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A B S T R A C T

An essential component of all multi-object estimation systems is a mathemati-

cal model that captures the expected behaviour of the received measurements.

The majority of multi-object estimation algorithms proposed in the literature have

focussed on a measurement model known as the standard or point-detection model.

Fundamentally, this model consists of the following two assumptions; each target

can generate at most one measurement, and each measurement is generated by at

most one target. These assumptions lead to simplified derivation and lower computa-

tional complexity of tracking algorithms. However, most sensors do not satisfy these

modelling assumptions at all times, and algorithms that are derived from the stan-

dard model may not be able to cope when faced with real world sensor data. It is

therefore important to develop trackers that are not restricted to the standard model,

but can instead accommodate more general models in which the aforementioned

assumptions may not hold true.

Another issue in many tracking systems is that of how to control the sensor. It is

often the case that sensors can be manipulated in ways that affect the quality of the

observed measurements, thereby affecting the estimation performance of the system.

For example, sensors can often be moved or oriented in different ways, or their op-

erating parameters changed to influence how they detect and measure the targets.

Such control is often carried out manually, relying on human judgement to provide

the control decisions. On the other hand, automating these decisions offers the op-

portunity for improved sensor control, by accounting for the prevailing conditions in

a more reliable way.

The theory of random finite sets (RFS) provides a mathematically rigorous frame-

work for addressing multi-object estimation and control problems. A recently pro-

posed technique using labelled random finite sets is particularly appealing, as it has led

to the derivation of the first Bayes optimal multi-target tracker that can estimate the

trajectories of an unknown and time-varying number of targets. This algorithm is

called the generalised labelled multi-Bernoulli (GLMB) filter. So far, the GLMB filter has
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been restricted to the standard measurement model. This dissertation addresses this

limitation by generalising the GLMB filter to accommodate sensor models that do not

adhere to the standard assumptions, thereby broadening its range of potential real

world applications. Also presented is a new technique for multi-target sensor control,

based on maximising a measure of the multi-target information gain in the context

of the GLMB filter.

The first key contribution of this dissertation is the first labelled RFS-based tracker

to accommodate possible merging of target measurements. This is significant for ap-

plications involving low resolution sensors that are incapable of resolving closely

spaced targets into separate detections. The second contribution is the first labelled

RFS-based algorithm for multiple extended target tracking, which has applications to

processing high resolution sensor data containing multiple simultaneous detections

per target. The third contribution is the derivation of analytical expressions for two

new statistical properties of GLMB random finite sets, namely the Cauchy-Schwarz

divergence and the void probability functional. Both of these properties have applica-

tions in multi-object sensor control.
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1 I N T R O D U C T I O N

1.1 a brief history of estimation and tracking

Since prehistoric times, humankind has been observing the night sky, examining

its objects and their behaviour in ever greater detail. The study of astronomy has

had a tremendous influence on the development of human civilisation, so it is per-

haps fitting that this oldest of natural sciences provided the catalyst for a branch of

mathematics that continues to play such an important role in many modern technolo-

gies. In 1795, an 18-year-old by the name of Carl Fredrich Gauss, now widely consid-

ered to have been one of the greatest mathematicians of all time, faced the problem

of determining the motion of celestial bodies based on data collected from telescope

observations. In addressing this problem, Gauss developed a technique known as the

method of least squares, which went on to become one of the fundamental building

blocks of modern estimation theory [57, 179].

It was not until 1922 that the term “estimation” came to be be used in the statistical

literature. It was first introduced by Ronald Fisher in [55], who was one of the most

influential statisticians of the 20th century. Fisher’s most notable contributions to esti-

mation theory were his work on the maximum likelihood method, and on characterising

the information content of observed signals using what became known as the Fisher

information. His pioneering work, along with the work of his student Calyampudi

Rao, led to the discovery of the Cramer-Rao bound, which is arguably one of the most

important results in modern estimation theory, as it provides a fundamental tool for

evaluating the quality of unbiased estimators.

The idea of “filtering” as a method of estimating a signal’s true value in the pres-

ence of noise, was introduced in the 1940’s with the work of Norbert Wiener and

1



2 introduction

Andrey Kolmogorov. A filter for estimating continuous-time stationary signals based

on the minimum mean square error criterion was developed by Wiener during 1940’s

(published in 1949) [204], and an equivalent method for discrete-time signals was

independently proposed by Kolmogorov in 1941 [109]. The Wiener filter, as it became

known, emerged as a highly popular technique for signal noise reduction, and paved

the way for the later developments in estimation and signal processing.

The methods proposed by Weiner and Kolmogorov were based on the concepts of

classical control theory, making use of frequency domain techniques in order to char-

acterise the relationship between a system’s inputs and outputs. Such an approach

was necessary to develop methods that were tractable for manual computation, since

computers had not yet been invented. In the 1950’s and 60’s, researchers in control

and estimation theory turned their attention towards the modelling of systems di-

rectly in the time domain, known as state-space modelling. Such a change, which was

made possible by the development of computers, afforded far greater flexibility in

system design and analysis, alleviating some of the limitations of classical techniques.

In 1960, Rudolf Kalman used the concept of state-space models to develop his

celebrated technique for estimating non-stationary signals from noisy observations

[100]. The Kalman filter is an exact solution to the Bayesian estimation problem under

the assumptions that the process and measurement models are linear, and the state

and measurement distributions are Gaussian. It has since been extended to handle

nonlinear process and measurement models, using various approximation techniques

(see for example [86, 97]).

By the early 1990’s, it had become clear that there were many applications in

which the modelling assumptions of the Kalman filter were too restrictive. In par-

ticular, for the nonlinear variants of the Kalman filter, it has been shown that the

Gaussian assumption on the state distribution becomes increasingly erroneous as

the non-linearity in the system models grows more severe. In response to this prob-

lem, an approach for handling nonlinear non-Gaussian models was developed using

the concept of sequential Monte Carlo sampling [63, 50, 168], a technique which be-

came known as particle filtering. Algorithms based on particle filtering demand a great

deal more numerical computation than Kalman filters, however, due to the advent of

powerful computing technology, and their tremendous modelling flexibility, particle

filters have become an extremely popular estimation technique.



1.1 a brief history of estimation and tracking 3

The aforementioned Weiner, Kalman and particle filters were all originally devel-

oped for the class of estimation problems in which the number of parameters to be

estimated is fixed and known, and the origin of the observations is also known. For

applications where there exists the potential for uncertainty in the origin of the ob-

servations, due to either false alarms or the presence of multiple targets, additional

techniques must be brought to bear, in order to resolve this uncertainty. Since the

1970’s, there has been a great deal of research effort devoted to solving such prob-

lems, as they are becoming increasingly important in modern signal processing and

estimation systems.

For tracking a single target in the presence of false alarms, the most basic approach

is called nearest neighbour data association. This algorithm assumes that the measure-

ment generated by the target is the one that lies closest to the predicted estimate, and

all others are ignored as false alarms. Although this makes intuitive sense, it has been

shown to perform poorly in practice, especially when the false alarm rate is high [9].

An improved technique was proposed in 1975, which was called probabilistic data as-

sociation (PDA) [11]. The PDA method avoids associating a single measurement to

the target, and instead updates the estimate using a probabilistically weighted com-

bination of all measurements received on a given scan. In 1994, an extension to PDA

was proposed, which accommodates cases where the existence of the target is un-

certain. This algorithm was called integrated probabilistic data association (IPDA) [151],

and was so named for the fact that it integrates a calculation of the target’s existence

probability into the filtering recursion.

Perhaps unsurprisingly, multiple target tracking has undergone very similar de-

velopments to single object tracking. The simplest method for estimating multiple

targets is called global nearest neighbour (GNN) data association, which operates by

making hard decisions about the association of measurements to targets on each

scan. The decisions are based on minimising a global association cost, such as the

sum of the distances between predicted target states and their associated measure-

ments. Like its single-target counterpart, GNN also performs poorly under high false

alarm rates, and also when there are clusters of closely spaced targets [9]. An im-

proved method is called joint probabilistic data association (JPDA) [56], which updates

each target using a different weighted combination of all measurements, where the

weights are the association probabilities computed jointly across all targets. Calcu-

lating these probabilities involves considering every possible joint association event,
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the number of which grows exponentially as the number of measurements and tar-

gets increases. JPDA can therefore become computationally infeasible, and it also

restricted in the sense that the number of targets must be fixed and known. A useful

extension to JPDA for tracking a time-varying and unknown number of targets is

called joint integrated probabilistic data association (JIPDA) [148], but this also suffers

from the problem of exponential complexity. A cheaper technique is known as linear

multi-target integrated probabilistic data association (LMIPDA) [152], which makes use of

a heuristic approximation to reduce the complexity.

Perhaps the most well established technique for estimating an unknown and time-

varying number of targets is called multiple hypothesis tracking (MHT), which was first

proposed by Reid in 1979 [162]. This algorithm takes a deferred decision approach

to the data association problem, by generating a potentially very large collection of

tentative tracks, each representing a different association hypotheses. The algorithm

then waits for more data to be collected in order to build evidence for the correct

hypothesis, before making a hard decision on which one is correct. This method has

gained considerable popularity in the decades since it was first proposed, and it has

found widespread application in operational multi-target tracking systems. However,

MHT also has some drawbacks, including the fact that implementations often require

heuristic methods to reduce computational complexity, and it is difficult to establish

whether MHT is Bayes optimal, in the sense of minimising the posterior Bayes risk. It

is also notoriously challenging to implement, requiring a great deal of programming

effort to achieve a useful system.

More recently, the concept of random finite sets (RFS), has emerged as a principled

technique for tackling multi-target estimation problems in a mathematically consis-

tent and rigorous manner [135]. Fundamentally, it is based on the idea of modelling

the multi-target states, and the multi-target observations, as set-valued random vari-

ables. The framework known as finite set statistics (FISST) [62, 135], provides the

mathematical tools required to work with random finite sets and to characterise their

statistics. The cornerstone of this framework is a notion of multi-target density and

integration that is consistent with point process theory [194]. Since its inception in

the mid 1990’s, FISST has been used to derive several types of multi-target filter-

ing algorithms, such as the probability hypothesis density (PHD) filter [126], cardi-

nalised PHD (CPHD) filter [129], multi-object multi-Bernoulli (MeMBer) filter [135],
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and cardinality balanced multi-object multi-Bernoulli (CBMeMBer) filter [200]. These

are briefly summarised in Chapter 2 of this dissertation.

At first, the development of RFS-based techniques was concentrated on the case of

multi-target filtering without target labels. This meant that on each time step, the al-

gorithms would produce sets of unlabelled target estimates, and there was no explicit

correspondence between the estimates across time steps. For this reason, RFS meth-

ods were considered useful only for multi-target filtering, and not for multi-target

tracking (i.e. they could not estimate continuous target trajectories over time). For a

number of years, this was seen as a weakness of the RFS approach, and attempts at

solving it were based on various heuristics and post-processing techniques. However,

in 2013, a new approach was proposed, based on modelling the multi-object state

as a labelled random finite set [198]. This was the first multi-target tracker to be de-

rived based on a rigorous mathematical formulation, which is naturally capable of

estimating the trajectories of an unknown and time varying number of targets, under

the standard models of multi-target dynamics and multi-target observation. The goal

of this dissertation is to build upon this state-of-the-art technique, by generalising

it in a way that will enhance its potential for use in a wider variety of real-world

multi-target tracking applications.

1.2 motivation

In recent decades, the proliferation of sensors across many areas of technology has

resulted in estimation theory becoming more vital than ever before. Every year, gov-

ernments, corporations and individuals around the world spend many billions of

dollars on systems and technologies which, at their core, rely on the principles of

estimation theory to process sensor data. Indeed, systems that monitor or interact

with their environment are becoming increasingly commonplace, and they all re-

quire the use of sensors to gather the information necessary to perform their task.

Applications of such systems span a diverse range of technological and scientific dis-

ciplines, of which just a few of examples are; robotics [87, 117], autonomous systems

[205], surveillance [120, 25], military combat/weapons systems [29], and biomedical

research [61, 182, 139].

In all of these applications, the sensors alone are usually not capable of providing

measurements of sufficient quality to be used directly. Although useful information
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may be present, it can easily become obscured by unwanted effects such as noise,

false alarms, misdetections, and measurement origin uncertainty. To address these

problems, further processing is usually required in order to distill the relevant infor-

mation, and eliminate any undesirable effects corrupting the data. After such pro-

cessing, the “filtered” information can be passed to the rest of the system, leading to

improved reliability and performance in the desired task.

Sensors come in a wide variety of different types and capabilities, and it is un-

reasonable to expect a single type of observation model to capture these different

capabilities. The so-called “standard” sensor model accommodates different types

of observed quantities (e.g. position, bearing, range, frequency, etc.), however, that is

where its flexibility ends. The standard model is limited to cases where each measure-

ment is generated by at most one target, and each target generates at most measure-

ment. In practice, real world sensors often violate these assumptions, leading to poor

estimation performance if the observation data is processed according to this model.

For example, some types of radar and sonar systems have relatively low spatial res-

olution, and thus cannot produce separate detections for targets that are very close

together [44, 29]. On the other hand, sensors such as cameras and laser range-finders

can have very high resolution, and therefore may produce multiple simultaneous de-

tections originating from a single target [66]. In practical systems, effects such as finite

sensor resolution and extended objects are unavoidable, so it is fundamentally impor-

tant to investigate techniques for processing this type of data in a principled manner.

This dissertation is the first to tackle this problem using a rigorous formulation based

on labelled random finite sets.

In many sensing systems, performing estimation using the received data is only

part of the problem. Often it is possible to exert some level of control over the system,

which can potentially influence the estimation performance. A prime example of this

is when a sensor is mounted on a mobile platform, such as a vehicle, ship, or aircraft.

Different trajectories taken by the platform can affect the quality of the measurement

data, thus planning an optimal future trajectory for the sensor platform is an impor-

tant consideration. These types of control problems have been studied extensively for

cases involving a single target, see for example [159, 156, 101, 175, 165]. The case of

multiple targets is significantly more challenging, and although some research has

been done, for example [110, 127, 167, 65, 78], it has not yet received the same level of

attention as single-target sensor control. Multi-target control problems are becoming
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increasingly important, particularly in areas such as autonomous systems, robotics,

and military command and control [75]. In addition to the aforementioned results on

improved sensor models, this dissertation establishes new tools that have clear appli-

cations to sensor control in a multi-target environment, again, using the principles of

labelled random finite sets.

1.3 key contributions

The first contribution of this dissertation is the first multi-target tracking algorithm based

on RFS principles to accommodate merged measurements. Sensors with low spatial resolu-

tion are often incapable of generating separate detections for targets that are closely

spaced. In these cases, the sensor might only deliver a single detection that is effec-

tively generated by a group of targets, i.e. a merged measurement. Traditional sensor

models do not accommodate this effect, and instead assume that each measurement

is produced by at most one target. In Chapter 3, a labelled random finite set-based

tracker is derived that can handle this effect in a rigorous manner. In doing so, a

method for approximating an arbitrary labelled RFS density as a generalised labelled

multi-Bernoulli density is developed, which has applications beyond the problem of

tracking in the presence of merged measurements. This contribution has appeared

in the author’s conference paper [19] and journal article [21], and partially in the

co-authored journal article [157].

The second contribution is the first algorithm based on the labelled RFS technique for

tracking multiple extended targets. Most traditional tracking algorithms model the tar-

gets as points in the state space, and the sensor models assume that each target

generates a maximum of one measurement at any given time. In practice, such an

assumption is often inaccurate, especially when the targets are physically large rela-

tive to the size of a sensor resolution cell. When this occurs, a single target can give

rise to multiple detections simultaneously, causing standard tracking algorithms to

fail. In a sense, the extended target problem can be viewed as the dual of the merged

measurement problem, with the former allowing multiple measurements per target,

and the latter allowing multiple targets per measurement. In Chapter 4, labelled ran-

dom finite sets are used to derive an algorithm which can track an unknown and

time-varying number of extended targets. This contribution has appeared in part in

the author’s conference paper [20], and journal article [24].
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The third contribution is the derivation of analytical forms for the Cauchy-Schwarz diver-

gence (CSD) and void probability for generalised labelled multi-Bernoulli RFSs, and their ap-

plication to multi-target sensor control. The Cauchy-Schwarz divergence provides a mea-

sure of information divergence between two probability densities, and it is demon-

strated that for two GLMBs composed of Gaussian mixture single-object densities,

the CSD can be computed tractably in closed form. The void probability functional is

another useful statistical tool, which, in addition to providing a complete characteri-

sation of an RFS, also allows one to calculate the probability that any given region of

the state space is empty. It is shown that in certain cases, this can also be computed

analytically for GLMBs. In addition to these theoretical results, Chapter 5 presents an

application of the CSD and void probability to a multi-target sensor control problem,

where the goal is to plan a sensor trajectory that optimises the tracking performance,

whilst maintaining a safe distance from all targets. This contribution has appeared

in part in the author’s conference paper [23], and at the time of writing, a journal

submission on this work is currently under review [22].

Finally, this dissertation contains two supplementary contributions, which were

developed during the early stages of the author’s research. The first of these is a

Gaussian mixture (C)PHD filter with a partially uniform birth intensity, which is useful

for scenarios where the true birth intensity is unknown, and also for reducing the

number of birth parameters that need to be specified by the user. This contribution is

presented in Section 2.4.6, and has previously appeared in the the author’s conference

paper [16] and journal article [18]. The second is a simple improvement to a method for

CPHD filtering with unknown clutter rate, which is useful in practice, since the true

clutter rate often cannot be known in advance and may be subject to variations over

time. This is presented in Section 2.4.7, and has previously appeared in the author’s

letter [17].



2 B A C K G R O U N D : S I N G L E A N D

M U LT I - O B J E C T B AY E S I A N E S T I M AT I O N

The aim of this chapter is to provide a general background on Bayesian estimation

for single and multi-object tracking, and to motivate the use of labelled random

finite sets for multi-object trajectory estimation. Section 2.1 provides a brief survey of

filtering techniques for applications in which the system state and the observations

can be modelled as vector-valued random variables with fixed and known dimen-

sion. Section 2.2 introduces the notion of random finite sets (RFS) as a more flexible

alternative to vector-valued random variables, and highlights some common classes

of RFS that can be used to model multi-object systems. Section 2.3 introduces the

multi-object Bayes filter for estimating the number and states of a time-varying and

unknown number of objects, which is a general but intractable recursion based on

the RFS formulation. Section 2.4 presents a survey of multi-object filters based on the

unlabelled RFS formulation. This section also includes two preliminary contributions,

one in Section 2.4.6 concerning filtering with an unknown target birth model, and an-

other in Section 2.4.7 which considers filtering with an unknown clutter rate. These

have been previously published in the author’s conference paper [16] and journal ar-

ticles [18, 17]. Section 2.5 reviews existing multi-object tracking techniques based on

the formulation of labelled random finite sets. Finally, Section 2.6 presents detailed

pseudo-code for two labelled RFS-based filters, which form the basis for the tracking

algorithms developed in the remainder of this dissertation.

9
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2.1 bayesian estimation

The simplest form of Bayesian state estimation involves cases in which the number of

objects is fixed and known, and it is known which observations belong to each object.

Under such conditions, it suffices to model the system and the observations as vectors

with fixed dimension, and on this basis, filtering algorithms can be derived using

traditional statistical techniques. The most well known of these is the Kalman filter

[100], which provides an exact closed-form solution to the Bayes recursion when the

system and observation models are both linear and Gaussian. Approximate methods

for non-linear Gaussian models include the extended Kalman filter (EKF) [86] and

unscented Kalman filter (UKF) [96], and a general approximate method for non-linear

non-Gaussian models is known as the particle filter [63]. This section provides a

brief overview of these techniques, since they form the basis for more general multi-

object filters that can handle effects such as time-varying numbers of objects, false

detections, missed detections, and measurement origin uncertainty.

2.1.1 The Bayes Recursion

Suppose that a system can be represented by a discrete-time state-space model, and

the state at time k is completely captured by a state vector xk ∈ X ⊆ Rnx . The

state vector evolves in time according to a Markov transition density fk|k−1 (xk|xk−1),

which is the probability density of the state xk at time k, conditioned on the event

that the state at time k − 1 was xk−1. At each time k, a noisy observation process

yields a measurement vector zk ∈ Z ⊆ Rnz , which is related to the state vector via a

likelihood gk (zk|xk), i.e. the probability density of the measurement zk, conditioned

on the event that the true state is xk. The collection of all measurements from time 1

up to k is denoted as z1:k = (z1, . . . , zk).

Suppose that at time k− 1, our knowledge of the system state, conditioned on all

the measurements received so far, is captured by a probability density pk−1 (xk−1|z1:k−1).

At time k, a new measurement zk is received. The goal of the Bayes recursion is to

fuse the information in zk with the information contained in the previous density

pk−1 (xk−1|z1:k−1), to yield a new density pk (xk|z1:k), known as the posterior density.
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The posterior density is computed from the previous density, transition density and

measurement likelihood as follows

pk|k−1 (xk|z1:k−1) =
∫

fk|k−1 (xk|xk−1) pk−1 (xk−1|z1:k−1) dxk−1 (1)

pk (xk|z1:k) =
gk (zk|xk) pk|k−1 (xk|z1:k−1)∫
gk (zk|x) pk|k−1 (x|z1:k−1) dx

. (2)

In the above, (1) is known as the Chapman-Kolmogorov equation, (2) is called

Bayes rule, and collectively they are referred to as the Bayes recursion. Using this

technique, the probability density of the state can be recursively propagated in time,

and new measurement data can be incorporated as it becomes available. Except for

certain specific cases, the Bayes recursion does not have an analytical solution. Hence,

approximations are usually required to facilitate the development of analytically and

computationally tractable Bayesian filtering algorithms.

2.1.2 Linear Gaussian Filtering

The special case of the Bayes recursion involving a Gaussian filtering density, and

linear-Gaussian system dynamics and observations, is known as the Kalman Filter

[100, 76, 86, 178, 1]. Let us assume that the posterior density of the state at time k− 1

is given by

pk−1 (xk−1|z1:k−1) = N (xk−1; mk−1, Pk−1) , (3)

and the dynamics and observations are modelled according to

xk = Fk|k−1xk−1 + vk−1, (4)

zk = Hkxk + wk, (5)

where Fk|k−1 is an nx × nx state transition matrix, Hk is an nz × nx observation matrix,

vk−1 ∼ N (0, Qk−1) is a Gaussian distributed nx-dimensional process noise vector

with zero mean and covariance Qk−1, and wk ∼ N (0, Rk) is a Gaussian distributed

nz-dimensional measurement noise vector with zero mean and covariance Rk. Based
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upon these models, the state transition density and measurement likelihood function

become

fk|k−1 (xk|xk−1) = N
(
xk; Fk|k−1xk−1, Qk−1

)
, (6)

gk (zk|xk) = N (zk; Hkxk, Rk) . (7)

Substituting (3) and (6) into (1) yields the predicted density at time k,

pk|k−1 (xk|z1:k−1) = N
(
xk; mk|k−1, Pk|k−1

)
, (8)

where

mk|k−1 = Fk|k−1mk−1, (9)

Pk|k−1 = Fk|k−1Pk−1Fk|k−1 + Qk−1. (10)

Substituting (7) and (8) into (2) yields the posterior density at time k,

pk (xk|z1:k) = N (xk; mk, Pk) , (11)

where

mk = mk|k−1 + Kk
(
zk − Hkmk|k−1

)
, (12)

Pk = Pk|k−1 − KkSkKT
k , (13)

Kk = Pk|k−1HT
k S−1

k , (14)

Sk = HkPk|k−1HT
k + Rk. (15)

Equations (9)-(10) are known as the Kalman prediction, equations (12)-(15) are known

as the Kalman update, and collectively they are called the Kalman filter. The fact that

the Gaussian distribution is both closed under the Chapman-Kolmogorov equation

with linear-Gaussian transition density, and a conjugate prior with respect to a linear-

Gaussian likelihood function, means that the Kalman filter is an exact closed form

solution for the Bayes recursion under these modelling assumptions.
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2.1.3 Non-linear Gaussian Filtering

Consider the more general case in which the system dynamics and observations can-

not be modelled according to simple linear transformations as in (4) and (5). Instead,

these models are of the form

xk = sk−1 (xk−1) + vk−1, (16)

zk = hk (xk) + wk, (17)

where vk−1 and wk are the same as defined in (4) and (5), and sk−1 (·) and hk (·) are

non-linear functions. In this case, there is no exact analytical solution to the Bayes

recursion. However, it is possible to make some assumptions to facilitate an approxi-

mate analytical solution.

2.1.3.1 Extended Kalman Filter

The simplest technique for accommodating non-linear models is called the extended

Kalman filter (EKF) [86, 1, 12]. In the EKF, the predicted and posterior densities at

time k are given by (8) and (11) where

mk|k−1 = sk−1 (mk−1) , (18)

Pk|k−1 = F̂k−1Pk−1F̂T
k−1 + Qk−1, (19)

mk = mk|k−1 + K̂k
(
zk − hk

(
mk|k−1

))
, (20)

Pk = Pk|k−1 − K̂kSkK̂T
k , (21)

in which

Ŝk = ĤkPk|k−1ĤT
k + Rk, (22)

K̂k = Pk|k−1ĤT
k Ŝ−1

k , (23)

F̂k−1 =
∂sk−1 (x)

∂x

∣∣∣∣
x=mk−1

, (24)

Ĥk =
∂hk (x)

∂x

∣∣∣∣
x=mk|k−1

. (25)

The state transition matrix is replaced with a first order analytical linearisation (i.e.

the Jabobian) of the non-linear state transition function, evaluated at the mean of the

previous density. Similarly, the measurement matrix is replaced by the Jacobian of the



14 background : single and multi-object bayesian estimation

non-linear observation function, evaluated at the mean of the predicted density. Note

that if either the transition or observation function is linear, then the corresponding

step from the standard Kalman filter can be applied. For example, for a linear dy-

namic model and nonlinear observation model, the standard Kalman prediction can

be used, followed by an EKF measurement update.

The underlying assumption of the EKF is that the nonlinear models can be ade-

quately approximated by their linearised representations in the vicinity of the pre-

vious/predicted mean. This approximation often works well, however, in situations

where the non-linearity is too severe, the EKF can be prone to failure [168].

2.1.3.2 Unscented Kalman Filter

In contrast to the EKF, which carries out an analytical linearisation of the non-linear

functions, the UKF [97, 96, 201] performs a statistical linearisation by representing

the filtering density as a deterministically chosen set of weighted sample points, also

known as sigma points. These sigma points are propagated through the non-linear

transition and measurement equations in order to compute the predicted and poste-

rior densities. This process has been shown to be more robust than the EKF when

faced with higher levels of model non-linearity.

Suppose that the density at time k − 1 is represented by a weighted set of sigma

points
{(
X (i)

k−1, w(i)
)}

i=1:N
, where N = 2nx + 1, chosen according to the unscented

transform

X (i)
k−1 =



mk−1, i = 1

mk−1 +
[√

(nx + κ) Pk−1

]
i−1

, i = 2, . . . , nx + 1

mk−1 −
[√

(nx + κ) Pk−1

]
i−n−1

, i = n + 2, ..., 2nx + 1

, (26)

w(i) =


κ

nx+κ , i = 1

1
2(nx+κ)

, i = 2, . . . , 2nx + 1

, (27)

where κ is a scaling parameter such that κ + nx 6= 0. In (26), the subscripted square

brackets [A]i denote the i-th row of the matrix A, and the square root is the matrix

square root, such that for a matrix A,
(√

A
)T (√

A
)
= A.
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The predicted density is given by (8) where

mk|k−1 =
N

∑
i=1

w(i)sk−1

(
X (i)

k−1

)
, (28)

Pk|k−1 =
N

∑
i=1

w(i)
[
sk−1

(
X (i)

k−1

)
−mk|k−1

] [
sk−1

(
X (i)

k−1

)
−mk|k−1

]T
+ Qk−1, (29)

which is also represented by the set of sigma points
{(
X (i)

k|k−1, w(i)
)}

i=1:N
, where

X (i)
k|k−1 = sk−1

(
X (i)

k−1

)
, i.e. each sigma point from the previous density is propagated

through the state transition function. The predicted measurement is computed by

taking the weighted sum of the measurement function evaluated at each sigma point

as follows

ẑk|k−1 =
N

∑
i=1

w(i)hk

(
X (i)

k|k−1

)
. (30)

The posterior density is then given by (11) where

mk = mk|k−1 + K̂k
(
zk − ẑk|k−1

)
, (31)

Pk = Pk|k−1 − K̂kSkK̂T
k , (32)

K̂k = PxzŜ−1
k , (33)

Ŝk = Pzz + Rk, (34)

Pxz =
N

∑
i=1

w(i)
[
X (i)

k|k−1 −mk|k−1

] [
hk

(
X (i)

k|k−1

)
− ẑk|k−1

]T
, (35)

Pzz =
N

∑
i=1

w(i)
[

hk

(
X (i)

k|k−1

)
− ẑk|k−1

] [
hk

(
X (i)

k|k−1

)
− ẑk|k−1

]T
. (36)

Unlike the EKF, the UKF does not require the Jacobians of the non-linear functions

s and h, thus it can be applied to problems in which these functions may be discon-

tinuous. The use of the unscented transform yields predicted/posterior densities that

are accurate up to the second order Taylor series expansion of the corresponding non-

linear function, or the third order when the underlying random variable is Gaussian

[96].
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2.1.4 Non-linear Non-Gaussian Filtering

The main advantage of the Kalman filter and its non-linear variants is that they have

analytical forms, making them efficient to compute. However, they are limited to the

use of Gaussian models to represent the filtering density, as well as the process and

and measurement noise distributions. An alternative approach that affords greater

modelling flexibility is known as the particle filter [50, 63, 168, 6]. The fundamental

principle behind this technique is the use of Monte Carlo integration to approximate

the posterior density.

In particle filtering, the posterior density pk−1 of the state at time k − 1 is repre-

sented by a weighted collection of points (or particles)
{(

x(i)k−1, w(i)
k−1

)}N

i=1
, leading to

the following approximation for pk−1,

pk−1 (xk−1|z1:k−1) ≈
N

∑
i=1

w(i)
k−1δ

x(i)k−1
(xk−1) . (37)

At time k, the posterior density pk is approximated by a new collection of particles{(
x(i)k , w(i)

k

)}N

i=1
, whose locations are drawn from a proposal density qk

(
·|x(i)k−1, zk

)
.

This leads to the posterior being approximated as

pk (xk|z1:k) ≈
N

∑
i=1

w(i)
k δ

x(i)k
(xk) , (38)

where

x(i)k ∼ qk

(
·|x(i)k−1, zz

)
, (39)

w̃(i)
k = w(i)

k−1

gk

(
zk|x(i)k

)
pk|k−1

(
x(i)k |x

(i)
k−1

)
qk

(
x(i)k |x

(i)
k−1, zk

) , (40)

w(i)
k =

w̃(i)
k

∑N
i=1 w̃(i)

k

. (41)

In principle, the importance density qk

(
·|x(i)k−1, zk

)
can be any function, provided

that its support adequately covers the region of high posterior density. However,

due to the finite number of particles, this choice can have a significant impact on

the performance of the algorithm. In practice, it is necessary to use an importance

density that concentrates most of the samples in regions of the state space that yield

high posterior weights. This is required to ensure that the sampled representation
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faithfully reflects the shape of the true posterior density. The optimal choice for the

importance density, i.e. that which minimises the variance of the posterior weights is

[49]

qk

(
xk|x(i)k−1, zk

)
=

p
(

zk|xk, x(i)k−1

)
p
(

xk|x(i)k−1

)
∫

p (zk|xk) p
(

xk|x(i)k−1

)
dx

, (42)

but in many applications it is difficult to draw samples directly from this distribution.

Most often, suboptimal importance densities are used, and a popular choice is the

transition density

qk

(
xk|x(i)k−1, zk

)
= p

(
xk|x(i)k−1

)
, (43)

because this leads to a simplified weight calculation, with the unnormalised posterior

weight (40) reducing to

w̃(i)
k = w(i)

k−1g
(

zk|x(i)k

)
. (44)

It has been shown that this method can lead to rapid particle depletion, because

the transition density is usually much more diffuse than the measurement likelihood

function. Improved choices for the importance density have been studied in works

such as [160, 49, 121, 202]. More recently, a technique called particle Markov chain

Monte Carlo has been developed [3], which allows for improved importance sam-

pling in higher dimensional state spaces.

An ideal Monte Carlo representation of the posterior should have all particles

equally weighted. In this case, the shape of the posterior is captured simply by varia-

tions in the concentration of particles in different regions of the state space. However,

as the particle filter recursion is repeatedly applied, the variance of the weights be-

gins to increase, depleting the effectiveness of the Monte Carlo representation. The

most popular technique for addressing this is known as resampling [63], which gen-

erates an equally weighted set of samples from a sample set with unequal weights.

This can be achieved in a number of ways (see for example [47, 31, 79]), however, the

basic idea is that particles with higher weights are replicated, and those with lower

weights are removed.

Resampling is a computationally intensive operation, and is therefore the main

bottleneck in many particle filter implementations. Given this, it is often desirable to
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avoid resampling on every iteration, and adaptive resampling strategies can be used

to achieve this whilst still maintaining sufficient sample diversity [144]. Furthermore,

speeding up the resampling itself has the potential to significantly improve execution

time. Some research effort has been devoted to this problem, including recent works

such as [115] and [146], which have investigated the use of graphics processing units

(GPUs) to accelerate the resampling process.

Sequential Monte Carlo methods can also be used to perform smoothing, where

future data is used to obtain improved state estimates at some time in the past. For

example, a forward-backward smoother based on SMC methods was proposed in

[60], and a two-filter particle smoother was proposed in [32]. These techniques have

a computational complexity which is quadratic in the number of samples, however

methods such as those proposed in [105] and [53] can alleviate this problem.

Another interesting application where SMC techniques have been used is in static

parameter estimation, see for example [48, 2, 143]. These methods can be applied in

situations where prior knowledge of the system parameters is lacking, and instead

their values need to be estimated from the data.

2.2 random finite sets

A random variable is defined as variable that can take on different values due to the

effects of random chance. In traditional probability and statistics, a random variable

is usually assumed to have a fixed and known dimension (i.e. vector-valued), and

the chances of it taking on different values is characterised by its probability distribu-

tion. There are many important problems that cannot be adequately modelled using

vector-valued random variables alone. Falling into this category are estimation prob-

lems in which the number of items to be estimated is unknown and time-varying,

a common example of which is multi-target tracking. In problems such as this, the

probabilistic model of the underlying random process must accommodate variations

in the number of items, as well as their values. A more natural model for this type of

system is called a point process, which is the subject of a branch of probability theory

known as stochastic geometry [181]. For many practical applications, a more useful

and realistic model is the simple finite point process, also known as a random finite set

(RFS). A mathematical framework known as finite set statistics (FISST) [135] provides

techniques for working with RFSs in a rigorous and consistent manner.
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In the framework of FISST, a random finite set is defined as a finite set-valued ran-

dom variable. Whereas a random vector has a fixed and known number of random

elements appearing in a specific order, the key feature distinguishing an RFS is that

the number of elements (or cardinality) is random, and the elements themselves are

random, distinct and unordered. A random finite set has a cardinality distribution,

which is a discrete distribution ρ (·) defined on the non-negative integers N, where

ρ (n) is the probability that the RFS has exactly n elements. For each cardinality

n ∈ N, there is a joint probability distribution Pn (·) specifying the conditional den-

sity of the elements given that the cardinality of the set is equal to n. The collection

of all such joint distributions, together with the cardinality distribution, provides a

complete specification of a random finite set.

2.2.1 Random Finite Set Densities

An random finite set X, defined on the space X, is a random variable taking values

in F (X), i.e. a finite set-valued random variable. Both the number of elements and

the value of the elements of an RFS are random. There are several constructs for

specifying the probability law of an RFS, one of which is the belief (or containment)

functional B, given by

B (S) = Pr (X ⊆ S) (45)

for any (closed) S ⊆ X [181, 140, 136, 138]. In fact, the belief functional uniquely deter-

mines the probability law of a random closed set (and hence an RFS) via Choquet’s

capacity theorem.

Since the belief functional is not a measure, the standard notion of density as a

Radon-Nikodym derivative is not applicable. Nevertheless, an alternative notion of

density can be defined via Mahler’s set calculus [126, 136]. The belief density of an RFS

X is a non-negative function π on F (X) such that for any S ⊆ X,

B (S) =
∫

S
π (X) δX, (46)

where the integral above is Mahler’s set integral defined by [126, 136]

∫
S

π (X) δX =
∞

∑
i=0

1
i!

∫
Si

π ({x1, ..., xi}) d (x1, ..., xi) (47)



20 background : single and multi-object bayesian estimation

(note that since S0 = {∅}, the integral over S0 is simply π (∅)). That is, the set integral

of the belief density π over a region S, yields the probability that X is contained in S.

Note that π (X) has dimension K−|X|, where K denotes the unit of hyper-volume on

X.

While the belief density π is not a probability density, the dimensionless function

on F (X) defined by π (X)K|X| is indeed a probability density with respect to the

measure µ given by [194]

µ (T ) =
∞

∑
i=0

1
i!Ki

∫
Xi

1T ({x1, ..., xi}) d (x1, ..., xi) (48)

for any measurable T ⊆ F (X). A belief density and its corresponding probability

density are equivalent representations of the probability law of an RFS, which differ

only by the term K|X|. For the sake of simplicity, from this point on, the term ‘density’

when used in reference to an RFS, refers to either the belief density or its equivalent

probability density.

2.2.2 Common Types of Random Finite Set

In finite set statistics, there are several important classes of RFS, each having its own

unique properties. This section provides a brief description of the four most common

types of RFS used in multi-object system modelling, namely the Poisson, independent

and identically distributed cluster, Bernoulli and multi-Bernoulli.

Poisson

An RFS with intensity function v (·) is called a Poisson RFS if its cardinality follows a

Poisson distribution with mean λ =
∫

v (x) dx, i.e.

ρ (n) =
e−λλn

n!
. (49)

This means that a Poisson RFS is completely specified by its intensity function v,

since knowledge of the intensity also gives us knowledge of the cardinality distribu-

tion. For a given cardinality, the elements of the set are all distributed according to

the probability density v (·) /λ, thus the density of a Poisson RFS X is given by

π (X) = e−λ ∏
x∈X

v (x) . (50)
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The Poisson RFS is often used to represent processes exhibiting complete spatial

randomness. For example, a common assumption in tracking applications is that the

set of false alarms produced by a sensor is completely spatially random. Thus, the

false alarms are usually modelled by a Poisson RFS, often with a uniform intensity

function.

Independent Identically Distributed Cluster

An RFS that can be uniquely specified by its cardinality distribution ρ (·) and a match-

ing intensity function v (·) is called an independently and identically distributed (i.i.d.)

cluster RFS. In contrast to a Poisson RFS (whose cardinality distribution is always

Poisson), the cardinality distribution of an i.i.d. cluster RFS can have an arbitrary

form, with the only restriction being that its mean must match the integral of the

intensity function (N = ∑∞
n=0 nρ (n) =

∫
v (x) dx). The individual elements of the set

are all distributed according to v (·) /N, thus the density of an i.i.d. cluster RFS is

given by

π (X) = n!ρ (|X|) ∏
x∈X

v (x)
N

. (51)

It is worth noting here that a Poisson RFS is a special case of an i.i.d. cluster RFS,

where the cardinality distribution is constrained to the form of a Poisson.

