed networks 93

Figure 6.3: a network type graph for Reo

type graph Reo which describes the local layer only. We can now consider a distributed
type graph DisReo which describes both layers at once. For the mediator example, we
can define DisReo on the network as the network type graph in Figure 6.3. For each
node in the network type graph we then define a local type graph. For the network
node Mediator we choose the default type graph Reo with the modification that we
consider three different node types: acquire, release and internal. This enables us to
distinguish between interface and internal nodes. For the network node Interface we
consider a local type graph with two node types: acquire and release, and no channels
or other primitives. For the WorkerPool node we have again two node types for the
interface and, furthermore, two hyperedges for modeling the worker components.
The edges in the distributed type graph DisReo then are the obvious embeddings of
the interface node types. Based on this distributed type graph we can then switch to
the slice category Dis(HGraph)\DisReo = Dis(HGraph)DisReo. In this way we obtain a
more expressive typing mechanism which helps us to ensure the consistency of our
distributed network models.

6.3 Reconfiguring distributed networks

In order for the double-pushout approach to apply, we must make sure that the cate-
gory of distributed Reo graphs Dis(HGraph)DisReo has pushouts. As shown in [38] the
category of distributed objects Dis(C) is (co)complete if C is (co)complete. We there-
fore know that Dis(HGraph) is also cocomplete. Since Dis(HGraph)DisReo is just a slice
category of Dis(HGraph) we immediatly derive that it is cocomplete, too, and that it
consequently has pushouts and thus enables DPO graph transformations for modeling
reconfigurations of distributed Reo networks.

In the following, we show that a reconfiguration can be also defined locally, i.e.,
in the scope of a single connector, and we discuss how these local reconfigurations
can be synchronized. The key tool for synchronizing local reconfigurations will be the
concept of amalgamation.

6.3.1 Local reconfigurations

The need for local reconfigurations arises from the distributed setting, where no
global knowledge of the network is available. In the following, we consider local
reconfiguration rules for the resource mediator example.

94 Chapter 6. Distributed networks and reconfiguration

⇒

Figure 6.4: distributed reconfiguration rule p2

EXAMPLE 6.5 (local reconfiguration rules). In the non-distributed version of the me-
diator network example, we used a single rule for adding a worker component to the
network (cf. Example 5.5). In the distributed case, we want to model the reconfig-
uration of the mediator and the worker pool using separate local rules. The rule p1
for adding a ‘slot’ to the mediator connector is shown in Figure 6.2. The rule p2 is
depicted in Figure 6.4 and adds a new worker component to the worker pool. Both
rules p1 and p2 create a new interface node in the network and wire it automatically.
These rules enable a black-box view on the mediator, on the one hand, and the worker
pool, on the other. The key idea is that the network reconfiguration is splitted into lo-
cal parts. The connectors, moreover, are not supposed to be accessed directly, but via
their interfaces, which are reconfigured together with the actual connector. 4

To reconfigure networks using local rules, we need a way to synchronize the local
reconfigurations. As can be seen from the example above, applying the two local
reconfiguration rules p1 and p2 naively to the network of Figure 6.1, does not give
the desired result, because each rule creates a separate new interface, whereas we
actually need just one that is shared by the two connectors.

6.3.2 Synchronizing local reconfigurations

Following [17] (see also [46]), we use the concept of amalgamation for synchronizing
local reconfigurations. We first recall the basic definitions for amalgamated graph
transformations.

The synchronization of two productions is achieved by identifying a common sub-
production and gluing the productions along this subproduction. Let

pi = Li
`i←− Ki

ri−→ Ri

6.3. Reconfiguring distributed networks 95

⇒

Figure 6.5: common subproduction p0 for modeling the interface evolution

be two productions with i ∈ {0, 1}. The production p0, together with graph mor-
phisms in1

L: L0 → L1, in1
K : K0 → K1, in1

R: R0 → R1, is called a subproduction of p1, if
in the following diagram (1) and (2) commute. Putting in1 = 〈in1

L , in1
K , in1

R〉, we write
in1: p0→ p1 for the embedding of p0 into p1.

L0

in1
L

��
(1)

K0
`0oo r0 //

in1
K

��

R0

in1
R

��
(2)

L1 K1
`1oo r1 // R1

The productions p1 and p2 are called synchronized with respect to p0, if p0 is a sub-

production of both p1 and p2, denoted by p1
in1←− p0

in2−→ p2.

EXAMPLE 6.6 (interface evolution). A non-trivial (i.e., non-empty) subproduction p0
of the reconfiguration rules p1 and p2 is depicted in Figure 6.5. The rule creates a
new interface node in a network graph. As a general property of our reconfiguration
approach, the common subproduction of two synchronized rules always describes an
interface change of the involved connectors. By making explicit the change of inter-
face due to an update of connectors, synchronized productions can properly describe
reconfigurations in a distributed network. 4

The execution of synchronized productions can be achieved using amalgamation.

Given two synchronized productions p1
in1←− p0

in2−→ p2, the amalgamated production

p1 ⊕p0
p2: L

`←− K
r−→ R

is constructed by gluing p1 and p2 along p0 using the pushouts (1), (2) and (3) in the
diagram below, such that all squares commute. The morphisms ` and r are induced
by the universal property of the pushout (2). Applying p1 ⊕p0

p2 to a graph G yields a

96 Chapter 6. Distributed networks and reconfiguration

so-called amalgamated derivation G⇒ X .

L0
inL

1

��

inL
2##

K0
oo //

inK
1

��

inK
2##

R0
inR

1

��

inR
2##

L2

��

(1)
K2

oo //

��

(2)
R2

��

(3)

L1

$$
K1

oo //

$$
R1

$$
L K`oo r // R

EXAMPLE 6.7 (amalgamated reconfiguration). Amalgamation of the productions p1
and p2 in Figures 6.2 and 6.4 using the subproduction p0 in Figure 6.5 yields the
intended reconfiguration rule for the reconfiguring distributed mediator network in
Figure 6.1. Note that the complete distributed network is reconfigured using local
rules in one atomic step. 4

Although it provides proper means for synchronizing local reconfigurations, in gen-
eral, amalgamation is not well-suited for application in distributed networks. This is
due to the fact that it requires (i) knowledge of all connectors and their reconfigura-
tion rules, and (ii) a centralized entity that is aware of the whole network and that
performs the reconfiguration in a non-local fashion.

The solution to this problem is an asynchronous execution of synchronized pro-
ductions. The idea is to adapt the transformation rules in such a way that their se-
quential application yields the same result as the amalgamated rule:

H p′2

 (
G

p1⊕ p0
p2 +3

p1
6>

p′1
 (

X

H ′
p2

6>

Here, p′1 and p′2 are called the remainders of p1 and p2 w.r.t. p0. This problem was
solved by Boehm et al. in the so-called amalgamation theorem in [17], which can
be seen as a generalization of the well-known parallelism theorem for graph gram-
mars [28]. The authors present in [17] a construction of remainder rules and show
that they in fact yield a decomposition of the amalgamated derivation. Unfortunately,
the result was shown for node and edge labeled graphs only. A direct transfer to
typed distributed hypergraphs, as we use them here, cannot be easily established and
a generalization of the amalgamation theorem is out the scope of this thesis.

However, in our application to Reo, we can consider two concrete examples of an
asynchronous application of local reconfiguration rules, such as the ones in Figure 6.2
and 6.4. The first case we consider is that a new interface node is created as in Fig-
ure 6.5, which is then automatically wired with the two connectors. For this kind of
reconfiguration, we take p′1 = p1 and derive p′2 from p2 by adding the interface node
to be created to the LHS, already. Thus, p′2 merely establishes the links between the
interface and the connector. As a second example, we consider the reverse rule: re-
moving an interface node and updating both connectors accordingly. In this situation

6.3. Reconfiguring distributed networks 97

we adapt p1 to p′1 by letting it destroy the link between the interface and the connec-
tor only. We then take p′2 = p2 and thus the interface node is properly removed in the
second step of the reconfiguration.

Our claim is that it is in principle possible to apply reconfiguration rules locally.
Thus, a network can be reconfigured by a stepwise updating of its constituent connec-
tors. In particular, the connectors can also be black boxes that reconfigure themselves.
On the other hand, these local reconfigurations must be coordinated somehow, since
the order of local reconfigurations and the choice of which connector updates the
common interface is not clear. For this purpose, we discuss a strategy now.

6.3.3 Coordinating local reconfigurations

We outline a strategy for organizing local reconfigurations in a network. The central
idea is that a reconfiguration is triggered locally at one of the connectors and that this
creates a cascade of follow-up reconfigurations across the network.

Connectors may be equipped with synchronized reconfiguration rules, i.e., rules
that describe how a connector itself is changed, and further, how its interfaces are
updated. We also assume that a connector reconfigures itself triggered by an external
request. For this purpose, it may publish the names of its reconfiguration rules. Con-
nectors in the neighborhood can invoke these reconfiguration rules via their shared
interface (through a communication channel that is not explicitly modeled here).
When a rule is invoked, a connector performs the reconfiguration in three steps:

(i) Determine the interface where the request came from and the interfaces of those
connectors in the neighborhood that also need to be updated.

(ii) Send reconfiguration requests to those connectors in the neighborhood that
must be updated and block until they are reconfigured.

(iii) Do the local reconfiguration and reconfigure the interface, if necessary, only
where the request came from.

We assume that there is an active party in the network that initiates the reconfigu-
ration by invoking a rule on some connector. Every connector can handle only one
reconfiguration request at a time. Hence, the request builds up a reconfiguration
dependency tree in the network. The root of the tree is where the reconfiguration
was initially invoked. The reconfiguration is then executed bottom-up, starting at the
leaves until the root is also reconfigured.

Connectors may also respond to a reconfiguration request with a failure. In that
case, the failure is forwarded in the network and all reconfigurations performed so far
are rolled-back. This ensures atomicity of the reconfiguration. Thus, our approach en-
ables a black-box view on connectors and provides a scheme for a localized definition
and execution of reconfigurations, while still ensuring consistency and atomicity at
the network level, without requiring a centralized entity, which is a prime assumption
in distributed environments.

98 Chapter 6. Distributed networks and reconfiguration

⇓

Figure 6.6: flattening of the resource mediator network

6.4 Flattening of distributed graphs

In this section, we consider a flattening operation for distributed networks. A well-
known fact from the theory of distributed graph transformation is that a flattening of a
distributed graph or object (N , D) can be achieved by considering the colimit of D [86]
and that this extends to a functor F : Dis(C) → C, assuming C is cocomplete [32].
This definition is rather elegant since it defines the flattening operation in terms of a
universal property, and not by an algorithm or referring to an operational semantics.

In the case of distributed graphs, the flattening essentially glues together all local
graphs along their shared subgraphs. We can directly apply flattening to distributed
Reo networks, as shown in the following example.

