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Multi-Robot Active Information Gathering Using Random Finite Sets

Abstract
Many tasks in the modern world involve collecting information, such as infrastructure inspection, security and
surveillance, environmental monitoring, and search and rescue. All of these tasks involve searching an
environment to detect, localize, and track objects of interest, such as damage to roadways, suspicious packages,
plant species, or victims of a natural disaster. In any of these tasks the number of objects of interest is often not
known at the onset of exploration. Teams of robots can automate these often dull, dirty, or dangerous tasks to
decrease costs and improve speed and safety. This dissertation addresses the problem of automating data
collection processes, so that a team of mobile sensor platforms is able to explore an environment to determine
the number of objects of interest and their locations. In real-world scenarios, robots may fail to detect objects
within the field of view, receive false positive measurements to clutter objects, and be unable to disambiguate
true objects. This makes data association, i.e., matching individual measurements to targets, difficult. To
account for this, we utilize filtering algorithms based on random finite sets to simultaneously estimate the
number of objects and their locations within the environment without the need to explicitly consider data
association. Using the resulting estimates they receive, robots choose actions that maximize the mutual
information between the set of targets and the binary events of receiving no detections. This effectively hedges
against uninformative actions and leads to a closed form equation to compute mutual information, allowing
the robot team to plan over a long time horizon. The robots either communicate with a central agent, which
performs the estimation and control computations, or act in a decentralized manner. Our extensive hardware
and simulated experiments validate the unified estimation and control framework, using robots with a wide
variety of mobility and sensing capabilities to showcase the broad applicability of the framework.
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ABSTRACT

MULTI-ROBOT ACTIVE INFORMATION GATHERING USING RANDOM FINITE

SETS

Philip M. Dames

Vijay Kumar

Many tasks in the modern world involve collecting information, such as infrastructure

inspection, security and surveillance, environmental monitoring, and search and rescue. All

of these tasks involve searching an environment to detect, localize, and track objects of

interest, such as damage to roadways, suspicious packages, plant species, or victims of a

natural disaster. In any of these tasks the number of objects of interest is often not known at

the onset of exploration. Teams of robots can automate these often dull, dirty, or dangerous

tasks to decrease costs and improve speed and safety. This dissertation addresses the problem

of automating data collection processes, so that a team of mobile sensor platforms is able to

explore an environment to determine the number of objects of interest and their locations.

In real-world scenarios, robots may fail to detect objects within the �eld of view, receive

false positive measurements to clutter objects, and be unable to disambiguate true objects.

This makes data association, i.e., matching individual measurements to targets, di�cult. To

account for this, we utilize �ltering algorithms based on random �nite sets to simultaneously

estimate the number of objects and their locations within the environment without the

need to explicitly consider data association. Using the resulting estimates they receive,

robots choose actions that maximize the mutual information between the set of targets and

the binary events of receiving no detections. This e�ectively hedges against uninformative

actions and leads to a closed form equation to compute mutual information, allowing the

robot team to plan over a long time horizon. The robots either communicate with a central

agent, which performs the estimation and control computations, or act in a decentralized

manner. Our extensive hardware and simulated experiments validate the uni�ed estimation

and control framework, using robots with a wide variety of mobility and sensing capabilities

to showcase the broad applicability of the framework.
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Chapter 1

Introduction

Mobile computers, sensors, and robot platforms are becoming more powerful and less expen-

sive, particularly as smartphones, wearable devices, and hobby robots become mainstream.

These technologies can be combined to create low cost mobile sensor platforms. While in-

dividual robots built from low-cost components have limited capabilities, putting multiple

robots together into a team increases their collective computational power, the e�ective sen-

sor �eld of view, and the robustness of the team to individual agent or sensor failure. As

the technologies continue to mature, teams of robots will automate more tasks that are dull,

dirty, dangerous, or not possible for humans to perform.

Such autonomy requires robots to sense the surrounding environment, to communicate

with other robots, to make reasoned decisions about the environment, and to select actions

that will quickly lead to completing the mission at hand. This dissertation focuses on a broad

class of problems related to information gathering. In information gathering tasks, a robot

team begins with an incomplete understanding of the surrounding environment, and the task

is to improve this understanding to some desired level. Examples of information gathering

tasks include security and surveillance, where the robots search a known environment for

intruders, damage, or suspicious activity; environmental monitoring, where the robots search

an area for speci�c chemical signals, species of �ora or fauna, or crop health; mapping, where

the robots search a known area to map out speci�c features or explore a new area in order
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Table 1: Example information gathering applications.

Scenario Targets Number of targets? Targets moving?

Infrastructure inspection Damage or wear Small No
Security and surveillance Intruders Small Sometimes

Map registration Smart devices Large No
Precision agriculture Crop health Large No

Environmental monitoring Plant species Large Sometimes
Reconnaissance Enemy assets Large Sometimes
Search and rescue People Large Sometimes

to build a map; and search and rescue, where the robots seek out lost or injured individuals.

Such tasks span many geographic and temporal scales: search and rescue missions are often

con�ned to a small area and must be completed in a manner of minutes while environmental

monitoring missions may take place over many kilometers and last months or years. Table 1

details these information gathering scenarios.

All of these tasks share the same high-level goal: to identify the locations of all of the

objects of interest e.g., intruders or map landmarks, within the environment. However, the

number of objects of interest is often not known at the onset of exploration, and the objects

may not be uniquely identi�able. For example, in an environmental monitoring task two

plants of the same species may look identical. Additionally, the sensors on board the robot

may be unreliable: failing to detect objects within their �eld of view, providing false positive

measurements, and providing noisy measurements of true objects. The number of objects

within the sensor �eld of view may also change over time, due to motion of the robots,

motion of the objects, or obstacles in the environment. It is important for any perception

and decision making framework to take these uncertainties into account when estimating

the state of the surrounding environment and selecting actions to improve this estimate.

The multi-target tracking problem has received considerable attention from many �elds

of study, most prominently from the tracking and simultaneous localization and mapping

(SLAM) communities. Many approaches use approximations or heuristics to apply classical

estimation algorithms that assume the number of objects and the data association, i.e., the

matching of measurements to targets, are known. Other approaches develop novel estimation
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algorithms to account for the uncertainties in the environment and sensor readings. While

the former group of estimation algorithms has received some attention from the active sensing

community, the latter has not. Chapter 2 provides a survey of tracking algorithms, a brief

tutorial on the methods used in this dissertation, and an overview of active sensing methods.

This dissertation contributes to these developing technologies by enabling teams of mo-

bile robots to autonomously explore and gather information with limited a priori knowledge

of the given situation, turning sensor data into actionable information. In any of these in-

formation gathering scenarios there may be uncertainty in the environment, the number of

objects of interest may be unknown, or there may be unpredictable physical phenomena.

This research aims to improve the performance of robotic teams in real-world application

domains by building systems that explicitly consider such uncertainties. The closed form

control objective developed in this dissertation accounts for these uncertainties while allow-

ing a small team of robots to jointly plan actions over a �nite horizon in real time. Robots

working together as a team are able to gather information more quickly and e�ciently than

robots exploring independently. However, such coordination is not possible in many situ-

ations due to limitations in wireless communication. The proposed framework is �exible,

allowing the team the use either a central planner when possible or decentralized coalitions

that are formed online when communication is limited.

We apply our uni�ed estimation, control, and communication framework to a variety of

information gathering problems. Chapter 3 begins with the simplest problem, where the

number of objects of interest is not known precisely, but is believed to be small. This �ts

naturally with security and surveillance or infrastructure inspection situations, where there

are often no intruders or damaged areas. In such scenarios it is also reasonable to assume that

the robot team has a prior map of the environment and that the robots are able to localize

themselves within this map. Chapter 4 expands the estimation and control framework to

actively seek out a large number of objects of interest within a known search space. This has

applications to precision agriculture and map registration. Finally, Chapter 5 extends the

framework to detect, localize, and track a large number of moving objects, with applications
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to environmental monitoring and surveillance.

We test and verify our proposed framework through simulated and real-world experi-

ments, using robots with a variety of mobility and sensing capabilities to demonstrate the

�exibility and broad applicability of the framework. Chapter 3 presents experiments with

a large, di�erential drive ground robot equipped with a monocular camera as well as with

a small team of quadrotor Micro Aerial Vehicles (MAVs) equipped with magnetometer sen-

sors. Chapter 4 presents results using the Scarab platform, a small, di�erential-drive robot

designed and built here at the University of Pennsylvania, exploring an indoor o�ce envi-

ronment. Finally, Chapter 5 presents simulation results using �xed-wing aircraft equipped

with downward-facing cameras, using a real-world data set for target motion. To the best

of our knowledge, the results in this dissertation are the �rst multi-robot and experimental

results of an active exploration strategy based on random �nite sets.
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Chapter 2

Background Material

This chapter reviews many of the multi-object estimation and multi-robot control concepts

that will be used throughout the dissertation. Section 2.1 reviews concepts in single- and

multi-target tracking and justi�es our selection of tracking algorithms. Section 2.2 provides

a tutorial on �nite set statistics, the mathematical tool used in our estimation algorithm.

Finally, Section 2.3 provides an overview of active information gathering approaches and

positions our framework with the current state of scholarship and research on the subject.

2.1 Target Tracking

Target tracking is a broad class of problems, with applications in aerospace systems, image

processing, oceanography, remote sensing, biomedical research, and robotics. These appli-

cations include everything from tracking objects �ying through a speci�c region of airspace

to feature-based mapping of an unknown environment. While there are many di�erent ways

to classify tracking problems, the most important factors are whether the number of targets

is known, whether the data association is known, and whether the estimation is performed

sequentially or is processed as one batch. Data association is the process of matching

measurements to target tracks. This is a critical component of any tracking problem, as

incorporating incorrect evidence into the estimate of a target can cause the uncertainty to

grow or, in the worst case, can cause the estimate to diverge.
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This section reviews common methods for Bayesian single-target tracking, namely the

Kalman �lter, the histogram �lter, and the particle �lter. We will then discuss existing

methods to extend these single-target approaches to situations with multiple targets. Finally

we present Bayesian methods for multi-target tracking, focusing on approaches where the

number of targets and the data association are both unknown.

2.1.1 Single-Target Tracking

Single-target tracking is a canonical problem in estimation theory and robotics. In the single-

target scenario, the data association is known since there is only a single target. Thus, the

problem is simply how to use the incoming measurements from the sensors to update the

belief about the state of the target. Let E be the environment that the robot team explores

and let q ∈ E be the pose of the robot. Let x ∈ E be the state of the target and let z be a

measurement from a robot's sensor. Since there is uncertainty associated with each of these

quantities, we will use a probabilistic representation.

It is possible for some targets to move over time. To account for this possibility, we

de�ne the motion model f(x | ξ), which de�nes the probability of a target with initial state

ξ moving to state x. In situations with stationary targets the transition model is simply the

identity map, f(x | ξ) = δξ(x), where δξ(x) is the Kronecker delta function.

Let g(z | x,q) be the probability of a robot with pose q receiving a measurement z from

a target with state x. Let p(x) be the prior probability that the target has state x. We may

then use Bayes' rule to �nd the posterior probability,

p(x | z) =
p(x, z)

p(z)
=
p(z | x)p(x)∫
p(x, z) dx

=
g(z | x, q)p(x)∫
g(z | x,q)p(x) dx

. (2.1)

This is known as the Bayes �lter and is the most general sequential estimation algorithm.

However, it is not possible to maintain an arbitrary distribution over all possible target

states using this method. In order for the Bayes �lter to be computationally tractable, we

must make some simplifying assumptions.
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Kalman Filter

The Kalman �lter (KF) [53] is an implementation of the Bayes �lter for linear Gaussian

systems. This means that the target state is represented by a Gaussian distribution, the

measurement and motion models are linear, and all noise is additive Gaussian. The Gaussian

distribution takes the form

p(x) = det(2πΣ)−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.2)

where µ is the mean of the distribution, Σ is the covariance matrix, det(·) is the determinant

of a matrix, and x is a vector of the target state. Figure 1a shows an example distribution.

Note that this distribution is fully characterized by the mean vector and covariance matrix.

The Kalman �lter provides a set of rules to update these parameters.

Let the transition model be

xt|t−1 = Atxt−1 + bt + εt, (2.3)

where At is a matrix, xt−1 is the prior state at time t− 1, xt|t−1 is the predicted state, bt is

an a�ne term (often representing the control input at time t), and εt is a Gaussian random

vector with zero mean and covariance Rt. Then the update equations are

µt|t−1 =Atµt−1 + bt (2.4)

Σt|t−1 =AtΣt−1A
T
t +Rt. (2.5)

Let the measurement model be

z = Ctxt + δt, (2.6)

where Ct is a matrix and δt is a Gaussian random vector with mean zero and covariance Qt.
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Then the update equations are

Kt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Qt)

−1 (2.7)

µt =µt|t−1 +Kt(zt − Ctµt|t−1) (2.8)

Σt = (I −KtCt)Σt|t−1, (2.9)

where I is the identity matrix and Kt is the so-called Kalman gain. Intuitively, the Kalman

gain describes how much to trust the measured versus the predicted target location. The

term zt−Ctµt|t−1 is known as the innovation of the observation, and represents the di�erence

between the predicted and actual measurement.

The Kalman �lter can be extended to deal with non-linear measurement and motion

models by linearizing about the mean, leading to the extended Kalman �lter (EKF) [97,

Chapter 3.3], or by using the unscented transform, leading to the unscented Kalman �lter

(UKF) [97, Chapter 3.4].

Histogram Filter

While the Kalman �lter is computationally e�cient and works well in some scenarios, it

has a number of shortcomings. Namely, it can accumulate signi�cant error when the mea-

surement model is highly non-linear. Also the probabilistic representation is inherently

unimodal, meaning it cannot be used to represent distributions with multiple, disjoint hy-

potheses. In some situations, particularly with non-linear measurements such as range-only

measurements, multimodal distributions are common.

The histogram �lter [97, Chapter 4.1] provides an alternative, non-parametric solution.

First, the state space of the target is divided into a �nite collection of regions. The histogram

�lter then provides a set of equations to update the probability that the target's state falls

into each region. These regions are often of a uniform size, e.g., a uniform grid, though this

is not required. Figure 1b shows an example set of bins that approximates the distribution

in Figure 1a.
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Figure 1: Example unimodal distribution represented by (a) a Gaussian distribution, (b) a histogram
�lter, and (c) a particle �lter.
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The prediction and update rules are then quite simple,

pk,t|t−1 =
∑
i

f(xk,t | xi,t−1)pi,t−1 (2.10)

η =
∑
k

g(zt | xk)pk,t|t−1 (2.11)

pk,t = η−1g(zt | xk)pk,t|t−1 (2.12)

where pk,t is the probability that the target is in region k at time t (i.e., xt ∈ xk,t) and η

is a normalization constant. The accuracy and computational complexity of the histogram

�lter will depend upon the size of the histogram bins.

Particle Filter

The particle �lter (PF) [97, Chapter 4.3] provides an alternative to the histogram �lter. In

this case the arbitrary distribution is represented by a set of weighted particles, rather than a

set of cells. These particles may take arbitrary locations, though it is desirable to have more

particles in areas with higher likelihood to better capture the behavior of the distribution.

Let the number of particles be N , where xi,t is the ith particle state (i.e., hypothesis) and

wi,t is the weight (i.e., likelihood) of the particle. Figure 1c shows an example set of particles

that approximates the distribution in Figure 1a.

In the most basic implementation of the PF, each particle moves according to the motion

model, i.e., xi,t|t−1 ∼ f(· | xi,t−1). The weight of the particle is then updated

η =
∑
k

g(zt | xk,t|t−1)wk,t|t−1 (2.13)

wk,t = η−1g(zt | xk,t|t−1)wk,t|t−1. (2.14)

There are many variants of the particle �lter, which involve periodically resampling

the particles to remove low-likelihood particles and replace them with particles in areas of

interest. Additionally, the number of particles may be scaled online, using more particles to

represent distributions with higher uncertainty.
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2.1.2 Multi-Target Tracking

The multi-target tracking problem is more complicated. The simplest case is when the num-

ber of targets and the data association are both known. In this case, a separate single-target

�lter may be used to track the states of the di�erent targets xi. Each measurement is then

used to update the associated target estimate. This is an intuitive and appealing approach,

and much of the work on multi-target tracking attempts to reformulate the problem as a

collection of single-target problems.

Having known data association is equivalent to stating that the sensor is able to uniquely

identify individual targets and that it is able to do so without error. This is a valid assump-

tion in some settings, e.g., localizing wireless sensors using the MAC address to provide

a unique label [12]. However, in many other systems there could easily be errors in the

data association, e.g., when tracking people in a crowd using facial recognition software, or

association may not be possible, e.g., when mapping a set of identical-looking doors in an

o�ce environment. In these cases, we must solve both the data association and tracking

problems.

One common method of multi-target tracking with unknown associations is to use the

maximum likelihood association. This has been used successfully in a variety of situations,

including simultaneous localization and mapping [31]. In this approach, each measurement

is checked against each object. Any measurement that is su�ciently close to the estimated

target state is accepted as an association, ensuring that only one measurement is associated

with each object. All other measurements are discarded or are used to initialize new target

estimates. While this approach is simple to understand and implement, all of the associations

decisions are �hard,� meaning that there is no notion of uncertainty. This ideas runs counter

to the probabilistic approach often used in tracking problems, and means making an incorrect

association can have a long-lasting impact on the estimate. Mullane et al. [76] show examples

of such errors in the context of feature-based mapping.

Another approach is the Multiple Hypothesis Tracker (MHT) [95, Chapter 4.2], which

assumes the data association to be an unknown value. The MHT algorithm provides a
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joint target state distribution conditioned on each data association. Let θ : {1, . . . , n} →

{0, 1, . . . ,m} be an association between a set of n targets and a set of m measurements.

Note that θ(j) = 0 means that the target is not detected, i.e., a false negative, and any

element of {1, . . . ,m} not in the range of θ({1, . . . , n}) is a false positive. Then the update

step, for a given association, becomes

pt(x | z, θ) = η−1g(z | x, θ)pt|t−1(x). (2.15)

However, the number of associations grows combinatorially in the number of targets and

measurements, making this approach intractable for large problems or long time horizons.

The explosive growth in the number of association histories over time can be reduced, for

example, by keeping the N best associations at each time step or the N best association

histories. However, this still requires computing all possible associations at each time step.

The Probabilistic MHT (PMHT) method [95, Chapter 4.6] relaxes the MHT assumptions

to allow for soft associations and to allow more than one measurement to be associated with

a single target. It also assumes that the single-target measurement likelihoods are condition-

ally independent given a data association. PMHT then uses the expectation maximization

(EM) algorithm to �nd the maximum a posteriori (MAP) estimate of the targets given

the measurements. In this case, the association likelihoods and the number of targets are

assumed to be known and �xed. PMHT is a batch method, solving for the sequence of

maximum likelihood target tracks using a sequence of measurement sets. This makes it

unsuitable for real-time applications.

Another canonical approach is the Joint Probabilistic Data Association (JPDA) [95,

Chapter 4.5]. JPDA provides a set of single target estimates that are each a mixture of

the posterior distributions resulting from each possible data association. This also assumes

that the single-target measurement likelihoods are conditionally independent given a data

12



association. In this approach, we compute the soft association matrix A, with elements

amn =
∑

θ|θ(m)=n

p(θ | z) (2.16)

and let ān = 1−
∑

m amn be the probability that no measurement is associated to target n.

Then the update rule for target n JPDA is

pt(xn) = ānpt|t−1(xn) +
∑
m

amnη
−1g(zm | xn)pt|t−1(xn). (2.17)

The JPDA method can be extended to allow for new targets to enter the environment and

for existing targets to disappear. While JPDA does treat data association as an unknown

quantity, it assumes that the number of targets is known.

The �nal approach involves the use of intensity �lters [95, Chapter 5], which do not

explicitly compute associations or estimate target tracks. Instead, intensity �lters compute

intensity functions that estimate the density of targets in the target state space. The fol-

lowing section outlines the mathematics behind the intensity �lter-based approaches and

presents several of the estimation algorithms.

2.2 Finite Set Statistics

This section provides a summary of a set of tools known as Finite Set Statistics (FISST),

which were �rst developed by Mahler [70]. The key feature of FISST is that collections of

objects are represented by sets. This departs from traditional robotics solutions that use

stacked vectors to represent collections of objects. Section 2.2.1 covers some key mathemat-

ical properties of sets and the resulting advantages in multi-target tracking, mapping, and

other robotics applications. Section 2.2.2 summarizes the fundamental concepts of FISST.

Finally, Section 2.2.3 provides a summary of �ltering methods based on the FISST frame-

work.
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2.2.1 Vector- vs. Set-Based Representations

To more clearly highlight the di�erences between vector- and set-based representations, we

will consider the task of feature-based mapping. This subsumes the multi-target tracking

problem when the targets are stationary. In such problems the number of features within

an environment is typically not known a priori and must be discovered online as the robot

explores. Two key issues arise is such a setting:

• Feature management � tracking the landmarks within a map

• Data association � matching measurements to landmarks

Both of these issues are further complicated when there is uncertainty in the sensor. A robot

may fail to detect a landmark that is present (a false negative measurement), may receive

a spurious measurement (a false positive, or clutter, measurement), or may receive a noisy

measurement to a true landmark.

Feature Management

Feature management is a di�cult task when a robot explores an unknown environment.

Vector-based approaches often follow the approach outlined by Dissanayake et al. [31], where

the map is initialized as an empty vector. As the robot receives measurements, it initializes

new features and appends them to the vector of map landmarks using heuristic rules. While

such vector-based approaches have been successfully applied in many scenarios, they have

several issues:

Issue 1. If a robot explores the same environment along two distinct routes then the land-

marks may be added to the map state vector in a di�erent order. Thus, the same environment

has many possible representations, and naïve methods for comparing two maps (e.g., the

vector norm) may lead the user to conclude that two maps are radically di�erent when they

are actually the same.

Issue 2. There is no notion of uncertainty in a landmark's existence. Landmarks either

exist or they do not and are added (or removed) using heuristic rules. This stems from the
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fact that the number of landmarks is not treated probabilistically, only the locations of the

landmarks are.

Issue 3. The dimensionality of the state space of the map changes over time as new features

are discovered and added to the map. This makes it di�cult to compare map estimates at

di�erent times, when the number of landmarks may have changed.

Issue 4. The dimensionality of the landmark state space is not immediately evident in the

representation. For example, a vector with six elements may represent six one-dimensional

landmarks, three two-dimensional landmarks, two three-dimensional landmarks, or one six-

dimensional landmark.

A set-based approach instead represents the map as a set of landmarks, where the size

of the set is the number of landmarks and individual elements in the set represent the states

of the individual landmarks. Two mathematical properties of sets also solve all of the above

issues with the vector-based approach. First, sets are equivalent under a permutation of

the elements. This completely eliminates Issue 1, as it does not matter the order that

landmarks are added to the map feature set. Second, sets have well-de�ned union and

complement operators. These naturally handle the addition and removal of elements to the

set. Issues 2 and 3 are resolved by tracking a distribution over feature sets. The distribution

over the cardinality of the set explicitly tracks the belief in the number of targets and makes

it possible for features to have a probability of existence. Finally, Issue 4 is solved by simply

examining an individual element in the set, as each element represents an individual feature.

Data Association

Data association is a computationally challenging task in a mapping setting, as the number

of possible associations grows combinatorially in the number of map features and the number

of measurements. As Section 2.1 outlines, data association is often solved as a preprocessing

step to landmark estimation using heuristics [31] or maximum likelihood estimates. However,

with a vector-based approach, even in settings where there is no ambiguity in association, the

vector of measurements may need to be permuted in order to apply the landmark updates.
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This is due to the explicit ordering of elements within a vector. Conversely, if measurements

are also represented as a set then data association is no longer an issue, as all of the di�erent

permutations are implicitly encoded in the sets.

We treat the data association as an unknown variable and remove the dependence on the

association by marginalization. Consider the problem of data association between a set of n

object X = {x1, . . . ,xn} and a set of m measurements Z = {z1, . . . , zm}. For the purposes

of this example, we make the following assumptions:

A1. Each object generates a single detection with probability pd(x | q) or zero detections

with probability 1− pd(x | q).

A2. The number of clutter objects follows a Poisson distribution with mean µ.

A3. The clutter measurements are independently and identically distributed (i.i.d.) with

distribution c(z | q).

A4. The clutter measurements are conditionally independent of the true detections given

the target states.

A5. Any two measurements in Z are conditionally independent given the target states.

Assumptions A1, A3, A4, and A5 are all standard for multi-target tracking problems. Jus-

ti�cation for assumption A2 appears in Section 2.2.3. Without loss of generality, let us

assume that all objects are detectable, pd(x | q) > 0, ∀x ∈ X. We will examine the data

association problem in several cases.

Perfect sensor In this case there are no clutter detections and no false negative detections

since pd(x | q) = 1, ∀x ∈ X. This means that the number of measurements must match

the number of objects, or m = n, and the only valid associations θ are permutations of

{1, . . . , n}. The likelihood of the measurement set is then

p(Z | X,q) =
∑
θ

n∏
i=1

g(zθ(i) | xi,q). (2.18)
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No missed detections but clutter possible In this case pd(x | q) = 1, ∀x ∈ X, so

m ≥ n and all valid associations are one-to-one mappings from {1, . . . , n} → {1, . . . ,m}. If

the object set X = ∅, so all measurements are clutter, then

p(Z | ∅,q) = e−µ
∏
z∈Z

c(z | q). (2.19)

If X 6= ∅ then the likelihood is

p(Z | X,q) =
∑
θ

n∏
i=1

g(zθ(i) | xi,q)
∏

j|θ(i)6=j
∀i∈{1,...,n}

c(zj | q) (2.20)

= p(Z | ∅,q)
∑
θ

n∏
i=1

g(zθ(i) | xi,q)

c(zj | q)
. (2.21)

No clutter but missed detections possible In this case all measurements are due to

true objects but there is the possibility of missed detections, so m ≤ n and all valid data

associations have the property that θ(i) = θ(j) > 0 ⇒ i = j. The probability of receiving

no measurements is then

p(∅ | X,q) =
n∏
i=1

(
1− pd(xi | q)

)
. (2.22)

If Z 6= ∅ then the likelihood is

p(Z | X,q) =
∑
θ

∏
i|θ(i)>0

pd(xi | q)g(zθ(i) | xi,q)
∏

i|θ(i)=0

(
1− pd(xi | q)

)
(2.23)

= p(∅ | X,q)
∑
θ

∏
i|θ(i)>0

pd(xi | q)g(zθ(i) | xi,q)

1− pd(xi | q)
. (2.24)

Missed detections and clutter possible This is the most general case and captures all

possible behavior. Data associations are functions from {1, . . . , n} → {0, . . . ,m} with the

property that θ(i) = θ(j) > 0⇒ i = j. The cases where n = 0 or m = 0 are handled above.
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When n > 0 and m > 0 then the measurement likelihood is

p(Z | X,q) =
∑
θ

∏
i|θ(i)>0

pd(xi | q)g(zθ(i) | xi,q)
∏

i|θ(i)=0

(
1− pd(xi | q)

) ∏
j|θ(i) 6=j
∀i∈{1,...,n}

c(zj | q)

(2.25)

= p(Z | ∅,q) p(∅ | X,q)
∑
θ

∏
i|θ(i)>0

pd(xi | q)g(zθ(i) | xi,q)(
1− pd(xi | q)

)
c(zθ(i) | q)

. (2.26)

As is evident from the measurement likelihood functions above, the data association

problem is computationally intractable for large problems. Returning to the multi-target

methods presented in Section 2.1, the MHT tracks each possible association history sepa-

rately. The approach from Dissanayake et al. [31] uses a number of heuristics to approximate

the maximum likelihood association. JPDA performs this marginalization process over each

object individually rather than over the full set. This assumes that the associations for each

object are independent and removes the requirement that a detection cannot be generated

from more than one object. The approach described above is the most general method and

is, in some sense, the most technically correct because it explicitly considers a distribution

over all valid data associations.