Bernoulli

An RFS which has probability 1− r of being empty, and probability r of containing

a single element distributed according to p (·), is called a Bernoulli RFS. This type of

RFS is completely specified by the parameters r and p, and is distributed according

to the density

π (X) =



1− r, X = ∅

r.p (x) , X = {x}

0, |X| > 1

. (52)

The Bernoulli RFS is useful in situations involving at most one object, but it is

not certain whether the object is present. A prime example of this is in single-target

tracking, where the target may or may not be present, thus the target density is

naturally modelled as a Bernoulli RFS.
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Multi-Bernoulli

A multi-Bernoulli RFS is an RFS in which the objects are statistically independent of

each other, and the i-th object has probability of existence r(i) and spatial probability

density p(i), for i = 1, . . . , M. Thus, a multi-Bernoulli RFS is the union of a fixed

number of independent Bernoulli RFSs. This type of RFS is completely specified by

the set of parameters
{(

r(i), p(i)
)}M

i=1
, and its density is given by

π ({x1, . . . , xn}) =



M
∏
j=1

(
1− r(j)

)
, n = 0

M
∏
j=1

(
1− r(j)

)
∑

1≤i1 6=···6=in≤M

n
∏
j=1

r(ij)p(ij)(xj)

1−r(ij)
, 1 ≤ n ≤ M

0, n > M

. (53)

The multi-Bernoulli RFS is useful in cases involving multiple objects, but the pres-

ence of any particular object is not certain. One example of this is in a multi-target

system model, where the individual targets have independent probabilities of exis-

tence. Another example is a multi-target detection model, where the targets have

independent probabilities of generating a detection.

2.3 multi-target bayes filter

The goal of recursive multi-object Bayesian estimation is to estimate a finite set of

states Xk ⊂ X, called the multi-object state, at each time k. The multi-object states Xk

and multi-object observations Zk ⊂ Z are modelled as random finite sets. At the pre-

vious time step k − 1, the multi-object state is assumed to be distributed according

to a multi-object density πk−1 (·|Z1:k−1), where Z1:k−1 is an array of finite sets of mea-

surements received up to time k − 1. Each Zk is assumed to be generated through

a process of thinning of misdetected objects, Markov shifts of detected objects, and

superposition of false measurements. The multi-object prediction to time k is given by

the Chapman-Kolmogorov equation

πk|k−1 (Xk|Z1:k−1) =
∫

fk|k−1 (Xk|X)πk−1 (X|Z1:k−1) δX, (54)
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where fk|k−1 (Xk|X) is the multi-object transition kernel from time k− 1 to time k, and

the integral is the set integral,

∫
f (X) δX =

∞

∑
i=0

1
i!

∫
Xi

f ({x1, . . . , xi}) d (x1, . . . , xi) (55)

for any function f that takes F (X), the collection of all finite subsets of X, to the

real line. A new set of observations Zk is received at time k, which is modelled by

a multi-object likelihood function gk (Zk|Xk). Thus the multi-object posterior at time k is

given by Bayes rule

πk (Xk|Z1:k) =
gk (Zk|Xk)πk|k−1 (Xk|Z1:k−1)∫
gk (Zk|X)πk|k−1 (X|Z1:k−1) δX

. (56)

Collectively, (54) and (56) are referred to as the multi-object Bayes filter. This is a

completely general form, which serves as the basis for deriving multi-target filtering

and tracking algorithms under the RFS framework. In general, computing the exact

multi-object posterior is numerically intractable, and approximations are required

to derive practical algorithms. Specifically, it is necessary to restrict the form of the

density πk to a tractable class of functions that is closed under the operations (54)

and (56). Such a class of functions is commonly referred to as a conjugate prior.

2.4 multi-target filtering with random finite sets

2.4.1 Multi-object Dynamic Model

In this section we specify an RFS formulation of the standard multi-object dynamic

model, which captures the evolution of the individual object states, as well as the

appearance and disappearance of objects over time. Let Xk−1 represent the multi-

object state at time k − 1. Each object xk−1 ∈ Xk−1 has probability PS,k (xk−1) of

surviving to time k, and probability 1− PS,k (xk−1) of being terminated somewhere

between times k − 1 and k. If an object with state xk−1 survives to time k, it takes

on a new state xk with probability density pk|k−1 (xk|xk−1), and if terminated it be-

comes the empty set ∅. Hence, each object gives rise to a Bernoulli RFS as defined

by (52), with parameters r = PS,k (xk−1) and p (·) = pk|k−1 (·|xk−1). The objects are

assumed to be conditionally independent, thus the RFS of objects surviving from
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k − 1 to k is a multi-Bernoulli, which we denote by Sk|k−1
(
Xk|k−1

)
. The density of

Sk|k−1 (Xk−1) is denoted by πS,k|k−1 (·|Xk−1), and has the form (53) with parameter set{(
PS,k (xk−1) , pk|k−1 (·|xk−1)

)}
xk−1∈Xk−1

.

For the multi-object dynamic model to be useful in problems with an unknown and

time-varying number of objects, it also needs to include a model for the appearance

of new objects (referred to as target births). The target births at time k are represented

by an RFS Bk, which can be modelled by any type of RFS permitted by the particular

filtering algorithm being used. The complete RFS of targets at time k is then given by

the union of survivals and births

Xk = Sk|k−1 (Xk−1) ∪ Bk. (57)

Let πB,k (·) denote the density of Bk. Then, the predicted density of Xk is given by

the convolution

pk|k−1 (Xk|Xk−1) = ∑
W⊆Xk

πS,k|k−1 (W|Xk−1)πB,k (Xk −W) . (58)

2.4.2 Multi-object Observation Model

Let us assume that an observation is received at time k, and let Xk represent the

true multi-object state at that time. Each object xk ∈ Xk has probability PD,k (xk) of

being detected, and probability 1 − PD,k (xk) of being missed. If detected, the ob-

ject gives rise to a measurement zk with probability density gk (zk|xk), and if missed

it generates the empty set ∅. Thus, each object produces an observation modelled

by a Bernoulli RFS with parameters r = PD,k (xk) and p (·) = gk (·|xk). The single-

object measurements are assumed to be conditionally independent, thus the RFS

of detections, which we denote by Dk (Xk), is a multi-Bernoulli RFS. The density

of Dk (Xk) is denoted by πD,k (·|Xk), and is of the form (53) with parameter set

{(PD,k (xk) , gk (·|xk))}xk∈Xk
.

In addition to the detections of real objects, sensors typically produce false alarms,

which also need to be captured by the model. The set of false alarms produced at

time k is modelled by an RFS Kk, which may be of any type depending on the filter in
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use, but is most commonly modelled as a Poisson RFS. The overall set of observations

is given by the union of target detections and false alarms

Zk = Dk (Xk) ∪ Kk. (59)

Let πK,k (·) denote the density of Kk. The density of Zk is then given by the convo-

lution

gk (Zk|Xk) = ∑
W⊆Zk

πD,k (W|Xk)πK,k (Zk −W) , (60)

which is known as the multi-object measurement likelihood function.

2.4.3 Probability Hypothesis Density Filter

One of the first algorithms to be derived based on random finite sets was the prob-

ability hypothesis density filter [126]. The fundamental idea behind this algorithm

is to achieve a tractable approximation to (56) by propagating only the first moment

of the multi-object density, known as its probability hypothesis density (PHD). The

PHD is a function defined on the single-object state space, and has the unique prop-

erty that its integral over a given region of the state space yields the expected number

of objects in that region.

Suppose that vk−1 represents the posterior PHD at time k− 1, fk|k−1 the single object

transition kernel from time k− 1 to time k, PS,k the probability of object survival, and

γk the PHD of spontaneous target births. The predicted PHD at time k is then given

by

vk|k−1 (xk) = γk (xk) +
∫

PS,k (xk−1) fk|k−1 (xk|xk−1) vk−1 (xk−1) dxk−1. (61)

Now, denote by Zk the set of measurements generated by a sensor at time k. This

measurement set is assumed to contain false alarms with intensity κk, and let the

PD,k (xk) be the probability that an object with state xk is detected. If detected, an

object generates a measurement with likelihood function gk. The posterior PHD at

time k is given by

vk (xk) = (1− PD,k (xk)) vk|k−1 (xk) + ∑
z∈Zk

PD,k (xk) gk (z|xk) vk|k−1 (xk)

κk (z) +
∫

PD,k (x) gk (z|x) vk|k−1 (x) dx
.

(62)
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The first implementation of the PHD filter was based on the sequential Monte

Carlo method, and was independently proposed in 2003 by Sidenbladh [174], Zajic

and Mahler [207], and Vo, Singh and Doucet [193]. An analysis of the convergence

properties of the SMC-PHD filter appeared in [40, 92]. The first analytic implemen-

tation of the PHD filter based on Gaussian mixtures was proposed in 2006 by Vo

and Ma [192], and a convergence analysis of this filter appeared in [39]. The work

in [192] included an implementation for linear-Gaussian models based on Kalman

filters, and for nonlinear-Gaussian models based on the EKF or UKF. A version based

on the Gaussian particle filter was presented in [39], and another based on the cuba-

ture Kalman filter in [125]. The Gaussian mixture PHD filter was extended to jump

Markov models in [158], allowing it to handle manoeuvring targets.

Over the last decade, the PHD filter has become a popular topic among tracking

researchers, and applications to many different multi-target filtering problems have

been proposed. Useful summaries of some of the notable applications are provided

in [135] and [136].

2.4.4 Cardinalised Probability Hypothesis Density Filter

The cardinalised probability hypothesis density (CPHD) filter, proposed by Mahler

in [129], is a generalisation of the PHD filter allowing for more flexible modelling

of the target cardinality distribution. Whereas the PHD filter models the multi-object

state as a Poisson RFS, the CPHD filter models it as a more general i.i.d cluster

RFS. This means that the cardinality distribution is no longer constrained to be a

Poisson, and instead may take on any arbitrary form. The drawback of this approach

is that the filter equations become more complicated than the PHD filter, and there

is an increase in computational complexity. However, the i.i.d cluster model has been

shown to improve the filtering performance, with the CPHD filter achieving better

state estimates and reduced variance in the cardinality estimates [196].

Let vk−1 be the PHD at time k− 1, ρk−1 the cardinality distribution, PS,k the target

survival probability, fk|k−1 the single object transition kernel, ρB,k the cardinality dis-

tribution of spontaneous births at time k, and Cl
j = l!

j!(l−j)! the binomial coefficient.

The predicted PHD and cardinality distribution at time k are given by

vk|k−1 (xk) =
∫

PS,k (xk−1) fk|k−1 (xk|xk−1) vk−1 (xk−1) dxk−1 (63)
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ρk|k−1 (n) =
n

∑
j=0

ρB,k (n− j)Πk|k−1 [vk−1, ρk−1] (j) (64)

where,

Πk|k−1 [v, ρ] (j) =
∞

∑
l=j

Cl
j
〈PS,k, v〉j 〈1− PS,k (x) , v (x)〉l−j

〈1, v〉l
. (65)

The posterior PHD and cardinality distribution are given by

vk (x) = (1− PD,k (x))

〈
Υ1

k

[
vk|k−1; Zk

]
, ρk|k−1

〉〈
Υ0

k

[
vk|k−1; Zk

]
, ρk|k−1

〉vk|k−1 (x)

+ ∑
z∈Zk

ψk,z (x)

〈
Υ1

k

[
vk|k−1; Zk − {z}

]
, ρk|k−1

〉〈
Υ0

k

[
vk|k−1; Zk

]
, ρk|k−1

〉 vk|k−1 (x) (66)

ρk (n) =
Υ0

k

[
vk|k−1; Zk

]
(n) ρk|k−1 (n)〈

Υ0
k

[
vk|k−1; Zk

]
, ρk|k−1

〉 (67)

where,

Υu
k [v, Z] (n) =

min(|Z|,n)
∑
j=0

(|Z| − j)!pK,k (|Z| − j) Pn
j+u

× 〈1− PD,k, v〉n−(j+u)

〈1, v〉n ej (Ξk (v, Z)) , (68)

ψk,z (x) =
〈1, κk〉
κk (z)

gk (z|x) PD,k (x) , (69)

Ξk (v, Z) = {〈v, ψk,z〉 : z ∈ Z} . (70)

Like the PHD filter, the CPHD filter has been implemented using Gaussian mix-

tures [189, 199, 196], for both linear-Gaussian models based on the Kalman filter,

and nonlinear-Gaussian models using the EKF and UKF. The CPHD filter has also

been implemented for nonlinear non-Gaussian models using sequential Monte Carlo

methods [196]. For the case of manoeuvring targets, a CPHD filter based on a jump

Markov model was proposed in [132].

2.4.5 Cardinality Balanced Multi-object Multi-Bernoulli Filter

The PHD and CPHD filters approximate the multi-object Bayes recursion by propa-

gating the first moment of the multi-object density, and in the case of the CPHD filter,

the cardinality distribution. In contrast, an algorithm called the multi-object multi-

Bernoulli (MeMBer) filter, proposed by Mahler in [135], approximates the Bayes re-
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cursion by approximating the posterior as a multi-Bernoulli random finite set. The

original MeMBer filter was designed to operate on standard point-detection level

data, and a version that operates directly on image observations, without the require-

ment for detections, was proposed in [80]. In [200], Vo, Vo and Cantoni pointed out

that a cardinality bias was present in the original formulation of the MeMBer filter,

and proposed a solution known as the cardinality balanced MeMBer (CBMeMBer)

filter, for the point-detection model. The CBMeMBer recursion is summarised as fol-

lows.

Let the multi-object density at time k− 1 be a multi-Bernoulli of the form πk−1 ={(
r(i)k−1, p(i)k−1

)}Mk−1

i=1
, and let the density of spontaneous births be a multi-Bernoulli

given by πB,k =
{(

r(i)B,k, p(i)B,k

)}MB,k

i=1
. Then the predicted density at time k is a multi-

Bernoulli given by

πk|k−1 =
{(

r(i)P,k|k−1, p(i)P,k|k−1

)}Mk−1

i=1
∪
{(

r(i)B,k, p(i)B,k

)}MB,k

i=1
(71)

where

r(i)P,k|k−1 = r(i)k−1

〈
p(i)k−1, PS,k

〉
, (72)

p(i)P,k|k−1 (x) =

〈
fk|k−1 (x|·) , p(i)k−1PS,k

〉
〈

p(i)k−1, PS,k

〉 . (73)

If we collect the terms of the predicted density into a single set of parameters,

which we express as πk|k−1 =
{(

r(i)k|k−1, p(i)k|k−1

)}Mk|k−1

i=1
, then the CBMeMBer filter ap-

proximates the posterior multi-object density as a multi-Bernoulli, given by

πk ≈
{(

r(i)L,k, p(i)L,k

)}Mk|k−1

i=1
∪
{(

r∗U,k (z) , p∗U,k (·; z)
)}

z∈Zk
(74)

where

r(i)L,k = r(i)k|k−1

1−
〈

p(i)k|k−1, PD,k

〉
1− r(i)k|k−1

〈
p(i), PD,k

〉 , (75)

p(i)L,k (x) = p(i)k|k−1 (x)
1− PD,k (x)

1−
〈

p(i)k|k−1, PD,k

〉 , (76)
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r∗U,k (z) =

Mk|k−1

∑
i=1

r(i)k|k−1

(
1−r(i)k|k−1

)〈
p(i)k|k−1,ψk,z

〉
(

1−r(i)k|k−1

〈
p(i)k|k−1,PD,k

〉)2

κk (z) +
Mk|k−1

∑
i=1

r(i)k|k−1

〈
p(i)k|k−1,ψk,z

〉
1−r(i)k|k−1

〈
p(i)k|k−1,PD,k

〉
, (77)

p∗U,k (x; z) =

Mk|k−1

∑
i=1

r(i)k|k−1

1−r(i)k|k−1

p(i)k|k−1 (x)ψk,z (x)

Mk|k−1

∑
i=1

r(i)k|k−1

1−r(i)k|k−1

〈
p(i)k|k−1, ψk,z

〉 , (78)

ψk,z (x) = gk (z|x) PD,k (x) . (79)

Like the PHD and CPHD filters, the CBMeMBer filter can be implemented using

either Gaussian mixtures or sequential Monte Carlo methods, both of which were

proposed in [200, 196]. A convergence analysis of the SMC-CBMeMBer filter was pre-

sented in [119]. Some interesting applications of the CBMeMBer filter include multi-

target tracking with audio-visual measurement data [81], an extension to tracking

manoeuvring targets using a jump Markov model [51], and its use in multi-target

sensor control [64].

2.4.6 PHD/CPHD Filtering with Unknown Birth Model

The original forms of the Gaussian mixture PHD/CPHD filters assume that both the

posterior PHD at the previous time, and the prior PHD for new targets entering the

scene at the current time, are both Gaussian mixtures [192, 199]. Although it is pos-

sible to approximate an arbitrary density using a sum of Gaussians, this approach

is potentially inefficient, since a large number of Gaussians may be necessary to ob-

tain a reasonable approximation. This is especially true in the case where the birth

density is uniform, which applies in the common situation where targets may appear

anywhere with equal probability.

The use of a diffuse target birth model is addressed for the GMPHD filter in [83]

and for the SMC-PHD filter in [171]. A more formal derivation of the modified GM-

PHD filter, and the derivation of a modified GMCPHD filter was given in the au-

thor’s conference paper [16], along with some preliminary simulation results for a

simple linear-Gaussian scenario. The author’s journal article [18] built upon this, by

applying the modified GMPHD/CPHD filters to the more challenging problem of

bearings-only filtering, where the angular component of the PHD for new targets
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is modelled using a uniform distribution on the bearing space. The modified filters

were compared to the corresponding traditional versions under various GM approxi-

mations to this birth model.

The modified filter equations are based on a principled approximation, which is

derived by showing that the birth PHD can be defined using a uniform distribution

on the part of the state space which is directly observed through the measurements,

and a Gaussian distribution for the unobserved parts. We refer to this as a partially

uniform birth (PUB) model, and the filters based on this model as the PUB-GMPHD

and PUB-GMCPHD filters. Use of the PUB model leads to a predicted PHD which

is no longer a Gaussian mixture. Nonetheless, the updated PHD can be accurately

approximated by a GM, provided that the birth PHD is Gaussian in the unobserved

state components, and the uniform distribution for the observed state components

covers a large enough region such that the effect of truncating the Gaussians is negli-

gible.

The main advantage of this approach is that it reduces the number of parameters

that must be selected by the end user. To construct a GM representation of the birth

PHD requires selecting a number of parameters, including the mean locations, co-

variance matrices and weights of the Gaussians. Poor selection can adversely affect

performance, so there is a potentially significant benefit in removing this requirement.

Furthermore, simulations show that this method provides much better performance

than a GM with a small number of components, and similar performance to a GM

with a large number of components.

The remainder of this section presents the results of the work from the author’s

journal article [18] and conference paper [16].

2.4.6.1 GMPHD Filter with Partially Uniform Birth (PUB-GMPHD)

The general form of the PHD filter recursion (without target spawning) is given by

[126]

vk|k−1(x) =
〈

PS,k (·) fk|k−1(x|·), vk−1 (·)
〉
+ γk (x) , (80)

vk(x) = (1− PD,k (x)) vk|k−1 (x) + ∑
z∈Z

PD,k (x) gk (z|x) vk|k−1 (x)
κk (z) +

〈
PD,k (·) gk (z|·) , vk|k−1 (·)

〉 , (81)

where vk−1 is the posterior PHD from time k− 1, PS,k is the target survival probability

at time k, fk|k−1 is the single-target transition density from time k − 1 to time k, γk
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is the prior PHD of spontaneous target births at time k, PD,k is the probability of

detection at time k, gk (z|x) is the likelihood function for a measurement z given

target state x, and κk (z) is the clutter density at time k in the vicinity of measurement

z. We now derive approximations of the PHD prediction and update for the case

when the PHD of spontaneous target births is partially uniform, which we refer to as

the PUB-GMPHD filter.

prediction Let the posterior PHD at time k − 1 be a Gaussian mixture of the

form

vk−1 (x) =
Jk−1

∑
i=1

w(i)
k−1N

(
x; m(i)

k−1, P(i)
k−1

)
. (82)

Let θ represent the part of the state x that is directly observed through measurement

z, and φ be the part of the state which is not observed (i.e. θ is either a scalar or

a vector consisting of the terms involved in the measurement likelihood calculation

(89), and φ is a scalar or vector consisting of the remaining terms). The PHD in (82)

may be expressed as

vk−1 (θ, φ) =
Jk−1

∑
i=1

w(i)
k−1N

(
θ, φ; m(i)

θ,k−1, m(i)
φ,k−1, P(i)

(θ,φ),k−1

)
(83)

where m(i)
θ,k−1 is the observed part of m(i)

k−1, m(i)
φ,k−1 is the unobserved part of m(i)

k−1, and

P(i)
(θ,φ),k−1 is the covariance matrix P(i)

k−1 transformed into the space defined by (θ, φ).

We now define the PHD of spontaneous target births as

γk (θ, φ) = wb,kU (θ; B)N
(
φ; φ̄, Pφ

)
(84)

where wb,k is the expected number of targets appearing at time k, U (θ; B) is the

uniform distribution in θ over the region B, φ̄ is the prior mean of the unmeasured

state component, and Pφ is its prior covariance matrix. Now, the predicted PHD at

time k is given by

vk|k−1 (θ, φ) = vS,k|k−1 (θ, φ) + γk (θ, φ) , (85)

where

vS,k|k−1 (θ, φ) = pS,k

Jk−1

∑
i=1

w(i)
k−1N

(
θ, φ; m(i)

θ,k|k−1, m(i)
φ,k|k−1, P(i)

(θ,φ),k|k−1

)
, (86)



32 background : single and multi-object bayesian estimation

assuming the process noise is additive Gaussian, and the survival probability PS,k is

independent of target state.

Let us augment the state with a binary variable β so we may distinguish between

the surviving components and the birth component, resulting in the following form

for the predicted PHD

vk|k−1 (θ, φ, β) =


∑

Jk−1
i=1 w(i)

k|k−1N
(

θ, φ; m(i)
θ,k|k−1, m(i)

φ,k|k−1, P(i)
(θ,φ),k|k−1

)
, β = 0

wb,kU (θ; B)N
(
φ; φ̄, Pφ

)
, β = 1

(87)

where the predicted weights are w(i)
k|k−1 = PS,kw(i)

k−1. As noted in [171], separating the

surviving and birth components using the β variable is necessary in order to avoid

biasing the cardinality estimates.

update Let us assume that new targets are always detected at their time of birth.

For simplicity, we also assume that the detection probability for surviving targets is

independent of their state, which leads to the definition

PD,k (θ, φ, β) =


PD,k, β = 0

1, β = 1

. (88)

Furthermore, we assume that the measurement likelihood function is Gaussian and

defined by

g (z|θ, φ, β) = N (z; θ, Pθ) . (89)

The posterior intensity is now given by (90) and (91), where, for the sake of brevity,

the subscript k|k− 1 is omitted for w(i), θ(i), m(i)
θ ,m(i)

φ and P(i)
(θ,φ).

vk (θ, φ, 0) = (1− PD,k)
Jk−1

∑
i=1

w(i)N
(

θ, φ; m(i)
θ , m(i)

φ , P(i)
(θ,φ)

)

+ ∑
z∈Z

Jk−1

∑
i=1

PD,kN
(

z; m(i)
θ , Pθ

)
w(i)N

(
θ, φ; m(i)

θ , m(i)
φ , P(i)

(θ,φ)

)
κk (z) +

〈
PD,k (·) g (z|·) , vk|k−1 (·)

〉 , (90)

vk (θ, φ, 1) = ∑
z∈Z

N (θ; z, Pθ)wb,kU (θ; B)N
(
φ; φ̄, Pφ

)
κk (z) +

〈
PD,k (·) g (z|·) , vk|k−1 (·)

〉 . (91)
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In the denominators in (90) and (91) we have the following,

〈
PD,k (·) g (z|·) , vk|k−1 (·)

〉
=

Jk−1

∑
i=1

PD,kwk|k−1q(i)k (z)

+ wb
k

∫
N
(
φ; φ̄, Pφ

)
dφ
∫
N (θ; z, Pθ)

1B (θ)

VB

dθ (92)

where q(i)k (z) = N
(

z; m(i)
θ,k|k−1, S(i)

k|k−1

)
is the likelihood of measurement z against

component i (with S(i)
k|k−1 being the innovation covariance for component i), 1B (·) is

the indicator function for the region B, and VB is the volume of region B. We now

make the approximation

N (θ; z, Pθ) 1B (θ) ≈ N (θ; z, Pθ) (93)

which can be justified in practice by assuming that the standard deviation of the

measurement noise Σθ is small compared to the surveillance region B. This leads to

the following approximation for the integral

〈
PD,k (·) g (z|·) , vk|k−1 (·)

〉
≈

Jk−1

∑
i=1

w(i)
k|k−1q(i)k (z) +

wb,k

VB

. (94)

Substituting (93) and (94) into (90) and (91) yields the following approximation for

the posterior PHD, which is similar to the update equations given in [83]

vk (θ, φ, 0) ≈
Jk−1

∑
i=1

w(i)
m,kN

(
θ, φ; m(i)

θ,k|k−1, m(i)
φ,k|k−1, P(i)

(θ,φ),k|k−1

)
+ ∑

z∈Z

Jk−1

∑
i=1

w(i)
s,kN

(
θ, φ; m(i)

θ,k, m(i)
φ,k, P(i)

(θ,φ),k

)
, (95)

vk (θ, φ, 1) ≈ ∑
z∈Z

w(i)
b,kN (θ; z, Pθ)N

(
φ; φ̄, Pφ

)
, (96)

where

w(i)
m,k = (1− PD,k)w(i)

k|k−1, (97)

w(i)
s,k =

PD,kq(i)k (z)w(i)
k|k−1

κk (z) +
Jk−1

∑
i=1

w(i)
k|k−1q(i)k (z) + wb,k/VB

, (98)

w(i)
b,k =

wb,k/VB

κk (z) +
Jk−1

∑
i=1

w(i)
k|k−1q(i)k (z) + wb,k/VB

. (99)
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Since newborn targets at time k become surviving targets at time k + 1, the predicted

PHD for survivals at time k + 1 is obtained by propagating the sum of both the β = 0

and β = 1 components of the posterior PHD at time k to the next time step.

2.4.6.2 GMCPHD Filter with Partially Uniform Birth (PUB-GMCPHD)

The CPHD filter is a generalisation of the PHD filter that relaxes the assumption that

the number of targets follows a Poisson distribution. To achieve this, the filter prop-

agates the discrete probability distribution on the number of targets (or cardinality

distribution), thereby allowing it to take on an arbitrary form. In this section, we de-

rive an approximation of the GMCPHD filter using the PUB model, which we refer

to as the PUB-GMCPHD filter.

prediction Let the posterior PHD at time k − 1 be a Gaussian mixture of the

same form as in (82). Let ρk−1 denote the posterior cardinality distribution at time

k− 1, and ρB,k the prior cardinality distribution of spontaneous births at time k. Then,

as per the standard GMCPHD filter, the predicted cardinality distribution at time k

is given by the convolution [129]

ρk|k−1 (n) =
n

∑
j=0

ρB,k (n− j)
∞

∑
l=j

Cl
jρk−1 (l) (PS,k)

j (1− PS,k)
l−1 (100)

where Cl
j =

l!
j!(l−j)! is the binomial coefficient. The PHD of target births is the same as

defined in (84), and the predicted PHD at time k− 1 is the same as (85). As we did for

the PUB-GMPHD filter, we again augment the state with the variable β to distinguish

surviving components from the birth component, leading to the definition (87) for the

predicted PHD.

update Using the definition in (88) for the detection probability, and making the

following definitions to simplify the notation,

χ =

〈
Υ1

k

[
vk|k−1, Z

]
, ρk|k−1

〉〈
Υ0

k

[
vk|k−1, Z

]
, ρk|k−1

〉 , (101)

χ (z) =

〈
Υ1

k

[
vk|k−1, Z− {z}

]
, ρk|k−1

〉〈
Υ0

k

[
vk|k−1, Z

]
, ρk|k−1

〉 , (102)
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the CPHD update can be expressed as

ρk (n) =
Υ0

k

[
vk|k−1, Z

]
(n)〈

Υ0
k

[
vk|k−1, Z

]
, ρk|k−1

〉ρk|k−1 (n) , (103)

vk (θ, φ, 0) = (1− PD,k) χvk|k−1 (θ, φ, 0)

+ ∑
z∈Z

ψk,z (θ, φ, 0) χ (z) vk|k−1 (θ, φ, 0) , (104)

vk (θ, φ, 1) = ∑
z∈Z

ψk,z (θ, φ, 1) χ (z) vk|k−1 (θ, φ, 1) , (105)

where

Υu
k [v, Z] (n) =

min(|Z|,n)
∑
j=0

(|Z| − j)!ρK,k (|Z| − j) Pn
j+u (106)

× 〈(1− PD,k) , v〉n−(j+u)

〈1, v〉n ej (Ξk (v, Z)) , (107)

ψk,z (θ, φ, β) =
〈1, κk〉
κk (z)

g (z|θ, φ) PD,k (θ, φ, β) , (108)

Ξk (v, Z) = {〈v, ψk,z〉 : z ∈ Z} , (109)

Pn
j+u =

n!
(n− (j + u))!

. (110)

In the above, ρK,k (·) is the cardinality distribution of clutter at time k, and ej (·) is the

elementary symmetric function of order j. The inner product between vk|k−1 and ψk,z

is given by

〈
vk|k−1, ψk,z

〉
=
〈1, κk〉
κk (z)

(
wb,k

VB

+ PD,k

Jk|k−1

∑
i=1

w(i)
k|k−1q(i)k (z)

)
. (111)

Hence, the elementary symmetric functions are calculated over the set

Ξk
(
vk|k−1, Z

)
=

{
〈1, κk〉
κk (z)

(
wb,k

VB

+ PD,k

Jk|k−1

∑
i=1

w(i)
k|k−1q(i)k (z)

)
: z ∈ Z

}
. (112)

The remaining inner products required in the CPHD calculations are

〈
1, vk|k−1

〉
=
〈
1, wk|k−1

〉
+ wb

k, (113)〈
1− PD,k, vk|k−1

〉
= (1− PD,k)

〈
1, wk|k−1

〉
, (114)
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which results in the following equation for Υu
k ,

Υu
k
[
vk|k−1, Z

]
(n) =

min(|Z|,n)
∑
j=0

(|Z| − j)!PK,k (|Z| − j) (1− PD)
n−(j+u)

×
〈
1, wk|k−1

〉n−(j+u)(〈
1, wk|k−1

〉
+ wb,k

)n Pn
j+uej

(
Ξk
(
vk|k−1, Z

))
. (115)

Finally, the posterior PHD is approximated by

vk (θ, φ, 0) ≈
Jk|k−1

∑
i=1

w(i)
m,kN

(
θ, φ; m(i)

θ,k|k−1, m(i)
φ,k|k−1, P(i)

(θ,φ),k|k−1

)
+ ∑

z∈Z

Jk|k−1

∑
i=1

w(i)
s,k (z)N

(
θ, φ; m(i)

θ,k, m(i)
φ,k, P(i)

(θ,φ),k

)
, (116)

vk (θ, φ, 1) ≈ ∑
z∈Z

wb,k (z)N (θ; z, Pθ)N
(
φ; φ̄, Pφ

)
, (117)

where

w(i)
m,k = (1− PD,k)wi

k|k−1χ, (118)

w(i)
s,k (z) =

〈1, κk〉
κk (z)

PD,kw(i)
k|k−1q(i)k (z) χ (z) , (119)

wb,k (z) =
〈1, κk〉
κk (z)

wb,k

VB

χ (z) , (120)

which is a Gaussian mixture as required. As we did for the PHD filter, the β = 0 and

β = 1 components of the posterior PHD at time k are added together in the prediction

at time k + 1.

The calculation of the posterior cardinality distribution remains unchanged from

the conventional GMCPHD filter, except for the new definition of Υu
k

[
vk|k−1, Z

]
(n).

Hence, the posterior cardinality distribution is given by (103).

2.4.6.3 Performance of PUB-GM(C)PHD Filters

In this section, we present simulation results demonstrating the performance of the

PUB-GMPHD/CPHD filters applied to single-sensor bearings-only multi-target fil-

tering. This is an important problem, especially in the context of covert surveillance,

because bearing measurements often constitute the only reliable output from sensors

which operate in passive mode. It is challenging due to the non-linear measurement

model, and the potential for poor observability of targets. The effect of observabil-

ity in bearings-only target motion analysis has been studied in [153, 85, 33], but for
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the case of bearings-only multi-target tracking in clutter, the effects are difficult to

characterise in a theoretical context.

To analyse the performance of the PUB-GM(C)PHD filters, we compare them with

the corresponding conventional filters under Gaussian mixture birth models with var-

ious numbers of components. We simulate a scenario consisting of a single bearings-

only sensor on board a manoeuvring platform. The position of this platform is known

at all times and denoted in Cartesian coordinates as
(

x(s)k , y(s)k

)
for time index k. There

are up to six targets in the sensor’s detection region, each following a nearly constant

velocity motion model, defined as follows. At time k, let target t have Cartesian po-

sition coordinates
(

x(t)k , y(t)k

)
and instantaneous velocity vector

(
ẋ(t)k , ẏ(t)k

)
, such that

the target’s state vector can be defined as

x̃(t)k =

[
x(t)k y(t)k ẋ(t)k ẏ(t)k

]
.

For notational convenience, we also define a similar vector x̃(s)k for the known state of

the sensor platform. The target state evolves according to the discrete-time transition

x̃(t)k+1 = Fx̃(t)k + Γvk (121)

F =

 1 T

0 1

⊗ I2, Γ =

 T2/2

T

⊗ I2, (122)

where T is the time between measurements, and vk ∼ N (0, Q) is a 2× 1 i.i.d Gaussian

process noise vector with Q = σ2
v I2 where σv = 0.005 m/s2 is the standard deviation

of the process noise acceleration.

The sensor measures target t bearing according to the model

zt
k = h

(
x̃(t)k , x̃(s)k

)
+ wk (123)

h
(

x̃(t)k , x̃(s)k

)
= arctan

(
x(t)k − x(s)k

y(t)k − y(s)k

)
(124)

where wk ∼ N
(
0, σ2

θ

)
is zero-mean white Gaussian measurement noise with standard

deviation σθ = 1◦. The sensor generates one set of measurements every 10 seconds,

and the detection probability is 0.95 for all targets. The measurement sets also contain

false alarms distributed uniformly across the bearing space, the number of which

follows a Poisson distribution with a known mean of 25 per scan. Three targets are
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present at the beginning of the scenario, with two arriving at time 300s, and one more

at time 600s. One target leaves at 2200s, and another leaves at 2600s. The scenario

geometry and an example of the measurements processed by the filter are shown in

Figure 1.

To handle the non-linear measurement model, all filters use local linearisation

based on the extended Kalman filter (EKF). Clearly, other types of non-linear fil-

tering algorithms may be used in place of the EKF, such as the Unscented Kalman

filter [96], Cubature Kalman filter [5], or Shifted Rayleigh filter [41], but comparing

the performance of these algorithms is beyond the scope of this paper. In these simu-

lations, the expected number of new targets per scan is set to 0.05, the Malahanobis

distance threshold for merging components in the Gaussian mixture is set to 2, and

the weight threshold for elimination of mixture components is 10−5. All performance

metrics shown are averaged over 500 Monte Carlo runs, with fixed ground truth and

independent measurement realisations.

The results of both PUB-GMPHD and PUB-GMCPHD are compared against the

corresponding filters with Gaussian mixture birth models with different numbers

of components. To construct the GM birth models, we position the means of the

Gaussians evenly across the bearing space, at a nominal range of 12 km from the

sensor with a range standard deviation of 4 km. The bearing standard deviation is set

such that the gaps between the means are adequately covered. For this analysis, we

have tested the filters with various GM birth models, where the number of Gaussians

components ranges from 4 up to 1024. We refer to these models as GMX, where X is

the number of Gaussians. For the GM4 model, a bearing standard deviation of 40◦ is

used, GM16 uses 10◦, GM64 uses 2.5◦, and GM256 and GM1024 both use 1◦.

Figures 2a and 2b illustrate two of the GM birth models tested, and Figure 2c shows

the birth model with uniform bearing distribution. From the figures, the GM16 and

uniform birth models appear very similar, and one would expect their performance

to be almost the same. However, the results will show that they exhibit very differ-

ent performance, which is due to the diffuseness of the components in the GM16

representation, and the effect this has on the non-linear measurement update.

Figure 3 shows the optimal sub-pattern assignment (OSPA) distance [173] (with

order 2 and cutoff 4 km) for the PUB-GM(C)PHD filters. As expected, we find that

CPHD outperforms PHD, which is due to the reduced variability in the cardinality

estimates. Figure 4 shows the average increase in the OSPA for each GM birth model
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Figure 1: Target-observer geometry and example measurement set for PUB-GM(C)PHD test
scenario.
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Figure 2: Birth models used for testing PUB-GM(C)PHD filters.
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compared to the PUB model, expressed as a percentage of the OSPA for the PUB

model. This is computed at all times k using the formula

∆OSPA(k) =
100
NMC

NMC

∑
i=1

O(i)
GMX(k)−O(i)

PUB(k)

O(i)
PUB(k)

(125)

where NMC is the number of Monte Carlo runs, O(i)
GMX(k) is the OSPA at time k on

run i using the GMX birth model, and O(i)
PUB(k) is the OSPA at time k on run i using

the PUB model.

Table 1 summarises the results by showing the time averaged performance under

each birth model. The first column (∆̄OSPA) contains the time averaged percentage

increase in OSPA under the GM birth model compared to the PUB model, calculated

by averaging (125) over all k. The second column (Exec Tme) contains the average

execution time, expressed as a multiple of the execution time under the PUB model.
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Figure 3: OSPA distance for PUB-GMPHD and PUB-GMCPHD filters.

From Figure 4 and Table 1 it is clear that using the GM4 and GM16 models to

represent the PHD of new targets has led to higher estimation error than the filter

with uniform birth. This is mainly due to worse localisation performance, which is

induced by the poor initialisation afforded by the birth model. This can be explained

by the fact that when the birth PHD components are updated using the non-linear

measurement model, the more diffuse Gaussians suffer from higher approximation
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Figure 4: Percentage OSPA increase for GMPHD filter with GM birth models compared to
the PUB model.

Table 1: GM(C)PHD filter performance with different birth models.

