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ABSTRACT

The challenges in multi-target tracking mainly stem from the random variations in the

cardinality and states of targets during the tracking process. Further, the information

on the model of newborn targets, their detection probabilities, and the statistics of the

sensor’s false alarms significantly complicate the tracking of multiple targets. In the lit-

erature, a great number of the proposed multi-target filtering algorithms simplify these

challenges by assuming the information on the model parameters of newborn targets,

the probability of target detections, and the clutter points provided by the sensor(s)

known a priori. However, these assumptions do not hold in real-world applications,

leading to incorrect and biased estimations of the filters. In addition, the adoption of a

random vector to model a multi-target state is not sufficient, as the random vector has

a known number with fixed order of elements.

Proposed by Mahler, the Random Finite Sets (RFS) is one of the main paradigms fo-

cusing on multi-target filtering. In the RFS approach, the multi-target tracking problem

is accomodated in a top-down manner, with the multi-object dynamics (e.g., object mo-

tions, births, deaths and spawning) and measurement statistics all being considered.

The set of multiple targets is considered as a random variable and its probability den-

sity is propagated through time using Bayes recursion. However, due to the complex-

ity of the multi-target density, approximations or only some of its statistics (e.g., first

moment and cardinality distribution) are propagated for tractability. Initially, filters

constructed based on the RFS approach do not include target identities, then they are

limited to applications that require the estimation of target trajectories.

Recently, an appealing technique has been proposed to overcome the aforemen-

tioned limitation of the (non-labelled) RFS-based filters by using labelled RFSs. Based

on this technique, a first Bayes optimal multi-target tracker, the generalised labelled

multi-Bernoulli (GLMB) filter, has been constructed with the capability of estimating

trajectories of an unknown and time-varying number of targets. So far, this filter re-

quires the performance of data association for both actual and measurement clutter

targets, and it is relatively expensive. This dissertation addresses this limitation by
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combining the technique of the non-labelled RFS filter with the GLMB implementa-

tion to accommodate unknown information on the clutter statistics, detection prob-

ability and the location of newborn targets with low computational cost. Moreover,

a new technique for multi-sensor multi-target tracking to manage the uncertainty of

clutter and detection based on the MS-GLMB filter is proposed.

The first key contribution of this dissertation is an algorithm for the single-sensor

multi-target tracking problem based on the labelled RFS approach that performs with-

out prior information on clutter rate and with low computational requirements. This

can be useful since a mismatch in clutter parameters can result in poor performance

of the tracker. The second contribution is providing an adaptive multi-target track-

ing algorithm based on the labelled RFS filter that removes the requirements for prior

knowledge of the detection probability and clutter rate. Furthermore, this algorithm

can initiate new tracks without prior knowledge of birth models. The third contri-

bution is an efficient and robust algorithm that exploits the strengths of established

filters to estimate target trajectories while learning the background parameters during

operation.
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CHAPTER 1

INTRODUCTION

The modern estimation theory is a branch of statistics with a long history of de-

velopment. One of the fundamental principles of this theory is the least-square

method proposed in the early 19th century by Carl Fredrich Gauss, one of the most

influential mathematicians since antiquity [1, 2]. The terms ’estimation’ and ’filtering’

were introduced in the early 20th century. Ronald Fisher, one of the most prominent

statisticians, used the term estimation as a problem of ’estimating the value of one or more

of the population parameters from a random sample of the population’ [3]. He is considered

the father of the maximum likelihood method and Fisher information. More impor-

tantly, Fisher and his student, Calyampudi, introduced the Cramé-Rao bound, making

it a fundamental tool for evaluating the quality of non-biased estimators. Later, Nor-

bert Wiener and Andrey Kolmogorov proposed two independent works to estimate

true signal values from noisy signals using Gauss’s method in the frequency domain.

While Kolmogorov focused on discrete-time signals [4] that contributed to the Russian

Armed Forces defence strategy, Wiener worked with continuous time signals, and his

work led to the Wiener filter [5] that was used in the anti-aircraft system of the United

State Army.

In the mid-20th century, the trend of modelling systems in the time domain using

the concept of state-space models was developed. In 1960, Rudolf Kalman proposed

a method for estimating dynamic signals from noisy measurements called the Kalman

filter (KF) [6]. The KF is an exact solution to the Bayes estimation and is one of the

most extensively applied techniques for estimation and tracking due to its simplicity,

optimality, and robustness [7]. Nevertheless, it is limited to the linear system models

and Gaussian distributions. Efforts to extend this filter to handle the nonlinearity in

the process and measurement models have created the extended KF (EKF) [8], and the

cubature KF (UKF) [9]. In addition to the KF, the particle filter adopted the concept

1
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of the sequential Monte Carlo (SMC) sampling to manage the nonlinear non-Gaussian

model has been proposed in [10, 11].