EXAMPLE 6.8 (flattening of distributed networks). Figure 6.6 depicts the flattening of
the resource mediator network. The flattening glues together the mediator connector
and worker pool along their shared interface nodes. 4

Considering flattening of distributed graphs is in particular interesting when dis-
tribution is used for representing a logical partitioning of an otherwise flat system.
The distributed graph model can be interpreted as a higher-level view of a flat struc-
ture. In this perspective, it is crucial to know whether flattening interacts well with
composition. Composing two distributed objects in Dis(C) and flattening the result

6.5. Related work 99

should yield the same outcome as first flattening both distributed objects and then
composing them in C. Formally, we need to show that the flattening functor F pre-
serves pushouts, or more generally, colimits.

THEOREM 6.9 (flattening preserves colimits). Let C be a cocomplete category. The flat-
tening functor F : Dis(C)→ C has a right adjoint and is therefore cocontinuous.

PROOF. A detailed proof is given in Appendix A.2. �
Thus, we can use distributed graphs and graph transformation to describe logical par-
titioning of Reo networks which can –at the implementation level– still be realized as
flat networks. In particular, composition and reconfiguration of distributed networks
can be transparently carried out on the underlying flat network.

6.5 Related work

Modeling the distribution of systems via embedding interfaces represented as mor-
phisms in a suitable category is also used for open Petri nets [11]. The explicit mod-
eling of glue code and the exploitation of pushout constructions to deal with compo-
sition in this work is similar to ours.

In [21], Architectural Design Rewriting is proposed as a framework for model-
ing reconfigurable software architectures. This work deals with hierarchical, non-
distributed architectures and uses hyperedge replacement, as opposed to algebraic
graph transformations in our work. A general introduction to system modeling and
system evolution using graph transformation techniques, including hierarchical and
distributed approaches, can be found in [42].

Our approach to coordination achieved by Reo connectors and their dynamic re-
configuration fits in the framework of runtime software adaptation [107, 23] for
component-based software engineering. Process algebraic treatments include [20,
31]. To accommodate dynamic reconfiguration, predicted behavioral changes com-
bined with revision of message translation are captured by so-called contextual map-
pings. However, the focus in this work is not on distribution, which is a key aspect
of our approach. A workflow language extension with the so-called configurable ele-
ments, e.g. for YAWL [104], is proposed in [47], with a semantics based on a variant
of Petri-nets, called extended workflow nets (EWF-nets).

6.6 Conclusions

We presented a framework for modeling distributed Reo networks and their reconfig-
urations using the theory of distributed graph transformation. Our approach allows
a black-boxed view on subnetworks for which reconfigurations can be defined and
executed locally. Furthermore, we have showed how local reconfigurations can be
synchronized in the absence of a centralized entity, which is a prime assumption in
distributed environments. In the last part of this chapter we presented a new result
regarding the compositionality of the flattening operation for distributed graphs. This

100 Chapter 6. Distributed networks and reconfiguration

result is of a general nature, since we have shown it for a generic category Dis(C)
of distributed objects. In Chapter 7, we use this result to show an enhanced notion
of compositional semantics for so-called distributed port automata which are an inte-
grated structural and behavioral model for, e.g., Reo networks and Petri nets.

Chapter 7

Distributed port automata

In this chapter, we introduce distributed port automata to establish a connection be-
tween the graph transformation based reconfiguration approach presented in Chap-
ter 5 and the port automata model discussed in Chapter 3. We provide a generalized
result on compositional semantics which can be applied to dynamic reconfiguration.

7.1 Overview

Analyzing the interplay of execution and reconfiguration can give valuable insights
into the dynamics of a reconfigurable network. Key challenges in this area include
(i) the problem of state transfer, i.e., to determine the state of the network after a re-
configuration, and (ii) to ensure consistency in terms of structural and/or behavioral
invariants of the network.

In Section 5.3, we presented an approach to encode the execution semantics of
Reo using graph transformation rules. However, this approach lacks compositionality
and it is not clear how to apply it in general. Therefore, we seek for an alternative ap-
proach to unify the structural and behavioral aspects of Reo networks. A key challenge
in this chapter is to integrate the graph transformation based approach for network
reconfiguration, as presented in Chapter 5, and the port automata based semantics
of networks, as discussed in Chapter 3. For this purpose, we recast the port automata
model into a categorical setting, in which we consider port automata as objects and
simulations between them as morphisms. Unlike the usual notion of simulation, our
definition of port automata morphisms includes an additional inverse mapping of
nodes. This allows us to define a rather liberal notion of simulation in which the
automata do not strictly need to share the same set of port names. We show then
that the category PA of port automata and their simulations is complete. In particular,
pullbacks in PA can be considered as a generalized join operator in which automata
are joined over a common subautomaton, which can be seen as shared behavioral
interface or context.

101

102 Chapter 7. Distributed port automata

We exploit again the framework of distributed graph transformation to show how
Reo networks can be modeled as distributed port automata – formally as objects in
the category Dis(PAop). This category combines both the structural and the behavioral
aspects of networks. The primitives, i.e., the channel and nodes in a network, are
modeled using primitive port automata (cf. Table 3.2) which are the network nodes
in a distributed port automaton. Moreover, the network topology is modeled by the
network graph itself. Thus, distributed port automata capture the structure of a net-
work and the semantics of the primitives it is comprised of.

After the presentation of the distributed port automata model, we show how the
flattening functor as discussed in Section 6.4 can be used to derive the semantics
of complete networks. We show that the semantics of a network can be defined as
the limit over the network graph. This can be seen as a generalization of the join
operator defined as pullbacks in PA. Thus, the limit over a network graph provides us
with a characterization of its semantics in terms of a universal construction. Finally,
we show the compositionality of the semantics of distributed port automata. That is,
a structural gluing of the network graphs using pushouts corresponds to a pullback
to the semantical level. We use Theorem 6.9 for showing this result. An interesting
corollary is that the structure and the semantics of distributed port automata (and
therefore Reo) can be phrased in terms of a pair of adjoint functors.

As applications, we show how distributed port automata can be used to model
Reo networks as well as Petri nets. Moreover, we show that reconfiguration can be
modeled using DPO graph transformation at the network level in Dis(PAop). The con-
nection between the structural and the semantical level provides us with a framework
in which we can reason about the semantics of dynamically reconfigurable networks.
Specifically, we can solve the problem of state transfer and, furthermore, define a
consistency condition for dynamic reconfigurations.

The results in this chapter are a generalization of the tailored approach in [95]
and were first presented in [96]. As in the previous two chapters, we assume fa-
miliarity with basic notions from category theory, e.g. pullbacks and functors. For a
comprehensive introduction to category theory we refer to [68].

7.2 The category of port automata

We use port automata as presented in Definition 3.6. To establish a categorical frame-
work, we introduce a notion of simulations for port automata. A port automata simu-
lation essentially consist of a mapping of states and transitions, and an inverse map-
ping of port names. We ensure consistency of firing events using a condition on the
transitions of the port automata.
DEFINITION 7.1 (port automata simulation). Let PA1 = (Q1, N1, T1, q1

0) and PA2 =
(Q2, N2, T2, q2

0) be two port automata. A simulation f = (fQ, fN , fT) consists of func-
tions fQ: Q1→Q2, fN : N2→ N1 and fT : T1→ T2, such that:

• fQ(q1
0) = q2

0 and

• fT
�

q1
S1−→p1

�

=
�

q2
S2−→p2

�

implies q2 = fQ(q1), p2 = fQ(p1) and S2 = f −1
N (S1) ◊

7.2. The category of port automata 103

Note that port names are mapped in the opposite direction and that the condition
S2 = f −1

N (S1) ensures consistency of firing events on all shared port names.

EXAMPLE 7.2 (port automata simulation). An example of a port automata simulation
is depicted in Figure 7.1. States q0, q2 are both mapped to p0, and q1 is mapped to p1.
The port name function is the inclusion map in the opposite direction. The transition
via {B, C} in the source is mapped to the transition via {B}. The transition via {C}
corresponds to the τ-step in the target automaton. 4

q0 q1

{A}

q2
{B, C}{C}

p0 p1

{A}

{B}

Figure 7.1: a simulation of port automata

Note that we model τ-transitions explicitly here. We define identity and composition
of port automata simulations component-wise. The following lemma states that port
automata and simulations form a category.

LEMMA 7.3 (category of port automata). Port automata and port automata simula-
tions give rise to a category, denoted by PA.

PROOF. We verify the consistency condition of firing events for the identity: S =
id−1

N (S). Similarly, for the composition of f : PA1→ PA2 and g: PA2→ PA3 we have:

(g ◦ f)−1
N (S1) =

�

fN ◦ gN
�−1 (S1) = g−1

N

�

f −1
N

�

S1
�

�

= g−1
N (S2) = S3 �

The port automaton with one state, an empty port name set and a single τ-
transition is the final object in PA, denoted by 1. If there is a morphism between two
port automata PA1 and PA2, we may also write PA1 � PA2 for short. Similarly, if there
exists a (categorical) isomorphism, we denote this by PA1

∼= PA2. Note that this notion
of behavioral equivalence is stronger than the equivalence based on bisimulations as
in Definition 3.4.

We define the composition of port automata now using pullbacks in PA. This gen-
eralizes the join operator of Definition 3.2, since it allows to join two automata over
a common automaton, which can be seen as a shared context. Our new composition
operator is derived and phrased in terms of a universal property. Observe that, unlike
the join operator for port automata in Definition 3.2, the composition using pullbacks
is based on mere synchronization only. Interleavings of actions are modeled by syn-
chronizations of an action and a τ-transition in the other automaton. Consequently,
the join operator based on pullbacks is simpler since only one rule is required for
composing transitions.

104 Chapter 7. Distributed port automata

THEOREM 7.4 (pullbacks of port automata). The category PA has pullbacks and they
can be constructed component-wise in Set. For a cospan PA1 → PA0 ← PA2 the pullback
object is PA3 = (Q3, N3, T3, q3

0) with:

• Q3 =Q1 ×Q0
Q2 (pullback in Set)

• N3 = N1 +N0
N2 (pushout in Set)

• q3
0 = 〈q

1
0, q2

0〉

• T3 is defined by the following rule:

PA0 PA1
f1oo

PA2

f2

OO

PA3

g1

OO

g2oo

X

h1

]]

h2

dd
h

``

f1,T
�

q1
S1−→p1

�

= f2,T
�

q2
S2−→p2

�

S0 = f −1
1,N (S1) = f −1

2,N (S2) S3 = S1 +S0
S2

〈q1, q2〉
S3−→3 〈p1, p2〉

(7.1)

PROOF. Due to the component-wise construction in Set, we need to show only that
g1, g2 and h are valid PA-morphisms, i.e., we need to check the consistency condition
for the firing ports. For g1 we have by construction: g−1

1,N (S3) = g−1
1,N (S1 +S0

S2) = S1,
and analogously for g2. For h, assume there is a transition via S in X that is, w.l.o.g.,
mapped to a transition via Si in PAi with i = 1,2. We need to show that there is
a corresponding transition via S3 in PA3. Since the hi are by assumption valid PA-
morphisms, we have: h−1

i,N (S) = Si . Moreover, f1 ◦ h1 = f2 ◦ h2 and thus: f −1
1,N (S1) =

f −1
2,N (S2). Therefore, the premise of rule (7.1) is fulfilled and the transition exists.