Birth Model GMPHD GMCPHD
∆̄OSPA (%) Exec Tme ∆̄OSPA (%) Exec Tme

PUB 0 1 0 1

GM4 27.53 3.41 46.70 2.82

GM16 21.03 1.02 34.14 1.00

GM64 2.09 1.39 4.79 1.26

GM256 -3.51 2.40 -3.07 2.15

GM1024 -3.77 6.20 -4.80 4.20

errors. The Gaussian components in the GM4 and GM16 models are necessarily more

diffuse, and as a result, they suffer form these errors to a much greater extent than

the GM64, GM256 and GM1024 models.

The higher execution time for the GM4 model is due to the fact that the filter retains

the diffuse Gaussians from the birth PHD for longer before they are eliminated from

the mixture, thereby increasing the average number of components in the posterior.

This effect occurs in bearings-only tracking because when the bearing component of

the initial covariance is very large, it takes several update cycles to reduce to a value

closer to the variance of the measured bearings. This delay in convergence means that
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Figure 5: Percentage OSPA increase for GMCPHD filter with GM birth models compared to
the PUB model.

there is more opportunity for false alarms to confirm the presence of a target, hence

it takes longer for false components to be discarded.

As the number of Gaussians in the birth model increases, the average OSPA im-

proves, as can be seen from Figure 4 and Table 1. The GM64 model performs slightly

worse than the uniform model, and GM256 performs slightly better, however, a fur-

ther increase to 1024 components provides very marginal improvement, with a signif-

icant increase in computational cost. Note that the differences in ∆OSPA percentages

between the PHD and CPHD filters are due to the difference in absolute error be-

tween the filters. For the uniform birth model, the PHD filter has higher error than

the CPHD (see Figure 3), which leads to lower percentage differences than for the

CPHD filter.

From these results we can conclude that using the uniform target birth model

avoids the potential computational overhead that can occur when using a GM birth

model with either too many or too few components. The uniform birth model also

provides error performance which is similar to using a GM model with many com-

ponents, with some small penalty incurred by approximating the posterior as a Gaus-

sian mixture.
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2.4.7 GMCPHD Filtering with Unknown Clutter Rate

A great deal of research effort has been devoted to multi-target filtering in the pres-

ence of clutter, however, it is often assumed that the clutter density is a known pa-

rameter that can be provided as prior information. This is unrealistic for real-world

applications, as it is often impossible to know this accurately in advance, and its

value is often dependent on environmental conditions which may vary over time. It

is therefore important to investigate trackers which do not require the clutter density

to be specified, and can instead estimate it on-line.

While the original CPHD filter [129, 199] requires knowledge of the clutter density,

it was demonstrated in [133] that this filter can also be used to jointly estimate the

clutter density and target states. This allows filtering in the presence of an unknown

and time-varying clutter background, a technique referred to as λ-CPHD filtering.

This method uses the concept of ‘clutter targets’ to explain the presence of clutter

measurements. Just like real targets, clutter targets are modelled with a detection

probability, survival probability, and birth rate. However, since the cardinality dis-

tribution now includes both real and clutter targets, there is no way to obtain the

cardinality distribution for only the real targets using this method. For this reason,

the performance of the λ-CPHD filter is significantly worse than that of the conven-

tional CPHD filter if the clutter density is accurately known. To improve upon this,

we propose a simple bootstrap filtering scheme in which we use the λ-CPHD filter

to estimate only the clutter density. This is subsequently passed to a conventional

CPHD filter, that estimates the PHD and cardinality distribution for real targets.

Some traditional techniques for tracking with unknown clutter density include non-

parametric versions of probabilistic data association (PDA) [11] and integrated PDA

(IPDA) [151] for the case of a single target in clutter, and non-parametric joint PDA

(JPDA) [10] and joint integrated PDA (JIPDA) [148] for multiple targets in clutter. The

drawback of JPDA and JIPDA is that their computational complexity increases expo-

nentially as the target density increases, making them unsuitable in many situations.

Some other independent techniques for on-line clutter rate estimation have also been

proposed in [118] and [177].
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2.4.7.1 λ-GMCPHD Filter

The section describes the operation of the λ-GMCPHD filter, which was proposed in

[133] as a method of dealing with cases in which the clutter rate is unknown and

possibly time-varying.

We begin by defining some notation. Let ṽk (·) denote the posterior PHD of a com-

posite multi-target state comprising both real targets and clutter targets, and let ρ̃k (·)
denote the cardinality distribution of this state. The composite PHD ṽk (·) can be

decomposed as

ṽk (x̃) =


v(1)k (x) , x̃ = x

v(0)k (c) , x̃ = c

(126)

where v(1)k (·) is the PHD for real targets, and v(0)k (·) is the PHD for clutter. As in

the conventional GMCPHD filter, we represent v(1)k (·) using a Gaussian mixture, and

the probabilities of detection and survival for real targets are denoted P(1)
D and P(1)

S

respectively. The PHD for clutter targets v(0)k (·) is completely characterised by the

number of clutter targets, which we denote as N(0)
k .

Clutter is modelled in terms of the following parameters; the mean number of

clutter target births per frame N(0)
B,k , the probability of clutter target survival P(0)

S,k , the

probability of clutter target detection P(0)
D,k, and the spatial likelihood α

(0)
k . The choice

of values for these parameters is governed by the desired filter response. Lower values

of P(0)
D,k lead to reduced variance in the clutter rate estimates, at the expense of a longer

response time to changes in the true clutter rate. It can also be shown that if the true

clutter rate is constant, the filter will give the most accurate estimates when that rate

is N(0)
B,k P(0)

D,k/
(

1− P(0)
S,k

)
.

prediction At time k− 1, let ρ̃k−1 denote the posterior cardinality distribution,

v(1)k−1 the posterior PHD of the form

v(1)k−1 (x) =
Jk−1

∑
i=1

w(i)
k−1N

(
x; m(i)

k−1, P(i)
k−1

)
, (127)
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and N(0)
k−1 the posterior number of clutter generators. Then the predicted PHD at time

k is given by

vk|k−1 (x) = vS,k|k−1 (x) + γk (x) , (128)

where

vS,k|k−1 (x) = P(1)
S,k

Jk−1

∑
i=1

w(i)
k−1N

(
x; m(i)

k|k−1, P(i)
k|k−1

)
, (129)

γk (x) =
JB,k

∑
i=1

w(i)
B,kN

(
x; m(i)

B,k, P(i)
B,k

)
, (130)

m(i)
k|k−1 = Fm(i)

k−1, (131)

P(i)
k|k−1 = FP(i)

k−1F + Q, (132)

in which JB,k is the number of components in the Gaussian mixture birth PHD at time

k, and w(i)
B,k, m(i)

B,k and P(i)
B,k are the weight, mean and covariance of the i-th component

in the birth PHD respectively. The predictions for the number of clutter generators,

clutter rate, and cardinality distribution are given by

N(0)
k|k−1 = N(0)

B,k + P(0)
S,k N(0)

k−1, (133)

λ
(0)
k|k−1 = N(0)

k|k−1P(0)
D,k, (134)

ρ̃k|k−1 (ñ) =
ñ

∑
j=0

ρ̃B,k (ñ− j)
∞

∑
l=j

Cj
l ρ̃k−1 (l) (1− φ)l−j φj, (135)

where

Cj
l =

j!
l! (j− l)!

, (136)

φ =
P(1)

S,k ∑
Jk−1
i=1 w(i)

k−1 + P(0)
S,k N(0)

k−1

∑
Jk−1
i=1 w(i)

k−1 + ∑
JB,k
i=1 w(i)

B,k + N(0)
k−1

. (137)

update Given the predictions in (129), (133), (134), and (135) we may calculate

the posterior PHD, number of clutter generators, and cardinality distribution by

v(1)k (x) =
Jk|k−1

∑
i=1

w(i)
k,mN

(
x; m(i)

k|k−1, P(i)
k|k−1

)
+ ∑

z∈Z

Jk|k−1

∑
i=1

w(i)
k,S (z)N

(
x; m(i)

k (z) , P(i)
k (z)

)
(138)
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N(0)
k = N(0)

k|k−1

(
1− P(0)

D,k

)
χ̃ + ∑

z∈Z

λ
(0)
k|k−1αk (z)

D1 (z)
(139)

ρ̃k (ñ) =


0, ñ < |Z|
ρ̃k|k−1(ñ)Υ̃

(0)
k [ṽk|k−1,Z](ñ)〈

ρ̃k|k−1,Υ̃(0)
k [ṽk|k−1,Z]

〉 , ñ ≥ |Z|
(140)

The weights of the Gaussian components in the updated mixture are calculated by

w(i)
m,k =

(
1− P(1)

D,k

)
χ̃w(i)

k|k−1, (141)

w(i)
S,k (z) =

P(1)
D,kw(i)

k|k−1q(i)k (z)

D1 (z)
, (142)

where,

D1 (z) = λ
(0)
k|k−1αk (z) + P(1)

D,k

Jk|k−1

∑
i=1

w(i)
k|k−1q(i)k (z) , (143)

χ̃ =
1

D1

〈
Υ̃(1)

k

[
ṽk|k−1, Z

]
, ρ̃k|k−1

〉
〈

Υ̃(0)
k

[
ṽk|k−1, Z

]
, ρ̃k|k−1

〉 , (144)

Υ̃(u)
k

[
Φk|k−1, Z

]
(ñ) =


0, ñ < |Z|+ u

Pñ
|Z|+uΦñ−(|Z|+u)

k|k−1 , ñ ≥ |Z|+ u

, (145)

Φk|k−1 = 1− 1
D2

(
P(1)

D,k

Jk|k−1

∑
i=1

w(i)
k|k−1 + λ

(0)
k|k−1

)
, (146)

D2 =

Jk|k−1

∑
i=1

w(i)
k|k−1 + N(0)

k|k−1, (147)

Pñ
|Z|+u =

ñ!
(ñ− (|Z|+ u))!

. (148)

2.4.7.2 Bootstrap GMCPHD Filter

The λ-GMCPHD filter does not propagate the cardinality distribution of real targets,

but the joint cardinality distribution of real and clutter targets. This leads to increased

variability in the estimated number of real targets compared to the conventional GM-

CPHD filter, which propagates the cardinality distribution of real targets only. By

running a λ-GMCPHD and conventional GMCPHD filter in parallel, we can utilise

the strengths of both filters to improve the overall performance. A simple way to

do this is to use λ-GMCPHD to estimate the clutter density only, and the conven-

tional GMCPHD to estimate the intensity and cardinality distribution of real targets.
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On each scan, the λ-GMCPHD filter is updated first, and its estimate of the current

clutter density calculated as

λC,k = N(0)
k P(0)

D,k. (149)

This is then used in the update of the conventional GMCPHD filter, as illustrated in

Figure 6.

Figure 6: Block diagram of the bootstrap GMCPHD filter.

2.4.7.3 Performance of the Bootstrap GMCPHD Filter

In this section we examine the performance of the three versions of the GMCPHD

filter applied to a bearings-only multi-target tracking problem. The bootstrap GM-

CPHD filter is compared to the λ-GMCPHD and the conventional GMCPHD filter

with various fixed clutter rate parameters. The performance of each filter is analysed

by carrying out 500 Monte Carlo runs and plotting the average OSPA distance [173]

between the estimated and true states, with order 1 and cutoff 4km.

The scenario consists of a single bearings-only sensor on board a manoeuvring

platform, and up to five targets with nearly constant velocity (σv = 0.005m/s2). Two

targets are present at the beginning, with another three appearing shortly thereafter,

and two disappearing late in the scenario. The detection probability and measure-

ment noise are both known constants, with values of 0.95 and 1◦ respectively. The

number of clutter measurements is Poisson, and the spatial distribution is uniform

across all possible bearings. Two different clutter backgrounds are tested, one with a

constant rate of 30, and another with a variable rate starting at 20 and increasing to

40 during the scenario. The scenario geometry and an example of the measurements

for the variable clutter rate case are shown in Figure 7.

For the case of constant clutter rate, the performance of the bootstrap and λ-

GMCPHD filters are compared with the conventional GMCPHD filter. The latter is

tested under three different clutter parameter settings; 30 (matched), 40 (too high),

and 20 (too low). For the λ-GMCPHD filter, parameter values of P(0)
D,k = 0.5, P(0)

S,k =
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Figure 7: Target-observer geometry and example measurement set for bootstrap GMCPHD
filter test scenario. The measurements shown are for the case of time-varying clutter
rate.
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0.98, and N(0)
B,k = 1 were used. This is tuned to achieve best performance for a clutter

rate of 25, which is slightly offset from the true rate of 30.

The OSPA and clutter rate estimates/parameters for the constant case are shown in

Figure 8. As expected, the matched filter performs best, and the unmatched filters per-

form worse due to the bias introduced by the incorrect clutter rate setting. When the

clutter rate is set too low, the filter responds more quickly to new target appearance,

but more slowly to target disappearance, because the filter is more likely to explain

measurements as originating from targets instead of clutter. The opposite effect oc-

curs when the clutter rate parameter is set too high. This can be seen in Figure 9,

which shows the cardinality estimation performance for the conventional GMCPHD

filter under different clutter parameter settings. As expected, the cardinality is biased

low when the clutter rate is set too high, biased high when the clutter rate is set too

low, and unbiased when the clutter rate is matched to the truth.

Interestingly, the λ-GMCPHD alone performs no better on average than the un-

matched filters, due to the lack of cardinality information for real targets. From Fig-

ure 10, it is clear that the λ-GMCPHD filter exhibits higher cardinality variance than

the conventional GMCPHD filter. The bootstrap GMCPHD filter resolves this prob-

lem, with much lower cardinality variance, and OSPA performance very similar to

the matched GMCPHD filter.

For the variable clutter rate scenario, the two adaptive methods are compared with

two parameterisations of the conventional GMCPHD filter, one of which assumes a

fixed clutter rate of 30, and the other is the ideal but unrealistic case in which the

clutter rate is matched to the exact true value on each scan. For the λ-GMCPHD filter,

the clutter model parameters are the same as the constant clutter rate case.

Figure 11 shows the OSPA for the four filters and the clutter rate estimation per-

formance, and Figure 12 shows the cardinality estimation performance. The fixed-

parameter GMCPHD filter performs poorly, as its cardinality estimates are biased

low at the beginning and high at the end, due to the change in the underlying clutter

rate. As before, due to the lack of target cardinality information, the λ-GMCPHD

alone performs no better on average than the unmatched conventional GMCPHD,

and exhibits increased cardinality variance. The bootstrap GMCPHD filter gives a

significant improvement over the unmatched filter, with performance very similar to

the ideal matched GMCPHD filter. The reason for this is that the λ-GMCPHD fil-
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Figure 8: Constant clutter rate scenario, OSPA and clutter rate results for GMCPHD filters.
In the clutter rate plot the “fixed” lines show the parameter settings for the corre-
sponding GMCPHD filter, and the “estimated” line shows the estimates generated
by the λ-GMCPHD filter, which is also used by the bootstrap GMCPHD filter.
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Figure 9: Constant clutter rate scenario, cardinality results for GMCPHD filters with clutter
rate set too high, too low, and matched to truth.
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ter component is capable of automatically responding to changes in clutter rate over

time, as illustrated by the lower plot in Figure 11.

Some bias in the estimated clutter rate is evident from Figure 11, which is due to

the fact that the parameters of the clutter model are tuned to give best performance

for true clutter rates of around 25. Hence, when the true rate is lower, the estimate

will be biased high, and when the true rate is higher, the estimate will be biased low.

However, these small biases were not detrimental to the performance of the filter, and

the average OSPA is almost identical to the unrealistic case in which the clutter rate

is matched exactly to the truth. Clearly, a fixed clutter rate filter could not provide

this level of performance, unless its parameters were being manually updated as the

true clutter rate changes.
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Figure 10: Constant clutter rate scenario, cardinality results for λ-GMCPHD and bootstrap
GMCPHD filters.
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Figure 11: Variable clutter rate scenario, OSPA and clutter rate results fro GMCPHD filters.
In the clutter rate plot, the “fixed” line shows the parameter setting for the cor-
responding GMCPHD filter, which is mid-way between the true lowest and high-
est clutter rates. The “estimated” line shows the estimates generated by the λ-
GMCPHD filter, which is also used by the bootstrap GMCPHD filter.
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Figure 12: Variable clutter rate scenario, cardinality results for GMCPHD filters.



56 background : single and multi-object bayesian estimation

2.5 multi-target tracking with labelled random finite

sets

Until recently, methods based on the RFS framework have only considered the case

of unlabelled random finite sets. This has been a major point of criticism for the RFS

framework, since it leads to algorithms which are inherently unable to estimate target

trajectories over time. All of the algorithms mentioned in the previous section (PHD,

CPHD, and CBMeMBer) have this limitation, generating sets of disconnected point

estimates at each time instant, instead of continuous trajectories. This limitation was

first addressed in [198], in which the idea of labelled random finite sets was introduced.

This section provides a summary of existing multi-target tracking techniques based

on this concept.

2.5.1 Notation and Definitions

We begin by defining some notation which will be used when working with labelled

random finite sets. The multi-object exponential of a real valued function h raised to

a set X is defined as

[h]X , ∏
x∈X

h (x) , (150)

where [h]∅ = 1, and the elements of X may be of any type such as scalars, vectors,

or sets, provided that the function h takes an argument of that type. The generalised

Kronecker delta function is defined as

δY (X) ,


1, if X = Y

0, otherwise

(151)

where again, X and Y may be of any type, such as scalars, vectors, or sets. The set

inclusion function is given by

1Y (X) ,


1, if X ⊆ Y

0, otherwise

. (152)
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A labelled set is simply a set in which every element has been augmented with a

label, drawn from a discrete label space. Consider an unlabelled set X = {x1, . . . , xn}.
A labelled version of X is obtained by augmenting each xi with a label `i, that is

X = {(x1, `1) , . . . (xn, `n)} . (153)

Each element of a labelled set is alternatively denoted by a bold lower case symbol

xi ≡ (xi, `i), and thus X can also be expressed as

X = {x1, . . . , xn} (154)

Note that in general, we adopt the notational convention that labelled sets are ex-

pressed in bold upper case (X), unlabelled sets in regular upper case (X), labelled

vectors in bold lower case (x), and unlabelled vectors or scalars in regular lower case

(x). For a labelled set X given by (153), the function which extracts the labels is de-

fined as

L (X) = {`1, . . . , `n} . (155)

Note that if the X contains multiple elements with the same label, then the cardinality

of L (X) will not be the same as the cardinality of X, since by definition, a set cannot

contain repeated elements. To determine whether the the set X contains repeated

labels, we define the following distinct label indicator function

∆ (X) = δ|X| (|L (X)|) . (156)

A labelled RFS is a labelled set-valued random variable, which only takes on values

with distinct labels. More formally, we define it as follows.

Definition 1. A labelled RFS with state space X and discrete label space L, is an RFS

on X×L, such that the labels within each realisation are always distinct. That is, a

realisation X of a labelled RFS always satisfies ∆ (X) = 1.

The reason for the distinct label indicator is to ensure uniqueness of the labels

within any given realisation of the set. Although by definition, a set can only contain

unique elements, this criterion would still be satisfied if a labelled RFS were to contain

two elements with the same label but different states. Since an object with a given

label cannot be in two states simultaneously, this would not be physically meaningful.
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We now define two specific classes of labelled RFS, which are useful in deriving

tractable implementations of the multi-object Bayes recursion. A relatively simple

class is called the labelled multi-Bernoulli [198], which as its name implies, is a multi-

Bernoulli RFS in which each independent Bernoulli element has an associated label

which is distinct from all others in the set.

Definition 2. A labelled multi-Bernoulli (LMB) RFS is a labelled RFS with state space

X and discrete label space L, which is distributed according to

π (X) = ∆ (X)w (L (X)) [p (·)]X , (157)

where

w (L) = ∏
`∈L

(
1− r(`)

)
∏
`∈L

(
1L (`)

r(`)

1− r(`)

)
, (158)

p (x, `) = p(`) (x) ,

in which r(`) and p(`) (·) are the existence probability and probability density cor-

responding to label ` ∈ L. An LMB distribution is abbreviated using the notation

π (X) =
{(

r(`), p(`)
)}

`∈L
.

A more sophisticated and flexible class of labelled RFS is called the generalised

labelled multi-Bernoulli [198], which is defined as follows.

Definition 3. A generalised labelled multi-Bernoulli (GLMB) RFS is a labelled RFS with

state space X and discrete label space L, which satisfies the probability distribution

π (X) = ∆ (X) ∑
c∈C

w(c) (L (X))
[

p(c) (·)
]X

(159)

where C is an arbitrary index set, and

∑
L⊆L

∑
c∈C

w(c) (L) = 1, (160)∫
x∈X

p(c) (x, `) dx = 1. (161)

The GLMB, has been shown to be closed under the Champan-Kolmogorov equa-

tion with the standard multi-object transition function, and it is also a conjugate prior

with respect to the standard multi-object observation function [198], i.e. the form of

the density is retained through both prediction and update.



2.5 multi-target tracking with labelled random finite sets 59

The GLMB is a very general and flexible model for a labelled RFS, but its applica-

tion to multi-target tracking problems is not immediately obvious. However, a more

specific type of GLMB RFS has been proposed, as defined below, which presents

a more conspicuous path towards the implementation of multi-target tracking algo-

rithms [198].

Definition 4. A δ-generalised labelled multi-Bernoulli (δ-GLMB) RFS with state space X

and label space L is a generalised labelled multi-Bernoulli RFS in which

C = F (L)× Ξ (162)

w(c) (L) = w(I,ξ) (L) = ω(I,ξ)δI (L) (163)

p(c) = p(I,ξ) = p(ξ) (164)

where Ξ is a discrete space. Thus, a δ-GLMB RFS is distributed according to

π (X) = ∆ (X) ∑
(I,ξ)∈F (L)×Ξ

ω(I,ξ)δI (L (X))
[

p(ξ)
]X

. (165)

In a δ-GLMB, the sum is taken over the Cartesian product between the space of

finite subsets of L, and the discrete space Ξ. In tracking applications, each subset

of L is used to represent a set of target labels, and Ξ is used to represent the space

of measurement-to-label association histories. Hence, a particular element (I, ξ) ∈
F (L)× Ξ can be considered to be the hypothesis that the set of currently existing

targets are those with labels I and association history ξ. The weight ω(I,ξ) is the

probability of this hypothesis, and p(ξ) (·, `) is the pdf of the target with label ` under

association history ξ.

Like the GLMB, the δ-GLMB has also been shown to be closed under the standard

multi-object prediction, and a conjugate prior with respect to the standard multi-

object measurement likelihood [198]. This makes the δ-GLMB a highly useful tool for

deriving analytical Bayes recursions for multi-object estimation and tracking prob-

lems.

2.5.2 Standard Labelled Multi-target Dynamic Model

Here we define the standard multi-target dynamic model with the inclusion of target

labels. Let X be the labelled RFS of objects at the current time with label space L.
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A particular object (x, `) ∈ X has probability PS (x, `) of surviving to the next time

with state (x+, `+) and probability density f (x+|x, `) δ` (`+) (where f (x+|x, `) is

the single target transition kernel), and probability, 1− PS (x, `) of being terminated.

Thus, the set S of surviving objects at the next time is distributed as

fS (S|X) = ∆ (S)∆ (X) 1L(X) (L (S)) [Φ (S; ·)]X (166)

where

Φ (S; x, `) = ∑
(x+,`+)∈S

δ` (`+) PS (x, `) f (x+|x, `) +
(

1− 1L(S) (`)
)
(1− PS (x, `)) .

(167)

Now let B be the labeled RFS of newborn objects with label space B, where L∩B = ∅.

To ensure that L and B are disjoint, we adopt a labelling scheme such that each new

birth is labelled with a pair (kb, lb), where kb is the current scan index and lb is a

unique index. Since the time changes from scan to scan, the space of birth labels

is always disjoint from the space of surviving labels. Since the births have distinct

labels, and assuming that their states are independent, we model B as a labelled

multi-Bernoulli RFS with distribution

fB (B) = ∆ (B)wB (L (B)) [pB (·)]B . (168)

where pB (·, `) is the single target birth density corresponding to label `, and wB(·)
is the birth weight defined by (158) in which r(`) = r(`)B are the birth target existence

probabilities (see Section IV-D of [198] for more details). We present the prediction

based on an LMB birth model, however, this can easily be extended to the case of a

GLMB birth model. The overall multi-object state at the next time step is the union of

survivals and new births, i.e. X+ = S ∪ B. The label spaces L and B are disjoint, and

the states of newborn objects are independent of surviving objects, hence S and B are

independent. It was shown in [198] that the multi-object transition can be expressed

as

f (X+|X) = fS (X+ ∩ (X×L) |X) fB (X+ − (X×L)) . (169)

Although the tracking algorithms proposed in this dissertation do not require sam-

pling from the multi-object transition density, this will be necessary in Chapter 5

where we propose a multi-target sensor control scheme. Algorithm 1 demonstrates
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how to draw a sample from the standard multi-target survival density, given a cur-

rent set of target states and labels. A sample from the full transition can be obtained

by taking the union of this with a sample drawn from the multi-target birth density.

Algorithm 1: Sample from the standard multi-target survival density.
Input: States at time k (Xk), labels at time k (Lk), survival probability (PS)
Output: Sampled states at time k + 1 (Xk+1), sampled labels at time k + 1 (Lk+1)

1 Function [Xk+1, Lk+1] = SampleSurvivals (Xk, Lk, PS) is
2 j = 0;
3 for i = 1 : |Xk| do
4 r ∼ Uniform ([0, 1]);

5 if r < PS

(
X(i)

k

)
then

6 j = j + 1;

7 X(j)
k+1 ∼ f

(
·|X(i)

k

)
;

8 L(j)
k+1 = L(i)

k ;

2.5.3 Standard Multi-target Observation Model

Let X be the labelled RFS of objects that exist at the observation time. A particular

object x ∈ X has probability PD (x) of generating a detection z with likelihood g (z|x),
and probability 1− PD (x) of being misdetected. Let W be the set of target detections.

Assuming the elements of W are conditionally independent, W is a multi-Bernoulli

RFS with parameter set {(PD (x) , g (·|x)) : x ∈ X}, and we write its probability den-

sity as

πD (W|X) = {(PD (x) , g (·|x)) : x ∈ X} (W) . (170)

Let K be the set of clutter observations, which are independent of the target detections.

We model K as a Poisson RFS with intensity κ(·), hence K is distributed according to

πK (K) = e−〈κ,1〉κK. (171)

The overall multi-object observation is the union of target detections and clutter obser-

vations, i.e. Z = W ∪ K. Since W and K are independent, the multi-object likelihood

is

g (Z|X) = ∑
D⊆Z

πD (W|X)πK (Z−W) . (172)
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As demonstrated in [135], this can be equivalently expressed as

g (Z|X) = e−〈κ,1〉κK ∑
θ∈Θ

[ψZ (·; θ)]X (173)

where Θ is the set of all mappings of labels to measurement indices, θ : L →
{0, 1, ..., |Z|}, such that [θ (i) = θ (j) > 0] ⇒ [i = j] (i.e. a given θ can map multiple

labels to 0, but only one label can be mapped to each non-zero measurement index).

Finally, the function ψZ (·; θ) in (173) is given by

ψZ (x, `; θ) =


PD(x,`)g(zθ(`)|x,`)

κ(zθ(`))
, θ (`) > 0

1− PD (x, `) , θ (`) = 0

. (174)

The standard observation model as defined in (173) and (174) is based on the fun-

damental assumption that each target generates at most one measurement, and that

each measurement originates from at most one target. Although this is useful in the

derivation of computationally efficient filtering algorithms, these assumptions are

too restrictive to model real-world phenomena such as measurement merging or ex-

tended objects. Chapters 3 and 4 of this dissertation present methods of dealing with

these cases, providing a higher-fidelity modelling of the observations using the RFS

formulation.

Algorithm 2 shows how to draw a sample from the standard multi-target observa-

tion model, given a current set of target states.

2.5.4 Generalised Labelled Multi-Bernoulli Filter

The GLMB filter [198] models the multi-object state as a GLMB random finite set,

as specified by Definition 4. The parameters of the GLMB density are propagated

forward in time via a prediction, and new observation data is incorporated via a

measurement update. These two procedures are summarised in the following sub-

sections, and pseudo-code detailing their implementation can be found in Section

2.6.1.
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Algorithm 2: Sample from the standard multi-target measurement model.
Input: Target states (X), sensor state (u), detection probability (PD), clutter

intensity (λ), clutter region (S)
Output: Measurement sample (Z)

1 Function Z = SampleMeasurements (X, u, PD, λ, S) is
2 Z = ∅;
3 for i = 1 : |X| do
4 r ∼ Uniform ([0, 1]);

5 if r < PD

(
X(i)

)
then

6 z ∼ g
(
·|X(i), u

)
;

7 Z = Z ∪ {z};
8 n ∼ Poisson (·; λ);
9 for i = 1 : n do

10 z ∼ Uniform (S);
11 Z = Z ∪ {z};

2.5.4.1 Prediction

If the posterior multi-object density at the current time is a GLMB given by (165),

then under the standard multi-object dynamic model defined in Section 2.5.2, the

predicted multi-object density at the next time step is also a GLMB given by [198]

π+ (X) = ∆ (X) ∑
c∈C

w(c)
+ (L (X))

[
p(c)+ (·)

]X
, (175)

where

w(c)
+ (L) = wB (L ∩B)w(c)

S (L ∩L) , (176)

p(c)+ (x, `) = 1L (`) p(c)S (x, `) + 1B (`) pB (x, `) , (177)

p(c)S (x, `) =

〈
PS (x, `) f (x|·, `) , p(c) (·, `)

〉
η
(c)
S (`)

, (178)

η
(c)
S (`) =

∫ 〈
PS (x, `) f (x|·, `) , p(c) (·, `)

〉
dx, (179)

w(c)
S (J) =

[
η
(c)
S

]J
∑
I⊆L

1I (J)
[
q(c)S

]I−J
w(c) (I) , (180)

q(c)S (`) =
〈

1− PS (·, `) , p(c) (·, `)
〉

. (181)

In principle, this involves generating a predicted GLMB component for all combi-

nations of target birth, death and survival, for each component in the current density.

In practice however, doing so is usually infeasible because the number of predicted
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components becomes too large. To improve the efficiency of the prediction, approxi-

mations can be used to avoid generating unlikely components. In practice, the predic-

tion for target survivals and target births are carried out separately, and the resulting

GLMBs are combined to arrive at the overall prediction.

2.5.4.2 Survival Prediction

One approach to computing the predicted GLMB of surviving targets is to use a k-

shortest paths algorithm, which identifies the most likely combinations of surviving

targets in decreasing order of weight. To achieve this, we first generate a graph struc-

ture with one row per target and two columns as shown in Figure 13, in which the

nodes in the first column contain the costs of target survival (from equation (179)),

and the nodes in the second column contain the costs of target death (from equation

(181)). A k-shortest paths algorithm is used to generate the cheapest paths from the

start node to the end node. Each path is then used to compute a new predicted com-

ponent, where the surviving targets are those that correspond to rows in which the

the first column was visited.

Start

End

Figure 13: Graph structure used in the GLMB survival prediction.

Another method to reduce the computation is to impose restrictions on the target

death process. For example, if it reasonable to assume that on each scan, a maxi-

mum of one existing target can die, then the number of predicted components can be

greatly reduced, resulting in a significant reduction in the computational load.
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2.5.4.3 Measurement Driven Birth

In many multi-target tracking scenarios, it is possible for new targets to appear any-

where within the sensor’s detection region. In such cases, the target birth model must

not restrict the locations where new tracks can be initiated, or else the tracker might

fail to find the new targets. The GLMB filter assumes that the birth density is a GLMB,

and the simplest way to implement this is to construct a “static” birth density off-line.

The problem with this method is that it restricts the states of new targets to be in

the areas covered by the static birth model. To ensure that all possible birth states

are covered by the model may be computationally prohibitive, since the number of

required components could be very large.

A solution to this is to construct the birth model on-line using the measurement

data. In the most general case, a measurement driven birth model would allow any

number of measurements on any scan to initiate new tentative tracks. Since each term

in the GLMB needs to capture a complete set of hypothesised births, this approach

may also be computationally prohibitive, since it requires enumerating all possible

subsets of the measurements on each scan. Nevertheless, the computational load can

be reduced by making a few reasonable assumptions as follows;

1. a maximum of one new target can appear on each scan,

2. measurements that are likely to have originated from existing targets do not

give rise to new birth terms, and

3. new targets are always detected on the first scan after they appear.

Applying these assumptions reduces the number of terms in the birth density, which

in turn significantly reduces the number of components in the predicted GLMB.

Let us denote the measurement set from the previous scan as Zk−1. A measurement

driven birth GLMB is constructed according to

πB,k (X) = ∆ (X) ∑
i∈|Zk−1|

wB (L (X)) [pB (·|Zk−1, i)]X (182)

where

wB (L) = δ1 (|L|) 1Bk−1 (L) PB (L) , (183)

pB (x, (k− 1, j) |Zk−1, i) =
〈

f (x|·, (k− 1, j)) , p
(
·|z(i)k−1

)〉
δi (j) (184)



66 background : single and multi-object bayesian estimation

in which Bk−1 = {(k− 1, i) |i ∈ 1 . . . |Zk−1|} is the space of birth labels at time k− 1,

PB (L) (for L = {(k− 1, i)}) is the prior probability that the i-th measurement in scan

k − 1 was generated by a new target, and p
(
·|z(i)k−1

)
is the prior pdf of that target.

Note that the delta function in (183) restricts the birth density to have non-zero value

only when X is a singleton, i.e. only one birth target is permitted at a time. However,

different choices for the label and pdf are possible, depending on which measurement

is associated with the new target. In practice it is also possible to further reduce the

number of terms by making use of consecutive measurement scans to construct the

birth density. If we assume that a birth target must be detected on the first two scans

after its appearance, it is often possible to exclude many of the terms in (182), since

a term is included only when a measurement in the next scan validates the possible

presence of a target.

2.5.4.4 Measurement Update

Suppose the prior multi-object density at the current time is a GLMB given by (165),

and we wish to compute the posterior multi-object density conditioned on a set of re-

ceived measurements Z. Let Θ be the set of mappings between target labels and mea-

surement indices, as specified in Section 2.5.3. Under the standard multi-object ob-

servation likelihood function (173), the posterior multi-object density is also a GLMB

given by [198]

π (X|Z) = ∆ (X) ∑
c∈C

∑
θ∈Θ(L(X))

w(c,θ)
Z (L (X))

[
p(c,θ) (·|Z)

]X
, (185)

where

w(c,θ)
Z (L) =

w(c) (L)
[
η
(c,θ)
Z

]I

∑
J⊆L

∑
c∈C

∑
θ∈Θ(J)

w(c) (J)
[
η
(c,θ)
Z

]J , (186)

p(c,θ) (x, `|Z) = p(c) (x, `)ψZ (x, `; θ)

η
(c,θ)
Z (`)

, (187)

η
(c,θ)
Z (`) =

〈
p(c) (·, `) , ψZ (·, `; θ)

〉
, (188)

ψZ (x, `; θ) =


PD(x,`)g(zθ(`)|x,`)

κ(zθ(`))
, θ (`) > 0

1− PD (x, `) , θ (`) = 0

. (189)
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In principle, the update involves generating an updated GLMB component for

all possible associations of measurements to targets. Usually this is not feasible in

practice, since the number of associations increases combinatorially as the number of

targets and measurements increases. Several techniques can be employed to reduce

the number of posterior GLMB components that need to be stored.

The first of these is measurement gating [29], which involves disallowing unlikely

measurement-to-target mappings based on a predefined probability threshold. This

is a well established method, and it is used extensively in other multi-target tracking

algorithms to reduce the computational load. Removing the unlikely associations up-

front results in a drastic reduction in the number of feasible measurement-to-target

mappings.

The next is the use of a ranked assignment algorithm to generate a requested num-

ber of components with highest weights. For a set of targets with labels {`1, . . . , `n},
and a set of measurements Z (with |Z| = m), this is done by constructing the follow-

ing cost matrix,

− ln


φ(c) (`1, z1) · · · φ(c) (`1, zm) φ(c) (`1, ∅) · · · 0

...
. . .

...
...

. . .
...

φ(c) (`n, zn) · · · φ(c) (`n, zm) 0 · · · φ(c) (`n, ∅)

 . (190)

where

φ(c) (`, z) =
〈

p(c) (·, `) ,
PD (·, `) g (z|·, `)

κ (z)

〉
, (191)

φ(c) (`, ∅) =
〈

p(c) (·, `) , 1− PD (·, `)
〉

. (192)

In (190), each row represents a target, the first m columns represent detections, and

the last n columns represent misdetections. Note that if measurement gating is carried

out beforehand, many of the detection terms in the first m columns will be zero, in-

dicating that the corresponding measurement-to-target association is infeasible. The

matrix (190) is processed using a ranked assignment algorithm (for example Murty’s

algorithm [147]), which yields a sorted list of the cheapest one-to-one assignments of

rows to columns, in increasing order of cost. Note that using this formulation, each

solution must assign every row to a column, but there may be columns that are not

assigned to a row. In generating the list of ranked assignments, whenever a row is
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assigned to a column index greater than m by Murty’s algorithm, the assignment is

reported as 0, to indicate that the target was misdetected. Each element in the list is

then used to construct a component in the posterior GLMB density.

The final method for reducing the number of posterior components is to carry out

a pruning procedure after the update, which removes components with low weights

from the GLMB representation. Several different criteria can be used to remove com-

ponents, for example, deleting those with weights falling below a fixed threshold, or

those with weights lower than some proportion of the highest weight. Furthermore,

an upper bound on the total number of components can be enforced, for example, by

retaining only the N highest weighted components in the posterior density.

Section 2.6.1 in this chapter contains detailed pseudo-code for an implementation

of the GLMB filter, based on the standard multi-object dynamic and measurement

models.

2.5.5 Labelled Multi-Bernoulli Filter

The aim of the LMB filter is to reduce the computational complexity of the GLMB

filter by applying an approximation that avoids the exponential growth in the number

of components in the posterior multi-object density.

2.5.5.1 Prediction

Instead of being represented as a GLMB, the posterior at time k − 1 is represented

as an LMB random finite set with a density of the form (157) and parameter set

πk−1 =
{(

r(`)k−1, p(`)k−1

)}
`∈L

. The target birth model is also an LMB with parameter set

πB,k =
{(

r(`)B,k, p(`)B,k

)}
`∈B

, where B is the space of labels for new targets appearing at

time k. In this case, the predicted LMB density is given by

πk|k−1 =
{(

r(`)k|k−1, p(`)k|k−1

)}
`∈L
∪
{(

r(`)B,k, p(`)k|k−1

)}
`∈B

, (193)

where

r(`)k|k−1 = r(`)k−1ηS (`) , (194)

p(`)k|k−1 (x) =
〈PS (·, `) f (x|·, `) , pk (·, `)〉

ηS (`)
, (195)

ηS (`) = 〈PS (·, `) , pk (·, `)〉 . (196)
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That is, to obtain the predicted LMB, we simply take the union of the set of pre-

dicted surviving tracks and the set of birth tracks. This is much cheaper to compute

than the GLMB prediction, since it does not involve the sum over subsets of L which

appears in (180). The reader is referred to [164] for more details.