Initially, these filters were developed to track a known and fixed number of targets,

where the origin of the measurements is also known a priori. However, the number

of targets and the individual states of these targets are actually unknown and ran-

domly vary over time. The purpose of the multi-target tracking is to handle the chal-

lenges on estimating the number of targets and their trajectories from the noisy infor-

mation collected by the sensor(s) in a coordinated manner [12–14]. Presently, there are

three noteworthy paradigms focusing on the problem of multi-target tracking: the Joint

Probabilistic Data Association (JPDA) Filter, Multiple Hypothesis Tracking (MHT) and

Random Finite Set (RFS) [15]. The JPDA and the MHT approaches endeavour to alter

single-target tracking algorithms to accommodate multiple targets using data associa-

tion. Different from the two formers, the RFS paradigm provides a systematic and top-

down formulation of multi-target estimation using a mathematical consistency based

on the estimation theory backgrounds such as multi-target estimation error and Bayes

optimality [14, 16]. Based on this formulation, the Bayesian recursion can be imple-

mented to compute the multi-target density.

Using RFSs concept leads to developing a sequence of filtering methods for multi-

targets tracking problem in both literature and practical applications such as the prob-

ability hypothesis density (PHD) [17] , cardinalized probability hypothesis density

(CPHD) were proposed [18, 19], and the multi-Bernoulli filters [20, 21]. These filters

and their extensions have been shown that they can well estimate the target states

at each time step. However, they must apply heuristics for purpose estimate target

states in a window of time [22, 23]. Recently, Vo and Vo proposed a theoretically rig-

orous and systematic study to estimate the trajectories of multiple targets based on

the RFS approach [24] . The resultant filtering algorithm known as the generalized

labelled multi-Bernoulli (GLMB) filter, can solve the problem of multi-target tracking

in an exact-closed form. More important, the GLMB filter overcomes the drawback of

the conventional RFS-based filters in the sense that it can simultaneously estimate the

target states at each time step and the target trajectories in a window length [25]. Cur-

rently, the GLMB filter is considered the most scalable and effective algorithm since it

is capable of tracking more than a million targets [26].
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The GLMB filter has been adopted in many types of tracking problems, such as

tracking with merged measurements [27], track-before-detect (TBD) [28, 29], extended

targets [30], cell biology [31, 32], sensor scheduling [33], spawning targets [34, 35], dis-

tributed data fusion [36], field robotics [37, 38] and computer vision [39]. Furthermore,

the method of using Gibbs sampling to improve the effective implementation of the

GLMB filter has been proposed in [40]. In this work, the complexity of the GLMB filter

is linear to the total number of measurements and quadratically in the number of hy-

pothesised targets. Most recently, the GLMB filter has been extended to the multi-scan

version [41], the multi-sensor (MS-GLMB) version [22], and the multi-sensor multi-

scan version [42]. The GLMB filter is applied to several practical applications such

as tracking the space debris [43, 44], crowd surveillance [39, 45], automation [46–48]

and cell tracking [35, 49]. The goal of this dissertation is to adopt the advantages of

the existing state-of-the-art RFS-based techniques to construct a simple but effective

and robust algorithm that can adaptively learn the key parameters while filtering the

real-world applications of tracking multi-target trajectories.

1.1 Motivation

The technique of using radio signals to detect targets, initiated in the first half of the

last century, has been developed from a simple device to detect the aircraft to a set of

very complicated systems. One of these systems is the radio detection and ranging, the

RADAR, which is widely applied in not only civilian applications but also the mod-

ern warfare for prevention and interception strategies. This system is used to detect

targets or obstacles. Furthermore, this system can estimate several parameters of the

targets such as the velocity, range and bearing using its electromagnetic signals [50].

However, using radar tracking is subjected to clutter (caused by the environment) and

various distortions (due to signal propagations); consequently, the accuracy of estima-

tion and the probability of target detection are limited. The use of multi-static radar

system (MRS) improves the tracking performance of the radar by using multiple pairs

of transmitting and receiving antennas. These antennas are spatially distributed in the

surveillance region [51] to maximise the accuracy of estimation and the probability of

detection. The separate distribution in a large geographical area of the transmitters

and receivers is the crucial characteristics of an MRS [52] since it allows a MRS sys-

tem to observe targets from multiple directions. As targets can be detected at different
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aspects, it leads to a notable increase in potential useful information, and remarkably

expands the accurate recognition on detecting targets of the system [53]. Furthermore,

using MRS is benefited from the increase of the resolution capability and resistances

to the jamming and clutter [54]. In addition, the spatial distribution of radars prevents

the whole radar system from physically being destroyed from attacks.