Since hi = gi ◦ h we also know that h−1
N (S) = S3 and thus the consistency condition

holds also for h. �

Note that f1(q1
S1−→ p1) = f2(q2

S2−→ p2) also implies f1(q1) = f2(q2) and f1(p1) = f2(p2).
Rule (7.1) for constructing the transition relation can be compared with rule (3.2)
of the classical join operator. Note, however, that the original operator allows to join
any two transitions, whereas the pullback requires that the images of the transitions
and states coincide in the context automaton PA0. The semantics of the original join
operator can be recovered if PA0 consists of exactly one state and one τ-transition
(but not necessarily empty port names set).

EXAMPLE 7.5 (pullback of port automata). An example of a port automata pullback
is depicted in Figure 7.2. The state maps are indicated by state names. Note that the
pullback automaton in the bottom right actually includes more states and transitions
which are not shown here since they are unreachable. The automata in this pullback
diagram can be modeled using FIFO1 channels. In fact, all four automata correspond
to Reo connectors and the whole pullback corresponds to a structural gluing of these
connectors, as shown in the pushout of Reo graphs in Figure 7.3. We discuss how
to derive the port automata semantics from a structural model of Reo connectors in
Section 7.3.4. 4

7.2. The category of port automata 105

q1 p1

q2 p2

{A}

{B, C}

{B}

{B}

{C} {C}pq
{A}

{A, C}

{B}

{B, C}

{C}{C}

q1

q2

p1

p2

{C}

{A}

{B}

{A, C}
{C}

{A}

q11 p21

q22

{C}

{A}

{B}

Figure 7.2: a pullback of port automata

Figure 7.3: a pushout of Reo connectors

106 Chapter 7. Distributed port automata

We use the default notation for pullbacks of port automata, i.e., PA3 = PA1×PA0
PA2.

The product of two port automata is the special case where the interface automaton
is the final object, i.e., PA1 × PA2 = PA1 ×1 PA2. As mentioned above, this notion of
composition generalizes the join operation from Definition 3.2 and [10] since it al-
lows composition along a common interface automaton. In the original approach,
automata are joined only along a common set of port names, whereas we allow now
the interface to be stateful as well. The states of the interface automaton can be seen
as a shared context of the two automata to be composed.

The categorical construction using pullbacks furthermore includes the morphisms
into the original port automata and thereby relates them with the result using simula-
tions. Note also, that we have indirectly shown that PA has general limits, since it has
pullbacks and a final object. In the following lemma, we state a basic compatibility
result for port automata morphisms, which is a direct consequence of the universal
property of pullbacks.

LEMMA 7.6 (compatibility with simulations). Given two cospans of port automata sim-

ulations PA1
f1−→ PA0

f2←− PA2 and PA′1
g1−→ PA′0

g2←− PA′2, then:

(i) for three morphisms hi: PAi → PA′i with i ∈ {0, 1,2}:

• if h0◦ f1 = g1◦h1 and h0◦ f2 = g2◦h2 then
�

PA1 ×PA0
PA2

�

�
�

PA′1 ×PA′0
PA′2
�

.

(ii) if PA1 � PA′1 and PA2 � PA′2 then
�

PA1 ×PA0
PA2

�

�
�

PA′1 × PA′2
�

.

PROOF. Consider the diagram below where (1) and (2) are pullbacks of the given
automata. The precondition of (i) states that the top-face and the back-face commute
and (1) commutes as it is a pullback. Hence g1◦h1◦ f ′1 = g2◦h2◦ f ′2 : PA3 → PA′0. The
morphism h3 is then uniquely defined by the pullback (2) and hence PA3 � PA′3. For (ii)
we take PA′0 = 1 and automatically obtain the precondition of (i).

PA0
h0 // PA′0

PA2
h2 //

f2ff

(1)
PA′2

g2ff

(2)

PA1
h1 //

f1
AA

PA′1

g1
AA

PA3

f ′2

AA

h3 //f ′1

ff

PA′3

ff

AA

�

7.3 The category of distributed port automata

Example 7.5 in the previous section already indicated that there appears to be a
connection between the graph-based model of connectors and networks, and their
semantical counterpart in the category of port automata. In this section, we provide
a categorical model which integrates the structural aspects, i.e., the topology of a
network, and the semantics of the primitives it is comprised of. As it turns out, we can

7.3. The category of distributed port automata 107

use again the theory of distributed graph transformation as presented in the more
general setting of distributed objects in [38]. Specifically, we consider the following
category.

DEFINITION 7.7 (category of distributed port automata). The category of distributed
port automata is defined as Dis(PAop). ◊

Note that we consider Dis(PAop) and not Dis(PA), because the PA-semantics is con-
travariant to the graph structure of networks, as also indicated in Example 7.5, where
a pushout of networks corresponds to a pullback of their respective port automata.
However, before investigating on the properties of Dis(PAop), we first show how to
encode Reo networks and Petri nets as distributed port automata to give an intuition
about this model.

7.3.1 Encoding of Reo networks

The encoding of Reo in Dis(PAop) is straightforward. The idea is that every primi-
tive in a network is represented by its port automaton (cf. Table 3.2). In the same
way, each node can be modeled as a simple stateless port automaton. Note, however,
that the only semantics of a node here is mere synchronization. In particular, we do
not model the merger semantics of nodes here. However, as argued also in other ap-
proaches (see, e.g., [26]), mergers can also be modeled as primitives and therefore
the expressiveness is not affected.

Formally, we identify each primitive in a network with its port automaton and as-
sociate with every node X the stateless port automaton with one port name X and
two transitions: one labeled {X } and the other one a τ-transition. The port automata
for all nodes and primitives are now considered as vertices in a network graph N . For
every pair of a node and a connected primitive, we create an edge between their cor-
responding vertices in the network graph. The edge points toward the port automaton
of the primitive. However, it corresponds to the PA-simulation in the opposite direc-
tion, which maps all transitions of the primitive that involve the connected node X to
the self loop transition {X }, and all other transitions to τ. The reason for inverting the
edges is, formally, the fact that we consider the category Dis(PAop). Informally, this
inversion can be motivated by arguing that the edges in the network graph model
primarily structural mappings of the node names, which are contravariant for port
automata simulations.

EXAMPLE 7.8 (Reo networks as distributed port automata). Figure 7.4a depicts a Reo
connector consisting of three FIFO1s and three nodes. Figure 7.4b shows the corre-
sponding distributed port automata model. Note that the edges in the distributed port
automaton correspond to inverse simulations. An easy way to remember the direction
of the edges is to look at the port name map (inclusions here) and not the state map
of the simulations. 4

108 Chapter 7. Distributed port automata

7.3.2 Encoding of Petri nets

Petri nets can also be modeled directly as distributed port automata. However, since
we want the primitive port automata to be finite, we need to enforce an upper
bound for the capacity of places. With this requirement the encoding is again straight-
forward. Essentially, transitions in a Petri net play the role of nodes in our encoding
of Reo. Similarly, places are modeled as primitives with buffer semantics. However,
Petri net places have bag semantics, as opposed to FIFO channels in Reo.

EXAMPLE 7.9 (Petri nets as distributed port automata). Figure 7.5 depicts a Petri net
and its corresponding distributed port automaton. In this example, all places have a
capacity of 1. Similar to the distributed port automata encoding of full FIFO1 channels
in Reo, we model the markings of a Petri net place by adapting the initial state in its
corresponding port automaton. Note also that, in this example, the upper and lower
right places synchronize on B. 4

Encoding of both Reo networks and Petri nets are one-to-one mappings, which
include the semantics of all of their primitives, and moreover, contain their structural
information, i.e., the topology of the networks.

7.3.3 Composing distributed port automata

In compliance with the DPO approach to graph transformation [28], we define com-
position of distributed port automata using pushouts. Therefore, we need the follow-
ing lemma.

LEMMA 7.10. Dis(PAop) is cocomplete.

PROOF. PA is complete since it has pullbacks and a final object. Thus, PAop and there-
fore also Dis(PAop) are cocomplete. �

In Figure 7.3 we show how pushouts can be used to glue Reo networks along
a common subnetwork. Note again that this gluing is of a pure structural nature. In
Section 7.3.1, particularly in Figure 7.4, we see how Reo networks can be encoding as
distributed port automata. An important aspect of this encoding is that the topology
of the network is modeled by the network graph of the distributed port automaton.
Moreover, each local port automaton models the semantics of its respective primitive
in the network.

Since Dis(PAop) is cocomplete, we can compose distributed port automata using
pushouts. Relevant here is the fact that usually the semantics of primitives is fixed.
Therefore, the local morphisms (port automata simulations) are isomorphisms. This
is, for instance, the case for Reo networks and Petri nets. In this situation, the primitive
port automata in network nodes are not changed when composing two distributed
port automata using pushouts. Thus, the composition is performed only on the net-
work level and is of purely structural nature.

The case where a local port automata morphism is not an isomorphism has appli-
cations as well. Essentially, it allows to model a refinement of primitives. For instance,

7.3. The category of distributed port automata 109

(a) graphical representation

{A}

{C}
{A}

{A}

{B}

{B}

{C}

{B}

{C}

(b) distributed port automata model

Figure 7.4: a Reo network modeled as distributed port automaton

A

B

C

(a) graphical representation

{B}

{A}
{A}

{B}

{A}

{C}

{B}

{B}

{C}

(b) distributed port automata model

Figure 7.5: a Petri net modeled as distributed port automaton

110 Chapter 7. Distributed port automata

it is possible to refine a buffer with bag semantics to one with FIFO semantics. The
only formal requirement is that the target automaton simulates the source automa-
ton, i.e., there exists a port automata simulation that is contravariant to the structural
mapping.

7.3.4 Semantics of distributed port automata

Distributed port automata contain the semantics of each primitive in the network
and, moreover, the topology of the network. The semantics of a network is given by
the port automaton that can be derived by joining all primitive port automata in the
network along their shared subautomata. Essentially, we should be able to derive the
semantics of a network such as the one in Figure 7.4b by repeatedly constructing
pullbacks in PA along the reverse simulations between the primitive port automata.

More directly, for a distributed port automaton (N , D) ∈ Dis(PAop) (cf. Defini-
tion 6.1) we can construct the port automaton that corresponds to its network seman-
tics as the colimit of the diagram D. The colimit of D glues together all shared node
names. Moreover, since we have reversed the arrows, it corresponds to a limit in PA.
As a special case, the semantics of a network with the shape of a span (•←•→•) cor-
responds to a pullback of the primitive port automata, as presented in Theorem 7.4.

As we have discussed in Section 6.4, the colimit over a distributed graph or object
can be interpreted as a flattening operation, which, moreover, extends to a flattening
functor F : Dis(C)→ C. In the case of distributed port automata, i.e., in the category
Dis(PAop), the flattening using colimits can thus be used to define the composite be-
havior of networks in terms of a semantics functor.

DEFINITION 7.11 (semantics functor). Let F : Dis(PAop)→ PAop the flattening functor
for distributed port automata. By reversing the arrows, this induces the following
contravariant functor:

Sem: Dis(PAop)→ PA

called the semantics functor for distributed port automata. ◊

The following example shows the contravariance of the semantics functor.