2.2.2 Key Mathematical Concepts

While a set-based representation o�ers several advantages over a vector-based approach, it

requires some mathematics that are unfamiliar to most roboticists. In order to perform

statistical inference over sets, we must de�ne appropriate random variables and be able to

perform operations, such as taking expectations, over these random variables.

Random Finite Sets

The main concept in FISST is that of a random �nite set.

De�nition 1 (Random �nite set). A random variable with realizations as �nite sets. It

is characterized by a discrete distribution over the number of elements in the set and a

family of joint distributions that characterize the distribution of the elements, which are
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Figure 2: Examples of random �nite sets with 0 to 3 elements drawn from the square environment.
The two sets in the lower left are identical, as sets are equivalent under permutations of their
elements, i.e., X = {1, 2} = {2, 1}.

conditioned on the cardinality,

p(X) = p(|X| = n) p(X = {x1, . . . ,xn} | |X| = n). (2.27)

In a robotic mapping setting, the map landmarks and the measurements are both rep-

resented as Random Finite Sets (RFSs). See Figure 2 for example realizations of RFSs.

The goal is then to perform probabilistic inference over the map RFSs, using the evidence

collected in the measurement RFSs. This di�ers from working with random vectors in sev-

eral key ways: realizations of an RFS may have di�erent cardinalities, so they cannot be

added as a random vector would; sets are equivalent under permutations of the elements

while random vectors are not; and the expected value of an RFS is not a set, but a density

function.

Set Integral

To take into account the particular structure of RFSs, notions such as integration must be

carefully handled. To that e�ect, Mahler [70] de�nes the set integral.

De�nition 2 (Set Integral). Let f(X) be a real-valued function of sets. The set integral of
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f(X) is ∫
f(X) δX =

∞∑
n=0

1

n!

∫
f({x1, . . . ,xn}) dx1 . . . dxn. (2.28)

The set integral features a sum over the set cardinality, integrating over all possible sets

for each cardinality. Note the 1/n! term, which accounts for the permutations of elements

within the set X of size n, and the use of δ as the di�erential element.

Probability Distributions over Random Finite Sets

In particular, we are interested in functions f(X) that represent probability distributions

over RFSs. The derivation of a probability distribution over RFSs has its roots in point

process theory. See Daley and Vere-Jones [21] or Stone et al. [95, Chapter 5.1] for an

overview of the subject. As is the case with random vectors, it is not possible to maintain

an arbitrary distribution over RFSs: we must make some assumptions to make the problem

tractable.

The most natural assumption is that elements in an RFS are independently and identi-

cally distributed (i.i.d.). While this does disallow correlations between landmark locations,

in general such correlations would be unknown. Even if there is some correlation between

landmark or target locations, it is better to assume independence than to assume an incor-

rect correlation between objects when making probabilistic inferences. The likelihood of an

RFS X with i.i.d. elements is

p(X) = |X|! p(|X|)
∏
x∈X

p(x), (2.29)

where | · | is the cardinality operator, the leading |X|! is the number of permutations of

elements in the set, p(|X|) is the cardinality distribution, and p(x) the probability of a

landmark having state x. For (2.29) to be a valid probability distribution, the set integral

must be unity. Additionally, the nth term in (2.28) is the probability of there being n

landmarks.
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Probability Hypothesis Density

Even with this machinery, concepts such as the expected value of an RFS are not obvious.

In a vector-based approach, the expected value is simply the weighted sum (or integral),

E [x] =

∫
X
p(x)x dx. (2.30)

This operation is no longer well-de�ned in the case of a set, where there is no notion of

addition for two sets.

Evaluating the mean of an RFS requires some results from point process theory [21,

Chap. 5]. In particular, the kth order statistical moment of an RFS X, mX,k, is:

mX,k(x1, . . . ,xk) =

∫
p({x1, . . . ,xk} ∪W ) δW. (2.31)

The �rst moment is the simplest and is equal to the mean of the RFS.

This has a more intuitive interpretation, called the probability hypothesis density (PHD).

Let δX(x) =
∑

y∈X δy(x), where δy(x) is the Kronecker delta function, and let 1S (x) is the

indicator function. De�ne the �rst moment to be v(x) = mX,1(x). Consider the integral of

the �rst moment over a region S, as is done by Mahler [67, Theorem 2],

∫
S
v(x) dx =

∫
1S (x) v(x) dx

=

∫
1S (x)

∫
p({x} ∪W ) δWdx

=

∫∫
1S (x) δX(x) dx p(X) δX

=

∫
|X ∩ S| p(X) δX. (2.32)

This states that the integral of the PHD over a region S is equal to the expected number of

landmarks within that region. In other words, the PHD is a density function over the state

space of a landmark that describes the expected spatial density of landmarks.

Note that the PHD is not a probability density function. However, in the case of an
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i.i.d. RFS, the PHD is a scalar multiple of the likelihood of landmark locations. The total

expected number of landmarks is given by the integral of the PHD over the entire state space.

Mahler [67, Theorem 4] also shows that a Poisson approximation to a general distribution

over RFSs is optimal with respect to the Kullback-Liebler divergence when the intensity

function is the PHD.

2.2.3 Estimation Using Random Finite Sets

With the mathematical tools outlined above, it is possible to perform online estimation

using several di�erent approaches. Each of the approaches below represents the distribution

over RFSs in a di�erent manner, with associated advantages and disadvantages. In an

object detection and localization setting, RFSs naturally apply when the number of objects

is unknown. Additionally, RFSs may be used to model the sensor measurements, as the

number of measurements in a single scan varies over time due to target and sensor motion,

false negative detections, and false positive measurements.

General Bayesian Filter

The most general formulation of the set-based estimation problem maintains a distribution

over RFSs themselves [70]. Let x be the state of a single target, X = {x1, . . . ,xn} be

a set of n target states, and let X be the RFS of target states. Similarly, let z be a

single measurement, Z = {z1, . . . , zm} be a set of m measurements, and Z be the RFS of

measurements. Throughout this work, we will use lower case letters to indicate scalars and

vectors, capital letters to indicate sets, and script letters to indicate random variables.

The goal of Bayesian inference is to maintain a distribution over potential target sets

X, using the collected measurements Z, sensor models, and target models to inform the

updates. Let f(xt | xt−1) be the single-target motion model and f(Xt | Xt−1) be the

target set motion model, where the latter is more general as it allows the motion of targets

to be correlated. Let g(z | x) be the single-target measurement model and g(Z | X) be

the multiple-target measurement model. Note that the single-target model assumes that

a detection has been made while the set-based model is more general, allowing for missed
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detections, false alarms, and unknown data association.

The most general formulation is the Bayesian �lter, which, like the single-target case in

(2.1), is based o� of Bayes' rule

p(X|Z) =
p(Z | X)p(X)

p(Z)
. (2.33)

Let X denote the RFS of target states and Z the RFS of measurements. In estimation

problems there is not typically an expression for the measurement likelihood p(Z). Instead,

we have the conditional likelihood of the measurements given the target states, p(Z | X).

The denominator in (2.33) may be rewritten as a marginal distribution,

p(Z) =

∫
p(X,Z) δX =

∫
p(Z | X)p(X) δX.

Combining these results gives us the expression for the Bayesian �lter,

pt|t−1(X | Z0:t−1) =

∫
f(X | Ξ)p(Ξ | Z0:t−1) δΞ (2.34)

pt(X | Z0:t) =
g(Z | X)p(X | Z0:t−1)∫
g(Z | X)p(X | Z0:t−1) δX

(2.35)

While in general it is not possible to maintain the full distribution over RFSs, it is possible

to approximate it with a set of weighted particles, with each particle having an associated

set of landmarks [102, Sec. II.E]. When particles are propagated forward in time, each

landmark has a probability of being removed from the set, and there is a probability of

adding additional landmarks to the set.

PHD Filter

The most basic approach to estimation using RFSs is the PHD �lter. This �lter recursively

updates the mean of the distribution over RFSs, making it the analog of the mean update

term in the Kalman �lter. In the case of the Kalman �lter all distributions are Gaussian,

while in this case they are all Poisson RFSs.
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De�nition 3 (Poisson RFS). An RFS is said to be Poisson if the elements are i.i.d. and

the cardinality follows a Poisson distribution. The likelihood of such an RFS is

p(X) = e−λ
∏
x∈X

v(x), (2.36)

where λ =
∫
v(x) dx.

The PHD �lter was �rst derived by Mahler [67]. In its most generic form, it allows for

arbitrary target motion, including the spawning (birth) of new targets and the disappearance

of existing targets. In order to derive the PHD �lter equations, Mahler [67] made the

following assumptions:

A1. targets move and generate measurements independently;

A2. birth and surviving RFSs are independent;

A3. the clutter RFS is Poisson and independent of true measurements;

A4. prior and predicted multitarget RFSs are Poisson.

Let f(x | ξ) be the likelihood of a single target moving from state ξ to state x. Let B(ξ)

be a Poisson RFS of targets spawned by existing targets and let b(x | ξ) be its PHD. Let B

be a Poisson RFS of new targets that enter the environment and let b(x) be its PHD. Let

ps(x) be the likelihood of a target with state x surviving from one time step to the next. As

a matter of notation, we de�ne the inner product between two real-valued functions 〈a, b〉

to be

〈a, b〉 =

∫
a(x)b(x) dx,

or 〈a, b〉 =
∑∞

k=0 a(k)b(k) for real-valued sequences.

Then the PHD prediction equation is

vt|t−1(x) = bt|t−1(x) +

∫ (
bt|t−1(x | ξ) + ps(ξ)f(x | ξ)

)
vt−1(ξ) dξ. (2.37)
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Let pd(x | q) be the likelihood of a sensor with state q detecting a target with state x.

Let g(z | x,q) be the likelihood of sensor with state q receiving a measurement z from a

target with state x given that a detection is made. Let C(q) be the Poisson RFS of clutter

measurements and c(z | q) be its PHD. Then the PHD corrector equation is

vt(x) =
(
1− pd(x | q)

)
vt|t−1(x) +

∑
z∈Zt

ψz,q(x)vt|t−1(x)

c(z | q) +
〈
ψz,q, vt|t−1

〉 (2.38)

ψz,q(x) = g(z | x,q) pd(x | q). (2.39)

Here ψz,q(x) is the likelihood of sensor with state q receiving a measurement z from a target

with state x.

Gaussian Mixture PHD Filter As is the case with single target estimation strategies,

it is not possible to maintain a generic density function over the state space of the targets.

One approach to get around this limitation, from Vo and Ma [101], is known as the Gaussian

Mixture PHD (GM-PHD) �lter and represents the PHD as a weighted mixture of Gaussians.

In this, they assume that the target motion model and sensor model are linear Gaussian,

that the survival and detection probabilities are state independent or are weighted mixtures

of Gaussians, and that all PHDs are weighted mixtures of Gaussians.

The net result is that the GM-PHD �lter becomes a sequence of Kalman �lter updates.

In the update step, each component in the prior generates a new component in the predicted

PHD for each component in the survival probability and target spawning PHD. Additionally,

the components in the birth PHD are added to these other components. So if there are

Jt−1|t−1 components in the prior, S components in the survival probability, P components

in the spawning PHD, and B components in the birth PHD, then there are Jt|t−1 = B +

(S + P )Jt−1|t−1 components in the predicted PHD. Each of these individual components

evolves according to the update rules for the Kalman �lter, and thus can be swapped out in

favor of the EKF or UKF if there is a non-linear target motion model.

Similarly, the update equation is a sequence of Kalman updates on the individual com-

ponents of the GM. Each component in the predicted PHD generates a new component
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for each component in the detection likelihood and for each measurement. So if there

are D components in the detection likelihood function and Z measurements, there will be

Jt|t = (D + Z)Jt|t−1 components in the posterior PHD.

As is evident, the number of components can grow rapidly over time. To keep the

computation burden bounded, the number of components in the mixture model must be

bounded. This can be achieved by pruning components with very low weights and by

merging components that are su�ciently close to one another. See Vo and Ma [101, Table

II] for a simple pruning and merging strategy.

Sequential Monte Carlo PHD Filter Another common approach is to represent the

PHD as a set of weighted particles. This approach from Vo et al. [102] is known as the

Sequential Monte Carlo PHD (SMC-PHD) �lter. This is essentially equivalent to a standard

particle �lter, except that the weights of the particles are not normalized to have unit weight.

The SMC-PHD �lter o�ers one key advantage over the GM-PHD �lter: it allows for arbitrary

target and sensor likelihood functions. In particular, this is useful in instances where the

probability of detection is non-zero only within a �nite footprint for detection likelihoods.

CPHD Filter

While the PHD �lter is attractive due to its low computational complexity and relatively

simple implementation, it su�ers from two potential drawbacks. Firstly, as pointed out by

Erdinc et al. [33], the PHD �lter deals poorly with false negatives, drastically decreasing

the likelihood of a target being within a given region if no detection is made. Secondly, the

target cardinality estimate has high variance, particularly when tracking a large number of

targets, due to the fact that the mean and variance of a Poisson distribution are equal. To

get around these issues, Mahler [69] developed the CPHD �lter.

The CPHD �lter makes the same assumptions as the PHD �lter, except instead of

Poisson RFSs, everything is assumed to be an i.i.d. cluster process. This allows for an

arbitrary discrete distribution over target cardinality and improved performance with missed

detections, at the cost of an increase in computational complexity. Two drawback are that

the maximum number of targets that can be tracked is �xed a priori and the cardinality
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estimate will be biased if the true number of targets is close to the maximum value, as noted

by Vo et al. [103].

Before stating the CPHD prediction and update rules, we must de�ne a few variables.

Let pt(n) be the likelihood of n targets at time t, pγ,t(n) be the cardinality distribution of the

birth process Γ at time t, and pK,t(n) be the cardinality distribution of the clutter process.

Let
(
`
j

)
be the binomial coe�cient (`!/(` − j)!j!) and P `j be the permutation coe�cient

(`!/(`− j)!).

The CPHD �lter prediction equations, following the derivation of Vo et al. [103], are

pt|t−1(n) =

n∑
j=0

pΓ(n− j)Πt|t−1[vt−1, pt−1](j) (2.40)

vt|t−1(x) =

∫
pS(ξ)f(x | ξ)vt−1(ξ) dξ + γ(x) (2.41)

where

Πt|t−1[v, p](j) =

∞∑
`=j

(
`

j

)
〈pS , v〉j 〈1− pS , v〉`−j

〈1, v〉`
p(`)

is the probability of j targets surviving from time t− 1 to t.

The update equations are more complicated as the cardinality and PHD updates are

coupled,

pt(n) =
Υ0[vt|t−1, Zt](n)pt|t−1(n)〈

Υ0[vt|t−1, Zt], pt|t−1

〉 (2.42)

vt(x) =

〈
Υ1[vt|t−1, Zt], pt|t−1

〉〈
Υ0[vt|t−1, Zt], pt|t−1

〉(1− pd(x))vt|t−1(x)

+
∑
z∈Zt

〈
Υ1[vt|t−1, Zt \ {z}], pt|t−1

〉〈
Υ0[vt|t−1, Zk], pt|t−1

〉 ψz,q(x)vt|t−1(x), (2.43)

where

Υu[v, Z](n) =

min(|Z|, n−u)∑
j=0

(|Z| − j)! pK(|Z| − j)Pnj+u
〈1− pd, v〉n−(j+u)

〈1, v〉n
ej(Ξ(v, Z)) (2.44)

Ξ(v, Z) = {〈v, ψz,q〉 | z ∈ Z}. (2.45)
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Here Υu[v, Z](n) is proportional to the likelihood of target set Z given that there are n

targets and u targets are not detected. The function ej(Ξ) is the elementary symmetric

polynomial of order j,

ej(Ξ) =
∑
S⊆Ξ
|S|=j

∏
ξ∈S

ξ, (2.46)

which can be computed e�ciently using Vieta's formula, as noted by Vo et al. [103], yielding

a total complexity for the CPHD �lter of O(|Z|2 log |Z|) as opposed to the O(|Z|) updates

for the PHD �lter. When the number of targets is very large, the CPHD �lter will be

signi�cantly slower.

2.2.4 Literature Review

Multi-target tracking has also been addressed extensively in the radar tracking community;

Pulford [82] provides a taxonomy of techniques. Recently the use of random �nite sets has

been adopted in mobile robotics, being used for feature-based mapping by Mullane et al.

[76, 77]. Lundquist et al. [65] use a PHD �lter for extended objects (i.e., objects that return

multiple measurements) to create an obstacle map for a vehicle. Atanasov et al. [4] present

an approach to localize a robot in a semantic map using an approximation algorithm to

solve the data association (2.26). Other applications of FISST in robotic mapping, target

tracking, and SLAM are presented in [2].

2.3 Active Information Gathering

Information-based control is a common tool for information gathering tasks. The intuition

is to drive the team of robots in a way that minimizes some measure of uncertainty about

the environment state. This section provides a brief summary of uncertainty measures and

a survey of the current literature on information-based control in a variety of settings.

2.3.1 Uncertainty Measures

There are many ways to quantify the uncertainty associated with a generic random variable,

including RFSs or distributions approximated by a histogram or particle �lter. With param-

eterized distributions, such as the Gaussian, there are specialized tools that take advantage
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of the functional form of the distribution.

Gaussian Distribution

With a Gaussian distribution, the covariance matrix fully characterizes the spread of the

distribution. From the theory of optimal experiment design [9, 81], there are several standard

optimality criteria that map a covariance matrix to a scalar while retaining useful statistical

properties. The three most widely used criteria are:

• A-optimality minimizes the average variance,

1

n
trace(Σ) =

1

n

n∑
k=1

λk (2.47)

where n is the dimension of the covariance matrix Σ and λk is its kth eigenvalue.

• D-optimality minimizes the volume of the covariance ellipsoid,

det(Σ)1/n = exp

(
1

n

n∑
k=1

log(λk)

)
. (2.48)

• E-optimality minimizes the maximum eigenvalue of the covariance matrix, Σ,

max
k

(λk). (2.49)

General Distributions

Uncertainty measures for general distributions come from information theory. The most

common measures are due to Shannon [91]. Cover and Thomas [20] provide an excellent

summary of information theory and provide many useful identities and inequalities.

The entropy of a continuous random variable X is

H[X] = −
∫
p(x) log p(x) dx, (2.50)

where the integral is replaced by a sum for a discrete random variable.
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The conditional entropy of a random variable X given another variable Z is

H[X | Z] = −
∫
p(z)

∫
p(x | z) log p(x | z) dxdz = −

∫∫
p(x, z) log p(x | z) dxdz. (2.51)

The di�erence between these values yields the mutual information between X and Z,

which is a way to quantify the amount of dependence between two random variable. Mutual

information is computed as

I[X;Z] =H[X]−H[X | Z] (2.52)

=H[Z]−H[Z | X] (2.53)

=

∫∫
p(x, z) log

p(x, z)

p(x)p(z)
dxdz. (2.54)

Note that if X and Z are independent, then the term inside the log in (2.54) will be unity

so the integral will be zero.

Entropy of a Poisson RFS The entropy of a Poisson RFS X follows from substituting

the likelihood function (2.36) into the standard Shannon de�nition of entropy, replacing the

integral with a set integral. Recalling that λ =
∫
v(x) dx, we see that

H[X] = −
∫
p(X) log p(X) δX

= −e−λ
∞∑
n=0

1

n!

∫ n∏
i=1

v(xi)

[
− λ+

n∑
j=1

log v(xj)

]
dx1 . . . dxn

= −e−λ
∞∑
n=0

1

n!

[
− λ

(∫
v(x) dx

)n
+ n

(∫
v(x) dx

)n−1(∫
v(x) log v(x) dx

)]

=

(
λ−

∫
v(x) log v(x) dx

) ∞∑
n=0

1

n!
λne−λ

= λ−
∫
v(x) log v(x) dx. (2.55)
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This may also be written using the normalized density, v̄(x) = λ−1v(x), as,

H[X] = λ− λ
∫
v̄(x)[log λ+ log v̄(x)] dx

= λ− λ log λ− λ
∫
v̄(x) log v̄(x) dx

= λ− λ log λ+ λH[v̄(x)], (2.56)

where H[v̄(x)] is the Shannon entropy of the probability density function v̄(x).

2.3.2 Information-Based Control

Information-based control has seen a lot of attention in recent years as a way of driving robots

to localize and track targets. Mutual information is a common objective to use in target

tracking problems. Ho�mann and Tomlin [45] and Julian et al. [51] use mutual information

to localize a stationary target and explore unknown environments using a team of robots,

assuming limited dependence between robots to achieve scalability. Hollinger et al. [47] use

an information-based objective function to perform autonomous ship inspection with an

AUV platform. The robot may also move to maximize the immediate information gain, a

strategy sometimes known as �information sur�ng� [19]. Julian et al. [50] use the gradient of

mutual information to drive multiple robots for state estimation tasks, a strategy sometimes

known as �information sur�ng� [19]. Julian et al. [52] and Souza et al. [93] utilize mutual

information to drive a single robot to explore an unknown environment in order to build a

map. Charrow et al. [11, 12] use mutual information to drive a team of robots equipped with

range-only sensors to track a single moving target in real time and to detect and localize an

unknown number of targets with known data association. All of these approaches assume

that the data association is known and all but Charrow et al. [12] assume that the number

of targets is known.

Our control policy for active perception for multi-target tracking builds on the literature

on receding horizon control and model predictive control. Mayne and Michalska [72] provide

a survey of receding horizon control and Mayne et al. [73] provide a survey of model pre-

dictive control, including applications in a variety of domains. Jadbabaie [48] utilizes model
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predictive control to follow trajectories with UAVs. The work of Ryan [89] is particularly

relevant as it uses model predictive control in an information gathering setting, using a small

team of UAVs to localize and track a moving target. We adapt this work to the multi-target,

active estimation problem to consider actions over an extended time horizon, rather than a

simple myopic exploration strategy.

One common approach to robot control for active estimation is to maximize mutual

information between the target locations and the robots' measurements. Grocholsky [41],

Bourgault et al. [6], and Cole [18] consider information-theoretic control of robot teams for

exploration and tracking tasks using the Decentralized Data Fusion (DDF) architecture to

handle inter-agent communication. In particular, Cole [18] examines the scenario where the

number of targets is unknown, deriving equations similar to those of the PHD �lter but

using a very conservative data fusion approach. Stranders et al. [96] and Delle Fave et al.

[30] use the max-sum algorithm for decentralized control computations and DDF to share

beliefs about target locations. However, all of these approaches make restrictive assumptions

on the form of the distribution over targets, often requiring Gaussian distributions. None of

these approaches can handle the case of an unknown number of targets.

There is a relatively limited body of work on active control for target localization based

on the RFS framework, with the exception of work by Ristic and Vo [85] and Ristic et al.

[87] to maximize information using Rényi's de�nition. Ristic and Vo [85] track the target

positions using samples from the distribution over RFSs, as in Section 2.2.3. In this work, the

measurement model involves a summation over all possible data associations and the authors

present simulation results of a single robot seeking three targets in an open environment.

Ristic et al. [87] use the SMC-PHD �lter from Section 2.2.3 to track target positions. This

is most similar to the framework presented in this dissertation, but the authors only present

work using a single robot selecting from eight motion primitive to track �ve objects in

simulation.

Similarly, the problem of placing static sensors, rather than controlling dynamic ones,

has been treated in a number of works. Notably, the property of submodularity of mutual
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Table 2: Table of symbols.

·r Robot index R Number of robots
q Robot pose Q Action set
v(x) Target PHD λ Expected # targets
x Target pose z Measurement
X Target set Z Measurement set
X Target random variable Z Measurement random variable

pd(x | q) Probability of detection g(z | x,q) Measurement likelihood
c(z | q) Clutter PHD µ Expected clutter rate
·t Time index T Time horizon
ε Termination criterion L Number of length scales

information was used by Krause and Guestrin [56], Krause et al. [58] to prove near-optimal

static placement. The technique was extended to Gaussian processes by Krause et al. [59].

Di�erent approximations were derived for the static sensor placement problem by Choi

and How [14, 15], Choi et al. [16], and an informative trajectory planning algorithm was

presented by Choi and How [13]. Unfortunately, our algorithm cannot make use of these

near-optimality results because the sequential updating of our distribution destroys the

submodularity property of mutual information. Other works concentrate on speci�c models

of target positions or environmental �elds. For example the algorithm by Lynch et al. [66]

drives robots to decrease the error variance of a distributed Kalman �lter estimate of a

Gaussian environmental �eld. By contrast, our algorithm does not make assumptions about

the Gaussianity of the distribution of targets or hazards.
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Chapter 3

Active Detection and Localization of

a Small Number of Targets

Teams of mobile robots may be used in many applications to gather information about

unknown, hazardous environments, taking measurements at multiple locations while keeping

humans out of harm's way. It would be useful, for example, to deploy a team of robots to

search for survivors in a building after an earthquake or other disaster, where the number

of survivors is unknown a priori. In this scenario the building may be structurally unstable

and there may be �res or exposed live electrical wires in the environment, all of which may

cause harm to rescuers and robots. As multiple robots will likely fail, it is advantageous

to use low-cost platforms. However, such platforms have limited capabilities, and thus the

control strategy should make minimal assumptions about the sensors and environment.

This chapter proposes an approach to tackle this problem that employs a coarse, high-

level sensor model, wherein sensors only provide binary information indicating whether

they have detected a target or not and hazards are only �detected� through robot failures.

With such coarse sensing capabilities it is natural to also use a coarse representation of the

environment, decomposing the space into a collection of cells. The goal is then to determine

which cells contain objects (e.g., trapped survivors) or hazards (e.g., �res) and which cells

are empty. Bayesian estimators maintain distributions of the object and hazard locations
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Figure 3: Illustration of our multi-robot multi-target localization algorithm. The robots (green
squares) estimate the locations of targets (orange diamonds) and hazards (red dots) with high
resolution by adaptively re�ning a cellular decomposition of the environment, despite having noisy
sensors. The robots move to improve their estimate of the target locations while avoiding the
estimated hazard locations by following the gradient of mutual information. The robots' �nite
sensor footprints (green circles) allow for decentralized estimation and control computations.

using the detections and failures of the robots in the team. The resolution of these cells

is dynamically updated to provide �ner localization of targets with limited computational

resources. Using these estimates, the decentralized control algorithm moves the team of

robots in the direction of greatest immediate information gain, a strategy sometimes called

�information sur�ng� [41]. More precisely, the controller moves the robots along the gradient

of mutual information of target locations and measurements with respect to the positions

of the robots. This implicitly tends to drive the robots to avoid hazardous areas as a failed

robot provides no information, naturally merging the objectives of localizing targets and

avoiding hazards.