2.5.5.2 Measurement Update

Firstly, the predicted LMB density is divided into disjoint clusters, each of which is

approximately independent of all others. This is done based on the current measure-

ment set, by observing that a pair of tracks can be considered as members of different

independent clusters if no single measurement falls inside the gating region of both

tracks simultaneously. More details on how this is performed can be found in [164].

The predicted LMB for each cluster is then converted into the GLMB representation.

If the predicted LMB for a cluster is given by πk|k−1 =
{(

r(`)k|k−1, p(`)k|k−1

)}
`∈L+

, this can

be converted to a single component GLMB, given by (157). In principle, this involves

calculating the GLMB weight for all subsets of L+, however, in practice, approxima-

tions can be used to reduce the number of components and improve the efficiency

of the conversion. These include methods such as target grouping, truncation with

k-shortest paths, or sampling procedures. For more details see [164], which expresses

the converted density in δ-GLMB form, essentially enumerating all possible subsets

of the tracks appearing in the predicted LMB. After computing the GLMB density of

each cluster, each one is updated according to the standard GLMB update procedure

(185)-(188).

After the updates, the posterior GLMB for each target cluster can be approximated

by an LMB with matching probability hypothesis density, with parameters

r(`) = ∑
c∈C

∑
L⊆L+

∑
θ∈Θ

w(c,θ) (L) 1I (`) , (197)

p(`) (x) =
1

r(`) ∑
c∈C

∑
L⊆L+

∑
θ∈Θ

w(c,θ) (L) 1I (`) p(θ) (x, `) . (198)

The existence probability corresponding to each label is the sum of the weights of the

GLMB components that include that label, and its pdf becomes the weighted sum

of the corresponding pdfs from the GLMB. Thus, the pdf of each track in the LMB

becomes a mixture of single-object densities. To avoid the number of components

growing too large, it is necessary to reduce these mixtures by a process of pruning
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and merging. Finally, the overall LMB approximation to the posterior at scan k is

given by the union of the approximate posterior LMBs across all clusters.

Note that the computational saving of the LMB filter depends on the assumption

that the number of targets (and hence the number of GLMB components) in each

group will be relatively small. In this case, the total number of GLMB components

that need to be processed across all target groups will be significantly lower compared

to the full GLMB filter.

While the LMB approximation matches the PHD (and therefore the mean cardi-

nality) of the full GLMB, it cannot match its complete cardinality distribution. The

reason for this is that the LMB model has fewer degrees of freedom than the GLMB,

and thus the form of its cardinality distribution is more restricted. Since the LMB

filter makes this approximation after every update, it incurs a cumulative error in

the cardinality distribution, which can lead to increased estimation error compared

to the GLMB filter.

Detailed pseudo-code for the LMB filter recursion for the standard multi-object

dynamic and measurement models is given in Section 2.6.2 at the end of this chapter.

2.6 implementation of labelled rfs filters

This section contains detailed pseudo-code for both the GLMB and LMB filter, under

the standard multi-target dynamic and measurement models. The code is divided

into functions, many of which are used in later parts of this dissertation.

2.6.1 Pseudo-code for the Standard GLMB Filter

We begin by defining a data structure to represent a GLMB density, and the notation

used within the pseudo-code to refer to the components of the GLMB. In the code, the

symbols Φ, Ψ and Ω denote GLMB densities, and the parameters of a GLMB density

Φ are denoted by the items in Table 2. Figure 14 contains a graphical representation

of this data structure, which shows how a GLMB density can be represented on

a computer by storing the single-target densities, target labels, component weights,

and cardinality distribution. Note that in practice, a more efficient representation of a

GLMB can be obtained by storing only the unique single-target densities in a “track

table”, and representing the components as references to the entries in this table. This
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avoids a great deal of redundancy, as a single-target density with a given association

history will usually appear in many GLMB components. However, for the sake of

simplicity, the pseudo-code is presented as though each component directly stores

the densities of its constituent targets. Note that for the superscripted parameters in

Table 2, when an index is replaced with a colon, for example Φ.ρ(:) or Φ.p(n,i,:), this

refers to the collection of items taken over all indices (similar to Matlab syntax). The

symbol k is used to denote a discrete time index and t represents continuous time,

thus tk is used to denote the continuous time corresponding to time index k.

Table 2: GLMB data structure components.

Symbol Description

Φ.ρ(n) Cardinality distribution (probability of
cardinality n)

Φ.w(n,i) Weight of i-th component of cardinality n

Φ.p(n,i,j) Probability density of the j-th target in the i-th
component of cardinality n

Φ.`(n,i,j) Label of the j-th target in the i-th component of
cardinality n

Φ.Cmax Maximum cardinality represented

Φ.Nn Number of components of cardinality n

Φ.t Continuous time at which this density is valid

Figure 14: Graphical representation of the GLMB data structure.
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Pseudo-code for the main recursion of the GLMB filter is presented in Algorithm 3.

This algorithm takes a collection of measurement sets and the associated time stamps,

and returns a list of labelled target trajectory estimates. The main loop consists of cal-

culating the birth and survival densities, multiplying them together to obtain the pre-

dicted density, performing the measurement update, extracting the target estimates

from the posterior, and finally, pruning the posterior density. Pseudo-code for all of

these sub-functions will be defined in the sequel. For simplicity of expression, the

argument list for each function contains only the input data and any items generated

internally by the GLMB recursion. Any user-defined parameters required by the filter

are not shown explicitly as function arguments, and are instead listed at the top of

each block of pseudo-code.

Algorithm 3: GLMB filter recursion.
Input: Measurements (Z1:N), measurement times (t1:N)
Output: Track estimates (τx), track labels (τ`)

1 Function [τx, τ`] = GLMB_Filter (Z1:N , t1:N) is
2 `next = 1;
3 τx = ∅;
4 τ` = ∅;
5 PA,1 = Zeros (1, |Z1|);
6 for k = 2 : N do
7 [ΩB,k, `next] = BirthGLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next);
8 if k = 2 then
9 Ω+ = ΩB,k;

10 else
11 ΩS,k = PredictSurvivalGLMB (Ωk−1, tk);
12 Ω+ = MultiplyGLMB (ΩS,k, ΩB,k);

13 [Ωk, PA,k] = UpdateGLMB (Ω+, Zk);
14 [τx, τ`] = ExtractEstimatesGLMB (Ωk, τx, τ`);
15 Ωk = PruneGLMB (Ωk);

The six main functions used in the GLMB recursion of Algorithm 3 are defined in

Algorithms 4-9 as follows. The additional functions used therein are defined later in

Table 3.

• BirthGLMB (Algorithm 4): Compute a birth GLMB density using the measure-

ments from the current and previous scans, and the probabilities that each pre-

vious measurement was generated by a target (these probabilities are computed

as part of the measurement update function in Algorithm 7).
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• PredictSurvivalGLMB (Algorithm 5): Takes the GLMB density at the current

time, and computes the predicted GLMB density of surviving targets at the

next time step.

• MultiplyGLMB (Algorithm 6): Takes two GLMB densities, and computes the

density corresponding to the union between the underlying random finite sets.

This is used to compute the overall predicted GLMB density, given the densities

of surviving and birth targets.

• UpdateGLMB (Algorithm 7): Takes a predicted GLMB, and updates it using a

new measurement set to return the posterior GLMB density.

• ExtractEstimatesGLMB (Algorithm 8): Extracts a labelled set of estimates from

a GLMB density, which is used to update a list of trajectory estimates. If the

label of a given estimate is already in the list, that estimate is appended to the

corresponding trajectory. Estimates whose labels are not already in the list are

used to initiate new estimated trajectories.

• PruneGLMB (Algorithm 9): Takes a GLMB and approximates it as another GLMB

with fewer components. This is done by removing components with low weights

according to a threshold. If the number remaining still exceeds a predefined

maximum, further components are discarded.
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Algorithm 4: GLMB birth density generation.
Input: Previous measurement set (Zk−1), probabilities that each previous

measurement is from a target (PA,k−1), previous measurement time (tk−1),
current measurement set (Zk), current time (tk), next target label (`next)

Parameters : Maximum association probability to generate birth (Pthresh),
probability that a previously unassigned measurement is from a
new target (Pbirth)

Output: GLMB birth density (Ω), next label (`next)

1 Function [Ω, `next] = BirthGLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next) is
2 c = 1;
3 for i = 1 : |Zk−1| do
4 if P(i)

A,k−1 < Pthresh then

5 p = TargetPrior
(

Z(i)
k−1

)
;

6 p+ = TargetPredict (p, tk − tk−1);
7 V = ValidationGate (p+);
8 keep = false;
9 for j = 1 : |Zk| do

10 if Z(j)
k ∈ V then

11 keep = true;

12 if keep then
13 Ω.p(1,c,1) = p+;
14 Ω.`(1,c,1) = `next;
15 Ω.w(1,c) = Pbirth;
16 c = c + 1;
17 `next = `next + 1;

18 Ω = NormaliseGLMB (Ω);
19 Ω.t = tk;
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Algorithm 5: GLMB survival prediction.
Input: Previous GLMB density (Φ), prediction time (t)
Parameters : Target survival probability (PS), number of predicted components to

generate (Np)
Output: Predicted GLMB density (Ω)

1 Function Ω = PredictSurvivalGLMB (Φ, t) is
2 Ncdn = Allocate

(
Np, Poisson

(
1 : Φ.M, Mean

(
Φ.ρ(:)

)))
;

3 k = Ones (1, Φ.M);
4 for n = 1 : Φ.Cmax do
5 Ncmp = Allocate

(
Ncdn (n) , Φ.w(n,:)

)
;

6 for i = 1 : Φ.Nn do
7 G = SurvivalGraph

(
Φ.p(n,i,:), Ps

)
;

8 P = ShortestPaths
(
G, Ncmp (i)

)
;

9 for (p, c) ∈ P do
10 s = {j; p (j) = 1};
11 m = |s|;
12 for j = 1 : m do
13 Ω.p(m,k(m),j) = TargetPredict

(
Φ.p(n,i,s(j)), t−Φ.t

)
;

14 Ω.`(m,k(m),j) = Φ.`(n,i,s(j));

15 Ω.w(m,k(m)) = Φ.w(n,i) ×Φ.ρ(n) × e−c;
16 k (m) = k (m) + 1;

17 Ω = NormaliseGLMB (Ω);
18 Φ.t = t;

Algorithm 6: Multiply two GLMB densities.
Input: First GLMB density (Φ), second GLMB density (Ψ)
Output: Multiplied GLMB density (Ω)

1 Function Ω = MultiplyGLMB (Φ, Ψ) is
2 c = Ones (1, Φ.M + Ψ.M);
3 for m = 1 : Φ.Cmax do
4 for n = 1 : Ψ.M do
5 k = m + n;
6 for i = 1 : Φ.Nm do
7 for j = 1 : Ψ.Nn do
8 Ω.w(k,c(k)) = Φ.w(m,i) ×Ψ.w(n,j);

9 Ω.p(k,c(k),:) =
[
Φ.p(m,i,:); Ψ.p(n,j,:)

]
;

10 Ω.`(k,c(k),:) =
[
Φ.`(m,i,:); Ψ.`(n,j,:)

]
;

11 c (k) = c (k) + 1;

12 Ω = NormaliseGLMB (Ω);
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Algorithm 7: GLMB measurement update.
Input: Predicted GLMB (Φ), measurements (Z)
Parameters : Number of updated components to generate (Nu), detection

probability (PD), clutter intensity (λ), surveillance volume (V)
Output: Updated GLMB (Ω), probability that each measurement is from a target

(PA)

1 Function [Ω, PA] = UpdateGLMB (Φ, Z) is
2 for i = 1 : |Z| do
3 θi = ∅;

4 Ncdn = Allocate
(

Nu, Poisson
(

0 : Φ.M, Mean
(

Φ.ρ(:)
)))

;

5 for n = 1 : Φ.Cmax do
6 j = 1;

7 Ncmp = Allocate
(

Ncdn (n) , Φ.w(n,:)
)

;

8 for i = 1 : Φ.Nn do
9 C = CostMatrixAssign

(
Φ.p(n,i,:), Φ.`(n,i,:), Z, PD

)
;

10 A = Murty
(
C, Ncmp (i)

)
;

11 for (a, c) ∈ A do
12 Ω.w(n,j) = Φ.ρ(n) ×Φ.w(n,i) × λ|Z| ×V−1 × e−c;
13 for k = 1 : n do
14 ` = Φ.`(n,i,k);
15 if a (`) > 0 then
16 Ω.p(n,j,k) = TargetUpdate

(
Φ.p(n,i,k), za(`)

)
;

17 θa(`) =
[
θa(`); (n, j)

]
;

18 else
19 Ω.p(n,j,k) = Φ.p(n,i,k);

20 Ω.`(n,j,k) = `;

21 j = j + 1;

22 Ω = NormaliseGLMB (Ω);
23 for i = 1 : |Z| do
24 PA (i) = Sum

(
Ω.w(θi)

)
;
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Algorithm 8: GLMB estimate extraction.
Input: GLMB density (Φ), current track estimates (τx), current track labels (τ`)
Output: Updated track estimates (τx), updated track labels (τ`)

1 Function [τx, τ`] = ExtractEstimatesGLMB (Φ, τx, τ`) is
2 n = argmaxn

(
Φ.ρ(n)

)
;

3 i = argmaxi

(
Φ.w(n,i)

)
;

4 for j = 1 : n do
5 ` = Φ.`(n,i,j);

6 x̂ = TargetEstimateMAP
(

Φ.p(n,i,j)
)

;

7 if ` ∈ τ` then
8 τx (`) = [τx (`) ; (Φ.t, x̂)];
9 else

10 τ` = [τ`; `];
11 τx (`) = [(Φ.t, x̂)];

Algorithm 9: GLMB pruning.
Input: GLMB density (Φ)
Parameters : Maximim number of components to retain (Nr), minimum number

of components to retain for any cardinality (Nc), maximum ratio of
highest to lowest component weight (Rm)

Output: Pruned GLMB density (Ω)

1 Function Ω = PruneGLMB (Φ) is
2 [C, I] = Sort (Φ.w, Φ.ρ);
3 wmin = Ω.w(C(1),I(1))/Rm;
4 Mtot = 0;
5 Mcdn = Zeros (1, Φ.M);
6 for i = 1 : |C| do
7 c = C (i);
8 s = I (i);
9 m = Mcdn (c);

10 if
[
(Mtot < Nr) and

(
Φ.w(c,s) > wmin

)]
or (m < Nc) then

11 Ω.p(c,m,:) = Φ.p(c,s,:);
12 Ω.`(c,m,:) = Φ.`(c,s,:);
13 Ω.w(c,m) = Φ.w(c,s);
14 Mtot = Mtot + 1;
15 Mcdn (c) = m + 1;

16 Ω = NormaliseGLMB (Ω);
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Most of the routines specified above make use of the function NormaliseGLMB,

which normalises the component weights of an unnormalised GLMB, as well as

computing its cardinality distribution. Pseudo-code for this function is defined in

Algorithm 10.

Algorithm 10: GLMB weight normalisation.
Input: Unnormalised GLMB density (Φ)
Output: Normalised GLMB density (Ω)

1 Function Ω = NormaliseGLMB (Φ) is
2 for i = 1 : Φ.Cmax do
3 Ω.ρ(i) = Sum

(
Φ.w(i,:)

)
;

4 Ω.w(i,:) = Φ.w(i,:)/Ω.ρ(i);

5 Ω.ρ(:) = Ω.ρ(:)/Sum
(

Ω.ρ(:)
)

;

Algorithms 4-9 also make use of some additional base functions, which are de-

scribed in Table 3. Finally, in Algorithm 11 we show how to draw a labelled multi-

target sample from a GLMB distribution. Although this is not required for the imple-

mentation of the GLMB filter, this sampling function is presented here, as it will be

used later in this dissertation.

Algorithm 11: Draw samples from a GLMB density.
Input: GLMB density (Φ)
Output: Sampled states (X), sampled labels (L)

1 Function [X, L] = DrawSampleGLMB (Φ) is
2 n ∼ DiscreteDistribution

(
Φ.ρ(:)

)
;

3 j ∼ DiscreteDistribution
(

Φ.w(n,:)
)

;

4 for k = 1 : n do
5 X(k) ∼ Φ.p(n,j,k);
6 L(k) = Φ.`(n,j,k);



2.6 implementation of labelled rfs filters 79

Table 3: Base functions used in GLMB filter pseudo-code.

Function Name Description

TargetPrior (z) Generate a prior pdf for a single target, given
that it produced the measurement z

TargetPredict (p, δt) Propagate the target pdf p forward by time δt

TargetUpdate (p, z) Update the prior target pdf p with
measurement z

TargetEstimateMAP (p) Maximum a posteriori estimate for a target
with pdf p

ValidationGate (p) Returns the measurement validation region
for a single target pdf p

Poisson (y, λ) Poisson pdf with mean λ computed at each
element of the array y

Uniform (S) Uniform pdf on the set defined by S

Allocate (n, w) Randomised proportional allocation of a scalar
number of objects n, into a fixed number of
bins with weights given by the array w

CostMatrixAssign (X, L, Z, PD) Compute a |X| × (|Z|+ |X|) measurement
assignment cost matrix for a set of targets
with pdfs X and labels L, a set of
measurements Z, and detection probability
function PD (x, `) (using equation (190))

SurvivalGraph (X, L, Ps) Generate survival graph of Figure (13), for a
set of targets with pdfs X and labels L, and
survival probability function Ps (x, `)

ShortestPaths (G, k) List the k cheapest paths and their costs, in
increasing order of cost, between the start
node and end node in the graph G

Murty (C, n) Use Murty’s algorithm to list the cheapest n
row-to-column assignments in cost matrix C,
in increasing order of cost
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2.6.2 Pseudo-code for the Standard LMB Filter

First we define a data structure to represent an LMB density, the parameters of which

are given in Table 4. The structure is much simpler than that of the GLMB, since the

LMB only needs to store a label, a single-target density, and an existence probability

for each target. To distinguish LMB densities from GLMB densities, we denote an

LMB with a tilde over the symbol (i.e.Φ̃ and Ω̃).

Table 4: LMB data structure components.

Symbol Description

Φ̃.r(i) Existence probability of the i-th target

Φ̃.p(i) Probability density of the i-th target

Φ̃.`(i) Label of the i-th target

Φ̃.M Number of targets

Φ̃.t Continuous time at which the density is valid

The main LMB recursion is given in Algorithm 12, which takes a collection of mea-

surement sets, and returns a list of labelled target trajectory estimates. The functions

used in this algorithm are defined in the sequel.

Algorithm 12: LMB filter recursion.
Input: Measurements (Z1:N), measurement times (t1:N)
Output: Track estimates (τx), track labels (τ`)

1 Function [τx, τ`] = LMB_Filter (Z1:N , t1:N) is
2 `next = 1;
3 τx = ∅;
4 τ` = ∅;
5 PA,1 = Zeros (1, |Z1|);
6 for k = 2 : N do
7

[
Ω̃B,k, `next

]
= BirthLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next);

8 if k = 2 then
9 Ω̃+ = Ω̃B,k;

10 else
11 Ω̃S,k = PredictSurvivalLMB

(
Ω̃k−1, tk − tk−1

)
;

12 Ω̃+ = JoinLMB
(
Ω̃S,k, Ω̃B,k

)
;

13
[
Ω̃k, PA,k

]
= UpdateLMB

(
Ω̃+, Zk

)
;

14 [τx, τ`] = ExtractEstimatesLMB
(
Ω̃k, τx, τ`

)
;
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The four main functions used in Algorithm 12 are defined in Algorithms 13-16 as

follows:

• PredictSurvivalLMB (Algorithm 13): Takes the LMB density at the current time,

and computes the predicted LMB density of surviving targets at the next time.

• BirthLMB (Algorithm 14): Compute a birth LMB density using the measure-

ments from the current and previous scans, and the probabilities that each pre-

vious measurement was generated by a target (these probabilities are computed

as part of the measurement update function in Algorithm 15).

• UpdateLMB (Algorithm 15): Takes a predicted LMB, and updates it using a new

measurement set to return the posterior LMB density.

• ExtractEstimatesLMB (Algorithm 16): Extracts a labelled set of estimates from

an LMB density, which is used to update a list of estimated target trajectories.

In Algorithm 15, two additional functions are used to convert between the LMB and

GLMB representation. The function LMBtoGLMB converts an LMB density to GLMB

representation, and is defined in Algorithm 17. The function ApproximateLMB, de-

fined by Algorithm 18, approximates a GLMB density in LMB form. In doing so,

each single-target density in the approximate LMB becomes a mixture, so mixture

reduction is carried out to manage the number of components. The LMB filter makes

use of the base functions described in Table 3, and the additional base functions

described in Table 5.

Algorithm 13: LMB survival prediction.

Input: LMB density (Φ̃), prediction time (t),
Parameters : Target survival probability (PS)
Output: Predicted LMB density (Ω̃)

1 Function Ω̃ = PredictSurvivalLMB
(
Φ̃, t

)
is

2 for i = 1 : Φ̃.Cmax do
3 Ω̃.`(i) = Φ̃.`(i);

4 Ω̃.p(i) = TargetPredict
(

Φ̃.p(i), t− Φ̃.t
)

;

5 ηS =
〈

PS, Φ̃.p(i)
〉

;

6 Ω̃.r(i) = ηS × Φ̃.r(i);

7 Ω̃.t = t;
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Algorithm 14: Measurement driven LMB birth density generation.
Input: Previous measurements (Zk−1), probabilities that each previous

measurement is from a target (PA,k−1), time of previous measurements
(tk−1), current measurements (Zk), current time (tk), next target label (`next)

Parameters : Maximum association probability to generate birth (Pthresh),
probability that a previously unassigned measurement is from a
new target (Pbirth)

Output: LMB birth density (Ω̃), next label (`next)

1 Function
[
Ω̃, `next

]
= BirthLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next) is

2 c = 1;
3 for i = 1 : |Zk−1| do
4 if P(i)

A,k−1 < Pthresh then

5 p = TargetPrior
(

Z(i)
k−1

)
;

6 p+ = TargetPredict (p, tk − tk−1);
7 V = ValidationGate (p+);
8 keep = false;
9 for j = 1 : |Zk| do

10 if zk,j ∈ V then
11 keep = true;

12 if keep then
13 Ω̃.p(c) = p+;
14 Ω̃.`(c) = `next;
15 Ω̃.r(c) = Pbirth;
16 c = c + 1;
17 `next = `next + 1;

18 Ω̃.t = tk;

Algorithm 15: LMB measurement update.

Input: LMB density (Φ̃), measurements (Z)
Output: Posterior LMB density (Ω̃)

1 Function Ω̃ = UpdateLMB
(
Φ̃, Z

)
is

2 C = ClusterTracks
(
Φ̃, Z

)
;

3 Ω̃ = ∅;
4 PA = Zeros (1, |Z|);
5 for W ∈ C do
6 ΦW = LMBtoGLMB

(
Φ̃, W

)
;

7 [ΩW , PA,W ] = UpdateGLMB (ΦW , Z);
8 Ω̃W = ApproximateLMB (ΩW);
9 Ω̃ = JoinLMB

(
Ω̃, Ω̃W

)
;

10 PA = PA + PA,W ;
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Algorithm 16: LMB estimate extraction.

Input: Track estimates (τx), track labels (τ`), LMB density (Φ̃)
Parameters : Existence probability threshold (rthresh)
Output: Updated track estimates (τx), updated track labels (τ`)

1 Function [τx, τ`] = ExtractEstimatesLMB
(
τx, τ`, Φ̃, T

)
is

2 for i = 1 : Φ̃.Cmax do
3 if Φ̃.r(i) > rthresh then
4 ` = Φ̃.`(i);

5 x̂ = TargetEstimateMAP
(

Φ̃.p(i)
)

;

6 if ` ∈ τ` then
7 τx (`) =

[
τx (`) ;

(
Φ̃.t, x̂

)]
;

8 else
9 τ` = [τ`; `];

10 τx (`) =
[(

Φ̃.t, x̂
)]

;

Algorithm 17: LMB to GLMB conversion.

Input: LMB density (Φ̃)
Output: GLMB density (Ω)

1 Function Ω = LMBtoGLMB
(
Φ̃
)

is
2 for n = 1 : Φ̃.Cmax do
3 c = 1;
4 for I ∈ Fn

({
1, . . . , Φ̃.M

})
do

5 Ω.w(n,c) = Product
(

1− Φ̃.r(:)
)

;

6 for j = 1 : n do
7 Ω.p(n,c,j) = Φ̃.p(Ij);

8 Ω.`(n,c,j) = Φ̃.`(Ij);

9 Ω.w(n,c) = Ω.w(n,c) × Φ̃.r(Ij) ÷
(

1− Φ̃.r(Ij)
)

;

10 c = c + 1;
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Algorithm 18: Approximate a GLMB as an LMB.
Input: GLMB density (Φ)
Output: LMB density (Ω̃)

1 Function Ω̃ = ApproximateLMB (Φ) is
2 for n = 1 : Φ.Cmax do
3 for i = 1 : Φ.Nn do
4 for j = 1 : n do
5 k = Find

(
Ω̃.`(:), Φ.`(n,i,j)

)
;

6 if k > 0 then
7 Ω̃.r(k) = Ω̃.r(k) +

(
Φ.ρ(n) ×Φ.w(n,i,j)

)
;

8 p(k) =
[

p(k); Φ.p(n,i,j)
]
;

9 w(k) =
[
w(k); Φ.ρ(n) ×Φ.w(n,i,j)

]
;

10 else
11 k = Ω̃.M + 1;
12 Ω̃.`(k) = Φ.`(n,i,j);
13 Ω̃.r(k) = Φ.ρ(n) ×Φ.w(n,i,j);

14 p(k) =
[
Φ.p(n,i,j)

]
;

15 w(k) =
[
Φ.ρ(n) ×Φ.w(n,i,j)

]
;

16 for i = 1 : Ω̃.Cmax do
17 Ω̃.p(i) = MixtureReduce

(
p(i), w(i)

)
;

Table 5: Base functions used in the LMB filter pseudo-code.

Function Name Description

JoinLMB
(
Φ̃, Ψ̃

)
Join two LMB structures together, by
concatenating the arrays of single-target
densities, target labels and existence
probabilities.

MixtureReduce (p, w) Reduce the number of components in a pdf
mixture with densities p and weights w

Find (X, x) Find the index of the element x in the array X,
or return 0 if it is not present

ClusterTracks (X, Z) Construct disjoint clusters from the tracks in
X, such that no single measurement in Z falls
in the validation gate of two tracks from
different clusters
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P R E S E N C E O F M E R G E D M E A S U R E M E N T S

Most tracking algorithms in the literature have been developed with the as-

sumption that the measurements follow the standard multi-object observa-

tion model. Fundamentally, this model assumes that each target generates at most

one measurement, and that each measurement is generated by at most one target.

The main reasons for the popularity of this model are its simplicity, and that it fa-

cilitates computationally efficient tracking algorithms. However, there are important

cases where this model is too restrictive, and leads to poor performance. For example,

when the measurements from two or more targets become merged, the assumption

that each measurement comes from at most one target is violated. The contribution

of this chapter is the development of the first multi-target tracker for a merged mea-

surement model, based on labelled random finite sets. The proposed tracker yields

trajectory estimates for an unknown and time-varying number of targets, in the pres-

ence of measurement merging. The main results of this chapter have previously ap-

peared in the author’s conference paper [19], journal article [21], and partially in the

co-authored journal article [157].

Section 3.1 provides an introduction to tracking with merged measurements, and

describes some existing techniques. An RFS-based likelihood model is proposed in

Section 3.2 to handle merging in a principled manner. An exact but intractable multi-

target tracker based on this likelihood is derived in Section 3.3. Section 3.4 presents a

method to approximate an arbitrary labelled RFS density as a GLMB, which is used

in Section 3.5 to derive two techniques for implementing the algorithm in practice.

Further details of the implementation are given in Section 3.6, some simulation results

are presented in Section 3.7, and finally, pseudo-code is provided in Section 3.8.

85
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3.1 introduction

In the majority of multi-target tracking algorithms, the measurement model is based

on the premise that all targets generate measurements independently of each other.

This assumption is made because it leads to computationally cheaper algorithms,

however, most real-world sensors violate this assumption when the targets are close

together in the measurement space. In such cases, a group of closely spaced tar-

gets may only produce a single detection, referred to as a merged measurement. When

this happens, if the tracker assumes that the targets generate measurements indepen-

dently of each other, it will usually infer that some targets have disappeared, when

in fact their measurements have become merged.

A common situation involving merged measurements is when the sensor has finite

resolution [44]. For example, most radar and sonar systems effectively operate by di-

viding the measurement space into discrete detection cells, and when multiple targets

fall within the same cell, they produce a merged measurement. Another example is

in computer vision, where detection algorithms may produce merged measurements

for groups of objects appearing close together or occluding one-another in an im-

age. Since merged measurements are unavoidable when processing real world sensor

data, and methods that assume conditionally independent measurements perform

poorly when this occurs, it is fundamentally important to investigate algorithms that

can deal with this phenomenon in a principled manner.

A number of Bayesian multi-target tracking algorithms have been proposed to han-

dle merged measurements. One such algorithm is Joint Probabilistic Data Association

(JPDA), which was first applied to a finite resolution sensor model in [36]. The pro-

posed algorithm (called JPDAM) used a grid-based model for computing merging

probabilities for two targets, which were then incorporated into the JPDA update.

This technique was limited to cases where at most two targets are merged at a time.

A useful extension to this was proposed in [183, 184] which can handle merged mea-

surements from an arbitrary number of targets, by defining a more general resolution

model based on combining pairwise merging probabilities. This provides a tractable

approximation to the probabilities of different resolution events, which are again in-

corporated into the JPDA update. The inclusion of the resolution model in JPDA has

been shown to improve its performance in the presence of merged measurements,
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however, the fundamental limitation of these methods is that they implicitly assume

a fixed and known number of targets.

Several other methods have also been applied to tracking with merged measure-

ments. An approach based on Multiple Hypothesis Tracking (MHT) was proposed

in [108], which used a two-target resolution model to maintain tracks when merging

occurs. A similar resolution model was applied to multiple model JPDA in [30, 90],

which is again limited to a maximum of two targets per measurement. Various nu-

merical data association techniques have been developed for merged measurements

in [104, 37] (probabilistic data association), and [102] (Markov chain Monte Carlo).

In addition, probabilistic MHT (PMHT) [45], and existence based methods such as

linear multi-target integrated PDA (LM-IPDA) [150], and integrated track splitting

(ITS) [149] have also been applied to this problem. These are all useful techniques,

however, with the exception of LM-IPDA (which trades off performance for reduced

complexity), they only handle a small number of targets. Moreover, due to the na-

ture of their formulation, it is difficult to establish any results regarding their Bayes

optimality, in the sense of minimising the posterior Bayes risk [135].

The random finite set framework provides a principled framework for multi-object

estimation for an unknown and time-varying number of objects [135]. One of the first

methods to be derived using this framework was the probability hypothesis density

(PHD) filter [126], and Mahler proposed a technique in [130] for applying this to

unresolved targets by modelling the multi-target state as an RFS of point clusters.

This is a principled approximation, which can deal with a variable number of targets.

However, it does not provide labelled track estimates, and the model is limited to

cases where merging only arises when the targets are close together in the state

space. The latter is too restrictive in cases where the measurement space is a lower

dimensional projection of the state space (e.g. bearings-only sensors), because points

which are well separated in the state space may become close together, and therefore

unresolvable, when projected onto the measurement space.

One criticism of the RFS framework has been that it resulted in algorithms that do

not maintain target labels over time, i.e. performing multi-object filtering instead of

true multi-object tracking. It was shown in [198, 195] that the RFS framework does

allow estimation of target tracks, and a computationally feasible multi-target tracker

for the standard sensor model was derived, known as the generalised labelled multi-

Bernoulli (GLMB) filter. This chapter further generalises the result in [198] to a sensor
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model that includes merged measurements, thereby making it suitable for application

to a wider variety of real world problems. To achieve this, a multi-target likelihood

function based on random finite sets is introduced, that takes into account the pos-

sible merging of target generated measurements. The key feature of this likelihood

function is that it considers the likely partitions of the target set, and the feasible

assignments of measurements to groups of targets within these partitions. To our

knowledge, this is the first provably Bayes optimal multi-object tracker that accom-

modates merged measurements, with unknown and time-varying number of targets.

An additional advantage of this approach is that it can be easily parallelised to facili-

tate potential implementation in real-time tracking systems.

3.2 multi-object likelihood model for merged

measurements

In [135], Mahler proposed an RFS-based technique for filtering with unresolved tar-

gets, which modelled the multi-target state as a set of point clusters. A point cluster

was defined as a group of unresolved targets, and was represented as a location in the

single-target state space, augmented with a positive integer to represent the number

of targets that are effectively co-located at that point (relative to the sensor resolution).

The likelihood function for this model involves a sum over partitions of the measure-

ment set, making a direct implementation computationally prohibitive. A PHD filter

based on this model was proposed in [130], however, it has not been implemented in

practice.

The point cluster model proposed in [135] is intuitively appealing in cases where

the measurements can only become merged when the targets are close together in

the state space. However, this implicitly assumes that the merging only depends on

the target states. There are important cases where this assumption is too restrictive, a

prime example of which is bearings-only tracking. In bearings-only tracking, targets

that cannot be resolved along the line of sight may be separated by a considerable

distance in the state space. The location of the sensor has a significant impact on

whether measurements become merged or not, but this effect cannot be accommo-

dated using the point cluster model. This occurs in general when the measurement

space is a lower dimensional projection of the state space, such that well separated

target states may give rise to closely spaced measurements.



3.2 multi-object likelihood model for merged measurements 89

Figure 15: Example of some of the partitions of a set of five targets. Each shaded group of
targets can give rise to at most one measurement.

Necessary to address this problem is a likelihood function that accommodates mea-

surement merging, not only when targets are nearby in the state space, but more

generally when they are nearby in the measurement space. Achieving this requires

considering the partitions of the target set, where each group within a partition pro-

duces at most one (merged) measurement.

Definition 5. A partition of a set A is a disjoint collection of subsets of A, whose

union is equal to A.

Figure 15 depicts an example of some of the partitions of a set of five targets. In

the diagram, only six of the total of 15 partitions are shown. In general, the number

of partitions of a set of N targets is given by the N-th Bell number, which becomes

extremely large as N increases. However, in the context of multi-target tracking, it

is usually possible to eliminate many partitions from consideration, since they are

physically impossible or extremely unlikely to occur.

A model for the multi-object measurement likelihood is defined as a sum over

partitions of the target set as follows,

g (Z|X) = ∑
U (X)∈P(X)

g̊ (Z|U (X)) (199)

where P (X) is the set of all partitions of X, and g̊ (Z|U (X)) is the measurement

likelihood conditioned on the targets being observed according to a given partition

U (X). This bears some similarity to the approach taken in [184], insofar as they

both consider partitions of the targets to form resolution events. However, the key

difference is that the likelihood (199) is defined as a function of a set of target states,

instead of a vector with fixed dimension. This allows us to utilise FISST principles to

arrive at an expression for the posterior multi-object density.
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To obtain an expression for g̊ (Z|U (X)), the standard measurement likelihood in

(173) is generalised to groups of targets as follows1

g̊ (Z|U (X)) = e−〈κ,1〉κZ ∑
θ∈Θ(U (X))

[
ψ̌Z(·; θ)

]U (X) (200)

where Θ (U (X)) is defined as the set of all mappings of groups of target labels in

U (L (X)) to measurement indices in Z (i.e. θ : U (L (X)) → {0, 1, ..., |Z|}, where

[θ (L) = θ (J) > 0]⇒ [L = J]), and ψ̌Z (Y ; θ) is a “group likelihood” defined by

ψ̌Z (Y ; θ) =


P̌D(Y)ǧ(zθ(L(Y))|Y)

κ(zθ(L(Y)))
, θ (L (Y)) > 0

1− P̌D(Y), θ (L (Y)) = 0

. (201)

In (201), P̌D (Y) denotes the detection probability for target group Y , and ǧ
(

zθ(L(Y))|Y
)

is the likelihood that a target group Y produces a measurement zθ(L(Y)). For our sim-

ulations in Section 3.7, ǧ (·|Y) is modelled as a Gaussian centered on the mean of

the group, with a standard deviation that increases as the number of targets in the

group increases. However, the form of this function in general will depend on the

sensor characteristics, and there are no restrictions placed on its modelling, provided

that it can be tractably computed. Note that in (200), the exponent U (X) is a set of

target sets, and the base is a real valued function whose argument is a target set.

Substituting (200) into (199) yields

g (Z|X) = e−〈κ,1〉κZ ∑
U (X)∈P(X)
θ∈Θ(U (X))

[
ψ̌Z (·; θ)

]U (X) , (202)

which is referred to as the merged measurement likelihood function.

3.3 a general form for a merged measurement tracker

This section contains a derivation of an exact but computationally intractable form for

a labelled RFS Bayes recursion, based on the merged measurement likelihood defined

by (202). This requires the following definition, which can be used to represent the

density of any labelled RFS [21, 157].

1 For notational convenience, U (X) is used to denote a partition of the label-state pairs in the labelled set
X, and U (L (X)) to denote the equivalent partition of the labels only.
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Definition 6. Given a labeled multi-object density π on F (X)×L, and any positive

integer n, we define the joint existence probability of the label set {`1, . . . `n} by

w ({`1, . . . , `n}) ,
∫

π ({(x1, `1) , . . . , (xn, `n)}) d (x1, . . . , xn)

and the joint probability density (on Xn) of x1, . . . , xn, conditional on their correspond-

ing labels `1, . . . , `n by

p ({(x1, `1) , . . . , (xn, `n)}) ,
π ({(x1, `1) , . . . , (xn, `n)})

w ({`1, . . . , `n})
.

For n = 0, we define w (∅) , π (∅) and p (∅) , 1. It is implicit that p (X) is defined

to be zero whenever w (L (X)) is zero. Consequently the labelled RFS density can be

expressed as

π (X) = w (L (X)) p (X) . (203)

Note that ∑L∈F (L) w (L) = 1, and since π is symmetric in its arguments, it follows

that w is also symmetric in `1, . . . , `n. Hence, w (·) is a probability distribution on

F (L).

For the work in this chapter, we often encounter labelled RFS densities that are

mixtures of (203), which we formally define as follows.

Definition 7. A labelled RFS mixture density on state space X and discrete label space

L, is a density of the form

π (X) = ∆ (X) ∑
c∈C

w(c) (L (X)) p(c) (X) (204)

where

∑
L⊆L

∑
c∈C

w(c) (L) = 1, (205)∫
p(c) ({(x1, `1) , ..., (xn, `n)}) d (x1, . . . , xn) = 1, (206)

and p(c) (X) is symmetric in the elements of X.

Note that Definition 7 can be regarded as a generalisation of Definition 6, however,

(204) can also be expressed in the form of (203).
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A labelled RFS mixture density differs from the GLMB density of Definition 3 in

that each p(c) (X) is a joint density of all the targets in X, whereas in Definition

3, it is restricted to a product of single-target densities. Note that any labeled RFS

density can be written in the mixture form (204), and this form is used because it

is convenient for the update step of the proposed tracker. The following lemma is

required to derive the filter prediction and update.