EXAMPLE 7.12 (semantics functor). Figure 7.6 depicts a morphism of distributed
port automata together with the induced morphism between the semantical objects.
The transitions via {C} in the lower right automaton are mapped to τ-transitions
in the lower left automaton. We have omitted all self-loop τ-transitions for clarity
here. Similarly, the transition via {A, C} is mapped to the transition {A}. Note that the
consistency condition for firing events (see Definition 7.1) holds here. 4

The following theorem states that the semantics of distributed port automata is
compositional, i.e., it is compatible with composition of distributed port automata
using pushouts, or more generally with colimits.

7.4. Towards dynamic reconfiguration 111

{C}

{A}

{B}

{A, C}
{C}

{A}

{A}

{B}

{A}

{B}

{B}
{A}

{B}

{B}
{B}

{C}

f

Sem Sem

Sem(f)

Figure 7.6: a distributed port automata morphism and its semantics

THEOREM 7.13 (compositional semantics). The semantics functor Sem: Dis(PAop)→ PA
is compositional in the following sense: it maps colimits of distributed port automata to
limits of port automata.

PROOF. This holds since the flattening functor is cocontinuous (cf. Theorem 6.9). �

Thus, we have shown that a structural gluing of networks, which is realized as a
pushout of the network graph, has a corresponding semantical join operation, i.e.,
a pullback of the respective port automata. Furthermore, Theorem 6.9 shows that
the structure and the semantics of distributed port automata form a pair of adjoint
functors.

7.4 Towards dynamic reconfiguration

Since distributed port automata constitute a combined model which captures both
the structure of a connector or a network and the semantics of the primitives it is
comprised of, distributed port automata can be used for problems occurring in the
area of dynamic reconfiguration. We have stated already, that it is important to deter-
mine the state of a network after a dynamic reconfiguration, which we referred to as
the problem of state transfer. Additionally, it is crucial to ensure that the new network
state is indeed a valid one, which we referred to as the problem of state consistency.

In Section 5.3 we presented an approach to encode the execution semantics as
graph transformation rules, which enabled us to analyze their interplay with dynamic
reconfiguration. However, we have argued that this approach is not compositional. In
general, it is not clear how to encode the semantics of a reconfigurable network with
graph transformation rules for all possible configurations.

112 Chapter 7. Distributed port automata

On the other hand, distributed port automata lay the grounds for reasoning about
state transfer and consistency. To illustrate this, we revisit Example 7.5 which shows
how a pushout of Reo networks (Figure 7.3) on the structural level corresponds to a
pullback of port automata (Figure 7.2) on the semantical level. We now interpret this
as an application of a simple reconfiguration rule which adds a full FIFO1 between
the matched nodes C and A. Essentially, we assume that Figure 7.3 is the right part
of a DPO diagram. In this view, the corresponding pullback of port automata can be
seen as an application of a ‘semantical reconfiguration rule’ in the category of port
automata.

In such an approach, we can deduce the effect of an application of a purely struc-
tural reconfiguration rule on the connector semantics. For instance, assume that the
connector to be reconfigured (lower left automaton in Figure 7.2) is in its initial
state q1, in which both FIFO1s are empty. The image of q1 in the left-hand side of
the rule (upper left automaton) is state q. Moreover, we assume that the FIFO1 to
be added by the rule is initially full, i.e., the selected state in the right-hand side of
the rule is q1 (in the upper right automaton). This information is sufficient to deduce
the state of the connector after the reconfiguration. The pullback construction given
in Theorem 7.4 yields as new target state q11 in the resulting automaton (lower right
automaton). Thus, we can determine the state after a reconfiguration, which provides
us with a means to solve the problem of state transfer.

Now assume that before the reconfiguration, the FIFO1(A, B) and FIFO1(B, C) are
already full, i.e., the automaton in the upper right part is in state p1 and the au-
tomaton in the lower left part is in state p2. Both states are mapped to state p in the
upper left automaton, and therefore correspond to state p12 in the lower right au-
tomaton, which is not shown because it is unreachable from the initial state. In this
particular state, all three FIFO1s are full and the connector would run into a dead-
lock. Therefore, it is crucial to check in which state the connector currently is, before
reconfiguring it. In essence, this is the problem of state consistency. In the distributed
port automata approach, we can characterize reconfigurations which yield consistent
connector states by demanding that the target state of the reconfigured connector
must be reachable from the initial (or the current) state.

Thus, distributed port automata provide a formal framework for analyzing the
interplay between the execution of a network on the one hand, and its reconfiguration
on the other. In particular, our model provides a means for reasoning about state
transfer and state consistency in dynamic reconfiguration scenarios.

7.5 Related work

A marking graph semantics of Petri nets is considered in [77]. Similarly to our ap-
proach, the authors show the compositionality of this semantics using a pair of adjoint
functors. A compositional semantics for open Petri nets based on deterministic pro-
cesses is considered in [11]. The automata semantics for Petri nets considered [34]
is more restrictive than our port automata model, since their concurrent actions im-

7.6. Conclusions and future work 113

ply interleaved semantics. The authors show that there is a coreflection between a
category of Petri nets and their automata model.

The compositionality for constraint automata [10] states that the semantics of a
connector can be computed out of the semantics of its constituent primitives. Our
notion of compositionality is more general since it works with arbitrary gluings of
connector graphs. In fact, we generalize the join operation of [10] by allowing to join
two automata along a common context automaton.

7.6 Conclusions and future work

In this chapter, we have presented distributed port automata as an integrated struc-
tural and behavioral model for reconfigurable networks. We have shown how Reo
networks and Petri nets can be directly encoded in this model and that it contains
both the topology of the network and the semantics of the primitives it is comprised
of. Furthermore, we argued that the flattening functor known from distributed graph
transformation can be used to derive the semantics of a distributed port automaton.
Moreover, we have shown that a structural gluing on the network level of distributed
port automata has a corresponding composition operation on the semantical level.
Thus, we have established a result on compositional semantics which can be applied
to reconfiguration modeled as graph transformations. As concrete applications we
discussed the problems of state transfer and consistency in the area of dynamic re-
configuration.

However, here we have considered only composition and not transformation of
distributed port automata. Reconfiguration based on DPO transformation requires
more general results, e.g. regarding the existence and construction of pushout com-
plements. To apply the full theory of algebraic graph transformation requires to show
that Dis(PAop) is an (adhesive) high-level replacement category [39]. This, however,
is out of the scope of this thesis and belongs to our future work.

Chapter 8

Conclusions and further directions

Adapting software at runtime using dynamic reconfiguration introduces new major
challenges in their design and verification. In this thesis, we have studied formal
modeling and verification techniques for static as well as dynamically reconfigurable
component connectors.

We have shown in this thesis that model checking of connectors provides a pow-
erful means for verifying their behavior. In our approach, using the mCRL2 specifi-
cation language, we have demonstrated how to analyze static connectors including
their data-, context- and time-dependent behavior. Moreover, we have argued that
the theory of graph transformation offers a means for formal modeling of reconfig-
urable connectors, because it can naturally express both their structural and their
behavioral aspects. An important feature of the graph transformation theory is its
rule-based rewriting approach which, as we have shown in this thesis, can be used
to formally describe dynamic reconfiguration in terms of reconfiguration rules. Using
model checking and the so-called critical pair analysis known from rewrite systems,
our reconfigurable connector models can be inspected for potentially harmful inter-
play of dynamic reconfiguration, on the one hand, and the execution itself, on the
other. Moreover, we have shown how quantitative properties of reconfigurable con-
nectors, e.g. steady state probabilities, can be analyzed as well.

Since the assumption of a centralized coordinator constitutes a big imposition on
the type of system to be modeled, we have extended our approach to distributed
reconfigurable connectors as well. To avoid ad hoc approaches, we have used the
theory of distributed graph transformation for this purpose. As a new general result
in the field of distributed graph transformation, we have shown that the flattening
operation for distributed graphs is compositional. This result was also crucial in our
distributed port automata model, which we have introduced to study issues arising in
the area of dynamic reconfiguration. Specifically, we have shown how the problems
of state transfer and state consistency can be solved in our set-up. For this purpose we
have combined a semantical automata model with the graph transformation based
approach for reconfiguration.

115

116 Chapter 8. Conclusions and further directions

The practical relevance of the methods considered in this thesis has been made ev-
ident by providing sophisticated tool support. The Eclipse Coordination Tools (ECT)
which have been implemented in the context of this thesis provide an integrated
environment for modeling and analysis of component connectors in Reo. For the for-
mal analysis approaches considered in this thesis we have used a number of verifica-
tion tools (partially as back-ends of ECT), i.e., AGG [87], CADP [43], Henshin [6],
mCRL2 [49] and PRISM [67].

Further research directions mainly involve areas where different modeling tech-
niques are being combined. Examples include the use of (combined) stochastic and
timed models in Reo itself, but also in the area of graph transformation systems. Simi-
larly, the combination of automata-based behavioral models and graph transformation-
based reconfigurations, as we have considered in our distributed port automata model,
introduces a number of challenges. For instance, if the LTS induced by the reconfigu-
ration rules is finite, it may be desirable to have an unfold operation that combines the
execution semantics of the involved primitive port automata with the reconfiguration
semantics of the network into a single LTS, similarly to our approach in Chapter 5
where we encoded the execution semantics also as graph transformation rules. More-
over, to apply the full theory of algebraic graph transformation requires to show that
the category of distributed port automata, as introduced in Chapter 7 is an (adhesive)
high-level replacement category [39]. Aside from these rather technical issues, we be-
lieve that the established formal modeling approaches, e.g. using automata models,
process algebra or graph transformation, are on their own not powerful enough to
study all problems in the area of dynamically reconfigurable systems. In this thesis,
we therefore combined different modeling and verification techniques. However, it
is not clear yet whether the challenges arising in dynamically reconfigurable systems
can be solved solely using traditional formal methods.

Bibliography

[1] F. Arbab. Reo: A channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science, 14:329–366, 2004.

[2] F. Arbab, C. Baier, F. de Boer, and J. Rutten. Models and temporal logical spec-
ifications for timed component connectors. Software and Systems Modeling,
6:59–82, 2007.

[3] F. Arbab, C. Baier, F. S. de Boer, J. J. M. M. Rutten, and M. Sirjani. Synthesis
of Reo circuits for implementation of component-connector automata specifi-
cations. In 7th International Conference on Coordination Models and Languages
(Coordination’05), volume 3454 of Lecture Notes in Computer Science, pages
236–251. Springer-Verlag, 2005.

[4] F. Arbab, T. Chothia, R. Mei, S. Meng, Y.-J. Moon, and C. Verhoef. From co-
ordination to stochastic models of QoS. In 11th International Conference on
Coordination Models and Languages (Coordination’09), volume 5521 of Lecture
Notes in Computer Science, pages 268–287. Springer-Verlag, 2009.

[5] F. Arbab, T. Chothia, S. Meng, and Y.-J. Moon. Component connectors with
QoS guarantees. In 9th International Conference on Coordination Models and
Languages (Coordination’07), volume 4467 of Lecture Notes in Computer Sci-
ence, pages 286–304. Springer-Verlag, 2007.