The research in this chapter was originally published in [26, 27, 90].

3.1 Problem Formulation

Consider a situation where n robots move in a bounded, planar environment E ⊂ R2. Robot

i is at position qit ∈ E at time t, and the positions of all the robots can be written as the

stacked vector qt = [(q1
t )
T . . . (qnt )T ]T . Each robot is equipped with a binary sensor which

gives measurements zi ∈ {0, 1} indicating whether or not the sensor has detected a target.
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Robots can also detect the failure status of other robots, f i ∈ {0, 1}, where f i = 1 indicates

that robot i has failed. Let the vector of sensor measurements be given by z = [z1, . . . , zn]T ,

where z ∈ {0, 1}n = Z, and the vector of all failure statuses by f = [f1, . . . , fn]T ∈ {0, 1}n.

3.1.1 Map Representation

Finite set statistics (FISST) circumvents the issue of data association in target tracking by

not implicitly (or explicitly) labeling individual targets. Rather than random vectors, FISST

is based on random �nite sets (RFSs), which are sets containing a random number of random

elements describing the locations of each target. In this scenario, with the environment being

represented by a collection of discrete cells, an RFS will be a set of labels of occupied cells.

Due to the discretization of the environment in our case, the set integral will reduce to a �nite

sum. Also, the restriction that elements in an RFS be unique means that only one target

may be within each cell, requiring the minimum cell size to be smaller than the minimum

separation between objects. By employing an adaptive discretization of the environment,

individual targets may be localized with high precision while empty areas are represented by

a small number of large cells. Let the discretization representing target locations be denoted

{Esj}
mT
j=1 ⊂ E, where mT is the number of cells, and a set of target locations be X ∈ X,

where X is the RFS for a given discretization. Similarly, another discretization {Ehj }
mH
j=1 ⊂ E

is used to represent the locations of hazards within the environment and a set of cell labels

drawn from this discretization is denoted H ∈ H.

3.1.2 Sensor Models

As previously mentioned, the robots have a chance of failure due to hazards in the environ-

ment. Let the probability of robot i, with pose qi, failing due to a hazard in cell Ehj be

modeled by p(f i = 1 | j ∈ H,qi) ≈ α(qi, Ehj ) while p(f i = 1 | j /∈ H,qi) = 0. We assume

that robot failures are conditionally independent given the locations of the hazards so

p(f i = 0 | H,qi) = (1− pf)
∏
j∈H

p(f i = 0 | j,qi), (3.1)
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since the only way to not have a failure is to not fail due to any of the individual hazards

or due to some other failure with probability pf(� 1). The probability of failure is then the

additive complement of (3.1).

When a robot has failed, it provides no further information about the location of targets,

leading to the conditional probability p(zi = 1 | f i = 1, X,qi) = 0. If a sensor is still

functional, the detection equations are analogous to that of the hazards, beginning with

p(zi = 1 | f i = 0, j ∈ X,qi) ≈ µ(qi, Esj ) and p(zi = 1 | f i = 0, j /∈ X,qi) = 0. The

detections of each target are also conditionally independent given the target locations so

p(zi = 0 | f i = 0, X,H,qi) = (1− pfp)
∏
j∈X

p(zi = 0 | f i = 0, j,qi), (3.2)

where pfp is the probability of a false positive reading.

The failure model, p(f i = 1 | j ∈ H,qi), and sensor model, p(zi = 1 | f i = 0, j ∈ X,qi),

of the robots have several key properties. First, real sensors have a �nite �eld of view, so

these models should have compact support. Let F i be the set of labels of cells within the

footprint of robot i and consider the subset of RFSs containing targets in F i, Vi = {X ∈ X |

x ∈ F i ∀x ∈ X}. This is found using the projection riT : X→ Vi given by riT (X) = X ∩ F i.

Note that this map is surjective but not injective as long as F i is a proper subset of E,

so no inverse mapping exists. The right inverse still exists, where riT ((riT )−1(V )) = V but

(riT )−1(riT (X)) 6= X. The right inverse of the projection is (riT )−1(V ) = {X | riT (X) = V },

which returns multiple values in general. Let W i be the analogous neighborhood in the

hazard grid with projection riH .

Second, the features may be located anywhere within the cell. Given this, the probability

of failure due to a hazard in cell Ehj is given by

α(qi, Ehj ) =

∫
Ehj

gh(qi,x)p(x) dx ≈ 1

m

m∑
k=1

gh(qi, ehj,k), (3.3)

where gh(qi,x) is a function describing the probability of failure due to a hazard at location

x and p(x) is a distribution of the location of the hazard in the cell. This integral is
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approximated by a sum over a set of m points in the cell, {ehj,k}mk=1 ∈ Ehj , which, given no

available information beyond our binary failure readings, are distributed uniformly over cell.

The simplest approach is to use the cell centroids. However, multiple points should be used

for cells that are large compared to the sensor �eld of view.

Analogously the probability of detection is

µ(qi, Esj ) ≈
1

m

m∑
k=1

gs(q
i, esj,k), (3.4)

where {esj,k}k ∈ Esj is the set of points in cell Esj . This integration over the cell naturally

takes into consideration the fraction of the cell that is visible to the sensor: if only a small

portion is visible then µ will be low since most terms in the sum will be zero, while if the

robot can see most of the cell then µ will be larger. However, the integration does not take

into account the area viewed during previous time steps, as was noted by Waharte et al.

[105].

Failures of multiple robots are assumed to be conditionally independent of one another

given the positions of the hazards so that,

p(f | X,H,Q) =
∏
i

p(f i | H,qi), (3.5)

where p(f i | H,qi) comes from (3.1) and Q is the set of robot poses. Similarly, the robots'

sensor measurements are conditionally independent given the locations of the targets, so

that

p(z | f , X,H,Q) =
∏
i

p(zi | f i, X,qi), (3.6)

where p(zi | f i, X,qi) comes from (3.2). Finally, marginalizing over the possible failure

states yields the detection model

p(z | X,H,Q) =
∏
i

∑
f i∈{0,1}

p(zi | f i, X,qi)p(f i | H,qi). (3.7)
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3.1.3 Communication

A communication protocol is necessary in order to decentralize the exploration task. The

simplest approach to the problem, employed here, uses the standard disk model, where a

robot is able to communicate with all other robots within some disk around its current

pose. Algorithm 1 outlines this approach, where robots exchange measurement and pose

histories with all neighboring robots. The robots then use these measurements to update

their estimate of the target and hazard locations. Note that it is not necessary to send the

history of the failure status of the robots, as the robot would be unable to communicate

if it had failed prior to the current time t. Section 3.2 provides a justi�cation for the

incorporation of old measurements.

Algorithm 1 Communication

1: for All robots, i do
2: Discover robots in communication range, N i

3: for j ∈ N i do

4: Look up time of last communication, τj
5: if τj < t then
6: Send qiτj :t, z

i
τj :t, f

i
t

7: Receive qjτj :t, z
j
τj :t
, f jt

8: τ j ← t
9: end if

10: end for

11: Update Bayesian �lter using new measurements
12: end for

3.2 Bayesian Estimation

As the sensors explore the environment and exchange measurements, a recursive Bayesian

�lter makes use of the collected information in order to estimate the target and hazard

locations. Let ϕt(X) = p(X | z1:t, f1:t, Q1:t) be the estimated distribution over target sets

at time t and ψt(H) = p(H | z1:t, f1:t, Q1:t) be the estimate of the hazard set distribution.

In this section, the dependence of the sensor and failure models on the poses of the robots

will be omitted for brevity.
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Theorem 1 (Bayesian Filtering). The distributions for hazards and events, given all infor-

mation up to time t, are independent with p(X,H | z1:t, f1:t) = ϕt(X)ψt(H), assuming that

h and s are not deterministically linked, and that their initial distributions are independent,

p(X,H) = ϕ0(X)ψ0(H). Furthermore, ϕt(X) and ψt(H) can be computed recursively with

the Bayesian �lters

ϕt(X) =
p(zt | ft, X)ϕt−1(X)∑
X∈X p(zt | ft, X)ϕt−1(X)

, (3.8)

and

ψt(H) =
p(ft | H)ψt−1(H)∑

H∈H p(ft | H)ψt−1(H)
. (3.9)

In the case that the targets and the hazards are deterministically linked, the Bayesian �lter

update for the distribution is given by

p(X | z1:t, f1:t) =
p(zt | ft, X)p(ft | X)p(X | z1:t−1, f1:t−1)∑
X∈X p(zt | ft, X)p(ft | X)p(X | z1:t−1, f1:t−1)

. (3.10)

Proof. To obtain an inductive argument, suppose that at t−1 the hazard estimate ψt−1(H) =

p(H | z1:t−1, f1:t−1) = p(H | f1:t−1) is independent of the sensor measurements z1:t−1. Then

the recursive Bayesian �lter update for time t gives

ψt(H) =
p(zt, ft | H)ψt−1(H)∑

H∈H p(zt, ft | H)ψt−1(H)
.

Now assuming that H and S are not deterministically related,

p(zt, ft | H) = p(zt | ft, H)p(ft | H) = p(zt | ft)p(ft | H),

where the last equality exists because the measurement, zt, is independent of the hazards,

H, given the failure, ft, as described in the previous section. This leads to

ψt(H) =
p(zt | ft)p(ft | H)ψt−1(H)

p(zt | ft)
∑

H∈H p(ft | H)ψt−1(H)
,
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and the factor of p(zt | ft) cancels in the numerator and denominator to obtain (3.9). Now

notice that ψt(H) = p(H | z1:t, f1:t) = p(H | f1:t) remains independent of the measurements

at time t. The initial distribution, ψ0(H), must be independent of z1:t (because no measure-

ments have been collected yet), therefore by mathematical induction the hazard estimate

distribution conditioned on the failures is always independent of the measurements.

Using a similar mathematical induction argument, suppose that the hazard and event

estimates are independent given the measurements and failures up to time t−1, so p(H,X |

z1:t−1, f1:t−1) = ϕt−1(X)ψt−1(H). Then the Bayesian update for their joint distribution at

time t is given by

p(X,H | z1:t, f1:t) =
p(zt, ft | X,H)ϕt−1(X)ψt−1(H)∑

X∈X
∑

H∈H p(zt, ft | X,H)ϕt−1(X)ψt−1(H)
.

Factoring the numerator using the conditional independence of the measurements and haz-

ards given the failures,

p(X,H | z1:t, f1:t) =
p(zt | ft, X)p(ft | H)ϕt−1(X)ψt−1(H)∑

X∈X
∑

H∈H p(zt | ft, X)p(ft | H)ϕt−1(X)ψt−1(H)
,

and separating terms that depend on X from those that depend on H yields

p(X,H | z1:t, f1:t) =
p(zt | ft, X)ϕt−1(X)∑
X∈X p(zt | ft, X)ϕt−1(X)

p(ft | H)ψt−1(H)∑
H∈H p(ft | H)ψt−1(H)

.

The right-most fraction is the Bayesian update from (3.9), and the left-most expression can

be factored as p(X,H | z1:t, f1:t) = p(X | H, z1:t, f1:t)ψt(H), which gives

p(X | H, z1:t, f1:t)ψt(H) =
p(zt | ft, X)ϕt−1(S)∑

X∈X p(zt | ft, X)ϕt−1(X)
ψt(H).

The fraction on the right is independent of H, so p(X | H, z1:t, f1:t) = p(X | z1:t, f1:t) =

ϕt(X), which results in the Bayesian update in (3.8). Therefore if the estimate distributions

of X and H are independent at time t− 1 they will also be so at time t, and by induction,

if their initial distributions are independent then they will remain so for all time.
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Finally, in the case that the hazards and the events are deterministically related, the

standard recursive Bayesian �lter yields

p(X | z1:t, f1:t) =
p(zt, ft | X)p(X | z1:t−1, f1:t−1)∑
X∈X p(zt, ft | X)p(X | z1:t−1, f1:t−1)

,

which factors to the expression in (3.10).

3.2.1 Decentralized Estimation

These �lters may be decentralized, separating them into updates over individual measure-

ments. This way each robot maintains a separate �lter and is able to incorporate past

measurements. Furthermore, this iterative update reduces the complexity of the Bayesian

update to be linear, rather than exponential, in the number of robots. Note that since the

environment is static (i.e., the belief will not change if the robots cease taking measure-

ments) and robots detections and failures are conditionally independent given the target

and hazard locations, the current belief can be written as

φt(X) ∝
∏
i

τi∏
t=1

p(zit | f it , X,qi)φ0(X). (3.11)

Thus the �ltering approach described in Algorithm 1 will result in the same posterior regard-

less of the order in which individual updates are applied. These updates using individual

measurements leverage the fact that each robot only sees a subset of the environment.

Theorem 2. The Bayesian update over the full environment can be computed from the

Bayesian update over the neighborhood V as

ϕt(X) =
ϕt(V )

ϕt−1(V )
ϕt−1(X). (3.12)

Proof. Begin by noting that (3.8) depends only upon the prior estimate and the detection

likelihood (3.2). Since a sensor is only able to detect targets inside of its footprint, p(zi =

0 | f i = 0, j) = 1 for all j ∈ X \F i so that p(zi = 0 | f i = 0, X) = p(zi = 0 | f i = 0, riT (X)).

42



Since multiple X map to the same V ,

ϕ(V ) =
∑

X|riT (X)=V

ϕ(X). (3.13)

Then the denominator of (3.8) is equal to
∑

V p(z
i
t | f it , V i)ϕt−1(V ). Finally, using the

relationship with ϕ(V ), the update equation becomes

ϕt(X) =
p(zt | ft, X)ϕt−1(X)∑
X p(zt | ft, X)ϕt−1(X)

ϕt−1(V )

ϕt−1(V )

=
p(zt | ft, V )ϕt−1(V )∑
X p(zt | ft, V )ϕt−1(V )

ϕt−1(X)

ϕt−1(V )

= ϕt(V )
ϕt−1(X)

ϕt−1(V )
.

The hazard updates can be similarly decomposed using the projection riH : H → W.

Statistics of interest of these distributions include the probability of n targets in the envi-

ronment, p(|X| = n) =
∑

X||X|=n ϕ(X), and, as a special case of (3.13), the probability of

an individual cell i being occupied,

ϕ(i ∈ X) =
∑
X|i∈X

ϕ(X). (3.14)

3.2.2 Adaptive Cellular Decomposition

In order to store the full distribution over RFSs for a large-scale environment, the total

number of cells used must be kept at a tractable level. This section outlines one solution

to this problem, using an adaptive cell decomposition based on the quadtree data struc-

ture. However, the methodology can be easily extended to work with other decompositions.

Quadtrees have been used in other localization tasks, such as in the work of Carpin et al. [8].

What distinguishes this approach is the use of �nite set statistics and the ability to remove

leaves from the tree.
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The main idea is that initially a coarse discretization is used, which is re�ned only in

areas that are likely to contain an object. If the detection turns out to be a false positve,

the procedure can then be reversed. The two basic operations of this adaptive cellular

decomposition are the addition and removal of a cell, given in Algorithm 2 and Algorithm 3,

respectively. In Algorithm 3, rj(X) : X → Vj{ is a projection onto the complement of cell

j, j{.

Algorithm 2 Add Cell

1: X′ ← X

2: for X ∈ X | |X| < max number of targets do
3: ϕ′(X)← 1

2ϕ(X)
4: ϕ′(X ∪ {mT + 1})← 1

2ϕ(X)
5: X′ ← X′ ∪ {X ∪ {mT + 1}}
6: end for

7: m′T ← mT + 1

Algorithm 3 Remove Cell

1: for V ∈ Vj{ do

2: ϕ(V )←
∑

X|rj(X)=V ϕ(X)

3: X′ ← X′ \ {V ∪ {j}}
4: end for

5: mT ← mT − 1

These two operations can then be used to adapt any cellular decomposition of the envi-

ronment. A re�nement procedure involves removing cells that are occupied with su�ciently

high probability, ϕ(i ∈ X) > τo for some threshold τo, and then adding some number of

child cells, four in the case of a quadtree. This is illustrated in Figure 4a. Similarly the cell

merging procedure, illustrated in Figure 4b, takes place if all children of a single parent are

occupied with su�ciently low probability, i.e., ϕ(j ∈ X) < τe < τo for all children j of a

single parent cell. All children are removed, and then the parent is added. Note that the

distribution used in the Bayesian �lter is over RFSs, which is then used to calculate the

occupancy probability of individual cells used in the grid adaptation via (3.14). These cell

addition and removal operations preserve the probability that the parent cell is occupied.
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(a) Cell re�nement (b) Cell merge

Figure 4: A simple 2 × 2 grid example where the shading indicates the probability that a cell is
occupied with white being 0 and black being 1. A cell re�nement procedure is shown in (a), where
a large occupied cell is divided into four smaller cells with uniform occupancy probability. A grid
merging procedure is shown in (b), where four empty sub-cells with the same parent cell are merged
to form the parent cell.

Analytic Bound on Error in Likelihoods

Objects can be localized with arbitrary precision (by picking a minimum cell size) while

simultaneously keeping the total number of cells low by using this adaptive approach. In

fact, under mild assumptions about the choices of the gs, gh functions from equations (3.3)

to (3.4), it is possible to show that the error between the true feature detection likelihoods

and the approximations is bounded and goes to zero as the cell size approaches zero.

Whatever the choice of gs, gh, it is a reasonable assumption that the functions will

be monotonically decreasing. Let the true target be at an arbitrary point e ∈ Esj . Let

gs(‖qi−e‖) = gs(q
i, e) since the sensor is assumed to be isotropic and let ` be the diameter

of the cell Esj which has points {esj,k}mk=1. Then the error ε in the detection likelihood of a

target at location e ∈ Esj will be

ε =
1

m

m∑
k=1

[
gs(‖qi − esj,k‖)− gs(‖qi − e‖)

]
. (3.15)

By the triangle inequality, ‖qi − e‖ ≤ ‖qi − esj,k‖ + ‖esj,k − e‖ ≤ ‖qi − esj,k‖ + ` for all k.

Then by monotonicity of the function, gs(‖qi − e‖) ≥ g(‖qi − esj,k‖+ `), so

ε ≤ 1

m

m∑
k=1

[
gs(‖qi − esj,k‖)− gs(‖qi − esj,k‖+ `)

]
. (3.16)
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Similarly, ‖qi − e‖ ≥ ‖qi − esj,k‖ − ` so

ε ≥ 1

m

m∑
k=1

[
gs(‖qi − qj,k‖)− gs(‖qi − qk‖ − `)

]
(3.17)

where gs(r) = gs(0) for all r ≤ 0 so that gs is de�ned over all R.

Looking at these bounds there are two limiting cases. The �rst is when the cells are

small, i.e. ` → 0. In this case ‖qi − esj,k‖ ± ` → ‖qi − esj,k‖ so ε → 0. The second case is

when the detection likelihood is su�ciently �at so all points in the cell are equivalent from

a sensing standpoint, or that gs(‖qi − esj,k‖ ± `) ≈ gs(‖qi − esj,k‖). In fact, with the �nite

footprint assumption, gs(r) = 0 for all r greater than the sensing radius R, so the error

trivially will be zero outside of this radius. The same reasoning holds for the function gh.

Multiple Sensor Modalities

The idea of an adaptive cell decomposition also implies an adaptive sensing strategy. When

the grid is coarse then a coarse sensor (i.e., having a large radius but relatively noisy) can

be used and when the grid is �ner then the robots can switch to a �ner sensor (i.e., with low

noise but a small radius). For example, in a search and rescue mission where the team is

searching for victims trapped in a building, robots could be equipped with an audio sensor

which would allow the robots to hear somebody calling for help in a large radius around

them, and the robots could then switch to a camera when they approached a person.

3.3 Mutual Information Gradient Controller

This section derives an information seeking controller using the analytic gradient of mutual

information, originally published in [90]. The mutual information of two random variables

is an information theoretic quantity [20, 91] that describes the amount of information that

can be gained about one random variable (e.g., targets) by observing another (e.g., mea-

surements). Mutual information is de�ned as

I[X;Z] =

∫
X

∫
Z

p(X, z) log
p(X, z)

p(X)p(z)
dz δX. (3.18)
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Here the information is written as though X,Z were continuous random variables, however

equivalent expressions can be written for the discrete case. The integral has also been

replaced by a set integral as we have a distribution over random �nite sets. The key to

deriving the controller is to note that this information depends upon the locations of the

robots through the failure and detection models. Then the gradient of mutual information

with respect to the parameter q is given in the following Theorem.

Theorem 3. Let random vector Z and random �nite set X be jointly distributed with dis-

tribution p(X,Z | q) that is di�erentiable with respect to the parameter vector q ∈ R2n over

En ⊂ R2n. Also, suppose that the support X× Z of p(X,Z | q) does not depend on q. Then

the gradient of mutual information with respect to the parameters q over En is

∂I[X;Z | q]

∂q
=

∫∫
Z,X

∂p(X, z | q)

∂q
log

p(X, z | q)

p(X)p(z | q)
δXdz. (3.19)

Proof. The theorem follows straightforwardly by applying the rules of di�erentiation. No-

tably, several terms are identically zero, yielding the simple result. First, the di�erentiation

is moved inside the integrals since X and Z do not depend on the parameters q. Then

applying the chain rule to the integrand results in

∂I[X;Z | q]

∂q
=

∫
z∈Z

∫
X∈X

∂p(X, z)

∂q
log

p(X, z)

p(X)p(z)
δX dz +

∫
z∈Z

∫
X∈X

p(X, z)
p(X)p(z)

p(X, z)

×
[∂p(X, z)

∂q

1

p(X)p(z)
− ∂p(X)

∂q

p(z)p(X, z)

(p(X)p(z))2
− ∂p(z)

∂q

p(X)p(X, z)

(p(X)p(z))2

]
δX dz,

where the dependence on q is suppressed to simplify notation. Bringing 1/(p(X)p(z)) in

front of the brackets gives

∂I[X;Z | q]

∂q
=

∫
z∈Z

∫
X∈X

∂p(X, z)

∂q
log

p(X, z)

p(X)p(z)
δX dz

+

∫
z∈Z

∫
X∈X

[∂p(X, z)

∂q
− ∂p(X)

∂q
p(z | X)− ∂p(z)

∂q
p(X | z)

]
δX dz.
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Consider the three terms in the second double integral. For the �rst term,

∫
z∈Z

∫
X∈X

∂p(X, z)

∂q
δX dz =

∂

∂q

∫
z∈Z

∫
X∈X

p(X, z) δX dz =
∂

∂q
1 = 0.

For the second term,

∫
z∈Z

∫
X∈X

∂p(X)

∂q
p(z | X) δX dz

=

∫
X∈X

∂p(X)

∂q

(∫
z∈Z

p(z | X) dz
)
δX =

∂

∂q

∫
X∈X

p(X) δX = 0,

and the third term follows by interchanging z and X.

Remark 1. The result holds for the general de�nition of mutual information and makes no

assumptions as to the distribution of the random variables, or the form of the dependence

of p(X, z | q) on its parameters. The result also holds for generally distributed random

variables including discrete valued ones. The result is given for mutual information in �nats�

(the base of the logarithm is e), but the same result holds with a multiplicative constant of

log2 e for mutual information in �bits.�

Remark 2. It is interesting that the gradient of I[X;Z | q] has the same form as I[X;Z | q]

itself, except that the �rst occurrence of p(X, z | q) is replaced by its gradient with respect

to q. This analytic expression for the gradient of mutual information has not been reported

in the literature despite the proliferation of gradient based methods for maximizing mutual

information in various applications ranging from channel coding [78, 79], to medical imaging

alignment [100], to the control of robotic sensor networks [41]. In [79] the authors derive an

expression that can be shown to be equivalent to a special case of Theorem 3 in which p(X)

is not a function of q.

Remark 3. Arbitrary derivatives of mutual information can also be calculated, though the

fortuitous cancellations do not necessarily hold for higher order derivatives. It would be, for

example, to compute the Hessian of mutual information to examine the coupling between

the control laws for neighboring robots.
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Figure 5: In this situation the team of robots, with the footprints of the individual robots shown by
the circles, is divided into two cliques C1 = {1, 2, 4}, C2 = {3}.

3.3.1 Finite Footprint Approximation

The mutual information may be decoupled by leveraging the fact that sensors have a �nite

�eld of view. This can signi�cantly reduce the complexity of the gradient calculations.

Consider the example in Figure 5 where the �elds of view of the robots overlap in di�erent

ways. Let G(Q,E) be an undirected graph, with a node qi for each sensor. Edges are added

between nodes if their sensor footprints overlap, i.e., edge eij is added if F i∩F j 6= ∅, i 6= j.

In this example there are two edges, (1,4) and (2,4). A clique of sensors is a connected

component of this graph, denoted Ci. Algorithm 4 presents a decentralized algorithm to

compute these cliques. The use of a superscript Ci represents the union of that quantity

over the clique Ci, for example the union of the sensor footprint is FCi , or the cross product

over the robots in the clique, for example the set of all tuples of measurements is ZCi .

Algorithm 4 Clique Identi�cation For Robot i

1: Qik = {qjt | ‖q
j
t − qit‖ ≤ Rc, F i ∩ F j 6= ∅}

2: k = 0
3: repeat

4: k ← k + 1
5: Qik ← Qik−1

6: for j | ‖qjt − qit‖ ≤ Rc do
7: Qik ← Qik ∪Q

j
k

8: end for

9: until Qik = Qik−1

Using the the chain rule for mutual information given by Cover and Thomas [20], the
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expression for mutual information becomes

I[X;Z] =
∑
i

I[X;ZCi | ZC1 , . . . ,ZCi−1 ]. (3.20)

Recall that measurements of di�erent agents are conditionally independent given the loca-

tions of the targets. However, the measurements of two robots in di�erent cliques are, in

general, dependent. To see this, consider the situation where there are two robots search-

ing for a single target. If one robot receives a detection then the other robot is less likely

to, even if the sensor footprints the robots are completely disjoint. Mathematically, the

measurements become dependent after marginalizing out over all possible target positions,

p(z1, z2) =

∫
p(z1 | x)p(z2 | x)p(x) dx.

This same logic holds for the multi-target case, since the positions of targets may be corre-

lated.

However, assuming that the correlation between inter-clique measurements is signi�-

cantly smaller than with intra-clique measurements, mutual information becomes

I[X;Z | Q] ≈
∑
i

I[X;ZCi | QCi ] =
∑
i

I[VCi ;ZCi | QCi ]. (3.21)

Note that the second equality is exact, as measurements by a clique of sensors are indepen-

dent of targets outside the clique's footprint. The error in this approximation is

I[X;Z | Q]−
∑
i

I[VCi ;ZCi | QCi ] = H[Z | Q]−
∑
i

H[ZCi | QCi ], (3.22)

which is bounded from above by zero with equality i� the measurements are independent,

as shown by Cover and Thomas [20].