Lemma 8. Let X be a state space and L a discrete label space. Then, for two functions

h : F (L)→ R and g : F (X×L)→ R, where g is integrable on F (X×L),

∫
∆ (X) h (L (X)) g (X) δX = ∑

L⊆L

h (L) gL (207)

where

gL =
∫

g
({

(x1, `1) , ...,
(
x|L|, `|L|

)})
d
(
x1, . . . , x|L|

)
. (208)

Proof. This is a straightforward generalisation of [198, Lemma 3], to the case where g

is non-separable.

∫
δ|X| (|L (X)|) h (L (X)) g (X) δX

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln

δn (|{`1, . . . , `n}|) h ({`1, . . . , `n})

×
∫

(g ({(x1, `1) , . . . , (xn, `n)})) d (x1, . . . , xn)

=
∞

∑
n=0

∑
{`1,...,`n}∈Fn(L)

h ({`1, . . . , `n}) g{`1,...,`n}

= ∑
L⊆L

h (L) gL

The multi-object prediction and merged measurement update can now be derived

for the general labelled RFS mixture model, as stated by the following two proposi-

tions. Note that for any function f : F (X×L) → R, we have used the convention

f{`1,...,`n} (x1, . . . , xn) = f ({(x1, `1) , . . . , (xn, `n)}) to denote it as a function on Xn,

given the set of labels {`1, . . . , `n}.

Proposition 9. If the previous multi-object posterior is a labelled RFS mixture density with

probability distribution of the form (204), then the predicted multi-object density under the

transition kernel (169) is given by

π+ (X+) = ∆ (X+) ∑
c∈C

∑
L⊆L

w(c)
+,L (L (X+)) p(c)+,L (X+) (209)
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where

w(c)
+,L (J) = 1L (J ∩L)wB (J −L)w(c) (L) η

(c)
S (L) (210)

p(c)+,L (X+) = [pB (·)]X+−X×L p(c)S,L (X+ ∩X×L) (211)

p(c)S,L (S) =

∫
p(c)L

(
x1, . . . x|L|

) |L|
∏
i=1

Φ (S; xi, `i) d
(
x1, . . . , x|L|

)
η
(c)
S (L)

(212)

η
(c)
S (L) =

∫ ∫
p(c)L

(
x1, . . . , x|L|

) |L|
∏
i=1

Φ (S; xi, `i) d
(
x1, . . . , x|L|

)
δS (213)

p(c)L
(
x1, . . . , x|L|

)
, p(c)

({
(x1, `1) , . . .

(
x|L|, `|L|

)})
(214)

Proof. The density of surviving targets is

πS(W) =
∫

fS (W |X)π (X) δX

=
∫

∆ (W)∆ (X) 1L(X) (L (W)) [Φ (W ; ·)]X

× ∆ (X) ∑
c∈C

w(c) (L (X)) p(c) (X) δX

= ∆ (W) ∑
c∈C

∑
L⊆L

1L (L (W))w(c) (L) η
(c)
S (L) p(c)S,L (W) (215)

where the last line is obtained by swapping the order of summation and integration,

and applying Lemma 8 with h (L) = 1L (LW)w(c) (L) and g (X) = [Φ (W ; ·)]X p(c) (X).

Hence the predicted density, which is the product of the birth and survival densities,

is given by

π+ (X+) = fB (XB)πS (XS)

= ∆ (XB)∆ (XS) ∑
c∈C

∑
L⊆L

wB (L (XB)) 1L (L (XS))

× w(c) (L) η
(c)
S (L) [pB (·)]XB p(c)S,L (XS)

= ∆ (X+) ∑
c∈C

∑
L⊆L

wB (L (X+)−L) 1L (L (X+) ∩L)

× w(c) (L) η
(c)
S (L) [pB (·)]X+−X×L p(c)S,L (X+ ∩X×L)

= ∆ (X+) ∑
c∈C

∑
L⊆L

w(c)
+,L (L (X+)) p(c)+,L (X+) .



94 multi-target tracking in the presence of merged measurements

Proposition 10. If the prior is a labelled RFS mixture density with probability distribution

of the form (204), then the posterior multi-object density under the merged measurement

likelihood function (202) is given by

π (X|Z) = ∆ (X) ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

w(c,θ)
Z (L (X) ;U (L (X))) p(c,θ) (X|Z,U ) (216)

where

w(c,θ)
Z (L;U (L)) =

w(c) (L) η
(c,θ)
Z (U (L))

∑
c∈C

∑
J⊆L

∑
U (J)∈P(J)
θ∈Θ(U (J))

w(c) (J) η
(c,θ)
Z (J,U )

(217)

p(c,θ) (X|Z,U ) =
[
ψ̌Z (·; θ)

]U (X) p(c) (X)

η
(c,θ)
Z (L (X) ,U )

(218)

η
(c,θ)
Z (L,U (L)) =

∫ [
ψ̌Z (·; θ)

]U (L) p(c)L
(
x1, . . . , x|L|

)
d
(
x1, . . . , x|L|

)
(219)

Proof. The product of the prior distribution and the likelihood is

π (X) g (Z|X)

= ∆ (X) λ ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

(L (X))w(c) (L (X))
[
ψ̌Z (·; θ)

]U (X) p(c) (X)

= ∆ (X) λ ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

(L (X))w(c) (L (X))

× η
(c,θ)
Z (L (X) ,U (L (X))) p(c,θ) (X|Z,U ) , (220)

and its integral with respect to the multi-object state is

∫
π (X) g (Z|X) δX

= λ ∑
c∈C

∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln
∑

U ({`1,...,`n})∈P({`1,...`n})
θ∈Θ(U ({`1,...,`n}))

w(c) ({`1, . . . , `n})

× η
(c,θ)
Z ({`1, . . . , `n} ,U )

×
∫

p(c,θ) ({(x1, `1) , . . . , (xn, `n)} |Z,U ) d (x1, . . . xn)

= λ ∑
c∈C

∞

∑
n=0

∑
L∈Fn(L)

∑
U (L)∈P(L)
θ∈Θ(U (L))

(L)w(c) (L) η
(c,θ)
Z (L,U )
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= λ ∑
c∈C

∑
L⊆L

∑
U (L)∈P(L)
θ∈Θ(U (L))

(L)w(c) (L) η
(c,θ)
Z (L,U ) (221)

The result (216) follows by substituting (220) and (221) into the Bayes update equation

(56).

Propositions 9 and 10 define the exact form for the multi-object Bayes filter under

the merged measurement likelihood model. However, it is not a tractable recursion,

and therefore it cannot be implemented in practice. To arrive at a tractable algorithm

requires an approximation, in order to limit the filtering density to a form that can be

easily represented and processed using the Bayes recursion. The following sections

propose such an approximation, and two alternative methods for implementing a

tractable GLMB recursion for the merged measurement likelihood model.

3.4 glmb approximation

Consider a labeled RFS density of the following form

π (X) = ∆ (X) ∑
c∈C

w(c) (L (X)) p(c) (X) , (222)

and suppose that we wish to approximate this by a GLMB of the form

π̂ (X) = ∆ (X) ∑
c∈C

w(c) (L (X))
[

p(c)
]X

. (223)

The following proposition demonstrates that there exists a simple closed form for π̂

which matches the cardinality distribution and probability hypothesis density of π.

This was established in the co-authored journal article [157]2.

Proposition 11. For any labelled RFS density π of the form (222), the GLMB density which

preserves the cardinality distribution and PHD of π is given by

π̂ (X) = ∆ (X) ∑
c∈C

∑
I∈F (L)

ŵ(c,I) (L (X))
[

p̂(c,I)
]X

(224)

2 The work in [157] was motivated by the merged measurement GLMB, originally proposed by the author
of this dissertation in [21]. However, the key result in [157] was developed in collaboration with the other
co-authors. Since this new result is pertinent to the merged measurement GLMB filter, it is revisited in
this section.
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where

ŵ(c,I) (L) = w(c) (I) δI (L) , (225)

p̂(c,I) (x, `) = 1I (`) p(c)I−{`} (x, `) , (226)

p̂(c){`1,...,`n} (x, `) =
∫

p(c) ({(x, `) , (x1, `1) , . . . , (xn, `n)}) d (x1, . . . , xn) . (227)

Proof. The cardinality distribution of π is given by

ρ (n) =
1
n!

∫
π ({x1, . . . , xn}) d (x1, . . . , xn)

=
1
n! ∑

(`1,...,`n)∈Ln

∫
∑
c∈C

w(c) ({`1, . . . , `n}) p(c) ({(x1, `1) , . . . , (xn, `n)}) d (x1, . . . , xn)

=
1
n! ∑

(`1,...,`n)∈Ln
∑
c∈C

w(c) ({`1, . . . , `n})

= ∑
L∈Fn(L)

∑
c∈C

w(c) (L) . (228)

By [198, Proposition 5], the cardinality distribution of π̂ is given by

ρ̂ (n) = ∑
L∈Fn(L)

∑
c∈C

∑
I∈F (L)

ŵ(c,I) (L)

= ∑
L∈Fn(L)

∑
c∈C

∑
I∈F (L)

w(c) (I) δI (L)

= ∑
L∈Fn(L)

∑
c∈C

w(c) (L)

= ρ (n) (229)

thus the cardinality distributions of π and π̂ are equal. The PHD of π is given by

v (x, `) =
∫

π ({(x, `) ∪ X}) δX

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln

∫
∑
c∈C

w(c) ({`, `1, . . . , `n})

× p(c) ({(x, `) , (x1, `1) , . . . , (xn, `n)}) d (x1, . . . , xn)

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln
∑
c∈C

w(c) ({`, `1, . . . , `n})

×
∫

p(c) ({(x, `) , (x1, `1) , . . . , (xn, `n)}) d (x1, . . . , xn)

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln
∑
c∈C

w(c) ({`, `1, . . . , `n}) p(c){`1,...,`n} (x, `)

= ∑
L⊆L

∑
c∈C

w(c) ({`} ∪ L) p(c)L (x, `) (230)
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The PHD of π̂ is given by

v̂ (x, `) =
∫

∆ ({(x, `)} ∪ X) ∑
c∈C

∑
I∈F (L)

ŵ(c,I) ({`} ∪ L (X))
[

p̂(c,I)
]{(x,`)}∪X

δX.

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln
∑
c∈C

∑
I∈F (L)

∫
∆ ({(x, `) , (x1, `1) , . . . , (xn, `n)})

× ŵ(c,I) ({`, `1, . . . , `n})
[

p̂(c,I)
]{(x,`),(x1,`1),...,(xn,`n)}

d (x1, . . . , xn)

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln

δn+1 (|{`, `1, . . . , `n}|) ∑
c∈C

∑
I∈F (L)

ŵ(c,I)δI ({`, `1, . . . , `n})

×
∫ [

p̂(c,I)
]{(x,`),(x1,`1),...,(xn,`n)}

d (x1, . . . , xn)

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln

δn+1 (|{`, `1, . . . , `n}|) ∑
c∈C

∑
I∈F (L)

ŵ(c,I)δI ({`, `1, . . . , `n})

× p̂(c,I) (x, `)
∫ [

p̂(c,I)
]{(x1,`1),...,(xn,`n)}

d (x1, . . . , xn)

=
∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln

δn+1 (|{`, `1, . . . , `n}|) ∑
c∈C

∑
I∈F (L)

ŵ(c,I)δI ({`, `1, . . . , `n})

× p̂(c,I) (x, `)
n

∏
i=1

∫
p̂(c,I) (xi, `i) dxi. (231)

Since p̂(c,I) (xi, `i) is a density in xi, it integrates to unity and the product disappears.

Due to the presence of δn+1 (|{`, `1, . . . , `n}|), and the division by n!, the first two

sums in (231) can be simplified to a sum over subsets of L. Thus (231) reduces to

v̂ (x, `) = ∑
L⊆L

∑
c∈C

∑
I∈F (L)

ŵ(c,I)δI ({`} ∪ L) p̂(c,I) (x, `) . (232)

Substituting (225) and (226) into (232) yields the result

v̂ (x, `) = ∑
L⊆L

∑
c∈C

∑
I∈F (L)

ŵ(c,I) ({`} ∪ L) p̂(c,I) (x, `)

= ∑
L⊆L

∑
c∈C

∑
I∈F (L)

w (I) δI ({`} ∪ L) 1I (`) p(c)I−{`} (x, `)

= ∑
c∈C

∑
L⊆L

w(c) (L ∪ {`}) 1L∪{`} (`) p(c)
(L∪{`})−{`} (x, `)

= ∑
c∈C

∑
L⊆L

w(c) (L ∪ {`}) pL (x, `)

= v (x, `) , (233)

thus the PHDs of π and π̂ are equal.
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The significance of Proposition 11 lies in the fact that it facilitates the development

of recursive tracking algorithms using GLMB filtering densities, and measurement

likelihood models under which the GLMB is not necessarily a conjugate prior. Al-

though the GLMB is conjugate for the standard likelihood model [198], its usefulness

is limited by the fact that the standard model is unsuitable for many applications.

Many higher fidelity likelihood models do not posess the separable structure neces-

sary to maintain the GLMB form when Bayes rule is applied, hence, even if the prior

is a GLMB, the exact posterior density is not. In such cases, invoking Proposition 11

allows the exact posterior to be approximated in a principled way, by maintaining

the first moment and cardinality distribution of the density.

3.5 approximate glmb filters for merged measurements

The exact form of the filter as specified in Propositions 9 and 10, is intractable due to

the presence of joint densities p(c) (X) in the posterior (204). To derive an algorithm

that can be implemented in practice, it is assumed that the prior is a GLMB of the

form (159). The prediction step then becomes the same as the prediction of the stan-

dard GLMB filter, as specified in equations (175)-(181), since the targets are assumed

to follow the standard multi-object dynamic model.

Applying the merged measurement likelihood function to a GLMB prior yields a

posterior that is no longer a GLMB, but a labelled RFS mixture. However, using the

result of Proposition 11, the posterior can be approximated as a GLMB with matching

PHD and cardinality distribution. This allows a recursive GLMB filter for the merged

measurement likelihood model to be implemented. Note that if a non-standard dy-

namic model was used in the prediction step, the prior may not be a GLMB. In this

case, Proposition 11 could also be applied to the prior to approximate it as a GLMB

before proceeding to the update step. The following proposition establishes an ap-

proximate GLMB update for the merged measurement likelihood model.
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Proposition 12. If the prior density is a GLMB of the form (159), then under the merged

measurement likelihood function (202), the approximate GLMB posterior density that matches

the cardinality distribution and PHD of the exact posterior density is given by

π̂ (X|Z) = ∆ (X) ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

∑
I∈F (L)

ŵ(c,θ,I)
Z (L (X) ;U (L (X))) (234)

×
[

p̂(c,θ,I) (·|Z;U (L (X)))
]X

,

where

ŵ(c,θ,I)
Z (L;U (L)) =

δI (L)w(c) (L)
[
η
(c,θ)
Z

]U (L)

∑
c∈C

∑
J⊆L

∑
U (J)∈P(J)
θ∈Θ(U (J))

w(c) (J)
[
η
(c,θ)
Z

]U (J)
, (235)

p̂(c,θ,I) (x, `|Z;U (L)) = 1I (`) p(c,θ)
I−{`} (x, `|Z;U (L)) , (236)

p(c,θ)
{`1,...,`n} (x, `|Z;U (L))

=
∫

p(c,θ)
(
U (`) {(x, `) , (x1, `1) , . . . , (xn, `n)} |Z

)
d (x1, . . . , xn) , (237)

p(c,θ) (Y |Z) = p̌(c) (Y) ψ̌Z (Y ; θ)

η
(c,θ)
Z (L (Y))

, (238)

U (`) (Y) = W ∈ U (Y) | ` ∈ L (W) , (239)

p̌(c) (Y) =
[

p(c)
]Y

, (240)

η
(c,θ)
Z (L) =

〈
p̌(c)L (·) ,

(
ψ̌Z
)

L (·; θ)
〉

, (241)

and ψ̌Z (Y ; θ) is given by (201).

Proof. The product of the prior distribution and the likelihood function is

π (X) g (Z|X) = ∆ (X) λ ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

w(c) (L (X))
[
ψ̌Z (·; θ)

]U (X)
[

p(c)
]X

. (242)

Using equation (240),

[
p(c)
]X

= ∏
Y∈U (X)

[
p(c)
]Y

= ∏
Y∈U (X)

p̌(c) (Y) =
[

p̌(c)
]U (X)

(243)
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hence (242) can be written as

π (X) g (Z|X) = ∆ (X) λ ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

w(c) (L (X))
[

p̌(c) (·) ψ̌Z (·; θ)
]U (X)

= ∆ (X) λ ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

w(c) (L (X))
[
η
(c,θ)
Z

]U (L(X)) [
p(c,θ) (·|Z)

]U (X)

(244)

and its integral

∫
π (X) g (Z|X) δX = λ

∞

∑
n=0

1
n! ∑

(`1,...,`n)∈Ln
∑
c∈C

∑
U ({`1,...,`n})∈P({`1,...,`n})

θ∈Θ(U ({`1,...,`n}))

δn (|{`1, . . . , `n}|)

× w(c) ({`1, . . . , `n})
[
η
(c,θ)
Z

]U ({`1,...,`n})

×
∫ [

p(c,θ) (·|Z)
]U ({(x1,`1),...,(xn,`n)})

d (x1, . . . , xn) . (245)

In the last line of (245), since U divides the set {(x1, `1) , . . . , (xn, `n)} into disjoint

subsets, each xi only appears in one p(c,θ) (·|Z). Each p(c,θ) (·|Z) is a joint pdf, hence

∫ [
p(c,θ) (·|Z)

]U ({(x1,`1),...,(xn,`n)})
d (x1, . . . , xn) = 1,

and the integral becomes

∫
π (X) g (Z|X) δX = λ ∑

L⊆L

∑
c∈C

∑
U (L)∈P(L)
θ∈Θ(U (L))

w(c) (L)
[
η
(c,θ)
Z

]U (L)
. (246)

Substituting (244) and (246) into the Bayes update equation (56) yields the following

labelled RFS mixture posterior

π (X|Z) = ∆ (X) ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

w(c,θ)
Z (L (X) ;U (L (X))) p(c,θ) (X|Z;U (L (X)))

(247)

where

w(c,θ)
Z (L;U (L)) =

w(c) (L)
[
η
(c,θ)
Z

]U (L)

∑
c∈C

∑
J⊆L

∑
U (J)∈P(J)
θ∈Θ(U (J))

w(c) (J)
[
η
(c,θ)
Z

]U (J)
, (248)
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p(c,θ) (X|Z;U (L (X))) =
[

p(c,θ) (·|Z)
]U (X)

. (249)

This is not a GLMB, so to facilitate a tractable filtering recursion, Proposition 11 is

applied to approximate the posterior density in GLMB form as follows,

π̂ (X|Z) = ∆ (X) ∑
c∈C

∑
U (X)∈P(X)
θ∈Θ(U (X))

∑
I∈F (L)

ŵ(c,θ,I)
Z (L (X) ;U (L (X))) (250)

×
[

p̂(c,θ,I) (·|Z,U (L (X)))
]X

where

ŵ(c,θ,I)
Z (L;U (L)) = w(c,θ)

Z (I;U (I)) δI (L) , (251)

p̂(c,θ,I) (x, `|Z;U (L)) = 1I (`) p(c,θ)
I−{`} (x, `|Z,U (L)) , (252)

p(c,θ)
{`1,...,`n} (x, `|Z;U (L))

=
∫

p(c,θ) ({(x, `) , (x1, `1) , . . . , (xn, `n)} |Z;U (L)) d (x1, . . . , xn) . (253)

Substituting (248) into (251) yields the posterior component weight (235). Since (253)

marginalises p(c,θ) (·|Z;U (L)) over all states except for the one corresponding to label

`, only the posterior joint density of the group containing label ` will feature in

the calculation, and all of the others will integrate to unity. Let U (`) (X) denote the

set within partition U (X) that contains the label `. By this reasoning, (253) can be

equivalently expressed as

p(c,θ)
{`1,...,`n} (x, `|Z;U (L))

=
∫

p(c,θ)
(
U (`) ({(x, `) , (x1, `1) , . . . , (xn, `n)}) |Z

)
d (x1, . . . , xn) , (254)

which completes the proof of the result.

Computing the posterior GLMB density (234) will still be very computationally

demanding, since it consists of a nested sum over prior components, partitions of the

target set, and measurement-to-group associations. In the following subsections, two

alternative methods are proposed that can be used to avoid computing all terms in

the sum, thus achieving a computationally tractable implementation of the merged

measurement GLMB filter.
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3.5.1 Partitioning with Constrained Measurement Assignment

An obvious way to compute the terms in (250) is to list all possible partitions of the

target set, and then generate assignments of measurements to target groups within

each partition. Clearly, this procedure will be computationally prohibitive in cases

with a large number of targets, due to the exponentially increasing number of parti-

tions. However, it is possible to remove many of the unlikely partitions by exploiting

two pieces of information; the cluster structure of the target set, and a model of the

sensor’s resolution capabilities. Target clustering can be exploited by constructing dis-

joint subsets of the targets that are known to be well separated, and which have no

possibility of sharing measurements. An independent filter is executed for each clus-

ter, and since each of these filters only needs to partition a smaller set of targets, this

can lead to a significant reduction in the total number of partitions to be computed

[162, 114].

A method of further reducing the partitions for each cluster is to use a sensor res-

olution model to remove those that are unlikely to occur. Various resolution models

have been proposed in the literature in order to approximate the probability of a res-

olution event (or equivalently, a partition of the targets) [36, 108, 184]. It is possible to

use models such as these to eliminate unlikely partitions, by only retaining those that

exceed some minimum probability threshold. In this work, a simpler model is used

to eliminate the unlikely partitions, since our filter does not require the use of resolu-

tion event probabilities. Our model is based on two parameters; the maximum spread

of targets in an unresolved group in the measurement space (dt), and the minimum

distance between centroids of unresolved groups in the measurement space (dg). A

partition U (X) is considered to be infeasible if either of the following conditions is

true,

Dmin
({

Ȳ; Y ∈ U (X)
})

< dg (255)

max ({Dmax(Y); Y ∈ U (X)}) > dt (256)

where Ȳ is the mean of the set Y, Dmin(Y) is the minimum pairwise distance between

points in Y, and Dmax (Y) is the maximum pairwise distance between points in Y. This

model can be applied separately to each measurement dimension, and a partition is

rejected if condition (255) is satisfied in all dimensions or condition (256) is satisfied
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in any dimension. Intuitively, this model enforces the constraint that any unresolved

target group cannot be spread over a large distance, and resolved groups cannot

appear too close together. By applying these constraints, the unlikely partitions are

removed, thereby allowing the filter to devote a larger proportion of its computational

resources to the more likely partitions.

Having generated the feasible partitions, the terms of the posterior GLMB density

can be computed. In a manner similar to that of the standard GLMB filter [198],

a ranked set of alternative measurement assignments is generated using Murty’s

algorithm [147]. The difference here is that instead of assigning measurements to

individual targets, the measurements are assigned to groups of targets within each

partition. For a given partition U , prior GLMB component c, and set of labels L, the

following cost matrix is constructed

− ln


φ(c)(U1(L) , z1) · · · φ(c)(U1(L) , zm) φ(c)(U1(L) , ∅) · · · 0

...
. . .

...
...

. . .
...

φ(c)(Un(L) , z1) · · · φ(c)(Un(L) , zm) 0 · · · φ(c)(Un(L) , ∅)

 .

(257)

where

φ(c) (I, z) =
〈

p(c) (·, I) ,
P̌D (·, I) ǧ (z|·, I)

κ (z)

〉
, (258)

φ(c) (I, ∅) =
〈

p(c) (·, I) , 1− P̌D (·, I)
〉

, (259)

and Ui (L) denotes the i-th group of labels in partition U (L). Note that each row of

the cost matrix corresponds to an element of U (X) (a target group), and each column

corresponds to a measurement, or a misdetection. This matrix is passed to Murty’s

algorithm to generate the posterior components with highest weights, in a similar

manner to the standard GLMB filter. The algorithm based on this update technique

is referred to as the GLMB-MP filter. More details of the update algorithm are given

in Section 3.6.1, and pseudo-code is provided in Section 3.8.2.

3.5.2 Relaxed Measurement Assignment

The previous section described a method of generating highly weighted components

from the posterior, however, it is very computationally demanding due to the need to
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compute ranked assignments for every feasible partition of every component in the

GLMB prior. A cheaper but approximate method of generating the posterior GLMB

components is now proposed, which can potentially alleviate this bottleneck.

Let us neglect for a moment the fact that measurements are generated by groups

of targets, and instead, assume that targets give rise to measurements independently,

but more than one target may generate the same measurement. Although this seems

like a contradiction, the effect of this is mitigated by the fact the component weight

calculation is still carried out exactly, so in principle it can achieve similar perfor-

mance to the partitioned method, provided that enough components are generated.

The likelihood of assigning a measurement to a target is based only on that target’s

prior, which is captured in a directed graph as shown in Figure 16. In the graph struc-

ture, each row corresponds to a target, the first column corresponds to the target

being misdetected, and the remaining columns correspond to individual measure-

ment assignments. A start node is placed before the first row, and an end node after

the last row. Using this graph, a ranked list of feasible assignments can be obtained

using a k-shortest paths algorithm [206]. Note that a given column may be visited

several times within a path (in which case the measurement corresponding to that

column is assigned to more than one target), but each target can only be assigned

a single measurement. Each generated path can be viewed as a one-to-one mapping

of measurements to target groups, with the difference being that the grouping is not

pre-specified, but arises naturally due to the association of multiple targets to a single

measurement.

It is important to note that due to our target independence assumption, the solu-

tions generated by this method will not be in decreasing order of posterior weight.

However, under common conditions, this method can be expected to generate com-

ponents with significant weights, with the advantage that it is computationally much

cheaper than the partitioning approach. The filter using this update procedure is

referred to as the GLMB-MR filter.

3.6 implementation of glmb filters for merged

measurements

This section describes the measurement update procedures for both the GLMB-MP

and GLMB-MR filters introduced in the previous section. For pseudo-code of the
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Start

End

Figure 16: Graph structure used for the relaxed measurement assignment in the GLMB-MR
filter. A k-shortest paths algorithm is used to generate alternative assignments of
measurements to groups of targets.

measurement update procedures described here, refer to Section 3.8 at the end of

this chapter.

3.6.1 GLMB-MP Measurement Update

The update routine for the GLMB-MP filter involves generating a set of posterior

components for each component in the prior, by enumerating the feasible partitions

and measurement-to-group assignments. Note that this procedure can be easily par-

allelised, since there is no dependency between prior components. The first step is

to decide the number of posterior components to generate for each prior component.

This is done by first allocating a number of components N(n)
cdn to each cardinality n,

based on a Poisson distribution centered around the mean of the prior cardinality

distribution. This avoids component depletion by ensuring that components are gen-

erated for a variety of cardinalities, which is necessary to allow for target births and

deaths, even if the predicted cardinality distribution is sharply peaked.

For each cardinality, the number allocated N(n)
cdn is divided among the components

of cardinality n, where the number N(i)
cmp allocated to the i-th component is propor-

tional to its prior weight. Since it is usually not possible to do this exactly for an

integer numbers of components, this is carried out by a process of randomised al-
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location, where the probability of a posterior component being allocated to a prior

component is proportional to the prior component’s weight.

For each component, the feasible partitions of the target set are computed using

the constraints (255) and (256). The number of allocated posterior components N(i)
cmp

is then divided equally among these partitions, where the number allocated to the

k− th partition is denoted N(k)
prt . An assignment cost matrix is then computed for each

feasible partition according to (257), which is used to obtain a list of the cheapest N(k)
prt

measurement-to-group assignments in increasing order of cost. Murty’s ranked as-

signment algorithm [147] is used for this purpose, which involves solving a sequence

of optimal assignment problems. This can be carried out using a number of well

known techniques, including the Hungarian algorithm [113], the Jonker-Volgenant

algorithm [95], or the auction algorithm [27]. The implementation used in this study

makes use of the auction algorithm.

For each assignment generated by Murty’s algorithm, a new posterior component

is created, consisting of one updated joint density for each target group according to

(218), (241) and (201). Finally, the posterior density is approximated in the form of a

GLMB by computing the marginal distribution of each target within each posterior

component, in accordance with Proposition 11.

Pseudo-code for the GLMB-MP measurement update procedure described here is

provided in Algorithm 20 at the end of this chapter.

3.6.2 GLMB-MR Measurement Update

As in the partitioned update procedure, the GLMB-MR generates a set of posterior

components for each component in the prior. However, in the GLMB-MR filter, a

different method of choosing the components is employed, leading to a cheaper al-

gorithm which is scalable to a larger number of targets per cluster. Here, the enu-

meration of target partitions and Murty-based ranked assignment, is replaced with

a relaxed assignment of measurements to targets. This means that a single measure-

ment may be assigned to multiple targets simultaneously, but each target can still

only receive one measurement. This leads to a simpler and computationally cheaper

algorithm, but as one would expect, the performance is not as good as the partition-

ing approach.



3.7 simulation results 107

For each prior component, the graph in Figure 16 is generated, which consists of

one row for each target, and one column for each measurement, with one extra col-

umn for misdetections. The k-shortest paths algorithm is applied to this graph to

select components for inclusion in the posterior GLMB. The component weights are

computed in the same way as in the partitioned update. However, instead of per-

forming joint updates for each group followed by marginalisation, the single target

prior distributions are updated independently, and used as an approximation to the

marginal posterior densities. This avoids the computational bottleneck of performing

a large number of joint multi-target updates (one for every possible target grouping).

Instead, only a single independent update needs to be performed for each unique

single-target density contained in the prior GLMB.

Pseudo-code for the GLMB-MR measurement update procedure is provided in

Algorithm 21 at the end of this chapter.

3.7 simulation results

This section provides performance results for the two proposed versions of the GLMB-

M filter on a simulated multi-target tracking scenario. The sensor generates noisy

bearings-only measurements with false alarms and misdetections, and there are mul-

tiple crossing targets, each of which follows a white noise acceleration dynamic

model. The sensor’s motion comprises legs of constant velocity, interspersed with

constant turn rate manoeuvres. These manoeuvres improve the observability as the

simulation progresses.

The target state space is defined in terms of 2D Cartesian position and velocity

vectors, i.e. for target t at time k, x̃(t)k =

[
x(t)k y(t)k ẋ(t)k ẏ(t)k

]T

. All targets follow

the dynamic model

x̃(t)k+1 = Fx̃(t)k + Γvk (260)

F =

 1 T

0 1

⊗ I2, Γ =

 T2/2

T

⊗ I2 (261)

where T = 20s is the sensor sampling period, and vk ∼ N (0, Q) is a 2× 1 independent

and identically distributed Gaussian process noise vector with Q = σ2
v I2 where the

standard deviation of the target acceleration is σv = 0.005m/s2.
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Figure 17: Target-observer geometry for the GLMB-M test scenario.

The measurements are simulated using two alternative methods; one based on a

detection-level measurement model, and the other based on an image simulation

followed by peak detection. The details of these models are given in the subsections

to follow, and in both cases, the measurement function is given by

h
(

x̃(t)k , x̃(s)k

)
= arctan

(
x(t)k − x(s)k

y(t)k − x(s)k

)
. (262)

where x̃(t)k is the target state vector, and x̃(s)k is the sensor state vector. For this analysis,

the pdf of each target is modelled using a single Gaussian, and the measurement up-

dates are carried out using the extended Kalman filter (EKF). It is clearly possible to

use more sophisticated non-linear filters, such as the unscented or cubature Kalman

filter, or to model the single target pdfs using more accurate representations such

as Gaussian mixtures or particle distributions. These techniques may lead to some

performance improvement, but this analysis is beyond the scope of this work.

The scenario consists of four targets, with geometry as shown in Figure 17. One

target is present at the beginning, with another three arriving during the first 400

seconds, and three terminating during the final 900 seconds. The bearings of all four

targets cross one another in the middle of the scenario, during which time, merged

measurements will be present in the data. This crossing can be seen around time

1500s in the bearing plot in Figure 18.



3.7 simulation results 109

Target 1
Target 2
Target 3
Target 4

B
ea

ri
n

g 
[d

eg
]

100

125

150

175

200

225

250

Time [s]
0 500 1000 1500 2000 2500 3000

Figure 18: True target bearings for the GLMB-M test scenario.

In all cases, the filter initialises the pdf of each newborn target as a Gaussian with

mean range of 10km from the sensor, range standard deviation of 3km, velocity of

5m/s moving directly towards the sensor along the line of bearing, course standard

deviation of 50◦, and speed standard deviation of 2m/s. The filters generate a max-

imum of Nu = 10000 components in the GLMB density during the update, which

is reduced to Nr = 1000 (with Nc = 10, and Rm = 108 ) during the pruning step.

All filters were implemented in C++, and executed on an Intel Core i7 2600 proces-

sor. The implementation used here does not include parallelisation of the component

generation process, and it would be possible to significantly speed up the execution

time by doing so.

3.7.1 Detection-level Simulation Model with Merging

Let X be the single-object state space, and Z the sensor measurement space. At time

index k, consider a single sensor with known control input uk, and let Xk represent the

unknown multi-target state. Let h (·, uk) : X×L → Z be the measurement function,

C = {c1, c2, ...cNcell} be a set of disjoint cells covering Z such that
⋃Ncell

i=1 ci = Z and

ci ∩ cj = ∅, ∀i 6= j, and let T(i)
k be the set of targets whose true state falls in cell i at

time k,

T(i)
k (X) = {x ∈ X : h (x, uk) ∈ ci} . (263)
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Table 6: Measurement noise used in the GLMB-M test scenario.

Cell Width
σw

1 Target 2 Targets >2 Targets

1◦ 0.25◦ 0.375◦ 0.5◦

2◦ 0.5◦ 0.75◦ 1◦

4◦ 1◦ 1.5◦ 2◦

Then cell i produces the following target measurement

Z(i)
k =


1∣∣∣T(i)

k (X)
∣∣∣ ∑

x∈T(i)
k

h (x, uk) + wk,
∣∣∣T(i)

k (X)
∣∣∣ > 0

∅,
∣∣∣T(i)

k (X)
∣∣∣ = 0

(264)

with probability PD

(
T(i)

k (X)
)

, and Z(i)
k = ∅ with probability 1 − PD

(
T(i)

k (X)
)

.

In the above, wk is an independent measurement noise vector. The set of target-

generated measurements at time k is thus Dk =
⋃Ncell

i=1 Z(i)
k . In addition, at each time

k, the sensor generates an RFS of false measurements denoted Kk, with a Poisson

cardinality distribution of known mean. The spatial locations of the points in Kk are

simulated by repeatedly generating a random point within a randomly chosen unoc-

cupied cell, such that any given cell cannot contain more than one measurement. The

overall measurement set is thus given by Zk = Dk ∪ Kk.

This model allows us to explicitly control the measurement noise, clutter rate, and

resolution, such that the filter parameters can be matched to their true values. The

algorithms are tested under three bearing cell widths; 1◦, 2◦ and 4◦. The measurement

noise is dependent on the number of unresolved targets in the group, and is set

according to Table 6.

In these simulations, the detection probability is 0.98, and the mean number of

clutter measurements is 30. The OSPA distance is used to analyse the relative per-

formance of the algorithms, with a cutoff of 1km, and order parameter of 2. Figures

19, 20 and 21 show the average OSPA distance and algorithm execution times (over

200 Monte Carlo runs) for the standard GLMB, GLMB-MP, and GLMB-MR filters for

the three different cell widths. Also shown are the results of running the standard

GLMB filter on measurements with perfect resolution and the same noise level as

fully resolved targets in each case.
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As one would expect, the standard GLMB filter performs poorly when processing

the finite resolution measurements, since it cannot account for measurement merging.

When the target bearings begin to cross, a significant jump in OSPA can be observed

for the standard GLMB. The reason for this is clear, the filter can only explain the

missing measurements as misdetections or target deaths. Since the probability of

detection is high, the probability of having several misdetections in a row is very

small. Hence the filter believes that targets have died and terminates the tracks, which

is also the reason for the associated drop in execution time. When the targets become

resolved again, the filter must initiate new tracks (with default prior state), since it

has no way of continuing a track that has been previously terminated. For this reason,

the standard filter will take a long time to recover from dropped tracks, especially in

situations with low observability.

Also as expected, the GLMB-MP filter performs best in all three cases, because

by enumerating the partitions of the target set in advance, it is able to obtain better

posterior components than the GLMB-MR filter. The drawback of this algorithm is

that when the targets get close to each other, the execution time rises dramatically due

to the increasing number of feasible partitions. As the cell width increases, the width

of the peak in the execution time also increases, because the targets are unresolved

for a longer period.

The GLMB-MR filter clearly has higher error, however, it does not suffer from

spikes in execution time. In all three cases, the peak execution time of the GLMB-

MR is less than 20% of that for the GLMB-MP. This is due to the fact that the latter

uses a more expensive ranked assignment algorithm, and needs to carry out many

group measurement updates for different partitions of the target set, each of which

involves higher dimensional matrices. In contrast, the GLMB-MR only performs a

single measurement update for each target, and a cheaper assignment based on k-

shortest paths. Hence the GLMB-MR has a relatively consistent run time, similar to

that of the standard GLMB filter.

3.7.2 Image-based Simulation Model

The simulation model in the previous section allowed us to explicitly control the clut-

ter rate and measurement noise parameters via simulation at the detection level. In

this section, the merged measurement filters are applied to data generated through a
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Figure 19: OSPA distance and execution time for GLMB/GLMB-M filters in detection-level
simulation with 1◦ resolution.
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Figure 20: OSPA distance and execution time for GLMB/GLMB-M filters in detection-level
simulation with 2◦ resolution.
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Figure 21: OSPA distance and execution time for GLMB/GLMB-M filters in detection-level
simulation with 4◦ resolution.
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Figure 22: Simulated time-bearing image with 1◦ cell width.

more realistic simulation model, in which a sensor image is generated, and a simple

peak detector used to extract the point measurements. The image is simulated by first

generating Rayleigh distributed background noise in each cell. A point spread func-

tion is applied to each target to obtain the mean target-generated signal amplitude

in each cell, and a Ricean distributed amplitude is then generated for every cell. This

is repeated for all targets, and the signal amplitudes added together in each cell. To

generate detections, the vector of cell amplitudes is interpolated using a spline func-

tion, and the locations of all peaks that exceed a threshold are extracted. Under this

model, the combined effect of the cell width and the point spread function determine

the distance at which targets become unresolvable. Figure 22 shows an example of

the image generated from this model, with cell width of 1◦, average signal to noise

ratio of 5dB, and a Gaussian point spread function with standard deviation of 0.5◦.

Figures 23 and 24 show the average OSPA distance over 200 runs for the standard

GLMB, GLMB-MP and GLMB-MR filters, for the case of 1◦ and 2◦ cell widths. These

results follow the same trend that was observed under the detection-level simulation

model. The standard GLMB filter fails due to dropped tracks, and the GLMB-MP

generally outperforms the GLMB-MR, albeit with a higher computational cost.
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Figure 23: OSPA distance and execution time for GLMB/GLMB-M filters in image-based sim-
ulation with 1◦ cell width.
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3.8 pseudo-code for merged measurement glmb filters

3.8.1 Merged Measurement GLMB Recursion

Pseudo-code for the top-level recursion of the GLMB-M filter is provided in Algo-

rithm 19. Note that the birth density generation, survival prediction, estimate extrac-

tion and pruning are the same as those in the standard GLMB filter of Algorithm 3.