[6] T. Arendt, E. Bierman, S. Jurack, C. Krause, and G. Taentzer. Henshin: Ad-
vanced concepts and tools for in-place EMF model transformations. In 13th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS’10), volume 6394 of Lecture Notes in Computer Science, pages 121–
135. Springer-Verlag, 2010.

117

118 Bibliography

[7] C. Baier, T. Blechmann, J. Klein, and S. Klüppelholz. Formal verification
for components and connectors. In Formal Methods for Components and Ob-
jects: 7th International Symposium (FMCO’08), Revised Lectures, pages 82–101.
Springer-Verlag, 2009.

[8] C. Baier, T. Blechmann, J. Klein, and S. Klüppelholz. A uniform framework
for modeling and verifying components and connectors. In 11th International
Conference on Coordination Models and Languages (Coordination’09), volume
5521 of Lecture Notes in Computer Science, pages 247–267. Springer-Verlag,
2009.

[9] C. Baier, T. Blechmann, J. Klein, S. Klüppelholz, and W. Leister. Design and
verification of systems with exogenous coordination using Vereofy. In Lever-
aging Applications of Formal Methods, Verification, and Validation - 4th Inter-
national Symposium on Leveraging Applications, (ISoLA’10), volume 6416 of
Lecture Notes in Computer Science, pages 97–111. Springer-Verlag, 2010.

[10] C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors
in Reo by constraint automata. Science of Computer Programming, 61(2):75–
113, 2006.

[11] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional semantics for
open Petri nets based on deterministic processes. Mathematical Structures in
Computer Science, 15:1–35, 2005.

[12] P. Baldan, A. Corradini, H. Ehrig, R. Heckel, and B. König. Bisimilar-
ity and behaviour-preserving reconfigurations of open Petri nets. CoRR,
abs/0809.4115, 2008.

[13] E. Biermann, K. Ehrig, C. Ermel, C. Koehler, and G. Taentzer. The EMF model
transformation framework. In Applications of Graph Transformations with In-
dustrial Relevance (AGTIVE’07), volume 5088 of Lecture Notes in Computer Sci-
ence, pages 566–567. Springer-Verlag, 2008.

[14] E. Biermann, K. Ehrig, C. Koehler, G. Kuhns, G. Taentzer, and E. Weiss. EMF
model refactoring based of graph transformation concepts. In 3rd International
Workshop on Software Evolution through Transformations (SETra’06), volume 3.
Electronic Communications of the EASST, Sept. 2006.

[15] E. Biermann, K. Ehrig, C. Koehler, G. Kuhns, G. Taentzer, and E. Weiss. Graph-
ical definition of in-place transformations in the Eclipse Modeling Framework.
In 9th International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS’06), volume 4199 of Lecture Notes Notes in Computer Science,
pages 425–439. Springer-Verlag, 2006.

[16] T. Blechmann and C. Baier. Checking equivalence for Reo networks. Electronic
Notes in Theoretical Computer Science, 215:209–226, 2008.

Bibliography 119

[17] P. Boehm, H.-R. Fonio, and A. Habel. Amalgamation of graph transforma-
tions: a synchronization mechanism. Journal of Computer and System Sciences,
34:377–408, 1987.

[18] M. Bonsangue, D. Clarke, and A. Silva. Automata for context-dependent con-
nectors. In 11th International Conference on Coordination Models and Lan-
guages (Coordination’09), volume 5521 of Lecture Notes in Computer Science,
pages 184–203. Springer-Verlag, 2009.

[19] M. Bonsangue and M. Izadi. Automata based model checking for Reo connec-
tors. In 3rd International Conference on Fundamentals of Software Engineering
(FSEN’09), volume 5961 of Lecture Notes in Computer Science, pages 260–275.
Springer-Verlag, 2010.

[20] A. Brogi, J. Cámera, C. Canal, J. Cubo, and E. Pimentel. Dynamic contextual
adaptation. Electronic Notes in Theoretical Computer Science, 175:81–95, 2007.

[21] R. Bruni, A. L. Lafuente, U. Montanari, and E. Tuosto. Style-based architectural
reconfigurations. Bulletin of the EATCS, 94:181–180, 2008.

[22] R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors.
Theoretical Computer Science, 366(1):98–120, 2006.

[23] C. Canal, J. Murillo, and P. Poizat. Software adaptation. L’Object, 12:9–31,
2006.

[24] B. Changizi, N. Kokash, and F. Arbab. A unified toolset for business process
model formalization. In 7th International Workshop on Formal Engineering
approaches to Software Components and Architectures (FESCA’10). Tool demon-
stration paper, 2010.

[25] D. Clarke. A basic logic for reasoning about connector reconfiguration. Funda-
menta Informaticae, 82(4):361–390, 2008.

[26] D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and
context dependency. Science of Computer Programming, 66(3):205–225, 2007.

[27] COMPAS. Compliance-driven Models, Languages, and Architectures for Ser-
vices (EU project). http://www.compas-ict.eu/.

[28] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Hand-
book of Graph Grammars and Computing by Graph Transformation, chapter
Algebraic approaches to graph transformation I: Basic concepts and double
pushout approach, pages 163–245. World Scientific, 1997.

[29] D. Costa. Formal Models for Context Dependent Connectors for Distributed Soft-
ware Components and Services. PhD thesis, Vrije Universiteit Amsterdam, The
Netherlands, 2010.

http://www.compas-ict.eu/

120 Bibliography

[30] Credo. Modeling and analysis of evolutionary structures for distributed ser-
vices (EU project). http://projects.cwi.nl/credo/.

[31] J. Cubo, G. Salaün, J. Cámara, C.Canal, and E. Pimentel. Context-based adap-
tation of component behavioural interfaces. In 9th International Conference on
Coordination Models and Languages (Coordination’07), volume 4467 of Lecture
Notes in Computer Science, pages 305–323. Springer-Verlag, 2007.

[32] J. de Lara and G. Taentzer. Modelling and analysis of distributed simulation
protocols with distributed graph transformation. In 5th International Confer-
ence on Application of Concurrency to System Design (ACSD’05), pages 144–153,
Washington, DC, USA, 2005. IEEE Computer Society.

[33] E. Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor,
Oct. 1987.

[34] M. Droste and R. M. Shortt. From Petri nets to automata with concurrency.
Applied Categorical Structures, 10(2):173–191, 2002.

[35] Eclipse platform. http://www.eclipse.org.

[36] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed
attributed graphs and graph transformation based on adhesive HLR categories.
Fundamenta Informaticae, 74(1):31–61, 2006.

[37] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. EATCS Monographs in Theoretical Computer Science.
Springer-Verlag, 2006.

[38] H. Ehrig, F. Orejas, and U. Prange. Categorical foundations of distributed
graph transformation. In 3rd International Conference on Graph Transformation
(ICGT’06), volume 4178 of Lecture Notes in Computer Science, pages 215–229.
Springer-Verlag, 2006.

[39] H. Ehrig, J. Padberg, U. Prange, and A. Habel. Adhesive high-level replacement
systems: A new categorical framework for graph transformation. Fundamenta
Informaticae, 74:1–29, 2006.

[40] EMF. The Eclipse Modeling Framework. http://www.eclipse.org/emf.

[41] EMFT. Eclipse Modeling Framework Technology. http://www.eclipse.
org/modeling/emft.

[42] G. Engels and R. Heckel. Graph transformation as a conceptual and formal
framework for system modeling and model evolution. In Twenty-Seventh In-
ternational Colloquium on Automata, Languages and Programming (ICALP’00),
volume 1853 of Lecture Notes in Computer Science, pages 127–150. Springer-
Verlag, 2000.

http://projects.cwi.nl/credo/
http://www.eclipse.org
http://www.eclipse.org/emf
http://www.eclipse.org/modeling/emft
http://www.eclipse.org/modeling/emft

Bibliography 121

[43] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A toolbox for
the construction and analysis of distributed processes. In Computer Aided Veri-
fication, 19th International Conference (CAV’07), volume 4590 of Lecture Notes
in Computer Science, pages 158–163. Springer-Verlag, 2007.

[44] D. Gelernter and N. Carriero. Coordination languages and their significance.
Commun. ACM, 35(2):97–107, 1992.

[45] D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Parallel programming
in Linda. In International Conference on Parallel Processing (ICPP), pages 255–
263, 1985.

[46] U. Golas, H. Ehrig, and A. Habel. Multi-amalgamation in adhesive categories.
In H. Ehrig, A. Rensink, G. Rozenberg, and A. Schürr, editors, ICGT, volume
6372 of Lecture Notes in Computer Science, pages 346–361. Springer-Verlag,
2010.

[47] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and M. La Rosa.
Configurable workflow models. Journal of Cooperative Information Systems,
17:177–221, 2008.

[48] I. Grabe, M. M. Jaghoori, B. K. Aichernig, C. Baier, T. Blechmann, F. S. de Boer,
A. Griesmayer, E. B. Johnsen, J. Klein, S. Klüppelholz, M. Kyas, W. Leister,
R. Schlatte, A. Stam, M. Steffen, S. Tschirner, L. Xuedong, and W. Yi. Credo
methodology: Modeling and analyzing a peer-to-peer system in Credo. Elec-
tronic Notes in Theoretical Computer Science, 266:33–48, 2010.

[49] J. F. Groote, A. H. J. Mathijssen, M. A. Reniers, Y. S. Usenko, and M. J. van
Weerdenburg. The formal specification language mCRL2. In Methods for Mod-
elling Software Systems. IBFI, Schloss Dagstuhl, 2007.

[50] R. van Glabbeek and P. Weijland. Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM, 43:555–600, 1996.

[51] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of typed attributed graph
transformation systems. In 1st International Conference on Graph Transfor-
mation (ICGT’02), volume 2505 of Lecture Notes in Computer Science, pages
161–176. Springer-Verlag, 2002.

[52] R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems.
Fundamenta Informaticae, 74(1):63–84, 2006.

[53] Henshin. http://www.eclipse.org/modeling/emft/henshin.

[54] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21:666–677, 1978.

http://www.eclipse.org/modeling/emft/henshin

122 Bibliography

[55] S.-S. Jongmans, C. Krause, and F. Arbab. Encoding context-sensitivity in Reo
into non-context-sensitive semantic models. In 13th International Conference
on Coordination Models and Languages (Coordination’11), Lecture Notes in
Computer Science (to appear). Springer-Verlag, 2011.

[56] O. Kanters. QoS analysis by simulation in Reo. Master’s thesis, CWI Amsterdam
and Vrije Universiteit Amsterdam, The Netherlands, 2010.

[57] S. Kemper. Compositional construction of real-time dataflow networks. In
12th International Conference on Coordination Models and Languages (Coordi-
nation’10), volume 6116 of Lecture Notes in Computer Science, pages 92–106.
Springer-Verlag, 2010.

[58] S. Kemper. Modelling and Analysis of Real-time Coordination Patterns. PhD
thesis, Leiden University (to be submitted), The Netherlands, 2011.

[59] S. Kemper. SAT-based verification for timed component connectors. Science of
Computer Programming (to appear), 2011.

[60] S. Kemper and A. Platzer. SAT-based abstraction refinement for real-time sys-
tems. In Formal Aspects of Component Software, Third International Workshop
(FACS’06), volume 182 of ENTCS, pages 107–122, 2007.