Similarly, the gradient in (3.19) can be written as

∂I[X;Z | q]

∂q
≈
∑
i

∂I[VCi ;ZCi | q]

∂q
. (3.23)
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Note that the gradient of mutual information with respect to the position of each sensor

depends only upon the locations of the sensors in its clique.

The intuition behind this is that robots near each other should coordinate their motions

to better localize targets while robots that are su�ciently far apart can act as independent

agents with little penalty to performance. Using this reasoning, it is simple to adapt the

de�nition of a clique to �t the computational budget of a particular robot: coordinate with

robots that are increasingly separated until a maximum number of robots is reached or

no other robots are within communication range. This approach is similar in spirit to the

single- and pairwise-node approximations presented by Ho�mann and Tomlin [45], where

mutual information is approximated by the sum of mutual information from each sensor or

each pair of sensors in the network. However this approach o�ers a systematic method for

how to best spend the computational resources available to each robot.

3.3.2 Control Law

Writing the gradient from (3.19) in terms of known quantities,

∂I[VC ;ZC | QC ]

∂q
=

∑
zC∈ZC

∑
V ∈VC

∑
W∈WC

∂p(zC | V,W,QC)

∂q
ϕt(V )ψt(W )

× log

∑
W∈WC p(zC | V,W,QC)ψt(W )∑

V ∈VC
∑

W∈WC p(zC | V,W,QC)ϕt(V )ψt(W )
. (3.24)

Here ϕt(V ) and ψt(W ) come from (3.8) and (3.9) and p(zC | V,W, qC) from (3.7). The

gradient of (3.2) for a single robot is

∂p(zi = 0 | V,W,q)

∂q
= −p(f i = 0 |W,q)p(zi = 0 | V,W,q)×

∑
j∈V

1

1− µ(q, Esj )

∂µ(q, Esj )

∂q

+ p(f i = 0 |W,q)p(zi = 1 | V,W,q)×
∑
k∈W

1

1− α(q, Ehk )

∂α(q, Ehk )

∂q
, (3.25)

and when zi = 1 it is simply the negative of this. The derivative of (3.7) is found using

(3.25) and the chain rule.
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Using these results, the proposed controller is

qit+1 = qit + k

∂I[VC ;ZC |qt]
∂qit∥∥∂I[VC ;ZC |qt]

∂qit

∥∥+ ε
, (3.26)

where i ∈ C, k is the maximum step size, and ε � 1 avoids singularities near critical

points. It is important to note that this is not a traditional gradient ascent controller, since

mutual information changes as measurements and failures are incorporated into the target

and hazard beliefs. Also, hazard avoidance is implicitly built into the proposed controller

since the information gained by a failed sensor is zero so that robots naturally avoid areas

where they expect to fail.

3.3.3 Computational Complexity

As can be seen from (3.24), the number of computations involved in the mutual information

gradient for a single robot in clique C is O(2|C||VC ||WC |). This is exponential in the number

of robots in a clique and linear in the number of possible RFSs in the clique footprint. Both

depend on the size of the footprint and maximum number of targets, speci�cally

|VC | =
|X|max∑
k=0

(
|FC |
k

)
, (3.27)

where |FC | is the number of cells within the union of the sensor footprints for clique C and

|Xmax| is the maximum number of targets in the environment. So |VC | is O(|FC ||X|max)

when |X|max � |FC | and O(2|F
C |) when |X|max ≈ |FC |. |WC | scales analogously.

While the exact complexity depends upon the current con�guration of the team of robots

as well as the representation of the environment, we can examine two limiting cases. The

complexity is lower-bounded when each robot is in its own clique, which is O(|Vi||Wi|). On

the other extreme, the complexity is upper-bounded when all robots are in a single clique,

in which case it is O(2n|VC ||WC |). Despite the lack of guarantee of reduced complexity,

empirically the performance increases when using the sensor grouping. The computational

bene�ts will increase as the size of the environment increases because it is more likely for
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(a) Test Environment

Method Cliques For Robot 1

Full {1, 2, 3, 4}
SN {1}
PW {1}, {1, 2}, {1, 3}, {1, 4}
FI {1, 2}
FF {1, 2, 3}

(b) Cliques for Robot 1

Figure 6: The locations of the robots in the test environment, given by the black squares with their
sensor footprints indicated by the circles, are shown on the left. The cliques containing robot 1 are
shown in the table on the right for each approximation method.

robots to split into separate cliques.

3.4 Multi-Robot Simulation and Results

Looking at the error due to the �nite footprint approximation given in (3.22), it is di�cult to

gain intuition as to how tight of a bound this is and how much the approximation a�ects the

control decision. Also, as discussed in Section 3.2.2, the computational complexity depends

upon the relative con�guration of the robot team and is thus also di�cult to quantify. A

series of simulations will illustrate the performance of several approximations with respect

to the full mutual information:

• Single-node (SN): robots act independently O(|Vi||Wi|)

• Pairwise (PW): robots consider pairwise information with each other robotO(
∑

j 6=i |Vi∪

Vj ||Wi ∪Wj |)

• Footprint intersection (FI): robots consider only other robots whose footprints intersect

their own (i.e., rede�ne cliques from Section 3.3.1 to be neighbors in the graph)

• Finite-footprint (FF): described in Section 3.3.1

The SN and PW approximations were proposed by Ho�mann and Tomlin [45].
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Table 3: Comparison of approximation methods for uniform belief.

Method Full SN PW FI FF

Time (s) 0.2061 0.0201 0.0705 0.0217 0.0346

Mean Error (◦) � -10.848 -0.500 -0.501 0.492

Max Error (◦) � 136.1 -115.2 -84.95 -65.3

For the comparative test, a team of robots begins in the con�guration speci�ed in Fig-

ure 6a. The control direction computed for robot 1 is compared across all planning approx-

imations. This con�guration is chosen so that the robot under consideration belongs to a

di�erent clique (or set of cliques) for each approximation method, as listed in Table 3. This

table also contains the mean computational time for each method. As is expected, the full

computation takes considerably longer than any of the approximations, with the approxima-

tion presented in Section 3.3.1 performing favorably with respect to existing approximation

techniques.

As can be seen from (3.24), the direction of the gradient depends upon the current belief

about the environment. Consider two cases: one with a near-uniform distribution and one

with a highly peaked distribution. The �rst case is a near uniform distribution, with small

random perturbations. Random distributions are generated by uniformly sampling a number

in the range [0, 1] for each RFS and then normalizing these to form a distribution. Robot

1 computes the gradient of mutual information using 500 such samples, using the exact

computations and each of the four approximations from above. Table 3 shows the mean

error in the direction, relative to the full mutual information computation. These errors

are relatively small, except when using SN, and the results fairly consistent with standard

deviations on the order of 0.1◦ for each approximation. This implies that there is little

correlation between robots with non-overlapping sensor footprint when the uncertainty in

the target position is high.

The second case is a highly peaked distribution. A distribution is initialized for each

possible RFS containing at most �ve targets in the environment Figure 6a. These distribu-

tions have 95% of the probability mass on the particular RFS of interest and the remaining

5% of the mass is distributed uniformly across all other RFSs. Figure 7 shows box plots of
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Figure 7: Box plots showing the error in angle of the gradient approximations for each of the
approximation methods, measured in degrees. Each box plot represents ∼ 7000 data points. Not
shown are 15.8%, 1.80%, 0.08%, and 0.04% of the data, for the SN, PW, FI, and FF respectively,
which correspond to large control deviations.

the error in the computed control direction for each approximation method. As the �gure

shows, SN performs poorly with a large spread in the direction error and relatively little

probability mass near zero error. The PW and FI approximations perform comparably,

with opposite biases in the distribution. PW is more peaked near zero error, but also has

more outliers than FI. FF performs the best out of all four methods, with the most peaked

distribution near zero error, the fewest outliers, and the best worst-case performance. Such

large errors occur when the maximum likelihood target locations fall within the footprints of

other robots in the group, in which case the decision made by robot 1 will be more strongly

a�ected by the motion of the other robots in the team.

A series of simulations in the environment shown in Figure 8a test the performance of

the proposed algorithm in terms of localizing targets. Figure 8a shows typical paths taken

by the robots during exploration. The sensor model used is

gs(q
i, e) =


(1− pfn) exp

(−‖qi−e‖2
σ2

)
, ‖qi − e‖ ≤ R

0, ‖qi − e‖ > R

(3.28)
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where pfn = 0.05, σ = 2, and R = 6. The failure model gh is of the same form, with

ps = 0.1, σ = 1.5, and R = 2. Figures 8b and 8d show the �nal estimates of the target

and hazard RFSs, respectively, for the given path. The robots assume a maximum of four

targets and two hazards in the environment. If a robot fails, a new one is sent out from a

base station located at (1, 1) in the environment. Figure 8c shows the entropy in the target

location estimate. The entropy generally decreases, with increases due to the addition of

cells as well as false positive and missed detections.

3.5 Ground Robot Experiments

The ability for robots to locate and interact with objects of interest within an unstructured

environment is highly important as robots move out of controlled settings. This section

examines a prototypical example of playing fetch with a robot. First, the robot is shown

a new object. Second, the robot must go into the �eld and locate a small, yet potentially

unknown, number of these objects that are scattered within the environment using a monoc-

ular camera. Finally, after locating the objects, the robot collects them and returns them to

the user. Such behavior has obvious extensions to household robots, inspection tasks, and

search and rescue. Hardware experiments � with the robot shown in Figure 9 � validate

the performance of the proposed exploration strategy in real-world scenarios. The platform

is a di�erential drive robot built on a Segway platform with the maximum speed limited

to 0.55m/s. It is equipped with a single front-facing camera which detects objects using

shape and color matching. There are also a pair of stereo cameras for visual odometry,

a vertical-scanning LIDAR for pitch estimation to correct distance measurements, wheel

encoders for odometry, and a horizontal scanning LIDAR for obstacle detection. Onboard

processing is done using two Mac Mini computers running Ubuntu and the Robot Operating

System (ROS) [1], each with 2.0GHz Intel core i7 processors and 4GB of RAM, mounted

to the robot chassis. While the platform is out�tted with an extensive sensor suite, the

front-facing color camera yields the best performance for object detection since the black-

and-white stereos cameras are not as reliable and the LIDAR cannot detect small objects
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(c) Target entropy and number of cells
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(d) Final hazard estimate

Figure 8: (a) Sample results in the trial environment. Target locations are given by the orange
diamonds and hazard locations by the red square. (b,d) The shading in the cells represents ϕ(j ∈
S), ψ(j ∈ H), where white is 0 and black is 1. (c) The solid line is the entropy of ϕ(S) and the
dashed line is the number of cells in the target discretization, ms.
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on the ground. The robot moves about in a bounded, planar environment, and the pose

consists of its position and orientation.

3.5.1 Sensing

Monocular cameras provide more information than a simple, binary sensor. The camera

(label 4 from Figure 9) observes a �nite subset of the environment in front of the robot.

The system used in these experiments uses a template matching algorithm, using shape and

color information, to return the 2D positions of all known objects within the �eld of view.

Das et al. [29] provide details on the vision subsystem and other components of the robot.

The sensor returns a list of cells occupied by objects. The likelihood of such a measurement

set is given by the expression from (2.26),

p(Z | X,q) = e−µ

(∏
z∈Z

c(z)

)(∏
x∈X

1− pd(x | q)

)

×

∑
θ

∏
j|θ(j)6=0

pd(xj | q)g(zθ(j) | xj ,q)

c(zθ(j))(1− pd(xj | q))

 . (3.29)

However, visual sensors can also be very noisy, returning false positives due to other

objects in the environment (e.g., if using shape detection to locate a ball, the wheel of a

car is a potential false positive) and false negatives due to variable lighting conditions and

occlusions. The detection, measurement, and clutter models are determined through a set

of experiments. In these experiments, objects are placed at known locations the collects

a sequence of measurements. Figure 10 shows the results of these experiments, overlaid

on the sensor footprint. Below this is the detection likelihood function pd(xc | q), where

xc represents a continuous domain position. The single-target measurement model is the

position of the target corrupted by Guassian noise, g(zc | xc,q) = x + N (0,Σ), and the

noise covariance Σ is found from this training data. The Gaussian is truncated after three

standard deviations to ensure that the measurement model has compact support.

Due to the discrete representation of the environment, these continuous domain detection

and measurement models must be converted into a discrete form. Assuming the target may
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Figure 9: The Robot platform used in this work consisted of, 1) a Segway base, 2) an object scoop,
3) two Mac Minis, 4) a front-facing camera for object detection, 5) a horizontal-scanning LIDAR for
obstacle avoidance, 6) a stereo camera for visual odometry, and 7) a vertical-scanning LIDAR for
pitch estimation on uneven terrain.
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Figure 10: Top: Experimental results showing the true (blue circles) and estimated (red x's) object
positions as measured in the body frame of the robot. This is superimposed on the sensor footprint
and represents approximately 600 data points. Bottom: Detection likelihood as a function of the
distance from the robot.
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Figure 11: A simple 2 × 2 large cell, with uniform probability of the object being in each subcell,
is convolved with the small cell measurement model. The resulting array can then be converted to
the large cell model by simply taking the sum of the likelihood in each of the subcells. The relative
sizes of each cell are to scale and the shading corresponds to the likelihood, with values outside the
displayed cells being implicitly zero.

be located anywhere within the cell, the probability of detection is

pd(x | q) =

∫
x pd(xc | q) dxc∫

x dxc
, (3.30)

As was done in (3.3) and (3.4), this integral may be approximated by a �nite sum over

representative points within the cell. This same process may be used to �nd the probability

of a measurement originating from a target in a given cell (of the smallest resolution). This

detection grid is then convolved with a candidate target cell, x, in a process similar to

Gaussian blurring in image processing. Figure 11 illustrates this process. Note that this

approach requires the small cell measurement model to have �nite support. The support

could be taken as the bounds of the environment if the sensor is able to see the entire

environment.

The clutter is modeled as a Poisson random �nite set with PHD c(z). The expected

number of clutter detections is µ =
∫
c(z) dz. Without any prior knowledge, the most

natural choice is to set c(z) to be uniform within the sensor footprint and zero outside, as

no detections can occur outside the footprint. Based on experimental results, the expected

number of clutter detections is set to µ = 0.05.
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3.5.2 Control

While the robot uses the full measurement sets to perform the �lter updates, the control

computations are prohibitively expensive. There are two main reasons for this: the number

of possible target and measurements sets is very large, and for each target and measurement

set pair, the robot must consider all possible data associations. Instead the robot considers

the binary event y = 1 (|Z| = ∅). Either the robot sees at least one object within the

footprint or it sees nothing. This reduces the integral over all possible measurement RFSs

to a summation over the two possible outcomes of the binary event. This coarse model can

be thought of as the probability of returning a �good� measurement, so maximizing this

should lead to faster localization of the objects. This di�ers from the approach by Ristic

and Vo [85], who use the full sensor model but sample from it to achieve computational

tractability.

The controller uses a di�erent detection model to that used in the estimation, as the

piecewise-linear model in Figure 10 has a piecewise-constant gradient which always points

directly backwards. The controller detection model, shown in Figure 12, is a truncated

Gaussian in polar coordinates. This functional form was chosen for two primary reasons: it

is di�erentiable everywhere except on the edge of the footprint, and it pushes the robot to

center the camera (i.e., the peak in the model) on regions of high uncertainty. The robot uses

this new detection model in the control law (3.26). The experimentally derived probability

of a false negative is pfn = 0.05, the mean of the truncated Gaussian is at a range of 7m

directly in front of the robot, and the standard deviations are 2m in the radial direction

and 0.5 rad in the angular direction. The sensor has a 10m range and a 40◦ �eld of view.

However, rather than di�erentiating mutual information with respect to its pose, the

robot uses a virtual point at the center of the sensor's �eld of view. This virtual point is

at the center of the peak of the binary sensor model in Figure 12. The robot then moves

in such a way that the virtual point follows this gradient direction, e�ectively directing the

sensor �eld of view towards regions of high uncertainty. Note that the detection model

monotonically decreases with the distance from this virtual point, allowing us to bound the
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Figure 12: Experimental results showing the true and estimated object positions as measured in the
body frame of the robot. The angular bias appears to be independent of the true position while the
distance error is smallest for the objects placed at x = 8 m. Performance signi�cantly degrades at
the x = 12 m line. This is overlaid on the binary detection model, where darker shading indicates a
higher probability of a measurement.

error using (3.16) and (3.17).

In the event that the estimate has nearly converged within the footprint of the sensor, the

mutual information and its gradient will be near zero so the local, greedy controller may get

stuck. Longer time-horizon path planning would be the best way to prevent this, however

even with the reductions in complexity, mutual information is prohibitively expensive for

such searches. Instead, when mutual information is below some threshold, τI � 1, the

robot drives toward the cell with the highest entropy in the probability of occupancy, i.e.,

with probability nearest 0.5. The intuition here is that, because maximizing the expected

reduction in entropy due to a sensor reading is equivalent to maximizing mutual information,

driving toward the cell with the highest uncertainty will still lead to the desired behavior.

Note that this choice ignores uncertainty in sensing and only considers marginal distributions

of p(X) over individual cells. While this is su�cient to perturb the robot away from local

extrema in the greedy controller, it will not perform as well for local searches.
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3.5.3 Test Results

The environment used for �eld tests with the robot, shown in Figure 13a, is the simplest

example of a non-trivial topology in the prior belief. In this scenario the robot begins at

the center of the environment and searches for targets in an annular region surrounding it,

where the shaded cells have non-zero probability of occupancy in the prior. We tested two

separate cases: one where there is a single object in the environment and the robot believes

that there is either zero or one targets within the environment, and the second case where

there are two targets (red dog bone toys) and the robot believes there are up to four. In

the second case there were also multiple false targets (dog toys of varying color and shape)

placed within the environment.

Single Object

We performed twelve trials with random initial positioning of the object. The robot knows

that there is a maximum of one target within the environment. Since the total number of

random �nite sets is small (the number of cells plus the empty set) the cell size is �xed at

1m. Figure 13b shows the time history of the entropy of the target distribution. In ten runs

the robot correctly located the object within the precision of the grid. Initially the entropy

decreases slowly as the robot sweeps out some of the area. The sudden drop is due to the

fact that the number of objects is limited to one: this causes the distribution to rapidly

converge when multiple detections are made in the same cell, as that means that the object

cannot be in any of the other cells. The variation in time to convergence is due to the

random placement of the object, with short times corresponding to the object being placed

nearer the initial footprint of the robot. The robot failed to localize the object after a full

sweep of the environment in two runs due to failures in the perception system, likely due to

adverse lighting conditions. The system was able to recover in one such instance (dark blue

line in Figure 13b), nearly converging to the incorrect cell before switching to the correct

cell, causing the large spike in entropy near the end of the trial.
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(a) Prior belief and path

(b) Entropy

Figure 13: Sample results from experimental data. (a) A typical path taken by the robot, starting
from the center of the annulus, is indicated by the solid line. The �nal position of the robot and its
sensor footprint are given by the dashed line. The true object location is given by the red diamond
and clutter objects by green circles. Shaded cells correspond to non-zero prior probability of the cell
containing an object. (b) Time history of the entropy of the distribution of object locations over 12
representative runs.
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Two Objects

In this case, the robot begins with a coarse grid of 5m cells with a minimum resolution

of 0.625m. These trials take noticeably longer to complete as the robot must sweep out

the entire area to determine that there are no targets present in cells that are unexplored.

This is a result of the maximum number of possible targets (four) being greater than the

true number of targets (two). It also means that the entropy will not drop as sharply

when a target is detected. Figure 14b shows the time evolution of the entropy, where the

units are given in bits·m2 to take the variable cell size into account since a large cell has

higher uncertainty in the location of the target compared to a small cell with the same

probability of occupancy. Initial true and clutter object locations were random, in some

cases with true objects within 1m of one another. In the ten trials the robot only failed

to detect one of the twenty total targets, with the failure due to a sudden change in the

lighting conditions outdoors. Figure 14a shows the results of a typical run, where the left-

most target was not perfectly localized (the cell to the right has non-zero probability of

occupancy) due to the object being located right on the cell boundary. However, over the

course of these experimental runs (1�10mins) the robot experiences insigni�cant drift in the

position estimate. This may become an issue for much larger environments where the robot

would be in use for longer periods of time. The robot also never localized a clutter object

despite several isolated false positive detections.

3.6 Quadrotor Experiments

We have also tested this framework using a small team of Ascending Technology Humming-

bird quadrotor MAV robots equipped with magnetometer sensors. Magnetometers measure

the strength of the local magnetic and, in this situation, are used to detect anomalies in

order to localize targets. This is known as Magnetic Anomaly Detection (MAD) and is

used in geological surveys to detect ore deposits, in military reconnaissance to detect sub-

merged submarines, and other such tasks. Such MAD sensors are �nely calibrated to detect

very subtle disturbances in the Earth's magnetic �eld. The noisy, scaled-down laboratory
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(a) Prior belief and path

(b) Entropy

Figure 14: Sample results from experimental data. (a) A typical path taken by the robot, starting
from the center of the annulus, is indicated by the solid line. The true object locations are given by
the red diamonds. Shaded cells correspond to non-zero prior probability of the cell containing an
object. (b) Time history of the entropy of the distribution of object locations over ten representative
runs.
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environment is representative of more complex, real-world environments.

These sensors are much lower cost and, as a result, are much coarser. Additionally, it

is well known that magnetometers are not reliable indoors due to the presence of metal

building materials, electrical wiring, and other such components. This problem is further

exacerbated by the robots themselves: the drive motors contain permanent magnets, the

wires to the drive motors have very high current and the magnetometers are located near

the onboard computers and wireless antennae. Furthermore, the strength and direction of

a magnetic �eld depends highly on the orientation of the magnetic source. This makes the

inference problem di�cult.

To account for all of these uncertainties we model the magnetometer as a binary sensor,

returning a positive measurement if the magnetic �eld is �su�ciently� disturbed from the

nominal value. The probability of detection takes the form

pd(x | q) =


1− pfn |x− q| < R0,

(1− pfn) exp
(
− (|x−q|−R0)2

2σ2
R

)
R0 ≤ |x− q| ≤ Rmax,

0 Rmax < |x− q|.

(3.31)

The values of the parameters pfn, σR, R0 depend on the speci�c sensor and robot being used.

Figure 15 shows the experimentally derived sensor models for the two quadrotor platforms

we use, Kilo and Papa. Despite a nearly identical setup the detection models were quite

di�erent, likely due to small di�erences in the locations of onboard computers and wireless

transmitters. See Appendix A for further details on the sensor characterization.

3.6.1 Single Robot Results

We conduct a series of hardware and simulation experiments with a single robot to test the

performance of the search algorithm in the MAD setting and to validate the performance

of the simulation environment. Each robot performs three individual hardware trials and

�ve simulation trials. The hardware experiments are performed in a Vicon motion capture

system, which provides each robot with an accurate estimate of its pose. The robots explore
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(a) Quadrotor Kilo
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(b) Quadrotor Papa

Figure 15: Experimentally determined MAD sensor detection models used for target detection and
localization.

a 2×2m area that is divided into cells with a maximum edge length of 50 cm and a minimum

length of 12.5 cm. The minimum cell size is on the same length scale as the 10 cm long targets

and signi�cantly smaller than the 1m diameter sensor footprint.

Figure 16 shows the resulting evolution of the entropy of target set and of the expected

number of targets over time. The overall behavior is similar across both hardware and

simulation experiments. The target entropy decreases quickly at �rst and has several step

increase as cells are subdivided before �nally reaching the desired level of 0.1 bits. Similarly,

the expected number of targets begins near 4.5 before reaching a �nal value near 2.0, the

true value. For both the simulated and hardware experiments, there was a single trial where

the �nal expected number of targets was 3.0. Figure 17b shows the �nal estimate for one

such occurrence, where the robot incorrectly determined that two adjacent cells both contain

a target. There was also a single trial in both the hardware and simulated systems where

one of the targets was mis-localized, with the true target being in a cell adjacent to the �nal

estimated position. Figure 18 shows the statistics of the time to completion. The minimum

and median times are very similar, at 320 s and 417.5 s for the hardware experiments and

326 s and 422.5 s for the simulation experiments.
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(c) Simulation experiments � entropy
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Figure 16: Experimental results for single robot experiments. Hardware results are shown in (a)
and (b) and simulation results in (c) and (d). The time evolution of the target entropy is shown in
(a) and (c) and the time evolution of the expected number of targets in (b) and (d).
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Figure 17: Localization results for a single real-world quadrotor. The orange diamonds indicate the
true target positions and shading within each cell is the probability of occupancy.
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Figure 18: Box plots of the time to completion for the simulated and hardware MAD experiments.
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3.6.2 Two Robot Results

We use the simulation environment to test the performance with a team of two MAVs,

avoiding complex, unmodeled interactions between physical robots, such as the magnetic

�eld induced by the motors of one robot interfering with the magnetometer readings on the

other robots. Given the level of similarity between the performance of the MAD system

in the previous hardware and simulation experiments, we feel con�dent that the simulation

results could be replicated in hardware. The sensor models used in these trials match those

of the previous experiments, with one MAV matching Kilo and the other matching Papa so

that the team had heterogeneous sensor models. Figure 19 shows the results of the simulated

experiments and Figure 18 shows the statistics of the time to completion. Note that the

entropy initially decreases more quickly compared to the single robot trials and that, in

general, the team is able to complete the task more quickly.

There is one outlier in the two robot experiments, the gold line in Figure 19. This

outlier in the time to completion is due to the team reaching a temporary deadlock due to

the collision avoidance algorithm used in the experiments. The collision avoidance algorithm

is myopic, with a robot backing up, i.e., following the negative gradient, if it would come

into collision with another robot. This occasionally causes the robots to step forwards then

backwards repeatedly while the target is located near the edge of the sensor footprint, making

target localization more di�cult and unreliable since the detection likelihood is lowest at

the edge of the footprint. This behavior also occurred to a lesser extent in one other trial,

indicated by the orange line in Figure 19.

3.7 Conclusion

This chapter proposes an approximate, decentralized multi-robot control policy based on

�nite set statistics that allows for signi�cant reductions in the computational complexity

with small error. Recursive Bayesian �lters maintain the robots' beliefs about the targets and

hazards within the environment while the robots follow the gradient of mutual information,

locally maximizing the expected information gain at each time step. When computing their
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Figure 19: Simulation results for two robot experiments. (a) The time evolution of the target
entropy. (b) The time evolution of the expected number of targets.

control actions, robots only consider other robots with overlapping sensor footprints. This

is based on the fact that real sensors and hazards have a limited range of in�uence in the

environment, and leads to signi�cant computational savings. Simulations illustrate that the

control error due to this approximate decoupling is small in most cases.