The only difference is in the update procedure, which can be either the GLMB-MP

of GLMB-MR update, as dictated by the situation and the available computational

resources.

Algorithm 19: GLMB filter for merged measurements.
Input: Measurements (Z1:N), measurement times (t1:N)
Output: Track estimates (τx), track labels (τ`)

1 Function [τx, τ`] = MergedMeasGLMB_Filter (Z1:N , t1:N) is
2 `next = 1;
3 τx = ∅;
4 τ` = ∅;
5 PA,1 = Zeros (1, |Z1|);
6 for k = 2 : N do
7 [ΩB,k, `next] = BirthGLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next);
8 if k = 2 then
9 Ω+ = ΩB,k;

10 else
11 ΩS,k = PredictSurvivalGLMB (Ωk−1, tk);
12 Ω+ = MultiplyGLMB (ΩS,k, ΩB,k);

13 if GLMB-MP then
14 [Ωk, PA,k] = PartitionedUpdateGLMB (Ω+, Zk);

15 else if GLMB-MR then
16 [Ωk, PA,k] = RelaxedUpdateGLMB (Ω+, Zk);

17 [τx, τ`] = ExtractEstimatesGLMB (Ωk, τx, τ`);
18 Ωk = PruneGLMB (Ωk);

3.8.2 GLMB-MP Update Procedure

The measurement update procedure for the GLMB-MP filter is specified by Algo-

rithm 20. This algorithm makes use of some base functions, which are described in

Table 7.
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Algorithm 20: GLMB update with target set partitioning (GLMB-MP).
Input: GLMB density (Φ), measurements (Z)
Parameters : Number of updated components to generate (Nu), detection

probability (PD), clutter intensity (λ), volume of surveillance region
(V), minimum spacing between group centroids (dg), maximum
target group spread (dt)

Output: Updated GLMB density (Ω), probability that each measurement is from
a target (PA)

1 Function [Ω, PA] = PartitionedUpdateGLMB (Φ, Z) is
2 for i = 1 : |Z| do
3 θi = ∅;

4 Ncdn = Allocate
(

Nu, Poisson
(

0 : Φ.M, Mean
(

Φ.ρ(:)
)))

;

5 for n = 1 : Ω.M do
6 j = 1;

7 Ncmp = Allocate
(

N(n)
cdn, Φ.w(n,:)

)
;

8 for i = 1 : Φ.Nn do
9 P = Partition

(
Φ.p(n,i,:)

)
;

10 P = ConstrainPartitions
(
P , dg, dt

)
;

11 Nprt = Allocate
(

N(i)
cmp, Ones(1, |P|)/|P|

)
;

12 for k = 1 : |P| do
13 U = P (k);

14 C = CostMatrixGrouped
(

Z, Φ.p(n,i,:),U , PD

)
;

15 A = Murty
(

C, N(k)
prt

)
;

16 for (a, c) ∈ A do
17 t = 1;
18 Ω.w(n,j) = Φ.w(n,i) ×Φ.ρ(n) × λ|Z| ×V−1 × e−c;
19 for G ∈ U do
20 pg = JointDensity

(
Φ.p(n,i,G)

)
;

21 Lg =
[
Φ.`(n,i,G)

]
;

22 if a(G) > 0 then
23 pg = JointTargetUpdate

(
pg, za(G)

)
;

24 θa(G) =
[
θa(G); (n, j)

]
;

25 for k = 1 : |G| do
26 Ω.p(n,j,t) = Marginal

(
pg, k

)
;

27 Ω.`(n,j,t) = Lg (k);
28 t = t + 1;

29 j = j + 1;

30 Ω = NormaliseGLMB (Ω);
31 for i = 1 : |Z| do
32 PA (i) = Sum

(
Ω.w(θi)

)
;
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Table 7: Functions used in GLMB-MP pseudo code.

Function Name Description

Partition (Y) List partitions of the set Y .

ConstrainPartitions
(
P , dg, dt

)
Remove infeasible partitions in P , according to
(255)-(256).

CostMatrixGrouped (Z, X,U , PD) Compute cost matrix (257) for measurement set Z
and target set X grouped according to partition U ,
with detection probability function PD.

JointDensity (P) Join the pdfs in the set P to create a joint density

JointTargetUpdate (p, z) Update the joint prior target pdf p with
measurement z

Marginal (p, i) Compute the marginal distribution of the i-th target
from the joint density p

3.8.3 GLMB-MR Update Procedure

Algorithm 21 summarises the measurement update procedure of the GLMB-MR filter,

which in addition to the base functions already defined in Tables 3 and 7, also makes

use of the two functions described in Table 8.

Table 8: Functions used in GLMB-MR pseudo code.

Function Name Description

CostGraph (Z, X) Compute cost graph in Figure 16 for measurement
set Z and target set X.

Unique (y) List the unique elements of the array y.
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Algorithm 21: GLMB update with relaxed assignment (GLMB-MR).
Input: Predicted GLMB density (Φ), measurements (Z)
Parameters : Number of updated components to generate (Nu), detection

probability (PD), clutter intensity (λ), volume of surveillance region
(V)

Output: Updated GLMB density (Ω), probability that each measurement is from
a target (PA)

1 Function [Ω, PA] = RelaxedUpdateGLMB (Φ, Z) is
2 for i = 1 : |Z| do
3 θi = ∅;

4 Ncdn = Allocate
(

Nu, Poisson
(

0 : Φ.M, Mean
(

Φ.ρ(:)
)))

;

5 for n = 1 : Φ.M do
6 j = 1;

7 Ncmp = Allocate
(

N(n)
cdn, Φ.w(n,:)

)
;

8 for i = 1 : Φ.Nn do
9 G = CostGraph

(
Z, Φ.p(n,i,:)

)
;

10 A = ShortestPaths
(
G, Ncmp (i)

)
;

11 for (a, c) ∈ A do
12 t = 1;
13 Ω.w(n,j) = Φ.w(n,i) ×Φ.ρ(n) × λ|Z| ×V−1;
14 for m ∈ Unique (a) do
15 G = {k : a(k) = m};
16 pg = JointDensity

(
Φ.p(n,i,G)

)
;

17 if m > 0 then
18 Ω.w(n,j) = Ω.w(n,j) × PD (Y)× g (zm|Y);
19 θm = [θm; (n, j)];
20 else
21 Ω.w(n,j) = Ω.w(n,j) × (1− PD (Y));

22 for k = 1 : |G| do
23 Ω.p(n,j,t) = TargetUpdate

(
Φ.p(n,i,G(k)), zm

)
;

24 Ω.`(n,j,t) = Φ.`(n,i,G(k));
25 t = t + 1;

26 j = j + 1;

27 Ω = NormaliseGLMB (Ω);
28 for i = 1 : |Z| do
29 PA (i) = Sum

(
Ω.w(θi)

)
;





4 T R A C K I N G M U LT I P L E E X T E N D E D

TA R G E T S

Targets that generate multiple measurements at a given instant in time are com-

monly known as extended targets. These present a challenge for many tracking

algorithms, as they violate a key assumption of the standard measurement model,

specifically, that a target may generate at most one measurement at any given time.

Extended targets are an important consideration in many scenarios, in particular

when the targets are large relative to the sensor resolution.

The contribution of this chapter is the first multi-target tracker for extended targets

based on labelled random finite sets. The presented algorithm is capable of tracking

an unknown and time-varying number of extended targets in clutter. The full trajec-

tory of each target is estimated, comprising the kinematics, measurement rates and

extents. The results of this chapter have been presented in the author’s journal article

[24]1, and conference paper [20].

Section 4.1 contains a brief introduction on extended target tracking. In Section

4.2, an RFS-based measurement likelihood model for multiple extended targets in

clutter is developed. The state space model for a single extended target is specified

in Section 4.3, which forms the basis of the proposed GGIW-GLMB and GGIW-LMB

filters for extended targets described in Sections 4.4 and 4.5. Section 4.6 presents more

details relating to the implementation of these algorithms, and their performance is

demonstrated in Sections 4.7 and 4.8, with applications to simulated and real-world

measurement data. Finally, pseudo-code for the GGIW-GLMB and GGIW-LMB filters

is provided in Section 4.9.

1 The author acknowledges the contributions of Dr Stephan Reuter and Alexander Scheel from Ulm
University, Germany, and Dr Karl Granström from the University of Connecticut, USA, for their valuable
assistance in the development of the simulation and experimental results.
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4.1 introduction

A Bayesian approach to multi-target tracking requires models to describe how the

measurements are related to the underlying target states. Most traditional trackers

use the so-called standard measurement model. This is also known as a point target

model, since it is based on the assumption that each target produces at most one

measurement at a given time, and that each measurement originates from at most

one target. This model simplifies the development of multi-target trackers, but in

practice it is often an unrealistic representation of the true measurement process.

More realistic measurement processes can be handled using more sophisticated

non-standard measurement models, which may relax the aforementioned assumptions,

usually at the expense of increased computation. One example of this is when a

group of targets produces a single measurement, known as an unresolved target

(or merged measurement) model [21]. This type of model, which was dealt with in

Chapter 3, is useful when dealing with low-resolution sensors that cannot generate

separate detections for closely spaced targets. On the other hand, higher resolution

sensors may produce multiple measurements per target on any given scan. Such cases

require the use of an extended target model [58], which is the topic of this chapter.

Measurement models for extended targets typically require two components; a

model for the number of measurements generated by each target, and a model for

their spatial distribution. These depend strongly on both the sensor characteristics

and the type of targets being tracked. For example, in radar tracking, some targets

may generate many separate detections, by virtue of the fact that they possess many

scatter points. However, other targets may reflect most of the energy away from the

receiver, leading to very few detections, or none at all. In general, when a target is

far enough away from the sensor, its detections can often be characterised as a cluster

of points exhibiting no discernible geometric structure. In such cases, the number of

measurements is usually modelled using a Poisson distribution, see for example [58]

and [59].

Even in the absence of a specific target structure, it is still possible to estimate the

size and shape of a target, known as the target extent. This can be achieved by as-

suming some general parametric shape for the extent, for which the parameters are

estimated based on the spatial arrangement of the observations. An approach that as-

sumes an elliptical extent was proposed in [106], which used a multivariate Gaussian,
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parameterised by a random covariance matrix with an inverse Wishart distribution.

This was termed a Gaussian inverse Wishart (GIW), and this method enables the tar-

get extent to be estimated on-line, instead of requiring prior specification. Further

applications and improvements have appeared in [203, 54, 107]. Alternative methods

for estimating target extent have also been proposed, see for example [15, 14, 123].

The GIW method has been applied using multi-target filters based on the random

finite set (RFS) framework. The probability hypothesis density (PHD) filter, originally

developed by Mahler in [126] for the point target model, was modified for extended

multi-target filtering in [131]. An implementation of this filter based on the GIW

model (GIW-PHD filter) was developed in [67]. The cardinalised PHD (CPHD) filter

[129] is a generalisation of the PHD filter, which models the multi-target state as an

i.i.d cluster RFS instead of a Poisson RFS. This was applied to extended targets in

[124], which also incorporated a modification to the GIW approach [69], enabling

the estimation of target measurement rates. This method treats the rate parameter of

the Poisson pmf (which characterises the number of measurements generated by a

target) as a random variable, whose distribution is modelled as a gamma pdf. This

algorithm was called the gamma Gaussian inverse Wishart CPHD (GGIW-CPHD)

filter. Extended target PHD and CPHD filters have also been presented in [185, 186],

and a general PHD filter that can be applied to extended target filtering as a special

case was presented in [38].

The advantage of the (C)PHD filters is that they reduce the computational cost of

the Bayes multi-target filter, but to do so, some significant approximations are made.

While these approximations avoid explicit data association, their formulation does

not explicitly accommodate the estimation of target trajectories. Therefore, if such es-

timates are required, one must resort to heuristic methods and/or post-processing of

the (C)PHD filter output. Furthermore, the PHD filter can produce highly uncertain

estimates of the target number due to the Poisson cardinality assumption [126, 199].

Another limitation that affects the CPHD filter is the so-called “spooky” effect [197],

which means that when a target is misdetected, some of its probability mass is shifted

onto detected targets, regardless of their physical separation. A Bernoulli filter for

extended targets was proposed in [166], which does not suffer from these issues,

however, it is limited to at most a single target in clutter.

The generalised labelled multi-Bernoulli (GLMB) filter [198, 195] has been shown to

outperform both the PHD and CPHD filters, with the added advantage of producing
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labelled track estimates, albeit with a higher computational cost. An approximate

but computationally cheaper version of this filter was proposed in [164], called the

labelled multi-Bernoulli filter (LMB). Also, the first GLMB filter for a non-standard

measurement model was developed in [21] (see chapter 3) for cases involving merged

measurements, a problem which can be viewed as the dual of the extended target

tracking problem.

This chapter presents the development of GLMB and LMB filters for extended

multi-target tracking based on the GGIW model. Like the GGIW-CPHD filter of [124],

the proposed algorithm requires generating partitions of the measurement set. Since

considering all measurement partitions is clearly intractable, it is only possible to

process a small subset. It was shown in [123] that using clustering techniques to

generate a few alternative partitions can produce good tracking results, so the same

approach is adopted in the proposed GLMB filter for extended targets. The resulting

algorithms (GGIW-GLMB and GGIW-LMB) are capable of estimating the kinematics

and extents of multiple extended targets in clutter, with the advantage of producing

continuous target tracks.

4.2 observation model for multiple extended targets

This section develops an RFS-based measurement model for multiple extended tar-

gets in clutter. Let us denote the labelled RFS of extended targets that exist at the

observation time as X =
{
(x1, `1) , . . . ,

(
x|X|, `|X|

)}
. A measurement model is formu-

lated based on the following three assumptions:

A1. A particular extended target with state (x, `) may be detected with probability

PD (x, `), or misdetected with probability 1− PD (x, `).

A2. If detected, an extended target with state (x, `) generates a set of detections W

with likelihood g̃ (W|x, `), which is independent of all other targets.

A3. The sensor generates a Poisson RFS K of false observations with intensity func-

tion κ (·), which is independent of the target generated observations (i.e. K is dis-

tributed according to πK (K) = e−〈κ,1〉κK).

Denote by Pi (Z) the set of all partitions that divide a finite measurement set Z into

exactly i groups, and by U (Z) ∈ Pi (Z) a particular partition of Z with i groups. For

a given multi-target state X, denote by Θ (U (Z)) the space of association mappings

θ : L (X) → {0, 1, . . . , |U (Z)|} such that θ (`) = θ (`′) > 0 implies ` = `′. Finally,
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denote by Uθ(`) (Z) the element of the partition U (Z) corresponding to label ` under

the mapping θ.

Proposition 13. Under assumptions A1, A2 and A3, the measurement likelihood function is

given by

g (Z|X) = πK (Z)
|X|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

[
ψU (Z) (·; θ)

]X
(265)

where

ψU (Z) (x, `; θ) =


PD(x,`)g̃(Uθ(`)(Z)|x,`)

[κ]
Uθ(`)(Z) , θ (`) > 0

1− PD (x, `) , θ (`) = 0

. (266)

Proof. Let us first consider the case of no false detections (i.e. all measurements are

target generated). By assumptions A1 and A2, the likelihood of observing a set of

detections Y, given a set X of extended targets is given by [129]

πD (Y|X) = ∑
(W1,...,W|X|):⊎|X|

i=1 Wi=Y

g′ (W1|x1, `l) . . . g′
(
W|X||x|X|, `|X|

)
, (267)

where

g′ (W|x, `) ∝


1− PD (x, `) , W = ∅

PD (x, `) g̃ (W|x, `) , W 6= ∅

. (268)

A partition of an arbitrary set S is defined to be a disjoint collection of non-

empty subsets of S, such that their union is equal to S. Note that in (267), the sets

W1, . . . , W|X| may be either empty or non-empty, thus, they do not satisfy the defini-

tion of a partition of Y. However, the non-empty sets in W1, . . . , W|X| do constitute a

partition of Y, hence by separating (267) into products over the empty and non-empty

Wi’s, (267) can be written as

πD (Y|X) = [1− PD (·)]X
|X|
∑
i=1

∑
U (Y)∈Pi(Y)

∑
1≤j1 6=···6=ji≤|X|

i

∏
k=1

PD
(
xjk , `jk

)
g̃
(
Uk (Y) |xjk , `jk

)
1− PD

(
xjk , `jk

)
(269)
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where Uk (Y) denotes the k-th group in partition U (Y). Following a similar reasoning

to [135, pp. 420], this can be expressed as

πD (Y|X) = [1− PD (·)]X
|X|
∑
i=1

∑
U (Y)∈Pi(Y)

∑
θ∈Θ(U (Y))

∏
j:θ(j)>0

PD
(
xj, `j

)
g̃
(
Uθ(j) (D) |xj, `j

)
1− PD

(
xj, `j

) .

(270)

Let us now consider the case where false observations may also be present. By

assumption A3, the set K of false observations has distribution πK (K), and the sets

Y and K are independent. The overall measurement set is Z = Y ∪ K, thus Z is

distributed according to the convolution

g (Z|X) = ∑
W⊆Z

πK (Z−W)πD (W|X)

= ∑
W⊆Z

e−〈κ,1〉κZ−W [qD]
X
|X|
∑
i=1

∑
U (W)∈Pi(W)
θ∈Θ(U (W))

∏
j:θ(j)>0

PD
(
xj, `j

)
g̃
(
Uθ(j) (W) |xj, `j

)
1− PD

(
xj, `j

)

= e−〈κ,1〉κZ [1− PD (·)]X ∑
W⊆Z

|X|
∑
i=1

∑
U (W)∈Pi(W)
θ∈Θ(U (W))

∏
j:θ(j)>0

PD
(
xj, `j

)
g̃
(
Uθ(j) (W) |xj, `j

)
(
1− PD

(
xj, `j

))
[κ]Uθ(j)(W)

(271)

where the last line follows from the fact that κW = ∏j:θ(j)>0 [κ]
Uθ(j)(W), since U (W)

is a partition of W. Finally, this can be simplified by treating the set Z −W as an

additional element appended to each U (W), thereby transforming it into a partition

of Z. In doing so, the double summation over W ⊆ Z and partitions U (W) ∈ Pi (W)

up to size |X|, can be expressed as a summation over partitions of Z up to size |X|+ 1

as follows

g (Z|X) = πK (Z) [1− PD (·)]X
|X|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

∏
j:θ(j)>0

PD
(
xj, `j

)
g̃
(
Uθ(j) (Z) |xj, `j

)
(
1− PD

(
xj, `j

))
[κ]Uθ(j)(Z)

.

(272)

Observe that the 1 − PD
(

xj, `j
)

in the denominator cancels out the corresponding

term in the product [1− PD]
X when θ (j) > 0, leaving one 1− PD

(
xj, `j

)
term for each

j : θ (j) = 0. Hence, (272) can be equivalently expressed in the form (265)-(266).

In general, an exact calculation of the likelihood (265) will be numerically in-

tractable, because the sets of measurement partitions and group-to-target mappings
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can become extremely large. However, it has been shown that in many practical sit-

uations, it is only necessary to consider a small subset of these partitions to achieve

good performance [67, 69]. Additionally, the set of group-to-target mappings can be

substantially reduced using a ranked assignment algorithm, thereby cutting down

the number of insignificant terms in the likelihood even further.

4.3 extended target state-space model

This section describes the extended target state-space model, and the class of proba-

bility distributions used to model a single extended target. We begin by introducing

some notation:

• R+ is the space of positive real numbers

• Rn is the space of real n-dimensional vectors

• Sn
++ is the space of n× n positive definite matrices

• Sn
+ is the space of n× n positive semi-definite matrices

• GAM (xR; α, β) is the gamma probability density function (pdf) defined on

xR > 0, with shape α > 0, and inverse scale β > 0:

GAM (xR; α, β) =
βα

Γ (α)
xα−1
R e−βxR

• N (xC ; m, P) is the multivariate Gaussian pdf defined on xC ∈ Rn, with mean

m ∈ Rn and covariance P ∈ Sn
+

N (xC ; m, P) =
1√

(2π)n |P|
e−

1
2 (xC−m)T P−1(xC−m)

• IWd(xE ; v, V) is the inverse Wishart distribution defined on xE ∈ Sd
++, with

degrees of freedom v > 2d, and scale matrix V ∈ Sd
++ [71]

IWd (xE ; v, V) =
2−

v−d−1
2 |V| v−d−1

2

Γd

(
v−d−1

2

)
|xE |

v
2

e−
1
2 tr(Vx−1

E )

where Γd (·) is the multivariate gamma function, and tr (·) takes the trace of a

matrix.
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• Id is the idenity matrix of dimension d.

• A⊗ B is the Kronecker product of matrices A and B

The goal is to estimate three pieces of information about each target; the average

number of measurements it generates, the kinematic state of its centroid, and its

extent. The extended target state is thus modelled as the triple

x = (xR, xC , xE ) ∈ R+ ×Rn × Sd
++, (273)

where xR ∈ R+ is the rate parameter of a Poisson distribution that models the num-

ber of measurements generated by the target, xC ∈ Rn is a vector that describes the

state of the target centroid, and xE ∈ Sd
++ is a covariance matrix that describes the

target extent around the centroid. The density of the rate parameter is modelled as a

Gamma distribution, the kinematics as a Gaussian distribution, and the covariance of

the extent as an inverse-Wishart distribution. The density of the extended target state

is thus the product of these three distributions, denoted as a gamma Gaussian inverse

Wishart (GGIW) distribution on the space R+ ×Rn × Sd
++, given by

p (x) = pR (xR) pC (xC |xE ) pE (xE )

= GAM (xR; α, β)×N (xC ; m, P⊗ xE )× IWd (xE ; v, V)

, GGIW (x; ζ) (274)

where ζ = (α, β, m, P, v, V) is an array that encapsulates the GGIW density parame-

ters. The following sections describe the prediction and Bayes update procedures for

a GGIW distribution representing a single extended target.

4.3.1 GGIW Prediction

The predicted density p+ (·) of an extended target is given by the following Champan-

Kolmogorov equation

p+ (x) =
∫

f
(
x|x′

)
p
(
x′
)

dx′, (275)

where p (·) = GGIW (·; ζ ′) is the posterior density at the current time with param-

eters ζ ′ = (α′, β′, m′, P′, v′, V ′), and f (·|·) is the transition density from the current

time to the next time. This has no closed form solution, hence we resort to making a
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GGIW approximation for p+ (x). First, it is assumed that the transition density can

be written as the product [124]

f
(
x|x′

)
= fR

(
xR|x′R

)
fC
(
xC |xE , x′C

)
fE
(
xE |x′E

)
, (276)

which yields the following predicted density

p+ (x) =
∫
GAM

(
x′R; α′, β′

)
fR
(
xR|x′R

)
dx′R

×
∫
N
(
x′C ; m′, P′ ⊗ xE

)
fC
(
xC |xE , x′C

)
dx′C (277)

×
∫
IWd

(
x′E ; v′, V ′

)
fE
(
xE |x′E

)
dx′E .

If the dynamic model is linear-Gaussian with the form

fC
(
xC |xE , x′C

)
= N

(
xC ; (F⊗ Id) x′C , Q⊗ xE

)
, (278)

the kinematic component (i.e. the second line in (277)) can be solved in closed form

as ∫
N (x′C ; m′, P′ ⊗ xE ) fC

(
xC |xE , x′C

)
dx′C = N (xC ; m, P⊗ xE ) , (279)

where

m = (F⊗ Id)m′, (280)

P = FP′FT + Q. (281)

Exact analytical solutions still cannot be obtained for the measurement rate and target

extension components, which is addressed by applying some additional approxima-

tions. The following approximation is used for the measurement rate component,

which was proposed in [69],

∫
GAM

(
x′R; α′, β′

)
fR
(
xR|x′R

)
dx′R ≈ GAM (xR; α, β) , (282)

where

α =
α′

µ
, (283)

β =
β′

µ
. (284)
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In the above, µ = 1
1−1/w is an exponential forgetting factor with window length w > 1.

This approximation is based on the heuristic assumption that E [xR] = E [x′R], and

Var (xR) = Var (x′R)× µ, i.e. the prediction operation retains the expected value of

the density, and increases its variance by a factor of µ.

The predicted density for the extension component is approximated as

∫
IWd

(
x′E ; v′, V ′

)
fE
(
xE |x′E

)
dx′E ≈ IWd (xE ; v, V) , (285)

as proposed in [106], where

v = e−T/τv′, (286)

V =
v− d− 1
v′ − d− 1

V ′. (287)

Similarly to the measurement rate component, this approximation assumes that the

prediction retains the expected value and increases the uncertainty in the density.

For an inverse-Wishart distribution, the degrees of freedom parameter is related to

the uncertainty, with lower values yielding increased uncertainty. A temporal decay

constant τ is thus used in (286) to govern the reduction in the degrees of freedom.

Based on the calculated value for v, the expression for V retains the expected value

of the inverse-Wishart distribution through the prediction.

The above yields an approximate representation of the predicted GGIW density

p+ (x) ≈ GGIW (x; ζ), where ζ = (α, β, m, P, v, V) is the array of predicted GGIW

density parameters defined by equations (280), (281), (283), (284), (286) and (287).

4.3.2 GGIW Update

In the proposed GGIW-(G)LMB filter, each extended target will need to undergo

measurement updates using various subsets of the measurements received on each

scan. The following describes the procedure for computing the posterior GGIW for

a single target with predicted density p (·) = GGIW (·; ζ), for a given measurement

set W generated by an extended target. Note that unlike the GGIW prediction, the

GGIW update has an exact closed form, and does not require any approximations.

Each individual detection within W is assumed to be generated from the model

zk = (H ⊗ Id) xC,k + wk (288)
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where H =

[
1 0 0

]
, and wk ∼ N (0, xE ,k) is i.i.d. Gaussian measurement noise

with covariance given by the target extent matrix xE ,k. If detected, the target gener-

ates a set W =
{

z1, . . . , z|W|
}

of measurements from the model (288), whose cardinal-

ity |W| follows a Poisson distribution. The single-target likelihood function for this

model is given by [67, 69]

g̃ (W|x) = PS (|W| ; xR)
|W|
∏
j=1
N
(
zj; H̃xC , xE

)
(289)

where H̃ = H ⊗ Id, and PS (·; λ) denotes the Poisson pmf with mean λ. Note that

(289) will be substituted into (266) for the multiple extended-target likelihood, but in

this section, the dependence on the label ` is dropped, since we are considering only

a single target.

Let us assume that the predicted density p (x) is a GGIW given by (274), and we

wish to compute the posterior density via Bayes rule

p (x|W) =
g̃ (W|x) p (x)∫

g̃ (W|x′) p (x′) dx′
. (290)

The numerator of (290) is given by

g̃ (W|x) p (x) = GAM (xR; α, β)N (xC ; m, P⊗ xE ) IWd (xE ; v, V)

×PS (|W| ; xR)
|W|
∏
j=1
N
(
zj|H̃xC , xE

)
. (291)

Notice that the measurement rate and kinematics-extension components are indepen-

dent, and can thus be treated separately. The measurement rate component is given

by [69]

GAM (xR; α, β)PS (|W| ; xR) = GAM (xR; αW , βW) ηR (W; ζ) (292)

where

αW = α + |W| , (293)

βW = β + 1, (294)

ηR (W; ζ) =
1
|W|!

Γ (αW) βα

Γ (α) (βW)αW
, (295)
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and its integral with respect to xR, which will appear in the denominator of (290), is

thus given by

∫
GAM (xR; α, β)PS (|W| ; xR) dxR = ηR (W; ζ) . (296)

Note that in (295), ηR (W; ζ) is expressed as a function of the measurement set W and

the prior GGIW parameters ζ. This calculation corresponds to evaluating a negative-

binomial pdf.

The kinematics-extension component is given by [67]

N (xC ; m, P⊗ xE ) IWd (xE ; v, V)
n

∏
j=1
N
(
zj|H̃xC , xE

)
= N (xC ; mW , PW ⊗ xE ) IW (xE ; vW , VW) ηC,E (W; ζ) , (297)

where

mW = m + (K⊗ Id) ε, (298)

PW = P− KSKT, (299)

vW = v + |W| , (300)

VW = V + S−1εεT + Ψ, (301)

ηC,E (W; ζ) =

(
π|W| |W|

)− d
2 |V| v2 Γd

( vW
2

)
S

d
2 |VW |

vW
2 Γd

( v
2

) , (302)

and

K = PHTS−1, (303)

S = HPHT +
1
|W| , (304)

ε = w̄− (H ⊗ Id)m, (305)

Ψ = ∑
w∈W

(w− w̄) (w− w̄)T , (306)

w̄ =
1
|W| ∑

w∈W
w. (307)

The integral of (297) with respect to xC and xE is

∫ ∫
N (xC ; m, P⊗ xE ) IWd (xE ; v, V)

×
n

∏
j=1
N
(
zj|H̃xC , xE

)
dxCdxE = ηC,E (W; ζ) . (308)
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Notice that ηC,E (W; ζ) in (302) is proportional to a matrix variate generalised beta

type II pdf, and that the denominator in (290), i.e. the normalising constant for the

complete GGIW Bayes update, is given by the product ηR (W; ζ)× ηC,E (W; ζ) . This

will be used during the update step of the GGIW-GLMB filter to compute the weights

of the posterior density components.

4.3.3 Illustrative Example of the GGIW Recursion

To show how the GGIW prediction and update techniques work, this section con-

tains some illustrative examples depicting the input and output of one iteration of

the single-target GGIW recursion. Figure 25 shows an example of a posterior GGIW

density, where the diagram on the left represents the kinematic and target extension

components, and the graph on the right shows the distribution of the measurement

rate parameter. The dashed circle represents the 95% confidence region of the posi-

tional component of the Gaussian distributed target centroid, and the filled ellipse

represents the mean of the inverse-Wishart distributed target extent. Naturally, there

is an uncertainty associated with the target extent, but since the inverse-Wishart is a

matrix-variate distribution, this uncertainty is difficult to depict on a 2-dimensional

plot, thus only the mean is shown. The measurement rate is gamma distributed, with

a mean of 5.

Figure 25: Single-target GGIW example, previous posterior GGIW density.

Figure 26 shows the predicted GGIW distribution, along with the previous poste-

rior. Similarly to a Kalman filter prediction, the mean of the centroid is shifted due to

the estimated target velocity, and the uncertainty in the centroid’s location is slightly

increased. The mean of the target extent remains unchanged. The uncertainty in the

extent increases, but again, this is difficult to represent on the plot. The measurement
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rate distribution becomes slightly wider to represent a small increase in the measure-

ment rate uncertainty.

Figure 26: Single-target GGIW example, predicted GGIW density.

Figure 27 shows an example of the posterior GGIW density, updated with a set of

two measurements. The uncertainty in the centroid location shrinks, and the mean ex-

tent changes to reflect the new measurement data. The measurement rate distribution

is shifted down, since only two measurements were generated.

Figure 27: Single-target GGIW example, posterior GGIW updated with two measurements.

Finally, Figure 28 shows an alternative posterior GGIW density, updated with a set

of 15 measurements. This time, the uncertainty in the centroid location shrinks down

even further than the two-measurement case, and the mean of the posterior extent

more closely matches the distribution of the measurements. This can be understood

by the fact that a larger set of target generated measurements naturally provides

more information about the target’s location and extent than a smaller set. The rate

distribution is shifted to reflect the fact that the measurement rate has increased.
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Figure 28: Single-target GGIW example, posterior GGIW updated with 15 measurements.

4.4 glmb filter for extended targets

A GLMB filter for extended targets is now proposed, based on the measurement like-

lihood and state-space models described in the previous sections. The GLMB filter

consists of two steps, prediction and update. Since the standard birth/death model

is used for the multi-target dynamics, the prediction step is identical to that of the

standard GLMB filter derived in [198]. For completeness, the final prediction equa-

tions are revisited here, and the reader is referred to [198] for more details. Denote

by PS (x, `) the probability that a target with state (x, `) survives to the next time

step. The birth density is an LMB with label space B, weight wB (·) and single target

densities pB (·, `). If the multi-target posterior is a GLMB of the form (159) with label

space L, then the predicted multi-target density at the next time step is

π+ (X) = ∆ (X) ∑
c∈C

w(c)
+ (L (X))

[
p(c)+ (·)

]X
(309)

where

w(c)
+ (L) = wB (L ∩B)w(c)

S (L ∩L) , (310)

p(c)+ (x, `) = 1L (`) p(c)S (x, `) + (1− 1L (`)) pB (x, `) , (311)

p(c)S (x, `) =

∫
PS (x, `) f (x|x′, `) p(c) (x′, `) dx′

η
(c)
S (`)

, (312)

η
(c)
S (`) =

∫ ∫
PS (x, `) f

(
x|x′, `

)
p(c)

(
x′, `

)
dx′dx, (313)

w(c)
S (J) =

[
η
(c)
S

]J
∑
I⊆L

1I (J)
[
q(c)S

]I−J
w(c) (I) , (314)

q(c)S (`) =
∫

(1− PS (x, `)) p(c) (x, `) dx. (315)
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The function f (·|·, `) is the single-target transition kernel, which in this case is the

GGIW transition defined in Section 4.3.1.

Clearly, the difference between the standard GLMB and extended target GLMB fil-

ters will lie in the measurement update procedure, since the measurement likelihood

function has a different form. The update for the extended target GLMB is specified

by the following proposition.

Proposition 14. If the prior is a GLMB of the form (159), then under the extended multi-

target likelihood function (265), the posterior is a GLMB given by

π (X|Z) = ∆ (X) ∑
c∈C

|X|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c,θ)
U (Z) (L (X))

[
p(c,θ) (·|U (Z))

]X
(316)

where

w(c,θ)
U (Z) (L) =

w(c) (L)
[
η
(c,θ)
U (Z)

]L

∑
c∈C

∑
J⊆L

|J|+1
∑

i=1
∑

U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c) (J)
[
η
(c,θ)
U (Z)

]J
, (317)

p(c,θ) (x, `|U (Z)) =
p(c) (x, `)ψU (Z) (x, `; θ)

η
(c,θ)
U (Z) (`)

, (318)

η
(c,θ)
U (Z) (`) =

∫
p(c) (x, `)ψU (Z) (x, `; θ) dx (319)

in which ψU (Z) (x, `; θ) is given by (266).

Proof. The product of the prior distribution and the likelihood is

π (X) g (Z|X)

= ∆ (X)πK (Z) ∑
c∈C

|X|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c) (L (X))
[

p(c) (·)ψU (Z) (·; θ)
]X

= ∆ (X)πK (Z) ∑
c∈C

|X|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c) (L (X))
[

p(c,θ) (·|U (Z)) η
(c,θ)
U (Z) (·)

]X

= ∆ (X)πK (Z) ∑
c∈C

|L(X)|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c) (L (X))
[
η
(c,θ)
U (Z) (·)

]L(X) [
p(c,θ) (·|U (Z))

]X
.

(320)
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The set integral of (320) with respect to X is given by

∫
π (X) g (Z|X) δX

= gC (Z) ∑
c∈C

∫ |L(X)|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

∆ (X)w(c) (L (X))

×
[
η
(c,θ)
U (Z)

]L(X) [
p(c,θ) (·|U (Z))

]X
δX

= gC (Z) ∑
c∈C

∞

∑
j=0

1
j! ∑
(`1,...,`j)∈Lj

j+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

∆
({

(x1, `1) , . . . ,
(
xj, `j

)})

× w(c) ({`1, . . . , `j
}) [

η
(c,θ)
U (Z)

]{`1,...,`j}

×
∫ [

p(c,θ) (·|U (Z))
]{(x1,`1),...,(xj,`j)}

d
(
x1, . . . , xj

)
= gC (Z) ∑

c∈C

∑
L⊆L

|L|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c) (L)
[
η
(c,θ)
U (Z)

]L
. (321)

In the above, the second line is obtained by applying [198, Proposition 2], and

taking the parts that are only label-dependent outside the resulting integral. The last

line is obtained by observing the fact that the distinct label indicator function limits

the summation over j : 0 → ∞ and `1:j ∈ Lj to a summation over the subsets of L.

Substituting (320) and (321) into (56), yields the posterior density (316).

Proposition 14 establishes that the GLMB is a conjugate prior with respect to the

extended multi-target measurement likelihood function. Since the posterior density

contains a sum over partitions of the measurement set, its exact calculation is gen-

erally infeasible, because the number of possible partitions is usually very large. A

practical implementation of this filter requires that the summation be limited to only

a small subset of the measurement partitions. These must be chosen a manner such

that the highest weighted posterior components are included in the calculation, and

the components with insignificant weights are excluded. More details of our imple-

mentation can be found in Section 4.6.1.

4.5 lmb filter for extended targets

Having derived the GLMB recursion for extended targets, it is straightforward to ob-

tain the LMB recursion using the technique described in Section 2.5.5. The key princi-
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ple of the LMB filter is to simplify the representation of the multi-target density after

each update cycle, in order to reduce the algorithm’s computational complexity. In-

stead of maintaining the full GLMB representation from one iteration to the next, it is

approximated as an LMB density after each measurement update. In the subsequent

iteration, the prediction is carried out using this LMB representation. The predicted

LMB is then separated into independent target clusters, and the predicted LMB of

each cluster is converted back to a GLMB in preparation for the next measurement

update.

The prediction procedure for the extended target LMB filter is the same as the

standard LMB filter prediction, except that each single-target density is propagated

forward using the approximate GGIW prediction as described in Section 4.3.1. The

measurement update also proceeds in a similar manner to the standard LMB update,

except that the GLMB update for each cluster is carried out using the result of Propo-

sition 14. This also requires that a collection of feasible partitions of the measurement

set be identified prior to performing the update.

After the measurement update, the posterior GLMB (316) for each cluster is approx-

imated by an LMB with matching probability hypothesis density. The parameters of

this approximate LMB are given by

r(`) = ∑
c∈C

∑
L⊆L+

|L|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c,θ)
U (Z) (L) 1I (`) , (322)

p(`) (x) =
1

r(`) ∑
c∈C

∑
L⊆L+

|L|+1

∑
i=1

∑
U (Z)∈Pi(Z)
θ∈Θ(U (Z))

w(c,θ)
U (Z) (L) 1I (`) p(θ) (x, `) . (323)

Equation (323) means that the pdf of each track in the LMB becomes a mixture of

GGIW densities. To avoid the number of components in these mixtures growing too

large, it is necessary to reduce them by a process of pruning and merging. For GGIW

mixtures, this can be achieved using the techniques proposed in [69, 68], which have

been previously applied in the context of mixture reduction for the GGIW-CPHD

filter [124].
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4.6 implementation

This section provides more details on the implementation of both the GLMB and LMB

filters for extended targets. We begin in Section 4.6.1 with the prediction and update

steps of the GGIW-GLMB filter, then in Section 4.6.2 we describe the modifications

necessary to implement the GGIW-LMB filter. Pseudo-code for these functions is

provided at the end of the chapter in Section 4.9.