[61] R. Khosravi, M. Sirjani, N. Asoudeh, S. Sahebi, and H. Iravanchi. Modeling
and analysis of Reo connectors using Alloy. In 10th International Conference on
Coordination Models and Languages (Coordination’08), volume 5052 of Lecture
Notes in Computer Science, pages 169–183. Springer-Verlag, 2008.

[62] N. Kokash, C. Krause, and E. P. de Vink. Data-aware design and verification
of service compositions with Reo and mCRL2. In 2010 ACM Symposium on
Applied Computing (SAC’10), pages 2406–2413. ACM, 2010.

[63] N. Kokash, C. Krause, and E. P. de Vink. Time and data-aware analysis of
graphical service models in Reo. In 8th IEEE International Conference on Soft-
ware Engineering and Formal Methods (SEFM’10), pages 125–134. IEEE Com-
puter Society, 2010.

[64] N. Kokash, C. Krause, and E. P. de Vink. Verification of context-dependent
channel-based service models. In Formal Methods for Components and Objects:
8th International Symposium (FMCO’09), volume 6286 of Lecture Notes in Com-
puter Science, pages 21–40. Springer-Verlag, 2010.

[65] N. Kokash, C. Krause, and E. P. de Vink. Reo+mCRL2: A framework for model-
checking dataflow in service compositions. Formal Aspects of Computing, 2011.
Special Issue on Selected SEFM’10 papers (under review).

[66] K. Krohn and J. Rhodes. Algebraic theory of machines I: Prime decomposition
theorems for finite semigroups and machines. Transactions of the American
Mathematical Society, 116:450–464, 1965.

Bibliography 123

[67] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic
Model Checker. In 12th International Conference on Modelling Tools and
Techniques for Computer and Communication System Performance Evaluation
(TOOLS’02), Lecture Notes in Computer Science, pages 200–204. Springer-
Verlag, 2002.

[68] S. M. Lane. Categories for the Working Mathematician (Graduate Texts in Math-
ematics). Springer-Verlag, 2nd edition, 1998.

[69] mCRL2. http://www.mcrl2.org.

[70] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

[71] R. Milner. Communication and concurrency. Prentice Hall International, 1989.

[72] MOF. Meta Object Facility (MOF) Core. http://www.omg.org/spec/MOF.

[73] Y.-J. Moon. Stochastic Models for Quality of Service of Component Connectors.
PhD thesis, Leiden University (to be submitted), The Netherlands, 2011.

[74] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A compositional semantics for
stochastic Reo connectors. In 9th International Workshop on the Foundations of
Coordination Languages and Software Architectures (FOCLASA’10), volume 30
of Electronic Proceedings in Theoretical Computer Science, pages 93–107, 2010.

[75] Y.-J. Moon, A. Silva, C. Krause, and F. Arbab. A compositional model to rea-
son about end-to-end QoS in stochastic Reo connectors. Science of Computer
Programming (to appear), 2011.

[76] OCL. The Object Constraint Language. http://www.omg.org/technology/
documents/formal/ocl.htm.

[77] J. Padberg, H. Ehrig, and G. Rozenberg. Behavior and realization construction
for Petri nets based on free monoid and power set graphs. In Unifying Petri
Nets, Advances in Petri Nets, volume 2128 of Lecture Notes in Computer Science,
pages 230–249. Springer-Verlag, 2001.

[78] G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

[79] G. D. Plotkin. The origins of structural operational semantics. Journal of Logic
and Algebraic Programming, 60–61:3–15, 2004.

[80] D. Plump. Hypergraph rewriting: critical pairs and undecidability of conflu-
ence. In Term Graph Rewriting: Theory and Practice, pages 201–213. John
Wiley and Sons Ltd., 1993.

http://www.mcrl2.org
http://www.omg.org/spec/MOF
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm

124 Bibliography

[81] D. Plump. Critical pairs in term graph rewriting. In 19th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS’94), volume 841
of Lecture Notes in Computer Science, pages 556–566. Springer-Verlag, 1994.

[82] B. Pourvatan, M. Sirjani, H. Hojjat, and F. Arbab. Automated analysis of Reo
circuits using symbolic execution. Electronic Notes in Theoretical Computer Sci-
ence, 255:137–158, 2009.

[83] J. Proença. Deployment of Distributed Component Based Systems. PhD thesis,
Leiden University, The Netherlands, 2011.

[84] J. Scholten. Mobile channels for exogenous coordination of distributed systems:
semantics, implementation and composition. PhD thesis, Leiden University, The
Netherlands, 2007.

[85] A. Silva. A specification language for Reo connectors. In 4rd International
Conference on Fundamentals of Software Engineering (FSEN’10), Lecture Notes
in Computer Science. Springer-Verlag (to appear), 2011.

[86] G. Taentzer. Distributed graphs and graph transformation. Applied Categorical
Structures, 7:431–462, 1999.

[87] G. Taentzer. AGG: A graph transformation environment for modeling and vali-
dation of software. In Application of Graph Transformations with Industrial Rel-
evance (AGTIVE’03), volume 3062 of Lecture Notes in Computer Science, pages
446–453. Springer-Verlag, 2004.

[88] G. Taentzer and M. Beyer. Amalgamated graph transformations and their use
for specifying AGG. In Dagstuhl Seminar on Graph Transformations in Com-
puter Science, volume 776 of Lecture Notes in Computer Science, pages 380–394.
Springer-Verlag, 1994.

[89] C. Koehler, F. Arbab, and E. P. de Vink. Reconfiguring distributed Reo connec-
tors. In Recent Trends in Algebraic Development Techniques: 19th International
Workshop (WADT’08), volume 5486 of Lecture Notes in Computer Science, pages
221–235. Springer-Verlag, 2009.

[90] C. Koehler and D. Clarke. Decomposing port automata. In 2009 ACM Sympo-
sium on Applied Computing (SAC’09), pages 1369–1373, New York, NY, USA,
2009. ACM.

[91] C. Koehler, D. Costa, J. Proença, and F. Arbab. Reconfiguration of Reo connec-
tors triggered by dataflow. In 7th International Workshop on Graph Transfor-
mation and Visual Modeling Techniques (GT-VMT’08), volume 10 of Electronic
Communications of the EASST, 2008.

Bibliography 125

[92] C. Koehler, A. Lazovik, and F. Arbab. ReoService: coordination modeling
tool. In 5th International Conference on Service Oriented Computing (ICSOC’07),
volume 4749 of Lecture Notes in Computer Science, pages 625–626. Springer-
Verlag, 2007.

[93] C. Koehler, A. Lazovik, and F. Arbab. Connector rewriting with high-level
replacement systems. In 6th International Workshop on the Foundations of Co-
ordination Languages and Software Architectures (FOCLASA’07), volume 194 of
Electronic Notes in Theoretical Computer Science, pages 77–92, Amsterdam, The
Netherlands, 2008. Elsevier Science Publishers B.V.

[94] C. Koehler, H. Lewin, and G. Taentzer. Ensuring containment constraints in
graph-based model transformation approaches. In 6th International Work-
shop on Graph Transformation and Visual Modeling Techniques (GT-VMT’07),
volume 6 of Electronic Communications of the EASST, 2007.

[95] C. Krause. Integrated structure and semantics for Reo connectors and Petri
nets. In 2nd Interaction and Concurrency Experience Workshop (ICE’09), vol-
ume 12 of Electronic Proceedings in Theoretical Computer Science, page 57,
2009.

[96] C. Krause. Distributed port automata. In 10th International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT’11), Electronic
Communications of the EASST (to appear), 2011.

[97] C. Krause, C. Krause, and E. P. de Vink. Action-based analysis of discrete reg-
ulatory networks with short-term stimuli. In 8th Conference on Computational
Methods in Systems Biology (CMSB’10), pages 66–75, New York, NY, USA, 2010.
ACM.

[98] C. Krause, Z. Maraikar, A. Lazovik, and F. Arbab. Modeling dynamic recon-
figurations in Reo using high-level replacement systems. Science of Computer
Programming, 76(1):23–36, 2011. Selected papers from the 6th International
Workshop on the Foundations of Coordination Languages and Software Archi-
tectures (FOCLASA’07).

[99] W. M. P. van der Aalst. The application of Petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[100] W. M. P. van der Aalst. Interorganizational workflows: An approach based
on message sequence charts and Petri nets. Systems Analysis - Modelling -
Simulation, 34(3):335–367, 1999.

[101] W. M. P. van der Aalst. Exterminating the dynamic change bug: A concrete ap-
proach to support workflow change. Information Systems Frontiers, 3(3):297–
317, 2001.

126 Appendix . Bibliography

[102] W. M. P. van der Aalst and T. Basten. Inheritance of workflows: an approach
to tackling problems related to change. Theoretical Computer Science, 270(1–
2):125–203, 2002.

[103] W. M. P. van der Aalst and A. H. M. ter Hofstede. Workflow patterns: On the
expressive power of (Petri-net-based) workflow languages. In Fourth Interna-
tional Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, pages
1–20. Technical Report DAIMI PB-560, 2002.

[104] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[105] Vereofy. http://www.vereofy.de.

[106] C. Verhoef, C. Krause, O. Kanters, and R. van der Mei. Simulation-based per-
formance analysis of channel-based coordination models. In 13th International
Conference on Coordination Models and Languages (Coordination’11), Lecture
Notes in Computer Science (to appear). Springer-Verlag, 2011.

[107] D. Yellin and R. Strom. Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems, 19:292–333, 1990.

http://www.vereofy.de

Appendix A

Proofs

A.1 Proof for Theorem 4.4

PROOF. We show that the relation

R=
�

proc
�

q1, q2
�

,∂B
�

ΓC
�

proc
�

q1
�

‖ proc
�

q2
����	

is a strong bisimulation according to Definition 3.4. Note again that proc
�

q1, q2
�

is the
process corresponding to a state in the joint automaton PA1 ./ PA2, and that proc

�

qi
�

corresponds to a state in the automaton with renamed ports PAR
i .

• Suppose proc
�

q1, q2
� S−→ P. From Lemma 4.3 we know that proc

�

q1, q2
�

∼〈q1, q2〉.
Therefore there must exist a corresponding transition in PA1./ PA2. Then one of
the three cases from Definition 3.2 for the join operator applies:

(i) There exists q1
S−→ p1 in PA1 with S ∩ N2 = ; and we have P = proc

�

p1, q2
�

.
Since none of the port names in S are part of the renaming, the transition
is the same in PAR

1. For PAR
1 we have again q1 ∼ proc

�

q1
�

and thus:

proc
�

q1
� S−→ proc

�

p1
�

Moreover, from the semantics of ‖ we derive for the joint process:

proc
�

q1
�

‖ proc
�

q2
� S−→ proc

�

p1
�

‖ proc
�

q2
�

We know further that ∂B and ΓC have no impact here, since only the port
names from N1 ∩ N2 are changed. Therefore we obtain as expected:

∂B
�

ΓC
�

proc
�

q1
�

‖ proc
�

q2
��� S−→ ∂B

�

ΓC
�

proc
�

p1
�

‖ proc
�

q2
���

(ii) There exists q2
S−→ p2 in PA2 with S ∩ N1 = ;. Symmetrical case.