The proposed estimation, control, and communication framework is validated through

a series of simulated and hardware experiments. The �rst set of experiments utilizes a

large ground robot equipped with a monocular camera. This robot explores an open �eld

environment in search of a small number of targets distributed among a larger number of

clutter objects. Despite this, the robot is able to reliably �nd the true object locations. The

second set of experiments utilizes a team of one to two quadrotor MAV platforms equipped

with magnetic anomaly detection sensors. These robots explore an open environment in

search of magnets, reliably determining the true number of targets and their positions. We

validate the simulation environment by comparing the results of the simulated and hardware

experiments. This simulation environment is then used to demonstrate the performance of

a team of robots with heterogeneous detection statistics. The team is able to e�ectively

coordinate to search for multiple targets.
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Chapter 4

Active Detection and Localization of

a Large Number of Targets

We are interested in applications such as search and rescue, security and surveillance, and

smart buildings and smart cities, in which teams of mobile robots can be used to explore

an environment to search for a large, unknown number of objects of interest. Concrete

examples include using thermal imaging to locate individuals trapped in a building after a

natural disaster, using cameras to locate suspicious packages in a shopping center, or using

wireless pings to locate sensors within a smart building or smart city. Real-world examples

of such smart building scenarios include Rowe et al. [88], which features thermostats, mi-

crophones, access points, and bluetooth-enabled actuators within a building, and Fu [35],

which describes low-power sensors embedded within construction materials. In each of these

examples, the number of objects is not known a priori, and can potentially be very large.

The sensors used by the robots to localize targets can be noisy, there can be many false

positive or false negative detections, and it may not be possible to uniquely identify and

label individual objects.

This chapter uses the Probability Hypothesis Density (PHD) �lter, described in Chap-

ter 2, to detect and localize an unknown number of targets. The robots jointly plan actions

that maximize the mutual information between the resulting multi-target estimate and the
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Figure 20: Diagram of the decentralized network structure. Robots (green squares) are able to
communicate on a peer-to-peer basis with nearby robots as well as access the central server through
access points (blue triangles). The communication links originating from robots are all relatively
low-bandwidth while the downlink from the server may be higher bandwidth.

future binary events indicating whether a sensor detects any targets or not, e�ectively hedg-

ing against uninformative actions in a computationally tractable manner. This approach

o�ers several key advantages: scalability in the number of targets, avoidance of any explicit

data association, and the ability to handle a variable number of measurements at each time

step.

This chapter presents an information-based, receding horizon control law that allows

small teams of robots to perform autonomous information gathering tasks. We demonstrate

the real-world applicability of the proposed control law through a series of hardware exper-

iments using a team of ground robots equipped with bearing-only sensors seeking tens of

targets in an indoor o�ce environment. We further demonstrate that the proposed control

law performs well across variable team size, di�erent environments, target cardinalities that

span orders of magnitude (1 to 100), and di�erent sensor modalities. In all of these cases,

the robot team is able to accurately estimate the number of targets and the locations of the

targets within the environment, autonomously concluding the exploration when the team

reaches a desired level of con�dence in the target localization.
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Many of these tasks, such as surveillance, security, and monitoring, all take place in

locations with an existing communication infrastructure that the team can leverage. The

need for a communication architecture is central to the performance of a cooperative robotic

team, yet must take into account the limited capabilities (e.g., communication range and

bandwidth) of each robot while allowing robots to exchange information in a consistent way.

A centralized approach will not work over large scale environments where not all robots

will be able to communicate with one another. One common decentralized architecture is

Decentralized Data Fusion (DDF), �rst described by Grime and Durrant-Whyte [40], in

which each robot manages its own copy of the joint belief and aggregates data from the

other robots through channel �lters which only admit information that is distinct from their

current belief. The DDF framework is particularly amenable to Gaussian beliefs as the

information form of the Kalman �lter allows for e�cient, low-bandwidth updates. However,

more complicated belief representations often require overly conservative approaches to data

fusion.

Our solution takes the best of fully centralized and fully decentralized network solutions,

allowing robots to communicate on a peer-to-peer basis in a decentralized fashion while

also including communication with a centralized server, which robots may access via the

existing network infrastructure in the environment. This central server o�er robots access

to a centralized repository of data, to additional computational resources, and to cloud

services. This idea of robots relying on information from a server has been called cloud

robotics and has recently generated quite a bit of excitement [43, 44]. A similar idea was

also used for estimation and control of groups of robots by Michael et al. [74] where an

Asymmetric Broadcast Control (ABC) was used to synthesize locally derived information

and provide low-resolution global information to the group. The asymmetry is in the com-

munication between the robots and the server. Uploads from robots are low-bandwidth by

nature but downloads involving global information may require higher bandwidth. Robots

are not required to constantly communicate with the central server or cloud, instead they

opportunistically upload and retrieve information based on their physical proximity to ac-
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cess points. Figure 20 shows such a network architecture, where robots may have one or

more communication links and can trade o� the bene�ts of accessing the server compared

to taking further local measurements.

We present a decentralized control architecture founded upon the ideas of information

gathering, synthesis, and dissemination. Gathering is done using a team of mobile sensors,

the only strong assumption being that robots are able to localize themselves and navigate

without noise. The data is then incorporated into the robot's belief through the PHD �lter,

making no additional assumptions on the targets' spatial or cardinality distributions. The

synthesis of peer-to-peer and cloud information is done in a principled way, synchronizing the

beliefs of robots and ensuring no data is double counted as it is exchanged. Mutual informa-

tion balances the bene�ts of obtaining information by direct observation of the environment

or by downloading from the server, merging the objectives of gathering and disseminating

information into a single control law.

The research in this chapter was originally published in [22, 24, 25].

4.1 Problem Formulation

This chapter considers the problem of a team of R robots exploring an environment E in

search of targets. The robots are assumed to be able to localize themselves within the envi-

ronment, or at least with su�ciently high accuracy so that any errors will have a negligible

e�ect on the target localization. At time t the robot r has pose qrt and receives a set of

measurements Zrt = {zr1,t, . . . , zrmrt ,t}, which has mr
t measurements. A set of n target loca-

tions is given by X = {x1, . . . ,xn}, where each xi ∈ E. Here Z and X are realizations of

random �nite sets (RFSs), where an RFS is a set containing a random number of random

elements, e.g., each of the n elements xi in the set X = {x1, . . . ,xn} is a vector indicating

the position of a single target.

4.1.1 Sensor Models

Each robot is equipped with a sensor that is able to detect targets within its �eld of view

(FoV). The probability of a sensor with pose q detecting a target at x is given by pd(x | q)
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and is identically zero outside of the FoV. Note the dependence on the sensor's position,

denoted by the argument q. If a target at x is detected by a robot at q then it returns a

measurement z ∼ g(z | x,q). The false positive, or clutter, model consists of a PHD c(z | q)

describing the likelihood of clutter measurements in measurement space and the expected

clutter cardinality. Note that in general the clutter may depend on environmental factors.

4.1.2 Communication

As we did in Chapter 3, we would like a decentralized version of this exploration strategy. In

this case, we will also consider the scenario where there is a cloud-based resource management

system that robots may interact with to upload measurement data and download data

collected by other robots. This cloud-based management system may have multiple access

points within the environment, or robots may be able to intermittently access the resources

through specialized communication channels.

As robots explore the environment, they store a local history of messages, where mes-

sages consist of (position, measurement set) pairs. This history will be shared with other

robots, directly over peer-to-peer links and indirectly through the central server, to aid in

exploration. The central server has A stationary access points located in the environment at

s1, . . . sA, at which robots upload messages and download the latest PHD from the server,

vs(·).

Robot-server communication, as previously noted by Michael et al. [74], is asymmetric

in the bandwidth. When a robot is within communication range of an access point, the

robot uploads its message history since the last check-in, waits while the server uses these

messages to update its PHD vs, and receives the resulting PHD from the server. This PHD

vs, which includes all of the robot's own message history as well as all information uploaded

by other robots prior to the current time, replaces the robot's local PHD.

On the other hand, robot-robot communication is symmetric. Here robots form coali-

tions, which are connected components of a communication graph with edges between robots

that are able to communicate. Robots then simply exchange their most recent messages with

all other robots in the coalition. These messages are then used to update the PHD. This
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framework allows robots to jointly explore the environment while not double-counting any

information, as communication with the central server overwrites the peer-to-peer updates.

4.2 Information-Based Receding Horizon Control

In Section 2.2.3 we saw that the general Bayes �lter was intractable due to the number of

possible data associations, necessitating the development of the PHD �lter. The same sum

over data associations also appears in the expression for the mutual information between the

target and measurement sets, making it prohibitively expensive to compute. To get around

this, we consider the binary event of receiving an empty measurement set, as was done in

Section 3.5,

y =


0 Z = ∅

1 else.

(4.1)

Here y = 0 is the event that the robot receives no measurements to any (true or clutter) ob-

jects while y = 1 is the complement of this, i.e., the robot receives at least one measurement.

Mahler proposes a similar idea [68], where the objective is to maximize the mutual infor-

mation between the target set and the empty measurement set, i.e., when p(Z = ∅) = 1,

so

q∗ = argmax
q

I[X,Z(q) = ∅]. (4.2)

This objective is chosen because it hedges against the highly non-informative empty mea-

surement set.

This paper considers the information gathering problem in a receding horizon framework,

planning T actions into the future. Let the time horizon be τ = {t + 1, . . . , t + T}. The

information-based objective is then

q∗τ = argmax
qτ∈Q1:R

τ

I[Xt+T ;Y1:R
τ | qτ ], (4.3)

where Xt+T is the predicted location of the targets at time t+ T and Y1:R
τ is the collection

of binary measurements for robots 1 to R from time steps t+ 1 to t+ T , which depend on
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(a) Free space (b) Cluttered environment (c) Multiple length scales

Figure 21: Example action sets for a robot in (a) free and (b) cluttered space over a horizon of
T = 3 steps. Each action is a sequence of T poses at which the robot will take a measurement and
there are 8 and 5 actions in the two sets, respectively. (c) Shows an example action set over multiple
length scales.

the future locations of the robots qτ = [(q1
t+1)T , . . . , (q1

t+T )T , . . . , (qRt+T )T ]T . Note that the

robot poses q are not random variables themselves, but the random variable Yrt depends on

the value qrt through the detection model pd(x | q). Future work will take into account the

uncertainty in the poses of the robots.

4.2.1 Action Set Generation

The possible future measurements of the robots depend upon their future locations within

the environment, so the action set for the team, Q1:R
τ , must be su�ciently rich for the robots

to explore the environment. Simultaneously, it must be kept as small as possible to reduce

the computational complexity of (4.5).

Over a short time horizon, an individual robot may move in a small neighborhood around

its current location. If one were to naïvely chain such actions, there would be a exponentially

growing number of possible actions. However, many of these would be redundant, i.e., the

robots would traverse the same region. Atanasov et al. [3] present one solution to this

problem, pruning the tree of motion primitives to eliminate uninformative and redundant

actions. We take an alternative approach to curb the number of actions while maintaining

diversity. Each robot selects a number of candidate points at a given length scale from its

current location, plans paths to those goals, and interpolates the paths to get T intermediate

points, as shown in Figure 21. This forms the basis of actions Qr for an individual robot r

at a particular length scale.
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Algorithm 5 Action Set Generation

1: procedure ActionSet(`, T,q,M) . Action set at length scale ` with a horizon T for
a robot at q in map M

2: P ← {x ∈M | d(x,q) = `} . All points in the map a distance ` from robot
3: G← {x} . Pick any point x ∈ P
4: Q← ∅ . Action set
5: while P is NOT empty do
6: x∗ = argminx∈P miny∈G d(x,y) . Find point nearest to existing goals
7: P ← P \ {x ∈ P | d(x,x∗) < R} . Remove all points near the goal location
8: G← G ∪ {x∗} . Add to list of goals
9: Path ← path from q to x∗ . Found using A∗

10: Q← Q ∪ {{T evenly spaced points along Path}}
11: end while

12: return Q
13: end procedure

It is advantageous to plan over multiple length scales, as there are some instances where

a lot of information may be gained by staying in a small neighborhood, while other times

it is more bene�cial to travel to a distant, unexplored area. To allow for this diversity,

each robot generates actions, such as those in Figure 21, over a range of L length scales.

The number of planning steps, T , at each length scale is kept constant so that meaningful

comparisons between the information values can be made.

Concurrent

Ideally, the team would plan over all possible actions for all robots at the same time. The

individual robot action sets consist of all actions over all length scales, and the joint action

set is the Cartesian product of the individual action sets, Q1:R = Q1 × . . . × QR. This

leads to individual robot action sets that grow linearly in the number of length scales,

|Qr| = O(L|Q`|) and a joint action set that grows exponentially in the number of robots,

|Q1:R| = O((L|Q`|)R), where |Q`| is the number of actions at an individual length scale.

This makes the concurrent computations prohibitively expensive for all but small teams of

robots with small action sets.
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Sequential

To alleviate some of the computational load, we may apply a sequential, but approximate,

approach to select the best action for the team. Robots sequentially optimize over length

scales, individual robots, or both. This reduces the size of a joint action set to O(|Q`|R),

O(L|Q`|), or O(|Q`|), respectively, and there are L, O(R), or O(LR) action sets. However,

there is no guarantee that the resulting joint action computed using any of the sequential

methods is identical to the fully concurrent plan.

Length Scales To sequentially plan over length scales, the objective changes to

q∗τ = argmax
`

argmax
qτ,`∈Q1:R

τ,`

I[Xt+T ;Y1:R
τ | qτ,`], (4.4)

where Q1:R
τ,` is the set of joint actions at length scale `.

Robots Planning over individual robots is slightly more complicated. The �rst robot

plans its action independently of all other agents, and each subsequent agent plans its

action conditioned on all of the other robots' paths. This cycle is repeated until the robots

reach a consensus, i.e., robots have a chance to update their original plans given the new

plans of other agents. The sequence of joint action sets, Q1:R, is

Q1 ×∅×∅×∅× . . .×∅

q∗1 ×Q2 ×∅×∅× . . .×∅

q∗1 × q∗2 ×Q3 ×∅× . . .×∅
...

q∗1 × q∗2 × . . .× q∗R−1 ×QR

Q1 × q∗2 × . . .× q∗R−1 × q∗R

q∗1 ×Q2 × q∗3 × . . .× q∗R

...
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where q∗r is the element of Qr with the highest expected information gain given the paths

of all other robots at the time of planning. This is similar to the idea of Adaptive Sequential

Information Planning from Charrow et al. [12].

This sequential optimization over robots is like the idea of coordinate descent in opti-

mization, where a utility function is optimized over each coordinate in sequence reaching

until a local optimum. In practice, the number of cycles through the team until reaching

consensus was typically one, and never more than three. Atanasov et al. [5] show that this

�coordinate descent� will result in a 2-approximation of the objective, meaning that the

value of the objective using the approximate approach will be at least half of the value of

the optimal solution. Note that this holds for arbitrary ordering of the robots and does not

require re-optimizing until convergence. This re-optimization step is solely to improve the

empirical performance.

Both To sequentially plan over both robots and length scales, we use the objective (4.4),

where the inner argmax is over the sequence of action sets from above.

Planning Modes

We use the following shorthand to describe the di�erent planning modalities:

• Mode 0: MI, concurrent robots, concurrent length scales

• Mode 1: MI, concurrent robots, sequential length scales

• Mode 2: MI, sequential robots, concurrent length scales

• Mode 3: MI, sequential robots, sequential length scales

• Mode 4: Random, concurrent length scales

• Mode 5: Random, sequential length scales

In modes 0�3, the action is selected by maximizing the mutual information, as described in

this section, while in modes 4 and 5 an action is selected randomly from the joint action

set. For modes 1, 3, and 5, the length scale with the highest expected information gain is

selected.
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Exploit

Figure 22: Finite state machine of the three control modes.

4.2.2 Finite State Machine

There are three possible motion modalities for the robots, the choice of which depends

upon the recent history of the robot actions: Explore, Check-in, and Exploit. A �nite state

machine, Figure 22, shows the possible mode transitions. For both the Explore and Check-in

modes, robots select a goal location qg and plan a path there from the current location qrt .

In general these paths require many individual motions due to the limitations on speed, so

that robots collect measurements along the way but do not react on them.

Explore If the longest length scale is too small, there may be some instances where the

extended planning horizon of the robots is not su�cient to escape from an information

minimum, e.g., a robot �nishes exploring a corner of the environment and all surrounding

area has already been well explored. To avoid such situations, if a robot becomes stuck (i.e.,

when it has not left a small neighborhood around its current position for a certain number

of time steps TS) then it selects an unexplored location in the environment and drives there,

an example of the typical exploit/explore behavior in information gathering tasks. These

exploration points are randomly selected with probability proportional to the probability of

the team not having detected a target at that location, i.e., q ∼ p(·) ∝
∏t
k=1

∏R
r=1 pd(· | qrk).

Check-in In order to keep the belief in the server (which may be monitored by a human

operator) up-to-date and the robots' beliefs somewhat synchronized, robots are required to

check-in with the server at least every TC time steps. This behavior may be removed by
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setting TC =∞. A robot may also enter this control mode if the expected information value

of communicating with the server is higher than the information value of locally sensing the

environment,

q∗τ = max

{
argmax
qτ∈Q1:R

τ

I[Xt+T ;Y1:R
τ | qτ ], argmax

a
I[Xt+T ;Yaτ | qaτ ]

}
, (4.5)

where Yaτ are the measurements available for the robot to download at the server from access

point a.

Exploit If a robot enters the Exploit mode, it will look for nearby robots so that they

may coordinate their actions and explore more quickly. To this end, we rede�ne a coalition

to be a connected component of the control graph, where edges indicate that robots can

communicate and their sensor footprints overlap, i.e., Fi ∩ Fj 6= ∅ ⇒ i, j ∈ C. Each

coalition then elects as its leader the robot that has most recently checked in with the server

as the leader. The leader then plans the joint action of all robots in that coalition using its

own PHD and (4.5), which in general di�ers from that of other robot's, in order to reduce

redundancies robot motions.

4.2.3 Receding Horizon

As this is a receding horizon control law, the robots replan their action after executing a

fraction of the current action. In this work, the team replans an action after each of the

robots has completed at least one of the T actions, i.e., after all robots have traversed 1/T

of the planned path length. This allows robots acting at larger distance scales than others

to visit at least one of their planned locations, even if the robots acting at shorter distance

scales have completed their actions.

However, it is worth noting that if robots are acting at very di�erent length scales, it is

possible for one robot to have completed its full action (i.e., reached all T waypoints) before

one of the other robots has reached its �rst waypoint. In this case the �rst robot would sit

idly, waiting for the second to trigger the replanning.
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4.2.4 Computing the Objective Function

We utilize the factorization of mutual information from (2.53), I[X;Y] = H[Y] −H[Y | X],

to compute the objective function in (4.5). For notational compactness, we remove the

dependence of the sensor models on the pose of the robot.

Entropy

We begin by computing the binary measurement likelihoods, p(y), �rst for an individual

robot and then for a team of robots. The only way for the sensor to get no detections is for

it to have zero clutter detections and to not detect any target, so

p(y = 0 | X) = e−µ
∏
x∈X

(1− pd(xi)), (4.6)

where µ = 〈1, c〉 is the expected number of clutter detections, c(z) is the clutter PHD

from Section 4.1.1, and e−µ is the probability of receiving no clutter detections given the

assumption of Poisson clutter cardinality. Using this, we get that

p(y = 0) =

∫
p(y = 0 | X)p(X) δX

= pK(0)

∞∑
n=0

p(n)
〈1− pd, v〉n

〈1, v〉n︸ ︷︷ ︸
= (1−α)n

= pK(0) 〈(1− α)n, p〉 (4.7)

= e−µ−αλ (4.8)

where λ = 〈1, v〉 is the expected number of targets, α is the expected fraction of the targets

detected

α = 1− λ−1 〈1− pd, v〉 = λ−1 〈pd, v〉 , (4.9)

and µ = 〈1, c〉 is the expected number of clutter measurements so that pK(0) = e−µ. Note

that (4.7) is for the CPHD �lter and (4.8) specializes the result to the PHD �lter using the
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fact that

〈(1− α)n, p〉 =
∞∑
n=0

(1− α)ne−λ
λn

n!
· eαλ−αλ = e−αλ.

This is easily extended to the multi-robot case. Let C0 be the set of robots with yr = 0

and C1 the set of robots with yr = 1. Then

p(Y 1, . . . , Y R) =

∫ ∏
r∈C0

p(Y r = 0 | X)
∏
r∈C1

(1− p(Y r = 0 | X))p(X) δX

=

∫ ∑
C⊆C1

(−1)|C|
∏

r∈C0∪C
p(Y r = 0 | X)

=
∑
C⊆C1

(−1)|C|pK(0)|C0∪C|
∞∑
n=0

p(n)

〈∏
r∈C0∪C(1− prd), v

〉n
〈1, v〉n︸ ︷︷ ︸

= (1−α(C0∪C))n

=
∑
C⊆C1

(−1)|C|pK(0)|C0∪C| 〈(1− α(C0 ∪ C))n, p〉 (4.10)

=
∑
C⊆C1

(−1)|C|e−|C0∪C|µ−α(C0∪C)λ, (4.11)

where

α(C) = 1− λ−1

〈∏
r∈C

(1− prd), v

〉
(4.12)

is the expected fraction of targets detected by at least one robot in group C. We substitute

this in to the standard de�nition of entropy,

H[Y] = −〈p(y), ln p(y)〉 , (4.13)

where there are 2RT possible binary measurement combinations for R robots and T time

steps.
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Conditional Entropy

The conditional entropy is simpler as measurement sets are conditionally independent of one

another given the target set, i.e.,

p(y1:R
τ | X) =

∑
k∈τ

R∑
r=1

p(yrk | X). (4.14)

Thus the conditional entropy of the joint measurements is simply the sum of the conditional

entropies of the individual measurements, so we only need the single measurement equation

H[Y | X] = −
∫ ( ∑

y∈{0,1}

p(y | X) ln p(y | X)

)
p(X) δX. (4.15)

We separate the two cases for y, beginning with y = 0.

∫
p(Y = 0 | X)p(X) ln p(Y = 0 | X) δX

=

∞∑
n=0

1

n!

∫
pK(0)n! p(n)

n∏
i=1

(
1− pd(xi)

) v(xi)

〈1, v〉
ln

pK(0)

n∏
j=1

(
1− pd(xj)

) dx1 . . . dxn

= pK(0) ln pK(0)
∞∑
n=0

p(n)(1− α)n

+ pK(0)
∞∑
n=0

p(n)n(1− α)n−1 〈(1− pd) ln(1− pd), v〉
〈1, v〉︸ ︷︷ ︸
−β

= pK(0) ln pK(0) 〈(1− α)n, p〉 − pK(0)β
〈
n(1− α)n−1, p

〉
(4.16)

= −(µ+ βλ)e−µ−αλ. (4.17)

Here (4.16) is for the CPHD �lter and (4.17) specializes the result to the case of the PHD

�lter. The negative sign in β is due to the entropy-like de�nition. Note for a Poisson RFS,〈
nαn−1, p

〉
= λe−αλ.

Next we examine the y = 1 case, using the Taylor series ln(1− x) = −
∑∞

k=1
xk

k , where
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{r}k is a set with k copies of the robot r.

∫
p(Y = 1 | X)p(X) ln p(Y = 1 | X) δX

=

∫
(1− p(Y = 0 | X))p(X) ln(1− p(Y = 0 | X)) δX

≈
∫

(1− p(Y = 0 | X))p(X)

∞∑
`=1

−p(Y = 0 | X)`

`
δX

=

∫ (
−p(Y = 0 | X) +

∞∑
`=2

p(Y = 0 | X)`

`(`− 1)

)
p(X) δX

= −pK(0) 〈(1− α)n, p〉+

∞∑
`=2

pK(0)`

`(`− 1)

〈
(1− α({r}`))n, p

〉
(4.18)

= −e−µ−αλ +

∞∑
`=2

1

`(`− 1)
e−`µ−α({r}`)λ (4.19)

where we use the Taylor series approximation ln(1 − x) ≈ −
∑∞

`=1
x`

` , {r}
` is a set with `

copies of the robot r, (4.18) is for the CPHD �lter, and (4.19) is for the PHD �lter. Note

that α = α({r}) for a single robot and that α({r}k) may be computed using (4.12), where

we use the �rst 10 terms in the Taylor series.

Server Information

The mutual information due to possible measurements in the server is more di�cult to

model, as the number of such measurements and the locations at which they were taken are

unknown until the robot has reached an access point. Since robots do not know the locations

at which measurements were taken, we assume that measurements are independent of one

another (which is true provided that sensor footprints do not overlap). In this case, mutual

information may be written as

I[X;Zs | qi] = E [m] I[X;Z | qi] (4.20)

where E [m] is the expected number of messages in the server and I[X;Z | qi] is the infor-

mation for a single message.

To compute the information value for a single measurement, we average over possible
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poses of the robot,

pd(x) =

∫
pd(x | q)p(q) dq. (4.21)

To evaluate this, we assume p(q) to be a uniform distribution and approximate it with a

uniform grid of reachable poses over the environment, qk,

pd(x) ≈ 1

N

N∑
k=1

pd(x | qk). (4.22)

It only remains to model the expected number of new measurements available in the

server. Assuming that there is an average rate of return, ρ ≈ 1/TC , then a geometric

distribution models the discrete waiting time between events. The number of messages in

the server will be equal to τ r − k, where τ r is the number of time steps since the robot

under consideration last communicated with the server (i.e., the length of the local message

history) and k is the number of time steps for another robot. Finally, assuming robots move

independently, since there are N − 1 other robots we have:

E [m] = (N − 1)
τr∑
k=0

(τ r − k)(1− ρ)kρ. (4.23)

Computational Complexity

The computational complexity of the entropy computations is O(|Q1:R|22RT ), where R is

the number of robots, T is the planning horizon, and |Q1:R| is the action set (described in

further detail in Section 4.2.1).

4.2.5 Exploration Termination Criterion

It is unclear when to terminate the exploration in the multi-target localization problem,

since the number of targets being sought is unknown. Ideally the robots should identify

the exact number of targets and their locations within the environment, i.e., if there are

N targets in the environment then the PHD should be N Dirac delta functions, each of

unit weight, centered at the true target locations. In reality, the estimates will never be as
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precise, but the di�erence between the estimated PHD and its idealized counterpart may be

used to detect when the robots have su�cient con�dence in their estimate. Note that there

is no way to determine the team's con�dence in the cardinality estimate, as the covariance

is equal to the mean for a Poisson distribution. Thus we assume that the team is able to

accurately estimate the target cardinality, i.e., λ→ N as t→∞.

We turn our attention to the entropy of a Poisson RFS,

H[X] = λ−
∫
v(x) log v(x) dx (4.24)

= λ+ λ
(
H[v̄(x)]− log λ

)
, (4.25)

where v̄(x) = λ−1v(x) is a probability distribution created by normalizing the PHD. The

ideal PHD v∗(x) consists of λ particles of unit weight, so v̄∗(x) has λ particles of weights λ−1

and has an entropy of log λ. The term in parentheses in (4.25) is the di�erence between the

current normalized PHD and its idealized counterpart. The proposed termination criterion

can thus be written in the two equivalent forms,

H[v̄(x)]− log λ ≤ ε (4.26)

λ−1H[X]− 1 ≤ ε. (4.27)

4.3 Framework Veri�cation

To verify the performance of the proposed control strategy (4.5), simulations of three-robot

teams were conducted in the three test environments shown in Figure 23. The environments

contain between 36 and 50 targets for the team to localize and represent typical o�ce build-

ings, where data-collecting sensors may be embedded for tasks such as climate monitoring

and control. In this case the targets are stationary, so the transition model f(x, ξ) is the

identity map, the birth PHD is identically zero, the birth cardinality is pΓ(0) = 1, and the

survival probability ps = 1.