The complexity of the target tracking task increases with the antennae’s degree of

the radar system. First, for information fusion, the system needs radar stations and tar-

gets in lines of sight of each other, as well as requirements for synchronisation, phasing,

the positioning of stations, and the transmission of reference signals and frequencies

[54]. Second, in multi-target tracking, there are generic challenges, such as the un-

known and randomly time-varying number of targets; uncertainties in detection, clut-

ter and data association [15]; and nonlinearity and low observability of the Doppler

measurement [55, 56]. The velocities and locations of moving targets must be observed

continuously from their track history to heading for reliable detections. Doppler de-

tectors (ones based on Doppler effect) using stationary radars can only detect moving

targets because the reflected signals from stationary (or very slow-moving) targets are

practically the same in the transmitted signals’ frequencies. Therefore, tracking mul-

tiple targets using an MRS is a challenging problem, and it attracts many researchers

from information fusion field. The purpose of multi-target tracking algorithms is to

estimate the target state from observed data (measurements) such that the differences

between the ground truth and the estimated multi-target state are as small as possible

[23]. This dissertation is the first to handle the challenges in tracking multiple tar-

gets with unknown prior information regarding clutter rate, detection probability and

birth model. Further, it is also the first to tackle the problem of tracking multiple ma-

rine ships via the Doppler radar system using a rigorous formulation based on labelled

RFSs.

Multi-sensor architecture frequently occurs in multi-target tracking using radar

system applications because it significantly improves machine perception. Depend-

ing on measurement functions, there are four types of sensor models: bearing, range,

range-rate and position. The use of a bearing-only sensor model leads to the passive

radar system, and combining the bearing model with either the range or range-rate

models creates an active radar system. In addition, the model of position sensors is
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usually applied to the drone-mounted camera [22].

This dissertation focuses on passive radar systems using bearing-only sensors. Bear-

ing - only tracking is the problem of estimating multi-target trajectories with only the

angle or direction of arrival measurements [57]. This problem has been widely studied

in both defence and civilian applications, such as tracking missiles [58], underwater

surveillance [59], autonomous navigation [60] via the deployment of airborne radars,

sonars and other types of passive surveillance systems. However, due to the intrin-

sic nonlinearity and poor observability [61, 62], it is not always possible to construct a

(proper) tractable filter with this type of measurement [63, 64]. Theoretically, the mo-

tion of the sensor platform must have at least one order higher than that of the target’s

motion to fully observe the kinematic state of the target [57, 65]. The strategy of inte-

grating multiple sensors has been proposed in [66, 67] to increase observability. The

multi-sensor framework reduces uncertainty in the system and increases the tracking

algorithms’ capability of to resolve the target state ambiguity. In addition to the techni-

cal challenges, the multi-target tracking solution is also subject to uncertainty induced

by noise - corrupted measurements, false alarms, miss - detection and target appear-

ances and disappearances. This dissertation proposes a new solution to the problem

of multi-target tracking by adopting the benefits of the existing effective RFS trackers

to track targets in unknown background information. While this solution can be ap-

plied to several types of multi-sensor settings, it has been applied to the bearing-only

sensors in this dissertation.

1.2 Key contributions

∎ The first contribution of this dissertation is a robust algorithm for the single-

sensor multi-target tracking problem based on the labelled RFS approach to track

target trajectories with low computational cost. Currently, the existing RFS-based

algorithms can handle real-world tracking problems where background models

of clutter and detection profile are unknown. However, as the conventional RFS

approach does not have the mechanism to address target tracks, RFS-based fil-

ters cannot estimate trajectories without using heuristic techniques. While a new

branch of the RFS, the labelled RFS filter, uses target identities to track target

trajectories in an unknown background environment, it is still computationally

expensive. Therefore, a robust tracker presented in this dissertation is proposed
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to overcome the aforementioned limitations of existing trackers. This tracker is

constructed using two existing filters: the robust CPHD and the GLMB. Specifi-

cally, the robust CPHD is adopted to accommodate the mismatches in clutter rate

and detection profile with low computational cost, and the GLMB filter, which

can produce target trajectories, is used for the main filtering process. This con-

tribution has published in the author’s conference papers [68, 69] and journal

articles [70, 71].The tracker is described in Chapter 3 and Chapter 4.

∎ The second contribution is a convenient plug-and-play multi-target tracker capa-

ble of adaptively learning the measurement clutter rate, probability of detection

and target birth location online. Prior information such as the locations of new-

born targets, the statistics of clutter measurements (also known as false alarms)

generated by the sensor, and the target detection probability must be considered

to realistically model the multi-target system. In general, this information is not

practically available. Consequently, the trackers must be supplied with prior as-

sumptions of these values, which usually leads to the inaccuracy of the tracking

algorithms. Therefore, accurate inference of these parameters is important for

achieving reliable tracking implementation in practice. The adaptive tracker pro-

posed in Chapter 4 of this dissertation removes the needs of guessing the param-

eters for initiating trajectories, and it produces an efficient multi-target tracking

algorithm sufficiently robust for many environments, including medium - clutter

and low - clutter multi-target tracking applications. This contribution has pub-

lished in the latest journal article of the author [72].