4.6.1 GGIW-GLMB Filter

4.6.1.1 Prediction

Since the GGIW-GLMB filter uses the standard model for target birth/death, the pre-

diction step of the GGIW-GLMB filter is identical to that of the standard GLMB filter.

The only difference is that the single-target prediction is given by the approximate

GGIW prediction as discussed in Section 4.3.1. Hence, the prediction procedure is the

same as specified in Algorithm 5 (see Chapter 2), where the function TargetPredict,

is replaced with the GGIW prediction.

4.6.1.2 Measurement Partitioning

Similarly to the extended target (C)PHD filter, the main barrier to implementing the

extended target GLMB filter is the fact that computing the posterior density in (316)

involves taking a sum over all partitions of the measurement set. Even for small

measurement sets, exhaustively enumerating the partitions is usually intractable, be-

cause the number of possibilities (given by the Bell number) grows combinatorially

with the number of elements. Therefore, to make the filter computationally tractable,

the update procedure can only consider a small subset of the possible partitions. A

list of the most likely measurement partitions is therefore constructed, and passed as

a parameter to the update function.

Ideally, the retained partitions should be those that give rise to GLMB components

with the highest posterior weights, such that the effect of truncation error is min-

imised. Although it is difficult to establish a method that can guarantee this, the

use of clustering techniques to generate the most likely partitions has been shown

to produce favourable results in the context of PHD/CPHD filtering [67, 69]. In the
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implementation of the GGIW-GLMB filter, feasible sets of measurement partitions

are generated using a combination of distance-based clustering and the expectation-

maximisation algorithm, in a similar manner to [67] and [69]. See Algorithms 23 and

24 for pseudo-code of the measurement partitioning procedure.

4.6.1.3 Update

After a set of feasible partitions has been generated, each unique grouping of mea-

surements is used to update the single-target GGIW pdfs in the GLMB density, using

(298)-(307). The implementation is simplified by assuming that the detection proba-

bility is dependent on the target label only (i.e. PD (x, `) = PD (`)), which yields the

following analytical expression for (319),

η
(c,θ)
U (Z) (`) =


PD(`)ηR(Uθ(`)(Z);p(c))ηC,E(Uθ(`)(Z);p(c))

[κ]
Uθ(`)(Z) , θ (`) > 0

1− PD (`) , θ (`) = 0

(324)

where ηR and ηC,E are given by (295) and (302) respectively. For each predicted com-

ponent c, and partition U (Z), the following cost matrix is calculated for the assign-

ment of measurement groups to targets,

− ln


φ(c)(`1,U1 (Z)) · · · φ(c)(`1,Um (Z)) φ(c)(`1, ∅) · · · 0

...
. . .

...
...

. . .
...

φ(c)(`n,U1 (Z)) · · · φ(c)(`n,Um (Z)) 0 · · · φ(c)(`n, ∅)

 ,

(325)

where

φ(c) (`, W) =
PD (`) ηR

(
W; p(c)

)
ηC,E

(
W; p(c)

)
[κ]W

, (326)

φ(c) (`, ∅) = 1− PD (`) , (327)

and Ui (Z) denotes the i-th measurement group in partition U (Z). Each row in (325)

corresponds to an extended target, and each column corresponds to either a group

of measurements in Z, or a misdetection. Murty’s algorithm is then used to generate

highly weighted assignments of measurement groups to targets, each of which forms

a component in the posterior GLMB density. Pseudo-code for the update procedure

is provided in Section 4.9.1 (Algorithm 25).
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4.6.2 GGIW-LMB Filter

As with the GGIW-GLMB filter, the GGIW-LMB filter uses the standard multi-target

birth/death model, thus the prediction step of the GGIW-LMB filter is identical to

that of the standard LMB filter, except that the single-target prediction is given by the

approximate GGIW prediction as discussed in Section 4.3.1. Hence, the prediction

procedure is the same as specified in Algorithm 13, where the function TargetPredict,

is replaced with the GGIW prediction.

The measurement update of the GGIW-LMB filter differs from the standard LMB

filter update, as it requires a list of feasible measurement partitions to be specified,

and the measurement update for each cluster is replaced by the GGIW-GLMB update,

as specified by Algorithm 25. The overall GGIW-LMB recursion and the measurement

update procedure are specified in Section 4.9.2 (Algorithms 26 and 27).

4.7 simulation results

In this section, the performance of the GGIW-GLMB and GGIW-LMB filters are com-

pared to an extended target CPHD filter2 [124] using the cardinality estimation error

and the OSPA distance [173]. Since the standard OSPA only penalizes cardinality and

state errors, a modified version of the OSPA metric [124, Section VI] incorporating

measurement rates and target extent is used in the evaluation.

The target centroids follow the dynamic model

xC,k+1 =
(

Fk+1|k ⊗ Id
)

xC,k + vk (328)

where vk ∼ N
(
0, Qk+1|k

)
is a d× 1 i.i.d. process noise vector, Id is the identity matrix

of dimension d, and Fk+1|k and Qk+1|k are

Fk+1|k =


1 T 1

2 T2

0 0 T

0 0 e−T/θ

 , (329)

Qk+1|k =
[

Σ2
(

1− e−2T/θ
)

diag
([

0 0 1

])]
⊗ xE ,k+1. (330)

2 Thanks to Dr Karl Granström from the University of Connecticut, USA, for providing the Matlab code
for the GGIW-CPHD filter used in these comparisons.



144 tracking multiple extended targets

In the above, T is the sampling period, Σ is the scalar acceleration standard deviation,

and θ is the manoeuvre correlation time. In these simulations, we use parameter

values of T = 1 s, θ = 1 s and Σ = 0.1 m/s2.

The forgetting factor used by the filters in (283) for the prediction of target mea-

surement rates is set to µ = 1.25, and the temporal decay constant in (286) for the

prediction of the target extent is τ = 5 s. The probability of target survival is set to

PS = 0.99. Both the GGIW-GLMB and GGIW-LMB filters use a static birth model,

which is represented as a GGIW-LMB distribution. Within this birth distribution, the

parameters of the gamma components are α0 = 10 and β0 = 1, the inverse-Wishart

component parameters are ν0 = 10 and V0 = 100× I2, and the kinematic components

have means m0 which are located close to the true target starting positions with zero

initial velocity and covariance P0 = diag
([

10 2.5

])2

. Additionally, a GGIW-LMB

filter with adaptive (i.e. measurement driven) birth model is considered, which is

referred to as GGIW-LMB-ab. This filter uses the same birth parameter values for α0,

β0, ν0 and P0 as the filters with static birth, however, the values of m0 and V0 are

computed on-line using the measurements, instead of being predefined.

Three scenarios were simulated, the first two of which were used in [124] to com-

pare the performance of the GGIW-PHD filter and the GGIW-CPHD filter (note that

all scenarios are 2-dimensional, i.e. d = 2). Scenario 1 runs for 200 time steps, and

consists of four targets that appear/disappear at different times. The targets generate

measurements with a detection probability of PD = 0.8 and the clutter measurements

follow a Poisson distribution with a mean number of 30 per time step. Due to lower

detection probability, higher clutter rate, and target birth/death, the estimation of

the cardinality is challenging in this scenario. Scenario 2 runs for 100 time steps and

consists of two targets that are present for the entire scenario. The two targets are

spatially well separated at the beginning, then move in parallel at close distance, be-

fore separating again towards the end. In this scenario, the detection probability is

PD = 0.98, and two different clutter rates were tested; very light clutter with a Poisson

mean of 10 per scan (as used in [123], for the sake of comparison), and very high clut-

ter with a Poisson mean of 5000 per scan. This scenario is used to illustrate the filter

performance for the difficult problem of tracking closely spaced targets [67, 69]. Since

the target-generated measurements are close together, they often appear as a single

cluster in the sensor data, rather than multiple separate clusters. Figures 29 and 30
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Figure 29: Ground truth for extended-target test scenario 1. The tracks start in the origin at
different times and move outwards. The colours of the square markers indicate the
time when the target is at that location, and the ellipses represent the true target
extents.

depict the true trajectories of the targets for scenarios 1 and 2 respectively, and figure

31 shows an example of the measurements for scenario 2 in the high clutter rate case.

Scenario 3 is used to test the so-called “spooky” effect [197]. The scenario has

two targets that are spatially separated by at least 1km for all 50 time steps. The

probability of detection was set to PD = 0.9 and clutter Poisson rate was 10. The

measurements were generated such that one target is always detected, and the other

target is detected on all time steps, except for steps 20, 40 and 41. The ground truth

for scenario 3 is shown in Figure 32.

For the first two scenarios, 1000 Monte Carlo runs were carried out in order to

compare the performance of the five different GGIW filters: GLMB, LMB, LMB with

adaptive birth process (LMB-ab), CPHD and PHD. For scenario 1, Figures 33 and 34

show the cardinality estimation performance, and Figure 33 shows the mean OSPA

distances. The PHD filter performs worst, exhibiting highly variable cardinality es-

timates, and the highest mean OSPA distance. The CPHD filter performs better, by

virtue of its improved cardinality estimation capabilities. The GLMB and LMB fil-
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Figure 30: Ground truth for extended-target test scenario 2. The tracks start simultaneously
on the left hand side, then move close together, and separate again towards the
end of the scenario.
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Figure 31: Example measurements for extended-target test scenario 2, high clutter rate case.
The target-generated measurements from every tenth scan are shown, against the
clutter background from a single scan.
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Figure 32: Ground truth for extended-target test scenario 3. The top target starts on the right
and moves to the left, and the bottom target starts on the left and moves to the
right.
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ters have approximately equal performance, with the GLMB performing marginally

better on average. The LMB-ab filter takes slightly longer to converge to the correct

cardinality due to the unknown birth density, however the filter eventually reaches

the same error as the GLMB and LMB with known birth density. This is expected,

since the other three filters have the advantage of knowing the region where new

targets will appear.

The execution times for the Matlab implementation of the algorithms (mean ± one

standard deviation) for scenario 1 are 3.95 ± 3.41s for the GLMB filter, 0.19 ± 0.29s

for the LMB filter, and 2.20 ± 0.47s for the CPHD filter. Since the LMB-ab filter only

uses clusters with more than four measurements as birth candidates, it is even faster

than the LMB filter. Since the LMB filter partitions the tracks and measurements into

approximately statistically independent groups [164, 172], its computation times are

less than those of the CPHD filter.

Figure 36 shows the mean OSPA distances, and the mean of the absolute cardinality

errors for scenario 2. Similar to scenario 1, the GLMB filter outperforms the LMB,

CPHD and PHD filters. Again, the cardinality estimate of the LMB-ab filter takes

longer to converge to the correct value, however, the LMB-ab filter has lower OSPA

distance and smaller cardinality error than the LMB filter after time 78. This is due

to the fact that, in some of the runs, the LMB filter lost one of the tracks because

the measurement clusters were very close together. Even after the targets move apart,

the filter with static birth density is unable to start a new track on the lost target.

However, the filter with adaptive birth density has the capability to start a new track

at the lost target’s current location, leading to improved performance.

The results of the high clutter rate simulation for scenario 2 are shown in Figure 37.

This time, the LMB filter with static birth produces significantly larger errors during

the middle of the scenario, and this error continues until the end of the simulation.

In this case, the higher clutter rate leads to the LMB filter dropping more tracks,

which cannot be reinitialized under the static birth model. The LMB with adaptive

birth also suffers from a similar increase in error when the targets are closely spaced,

however, the error improves dramatically towards the end, as it initiates new tracks

for those that were previously dropped. The results also show that GLMB filter is able

to maintain the tracks more reliably than the LMB filter in the case of high clutter,

however, as mentioned previously, this comes with an increase in computational cost.
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Figure 33: Cardinality estimation performance for GGIW-PHD and GGIW-CPHD filters in
extended-target test scenario 1.



150 tracking multiple extended targets

True
GGIW-LMB

C
ar

d
in

al
it

y

0

1

2

3

4

Time [s]
0 50 100 150 200

True
GGIW-LMB-ab

C
ar

d
in

al
it

y

0

1

2

3

4

Time [s]
0 50 100 150 200

True
GGIW-GLMB

C
ar

d
in

al
it

y

0

1

2

3

4

Time [s]
0 50 100 150 200

Figure 34: Cardinality estimation performance for GGIW-LMB, GGIW-LMB-ab and GGIW-
GLMB filters in extended-target test scenario 1.
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Figure 35: OSPA distance for extended-target filters in test scenario 1.

In scenario 3 we compare the PHD, CPHD and LMB filters. The estimated weights

(for the PHD and CPHD) and existence probabilities (for the LMB) for a single run are

shown in Figure 38. The PHD filter suffers from a positive bias (weight around 1.1),

and the weight drops quickly when there are missed detections. The CPHD clearly

suffers from the “spooky” effect [197], as the weight of the detected target increases

when the other target is misdetected. In comparison, the LMB filter performs better,

as the probability of existence of the detected target is unaffected when the other

target is not detected. Also, the decrease in the existence probability following the

missed detections is more conservative compared to the decrease in the weights for

the PHD and CPHD filters.
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Figure 36: Cardinality error and OSPA distance for extended-target filters in test scenario 2,
low clutter case.
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Figure 37: Cardinality error and OSPA distance for extended-target filters in test scenario 2,
high clutter case.
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Figure 38: Results for extended-target test scenario 3. The lines show the estimated weights
for two targets, which are approximately 1km away from each other. Target 1 is
misdetected at time steps 20, 40 and 41. Note that the weight of target 2 in the
GGIW-CPHD filter increases when this occurs, but this does not happen in the
GGIW-LMB filter.
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4.8 experimental results

To demonstrate the proposed method on a real world scenario, the GGIW-LMB fil-

ter is applied to pedestrian tracking with laser range-finders3. In contrast to targets

with distinct shapes, such as vehicles or buildings, pedestrians do not exhibit specific

structure in laser scans, appearing instead as a random cluster of points. Hence, the

GGIW measurement model is well suited to this application, since it assumes that

the measurements are distributed normally around the target centroid. For this ex-

periment, two pedestrians were recorded while walking on a parking lot using three

Ibeo Lux laser sensors, which are mounted in the front bumper of the vehicle. Before

being passed to the tracking filter, the laser returns from each sensor were thinned by

removing measurements that lie outside the region of interest, thus excluding mea-

surements from parked vehicles. The sensor was stationary during the experiment,

and both pedestrians were wandering around the surveillance region, and are in

close proximity to each other mid-way through the scenario. Figure 39 shows camera

footage from this instant.

Figure 39: Photograph of pedestrian tracking scenario. The two pedestrians are close together
at around t = 6.5 seconds.

3 Thanks to Dr Stephan Reuter and Alexander Scheel from Ulm University, Germany, for providing the
experimental data used in this section.
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A constant velocity dynamic model is used to track the pedestrians, i.e., the param-

eters of (328) are d = 2 and

Fk+1|k =

 1 T

0 1

 , Qk+1|k = σ2

 T4

4
T3

2

T3

2 T2

⊗ xE ,k+1, (331)

where the sampling period is T = 0.08 s and the standard deviation of the process

noise is σ = 4 m/s2. Due to the decreased dimension of the motion model, the mea-

surement matrix in (288) is H =

[
1 0

]
, and since the birth locations are unknown,

the LMB filter with adaptive birth model is used in this scenario. Other filter param-

eters are similar to those used in Section 4.7.

The results from the GGIW-LMB-ab filter are depicted in Figure 40. The dashed

lines show approximate ground truth trajectories, which were obtained by manually

labelling the pedestrians in the raw laser scans, and the solid lines show the estimated

trajectories. In addition, two-sigma ellipses representing the target extents as well as

the corresponding measurements are also shown for selected time instants.

The filter is able to track both pedestrians continuously, even when they are very

close together. Especially in this situation, the multi-target representation as (G)LMB

facilitates finding consistent association hypotheses and maintaining tracks over time.

Note that the strongly fluctuating measurements on different moving parts of the hu-

man body, such as legs, arms and torso, make precise estimation of the target centroid

positions difficult, in both the manual labelling process, and for the tracker itself. This

explains most of the deviation between labelled ground truth and estimated trajecto-

ries. The estimates of the pedestrian extent vary over time, as demonstrated by the

changing ellipses in Figure 40. This is again due to fluctuating measurements, which

can be attributed mostly to leg movement. When the targets are close to the sensors,

and the laser range-finders provide detailed scans of the legs, a periodic adaption of

the target extent following the motion of the legs with each stride could be observed.
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4.9 pseudo-code for extended target glmb/lmb filters

This section provides pseudo-code for the GGIW-GLMB and GGIW-LMB filters. The

single-target prediction and update functions used in these algorithms are defined in

Table 9.

Table 9: Single-target prediction and update functions used in the GGIW-(G)LMB pseudo-
code.

Function Description

TargetPredict (p, δt) For a given GGIW density p at the current
time, compute predicted GGIW density at δt
seconds into the future, using equations (280),
(281), (283), (284), (286) and (287)

TargetUpdate(p, W) For a given prior GGIW density p, compute
the posterior GGIW density conditioned on
measurement set W, using equations
(298)-(307).

4.9.1 GGIW-GLMB Filter

The complete recursion for the GGIW-GLMB filter is given in Algorithm 22, and

the measurement update procedure is given in Algorithm 25. The method used for

partitioning is summarised in Algorithms 23 and 24. In the partitioning functions,

the notation min (D > 0) denotes finding the smallest non-zero value in the matrix

D, the function NthBestComponent (Φ, n) returns the GLMB component in Φ with

the n-th highest weight, and the function ExpectationMaximisation (Z, P) returns

a clustering of the measurements in the set Z, computed using the EM algorithm,

initialised on the extended-target estimates in component P.
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Algorithm 22: GGIW-GLMB filter recursion.
Input: Measurements (Z1:N), measurement times (t1:N)
Output: Track estimates (τx), track labels (τ`)

1 Function [τx, τ`] = GGIW_GLMB_Filter (Z1:N , t1:N) is
2 `next = 1;
3 τx = ∅;
4 τ` = ∅;
5 PA,1 = Zeros (1, |Z1|);
6 for k = 2 : N do
7 [ΩB,k, `next] = BirthGLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next);
8 if k = 2 then
9 Ω+ = ΩB,k;

10 else
11 ΩS,k = PredictSurvivalGLMB (Ωk−1, tk − tk−1);
12 Ω+ = MultiplyGLMB (ΩS,k, ΩB,k);

13 P = FeasiblePartitions (Zk, Ω+);
14 [Ωk, PA,k] = UpdateGGIW_GLMB (Ω+, Zk,P);
15 [τx, τ`] = ExtractEstimatesGLMB (Ωk, τx, τ`);
16 Ωk = PruneGLMB (Ωk);

Algorithm 23: Measurement set partitioning for the GGIW-(G)LMB filter.
Input: Measurement set (Z), predicted GLMB (Φ)
Parameters : Number of EM partitions (Nem)
Output: List of partitions (P)

1 Function P = FeasiblePartitions (Z, Φ) is
2 P = DistancePartition (Z);
3 for n = 1 : |Nem| do
4 P = NthBestComponent (Φ, n);
5 U = ExpectationMaximisation (Z, P);
6 P = [P ;U ];
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Algorithm 24: Distance partitioning algorithm.
Input: Measurement set (Z)
Parameters : Minimum distance (Dmin), maximum distance (Dmax)
Output: List of partitions (P)

1 Function P = DistancePartition (Z) is
2 n = |Z|;
3 for i = 1 : n do
4 for j = 1 : n do
5 D (i, j) = ‖Zi − Zj‖;
6 if min (D > 0) > Dmax then
7 P (1) = {Z};
8 else if max (D) < Dmin then
9 P (1) = {{Z1} , . . . , {Zn}};

10 else
11 k = 1;
12 P (k) = ∅;
13 d = min (D > 0);
14 while d < Dmax do
15 I = {1, . . . , n};
16 i ∼ Uniform (I);
17 Y = {i};
18 W = {i};
19 I = I −W;
20 while |I| > 0 do
21 J = {j ∈ I|min [{D (j, k) ∀k ∈W}] < d};
22 if |J| > 0 then
23 Y = Y ∪ J;
24 W = J;
25 I = I − J;
26 if |I| = 0 then
27 P (k) = P (k) ∪ {ZY};
28 for i ∈ Y do
29 for j ∈ Y do
30 D (i, j) = 0;

31 else
32 P (k) = P (k) ∪ {ZY};
33 i ∼ Uniform (I);
34 Y = {i};
35 W = {i};
36 I = I −W;
37 if |I| = 0 then
38 P (k) = P (k) ∪ {ZY};

39 k = k + 1;
40 P (k) = ∅;
41 d = min (D > 0);
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Algorithm 25: GGIW-GLMB measurement update.
Input: Predicted GLMB (Φ), measurements (Z), measurement partitions (P)
Parameters : Maximum number of updated components (N), detection

probability (PD), clutter intensity (λ), surveillance volume (V)
Output: Posterior GLMB (Ω), prob that each measurement is from a target (PA)

1 Function [Ω, PA] = UpdateGGIW_GLMB (Φ, Z,P) is
2 for i = 1 : |Z| do
3 θi = ∅;

4 Ncdn = Allocate
(

N, Poisson
(

1 : Φ.M; Mean
(

Φ.ρ(:)
)))

;

5 for n = 1 : Φ.M do
6 k = 1;

7 Ncmp = Allocate
(

Ncdn (n) , Φ.w(n,:)
)

;

8 for i = 1 : Φ.Nn do
9 Nprt = Allocate

(
Ncmp (i) , Uniform(1 : |P|)

)
;

10 for j = 1 : |P| do
11 U = P (j);

12 C = CostMatrixAssign
(
U (Z) , Φ.p(n,i,:), PD

)
;

13 A = Murty
(
C, Nprt (j)

)
;

14 for (a, c) ∈ A do
15 Ω.w(n,k) = Φ.ρ(n) ×Φ.w(n,i) × e−c;
16 for l = 1 : n do
17 if a(l) > 0 then
18 Ω.p(n,k,l) = TargetUpdate

(
Φ.p(n,i,l),Ua(l)(Z)

)
;

19 θa(`) =
[
θa(`); (n, j)

]
;

20 else
21 Ω.p(n,k,l) = Φ.p(n,i,l);

22 Ω.`(n,k,l) = Φ.`(n,i,l);
23 k = k + 1;

24 Ω = NormaliseGLMB (Ω);
25 for i = 1 : |Z| do
26 PA (i) = Sum (Ω.w (θi));
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4.9.2 GGIW-LMB Filter

The GGIW-LMB filter recursion and measurement update routine are specified in

Algorithms 26 and 27.

Algorithm 26: GGIW-LMB filter recursion.
Input: Measurements (Z1:N), measurement times (t1:N)
Output: Track estimates (τx), track labels (τ`)

1 Function [τx, τ`] = GGIW_LMB_Filter (Z1:N , t1:N) is
2 `next = 1;
3 τx = ∅;
4 τ` = ∅;
5 PA,1 = Zeros (1, |Z1|);
6 for k = 2 : N do
7

[
Ω̃B,k, `next

]
= BirthLMB (Zk−1, PA,k−1, tk−1, Zk, tk, `next);

8 if k = 2 then
9 Ω̃+ = Ω̃B,k;

10 else
11 Ω̃S,k = PredictSurvivalLMB

(
Ω̃k−1, tk − tk−1

)
;

12 Ω̃+ = JoinLMB
(
Ω̃S,k, Ω̃B,k

)
;

13 P = FeasiblePartitions (Z, Ω+);
14

[
Ω̃k, PA,k

]
= UpdateGGIW_LMB

(
Ω̃+, Zk,P

)
;

15 [τx, τ`] = ExtractEstimatesLMB
(
Ω̃k, τx, τ`

)
;

Algorithm 27: GGIW-LMB measurement update.

Input: Predicted LMB density (Φ̃), measurements (Z), feasible measurement
partitions (P)

Output: Posterior LMB density (Ω̃), probability that each measurement is from a
target (PA)

1 Function
[
Ω̃, PA

]
= UpdateGGIW_LMB

(
Φ̃, Z,P

)
is

2 C = ClusterTracks
(
Φ̃, Z

)
;

3 Ω̃ = ∅;
4 PA = Zeros (1, |Z|);
5 for W ∈ C do
6 ΦW = LMBtoGLMB

(
Φ̃, W

)
;

7 [ΩW , PA,W ] = UpdateGGIW_GLMB (ΦW , Z,P);
8 Ω̃W = ApproximateLMB (ΩW);
9 Ω̃ = JoinLMB

(
Ω̃, Ω̃W

)
;

10 PA = PA + PA,W ;



5 S E N S O R C O N T R O L F O R M U LT I - TA R G E T

T R A C K I N G

As demonstrated in previous chapters, the generalised labeled multi-Bernoulli

(GLMB) is a family of tractable models that affords great deal of flexibility for

tackling multi-target tracking problems. In this chapter, we derive closed form ex-

pressions for the void probability functional and the Cauchy-Schwarz divergence for

GLMB models, with a view to applying them to the complementary problem of multi-

target sensor control. The proposed analytic void probability functional is a necessary

and sufficient statistic that uniquely characterises a GLMB, while the proposed ana-

lytic Cauchy-Schwarz divergence provides a tractable measure of similarity between

GLMBs. We demonstrate the use of both results on a sensor control problem, formu-

lated as a constrained partially observed Markov decision process (POMDP). Within

the constrained POMDP, the reward is based on the Cauchy-Schwarz divergence, and

the constraint is based on the void probability. This work has been presented in the

author’s journal submission [22], which is currently under review, and partially in

the author’s conference paper [23].

This chapter is organized as follows. After a brief introduction in Section 5.1, Sec-

tion 5.2 provides some necessary background on random finite sets, void probabilities

and the Cauchy-Schwarz divergence. In Section 5.3 we describe the GLMB point pro-

cess model and its properties, including analytic expressions for the void probability

and Cauchy-Schwarz divergence. In Section 5.4 we present an application of the new

results, by developing a solution to a sensor control problem for multi-target tracking.

163
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5.1 introduction

Point patterns are ubiquitous in nature, for example the states of objects in multi-

object systems such as the coordinates of molecules in a liquid/crystal, trees in a

forest, stars in a galaxy and so on [43, 181, 141]. Point processes (specifically simple

finite point processes, or random finite sets) are probabilistic models for point pat-

terns, derived from stochastic geometry - the study of random geometrical objects

ranging from collections of points to arbitrary closed sets [181, 140]. Point process

theory provides the tools for characterising the underlying laws of the point patterns

and entails a diverse range of application areas, such as forestry [180], geology [155],

biology [137, 91], physics [176], computer vision [8, 82], wireless networks [7, 72, 73],

communications [28, 4], multi-target tracking [126, 136], and robotics [145, 116, 46].

In addition to the probability distribution, the void-probability functional (or simply

void probabilities) is another fundamental descriptor of a point process [43, 181, 141].

The void probability on a given region is the probability that it contains no points of

the point process. Rényi’s celebrated theorem states that the probability law of a sim-

ple point process is uniquely determined by the void probabilities on the bounded

Borel sets [43, 181, 141]. Analytic expressions for the void probabilities are avail-

able for point processes such as Poisson and independent and identically distributed

(i.i.d.) cluster. In general, the void probabilities constitute an intuitive and powerful

descriptor that also characterises the more general random closed sets via Choquet’s

capacity theorem [138, 140].

Apart from characterising point processes, measuring their similarities/differences

is essential in the study of point patterns. Information-based divergences are funda-

mental in the statistical analysis of random variables [42], and divergences such as

Kullback-Leibler, Rényi, Csiszár-Morimoto (or Ali-Silvey), and Cauchy-Schwarz have

been developed for point processes [136, 134, 128, 169, 77, 170]. However, in general

these divergences cannot be computed analytically. Arguably the most tractable of

these is the Cauchy-Schwarz divergence, which admits a closed form expression for

Poisson point processes. Indeed, the Cauchy-Schwarz divergence between two Pois-

son point processes is given by half the squared L2-distance between their intensity

functions [77]. Moreover, this result has also been extended to mixtures of Poisson

point processes [77].
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While the Poisson model enjoys many elegant analytical properties, it is too sim-

plistic for problems such as multi-target tracking, and a more suitable model is the

generalised labeled multi-Bernoulli (GLMB) [198]. For the standard multi-object sys-

tem model, the family of GLMB densities is a conjugate prior that is also closed under

the Chapman-Kolmogorov equation [198]. Thus, in tracking applications, the poste-

rior density of the point process at each time epoch is a GLMB, which can be tractably

computed using the algorithm developed in [195]. Recent applications to problems

in multi-object systems such as multiple target tracking, sensor management, and

simultaneous localization and mapping [46, 164, 21, 65, 157], suggest that the GLMB

is a versatile model that offers good trade-offs between tractability and fidelity.

In this chapter, we derive a closed-form void-probability functional and Cauchy-

Schwarz divergence for GLMBs. Given the theoretical significance of these results,

their derivations are remarkably simple. Moreover, these results provide additional

tools to tackle more complex problems in multi-object systems. To demonstrate the

use of both results, we develop a principled solution to an observer trajectory op-

timisation problem for multi-target tracking, where the goal is to obtain the most

accurate estimates for an unknown and time-varying number of targets, whilst main-

taining a safe distance from all of the targets. Using GLMBs to model the collection

of targets, we formulate the problem as a constrained partially observed Markov

decision process, with a Cauchy-Schwarz divergence based reward function and a

void-probability based constraint, both of which can be evaluated analytically.

5.2 background

A random finite set (RFS) X, defined on the space X, is a random variable taking values

in F (X), i.e. a finite set-valued random variable. Both the number of elements in an

RFS and their values are random. There are several constructs for specifying the

probability law of an RFS. The most convenient of these for the exposition of the two

main results of this chapter is the belief (or containment) functional B, given by

B (S) = Pr (X ⊆ S) (332)

for any (closed) S ⊆ X [181, 140, 136, 138]. In fact, the belief functional uniquely deter-

mines the probability law of a random closed set (and hence an RFS) via Choquet’s

capacity theorem.
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5.2.1 Void Probability Functional

The void probability of an RFS X on a (compact) subset S ⊆ X is the probability that

S contains no points of X, i.e. Pr (X ∩ S = ∅), or equivalently the probability that X

is contained in the complement of S, i.e. Pr (X ⊆ X− S) [181, 140]. Thus, in terms of

the belief functional the void probability (or avoidance) functional Q is given by

Q (S) = B (X− S) . (333)

As a consequence of Choquet’s capacity theorem [140, 138], the probability law of

an RFS is uniquely defined by the void probability functional. Rényi also established,

using a different line of argument, that the law of a simple point process is uniquely

determined by the void probabilities on the bounded Borel sets of X [43, 181, 141].

The void probability functional is a more intuitive descriptor of an RFS than its

probability distribution. Void probabilities on different regions provide a sense of

how the number and locations of the points in an RFS are distributed across the

state space. The concept of void probability is also directly applicable to the more

general class of random closed sets. Indeed, Choquet’s capacity theorem implies that

the void probabilities uniquely determine the probability law of a random closed set

[181, 140, 138]. Note that the void probability on a given region for the union of two

independent RFSs is simply the product of their individual void probabilities.

5.2.2 Cauchy-Schwarz Divergence

Geometrically, the Cauchy-Schwarz divergence determines the information “differ-

ence” between random variables, from the angle subtended by their probability den-

sities [88, 89]. Algebraically, it is based on the Cauchy-Schwarz inequality for the

inner product between the probability densities of the random variables.

In [77], the Cauchy-Schwarz divergence was extended to random finite sets via

the inner product of their probability densities relative to the reference measure µ,

as defined by equation (48). Using the relationship between probability density and
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belief density, which was discussed in Section 2.2.1, the Cauchy-Schwarz divergence

between two RFSs, with respective belief densities φ and ϕ, is given by

DCS (φ, ϕ) = − ln

∫
K|X|φ (X) ϕ (X) δX√∫

K|X|φ2 (X) δX
∫

K|X|ϕ2 (X) δX
. (334)

Note that DCS (φ, ϕ) is invariant to the unit of hyper-volume K (using the same line

of argument as in [77, Section III-A]).

5.2.3 Poisson Point Process

The intensity function of an RFS X, is a non-negative function v (on X) whose integral

over any (Borel) S ⊆ X gives the expected number of elements of the RFS that are in

S [43, 181, 141], i.e.

E [|X ∩ S|] = 〈1S, v〉 . (335)

Since 〈1S, v〉 is the expected number of points of X in the region S, the intensity value

v (x) can be interpreted as the instantaneous expected number of points per unit

hyper-volume at x. Thus, in general, v (x) is not dimensionless, but has units of K−1.

The intensity function is the first moment of an RFS, and can be computed from the

belief density π by [126, 136]

v (x) =
∫

π ({x} ∪ X) δX. (336)

A Poisson point process is completely characterized by its intensity function v. The

cardinality of a Poisson point process is Poisson distributed with mean 〈1, v〉, and con-

ditional on the cardinality, its elements are independently and identically distributed

(i.i.d.) according to the probability density v (·) / 〈1, v〉 [43, 181, 141]. It is implicit that

〈1, v〉 is finite, since we only consider simple-finite point processes.

The void probability functional and belief density of a Poisson point process with

intensity function v are given, respectively, by [181, 141, 126, 136]

Q (S) = e−〈1S,v〉, (337)

π (X) = e−〈1,v〉vX. (338)
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Moreover, the Cauchy-Schwarz divergence between two Poisson point processes is

given by half the squared L2-distance between their intensity functions [77]. As a

consequence, the Bhattacharyya distance between the probability distributions of two

Poisson point processes is the squared Hellinger distance between their respective

intensity measures. For Gaussian mixture intensity functions, the Cauchy-Schwarz

divergence can be evaluated analytically. These results were also extended to mixtures

of Poisson point processes [77].

5.3 generalised labelled multi-bernoulli

The Poisson point process is endowed with many elegant mathematical properties

[43, 181, 103], including analytic void probabilities and Cauchy-Schwarz divergence,

but it is rather simplistic for many practical problems. Tracking multiple targets based

on observed data is a fundamental problem that arises in multi-object systems, with

applications spanning several disciplines. For most data models, the posterior dis-

tributions of the underlying point processes are not Poisson [126, 136]. Although

Poisson approximations, such as probability hypothesis density (PHD) filters, are

numerically attractive [126], the Poisson model can neither capture the dependence

between the points, nor permit the inference of the trajectories of the points over time.

The generalised labelled multi-Bernoulli (GLMB) is a class of tractable models that

can be used in multi-target tracking, which alleviates the limitations of the Poisson

model [198, 195]. Although sophisticated models in the spatial point process literature

such as Cox, Neyman-Scott, Gauss-Poisson, Markov (or Gibbs) [43, 181, 141], are able

to accommodate interactions such as repulsion, attraction or clustering, they cannot

capture exactly the general inter-point dependencies in the posterior distribution that

transpires through the data. In other words, they are not conjugate with respect to

the standard multi-object measurement likelihood function. Moreover, these models

are neither amenable to on-line computation, nor to the inference of trajectories.

In this section, we revisit the GLMB model [198] and some of its analytical prop-

erties. In addition, we present closed form expressions for the void probability func-

tional and the Cauchy-Schwarz divergence for the GLMB.
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5.3.1 GLMBs and their Properties

A GLMB is a labeled RFS with belief density on F (X×L) of the form

π (X) = ∆ (X) ∑
c∈C

w(c) (L (X))
[

p(c)
]X

, (339)

where ∆ (X) , δ|X| (|L (X)|) is the distinct label indicator, C is a discrete and finite index

set, each p(c) (·, `) is a probability density on X, and each w(c) (L) is non-negative with

∑
L⊆L

∑
c∈C

w(c) (L) = 1. (340)

By convention, the functions p(c) (x, `) are measured in units of K−1, and conse-

quently, π (X) has units of K−|X|. The belief density (339) is a mixture of multi-object

exponentials, with each component consisting of a weight w(c) (L (X)) that depends

only on the labels of X, and a multi-object exponential
[

p(c)
]X

. Such a structure pro-

vides the flexibility for the GLMB to capture the dependence between points that

transpires via the data, and also admits a number of convenient analytical properties,

which are summarised as follows.

• For the standard multi-object system model that accounts for thinning, Markov

shifts and superposition, the GLMB family is a conjugate prior, and is also

closed under the Chapman-Kolmogorov equation [198].

• The GLMB density can be approximated to any L1-norm error by truncating

components [195]. More precisely, let us explicitly denote the dependence on

the index set C of a (possibly unnormalised) GLMB density by

fC(X) = ∆ (X) ∑
c∈C

w(c) (L (X))
[

p(c)
]X

, (341)

and let ‖f‖1 ,
∫
|f (X)| δX denote the L1-norm of f : F (X×L) → R. If D ⊆ C

then

||fC − fD||1= ∑
c∈C−D

∑
L⊆L

w(c) (L) . (342)
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• The cardinality distribution and intensity function of a GLMB are respectively

given by

Pr (|X|=n) = ∑
c∈C

∑
L⊆L

δn [|L|]w(c) (L) , (343)

v (x, `) = ∑
c∈C

p(c) (x, `) ∑
L⊆L

1L (`)w(c) (L) . (344)

• The GLMB is flexible enough to approximate any labelled RFS density, by

matching the intensity function and cardinality distribution. Furthermore, there

is a simple closed form that minimises the Kullback-Leibler divergence between

the labelled RFS density and its GLMB approximation [157].

As shown above, the GLMB family possesses some useful analytical properties. There

is also an elegant characterisation of the GLMB using the probability generating func-

tional (p.g.fl.) by Mahler [136]. In the following subsection, we derive two additional

properties of the GLMB, which have some potentially useful applications.

5.3.2 Void Probability Functional

Proposition 15. For a GLMB with belief density π of the form (339), the void probability

functional is given by

Qπ (S) = ∑
L⊆L

∑
c∈C

w(c) (L)∏
`∈L

〈
1− 1S (·) , p(c) (·, `)

〉
. (345)

Proof. Using (333) and (46), the void probability functional can be expressed as

Qπ (S) =
∫

X−S
π (X) δX (346)

=
∫

X−S
∆ (X) ∑

c∈C

w(c) (L (X))
[

p(c) (·)
]X

δX. (347)

Applying Lemma 3 from [198], yields the result

Qπ (S) = ∑
L⊆L

∑
c∈C

w(c) (L)
[∫

X−S
p(c) (x, ·) dx

]L

(348)

= ∑
L⊆L

∑
c∈C

w(c) (L)∏
`∈L

〈
1− 1S (·) , p(c) (·, `)

〉
. (349)
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In simple cases, the inner product
〈

1− 1S, p(c) (·, `)
〉

may be computable in closed

form, in which case the void probability has an exact analytical solution. However, in

more general cases, a closed form may not exist, and it must therefore be computed

using numerical methods such as cubature or Monte Carlo integration. This yields

an approximation to the true void probability for the GLMB.

In general, the computational complexity is O (N + M), where N is the number

of pairs (c, L) ∈ C× F (L) such that w(c) (L) 6= 0, and M is the number of unique

single-object densities p(c) (·, `). In many applications, the GLMB may contain a large

number of single-object densities which are common across many elements of the

sum, in which case the inner product only needs to be computed once for each

unique single-object density. The general method to calculate the void probability

for a GLMB over a region S is given in Algorithm 28.