The robots are equipped with range-only sensors and are assumed to be able to travel
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Figure 23: Maps used in simulation runs. Robots are indicated by the green squares, sensor footprints
by the green circles, and targets by the orange diamonds.

in a 2-D map, e.g., di�erential drive robots. The detection model for the sensors, pd(x | q),

is shown in Figure 24 and measurements are assumed to have Gaussian noise, so z ∼

N (|x − q|, σ2
g), where σg = 1 m. Clutter detections are assumed to be uniform over the

sensor footprint, so c(z) = 1/5 and the clutter cardinality pK(n) = Poisson(n;µ), where

µ = 0.6. For the CPHD �lter, the clutter cardinality is a truncated Poisson distribution,

i.e., n ∈ {0, . . . , 8} and the values are normalized so that pK(n) is a distribution.

The initial estimate of the target cardinality is 100 and the PHD is uniform over the

environment. Since the targets are stationary, the PHD is represented by a uniformly-spaced

grid of stationary particles. This means that the number of particles is �xed for the duration

of the experiment and no resampling is required. This is equivalent to a histogram �lter

over a uniform grid.

To generate the trajectory basis for a single robot, we pre-compute as much as possible

to allow for fast run-time performance. To do this, a uniformly-spaced set of points is laid

over the environment and all-pairs shortest paths is computed using the Floyd-Warshall

algorithm. To select candidate goals, the robot �nds all points at a certain distance (6m)

from its current position and then prunes the set so that all goals are at least some �xed

distance from each other (2m). The time horizon is T = 3 steps, so the step size is 2m. The

path length considered in this work is on the same scale as the radius of the sensor's �eld

of view, so each plan includes information about portions of the environment not currently
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Figure 24: Detection model used in these simulation, which is independent of the bearing and
because the FoV is so small it ignores environmental e�ects on radio signals, e.g., walls, multi-path.

visible to the robot.

4.3.1 CPHD Filter Performance

To test the performance of the CPHD �lter relative to that of the PHD �lter, we conduct

a series of simulations in environment 1, which contains 40 targets. We run 10 trials of

four con�gurations, PHD versus CPHD �lter, and in�nite versus �nite FoV. In this case the

clutter rate per unit of sensed area was kept constant, so the in�nite FoV (set to 50m) has

a clutter rate of µ = 60.

Figure 25 shows the results of these simulations, with the average expected target cardi-

nality estimates plotted over time as well as typical PHD estimates of the target locations.

As can be seen, when the FoV is in�nite both the PHD and CPHD �lter quickly get the

true number of targets in the environment, and the low variance indicates that the estimates

are consistent across trials. The CPHD �lter is more consistent and the mean is smoother,

supporting the claim that it handles false positive detections better than the PHD �lter.

Also, in individual trials with the CPHD �lter, the variance on the number of targets is

e�ectively zero (≈ 10−12) after 15 time steps.

However, in the �nite FoV case the story is much di�erent. Here the PHD �lter eventually
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Figure 25: Expected target cardinality averaged over 10 trials for a team of robots using the PHD
�lter with (a) 50m FoV and (b) 5m FoV, and the CPHD �lter with (c) 50m FoV and (d) 5m FoV
in environment 1. The solid blue line is the average across trials and the shaded blue area is ±1
standard deviation. Typical �nal PHD estimates are shown in (e)-(h) for the same con�gurations
with the true target locations denoted by the orange diamonds.
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reaches the correct target cardinality, and the low variance across trials at large time steps

shows that the results are consistent. On the other hand, the CPHD �lter is both less

accurate and more precise, never getting the correct number of targets while having low

variance (≈ 1) in the target cardinality in each individual run. The same was true when

starting with di�erent initial cardinality estimates between 20 and 100. The exact causes of

this phenomenon are unknown, and, to the best of our knowledge, this e�ect has not been

previously documented in the literature.

4.3.2 Indoor Environment Simulations

Having determined that for �nite FoV sensors the PHD �lter is both computationally faster

and performs better at cardinality estimation, we wish to further verify its performance in

other indoor environments. The results of a series of simulations in environments 2 and 3,

which contain 36 and 50 targets respectively, are shown in Figure 26. Note that we again

see that the average expected target cardinality asymptotes to the true number of targets

and that the standard deviation across the trials tends to decrease over time, showing that

the estimates are consistent.

Figure 26 also shows typical �nal PHDs in each environment, and we see that the targets

are generally well localized. The estimation is not perfect: there are occasional false positive

detections and densely packed targets are occasionally represented by a single cluster of high

mass rather than individual clusters of unit mass. This is to be expected when the �lter

lacks target labels because a noisy measurement from one target looks equivalent to a good

measurement of a nearby target, in the absence of target labels.

When looking for 10's of targets with three robots, the computational load is relatively

small. Assuming that robots move at a constant speed of 0.5 m/s, robots spend an average

of 1�3% of the time on �ltering updates, 1�5% of the time on control computations, and

the remaining time driving, with variations due to the size of the environment which a�ects

the number of particles in the PHD and the number of trajectories. Simulations were run

in Matlab on a desktop computer with an Intel i7 processor and 8GB of RAM.
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Figure 26: Data showing the expected number of targets over time for environments 2 and 3, where
(a) and (b) show the average expected number of targets over time while (c) and (d) show typical
�nal PHD estimates.
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Figure 27: Data showing the performance with very large numbers of targets in environment 3.

4.3.3 Large Numbers of Targets

Finally we test the system in situations with an order of magnitude more targets and see

that it again performs well, with results shown in Figure 27. While the target cardinality

estimates converge to the true number of targets over time in both cases, the target local-

ization is not as good, particularly for targets along the edges of the environment. This is

likely due to the combination of a high target density, range-only sensing, and the fact that

targets along the edge cannot be viewed from as many positions.

When the number of targets becomes large as in this case, the �lter updates take an

increasing amount of time, roughly 5�15% of the total time, while the control computations
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remain in the range of 1�5% of the total time. This increase in computational time for the

�lter is due to the increased number of measurements per scan. This could certainly be

reduced by optimizing the Matlab code or switching to C++.

4.3.4 Decentralization

The example scenario considered here involves a team of four mobile robots searching for

targets within a large indoor o�ce environment, as shown in Figure 28. Robots are equipped

with omnidirectional sensors with circular footprints (of radius rd) and probability of detec-

tion given by

pd(x | qi) =


pd,0e

−|x−qi|2/σ2
d if |x− qi| ≤ rd

0 if |x− qi| > rd

(4.28)

where pd,0 = 0.8, σd = 2 m, and rd = 5 m. The measurement model is given by

g(z | x) = x + η (4.29)

where η ∼ N (0, σ2
g) is Gaussian white noise with σg = 1 m. The expected number of clutter

points in the footprint is µ = 0.3 and c(z) = µ/|F | is uniform over the footprint.

The robots use two length scales, 1 m and 2 m and plan myopically, i.e., the time horizon

T = 1 step. The PHD is represented by a set of uniformly spaced particles in a 1m grid on

the robots and a 0.2m grid on the server and the initial expected number of targets, λ, is

set to 20.

There are �ve access points within the environment and we use a disk model for commu-

nication, with access points and robots having a communication range of 10m. The check-in

time, TC , is set to 40 time steps, well above the minimum number of motions, 23, required

to reach any point in the environment from its nearest access point.

Using this setup we simulate the system for 1000 time steps, with the team often �nding

all the targets and localizing them to within 0.5 m accuracy. To extract the �nal target

estimate from the PHD, we use a simple thresholding and clustering scheme. First, any

point with PHD smaller than some wmin � 1 (we use 0.02) is ignored. From the remaining
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Figure 28: Example environment with four robots (green squares) shown with their sensor footprints
(green circles). There are �ve targets (orange diamonds) and �ve access points (blue triangles), which
have limited communication range (dashed blue circles), within the environment.

points we �nd clusters with total weight above 0.5, where nodes are connected if they

are within an 8-connected neighborhood of one another. Finally, the expected locations

are the weighted mean of the particles in each cluster. From a typical trial, the errors in

localizing true targets were 0.09, 0.21, 0.29, 0.33, 0.88m, all less than both the grid size and

the standard deviation of the sensor noise. In the same trial there was one false positive

target, due to clutter detections while a robot was passing through the hallway in Explore

mode with no robot returning to investigate before the simulation ended. Figure 30a shows

the time evolution of the control modes for each robot.

4.3.5 Key System Parameters

There are several key parameters that in�uence the behavior of the robot team. Namely,

the number of robots N , the characteristic length of the sensors RS , the maximum robot

velocity V , the number of access points A, the communication range RC , the check-in time

TC , and the characteristic length of the environment L.
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Figure 29: Time evolution of the entropy of the target RFS for a variety of team sizes and footprint
radii.

The fraction of information retrieved per time step decreases with the size of the envi-

ronment, L, but it can be explored more quickly by using more robots, N , or increasing

the visible area per robot, RS . To investigate the e�ects of N and RS/L on the rate of

information retrieval, we conducted a series of simulations using between 1 and 4 robots and

two footprint radii, 5 and 10m, with 10 trials for each set of parameters. Figure 29 shows

the resulting time-evolution of the average entropy (a measure of uncertainty) of the server

PHD. As is expected, a higher number of robots and a larger sensing radius both lead to a

higher rate of information gathering, as evidenced by the lower entropy.

As the environment grows in size, the time between uploads to the server, TC , must

increase so that robots are able to reach more distant locations. Conversely, robots are able

to reach an access point more quickly as the access point density A/L2, communication

range RC , and robot speed V all increase. To investigate the e�ects of this exploration time

on the system behavior, we ran a series of simulations varying TC from 10 to 50 time steps

by increments of 5, with 10 trials for each rate. Figure 30b shows the average fraction of

the total simulation time spent in each control mode. For obvious reasons, it is desirable

for the fraction of time spent in the Exploit mode to be as high as possible because this

means the robots do not spend large amounts of time driving to access points or getting
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stuck. Not surprisingly, as the check-in rate decreases, the fraction of the total time spent

in Check-in mode also decreases. On the other hand, as the ratio of TC to TS increases the

robot gets stuck more often so it spends more time in Explore mode. The surprising thing is

that these two e�ects appear to cancel one another out, with the total fraction of the times

spent exploring at around 0.55 for every value of TC except TC = 10.

4.3.6 Cooperation

One obvious question to ask is how much bene�t leader election within a coalition provides,

as opposed to allowing each robot to redundantly plan the coalition action based on its own

PHD. In other words, does having di�erent PHDs among the coalition members hurt the

performance of the team. To explore this issue we ran another series of simulations where

robots did not run the leader election policy. Instead each robot redundantly planned the

action of the coalition, e�ectively acting as the leader but not sharing these plans with other

robots.

Figure 31 shows the major di�erence between the two modes was the rate at which false

positive targets arise. While the mean value and standard deviation of true targets are quite

similar, the team without the leader election policy has a signi�cantly higher rate of false

positive targets. This indicates that one of the primary bene�ts of leader election is for error

mitigation: robots tend to get in each others way or not move in complementary directions

when they plan based on di�erent PHDs.

Finally, we return to the issue of computational complexity. In our simulations, run in

Matlab on a laptop with a 2.27GHz Intel Core i3 with 4GB of RAM, mutual information

for coalition of a single robot took an average of 0.014 s to compute, of two robots an

average of 0.484 s, and of three robots an average of 11.829 s. Real-time implementation

of this system was not the subject of this work, with these numbers meant to indicate the

feasibility, for example using C++ could likely reduce the computation time by an order of

magnitude and using a GPU could reduce it signi�cantly more, as mutual information is

highly parallelizable. Implementation of the system in hardware will be the study of future

work.
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(a) The time evolution of the mode switching for each individual robot over an example run. (b)
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Figure 31: Plots showing the time evolution of the number of true targets (blue) and false targets
(red). The mean over 90 separate trials is shown by the solid line and the shaded regions correspond
show one standard deviation.
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Figure 32: A Scarab robot with two targets in the experimental environment.

4.4 Experimental System and Results

We conduct a series of experiments using a team of ground robots (Scarabs), pictured

in Figure 32, to validate the performance of the proposed control algorithm. The Scarabs

are di�erential drive robots with an onboard computer with an Intel i5 processor and 8GB of

RAM, running Ubuntu 12.04. They are equipped with a Hokuyo UTM-30LX laser scanner,

used for self-localization and for target detection. The robots communicate with a central

computer, a laptop with an Intel i7 processor and 16GB of RAM running ROS on Ubuntu

12.04, via an 802.11n network. The communication requirements are very modest: individual

agents upload their measurement sets, which consist of bearing values, and pose estimates

to the central server, and the central server sends out actions to each robot, which consist

of a sequence of T poses. The team explores in an indoor hallway in the Levine building,

shown in Figure 33, seeking the re�ective targets pictured with the robot in Figure 32.

The targets are 1.625 in outer diameter PVC pipes with attached 3M 7610 re�ective tape.

The tape provides high intensity returns to the laser scanner, allowing us to pick out targets

from the background environment. However, there is no way to uniquely identify individual
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Figure 33: A �oorplan of the Levine environment used in the hardware experiments. This map was
generated using a manually driven Scarab robot and the gmapping package from ROS Gerkey [38].
Di�erent starting locations for the robots are labeled in the map.
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targets, making this the ideal setting to use the PHD �lter. The hallway features a variety of

building materials such as drywall, wooden doors, painted metal (door frames), glass (o�ce

windows), and bare metal (chair legs, access panels, and drywall corner protectors, like that

in the right side of Figure 32). The re�ective properties of the environment vary according

to the material and the angle of incidence of the laser. The intensity of bare metal and glass

surfaces at low angles of incidence is similar to that of the re�ective tape.

We select a threshold on the laser intensity to be able to reliably detect targets within a

5m range of the robot, at the expense of having occasional false positive detections due to

re�ective surfaces in the environment. While clutter detections arise due to physical objects

within the environment, they are distinct from the targets in one key manner: targets are

visible as high-intensity returns from any angle (due to the cylindrical shape and re�ective

tape) while clutter objects only cause detections when viewed from particular angles.

We converted the Hokuyo laser scanner on-board the robots into a bearing-only sensor,

which may be thought of as a proxy to a camera. This simple sensor performs better

than a camera in that it avoids common problems such as variable lighting conditions and

distortions. Atanasov et al. [4] use the RFS framework to perform semantic self-localization

of a robot equipped with a camera, using bearing-only measurements to landmarks. To turn

a laser scan into a set of bearing measurements, we �rst prune the points based on the laser

intensity threshold, retaining only those with su�ciently high intensity returns. The points

are clustered spatially using the range and bearing information, with each cluster having a

maximum diameter dt. The range data is otherwise discarded. The bearings to each of the

subsequent clusters form a measurement set Z.

4.4.1 Sensor Models

We now develop the detection, measurement, and clutter models necessary to utilize the

PHD �lter. See Appendix B or [23] for further details on the experimental characterization

of the sensors.
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Figure 34: A pictogram of the laser detection model, where dt is the diameter of the target, θsep is
the angular separation between beams, and r is the range.

Detection Model

The detection model can be determined using simple geometric reasoning due to the nature

of the laser scanner, as Figure 34 shows. Each beam in a laser scan intersects a target that

is within dt/2 of the beam. The arc length between two beams at a range r is rθsep, and

the covered space is dt. Using the small angle approximation for tangent, the probability of

detection is

pd(x | q) = (1− pfn) min

(
1,

dt
rθsep

)
1 (b ∈ [bmin, bmax])1 (r ∈ [0, rmax]) (4.30)

where r and b are the target range and bearing in the local sensor frame (computed using

the robot pose q and the target position x), pfn is the probability of a false negative, and

1 (·) is an indicator function. The bearing is limited to fall within [bmin, bmax] and the range

to be less than some maximum value rmax (here due to the intensity threshold on the laser).

For our sensor, bmax = −bmin = 3π
4 , rmax = 5 m, pfn = 0.210, and dt = 1.28 in. Note that

the e�ective target diameter is less than the true target diameter, since the re�ective tape

does not provide high intensity returns at extreme angles of incidence.

Measurement Model

The sensor returns a bearing measurement to each detected target. We assume that bearing

measurements are corrupted by Gaussian noise with covariance σ, which is independent of
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Figure 35: A pictogram of the clutter model, where θc is the width of the clutter peaks centered at
±π2 , and the bearing falls within the range [− 3π

4 ,
3π
4 ].

the robot pose and the range and bearing to the target. In other words,

g(z | x,q) =
1√

2πσ2
exp

(
− (z− b)2

2σ2

)
, (4.31)

where b is the bearing of the target in the sensor frame. For our system, σ = 2.25◦.

Clutter Model

As previously noted, clutter (i.e., false positive) measurements arise due to re�ective surfaces

within the environment, such as glass and bare metal, only at low angles of incidence. For

these materials, this most often happens while driving down a hallway, so there will be a

higher rate of clutter detections near ±π
2 rad in the laser scan. For objects such as metal

table and chair legs, there is no clear relationship between the relative pose of the object

and robot, so we assume that such detections occur uniformly across the FoV of the sensor.

This leads to a clutter model of the form shown in Figure 35.

Let θc be the width of the clutter peaks centered at ±π
2 and let pu be the probability

that a clutter measurements was generated from a target in the uniform component of the

clutter model. The clutter model is

c(z) =
puµ

bmax − bmin
1 (b ∈ [bmin, bmax]) +

(1− pu)µ

2θc
1
(∣∣|b| − π/2∣∣ ≤ θc/2) , (4.32)
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where 1 (·) is an indicator function and µ is the expected number of clutter measurements

per scan. For our system, bmax = −bmin = 3π/4 rad, pu = 0.725, θc = 0.200π rad, and

µ = 0.532.

4.4.2 PHD Filter Implementation Details

The PHD �lter is typically implemented as either a weighted particle set, see Vo et al.

[102], or a mixture of Gaussians, see Vo and Ma [101]. We use the particle representation

as it allows for nonlinear measurement models, such as the bearing-only case described

above. Since we assume no knowledge of the initial positions of targets, the particles are

initialized with equal weight on a uniformly-spaced grid at all locations at which a target is

visible, e.g., in free space for a bearing-only sensor. Ideally, the grid size should be set to a

similar length scale as the sensor noise, as below this scale the sensor cannot disambiguate

targets. Particles are stationary during the course of the experiment because the targets

are stationary. The complexity of the control objective (4.5) is O(|Q1:R|2RT (PRT + 2RT )),

where P is the number of particles in the PHD representation.

To reduce the computational complexity of the controller, we subsample the PHD esti-

mate from the �lter. We create a uniform grid over the environment, merging all particles

within a grid cell into a super-particle with weight equal to the total weight of the merged

particles, and position equal to the weighted mean of the merged particles. This is similar

to the idea from Charrow et al. [11].

4.4.3 Validation

To evaluate the real-world performance of the proposed algorithm, we run a set of 10 trials

in which 3 robots seek 15 targets placed within the o�ce environment from Figure 33.

The robots all start near location 1, separated by 0.5m. The team initially believes there

are 30 targets in the environment. The team uses a time horizon of T = 3 actions and

uses planning mode 1 (concurrently planning over the robots and sequentially over length

scales). The robots search over length scales starting at ` = 3 m, and increasing by a factor

of 1.2 until some robot no longer has any possible destinations due to the limited size of the
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environment. With the robots searching over all possible length scales and there being no

central server, the robots simply use the Exploit mode from Section 4.2.2. Note that the

team typically consists of a single coalition because at long length scales the robots' sensor

footprints will overlap. The termination criterion is set to ε = 0.05. Figure 36a shows the

target cardinality estimates for the team, with the exploration taking 300�500 s to complete.

Figure 36b shows the average performance of the team across the trials. The average

expected number of targets approaches the true cardinality after approximately 150 s, and

stays close for the remainder of the time, showing that the estimator is accurate. The

shaded region shows one standard deviation from the mean (where the standard deviation is

computed across trials at a given time step) and generally decreases over time, showing that

the estimates are also consistent. We scale each run to be of the median time to completion,

to be able to compute the standard deviation at a given time instant across runs of di�erent

lengths.

Figure 36c shows the true target locations and the localization estimate from a single

representative trial. There are 15 unique dots on the map, corresponding to the 15 target

locations. The size of the dots is proportional to the expected number of targets at that

location. Some targets are better identi�ed than others, e.g., the target in the top middle

of the map is larger than some of the other targets. There is also a false positive target

near (12, 12)m of low weight compared to the true targets. This false target is due to a

cylindrical metal table leg, making it di�cult to distinguish from a true target.

The computational complexity is relatively low, with control actions taking an average of

1.01 s, and a maximum of 3.37 s, to compute. The team spent 4.7% of the total exploration

time stationary, planning their next actions: a small, but not negligible, fraction of the time.

4.4.4 Team Size Comparison

We conduct a series of 10 trials each with 1, 3, and 5 robots in the same environment as

above to explore the e�ect of team size on the exploration performance. For the 5 robot

trials, one robot starts at each of the labeled locations in Figure 33; for the 3 robot trials they

begin at locations 1�3; and for the single robot trials it begins at location 3. The robots use
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Figure 36: Plots of the performance of a team of three real-world robots exploring the Levine
environment using planning mode 1. (a) Shows the expected cardinality of the team over time,
with the �nal cardinality in each run marked by a circle and the �nal time as a dotted vertical
line. (b) Shows the mean (solid black line) and standard deviation (shaded region) of the expected
cardinality across runs over time, with the true cardinality shown (dashed black line). (c) Shows
the true (red diamonds) and estimated target locations (blue dots), with the dot size proportional
to the estimated number of targets at that location.

planning mode 3 (sequentially over both robots and length scales), as concurrently planning

over robots is prohibitively expensive for 5 robots. All of the other parameters are identical

to the previous trials.
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Figure 37: Plots of the performance for teams of 1, 3, and 5 real-world robots exploring the Levine
environment using planning mode 3. (a) Shows the spread of time to completion. (b) Shows the
mean (solid lines) and standard deviation (shaded regions) of the expected cardinality across runs
over time budget, with the true cardinality shown (dashed black line). (c) Shows the mean (solid
lines) and standard deviation (shaded regions) of the entropy across runs over time with the ideal
value shown (dashed black line).

The team is given a time budget of 400 s to complete the exploration task, with Figure 37a

showing the statistics of the completion times. Within the time budget, the single robot

never completes the task, the three robot team completes it in 3 of the 10 runs, and the 5

robot team completes it every time, in a median of 270 s and a maximum of 373 s. As is

expected, adding more robots improves completion time, as they are able to simultaneously

gather measurements from more locations than a smaller team. Figure 37b and Figure 37c

show the average cardinality estimates and target set entropies for each of the team sizes.

The 5 robot trials have the highest rate of entropy reduction and the 3 robot teams nearly

�nish exploring the environment, with the entropy approaching the terminal value at the

end of the trials. The single robot case is furthest from convergence, with the �nal entropy

at the same level that a 3 robot team achieves in 34% of the time.

With planning mode 3, the computational load is minor: taking an average of 0.029 s for

1 robot, 0.092 s for 3 robots, and 0.351 s for 5 robots. This is 0.18% of the total time for 1

robot, 0.42% for 3 robots, and 1.45% for 5 robots, all less than the Mode 1 planning in the

previous experiments. However, mode 3 is not guaranteed to return plans with as high of

an expected information gain as mode 1.
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4.5 Simulation Results

We also conduct a series of simulation experiments to further explore the performance of the

proposed control strategy (4.5), varying the planning method, target density, environment,

and sensing modality.

4.5.1 Simulator Validation

We wish to verify that the simulation environment behaves similarly to the experimental

system before conducting a long series of trials in simulation. To do this, we mimic the

setup from Section 4.4.3 as closely as possible, using identical sensor parameters, controller

parameters, team size, planning method, etc. The target locations for the simulation are set

to the true locations shown in Figure 36c.

Overall, the results in Figure 38 show that the two systems are comparable, with both

systems able to accurately and consistently estimate the target set cardinality and reach the

desired level of con�dence in their estimate. The experimental data is more consistent across

runs, both in terms of completion time and for inter-run estimates of the target set cardinality

and entropy. However, the simulated system has a lower median time of completion, at 338 s

compared to 392 s. While there are some di�erences, overall the systems are similar enough

to trust that further simulated results will not di�er signi�cantly from experimental results.

4.5.2 Planning Method Comparison

In Section 4.4, we use planning modes 1 and 3, but could not make direct comparisons

between the two due to the di�erent team setups. We now wish to see how the di�erent

planning methods a�ect the team's performance, and verify that taking intelligent actions

(i.e., maximizing mutual information) outperforms a naïve random walk. In theory, mode 0

leads to plans with the highest expected information gain, but the plans would take longer

to compute, potentially causing the actual information gain over time to decrease. Modes 1

to 3 are all approximations, sequentially planning over the length scales, team members, or

both, and robots using modes 4 and 5 randomly select actions.

We use the same setup as Section 4.4.3, but vary the planning modality and set a time
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Figure 38: Plots of the performance for teams of three real and simulated robots exploring the Levine
environment using planing mode 1. (a) Shows the spread of time to completion. (b) Shows the mean
(solid lines) and standard deviation (shaded regions) of the expected cardinality across runs as a
fraction of the total time with the true cardinality shown (dashed black line). (c) Shows the mean
(solid lines) and standard deviation (shaded regions) of the entropy across runs as a fraction of the
total time with the ideal value shown (dashed black line).

budget of 900 s. Figure 39 shows the results of the trials. Information-based control of any

kind signi�cantly outperforms the random walk in terms of completion time and estimation

accuracy. The information-based methods (modes 1�3) all converge to the desired target set

entropy in all of the trials, mode 4 (random walk with concurrent length scales) completes

the exploration before the time budget expires in 2 of the 10 trials, and mode 5 (random

walk with sequential length scales) never completes the task. Mode 5 is also much less

consistent than all of the other modes in terms of the rate of entropy reduction.

It is not surprising that mode 2 (planning sequentially over robots and concurrently

over length scales) has the lowest median completion time and that the spread is narrower

compared to modes 1 and 3. When robots are allowed to plan over di�erent length scales,

some robots explore local regions of high uncertainty while other robots move across the

environment to search for new targets, allowing the team to more e�ciently explore. Using

modes 1 and 3, all robots act at the same length scale so some robots must occasionally act

on a undesirable length scale for the bene�t of other team members. It is surprising that

mode 1 leads to the most inconsistent completion times, as the expected information gain

is an upper bound for the gain in mode 3. The di�erences could have been due to chance,
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Mode Avg. time Max time % total time

1 1240 1790 9.50
2 162 188 0.86
3 211 246 1.63
4 0.3 0.4 0.002
5 0.8 0.9 0.01

(c) Table of computation times in ms

Figure 39: Plots of the performance for a team of three simulated robots exploring the Levine
environment using planning modes 1�5. (a) Shows the spread of time to completion. (b) Shows the
mean (solid lines) and standard deviation (shaded regions) of the entropy across over time budget
with the ideal value shown (dashed black line). (c) Shows the computation times in ms, and the
percentage of the total time spent computing.

as there are only 10 trials with each planning modality.