∎ The third contribution is a robust multi-sensor tracker that can learn and adapt

with practical variations of the detection profile and clutter rate in the scenarios

of tracking multiple targets based on the labelled RFS approach. In principle,

using multiple sensors can improve the tracking performance because it signif-

icantly reduces uncertainty in target cardinality and their states. However, the

major difficulty in multi-sensor tracking implementation is the NP-hard multi-

dimensional ranked assignment problem. The robust multi-sensor algorithm in

this dissertation is constructed based on the state-of-the-art MS-GLMB filter and

robust CPHD filters to overcome difficulties in tracking scenarios with fluctuat-

ing backgrounds and a high number of sensors. Further, while the setting of the

bearing-only sensors is introduced in Chapter 5 for the demonstration, this algo-
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rithm can be applied to different types of sensors. This contribution has appeared

in the author’s journal article [73].
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CHAPTER 2

BACKGROUND

This chapter aims to deliver a fundamental background on Bayesian estimation for

the tracking of individual and multiple targets and to stimulate the adoption of

labelled RFSs for estimation of multi-target trajectories. Specifically, Section 2.1 briefly

summarises Bayesian state estimation, where random vectors are used to describe the

dynamic and observation models. Section 2.2 introduces the fundamentals of RFSs to

model the multi-target system. Section 2.3 presents the PHD and CPHD filters, which

are the two first RFS - based filters, and their extensions to handle unknown clutter

rate and detection profiles. Section 2.4 introduces labelled RFS and its applications in

the multi-target system. Section 2.5 addresses the GLMB filter with separate prediction

and update implementation. Finally, Section 2.6 and Section 2.7 present the MS-GLMB

filter and the GLMB smoother, respectively.

2.1 Bayesian estimation

Assuming that a system is described by a state-space model in the discrete time do-

main, and a state of a single target at a given time k is entirely depicted by a state

vector xk ∈ X ⊆ Rpx where px is the dimension of the state. The evolution of the state

vector xk ∈ Rnx to state xk+1 ∈ Rnx at the next time step k + 1 is described by the prob-

ability density of xk+1 conditioned on its state at previous time step xk, that is, the

so-called Markov transition density fk+1∣k (xk+1∣xk).

Given the true state vector xk, a measurement process can generate a noisy mea-

surement vector zk ∈ Z ∈ Rnz . The relationship between zk and xk is described by the

measurement likelihood function gk (zk∣xk). This function is the probability density of

receiving a measurement zk given a true target state xk. From this assumption, knowl-

edge of the target state xk given a sequence of all measurements from the first time step

9
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to time k is given by the filtering density pk (xk∣z1∶k), where z1∶k = (z1, . . . , zk).

At the next time step k + 1, the Bayes recursion updates the filtering density by fus-

ing the data in the current filtering density pk (xk∣z1∶k) with data collected in a newly

generated measurement zk+1. This updated filtering density is denoted by pk+1 (xk+1∣z1∶k+1).

For compactness, the subscript k for the current time step is dropped, the subscript k+1

for the next time step is replaced with ’+’, and the dependence of the state on the past

measurement is also dropped, i.e., pk (xk∣z1∶k) ≜ p (x). Specifically, this updated filter-

ing density can be calculated from the Markov transition density f+ (x+∣x), previous

density p (x), and the measurement likelihood function g+ (z+∣x+) using the Chapman-

Kolmogorov equation Eq. (2.1) and Bayes’ rule Eq. (2.2) as follows.

p+ (x+)=∫ p (x)f+ (x+∣x)dx, (2.1)

p+ (x+∣z+)=
g+ (z+∣x+)p+ (x+)

∫ g+ (z+∣x+)p+ (x+)dx+
. (2.2)

The above Bayes recursion propagates the probability density of the target state to the

next time instance in two steps. First, the prediction step forward predicts the cur-

rent density using the Chapman-Kolmogorov equation Eq. (2.1). Next, the predicted

density is updated via Bayes rule Eq. (2.2). However, the Bayes filter does not always

admit an analytical solution; hence, approximations must be used.

2.2 RFSs

Using a random vector is insufficient to model a multi-target state. In a random vector,

the number of elements is specified and the order of elements is fixed. However, in

a multi-target system, the target states and the target cardinality are unknown and

vary randomly over time. This feature means that it is inadequate to model the multi-

target system where the target states and the target cardinality are unknown and vary

randomly over time.

In [14], the concept of RFSs has been developed as a principled technique for ac-

commodating the problems of multi-target state estimation and data fusion in a con-

sistent, systematic, and rigorous manner. An RFS is defined as a random variable that

receives finite sets as its value. In an RFS, the cardinality (i.e., the number of elements)

is random, and the states of elements are unknown, and the elements themselves are
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disorganised [24].

In the RFS paradigm, the set integral of a function f ∶ F (X) ↦ R (where F (X)

denoting a class of finite subsets of X, and R being the real line) is specified by [14] as

follows:

∫ f (X) δX =
∞
∑
n=0

1

n!
∫ f ({x1, . . . ,xn})d (x1, . . . , xn) . (2.3)

The standard inner product of two functions h (x) and q (x) is defined as:

⟨h,q⟩ ≜ ∫ h (x)q (x)dx. (2.4)

The multi-target exponential is defined as:

[g]X ≜ Π
x∈X

g (x) , (2.5)

where g is a real-valued function raised to a set X (i.e., the arguments of g are elements

belong to X which can be scalars, vectors, or sets) and [g]∅ = 1.