Algorithm 28: GLMB void probability calculation.
Input: GLMB density (Φ), region (S)
Output: Void probability (Pvoid)

1 Function Pvoid = VoidProbabilityGLMB (Φ, S) is
2 Pvoid = 0;
3 for n = 1 : Φ.M do
4 for i = 1 : Φ.Nn do
5 c = Φ.ρ(n) ×Φ.w(n,i);
6 for j = 1 : n do
7 c = c×

[
1− Integrate

(
Φ.p(n,i,j), S

)]
;

8 Pvoid = Pvoid + c;

The analytic expression for the GLMB void probability functional is of theoretical

interest in itself, since it provides an alternative means of completely specifying a

GLMB point process. However, it also holds significant practical interest, since it can

be used to compute statistics that can conceivably be applied in a wide range of

real-world problems.

In multi-object estimation and control, the GLMB void probability functional could

supply useful information that can be applied in tasks such as trajectory planning

(e.g. for collision avoidance), sensor management (e.g. focussing sensor resources

on regions where targets are likely to be present), or the provision of situational

awareness (e.g. advance warning of possible collisions between objects). The GLMB

is a flexible model which has been used to develop algorithms for target tracking

[198, 195, 163] and simultaneous localization and mapping [46]. Indeed, the GLMB
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has been applied in autonomous vehicle systems [163], where trajectory planning

and situational awareness for collision avoidance are paramount. It has also been

applied to the tracking of orbital space debris [93, 94], for which the scheduling and

management of observation equipment is a significant issue, as well as the planning

of satellite trajectories to minimize the probability of collision with tracked debris.

5.3.3 Cauchy-Schwarz Divergence

Using the definition in equation (334), we show that the Cauchy-Schwarz divergence

between two GLMBs can be expressed in closed form.

Proposition 16. For two GLMBs with belief densities

φ (X) = ∆ (X) ∑
c∈C

w(c)
φ (L (X))

[
p(c)φ (·)

]X
, (350)

ψ (X) = ∆ (X) ∑
d∈D

w(d)
ψ (L (X))

[
p(d)ψ (·)

]X
, (351)

where both p(c)φ and p(d)ψ are measured in units of K−1, the Cauchy-Schwarz divergence be-

tween φ and ψ is given by

DCS (φ, ψ) = − ln

(
〈φ, ψ〉K√

〈φ, φ〉K 〈ψ, ψ〉K

)
, (352)

where

〈φ, ψ〉K = ∑
L⊆L

∑
c∈C

∑
d∈D

w(c)
φ (L)w(d)

ψ (L)∏
`∈L

K
〈

p(c)φ (·, `) , p(d)ψ (·, `)
〉

〈φ, φ〉K = ∑
L⊆L

∑
c∈C

∑
d∈C

w(c)
φ (L)w(d)

φ (L)∏
`∈L

K
〈

p(c)φ (·, `) , p(d)φ (·, `)
〉

〈ψ, ψ〉K = ∑
L⊆L

∑
c∈D

∑
d∈D

w(c)
ψ (L)w(d)

ψ (L)∏
`∈L

K
〈

p(c)ψ (·, `) , p(d)ψ (·, `)
〉

(353)

Proof. If φ (X) and ψ (X) are two GLMBs defined by (350) and (351), the inner prod-

uct is given by

〈φ, ψ〉K =
∫

K|X|φ (X)ψ (X) δX

=
∫

K|X|∆ (X) ∑
c∈C

w(c)
φ (L (X))

[
p(c)φ (·)

]X
∑

d∈D

w(d)
ψ (L (X))

[
p(d)ψ (·)

]X
δX

=
∫

∆ (X) ∑
c∈C

∑
d∈D

w(c)
φ (L (X))w(d)

ψ (L (X))
[
Kp(c)φ (·) p(d)ψ (·)

]X
δX. (354)
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Making use of [198, Lemma 3], this becomes

〈φ, ψ〉K = ∑
L⊆L

∑
c∈C

∑
d∈D

w(c)
φ (L)w(d)

ψ (L)
[

K
∫

p(c)φ (x, ·) p(d)ψ (x, ·) dx
]L

= ∑
L⊆L

∑
c∈C

∑
d∈D

w(c)
φ (L)w(d)

ψ (L)∏
`∈L

K
〈

p(c)φ (·, `) , p(d)ψ (·, `)
〉

(355)

and similarly for 〈φ, φ〉K and 〈ψ, ψ〉K. Substituting these into (334), yields the result

(352)-(353).

In cases where the inner product between two single-object densities p(c)φ and p(d)ψ

of the GLMBs has an analytical solution, then the Cauchy-Schwarz divergence be-

tween the two GLMBs can also be evaluated analytically. However, where this is not

possible, numerical approximations can be used to evaluate the inner products. The

common case in which the single-object densities are Gaussian mixtures, does admit

an analytical solution, as established in the following proposition.

Proposition 17. Let φ and ψ be two GLMBs of the form (350) and (351) in which the

single-object densities are Gaussian mixtures, i.e.

p(c)φ (x, `) =
N(c)

φ

∑
i=1

ω
(c)
φ,i (`)N

(
x; m(c)

φ,i (`) , P(c)
φ,i (`)

)
, (356)

p(d)ψ (x, `) =
N(d)

ψ

∑
i=1

ω
(d)
ψ,i (`)N

(
x; m(d)

ψ,i (`) , P(d)
ψ,i (`)

)
, (357)

where both p(c)φ and p(d)ψ are measured in units of K−1. The Cauchy-Schwarz divergence

between φ and ψ can be expressed in analytical form, since 〈φ, ψ〉K in (353) reduces to

〈φ, ψ〉K = ∑
L⊆L

∑
c∈C

∑
d∈D

w(c)
φ (L)w(d)

ψ (L)
[
γφ,ψ

]L (358)

where

γφ,ψ (`) =

N(c)
φ

∑
i=1

N(d)
ψ

∑
j=1

ω
(c)
φ,i (`)ω

(d)
ψ,j (`)N

(
m(c)

φ,i (`) ; m(d)
ψ,j (`) , P(c)

φ,i (`) + P(d)
ψ,j (`)

)
, (359)

and similarly for 〈φ, φ〉K and 〈ψ, ψ〉K.
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Proof. Substituting (356) and (357) into the inner product in (353), gives

〈
p(c)φ (·, `) , p(d)ψ (·, `)

〉
=

N(c)
φ

∑
i=1

N(d)
ψ

∑
j=1

ω
(c)
φ,i (`)ω

(d)
ψ,j (`) (360)

×
∫
N
(

x; m(c)
φ,i (`) , P(c)

φ,i (`)
)
N
(

x; m(d)
ψ,j (`) , P(d)

ψ,j (`)
)

dx,

which is measured in units of K−1. Applying the identity for a product of two Gaus-

sians [161, pp. 200], and multiplying by K, we are left with the unitless quantity

K
〈

p(c)φ (·, `) , p(d)ψ (·, `)
〉
= γφ,ψ (`) , (361)

where γφ,ψ (`) is given by (359). Substituting (361) into (353), yields the result (358).

Due to the nested summations in (353) or (358), a naive implementation will have

a computational complexity of O
(

MN + M2 + N2), where M and N are the number

of components1 of φ and ψ with non-zero weights. This leads to the summations

being taken only over pairs of components with matching label sets. It is therefore

possible to reduce computation using associative data structures to facilitate finding

these matching pairs. Although this does not reduce the worst case complexity, the

average will be significantly better.

Note that if w(c)
φ (L) = 0 or w(d)

ψ (L) = 0 for all triples (L, c, d) ∈ F (L)× C×D,

then 〈φ, ψ〉K will evaluate to zero, (i.e. φ and ψ are orthogonal) leading to a Cauchy-

Schwarz divergence of infinity. This is an intuitive result as two such GLMBs have no

non-zero components with matching labels. The general method for computing the

Cauchy-Schwarz divergence between two GLMBs is given by Algorithm 29.

1 A GLMB φ is completely parameterised by the set
{(

w(c)
φ (L) , p(c)φ

)
: (c, L) ∈ C×F (L)

}
and we refer

to each element
(

w(c)
φ (L) , p(c)φ

)
of this set as a component of a GLMB.
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Algorithm 29: GLMB Cauchy-Schwarz divergence calculation.
Input: GLMB density (Φ), GLMB density (Ψ)
Output: Inner product (ψ)

1 Function ψ = InnerProductGLMB (Φ, Ψ) is
2 ψ = 0;
3 for n = 1 : min (Φ.M, Ψ.M) do
4 for i = 1 : Φ.Nn do
5 for j = 1 : Ψ.Nn do
6 if Φ.`(n,i,:) = Ω.`(n,j,:) then
7 γ = Φ.ρ(n) ×Ψ.ρ(n) ×Φ.w(n,i) ×Ψ.w(n,j);
8 for k = 1 : n do
9 γ = γ× Integrate

(
Φ.p(n,i,k) ×Ψ.p(n,j,k)

)
;

10 ψ = ψ + γ;

Input: GLMB density (Φ), GLMB density (Ψ)
Output: Cauchy-Schwarz divergence (D)

11 Function D = CauchySchwarzGLMB (Φ, Ψ) is
12 ψΦ,Φ = InnerProductGLMB (Φ, Φ);
13 ψΩ,Ω = InnerProductGLMB (Ψ, Ψ);
14 ψΦ,Ω = InnerProductGLMB (Φ, Ψ);

15 D = − ln
(

ψΦ,Ψ × ψ−1/2
Φ,Φ × ψ−1/2

Ψ,Ψ

)
;
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5.4 application to sensor management

In this section, we apply the proposed closed-form solutions for the Cauchy-Schwarz

divergence and void probabilities to a multi-target sensor management problem. In

most target tracking scenarios, the sensor may perform various actions that can have a

significant impact on the quality of the observed data, and can therefore influence the

estimation performance of the tracking system. Typically, such actions might include

changes in the position, orientation or motion of sensor platforms [175, 187, 156,

70], changes to sensor deployment and utilisation [188, 74], or altering the sensor

operating parameters such as the beam pattern [112, 111], or transmit waveform [101,

154]. The control actions affect the information content of the received data, which in

turn affects the system’s ability to detect, track, and identify the targets.

Often, the control decisions are driven by manual intervention, which provides no

guarantee of optimality. The goal of automatic sensor management is to determine

the best control actions, based on some optimality criteria. This has the potential

to improve tracking performance, by making control decisions in a systematic and

optimal manner that accounts for the prevailing conditions.

5.4.1 Problem Description

In this application, the aim is to perform sensor control in the context of a multi-target

tracking system that is based upon the standard models of multi-object dynamics

and multi-object observations as defined in Sections 2.5.2 and 2.5.3. Although we

concentrate on the standard model in this work, the same principles can be applied

to other sensor models, such as those described in Chapters 3 and 4.

The quality of the observations (i.e. the detection probability and measurement

noise) is dependent on the state of the objects and the sensor itself, for example,

objects that are further away from the sensor generally have lower probability of

detection and higher measurement noise. For this reason, the control of the sensor

can have a significant influence on the tracking performance.

Here we address the problem of controlling the motion of a single sensor platform,

with the aim of optimising the tracking performance under the aforementioned dy-

namic and observation models. Since the control actions affect the observation qual-

ity, the goal is to design a scheme which can automatically select control actions that
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yield the most “informative” observations. This is a difficult problem due to the un-

known and time-varying number of targets, and the uncertainty in the multi-object

state due to the measurement noise, object detection/misdetection, and unknown

measurement origin.

5.4.2 Control Strategy

We now proceed to formulate the control problem as a partially observable Markov

decision processes (POMDP) [26, 142, 122, 35]. In general terms, the elements of a

POMDP are as follows.

1. The system dynamics is a Markov process.

2. The observations follow a known distribution, conditioned on the state and the

sensor control action.

3. The true state of the system is unknown, but we have access to the posterior

probability density function (pdf) of the state conditioned on past observations.

4. The benefit of performing a given action can be expressed by a reward function,

which characterises the objectives of the control system.

In this case, the dynamics is modelled by the transition density (169) and the observa-

tions are modelled by the likelihood function (173). The posterior pdf of the system

state is modelled as a GLMB of the form (339), since it enables tractable estimation

of object trajectories to inform the control strategy. In general, there are two broad

categories of reward function that can be used in a POMDP, namely, “task-based”

and “information-based” reward. Task-based reward functions (see for example [65])

are useful in situations where the control problem can be formulated in terms of a

single well-defined objective. However, in situations where this does not exist, the

information-based approach is more appropriate, as it strives to capture the informa-

tion gain in an overall sense (for example [169]). In this example, the reward function

is formulated in terms of an information divergence between prior and posterior

multi-object densities, which bears a strong relationship to the improvement in esti-

mation accuracy, since higher information divergence indicates greater information

gain, which leads to more accurate track estimates.

It is also possible to place constraints on the control problem, which is useful in

cases where it is foreseeable that certain actions might result in undesirable side-
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effects. For example, to guarantee the safety or covertness of the sensor platform, we

might want to ensure that no targets enter a predefined exclusion region around the

sensor. This can be achieved using a constrained POMDP [84, 190], in which the goal

is to find the control action that maximises the reward function, subject to one or

more constraints.

Within the POMDP framework, the most computationally tractable strategy is to

use myopic open-loop feedback control [26], with a discrete action space. The term

“myopic” means that the algorithm only decides one control action at a time, rather

than planning multiple actions into the future.

At the time that a control action is performed, we have no knowledge of the poste-

rior density that would arise from taking that action. Since this precludes calculation

of the true information divergence, its expectation with respect to all possible future

measurements is taken [169, 127]. More precisely, let us begin by defining the follow-

ing notation

• πk (·|Z1:k) is the posterior density at time k,

• Ak is a discrete space of control actions at time k,

• H is the length of the control horizon,

• πk+H (·|Z1:k) is the predicted density at time k + H given measurements up to

time k,

• Zk+1:k+H (α) is the collection of measurement sets that would be observed from

times k + 1 up to k + H, if control action α ∈ Ak was executed at time k,

• Vk (α) is the exclusion region around the sensor at time k under control action

α,

• Qπ (S) is the void probability functional corresponding to the multi-object den-

sity π over region S,

• Pvmin is the minimum void probability threshold.

The optimal control action is given by maximising the expected value of a reward

function Rk+H (·) over the space of allowable actions [169],

αopt = arg max
α∈Ak

E [Rk+H (α)] , (362)
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subject to the constraint

min
i∈{1,...,H}

[
Qπk+i(X|Z1:k) (Vi (α))

]
> Pvmin. (363)

where the expectation is taken with respect to the future measurement sets Zk+1:k+H (α).

In general, Monte Carlo integration is used to compute the expected reward in (362)

because analytic solutions are not available. For each control action α, this involves

drawing samples Z(i)
k+1:k+H (α) for i = 1, . . . , N, then computing the reward R(i)

k+H (α)

conditioned on each sample. The samples Z(i)
k+1:k+H (α) are obtained by first sampling

from πk (·|Z1:k) using Algorithm 11, then propagating each sample through the tran-

sition model up to the horizon time using Algorithm 1, and finally simulating a set

of measurements from time k + 1 to time k + H using Algorithm 2. An estimate of

the expected reward is given by the mean of the reward over all the samples,

E [Rk+H (α)] ≈ 1
N

N

∑
i=1
R(i)

k+H (α) . (364)

Since we are sampling directly from the current distribution of Zk+1:k+H, using the

true transition and measurement models, this method converges to the true expecta-

tion of the reward as the number of samples is increased.

In (364), R(i)
k+H (α) is usually computed by Monte Carlo integration, for example

[169]. Hence, the variance of the Monte Carlo estimate of the expected reward will

depend on the number of samples used to calculate each R(i)
k+H (α), as well as the

number of measurement samples N. On the other hand, a closed form expression for

R(i)
k+H (α) would lead to a smaller variance in the estimate of the expected reward, by

the principle of Rao-Blackwellisation [34].

The constraint (363) is the minimum value of the void probability up to the control

horizon, where the value at time k + i is computed based on the predicted density

at that time, given measurements up to time k. The constraint is satisfied if this

minimum value is greater than the threshold Pvmin.

5.4.3 Reward Function

For the reason discussed in Section 5.4.2, the existence of a closed form reward func-

tion is desirable in POMDPs. This would be particularly beneficial in this application,

since the difference between the expected rewards of the various control actions can



180 sensor control for multi-target tracking

be quite small, and may become obscured by the variance induced by the Monte

Carlo estimation (364). Any reduction in this variance will clearly help in correctly

identifying the optimal control action.

For the case of the GLMB, common information divergence measures such as the

Kullback-Leibler or Rényi divergences cannot be expressed in analytical form. Thus,

their use in this problem would require Monte Carlo integration, resulting in a higher

variance in the expected reward, as well as increased computational load. To allevi-

ate this, we use the Cauchy-Schwarz divergence between prior and posterior GLMB

densities as the reward function, i.e.

R(i)
k+H (α) = DCS

(
πk+H (X|Z1:k) , πk+H

(
X|Z1:k, Z(i)

k+1:k+H (α)
))

. (365)

Algorithm 32 (see Section 5.4.6) demonstrates how to approximate the expected re-

ward for each control action in a set A.

5.4.4 Constraint

To enforce the constraint, we compute the void probability over an exclusion region

around the sensor, for the predicted GLMB density at each time step up to the horizon.

We use a circular exclusion region, centered at the sensor location, with radius rV .

Evaluation of the void probability requires integrating each single-object density in

the GLMB over the exclusion region. For a 2-dimensional Gaussian pdf and a circular

region, this does not have an analytical solution. Hence, we use adaptive cubature to

approximate these integrals, before using them to compute the void probability.

The goal is to ensure that the separation between sensor and targets always exceeds

rV , i.e. the control action α is feasible if the constraint (363) is satisfied. That is, for

each action we find the minimum void probability up to the horizon, and enforce the

constraint that this minimum must exceed the threshold Pvmin, otherwise the action

cannot be selected. Algorithm 33 (see Section 5.4.6) shows how to compute the void

probability for a set of control actions.
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5.4.5 Simulation Results

In this section, the control strategy is applied to the problem of observer trajectory

optimisation for multi-target tracking. This application involves a single sensor that

provides bearing and range measurements, where the noise on the measured bearings

is constant for all targets, but the range noise is state-dependent, increasing as the true

range between the sensor and target increases. The detection probability is also range-

dependent, reducing as the range increases. Targets closer to the sensor are therefore

detected with both higher probability and accuracy, and vice versa for targets that

are further away.

For this problem, the state-dependency of the measurement noise and detection

probability will be the main effect driving the control, and one would expect the

algorithm to move the sensor towards the targets, in order to minimise noise and

maximise the detection probability. However, in the presence of multiple targets, this

can easily lead to conflicting control influences. The goal of the control algorithm

is to resolve these conflicts, by attempting to provide a decision that optimises the

multi-target estimation performance in an overall sense.

The target kinematics are modelled using 2D Cartesian position and velocity vec-

tors x̃k =

[
x(t)k ẋ(t)k y(t)k ẏ(t)k

]T

, and they are assumed to move according to the

following discrete white noise acceleration model,

x̃k = Fx̃k−1 + Γvk−1, (366)

F =

 1 T

0 1

⊗ I2, Γ =

 T2/2

T

⊗ I2

where T is the sampling period, vk−1 ∼ N (0, Q) is a 2× 1 independent and iden-

tically distributed Gaussian process noise vector with Q = σ2
v I2, where σv is the

standard deviation of the target acceleration. The sensor measures the target bearing

and range, where the measurement corresponding to a target state xk and sensor

position uk =

[
x(s)k y(s)k

]
at time k is given by

zk = h (x̃k, uk) + wk (x̃k, uk) (367)
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where wk (x̃k, uk) ∼ N
(

0, diag
([

σ2
θ σ2

r (x̃k, uk)

]))
is a 2× 1 Gaussian measure-

ment noise vector, and the measurement function h is given by

h (x̃k, uk) =

 arctan
(

y(t)k −y(s)k

x(t)k −x(s)k

)
√(

x(t)k − x(s)k

)2
+
(

y(t)k − y(s)k

)2

 . (368)

The variance of the bearing measurement noise σ2
θ is a fixed constant for all targets,

but the variance of the range noise σ2
r is a function of the target and sensor states. In

this example, we model the range noise in a piecewise manner as follows, in which

D (x̃k, uk) denotes the true distance between a target with state x̃k and the sensor with

state uk,

σ2
r (x̃k, uk) =



(ηR1)
2 , D (x̃k, uk) ≤ R1

(ηD (x̃k, uk))
2 , R1 < D (x̃k, uk) < R2

(ηR2)
2 , D (x̃k, uk) ≥ R2

, (369)

i.e. the noise standard deviation is the true range multiplied by the factor η, but

the minimum is capped at ηR1, and the maximum is capped at ηR2. The detection

probability is modeled using the following function of the true range,

PD (x̃k, uk) =
N
(
D (x̃k, uk) ; 0, σ2

D
)

N
(
0; 0, σ2

D
) , (370)

where σD controls the rate at which the detection probability drops off as the range

increases.

To illustrate the performance of the control, we apply it to two different simulated

scenarios. The first has a time-varying number of targets, and demonstrates how the

algorithm adapts to the changing conditions over time. The second scenario consists

of targets which are scattered in several different locations and moving in different

directions. In scenario 1, the expected control behaviour is fairly clear from looking at

the target-observer geometry. However, in scenario 2, the expected behaviour is not

so obvious.

For both scenarios, the sensor sampling interval is T = 10s, the clutter rate is 100

per scan, the detection probability spread parameter is σD = 20km, the process noise

on the target trajectories is σv = 0.01m/s2, the bearing measurement noise is σθ = 2◦,

and the parameters of the range measurement noise are R1 = 1km, R2 = 10km
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and η = 0.1. The space of possible control actions is discretised at 20◦ intervals, i.e.

the allowed course changes are {−180◦,−160◦, . . . , 0◦, . . . , 160◦, 180◦}. For the control

calculations, the number of samples is N = 50, the sensor sampling interval is T =

80s, and the horizon length is H = 5 (i.e. the effective control lookahead is 400s).

The exclusion radius for the void probability calculation is rv = 1km, and the void

probability threshold is Pvmin = 0.95.

5.4.5.1 Scenario 1

The first scenario runs for 4000 seconds and consists of seven targets, six of which

enter the scene during the first 250s, with one more appearing at time 1700s. Three of

the targets terminate between times 1300s and 1600s. The sensor platform is station-

ary for the first 400s, then starts moving with constant speed of 7m/s, undergoing

course changes every 400s in order to improve the target estimates. The true target

trajectories are depicted in Figure 41.
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Figure 41: Control scenario 1, true targets trajectories. Note that the targets appear and disap-
pear at different times, which is not represented on the plot.

To evaluate the control performance, we compare the estimation accuracy under

the proposed control scheme, against the case of a stationary sensor, and the case

where the sensor performs randomly chosen course changes. For each of the three

cases, we have performed 100 Monte Carlo runs, and used a multi-target miss dis-

tance known as the optimal sub-pattern assignment (OSPA) metric [173], to quantify
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the positional error between the filter estimates and the ground truth. Figure 42 shows

the average of the OSPA distance versus time where the OSPA cutoff parameter is

c = 200m and the order parameter is p = 2. These results show that the proposed

control strategy provides the best estimation performance. In the cases where the

sensor is stationary or undergoing randomly chosen actions, the performance is sig-

nificantly worse, since they have no mechanism for positioning the sensor in the most

favourable location. This demonstrates that the use of Cauchy-Schwarz divergence as

the reward function has been effective at reducing the estimation error of the system.
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Figure 42: Control scenario 1, OSPA results. The cases of fixed sensor location and ran-
domised control actions perform about the same. The control based on the Cauchy-
Schwarz divergence and void probability results in much lower tracking error.

Figure 43 shows a heatmap summarising the paths taken by the sensor over the 100

Monte Carlo runs. From this diagram, the general trend of the controlled sensor’s

trajectory can be observed. Intuition would suggest that the sensor should move

closer to the areas with the higher concentration of targets, which agrees with the

trend shown in Figure 43.
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To demonstrate the operation of the control scheme, we now show a single run

which exhibits the typical control behaviour. We have shown the scenario geometry

and expected Cauchy-Schwarz divergence for each potential action at five different

time instants; at 400s when the first decision is made (Figure 44), the third decision at

time 1200s (Figure 45), the sixth decision at time 2400s (Figure 46), the eighth decision

at time 3200s (Figure 47), and finally, at the end of the scenario at time 4000s (Figure

48).
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Figure 44: Control scenario 1, geometry and reward curve at the time of the first decision
(400s). The sensor platform is stationary for the first 400s, and pointing towards
the right. The first decision made by the control algorithm is to turn 80◦ to the
right, which takes the sensor towards the group of four targets.
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Figure 45: Control scenario 1, geometry, reward curve and void probability curve at the time
of the third decision (1200s). Four of the manoeuvres do not satisfy the constraint,
because they would result in high probability of targets getting too close to the
sensor. Excluding these, the best remaining decision is to turn 160◦ to the right.
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Figure 46: Control scenario 1, geometry and reward curve at the time of the sixth decision
(2400s). Three of the targets at the bottom have terminated since time 1200s (as
indicated by the faint tracks), and one additional target has appeared at the top.
As a result, the algorithm decides to turn 60◦ left, taking it closer to the three
targets at the top.
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Figure 47: Control scenario 1, geometry and reward curve at the time of the eighth decision
(3200s). The algorithm decides on a slight turn to the left, which takes it closer to
the group of three targets.
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Figure 48: Control scenario 1, geometry at time 4000s. The sensor is now following the group
of three targets at the top.
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5.4.5.2 Scenario 2

This scenario consists of 8 targets at various locations and moving in different direc-

tions, and unlike the previous scenario, the best path for the sensor to take is not

immediately obvious. The scenario geometry is shown in Figure 49, which also de-

picts one of the typical sensor trajectories obtained during the 100 Monte Carlo runs.

The starting location for the sensor is fixed near the top right-hand corner for all runs,

and in the particular case shown in Figure 49, it moves around the surveillance area,

appearing to visit each pair of targets in sequence.
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Figure 49: Control scenario 2, typical sensor trajectory under the proposed control scheme.
The true and estimated target trajectories are also shown.

Figure 50 shows a comparison of the OSPA distance obtained for the cases of fixed

sensor location, random actions, and with the proposed control strategy. The sen-

sor with fixed position performs worst, because it has difficulty tracking the targets

near the bottom of the surveillance region due to their large distance from the sen-

sor. Moving with randomised actions improves the performance, because despite the



5.4 application to sensor management 191

randomness of the chosen trajectories, the sensor still has the opportunity to move

closer to the far-away targets. The proposed control strategy outperforms both the

fixed and randomly moving sensors, as indicated by the lower OSPA distance. Due

to the stochastic nature of the problem, the exact behaviour observed in Figure 50 is

not necessarily replicated on every run. However the sensor generally moves around

the centre of the surveillance region and attempts to visit each target in sequence.

This can be observed in Figure 51, which shows that the sensor spends most of the

time moving around between the targets.
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Figure 50: Control scenario 2, OSPA results. Comparison between fixed sensor location, ran-
domly chosen actions, and actions chosen using the Cauchy-Schwarz divergence
and void probability.
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Figure 51: Control scenario 2, heatmap showing the control behaviour over 100 Monte Carlo
runs.



5.4 application to sensor management 193

5.4.6 Pseudo-code for Multi-target Sensor Control Scheme

The overall tracking and sensor control scheme is summarised by Algorithm 30. The

function for deciding a single control action is given in Algorithm 31, which makes a

decision based on the current GLMB density, by computing the reward and constraint

values for each potential action and selecting the one with highest reward subject to

the constraint being satisfied. The computation of the reward and constraint values

is done according to Algorithms 32 and 33.

Algorithm 30: Multi-target tracking and control scheme.
Input: Measurement sampling times (t1:N), decision times (s1:M), space of control

actions (A)
Parameters : Control horizon length (H), sampling interval over control horizon

(δt,c), GLMB birth density (ΦB)
Output: Track estimates (τx), track labels (τ`)

1 Function [τx, τ`] = RunControl (t1:N , s1:M, A) is
2 d = 1;
3 τx = ∅;
4 τ` = ∅;
5 for k = 1 : N do
6 if k = 1 then
7 Φ+ = ΦB;
8 else
9 ΦS,k = PredictSurvivalGLMB (Φk−1, tk);

10 Φ+ = MultiplyGLMB (ΦS,k, ΦB);

11 Z = GetMeasurements (tk);
12 Φk = UpdateGLMB (Φ+, Z);
13 [τx, τ`] = ExtractEstimatesGLMB (Φk, τx, τ`);
14 Φk = PruneGLMB (Φk);
15 if tk = sd then
16 uk = SensorState (tk);
17 tc = [tk + δt,c, tk + 2δt,c, . . . , tk + Hδt,c];
18 α = ChooseAction (Φk, ΦB, uk, A, tc);
19 ExecuteAction (α);
20 d = d + 1;
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Algorithm 31: Choose control action.
Input: GLMB density (Φ), GLMB birth density (ΦB), current sensor state (u), space of

control actions (A), sample times (t1:H)
Parameters : Radius of exclusion zone (rvoid), void probability threshold (Qthresh), survival

probability (PS), detection probability (PD), clutter intensity (λ), clutter
region (R)

Output: Control action (αopt)

1 Function αopt = ChooseAction (Φ, ΦB, u, A, t1:H) is
2 Qmin = ComputeConstraints (Φ, ΦB, u, A, t1:H);
3 D = ComputeRewards (Φ, ΦB, u, A, t1:H);
4 Dmax = 0;
5 for α ∈ A do
6 D̄(α) = Mean

(
D(:,α)

)
;

7 if
(

Q(α)
min > Qthresh

)
&
(

D̄(α) > Dmax

)
then

8 αopt = α;
9 Dmax = D̄(α);

Algorithm 32: Compute rewards for control actions.
Input: GLMB density (Φ), GLMB birth density (ΦB), current sensor state (u),

space of control actions (A), measurement sample times (t1:H)
Parameters : Number of multi-target samples (N), survival probability (PS),

detection probability (PD), clutter intensity (λ), clutter region (R)
Output: Vector of rewards (D)

1 Function D = ComputeRewards (Φ, ΦB, u, A, t1:H) is
2 for i = 1 : N do
3 X0 = DrawSampleGLMB (Φ);
4 for k = 1 : H do
5 XS = SampleSurvivals (Xk−1, PS);
6 XB = DrawSamplesGLMB (ΦB, 1);
7 Xj = XS ∪ XB;

8 for α ∈ A do
9 Ψ0 = Φ;

10 for k = 1 : H do
11 uk = SensorPosition (α, u, tk);
12 Z̃k = SampleMeasurements (Xk, uk, PD, λ, R);
13 Ψk = PredictSurvivalGLMB (Ψk−1, tk);
14 Ψk = MultiplyGLMB (Ψk, ΦB);
15 Ψk = UpdateGLMB

(
Ψk, Z̃k

)
;

16 Ψk = PruneGLMB (Ψk);

17 D(i,α) = CauchySchwarzGLMB
(

ΩH, Ψ(α)
H

)
;
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Algorithm 33: Compute constraint values for control actions.
Input: GLMB density (Φ), GLMB birth density (ΦB), current sensor state (u),

space of control actions (A), sample times (t1:H)
Parameters : Survival probability (PS), void radius (rvoid)
Output: Minimum void probabilities (Qmin)

1 Function Qmin = ComputeConstraints (Φ, ΦB, u, A, t1:H) is
2 Ω0 = Φ;
3 for k = 1 : H do
4 Ωk = PredictSurvivalGLMB (Ωk−1, tk);
5 Ωk = MultiplyGLMB (Ωk, ΦB);
6 Ωk = PruneGLMB (Ωk);

7 for α ∈ A do
8 Q(α)

min = 1;
9 for k = 1 : H do

10 uk = SensorPosition (α, u, tk);
11 S = Circle (uk, rvoid);

12 Q(α)
k = VoidProbabilityGLMB (Ωk, S);

13 if Q(α)
k < Q(α)

min then
14 Q(α)

min = Q(α)
k ;
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6.1 conclusions

This dissertation presents new methods for estimation and sensor control for

tracking an unknown and time-varying number of targets, using the methodol-

ogy of labelled random finite sets. Two new multi-target trackers are proposed, which

are based on more realistic measurement likelihood models than the more traditional

standard measurement model. The first of these uses a model that accommodates pos-

sible merging of target measurements, which is a common phenomenon when track-

ing multiple targets using a sensor with limited resolution. The second proposed

technique accommodates multiple simultaneous detections per target, by modelling

the physical target extent. This is an important consideration in cases where the tar-

gets are large and/or the sensor resolution is high, such that a single target may

occupy more than one detection cell at a time. Lastly, the problem of sensor control

is addressed with the use of newly derived analytical expressions for the Cauchy-

Schwarz divergence between two GLMB densities, and the GLMB void probability

functional.

For the case of merged measurements, an algorithm called GLMB-MP is proposed,

which forms partitions of the target set in order to model unresolved target groups.

This algorithm is computationally feasible only for a relatively low number of targets,

since the number of partitions grows too large as the number of targets increases. As

a cheaper alternative, an algorithm called GLMB-MR was also propopsed, which uses

relaxed measurement assignment to form the unresolved groups. Simulations were

carried out on a bearings-only tracking scenario, in which some of the target bear-

ing observations became merged due to finite sensor resolution effects. The results

197
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confirmed that the GLMB-MP outperforms the relaxed assignment approach as ex-

pected, and that both of the proposed methods offer significant improvement over

the GLMB filter with the standard measurement likelihood model, since the latter

has no mechanism for maintaining tracks in the presence of merged measurements.

The results also demonstrate that the GLMB-MP algorithm is indeed more compu-

tationally demanding than the GLMB-MR, but still feasible for clusters involving up

to four targets. Although less accurate, the GLMB-MR filter is capable of processing

larger clusters of targets without the computational bottleneck.

For multiple extended target tracking, two algorithms were proposed, namely the

GGIW-GLMB and GGIW-LMB filter. Both are based on modelling the problem us-

ing labelled random finite sets, and gamma Gaussian inverse Wishart mixtures. The

proposed algorithms estimate the number of targets, and their kinematics, exten-

sions and measurement rates. The major advantage these methods have over the

previously developed GGIW-(C)PHD filters is the inclusion of target labels, allowing

for continuous target tracks, which is not directly supported by the (C)PHD filters.

Of the two proposed algorithms, the GGIW-GLMB filter is more accurate as it in-

volves fewer approximations, but it is also more computationally demanding than

the GGIW-LMB filter. Simulation results demonstrate that the algorithms outperform

the GGIW-(C)PHD filters, especially in cases where the performance of the CPHD

filter is degraded due to the spooky effect. It was also demonstrated that the filter

performs well in a real-world application, in which laser range-finders are used to

track pedestrians.

Finally, two useful properties of generalised labelled multi-Bernoulli models were

derived; an analytical form for the Cauchy-Schwarz divergence between two GLMBs,

and an analytical form for the void probability functional of a GLMB. These proper-

ties have clear applications in multi-target sensor control, which was demonstrated

by their use in a simulated control scenario, where the objective was to plan a sen-

sor trajectory that optimises the multi-target tracking error. The problem was for-

mulated as a constrained POMDP, with a reward function based on the expected

Cauchy-Schwarz divergence, and a constraint based on the void probability, to en-

sure adequate separation between the sensor and targets was maintained at all times.

The results showed that this method was highly effective at reducing the multi-target

estimation error, compared to cases where the sensor was stationary or undergoing

random actions.
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The work in this dissertation has demonstrated that labelled random finite sets

have useful applications well beyond multi-target tracking under the standard mea-

surement model. More realistic models incorporating phenomena such as merged

measurements and extended targets are indeed feasible, as is the application of la-

belled random finite sets to multi-target sensor control problems.

6.2 future work

The following are some potential areas for future research in the area of multi-target

estimation and control using the labelled random finite set formulation.

• Developing a labelled RFS-based tracker which can handle both merged mea-

surements and extended targets simultaneously would be advantageous. This

dissertation has presented independent methods for handling merged measure-

ments and extended targets. In practice however, the decision on which formu-

lation to use may not be clear-cut, as both phenomena may be present within

the same scenario. A completely general solution to detection level multi-target

tracking would involve associating groups of measurements with groups of tar-

gets. In essence, this could be considered as an alternative to the track-before-

detect approach to multi-target tracking.

• Incorporating more realistic target extent models into the (G)LMB filter could

be significantly beneficial. The work in this dissertation only considers the case

of elliptical targets, which are modelled using gamma Gaussian inverse-Wishart

distributions. Although the GGIW model is appropriate for some target types,

for other types, this model does not adequately capture the spatial structure.

• Multi-target smoothing using the GLMB model has the potential to offer im-

proved estimation performance over filtering alone. Smoothing would be par-

ticularly beneficial in low observability scenarios, since in these cases, the use

of future information can go a long way towards resolving ambiguities in the

observed data. The development of such a smoother would also allow for an eq-

uitable comparison to be carried out between the GLMB and MHT approaches

to the multi-target tracking problem.

• Integrating model parameter estimation into the labelled RFS methods would

enhance their generality and reduce their reliance on prior assumptions. For
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example, on-line estimation of the clutter intensity function, the target detec-

tion probabilities, and the target birth/death model would all offer significant

benefits when implementing these algorithms in operational systems.

• A multi-step sensor control strategy based on the Cauchy-Schwarz divergence

and void probability functional for GLMBs would be a highly useful extension

to the work presented in Chapter 5. Using these properties of the GLMB, along

with a technique such as dynamic programming [26], could lead to the develop-

ment of such a scheme. The Cauchy-Schwarz divergence could be particularly

suitable for this type of control, because unlike other methods, it can naturally

accommodate the formulation of an additive cost function.

• Fast implementations of the GLMB filter for high-fidelity models are necessary

for their implementation in real-world systems. The GLMB filter has a structure

which can be easily parallelised on several levels, which offers the potential for

real-time implementation. A principled and fast method for dividing a GLMB

density into independent target clusters would also be beneficial in speeding up

the processing. The use of parallellisation and clustering together could pave

the way for the application of labelled RFS methods in large scale tracking

problems. A prime example of this is in the tracking of space debris, where

there is a need to track a very large number of targets simultaneously.

• This dissertation only considers the case of centralised multi-target estimation

and control, however, distributed systems are also becoming increasingly im-

portant. Work such as [191], [13] and [52] have studied multi-target distributed

estimation under the standard point-detection model, which can be consid-

ered as multi-target generalisations of the covariance intersection method first

proposed in [98]. It may be fruitful to investigate combining these techniques

with the methods proposed in this dissertation, with the goal of developing

distributed multi-target trackers for high-fidelity sensor models. Additionally,

a centralised approach to multi-target simultaneous localisation and mapping

(SLAM) for point-detections has been proposed in [46], and it may be interest-

ing to investigate the incorporation of improved sensor models, and also per-

forming distributed SLAM by generalising the work in [99] to the multi-target

case.
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