127

128 Appendix A. Proofs

(iii) There exist transitions q1
S1−→ p1 in PA1 and q2

S2−→ p2 in PA2 with S = S1∪ S2,
S1∩N2 = S2∩N1. Hence P = proc

�

p1, p2
�

. Analogously to case (i) we obtain:

proc
�

q1
�

‖ proc
�

q2
� SR

1 ∪SR
2−−−→ proc

�

p1
�

‖ proc
�

p2
�

where SR
i is the port name set obtained by applying the renaming Ri to Si .

By applying the communications ΓC , the original port name set S for this
transition is recovered. The blocking operator ∂B has no impact here since
S1∩ N2 = S2 ∩ N1. Therefore here we also get the expected step:

∂B
�

ΓC
�

proc
�

q1
�

‖ proc
�

q2
��� S−→ ∂B

�

ΓC
�

proc
�

p1
�

‖ proc
�

p2
���

• Now suppose ∂B
�

ΓC
�

proc
�

q1
�

‖ proc
�

q2
��� S−→ P. The semantics of ‖ is given by:

proc
�

q1
�

‖ proc
�

q2
�

= proc
�

q1
�

‖ proc
�

q2
�

+
proc

�

q2
�

‖ proc
�

q1
�

+
proc

�

q1
�

| proc
�

q2
�

where‖ is the so-called left merge operator of the process algebra ACP. We there-
fore have to distinguish again three cases, from which the first two are symmet-
rical.

(i) There exist P1 with proc
�

q1
� S′−→ P1 and P = ∂B

�

ΓC
�

P1 ‖ proc
�

q2
���

. Note
that because of the renamings due to ΓC we do not know whether S = S′.
However, since proc

�

q1
�

∼ q1 this step must correspond to a transition

q1
SR

1−→ p1 in PAR
1 and q1

S−→ p1 in PA1

and thus we know S′ = SR
1 . From the definition of the blocking set B we

know that S cannot contain any shared port names, because otherwise
∂B
�

ΓC
�

proc
�

q1
�

‖ proc
�

q2
���

could not have performed a step in the first
place. Thus, S = SR

1 and S∩N2 = ;. Hence, the first case of the join operator
in Definition 3.2 applies and we have:

〈q1, q2〉
S−→ 〈p1, q2〉 in PA1./ PA2

and because of the bisimilarity with proc
�

q1, q2
�

also:

proc
�

q1, q2
� S−→ proc

�

p1, q2
�

(ii) There exists P2 with proc
�

q2
� S′−→ P2. Symmetrical case.

(iii) There exists P1, P2 with proc
�

q1
� S′1−→ P1 and proc

�

q2
� S′2−→ P2 and furthermore

P = ∂B
�

ΓC
�

P1 ‖ P2
��

. We know again that S′1 and S′2 are renamed port name
sets S′i = SR

i and that they correspond to transitions:

A.2. Proof for Theorem 6.9 129

q1
S1−→ p1 in PA1 and q2

S2−→ p2 in PA2

From the definition of C we know S = S1 ∪ S2. From the definition of B we
know S1 ∩ N2 = S2 ∩ N1. Hence, the third case of the join applies and:

proc
�

q1, q2
� S−→ proc

�

p1, p2
�

�

A.2 Proof for Theorem 6.9

PROOF. We consider the functor G: C → Dis(C) which maps an object X ∈ C to the
distributed object (1, (1 7→ X)) ∈ Dis(C) and a morphism f : X → X ′ to (id1, (f)),
where 1 is the terminal object in Graph. We have F a G since there is a bijective
correspondence

ΦX ,Y : homC(FY, X)→ homDis(C)(Y, GX)

that is natural in X ∈ C and Y = (N , D) ∈ Dis(C). The flattening functor F associates
the colimit to a distributed object. Thus, FY is the colimit of the diagram D together
with C-morphisms (yn: D(n) → FY)n∈N . Now, for a C-morphism h: FY → X we have
the Dis(C)-morphism ΦX ,Y (h) = (!N , (h◦ yn)n∈N): Y → GX where !N : N → 1 is the ter-
minal map for N in Graph. The mapping ΦX ,Y is bijective since all Dis(C)-morphisms
Y → GX are of the above form.

Now let f : X → X ′ be a C-morphism and g: Y ′ → Y a Dis(C)-morphism. The
morphism Gf : GX → GX ′ is given as above. Fg: FY ′ → FY is the unique morphism
into the colimit object FY . Now we need to show the following naturality condition:

Gf ◦ΦX ,Y (h) ◦ g
!
= ΦX ′,Y ′(f ◦ h ◦ Fg) : Y ′→ GX ′

We write Y ′ = (N ′, D′) and g = (gN ′ , (gm)m∈N ′). Moreover, let (y ′m: D′(m)→ FY ′)m∈N ′

be the C-morphisms into the colimit of Y ′. We now exploit the componentwise com-
position of Dis(C)-morphisms:

Gf ◦ΦX ,Y (h) ◦ g =
�

id1, (f)
�

◦
�

!N , (h◦ yn)n∈N
�

◦
�

gN ′ , (gm)m∈N ′
�

=
�

id1◦ !N ◦gN ′ , (f ◦ h ◦ ygN ′ (m) ◦ gm)m∈N ′
�

=
�

!N ′ , (f ◦ h ◦ ygN ′ (m) ◦ gm)m∈N ′
�

=
�

!N ′ , (f ◦ h ◦ Fg ◦ y ′m)m∈N ′
�

(A.1)

= ΦX ′,Y ′(f ◦ h ◦ Fg)

Equality (A.1) holds since Fg is the unique morphism into the colimit FY . �

Appendix B

Listings

B.1 Vereofy library for context-dependent primitives

1 // Context-dependent Sync channel:
2 MODULE SYNC_CD {
3 in: A; in: nB;
4 out: B; out: nA;
5 −[{ A, B} & #A==#B]−>;
6 −[{nA,nB}]−>;
7 −[{ nB}]−>;
8 }
9

10 // Context-dependent LossySync channel:
11 MODULE LOSSY_SYNC_CD {
12 in: A; in: nB; out: B; out: nA;
13 −[{A, B} & #A==#B]−>;
14 −[{A,nB}]−>;
15 −[{ nB}]−>;
16 }
17

18 // Context-dependent FIFO1 channel:
19 MODULE FIFO1_CD {
20 in: A; in: nB;
21 out: B; out: nA;
22 var: enum {EMPTY,FULL} state:=EMPTY;
23 var: Data value;
24 state==EMPTY −[{nB}]−> state:=EMPTY;
25 state==EMPTY −[{A}]−> state:=FULL & value:=#A;
26 state==EMPTY −[{A,nB}]−> state:=FULL & value:=#A;
27 state==FULL −[{nA}]−> state:=FULL;

131

132 Appendix B. Listings

28 state==FULL −[{nB}]−> state:=FULL;
29 state==FULL −[{nA,nB}]−> state:=FULL;
30 state==FULL −[{B,nA} & #B==value]−> state:=EMPTY & value:=ANY;
31 }
32

33 // Context-dependent Reo node:
34 CIRCUIT NODE_CD <m,n> {
35

36 // Base node:
37 for (i=0; i<m; i=i+1) { new SYNC(source[i]; A); }
38 for (i=0; i<n; i=i+1) { new SYNC(A; sink[i]); }
39

40 // Context node:
41 for (i=0; i<n; i=i+1) { new SYNC(source[m+i]; nA); }
42 for (i=0; i<m; i=i+1) { new SYNC(nA; sink[n+i]); }
43

44 // Synchronizations:
45 for (i=0; i<m; i=i+1) {
46 for (j=0; j<n; j=j+1) {
47 if (i!=j) {
48 new SYNC(source[i]; sink[n+j]);
49 }
50 }
51 }
52 }

Appendix C

Summary

The dynamicity inherent in today’s software is on the one hand a key feature which al-
lows to build robust applications in dynamically changing, distributed environments.
On the other hand, it introduces new major challenges in the design and formal anal-
ysis of such software. In this thesis, we therefore study formal methods for static as
well as dynamically reconfigurable component-based software. Dynamic reconfigu-
ration has broad applications, ranging from service-oriented software to embedded
systems as used, e.g., in the automotive industry.

In this thesis, we propose to use the exogenous coordination language Reo for in-
tegrating and orchestrating distributed and potentially heterogeneous software com-
ponents. Based on automata and process algebra models for the semantics of Reo, we
show how the methodology of model checking can be applied to verify the behavior
of component connectors modeled in Reo. Specifically, we use the mCRL2 specifi-
cation language and model checking tool to analyze static component connectors.
This approach enables us to validate some of the advanced modeling features of Reo,
including data-, context- and time-dependent behavior.

As a formal approach for modeling structural change, i.e., reconfiguration of com-
ponent connectors, we utilize the well-studied theory of algebraic graph transforma-
tion. We argue that the application of graph transformation in this field has major
advantages over ad hoc reconfiguration approaches. Graph transformation can nat-
urally express both structural and behavioral aspects of software systems. Moreover,
the rule-based rewriting approach in graph transformation allows to model reconfig-
uration at a high level of abstraction and with an atomic execution semantics. The
existence of formal analysis techniques and an extensive tool support were additional
motivation for the use of graph transformation.

In this thesis, we show how to formally model and analyze dynamic reconfigura-
tion scenarios in Reo using graph transformation. Using model checking and the so-
called critical pair analysis known from rewrite systems, our reconfigurable connector
models can be inspected for potentially harmful interplay of dynamic reconfiguration,
on the one hand, and the execution itself, on the other. Additionally, we demonstrate

133

134 Appendix C. Summary

how quantitative properties of reconfigurable connectors, e.g. steady state probabili-
ties, can be analyzed in our framework as well.

To remove the limitations of centralized coordination models, we extend our re-
configuration approach to distributed connectors. For this purpose, we use the theory
of distributed graph transformation. As a new general result in the field of distributed
graph transformation, we show that the flattening operation for distributed graphs is
compositional. We argue that this result is relevant for transparent implementations
of distributed connector models.

In the last chapter of this thesis, we show how to integrate an automata-based se-
mantic model of Reo with our graph transformation based reconfiguration approach.
We argue that this is a key ingredient to analyze problems in the domain of dynamic
reconfiguration, such as state transfer and state consistency. For showing that the
semantics is compositional in this approach, we reuse our earlier result on composi-
tionality of the flattening operation for distributed graphs.

To highlight the practical relevance of the methods proposed in this thesis we
provide an extensive tool support. The Eclipse Coordination Tools (ECT) which have
been implemented in the context of this thesis provide an integrated environment
for modeling and analysis of component connectors in Reo. For the formal analysis
approaches considered in this thesis we use a number of verification tools (partially
as back-ends of ECT), i.e., AGG, CADP, Henshin, mCRL2 and PRISM.

Summarizing, this thesis proposes formal models, verification techniques and tools
to cope with the problems arising in the area of dynamically reconfigurable compo-
nent connectors.