The generalised Kronecker delta function whole arbitrary arguments can be scalars,

vectors, or sets, etc., it is denoted by:

δY (X)=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if X = Y

0, if X ≠ Y
. (2.6)

The indicator function of the set Y is denoted as:

1Y (X) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if X ⊆ Y

0, otherwise
. (2.7)

When the set X has only one element x, that is, X = {x} , we can write 1Y (x) for

1Y ({x}). The number of elements in a given finite set X is called the cardinality of the

set X and is denoted by ∣X ∣.

Given an RFS with probability density π [74], its intensity, or its first-order statistical

moment, is defined as a function ν ∶ X → [0,∞) whose integral ∫Y ν (x)dx on any
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region Y ∈ X is the expected number of targets in Y [17],

∫
Y
ν (x)dx=∫ π (X) ∣X ∩ Y ∣δX (2.8)

The cardinality distribution for this RFS is given as [16]:

ρ (n)=∫∣X ∣=n
π (X)δX (2.9)

2.2.1 Standard multi-target dynamic model

In multi-target tracking, the number of targets and the states of those targets are ran-

domly time-varying. The standard multi-target dynamics can be modelled using RFSs

to capture the appearance and disappearance of targets, and the evolution of the indi-

vidual target states. Assuming that, at the current time step, N targets (i.e., N single

target states x1, . . . , xN) appear in the surveillance area, and the values of each target

state are taken from the state space X. In the RFS formulation, the set of these targets

is called the multi-target state and is denoted by X. Each target state x ∈ X can exist

with survival probability pS,+ (x) and evolve to a new target state x+ at the next time

step with the transition probability density f+ (x+∣x) , or being terminated with prob-

ability 1 − pS,+ (x) (see Figure 2.1). Consequently, given a single-target state x ∈ X , its

behaviour at the next time step is modelled by a Bernoulli RFS F+ (x) with r = pS,+ (x)

and p (⋅) = f+ (x+∣x) [75].

Assuming targets are conditionally independent, then the RFS of the surviving tar-

gets from the current time step to the next time step is a multi-Bernoulli and described

by [75],

S+ (X) = ⋃
x∈X

F+ (x) . (2.10)

Noting that a multi-Bernoulli RFS is completely characterised by the set {(r(i),p(i))}M
i=1
,

where i is the index of the transitioned ith target, M is a constant number of indepen-
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dent Bernoulli RFSs. The density of S+ (X) is denoted by πS,+ (⋅∣X) with [14]

πS,+ (x1, . . . , xn)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
Π
i=1

(1 − r(i)) if n = 0

M
Π
i=1

(1 − r(i)) ∑
1≤j1≠,...,≠jn≤M

n
Π
i=1

r(ji)p(ji)(xi)
1−r(ji)

, if 1 ≤ n ≤M

0 if n >M

(2.11)

Since the new targets can present randomly in the surveillance region, they should be

represented in the dynamic model. Denote B+ be the set of newborn targets, then B+

can be modelled as either a Poisson RFS, an independently and identically distributed

(i.i.d) cluster RFS or a multi-Bernoulli RFS. Therefore, there are survived and newborn

targets at the next time step. The complete RFS of these targets is:

X+ = S+ (X)∪B+. (2.12)

Denote πB,+ (⋅) the probability density of the set of newborn targets, then the multi-

target transition density f+ (X+∣X) can be written as a finite set statistics (FISST) con-

volution as follows [75]:

f+(X+∣X) = ∑
Y+⊆X+

πS,+ (Y+∣X) ⋅ πB,+ (X+ − Y+) . (2.13)

Noting that the evolution of the multi-target state with time is described in both Eq. (2.12)

and Eq. (2.13). Further, the elemental models of target motion, new target appearance

and disappearance are incorporated in these two equations.

2.2.2 Standard multi-target measurement model

At the current time step, a sensor can detect a single-target state x ∈X with a probabil-

ity of detection pD (x) or it can miss-detect this state with probability 1 − pD (x) . Con-

sequently, a noisy measurement z with measurement likelihood g (z∣x) is generated

if x is detected; otherwise an empty set ∅ is generated if the state x is miss-detected.

Hence, each target producing a measurement can be modelled by a Bernoulli RFSD(x)

specified by parameters (r, p (⋅)) where r = pD (x) and p (⋅) = g (⋅∣x). Suppose that each

target cannot generate more than one measurement, and each measurement is condi-

tionally independent of the others. The set of all detections is a multi-Bernoulli RFS

denoted by D (X) whose probability density πD (⋅∣X) can be described by a multi-
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Figure 2.1: Illustration of the multi-target state evolution in state space. Three targets
at the previous time step and five targets at the next time step. At each time step, each
target can generate a random number of measurements [75].

Bernoulli RFS given in Eq. (2.11) with set of parameters {(pD (x) ,g (⋅∣x))}x∈X .

