255 research outputs found

    Estimation and control of multi-object systems with high-fidenlity sensor models: A labelled random finite set approach

    Get PDF
    Principled and novel multi-object tracking algorithms are proposed, that have the ability to optimally process realistic sensor data, by accommodating complex observational phenomena such as merged measurements and extended targets. Additionally, a sensor control scheme based on a tractable, information theoretic objective is proposed, the goal of which is to optimise tracking performance in multi-object scenarios. The concept of labelled random finite sets is adopted in the development of these new techniques

    Robust Multi-target Tracking with Bootstrapped-GLMB Filter

    Get PDF
    This dissertation presents novel multi-target tracking algorithms that obviate the need for prior knowledge of system parameters such as clutter rate, detection probabilities, and birth models. Information on these parameters is unknown but important to tracking performance. The proposed algorithms exploit the advantages of existing RFS trackers and filters by bootstrapping them. This configuration inherits the efficiency of tracking target trajectories from the RFS trackers and low complexity in parameter estimation from the RFS filters

    Trajectory Poisson multi-Bernoulli filters

    Get PDF
    This paper presents two trajectory Poisson multi-Bernoulli (TPMB) filters for multi-target tracking: one to estimate the set of alive trajectories at each time step and another to estimate the set of all trajectories, which includes alive and dead trajectories, at each time step. The filters are based on propagating a Poisson multi-Bernoulli (PMB) density on the corresponding set of trajectories through the filtering recursion. After the update step, the posterior is a PMB mixture (PMBM) so, in order to obtain a PMB density, a Kullback-Leibler divergence minimisation on an augmented space is performed. The developed filters are computationally lighter alternatives to the trajectory PMBM filters, which provide the closed-form recursion for sets of trajectories with Poisson birth model, and are shown to outperform previous multi-target tracking algorithms

    Random finite sets in multi-target tracking - efficient sequential MCMC implementation

    Get PDF
    Over the last few decades multi-target tracking (MTT) has proved to be a challenging and attractive research topic. MTT applications span a wide variety of disciplines, including robotics, radar/sonar surveillance, computer vision and biomedical research. The primary focus of this dissertation is to develop an effective and efficient multi-target tracking algorithm dealing with an unknown and time-varying number of targets. The emerging and promising Random Finite Set (RFS) framework provides a rigorous foundation for optimal Bayes multi-target tracking. In contrast to traditional approaches, the collection of individual targets is treated as a set-valued state. The intent of this dissertation is two-fold; first to assert that the RFS framework not only is a natural, elegant and rigorous foundation, but also leads to practical, efficient and reliable algorithms for Bayesian multi-target tracking, and second to provide several novel RFS based tracking algorithms suitable for the specific Track-Before-Detect (TBD) surveillance application. One main contribution of this dissertation is a rigorous derivation and practical implementation of a novel algorithm well suited to deal with multi-target tracking problems for a given cardinality. The proposed Interacting Population-based MCMC-PF algorithm makes use of several Metropolis-Hastings samplers running in parallel, which interact through genetic variation. Another key contribution concerns the design and implementation of two novel algorithms to handle a varying number of targets. The first approach exploits Reversible Jumps. The second approach is built upon the concepts of labeled RFSs and multiple cardinality hypotheses. The performance of the proposed algorithms is also demonstrated in practical scenarios, and shown to significantly outperform conventional multi-target PF in terms of track accuracy and consistency. The final contribution seeks to exploit external information to increase the performance of the surveillance system. In multi-target scenarios, kinematic constraints from the interaction of targets with their environment or other targets can restrict target motion. Such motion constraint information is integrated by using a fixed-lag smoothing procedure, named Knowledge-Based Fixed-Lag Smoother (KB-Smoother). The proposed combination IP-MCMC-PF/KB-Smoother yields enhanced tracking