Both of the random exploration methods (modes 4 and 5) perform signi�cantly worse

than the information-based planning. Not only does mode 5 never complete the exploration

in the given time budget, its rate of entropy reduction is signi�cantly slower than all of the

other methods, including mode 4. While the planning times for the random methods are

negligibly small, as Figure 39c shows, this does not counteract the fact that the actions are

not being selected in an intelligent manner.
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4.5.3 Target Cardinality Comparison

We next test the performance of the system in situations with variable target cardinalities,

and, correspondingly, variable target densities in the environment. The PHD �lter functions

for any target cardinality and the exploration controller is agnostic to the target cardinality.

We conduct a series of experiments with the same setup, except we use 1, 15, and 100 targets

in the Levine environment, shown Figure 33, which is approximately 144m2. Three robots

explore, starting at location 1 in the map and using planning mode 2.

Figure 40 shows the completion times, cardinality estimates, and target set entropies.

As expected, the low target density is the fastest to complete, since the team simply needs

to sweep out the mostly empty space. With the high target density the robots need to

observe the many targets from a variety of vantage points to localize them with su�cient

con�dence, a process which involves sweeping across the environment multiple times. The

variability in completion time, the time to correctly estimate the true cardinality, and the

inconsistency of the cardinality estimates also increases with the target cardinality. In fact,

on average, the high target cardinality runs do not reach the correct cardinality until about

95% of the way through exploration.

Figure 40c shows that the team reaches the desired level of uncertainty at the end of

each run. Note that for the high cardinality runs, the initial rate of target discovery is higher

than the initial rate of target localization, resulting in an increase in entropy for the �rst

40 s of the run.

4.5.4 Second Environment

We next conduct a series of simulations in the larger, more complex indoor environment

shown in Figure 41a. This environment features many rooms for the robots to explore,

and is nearly four times the area of the Levine environment. There are 40 targets in the

environment, and the termination criterion is increased to ε = 1. Three robots begin in room

1 in the map and use planning mode 2. All of the other system parameters are identical.

Figure 41 shows that the team is able to accurately and consistently estimate the true
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Figure 40: Plots of the performance for a team of three simulated robots exploring the Levine
environment for 1, 15, or 100 targets using planning mode 2. (a) Shows the spread of time to
completion. (b) Shows the mean (solid lines) and standard deviation (shaded regions) of the expected
cardinality across runs as a fraction of the total time with the true cardinality shown (dashed black
line). (c) Shows the mean (solid lines) and standard deviation (shaded regions) of the entropy across
runs as a fraction of the total time with the ideal value shown (dashed black line).
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target cardinality and reach the desired level of con�dence in the target estimate. The robots

take signi�cantly longer to complete the exploration compared to the Levine environment,

with a median time of 2220 s, 6.56 times as high. We expect the time to be at least 4

times as high due to the increase in area, with the extra time likely caused by the increased

complexity, as the robots must enter many individual rooms.

Since the environment is larger, there are more length scales for the robots to consider,

and thus more actions. This increases the planning time. Planning mode 2 takes an average

of 1.63 s per plan, and in total is 9.2% of the exploration time.

4.5.5 Range-Only Sensing

Nothing about the estimation or control framework relies upon the sensor modality, so long

as we are able to create detection, measurement, and clutter models for the sensor. To verify

this, we conduct a �nal series of simulation experiments in which robots are equipped with

noisy, range-only sensors.

Sensor Models

The range-only sensor parameters used in this case are not based on a particular physical

sensor, but rather seek to capture the general behavior of an RF-based range sensor. Fig-

ure 64 shows the detection model for the sensors, pd(x | q), which decays steadily with

distance. The measurements have zero-mean Gaussian noise, so z ∼ N (|x − q|, σ2), where

σ = 1 m. The measurement noise is relatively high compared to the bearing-only sensor, so

we expect the rate of information gain to be lower. Clutter detections occur uniformly over

the sensor footprint, with a clutter PHD c(z) = µ/rmax, where µ = 0.1 is the clutter rate

and rmax = 5 m is the maximum range of the sensor.

Results

Most of the simulation parameters are kept constant: a team of 3 robots begin at location 1

in Levine, and use planning mode 2 with the same length scales as the bearing-only sensor.

The termination criterion is ε = 4 to account for the much coarser localization that the

range-only sensor is able to achieve, due to the high measurement noise.
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Figure 41: Plots of the performance for a team of three simulated robots exploring a second en-
vironment using planning mode 2. (a) Shows the �oorplan of the complex, indoor environment
used in simulations. The robots begin in room 1 in the upper left corner. (b) Shows the spread of
time to completion. (c) Shows the mean (solid lines) and standard deviation (shaded regions) of
the expected cardinality across runs as a fraction of the total time with the true cardinality shown
(dashed black line). (d) Shows the mean (solid lines) and standard deviation (shaded regions) of the
entropy across runs as a fraction of the total time with the ideal value shown (dashed black line).
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Figure 42 shows the resulting completion times, cardinality estimates, and target set

entropies, as well as an example localization result. As is expected, the system takes longer

to complete the localization task, and the resulting target estimates are not as precise as

with the bearing-only sensor. The team is able to discover the approximate locations of all

of the targets, though there are a number of false positive targets that appear in the �nal

PHD estimate. In particular, it is di�cult for the team to eliminate the false target near

(15, 18)m as this is only observable from several meters below and there are true targets

nearby at very similar ranges to the false target. Despite the errors in target localization,

the team is still able to accurately estimate the true target cardinality.

4.6 Conclusion

In this chapter, we proposed a novel receding-horizon, information-based controller for ac-

tively detecting and localizing an unknown number of targets using a small team of au-

tonomous mobile robots. The robots are equipped with unreliable sensors, failing to detect

targets within the �eld of view, returning false positive detections, and being unable to

uniquely identify true targets. Despite this, the PHD �lter simultaneously estimates the

number of targets and their locations, avoiding the need to explicitly consider data asso-

ciation and providing a scalable approach for various team sizes, sensor modalities, and

environments.

The controller, which maximizes the mutual information between the target set and

the future binary measurements of the team, hedges against highly uninformative actions

in a computationally tractable manner. We provide several variations on the controller:

concurrently or sequentially planning across robots in the team and length scales of actions,

planning in a decentralized fashion, and comparing the performance of the PHD and CPHD

�lters. The PHD �lter, somewhat counterintuitively, outperforms the CPHD �lter when

the sensor has a �nite footprint, with the CPHD �lter performing poorly in terms of the

cardinality estimation. The e�ectiveness of our control strategy is demonstrated through a

series of hardware experiments with small teams of ground robots exploring an indoor o�ce
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Figure 42: Plots of the performance for a team of three simulated robots equipped with range-only
sensors exploring the Levine environment using planning mode 2. (a) Shows the detection model
used in the simulation trials. (b) Shows the spread of time to completion. (c) Shows the mean
(solid lines) and standard deviation (shaded regions) of the expected cardinality across runs as a
fraction of the total time with the true cardinality shown (dashed black line). (d) Shows the mean
(solid lines) and standard deviation (shaded regions) of the entropy across runs as a fraction of the
total time with the ideal value shown (dashed black line). (e) Shows the true (red diamonds) and
estimated (blue dots) target locations, with dot size proportional to the number of targets at that
location.
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environment. A series of simulated experiments show that the proposed approach performs

well in a variety of settings: with low and high target cardinality, in multiple environments,

and with multiple sensor modalities. The proposed control law also signi�cantly outperforms

a random walk through the environment without signi�cantly increasing the computational

load. The team is able to autonomously cease exploration once their con�dence in the target

estimates is su�ciently high.
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Chapter 5

Active Detection, Localization, and

Tracking of Moving Targets

Target tracking is a fundamental problem in robotics research and has been the subject

of detailed studies over the years. In this chapter, consider the problem of tracking an

unknown and dynamic number of mobile targets with a team of robots. We present a

greedy algorithm for assigning trajectories to the robots that maximize submodular objective

functions and prove that this is a 2-approximation. We examine two such objective functions:

the mutual information between the estimated target positions and future measurements

from the robots, and the expected number of targets detected by the robot team. We

provide extensive simulation evaluations using a real-world dataset. The research in this

chapter was originally published in [28].

5.1 Introduction

Target detection, localization, and tracking has many applications including search-and-

rescue [36], wildlife tracking [98], surveillance [42], and building smart cities [63]. Conse-

quently, such problems have long been a subject of study in the robotics community. Target

tracking typically refers to two types of tasks: estimating the trajectories of the targets

from the sensor data, and actively controlling the motion of the robotic sensors to gather
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the data. We address both types of problems for the case of multiple, moving targets.

Unlike most existing work, we study the case of tracking an unknown and varying number

of indistinguishable targets. This introduces a number of challenges. First, we cannot

maintain a separate estimator for each target, since the required number of estimators is

unknown. Second, we must account for the fact that targets appear and disappear from

the environment. Third, we cannot maintain a history of the target positions because we

cannot uniquely identify individual targets, making prediction di�cult. Finally, the system

must be capable of handling false positive and false negative detections and unknown data

association in addition to sensor noise. Despite these challenges, we present positive results

towards solving the problem.

An important consideration for target tracking is the motion model for the targets. A

number of parametric motion models have been proposed in the literature (see [61] for a

detailed survey). We employ a data-driven technique to extract the motion model, instead

of assuming any parametric form. Speci�cally, we use Gaussian Process (GP) regression to

learn a map of velocity vectors for the targets, similar to Joseph et al. [49]. Additionally, we

show how to model the appearance and disappearance of targets within the environment.

Next, we present a control policy to assign trajectories for all robots in order to maximize

the objective function over a receding horizon. We study two objective functions using the

PHD �lter: mutual information and the expected number of detections by the robots. We

show that both objective functions are submodular, and use a result based on [99] to prove

that our greedy control policy is a 2-approximation.

In addition to the theoretical analysis we o�er, we evaluate our algorithm using simu-

lated experiments. While our framework may be applied to a number of robot and sensor

models, for the purposes of testing we restrict our attention to �xed winged aerial robots

with downward facing cameras. We use a real-world taxi motion dataset from [80] for the

targets and to verify our models. The simulation results reveal that robot teams using the

information-based control objective track a smaller number of targets with higher precision

compared to teams that maximize the expected number of detections.
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5.1.1 Related Work

Active target tracking problems have been studied in the literature under many di�erent

settings. Solutions have been presented for radio-based sensors [46], range-only sensors [108],

bearing sensors [64], and range and/or bearing sensors [109], under centralized and decen-

tralized settings. Frew and Rock [34] design optimal trajectories for a single robot to track

a single moving target using monocular vision. The problem of keeping targets in a robot's

�eld-of-view can be formulated as a visual servoing problem. Gans et al. [37] design a con-

troller which guarantees stability while keeping three or fewer targets in the �eld-of-view of

a single mobile robot.

[94] present a general solution for the multi-robot, multi-target case using a particle �l-

ter formulation. Tracking multiple targets with multiple robots requires explicit or implicit

assignment of targets to robots. Xu et al. [106] present a mixed nonlinear integer program-

ming formulation for assigning robots to targets as well as for determining optimal robot

positioning. Such a formulation is not directly applicable in our case since the number of

targets itself is unknown, and thus explicit assignment is not possible. Tokekar et al. [99]

present a greedy tracking algorithm for a team of aerial robots. In this chapter, we build on

this work to allow for the case of an unknown and changing number of targets. Recently,

there has been some work on actively detecting and/or localizing an unknown number of

targets using radio sensors [54, 92], range-only sensors [12], and arbitrary sensor models [25].

Kim et al. [54], Song et al. [92] studied the problem of detecting and localizing an unknown

number of radio sources. Unlike all these works, we do not assume that the targets remain

stationary.

5.2 Problem Formulation

We address the problem of a team of R robots monitoring an area E in order to detect,

localize, and track an unknown number of moving targets using an inexpensive camera. The

robots are able to localize themselves within the environment (e.g., using GPS) and robot

r has pose qrt at time t.
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The number of targets, nt, is unknown and varies over time, since individual targets

may enter and leave the area of interest. We use Random Finite Sets (RFSs) to represent

the number and state of targets at any time. Let Xt = {x1,t,x2,t, . . . ,xnt,t} denote a

realization of an RFS of target states at time t. Each robot receives a set of measurements

Zrt = {zr1,t, zr2,t, . . . , zrm,t} to targets that it detects within the �eld of view (FoV) of its

sensor. The number of measurements, mt, varies over time due to false negative and false

positive detections and the motion of the robots and the targets. Let pd(x | q) denote the

probability of a robot at q detecting a target with state x. For targets outside of the FoV

of the sensor, pd(x | q) ≡ 0. Here, pd(x | q) ∈ (0, 1) indicates the possibility of a false

negative, or missed, detection. When a target is successfully detected, the sensor will return

a measurement z ∼ g(· | x,q). The sensor can also return measurements to clutter objects,

causing false positive detections. Let c(z | q) denote the PHD of clutter measurements.

5.3 Target Tracking Framework

The representative problem that we consider is of a team of �xed-wing aerial robots equipped

with downward-facing cameras tracking vehicles driving on the ground. However the same

methodology could be extended to work with robots with other mobility constraints (e.g.,

ground vehicles or quadrotor platforms) and other sensor modalities (e.g., lidars or 3D depth

cameras).

5.3.1 Sensor Parameterization

The problem of detecting vehicles using aerial imagery has been well studied [39, 107]. We

use such studies to inform our selection of the sensor detection, measurement, and clutter

models. The approaches presented in [39, 107] are similar, searching for image features over

a range of scales in order to detect cars of di�erent sizes or to detect cars from di�erent

elevations or with di�erent image resolutions. In general, the system is able to have a higher

detection rate if we accept a larger number of false positive detections [107, Fig. 12], [39,

Fig. 8]. The detection rate may also vary with the number of pixels per target, which may

be computed, using the robot pose, the approximate length scale of a target, and the image
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resolution, to be

# pixels per car = pixels per radian× arctan
length of target

distance from camera to target
. (5.1)

We assume a logistic relationship between the number of pixels per target, npx(x,q), and

the detection rate,

pd(x | q) = p0 +
pd,max − pd,0

1 + exp
(
− k(npx(x,q)− np,0)

⋂
)
, (5.2)

where pd,0, pd,max, k, and npx,0 are design parameters.

The camera returns pixel (i.e., bearing) measurements to the cars detected within the

image. Using the pose of the robot, we can project measurements onto the ground plane to

localize the targets. The measurement model is

g(z | x,q) = N (z; [rx, cx]T , σ2I), (5.3)

where rx, cx are the pixel row and column values in an image taken at q, of a target at x, σ

is the standard deviation in pixels, and I is a 2× 2 identity matrix, as we are tracking the

two-dimensional position of the targets.

Like the targets, the clutter is modeled as a Poisson RFS, which is completely charac-

terized by the PHD. Without a priori knowledge of locations that are likely to have clutter,

the best choice is to use a uniform distribution over the measurement space. For most com-

puter vision-based detection algorithms, the expected number of clutter detections depends

upon the detection model, with a high detection likelihood resulting in a higher detection

rate [39, 107].

5.3.2 Target Parameterization

In order to predict how the target set evolves, we need models for the motion of individual

targets as well as the birth/death processes of the targets. A number of motion models have

been proposed in the literature, ranging from adversarial [17] to stochastic [61]. Often, a
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mixture of parametric motion models is used [62]. We take a data-driven approach to mod-

eling the targets' motion, utilizing real-world datasets that are available [55]. In particular,

we use Gaussian Process (GP) regression [83] to learn the function that maps the position

coordinates of the targets to velocity vectors, as shown by Joseph et al. [49].

GP regression is a Bayesian approximation technique to learn some function f(X) given

measurements y = f(x) + ε corrupted by Gaussian noise, ε ∼ N (0, σ2). Here, x = [x1, x2]T

refers to the position coordinates of the targets. We learn two separate functions, f1 and f2,

one for each axes of the ground plane, assuming that the velocities along the two axes are

independent. Instead of assuming a parametric model for fi, GP regression assumes that

the joint distribution of fi(X) de�ned over any collection of positions, X = {x1, . . . ,xk},

is always Gaussian. Thus, fi(X) is completely speci�ed by its mean function, mi(X) =

E[fi(X)] and covariance function, ki(X,X
′) = E[(fi(X)−mi(X))(fi(X

′)−mi(X
′))].

Given observed velocity vectors y1 and y2 taken at some subset of positions, X, GP

regression predicts the velocity vectors at another set of positions, X∗, as a Gaussian distri-

bution with conditional mean and variance values [83]:

mi(X
∗|X) = mi(X

∗) +Ki(X
∗, X)[Ki(X,X) + σ2I]−1(Yi −mi(X))

σ2
i (X

∗|X) = Ki(X
∗, X∗)−Ki(X

∗, X)[Ki(X,X) + σ2I]−1Ki(X,X
∗),

whereKi(X,X
′) is a matrix whose (m,n)th entry is given by the covariance between xm ∈ X

and xn ∈ X ′. We take the prior function, mi(X), to be a zero-mean distribution. Thus, if

the covariance function is known, the above equations can fully predict the velocity values

at arbitrary positions.

We assume that the covariance function belongs to the Matérn class with parameter

ν = 3/2 [83] since this choice of covariance function yields a better �t as compared to

the standard squared-exponential function used by Joseph et al. [49]. The length hyperpa-

rameter of the Matérn covariance is learned using training data from the Cabspotting taxi

dataset from [80]. The training dataset consists of time-stamped GPS latitude and longitude
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coordinates of taxis observed over a 24-hour subset of the month-long dataset. Figure 43

shows the predicted mean and variance values given by the GP regression using the learned

hyperparameter values. The velocity measurements in the dataset are shown by red arrows,

whereas the predicted velocities are shown in blue.

We use an empirical approach to learn the target survival and birth processes. For

both processes, we overlay a uniform grid (1m resolution) over the environment. Whenever

a target appears in a cell, we add one to the survival count if the target was previously

in another cell, we add one to the birth count if the target was previously outside the

environment, and add one to the death count if at the next time step the target leaves the

environment. The birth count for each cell is initialized to 10, so that the distribution of

birth locations is uniform if there is no data. Similarly, the survival and death count for

each cell are initialized to 9 and 1, respectively. The survival probability in a cell is given

by the ratio of the survival count to the total survival and death counts in that cell. In the

absence of data, this yields a uniform probability of survival of 0.9.

Figure 44a shows the environments used in the simulations, with the target survival

probability in Figure 44b and birth PHD in Figure 45. As Figure 44b shows, the targets

survive with high probability in the majority of the environment. The probability decreases

near the western and southern edges of the environment, where there are roads along the

edge of the environment. These same areas also have the highest rates of target births, as

Figure 45b shows. One may also clearly see the highways in the southeast and the bridge in

the northeast, which have the highest rates of tra�c, and thus of target births and deaths.

The target birth rate per minute, when considering all 536 taxis in the dataset, is 4.548

targets per minute of real time. The actual and �t birth rates are shown in Figure 45a, with

the Poisson approximation �tting the data extremely well.

5.3.3 PHD Filter

We utilize the Sequential Monte Carlo (SMC) PHD �lter from Vo et al. [102]. This approxi-

mates the PHD using a set of weighted particles, v(x) ≈
∑Pt

i=1wi δ(x−xi). The SMC PHD

�lter allows for arbitrary, non-linear sensor and motion models, including a �nite �eld of
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Figure 44: (a) The area of interest, a roughly 6.15 × 5.56 km region surrounding downtown San
Francisco. (b) The probability of target survival as a function of position.
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Figure 45: Empirical target birth PHD.
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view for the sensor. New particles are added to the PHD using the birth PHD described

above as well as using the most recent measurement set and inverse measurement model,

similar to the idea of Ristic et al. [86]. A �xed number of particles, Pb, are drawn from the

birth PHD and an additional Pm particles are drawn from the inverse measurement model

for each measurements in the most recent set, Zt. The weight of each of these particles

is w =
∫
c(z) dz

Pb+|Zt|Pm , where |Zt| is the cardinality of the measurement set. We utilize the

low-variance resampling technique from Thrun et al. [97, Chapter 4].

5.3.4 Control Policy

In this section, we present our control policy for assigning trajectories for the robots. We

study two objective functions for the control policy.

Mutual Information (MI) Objective

The robots utilize a receding horizon control policy similar to that from Chapter 4. Each

robot generates a set of candidate trajectories, with T measurements along each trajectory

at evenly spaced intervals. The optimal strategy is then to choose robot trajectories that

maximize the mutual information between the target set and its future measurements,

Q∗τ = argmax
Qτ∈Q1:R

τ

I[Xt+T ;Y1:R
τ | Qτ ], (5.4)

where τ = {t+1, . . . , t+T} is the time horizon, Xt+T is the predicted location of the targets

at time t + T , Y1:R
τ is the collection of binary measurements for robots 1 to R from time

steps t+ 1 to t+T , and Qτ are the future poses of the robots. These measurements depend

on the future locations of the robots Qτ = {q1
t+1, . . . ,q

1
t+T , . . . ,q

R
t+T }. Computing Q∗τ is

computationally challenging, nevertheless, we show that a greedy strategy approximates Q∗τ

by a factor of 2.

We utilize binary measurements, rather than the full measurements sets, in order to

decrease the computational complexity of the control policy. This allows us to derive a

closed-form expression for (4.5), and we have previously shown that this approach e�ectively

drives a team of robots to detect and localize static targets [25]. The binary measurements

132



are de�ned to be

y = 1 (Z 6= ∅) , (5.5)

where 1 (·) is the indicator function. Here y = 0 is the event that the robot receives no

measurements to any (true or clutter) objects while y = 1 is the complement of this, i.e.,

the robot receives at least one measurement. Kreucher et al. [60] take a similar approach,

using a binary sensor model and an information-based objective function to schedule sensors

to track an unknown number of targets.

Theorem 4. The mutual information between the target set and the binary measurement

model is a lower bound on the mutual information between the target set and the full mea-

surement set, i.e., I[X ;Y | Q] ≤ I[X ;Z | Q].

Proof. Note that y is deterministically related to Z, y = 1 (Z 6= ∅). This allows us to apply

the Data Processing Inequality [20, Theorem 2.8.1], which states that functions of the data

cannot increase the amount of information.

We utilize a greedy approximation strategy to evaluate (4.5), similar to that used by

Tokekar et al. [99]. Using this approach, each robot computes the utility of each action

according to (5.4). The robot and action with the highest utility are selected. The remainder

of the team then plans again, conditioned on the action of the �rst robot, and the robot and

action with the highest utility are again selected. This process repeats until all robots have

been assigned an action. Using the fact that mutual information is a submodular set function

of robot poses, we can show that this greedy assignment policy is a 2-approximation.

Lemma 1. I[X ;Y | Q] is a submodular set function of Q.

Proof. See [57, Proposition 2].

Theorem 5. Let QG be the robot poses selected by the greedy assignment policy and Q∗ be the

robot actions selected by the full, joint evaluation of (4.5). Then greedy is a 2-approximation,

i.e., I[X ;Y | QG] ≥ 1
2I[X ;Y | Q∗].
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Proof. We create a set system where the ground set, X , is the target state. For each robot,

let Yi be the candidate measurement sets (induced by the candidate robot poses). The

collection of Yi, say Y ′ = {Y1, . . . ,YN}, de�nes a partition matroid [7]: (Y ′, I) where any

Y ⊂ Y ′ ∈ I if and only if |Y ∩ Yi| ≤ 1, for all i. That is, Y is a valid assignment of

trajectories if and only if it chooses at most one trajectory corresponding to each robot.

Mutual information is a submodular function as given by the previous lemma.

Expected Number of Detections (END) Objective

The Expected Number of Detections (END) objective function is given by

N [X | Q] =

∫ (
1−

∏
q∈Q

(
1− pd(x | q)

))
v(x) dx. (5.6)

This objective gives the expected number of targets detected by at least one robot, and is a

submodular set function of Q so the greedy assignment algorithm will be a 2-approximation,

similar to the previous theorem.

Lemma 2. The END objective function, N [X | Q], is a submodular function of Q.

Proof. The di�erence in the objective when adding a single robot is

N [X;Q ∪ {q′}]−N [X;Q] =

∫
pd(x | q′)

∏
q∈Q

(
1− pd(x | q)

⋂
) v(x) dx.

For any R ⊆ Q, the product
∏

r∈R
⋂

(1−pd(x | r)
)
≥
∏

q∈Q
(
1−pd(x | q)

)
since pd(x | q) ∈

[0, 1] ∀x,q. Thus N [X;R ∪ {q′}] −N [X;R] ≥ N [X;Q ∪ {q′}] −N [X;Q], so by de�nition

N [X,Q] is submodular.

Trajectory Generation

We use a simple model for a �xed-wing aircraft with three basic control inputs: forward

velocity, yaw rate, and pitch rate. For each control input we select a range of possible

values. For each possible set of control inputs we integrate the position, yaw, and pitch

forward in time using a 1-step Euler integration scheme. Any trajectories that bring the
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Figure 46: Sample trajectories.

robots above or below the elevation limits are discarded as invalid, as are any that result

in collision. The remaining trajectories are interpolated to yield the T poses at which each

robot will take a measurement. Figure 46 shows sample trajectories for a single robot.

5.4 Results

To test the performance of the di�erent objective functions, we ran a series of simulated

experiments varying the number of robots, the length of the planning horizon, the objective

function, and the target motion model. We used teams of 2, 4, and 6 robots, either keeping

the number of planning steps constant (T = 2) or keeping the total number of actions for

the team constant (RT = 12). We perform 5 trials with each con�guration, using a random

subset of 80 targets from the taxi database for the ground truth target motion. Note that

the true number of targets in the area of interest varies over time as targets enter and leave.

The robots monitor the area from Figure 44a, which is scaled down by a factor of 100. We

also sped up the data by a factor of 60, so 1 s in simulation represents 1min of real time, in

order to speed up the simulations. The data is taken from 5�9 pm on May 18, 2008, a time

of day where there will be plenty of taxi tra�c.
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5.4.1 Moving Targets

The two target motion models that we consider are the Gaussian process (GP) described in

Section 5.3.2, and a Gaussian random walk (GRW) model. In GRW we model the target as

performing a random walk, with a velocity drawn at random from a Gaussian distribution.

Note that these models are used only to update the PHD; the actual targets trajectories are

given by the taxi dataset. In both cases we use the survival and birth processes described

in Section 5.3.2, with the birth rate set to 0.6788 to account for the reduced number of data

�les used.

Figures 47�49 show how the ratio of the expected number of targets to true targets,

the robot elevation, and the target set entropy change during a single run. These are

representative trials of a team of 2 robots with a planning horizon of 6 time steps.

Figures 50�52 show the ratio of the expected number of targets to true number of targets,

the fraction of true targets within the sensor FoV, and the ratio of expected targets to true

targets within the sensor FoV, respectively. In general, the fraction of targets tracked by the

team depends much more on the motion model and the objective function than on the team

size or planning horizon, despite the fact that larger teams and planning horizons cause the

robots to observe a larger number of targets. Additionally, the ratio of the expected number

of targets to the true number of targets within the sensor FoV is largely independent of the

objective function, team size, or planning horizon.