Since measurements can be generated not only from actual targets but also from

false alarms, or clutter, the construction of the measurement model should cover all

information from those sources. As clutter-generated measurements usually follow ei-

ther the Poisson or i.i.d. cluster processes, the set of these measurements is modelled

by a corresponding RFS K with probability density πK (⋅). Consequently, at the cur-

rent time step, the set of measurements Z is the superposition of all measurements

generated from the actual targets and clutter-generated targets,

Z =D (X) ∪K. (2.14)

Hence, the multi-target likelihood can be given by a finite set statistics convolution [24]

g (Z∣X) = ∑
W⊆Z

πK (Z −W )πD (W ∣X) , (2.15)

where the discrepancy between sets Z and W is denoted by Z −W .

2.2.3 Multi-target Bayes filter

The multi-target Bayes filter (in the context of the RFS approach) aims to estimate a

finite set X of single target states {x1, x2, . . . , xn} ⊂ X at each time step. Let π (X)

be the multi-target probability density at the current time step, the multi-target Bayes

filter uses the Chapman-Kolmogorov equation to compute the predicted multi-target
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density at the next time step, as follows [24]:

π+ (X+)=∫ π (X)f+ (X+∣X) δX, (2.16)

where f+ (X+∣X) is the multi-target transition density. Then, the predicted multi-target

state X+ is partially observed, and the likelihood of a set of measurements Z+ given

observations on multi-target state X+ is presented by g(Z+∣X+). At the next time step,

the multi-target filtering density is computed using Bayes rule:

π+ (X+∣Z+)=
g+ (Z+∣X+)π+ (X+)
∫ g+ (Z+∣X)π+ (X)δX . (2.17)

The multi-target Bayes filter recursively propagates the multi-target filtering den-

sity in time using Eq. (2.16) and Eq. (2.17). However, since these two equations have

combinations of multi-target densities and integrations in nature, the multi-target Bayes

recursion is numerically intractable in most applications [75]. Hence, approximations

are required to derive tractable filtering algorithms.

2.3 PHD and CPHD filters

2.3.1 PHD filter

The function of multi-target tracking algorithms is to refine the states of targets from

noisy measurements such that the errors between the cultivated estimates of the multi-

target state and the ground truth are as small as possible [23]. Based on the RFS ap-

proach, Mahler [17] proposed an algorithm that attains a tractability for tracking mul-

tiple targets. In this algorithm, only the intensity function, or the PHD, is propagated

using an approximation of the Bayes recursion. This function is called the first mo-

ment of the multi-target density and is defined on the single-target state space. The

unique property of the PHD function has been presented in Eq. (2.8). Furthermore,

the PHD filter permits explicit modeling of miss-detections, Poisson clutter processes,

target birth and death, and spawning of new targets from their parents [14]. The PHD

filter has the potential benefit of low complexity in computation with order O (mn)

which is linear in the number of both targets n, and measurements m in the current set

Z [14].
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Let ν (x) and νB,+ (x+) respectively present the filtering PHD at the current time

step and the PHD of spontaneous newborn targets at the next time step. The predicted

PHD at the next time step is computed by:

ν+ (x+) = νB,+ (x+) + ∫ pS,+ (x+) f+ (x+∣x)ν (x)dx. (2.18)

Similarly, at the next time step, a sensor generates a set of measurements Z+. The set

Z+ contains the measurements generated from true targets and the clutter-generated

measurements with assumed clutter intensity κ+. The new PHD at next time step is

then computed as follows:

ν+ (x+∣Z+)=ν+ (x+)(1 − pD,+ (x+)) + ∑
z∈Z+

ν+ (x+)pD,+ (x+)g+ (z∣x+)
κ+ (z) + ∫ pD,+ (x)g+ (z∣x)ν+ (x)dx (2.19)

Currently, there are two techniques for the performance of the PHD filter: the sequen-

tial Monte Carlo (SMC) [74, 76, 77] and Gaussian mixtures (GM) [78]. The analyses of

convergence properties of these two techniques are given in [79, 80] and [81], respec-

tively. In [82], the GM PHD filter is extended with the use of jump Markov models to

handle the manoeuvring targets those change between multiple linear Gaussian mod-

els. Recently, the PHD filter has been applied to the problem of tracking multiple

targets with multi-detection systems [83], with mobile limited field-of-view sensor [84]

and extended to multi-sensor multi-target tracking [85, 86] and smoothing [87, 88].