    Sensor management for multi-target tracking using random finite sets

    Get PDF
    Sensor management in multi-target tracking is commonly focused on actively scheduling and managing sensor resources to maximize the visibility of states of a set of maneuvering targets in a surveillance area. This project focuses on two types of sensor management techniques: - controlling a set of mobile sensors (sensor control), and - scheduling the resources of a sensor network (sensor selection).​ In both cases, agile sensors are employed to track an unknown number of targets. We advocate a Random Finite Set (RFS)-based approach for formulation of a sensor control/selection technique for multi-target tracking problem. Sensor control/scheduling offers a multi-target state estimate that is expected to be substantially more accurate than the classical tracking methods without sensor management. Searching for optimal sensor state or command in the relevant space is carried out by a decision-making mechanism based on maximizing the utility of receiving measurements.​ In current solutions of sensor management problem, the information of the clutter rate and uncertainty in sensor Field of View (FoV) are assumed to be known in priori. However, accurate measures of these parameters are usually not available in practical situations. This project presents a new sensor management solution that is designed to work within a RFS-based multi-target tracking framework. Our solution does not require any prior knowledge of the clutter distribution nor the probability of detection profile to achieve similar accuracy. Also, we present a new sensor management method for multi-object filtering via maximizing the state estimation confidence. Confidence of an estimation is quantified by measuring the dispersion of the multi-object posterior about its statistical mean using Optimal Sub-Pattern Assignment (OSPA). The proposed method is generic and the presented algorithm can be used with any statistical filter

    Multi-Robot Active Information Gathering Using Random Finite Sets

    Get PDF
    Many tasks in the modern world involve collecting information, such as infrastructure inspection, security and surveillance, environmental monitoring, and search and rescue. All of these tasks involve searching an environment to detect, localize, and track objects of interest, such as damage to roadways, suspicious packages, plant species, or victims of a natural disaster. In any of these tasks the number of objects of interest is often not known at the onset of exploration. Teams of robots can automate these often dull, dirty, or dangerous tasks to decrease costs and improve speed and safety. This dissertation addresses the problem of automating data collection processes, so that a team of mobile sensor platforms is able to explore an environment to determine the number of objects of interest and their locations. In real-world scenarios, robots may fail to detect objects within the field of view, receive false positive measurements to clutter objects, and be unable to disambiguate true objects. This makes data association, i.e., matching individual measurements to targets, difficult. To account for this, we utilize filtering algorithms based on random finite sets to simultaneously estimate the number of objects and their locations within the environment without the need to explicitly consider data association. Using the resulting estimates they receive, robots choose actions that maximize the mutual information between the set of targets and the binary events of receiving no detections. This effectively hedges against uninformative actions and leads to a closed form equation to compute mutual information, allowing the robot team to plan over a long time horizon. The robots either communicate with a central agent, which performs the estimation and control computations, or act in a decentralized manner. Our extensive hardware and simulated experiments validate the unified estimation and control framework, using robots with a wide variety of mobility and sensing capabilities to showcase the broad applicability of the framework

    Multi-EAP: extended EAP for multi-estimate extraction for the SMC-PHD filter

    Get PDF
    The ability to extract state-estimates for each target of a multi-target posterior, referred to as multi-estimate extraction (MEE), is an essential requirement for a multi-target filter, whose key performance assessments are based on accuracy, computational efficiency and reliability. The probability hypothesis density (PHD) filter, implemented by the sequential Monte Carlo approach, affords a computationally efficient solution to general multi-target filtering for a time-varying number of targets, but leaves no clue for optimal MEE. In this paper, new data association techniques are proposed to distinguish real measurements of targets from clutter, as well as to associate particles with measurements. The MEE problem is then formulated as a family of parallel singleestimate extraction problems, facilitating the use of the classic expected a posteriori (EAP) estimator, namely the multi-EAP (MEAP) estimator. The resulting MEAP estimator is free of iterative clustering computation, computes quickly and yields accurate and reliable estimates. Typical simulation scenarios are employed to demonstrate the superiority of the MEAP estimator over existing methods in terms of faster processing speed and better estimation accurac
    • …
    corecore