Overall, the robot teams using the information based control objective (MI) estimate

and track fewer targets than the teams using the END objective but each target is tracked

with higher quality. Additionally, the teams using the GP-based motion model track more

targets than those using the GRW motion model.

The reason for this di�erence is due to the emergent behavior of the di�erent control

objectives. Robots using the MI objective tend to stay closer to the ground in order to

decrease uncertainty in the location of individual targets. On the other hand, robots using

the END objective �y at a higher altitude, as Figure 53 shows. Note that increasing the al-

titude decreases the probability of detection, while increasing the sensor FoV. Consequently,
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(b) GP motion model with END objective

Figure 47: Ratio of the expected number to the true number of targets over a single run for R = 2
and T = 6.
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0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

Time [s]

E
le

v
a
ti
o
n
 [
m

]

(b) GP motion model with END objective

Figure 48: The elevation of the robots over a single run for R = 2 and T = 6.
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(a) GP motion model with MI objective
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(b) GP motion model with END objective

Figure 49: The entropy of the target set over a single run for R = 2 and T = 6.
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�ying to the highest altitude is not necessarily optimal. Figure 54 shows the average target

entropy. This is substantially lower for the teams using MI, indicating that the targets are

being tracked with less uncertainty.

5.4.2 Static Targets

We also test the performance of our framework with static targets using a team of 4 robots

with a planning horizon of 3. The simulation parameters are identical, except we replace

the 80 taxi data traces with 80 randomly drawn static target locations. The resulting �nal

estimated number of targets and target entropies are shown in Figure 55. The �nal estimated

number of targets is very close to 1 using both objective functions, indicating that the system

is able to correctly determine the number of targets. The entropy is also lower than in the

case of moving targets.

5.5 Conclusion

In this chapter we describe a framework for detecting, localizing, and tracking an unknown

number of moving targets using a team of mobile robots. The robot team uses the Probability

Hypothesis Density �lter to simultaneously estimate the number of targets and the states

of the targets. The PHD �lter is robust to false negative and false positive detections and

sensor noise and does not require any explicit data association. Using the estimate of the

target set from the PHD �lter, the robots greedily select actions that maximize submodular

control objectives. The two control objectives that we consider in this paper are the expected

number of detected (END) targets by the team and the mutual information (MI) between

the predicted targets and the future detections of the robots. We validate our framework

through extensive simulations using a real-world dataset for target motion. Robot teams

using the END objective track a higher fraction of the targets but do not localize the targets

with high precision. Conversely, robot teams using MI track a smaller number of targets

but have signi�cantly lower uncertainty in the target positions.
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(a) Gaussian random walk
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(b) Gaussian process

Figure 50: Average ratio of the expected number of targets to the true number of targets over a
single run.
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(b) Gaussian process

Figure 51: Average fraction of the number of true targets within the team's �eld of view over a single
run.
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(b) Gaussian process

Figure 52: Average ratio of the expected number of targets to the true number of targets within the
team's �eld of view over a single run.
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(b) Gaussian process

Figure 53: Average elevation of the robots over a single run.
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(a) Gaussian random walk
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(b) Gaussian process

Figure 54: Average entropy of the target set over a single run.
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(b) Final entropy of the estimated target set.

Figure 55: Performance of our framework with static targets.
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Chapter 6

Conclusion

6.1 Contributions

This dissertation presents an active information gathering framework for small teams of

robots. The formulation, which is based on random �nite sets, allows us to apply this

framework to situations in which there is ambiguous or unknown data association and the

number of objects of interest is not known at the beginning of the information gathering task.

Such situations are commonplace in real-world applications, including security and surveil-

lance, infrastructure inspection, environmental monitoring, precision agriculture, landmark

localization, and map building. In some of these tasks, such as infrastructure inspection

or security, the number of objects of interest is typically small and their locations may be

correlated � if a robot detects damage to one section of a bridge then the nearby areas may

also be damaged or weakened, or the motion of two intruders in a restricted area may be

coordinated. In other tasks, such as environmental monitoring or map building, the number

of features may be very large and there may be multiple objects of interest that the team

must detect and localize.

Our information gathering framework functions well in any of these scenarios. Chapter 2

presents background material on multi-target tracking, �nite set statistics, and information-

based control, the three core concepts of our information gathering framework. Chapter 3

presents an estimation algorithm based on random �nite sets that tracks a small number of
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objects using a team of robots. The robot team follows the gradient of mutual information,

an inherently local approach. This behavior is useful in security and surveillance settings,

where we would like a robot team to track intruders. We demonstrate the utility of this

approach through simulation and hardware experiments with the CANINE robot and with

a small team of quadrotor MAV platforms.

In Chapter 4 we use the PHD �lter to track a large number of targets, and the robot

team considers actions over a range of length scales. This allows the team to decide online

whether it is more useful to take repeated measurements of a local region or to explore

more distant regions. The team executes the plan over a receding horizon, adapting to the

information contained in the incoming measurements. The team may also interact with a

central information server and compare the relative information bene�ts of locally sensing

the environment versus communicating with the network resources. We demonstrate the

performance of this approach through a series of simulation and hardware experiments with

a team of Scarab robots.

Chapter 5 extends this approach to the case of moving targets. We learn target motion

models using Gaussian Process regression on a real-world dataset containing the motion of

over 500 taxis over the course of a month. We present experiments with a small simulated

team of �xed-wing aircraft tracking 80 moving targets over a simulated area that is tens of

square kilometers.

6.2 Future Work

6.2.1 Risk Avoidance

In Chapter 3, the robot team was able to discover regions that could be hazardous and

took the likelihood of failure into account in the control objective. This discovery was done

by detecting robot failure, an expensive method of �sensing� such hazards. Being able to

actively detect these hazards would allow robots to generate plans and select actions that

keep them safe while operating in hazardous environments, e.g., in search and rescue or �rst

responder scenarios. Users could also specify the desired level of risk that they are willing
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to tolerate for a particular application. In certain time-critical situations, the users may be

willing to risk losing some individual agents in the hope of achieving the goal more quickly.

This risk could also be automatically tuned online, becoming more conservative if agents

fail, to ensure that some agents will survive in order to complete the mission. Operating

in these potentially hazardous environments may also require di�erent mobility and sensing

capabilities of the robots. For example, there may be damaged buildings or infrastructure

that require a combination of ground and aerial robots to fully explore. Robots may also

need to seek out radiation sources, gas leaks, or �res in addition to trapped or injured people,

requiring multiple sensing modalities.

6.2.2 Active SLAM

The approaches presented in this dissertation all assume that the robots are able to localize

themselves with high accuracy and that the search area is known a priori. It would be

bene�cial to extend this work to situations with unknown maps and uncertain localization.

For example, in a search and rescue scenario where a team of robots is searching for victims

in a collapsed building, even having the building blueprints available will not be su�cient

for the robots to localize themselves since the building may have experienced signi�cant

damage. In such settings it is important for a robot team to be able to build an accurate

map online as it explores and to localize itself within such a map, a problem known as

simultaneous localization and mapping (SLAM). SLAM has been an area of active research

within the robotics community for decades and there are a number of existing solutions

to the problem of active SLAM. Carrillo et al. [10] present simulations and experiments

utilizing a new utility function for active SLAM using an occupancy grid representation [32]

of the environment. Mullane et al. [76, 77] provide the �rst solution to the SLAM problem

based on FISST, looking at the problem of landmark-based mapping. They utilize the

Rao-Blackwellized particle �lter and represent the landmarks using an RFS, using the PHD

�lter, or some variant of it, to recursively update the estimate of the map landmark set

conditioned on the trajectory of the robot. They show that this approach leads to superior

performance compared to traditional approaches to SLAM that utilize heuristic methods for
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data association and map management. Moratuwage et al. [75] extend the RB-PHD-SLAM

algorithm to use multiple feature classes and to work with multiple robots. Each feature class

has a di�erent motion model associated with it, allowing the robot team to track static and

mobile targets. Extending active information gathering approaches to the problem of active

SLAM, using the RB-PHD-SLAM algorithm, would allow robots to better reason about

sensor and environmental uncertainties while autonomously exploring new environments.

6.2.3 Extension to Other Estimation Algorithms

The FISST community has recently developed new estimation algorithms based on random

�nite sets. The Cardinalized Multi-target Multi-Bernoulli (MeMBer) �lter [104] and labeled

MeMBer �lter [84] represent targets using the so-called Bernoulli RFSs. A Bernoulli RFS

has two components, a probability of existence and a probability density of the state of

the target, and represents the estimate of a single target. The MeMBer �lter recursive

updates a collection of independent Bernoulli RFSs, merging sets that represent the same

target and pruning sets with low probabilities of existence. This approach, particularly the

labeled version, makes it easier to extract estimates for individual targets. Extending the

active information gathering framework to utilize these new �lters would be bene�cial, par-

ticular when tracking moving targets when it is more di�cult to extract individual target

tracks from a time history of the PHD. This will requires us to derive a new, computation-

ally tractable expression for the mutual information between the target set and the future

measurements of the robots.

6.2.4 Interacting With the Internet of Things

According to the McKinsey Global Institute, there are twelve key technologies that will

transform the way we live [71]. Among those are advanced robotics, the Internet of Things

(IoT), and cloud technology. As the IoT continues to expand, wireless devices and sensors

will become increasingly prevalent in the environment around us. Robots will play a part

in discovering and interacting with these devices, using their mobility to collect data from

isolated sources to share with other devices or to upload information to the cloud. Addition-
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ally, robots may utilize the cloud infrastructure to perform resource-intensive computations

or to gain access to large-scale databases. Chapter 4 touches on this idea, allowing robots

to upload and download data from a central server and considering the relative merits of

collecting information via direct sensing versus via communication. This synergy between

the IoT infrastructure and mobile robot platforms o�ers many new research opportunities

in the discovery, collection, and dissemination of information. For example, a mobile robot

could upload a video stream collected during exploring and receive a set of semantic object

labels along with the image processing software and models necessary to detect future in-

stances of these objects. Robots must also learn to utilize increasingly heterogeneous data.

For example, in smart building or smart city applications, robots could use either onboard

sensors or connect to dozens of di�erent smart sensors embedded in the local environment

to quickly gain information relevant to the current mission.

6.3 Concluding Remarks

This dissertation presents a uni�ed estimation, control, and communication framework for

multi-robot information gathering. The framework is applicable to a variety of di�erent real-

world tasks and can be applied to robots with di�erent mobility and sensing capabilities.

An extensive series of simulated and hardware experiments verify the performance of the

framework. Future work will extend this framework to more explicitly consider exploration

in hazardous environments and to consider uncertainty in robot localization. This will allow

the framework to be used in a broader set of tasks, including �rst responder scenarios and

search and rescue missions. We plan to improve the performance of the system by utilizing

recent advances in multi-target estimation and tracking algorithms, allowing the robots

to more quickly localize targets and to more easily extract target tracks. Finally, as robots

continue to play an increasingly large role in daily life, they must become aware of and utilize

the increasing number of available heterogeneous resources, from smart sensors embedded

in the local environment to cloud computing. We hope that all of the work contained in this

dissertation will help make life more productive and safe.
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Appendix A

Magnetic Anomaly Detection Sensor

Characterization

We ran experiments to experimentally characterize the detection statistics for the mag-

netometer on board the AscTec Hummingbird MAV platform, shown in Figure 56. The

magnetometer has 3 measurement axes and the magnitude of the vector appears to be

approximately normalized to the strength of the Earth's magnetic �eld. The targets are

cylindrical neodymium magnets1 with the axis of the magnet aligned with the z-axis of the

global coordinate frame.

To learn the baseline magnetic �eld, we �ew the Hummingbird through a lawnmower

pattern over a 2.6 × 2.6m area at a constant height of approximately 1.3m. Figure 57

shows that the magnetic �eld experiences signi�cant changes over the area covered by the

robot, varying by almost an order of magnitude. This is likely due to the presence of a metal

staircase and other large objects in addition to building materials, electrical wires, and other

robots in the laboratory space. Despite the large variance in measurements taken at the

same location, the average �eld changes smoothly over the environment. We �t a nominal

�eld strength by dividing the area into grid cells with size 30 cm and taking the empirical

mean of all of the magnetic �eld readings taken within that cell.

1K&J Magnetics, Inc. D8Y0, https://www.kjmagnetics.com/proddetail.asp?prod=D8Y0a
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Figure 56: Photo of an Ascending Technology Hummingbird MAV hovering over a magnetic target.
A second target may be seen in the background.

Note that for MAV Kilo there is a bias induced in the readings along the z-axis of the

magnetometer after the robot passes directly over the magnet. This does not occur for

MAV Papa. The phenomenon was repeatable in the training runs, but presents problems

for actual experimental trials as the robot does not know the locations of the magnets a

priori. To avoid this problem, we instead use magnetometer along the x-axis for MAV Kilo.

However, the deviation along the x-axis, unlike the z-axis, is not isotropic and changes signs

depending on what side of the magnet the robot is on, as Figure 57d shows. In order to keep

the models for the two robots similar, we ignore this change in the sign of the deviation for

MAV Kilo and only consider the absolute value of the deviation in the magnetic �eld.

In order to determine the presence of a target, we use the deviation from the nominal

�eld shown in Figure 57. To characterize the detection statistics, we �ew two more lawn-

mower patterns with a single magnetic target positioned at (0, 0, 1.12)T m. The resulting

deviations in the magnetic �eld are plotted as a function of the distance to the target in
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(b) MAV Kilo � z-axis � magnet.
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(d) MAV Kilo � x-axis � magnet.

Robot x position [m] Robot y position [m]

M
ag

ne
tic

 fi
el

d 
z

-1
0

1 -1
0

1

-0.15

-0.1

-0.05

0

0.05

(e) MAV Papa � z-axis � no magnet.
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Figure 57: Experimental results of the magnetic �eld strength as a function of the 2D position of the
MAVs in the baseline training runs. Blue dots indicate the individual data points and the grayscale
surface shows the average value in each cell. The magnetic �eld strength along the z-axis for MAV
Kilo is shown (a) before and (b) after a magnet is placed at (0, 0)m. The magnetic �eld strength
along the x-axis for MAV Kilo is shown (c) before and (d) after a magnet is placed at (0, 0)m. The
magnetic �eld strength along the z-axis for MAV Papa is shown (e) before and (f) after a magnet is
placed at (0, 0)m.
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Figure 58: Experimental results of the deviation of the magnetic �eld due to the addition of a magnet
as a function of the true distance to the magnet for (a) MAV Kilo and (b) MAV Papa.

Figure 58. It is evident that far away from the target the deviations from the nominal �eld

are relatively small, though with a few clutter detections. Near to the targets there are

signi�cant deviations in the magnetic �eld, with an approximate detection radius of 0.5m.

We have colored the data points according to whether they are inliers or outliers, using a

threshold on the deviation in the �eld strength. For Kilo, this threshold is εm = 0.55 and

for Papa εm = 0.03.

We use this data to characterize the detection and clutter models for the MAD sensor.

The probability of a false positive is computed using the ratio of detections to all mea-

surements outside of the sensing radius. To compute the detection statistics, we divide the

distance from the robot to the target into bins (of width 3 cm) and look at the detection rate

within each bin, using the thresholds from above to determine true versus missed detections.

Figure 59 shows this experimental data and the best �t detection models. For both robots,

the detection rate is relatively high and constant when the distance is small and falls sharply
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(b) MAV Papa

Figure 59: Experimentally determined MAD sensor detection models used for target detection and
localization.

Table 4: Best �t MAD sensor parameters.

Parameter pfn R0 [m] σR [m] Rmax [m] pfp

Kilo 0.1717 0.2616 0.0948 0.5 0.0032
Papa 0.0177 0.2485 0.0425 0.5 0.0138

towards zero as the distance increases. Given this, we model the probability of detection as

pd(x | q) =


1− pfn |x− q| < R0,

(1− pfn) exp
(
− (|x−q|−R0)2

2σ2
R

)
R0 ≤ |x− q| ≤ Rmax,

0 Rmax < |x− q|.

(A.1)

Here, pfn is the probability of a false negative, R0 is the radius inside which the probability

of detection is constant, σR is the rate at which the probability of detection drops o� with

distance, and Rmax is the maximum detection range of the sensor. To �nd the best �t

parameters, we perform a brute-force search over a range of the parameter space, selecting

the model with the minimum sum-of-squares error between the data points the model. pfp is

the probability of a false positive detection and is found by counting the empirical fraction

of detections when the magnet was further than the maximum sensing range. Table 4 lists

the best �t parameters for the two MAV platforms.
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Appendix B

Bearing-Only Sensor Characterization

We conduct experiments using a small team of ground robots (Scarabs), pictured in Fig-

ure 60. The Scarabs are di�erential drive robots with an onboard computer with an Intel

i5 processor and 8GB of RAM, running Ubuntu 12.04. They are equipped with a Hokuyo

UTM-30LX laser scanner, used for self-localization and for target detection. The robots

communicate with a central computer, a laptop with an Intel i7 processor and 16GB of

RAM, running ROS on Ubuntu 12.04, via an 802.11n network. The team explores in an

indoor hallway, shown in Figure 61, seeking the re�ective objects pictured with the robot in

Figure 60.

We converted a Hokuyo into a bearing-only sensor, which may be thought of as a proxy

to a camera. This simple sensor performs better than a camera in that avoids common

problems with visual sensors such as variable lighting conditions and distortions. The objects

for which the robots search strips of 3M 7610 re�ective tape attached to PVC pipes with

an outer diameter of 1.625 in. The tape provides high intensity returns to the laser scanner,

allowing us to pick out objects from the background environment. However, there is no way

to uniquely identify individual objects, making this the ideal setting to use the PHD �lter.

The hallway features a variety of building materials such as drywall, wooden doors,

painted metal (door frames), glass (o�ce windows), and bare metal (chair legs, access panels,

and drywall corner protectors, like that in the right side of Figure 60). The re�ective
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Figure 60: A Scarab robot with two targets in the experimental environment.
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Figure 61: A �oorplan of the environment used in the hardware experiments. Di�erent starting
locations for the robots are labeled in the map.
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properties of the environment greatly vary for di�erent building materials and for di�erent

angles of incidence of the laser. The intensity of bare metal and glass surfaces at low angles

of incidence is similar to that of the re�ective tape. Figure 63 shows an example laser scan

from the environment, with the robot at the origin and oriented along the x-axis. The targets

show up as clear, high intensity sections in the laser scan, though the intensity decreases

with distance to the robot (objects 1�5 are placed 1�5m from the robot, respectively).

Motivated by this, we select a threshold on the laser intensity of 11000 (shown as a black

dotted line in the plots) to be able to reliably detect objects within a 5m range of the robot.

At low angles of incidence, bare metal and glass have laser returns of similarly intensity to

the true objects, creating clutter measurements. Note that glass has an extremely narrow

band of angles of incidence (≈ 0.02◦) that result in high intensity returns, while the metal

has a wider range (≈ 2.5◦). If we were to eliminate the clutter detections, then the e�ective

sensing range of the robots would only be less than 2m, signi�cantly decreasing the utility

of the system.

To turn a laser scan into a set of bearing measurements, we �rst prune the points based

on the laser intensity threshold, retaining only those with su�ciently high intensity returns.

The points are clustered spatially using the range and bearing information, with each cluster

having a maximum diameter dt. The range data is otherwise discarded. The bearings to

each of the resulting clusters form a measurement set Z.

A team of three robots drove around the environment for 20min collecting measurements

of 15 targets at known positions. To move around the environment, the robots generated

actions over length scales ranging from 1m to 20m, as shown in Figure 62, and randomly

selected actions from the candidate set. This allowed the robots to cover the environment

much more e�ectively than a pure random walk. The collected data set consists of 1959

measurement sets (i.e., laser scans) containing 2630 individual bearing measurements.

We now develop the detection, measurement, and clutter models necessary to utilize the

PHD �lter using the robot, sensor, and targets from the previous section.
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Figure 62: Example action set with a horizon of T = 3 steps and three length scales. Each action is
a sequence of T poses at which the robot will take a measurement, denoted by the hollow circles.
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(b) Intensity plot and measurement set
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Figure 63: An example laser scan from the o�ce environment. (a) Shows the XY scan labeled
according to the building material. Objects 1�5 are placed 1�5m from the robot and the sources
of clutter measurements are also labeled. (b) Shows the corresponding intensity plot with material
labels and the resulting measurement set. (c)-(e) Show insets of speci�c objects of interest within
the scan and the resulting measurements.
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(a) Detection diagram
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(b) Detection model

Figure 64: (a) A pictogram of the laser detection model, where dt is the diameter of the target, θsep
is the angular separation between beams, and r is the range. (b) Best �t detection model to 1588
true detections, from 1959 measurement sets, and 1007 false negative detections.

B.1 Detection Model

The detection model can be determined using simple geometric reasoning due to the nature

of the laser scanner, as Figure 64a shows. Each beam in a laser scan intersects a target that

is within dt/2 of the beam. The arc length between two beams at a range r is rθsep, and

the covered space is dt. Using the small angle approximation for tangent, the probability of

detection is

pd(x; q) = (1−pfn) min

(
1,

dt
r(x, q)θsep

)
1 (b(x, q) ∈ [bmin, bmax])1 (r(x, q) ∈ [0, rmax]) (B.1)

where r(x, q) and b(x, q) are the range and bearing to the target in the local sensor frame,

pfn is the probability of a false negative, and 1 (·) is an indicator function. The bearing is

limited to fall within [bmin, bmax] and the range to be less than some maximum value rmax

(here due to the intensity threshold on the laser and the re�ectivity of the targets).

To �nd the optimal parameter values, we take the collected data and determine which

measurements originate from true objects. A measurement is labeled as a true detection if
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it is within 3σ of the true bearing to the target and within the �eld of view of the robot,

given its current pose. Since the PHD �lter assumes that each target creates at most one

measurement per scan, once a measurement-to-target association is made, that target is no

longer �t to any other measurements in a measurement set. If no measurement is associated

to a target, the target is labeled as a false negative detection. The collected data contains

1588 true detections and there are 1007 false negative detections.

We bin this data as a function of the true range to the target in 0.2m increments,

computing the probability of detecting a target within each range bin. We search over pfn

(from 0 to 1 in steps of 0.005) and dt (from 0 in to 2 in in steps of 0.01 in), computing the

sum-of-squares error between the data and the parameterized model. We �nd the e�ective

target diameter dt, since the intensity is below the cuto� threshold at extremely high angles

of incidence to the re�ective tape. Figure 64b shows the best �t model, with pfn = 0.210

and dt = 1.28 in. These parameters are reasonable, with the e�ective target diameter being

78.8% of the true target diameter. This corresponds to a maximum angle of incidence of

52.0◦, which is orders of magnitude larger for the targets than for glass or metal.

B.2 Measurement Model

The sensor returns a bearing measurement to each detected target. We assume that bear-

ing measurements are corrupted by zero-mean Gaussian noise with covariance σ, which is

independent of the robot pose and of the range and bearing to the target. In other words,

g(z | x; q) =
1√

2πσ2
exp

(
−
(
z − b(x, q)

)2
2σ2

)
, (B.2)

where b(x, q) is the bearing of the target in the sensor frame.

During the runs, the robots occasionally experience signi�cant errors in localization due

to occlusions by transient objects, long feature-poor hallways, and displaced semi-static

objects, e.g., chairs. Since no ground-truth localization data is available in the experimental

environment, we �t the noise parameter σ by searching over a range of possible values. Note

that the value of σ a�ects the target-to-measurement association, and thus the detection
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Figure 65: Detection model sum of squares error (SSE) (blue circles) and the fraction of mea-
surements that were classi�ed as detections (orange exes) as a function of the measurement noise
parameter.

and clutter model parameters.

Figure 65 shows that the choice of the parameter σ creates a frontier for the detection

model SSE and the fraction of measurements classi�ed as detections. With very low values of

σ, there are few inliers, i.e., labeled detections, so the model �ts well but is not meaningful.

The error in the �t increases until around σ = 1.25◦, when it begins to decrease. From this

point, the model �ts increasingly well, though after a point the decrease is due to over�tting

the data and there is a clear �knee� in the data. This is also the point where the fraction of

inliers levels out. We select σ = 2.25◦ as the best �t measurement noise parameter, and use

this to �t the detection and clutter models.

B.3 Clutter Model

Clutter (i.e., false positive) measurements arise due to re�ective surfaces within the environ-

ment, such as glass and bare metal, only at low angles of incidence. Since these materials

are mostly found on walls, which are to the side of the robot when it is driving down a

hallway, there will be a higher rate of clutter detections near ±π
2 rad in the laser scan. For

objects such as table and chair legs there is no clear relationship between the relative pose
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(a) Clutter model
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(b) Clutter distribution

Figure 66: (a) A pictogram of the clutter model, where θc is the width of the clutter peaks centered
at ±π2 , and the bearing falls within the range [− 3π

4 ,
3π
4 ]. (b) Best �t clutter probability density

function, using 1010 clutter measurements from 1959 measurement sets.

of the object and robot, so we assume that such detections occur uniformly across the �eld

of view of the sensor. This leads to a clutter model of the form shown in Figure 66a.

Let θc be the width of the clutter peaks centered at ±π
2 and let pu be the probability

that a clutter measurements was generated from a target in the uniform component of the

clutter model. The clutter model is

c(z) =
puµ

bmax − bmin
1 (b ∈ [bmin, bmax]) +

(1− pu)µ

2θc
1
(∣∣|b| − π/2∣∣ ≤ θc/2) , (B.3)

where µ is the expected number of clutter measurements per scan. The clutter cardinality,

m, is assumed to follow a Poisson distribution with mean µ [67].

All measurements that are not associated to a target, as described in Sec. B.1, are

considered to be clutter measurements. We bin the bearings of these clutter measurements

in π
20 increments to create a piecewise-constant distribution. We perform a search over θc

(from 0 rad to π
2 rad in steps of

π
400 rad) and pu (from 0 to 1 in steps of 0.005) to �nd the best

�t parameters (using the sum-of-squares error) to the data, with Figure 66b showing the

best �t model, with θc = 0.200π rad and pu = 0.725. The number of clutter measurements
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Figure 67: Best �t model for the clutter cardinality, using 1010 clutter measurements from 1959
measurement sets.

per scan is used to �t the clutter cardinality parameter µ, with Figure 67 showing the best

�t value, µ = 0.5319.

B.4 Analysis

The speci�c values of the sensor parameters depend upon the speci�c robot, sensor, targets,

and environment. For example, the peaks in the clutter model near ±π
2 arise due to the

geometry and appearance of the environment. In a more open setting, or with a more limited

�eld of view sensor, we would not expect to see these peaks in the clutter distribution. Or

in an environment with more glass walls, we would expect the number of clutter detections

to be higher and the peaks to be more pronounced.

The detection statistics also depend highly upon our particular experimental setup. The

strip of re�ective tape is only 1 in tall and the sensor is planar, so a bump in the �oor of only

2.5mm would cause the robot to pitch su�ciently to fail to detect a target that is 1m away.

Any small bumps in the linoleum �ooring, particularly at transitions to carpeting, cause

the robot to experience false negative detections. Additional false negatives may occur due

to occlusions from transient objects, e.g., passing people and other robots, and semi-static

objects such as chairs.
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