While the PHD filter has several potential advantages as mentioned in [14, Chap.16],

it also has disadvantages. Since the PHD filter propagates the intensity of the multi-

target state recursively in time, its state estimates are highly variable with the appear-

ance of clutter and, especially, miss-detection [14, Chap.16]. Further, it cannot produce

an accurate estimate number of targets in a highly dynamic multi-target scene [14,

Chap.16]. Moreover, since only the intensity of the multi-target state is propagated

rather than the full multi-target state density, a substantial amount of information is

lost in the PHD recursion. Consequently, the PHD filter has certain limitations in prac-

tice.
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2.3.2 CPHD filter

A further investigation based on the PHD filter has been performed in [19]. The CPHD

filter has overcome the limitations of the PHD filter while retaining its benefits. This

filter recursively propagates the multi-target intensity (i.e., first moment of multi-target

density) and the number of targets’ distribution (i.e., the cardinality distribution) in

time to estimate the target states at each time step. Similar to other RFS-based filters,

it is presumed in the CPHD filter that a target can only generate one measurement at

most. The accuracy in tracking and localization of targets using the CPHD filter is more

advanced than the PHD filter. Specifically, The CPHD filter permits the maximum a

posteriori estimator to estimate the total number of targets rather than the less-accurate

expected a posteriori estimator in the PHD filter [14]. Further, the CPHD filter accept

that the clutter process can be i.i.d cluster RFS [14], and the prior and predicted multi-

target RFSs are also i.i.d cluster processes [18]. However, by introducing the cardinality

distribution in its recursion, the CPHD filter is more computationally demanding than

the PHD filter. Specifically, the computational complexity in the CPHD filter is order

O (m3n) compared to order O (mn) in the PHD filter [14].

Let ρ be the cardinality distribution of the existing targets at the current time step,

and ρB,+ be the cardinality distribution of the spontaneous newborn targets at the next

time step. The prediction step of the CPHD filter at the next time step including pre-

dicted PHD and cardinality distribution is described by

ν+ (x+)= νB,+ (x+) + ∫ ν (x)pS,+ (x)f+ (x+∣x)dx (2.20)

ρ+ (n)=
n

∑
j=0

Π+ [ν, ρ] (j)ρB,+ (n − j) (2.21)

where

Π+ [ν,ρ] (j)=
∞
∑
l=j

Cijρ (l) ⟨pS,+, ν⟩
j ⟨1 − pS,+, ν⟩ l−j

⟨1, ν⟩l (2.22)

and C lj = l!
j!(l−j)! is the binomial coefficient. ⟨⋅, ⋅⟩ represents the inner product of two

functions or sequences those take real numbers as their values. Specifically, ⟨ξ, χ⟩ =

∫ ξ (α)χ (α)dα if ξ and χ are real-valued functions, or ⟨ξ, χ⟩ = ∑∞
j=0 ξ (j)χ (j) if ξ and

χ are real-valued sequences.
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The new PHD and cardinality distribution are computed by

ν+ (x+∣Z+) =
⟨Υ1

+ [ν+;Z+] , ρ+⟩
⟨Υ0

+ [ν+;Z+] , ρ+⟩
[ν+ (x+) (1 − pD,+ (x+))] (2.23)

+ ∑
z∈Z+

[ψz,+ (x+)ν+ (x+)]
⟨Υ1

+ [ν+;Z+ − {z}] , ρ+⟩
⟨Υ0

+ [ν+;Z+] , ρ+⟩

ρ+ (n∣Z+) =
Υ0
+ [ν+;Z+] (n)ρ+ (n)
⟨Υ0

+ [ν+;Z+] , ρ+⟩
(2.24)

where

Υu
+ [ν,Z] (n) =

min(∣Z∣,n)
∑
j=0

(∣Z ∣ − j)!⟨1 − pD,+, ν⟩
n−(j+u)

⟨1, ν⟩n
[Pnj+uρK,+ (∣Z ∣ − j) ej (Ξ+ (ν,Z))] ,

(2.25)

ψz,+ (x+) =
⟨1, κ+⟩
κ+ (z) pD,+ (x+) g+ (z∣x+) , (2.26)

Ξ+ (ν,Z) = {⟨ν,ψz,+⟩ ∶ z ∈ Z} , (2.27)

ek (Z) = ∑
S⊆Z,∣S∣=k

⎛
⎝∏ξ∈S

ξ
⎞
⎠

with e0 (Z) = 1 (2.28)

with Pnj+u = n!
(n−j−u)! be the permutation coefficient, u = 0,1, and ρK,+ (⋅) be the cardi-

nality distribution of clutter at the next time step. ek (⋅) is the elementary symmetric

function [89] of order k defined for a given measurement set Z, and ∣S∣ is the number

of elements (i.e., the cardinality), of the set S.

Implementations of the CPHD filter can use either SMC approximations or GMs,

as in [18, 90, 91], with KF for linear Gaussian models and extended KF, cubature KF for

nonlinear Gaussian models. The CPHD filter with the jump Markov system dynamics

was presented in [92] to handle the manoeuvring targets. The CPHD filter can also

accommodate spawning targets [93, 94] and extended targets [30, 95].

Although the CPHD filter is still applied in several applications because of its ad-

vantage of low computational complexity, its implementation assumes that the state-

dependent detection probability and clutter rate are known in prior and time constants.

These assumptions limit the ability of the CPHD filter in practical applications where

these two parameters are unknown and time-varying. To overcome the limitations of

the CPHD filter, the robust CPHD filter has been proposed to estimate clutter statistics
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and the detection probabilities of targets.