Appendix D

Samenvatting (dutch)

Het dynamische karakter dat inherent is aan hedendaagse software is een essentiële
eigenschap die het mogelijk maakt om robuuste applicaties te schrijven voor dyna-
mische, gedistribueerde omgevingen die onderhevig zijn aan verandering. Maar ook
stelt het ons voor nieuwe uitdagingen in het ontwerp en de formele analyse van zulke
software. In dit proefschrift bestuderen we daarom formele methoden voor zowel
statisch als dynamisch herconfigureerbare component-based software. Dynamische
herconfiguratie is breed toepasbaar: van service-oriented software tot embedded sys-
tems.

In dit proefschrift stellen we voor om de exogene coördinatie taal Reo te gebruiken
voor de integratie en orkestratie van gedistribueerde en potentieel heterogene soft-
ware componenten. Middels automaten en procesalgebraïsche modellen voor de se-
mantiek van Reo laten we zien hoe de model checking methodologie kan worden
toegepast om het gedrag van in Reo gemodelleerde component connectors te veri-
fiëren. In het bijzonder gebruiken we de mCRL2 specificatietaal en model checking
tool voor de analyse van component connectors. Deze benadering maakt het mogelijk
om enkele geavanceerde modelleer aspecten van Reo te valideren, waaronder data-,
context-, en tijd-afhankelijk gedrag.

We gebruiken de breed bestudeerde theorie der algebraïsche graaftransformaties
als een formele benadering om de veranderingen in de structuur, i.e., de herconfigu-
ratie, van component connectors te modelleren. We beargumenteren dat het toepassen
van graaftransformaties op dit vlak zeer grote voordelen biedt ten opzichte van een
adhoc aanpak van herconfiguratie. Bovendien maken graaftransformaties die gebaseerd
zijn op rule-based rewriting het mogelijk om herconfiguraties te definiëren op een
hoog abstractieniveau en met een atomaire executie semantiek. Het bestaan van
technieken ten behoeve van formele analyses en de uitgebreide tool ondersteuning
vormen een aanvullende motivatie voor het gebruik van graaftransformaties.

In dit proefschrift laten we zien hoe, middels graaftransformaties, scenario’s voor
dynamische herconfiguratie kunnen worden gemodelleerd en geanalyseerd in Reo.
Middels model checking en zogenaamde crictical pair analyse, bekend van rewrite
systems, kunnen herconfigureerbare connector modellen geïnspecteerd worden op

135

136 Appendix D. Samenvatting (dutch)

een potentieel schadelijke wisselwerking tussen dynamische herconfiguratie enerzijds
en de executie zelf anderzijds. Daarnaast tonen we aan hoe ook kwantitatieve eigen-
schappen van herconfigureerbare connectors, zoals steady state probabilities, geanal-
yseerd kunnen worden in ons framework.

Om de beperkingen van gecentraliseerde coördinatiemodellen te verwijderen brei-
den we de manier waarop we herconfiguratie benaderen uit naar gedistribueerde con-
nectors. We gebruiken hier de theorie van gedistribueerde graaftransformaties voor
en tonen aan dat de flattening operatie voor gedistribueerde grafen compositioneel
is. Dit is een nieuw algemeen resultaat op het gebied van gedistribueerde graaftrans-
formaties. We beargumenteren dat dit resultaat relevant is voor de transparante im-
plementatie van gedistribueerde connectormodellen.

In het laatste hoofdstuk van dit proefschrift laten we zien hoe het op automaten
gebaseerde semantische model van Reo geïntegreerd kan worden in onze, op graaf-
transformaties gebaseerde, aanpak van herconfiguratie. We beargumenteren dat dit
een essentieel onderdeel is voor de analyse van problemen in het domein van dy-
namische herconfiguratie, zoals state transfer en state consistency. We hergebruiken
ons eerdere resultaat omtrent de compositionaliteit van de flattening operatie op
gedistribueerde grafen om te laten zien dat de semantiek van deze aanpak compo-
sitioneel is.

Om aan te tonen dat de methoden die we in dit proefschrift voorstellen ook rele-
vant zijn in de praktijk bieden we uitgebreide tool ondersteuning aan. De Eclipse Co-
ordination Tools (ECT), die geïmplementeerd zijn in de context van dit proefschrift,
verschaffen een geïntegreerde omgeving voor het modelleren en analyseren van com-
ponent connectors in Reo. We gebruiken (gedeeltelijk als back-ends voor ECT) een
aantal verificatieprogramma’s, namelijk AGG, CADP, Henshin, mCRL2, en PRISM, om
de verschillende manieren waarop we formele analyse benaderen in dit proefschrift
te ondersteunen.

Samenvattend stelt dit proefschrift voor om formele modellen, verificatietech-
nieken en tools te gebruiken om het hoofd te bieden aan de problemen die ontstaan
op het gebied van dynamisch herconfigureerbare component connectors.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof System
for Multithreaded Java -Theory and Tool
Support- . Faculty of Mathematics and
Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-
03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Architec-
tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
07

I. Kurtev. Adaptability of Model Transfor-
mations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Popu-
lations in Dynamic Environments. Faculty
of Biomedical Engineering, TU/e. 2005-
11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Re-
lations. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewriting.

Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2005-
19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-
22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Security
Protocols. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Compo-
sitionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Au-
tomata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular
Simulations. Faculty of Biomedical Engi-
neering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic
and Probabilistic Choices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics
and Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Faculty
of Mathematics and Computer Science,
TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implementa-
tion and Composition. Faculty of Mathe-
matics and Natural Sciences, UL. 2006-
21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on Model-
ing for Early Detection of Abnormalities in
Locally Autonomous Distributed Systems.
Faculty of Mathematics and Computing
Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for Model-
based Testing: Real-time and Coverage.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Trčka. Silent Steps in Transition Sys-
tems and Markov Chains. Faculty of
Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics and
Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty
of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.

Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-
15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Math-
ematics and Computer Science, TU/e.
2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based In-
tegration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Mechan-
ical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimila-
tion of Language Conglomerates. Faculty
of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive:
Design and Formal Verification of Opti-
mistic Fair Exchange Protocols. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifica-
tions Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2008-
13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and
Commitments. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-14

P. E. A. Dürr. Resource-based Verifica-
tion for Robust Composition of Aspects.

Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2008-
15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechan-
ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance Anal-
ysis of Data-Independent Stream Process-
ing Systems. Faculty of Mathematics and
Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-
18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty of
Mathematics and Natural Sciences, UL.
2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Natu-
ral Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting
and Its Certification. Faculty of Math-
ematics and Computer Science, TU/e.
2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Computer
Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-
uation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-
28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Validat-
ing Distributed Embedded Real-Time Con-
trol Systems. Faculty of Science, Math-
ematics and Computer Science, RU.
2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-
ing Techniques. Faculty of Mathematics
and Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-
based Single-page Web Applications. Fac-
ulty of Electrical Engineering, Mathe-
matics, and Computer Science, TUD.
2009-08

A.L. Rodriguez Yakushev. Towards Get-
ting Generic Programming Ready for
Prime Time. Faculty of Science, UU.
2009-9

K.R. Olmos Joffré. Strategies for Context
Sensitive Program Transformation. Fac-
ulty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.

Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2009-
14

H.L. Jonker. Security Matters: Privacy in
Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer
Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2009-
17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top
of Proof Assistants and making Proof As-
sistants available over the Web. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-
pleteness: Formalizing Logic and Anal-
ysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis
of Probabilistic Models. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of
Mathematics and Natural Sciences, UL.
2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control
for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2009-
26

J.F.J. Laros. Metrics and Visualisation for
Crime Analysis and Genomics. Faculty of
Mathematics and Natural Sciences, UL.
2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science, UvA.
2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Model-
ing on the Quality of Software. Faculty of
Mathematics and Natural Sciences, UL.
2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery
of Knowledge - Foundations, Implementa-
tions and Applications. Faculty of Mathe-
matics and Natural Sciences, UL. 2010-
09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathe-
matics and Natural Sciences, UL. 2010-
11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Gener-
ation with Templates. Faculty of Math-
ematics and Computer Science, TU/e.
2011-02

E. Zambon. Towards Optimal IT Avail-
ability Planning: Methods and Tools. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2011-
03

L. Astefanoaei. An Executable Theory of
Multi-Agent Systems Refinement. Faculty

of Mathematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordination of
distributed components. Faculty of Math-
ematics and Natural Sciences, UL. 2011-
05

A. Moralı. IT Architecture-Based Confi-
dentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-
ence, UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

ISBN: 978–90–6464–475–7

	Contents
	Introduction
	Coordination models
	Component connectors in Reo
	Dynamic reconfiguration
	Formal methods and their use
	Goals of this thesis
	Thesis overview and contributions
	Channel-based coordination with Reo
	The Reo coordination language
	Channels
	Nodes
	Components
	Connectors and networks

	The Eclipse Coordination Tools
	Tools overview
	The Reo meta-model
	Custom primitives in ECT

	Conclusions
	Automata-based semantics for Reo
	Constraint and port automata
	Definition
	Join and hiding operations
	Bisimulation
	Port automata
	From Reo to automata models

	Decomposition of port automata
	Stateless port automata
	General decomposition scheme
	Related work

	The Extensible Automata framework in ECT
	The EA meta-model
	Extension providers
	Product providers
	From Reo to automata models
	CA runtime and code generation

	Conclusions
	Discussion

	Verification by model checking
	Overview
	The mCRL2 specification language
	Actions
	Processes
	Data types
	Tools

	Encoding Reo in mCRL2
	Join and hiding operations
	General port automata encoding
	Encoding of the coloring semantics
	Encoding context-dependency in port automata
	Encoding of Timed Reo

	Verification tools in ECT
	The mCRL2 conversion tool
	The Vereofy model checker
	Bounded model checking for timed constraint automata
	Stochastic analysis using PRISM
	Stochastic analysis based on discrete event simulation

	Related work
	Conclusions

	Reconfiguration by graph transformation
	Motivation
	Reconfiguration by graph transformation
	Reo networks as typed hypergraphs
	Double pushout rewriting of Reo networks
	Critical pair analysis in AGG

	Modeling dynamic reconfiguration
	State space analysis in Henshin
	Transparent dynamic reconfiguration

	Support for reconfiguration in ECT
	Dynamic reconfiguration in ReoLive
	Reconfigurable coordination of YAWL workflows
	Related work
	Conclusions

	Distributed networks and reconfiguration
	Motivation
	Distributed graphs and Reo networks
	Distributed graphs
	Extended typing for distributed Reo networks

	Reconfiguring distributed networks
	Local reconfigurations
	Synchronizing local reconfigurations
	Coordinating local reconfigurations

	Flattening of distributed graphs
	Related work
	Conclusions

	Distributed port automata
	Overview
	The category of port automata
	The category of distributed port automata
	Encoding of Reo networks
	Encoding of Petri nets
	Composing distributed port automata
	Semantics of distributed port automata

	Towards dynamic reconfiguration
	Related work
	Conclusions and future work

	Conclusions and further directions
	Bibliography
	Proofs
	Proof for Theorem 4.4
	Proof for Theorem 6.9
	Listings
	Vereofy library for context-dependent primitives
	Summary
	Samenvatting (dutch)