2.3.3 Robust CPHD filters

In multi-target tracking, there are two notable uncertainty sources: clutter statistics

and detection probability [96]. Clutter statistics or false alarms are the measurements

that are not generated from any actual target, and detection probability models the

capability that targets can be detected by sensor. The information on these param-

eters highly affects the accuracy and effectiveness of the tracker, hence it is crucial

in Bayesian multi-target estimation. Since these two parameters are typically both

unknown and unpredictably vary over time, incorrect information of either clutter

or detection models results in the degradation or biased implementation of filtering

methodologies. Practically, they must be estimated from trainning data or tuned man-

ually [96].

In [96], the CPHD filter is extended to jointly estimate the clutter rate and detec-

tion probability online (the robust CPHD). In this technique, the clutter statistics are

considered as an RFS of ’clutter generators’ or ’false targets’, and incorporated with the

non-homogeneous and unknown detection profile into single target state. This sec-

tion summarises the technique generalised from the CPHD filter to handle unknown

detection profiles and unknown clutter models.

Each kinematic part of state x is superseded by a new state xa = (x, a) where a is an

augmented variable representing the probability of detecting x, and taking value on

space of detection probability X(∆) = [0,1].

For consistency in notations, the functions or variables on the spaces of true targets,

clutter generators and unknown detection probability, are described using the super-

scripts (1),(0)and (∆), respectively. In addition, the functions or variables on the hybrid

and augmented state space is denoted using superscript (h).

The augmented multi-target state is then described as follows:

Xa = (xa,1, . . . , xa,n) = {(x1, a1) , . . . , (xn, an)} (2.29)

Similarly, the state of the augmented clutter-generated target is described by cc = [xc, b]
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with xc ∈ X(0) as the generator target state and b ∈ X(∆). The augmented clutter-

generated multi-target state is:

Xc = (cc,1, . . . , cc,m) = {(xc,1, b1) , . . . , (xc,m, bm)} (2.30)

Assuming that the clutter-generated targets and real targets are statistically indepen-

dent, the multi-target state is then a combination of these two types of (augmented)

targets. Therefore, the augmented hybrid space X(h) that includes the multi-target

state is given as follows [96]:

X(h)=[X(1)×X(∆)]⊎[X(0)×X(∆)] (2.31)

where ′⊎′ is the disjoint union, and ′×′ is the Cartersian product.

Since the multi-target state and multi-target measurements now become the hybrid

ones, the integral Eq. (2.3) is rewritten as follows [96]:

∫
X(h)

f (h) (x(h))dx(h) = ∫
X(∆)

∫
X(1)

f (h) (x, a)dxda + ∫
X(∆)

∫
X(0)

f (h) (xc, b)dxcdb

(2.32)

The joint probabilities of detection are denoted as follows:

p
(h)
D (x(h)) = pD,a (xa)≜a if x(h) = (x, a)∈X(1)×X(∆) (2.33)

p
(h)
D (x(h)) = pD,cc ≜b if x(h) = (xc, b)X(0)×X(∆). (2.34)

The measurement likelihood is:

g (z∣xa)=ga (z∣x, a)≜g (z∣x) (2.35)

g (z∣cc)=gc (z∣xc, b)≜g (z∣xc) (2.36)

The robust CPHD filter recursively propagates the posterior PHD and posterior

cardinality distribution in time as the same as that of the conventional CPHD filter.

In a robust CPHD filter, the target state is defined as a hybrid and augmented state.

Further, due to the statistical independence assumption between clutter and true tar-

gets, the PHD on the hybrid state space can be decomposed into the PHD of the actual
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target state and that of the clutter-generated target state. The estimated mean value of

the clutter rate is calculated from the posterior mean number of clutter-generated tar-

gets and the clutter target detection probability. Since the target state encompasses the

unknown detection probability, this augmented unknown parameter it is calculated

within the CPHD recursion (with augmented state space).

The robust CPHD can be implemented using the Beta - Gaussian mixture to de-

scribe the PHD of the actual newborn targets RFS and the Beta mixture for the clutter

generator target birth RFS [96]. This implementation results in a solution which is

closed-form of the CPHD recursion in handling a jointly unknown clutter rate and de-

tection probability. As the number of mixture terms exponentially increases with time,

pruning and merging of these mixture terms must be carried out to prevent this num-

ber from unbounded growth. A predetermined threshold is set for pruning to remove

mixture components with lower weights. The Hellinger distance between the two Beta

- Gaussian components is adopted in the performance of the component merging. The

truncation of cardinality distribution is also employed to ensure tractable proagation.

2.4 Labelled RFSs

While the terms multi-target tracking and multi-target filtering can be used interchange-

ably, they have a subtle difference [97]. Both multi-target tracking and multi-target fil-

tering estimate target states and target cardinality, however, multi-target tracking also

estimates the target identities, allowing trajectory estimation [97]. Unlabelled RFS-

based filters are suitable for the filtering problem since they propagate the kinematic

parts of target states without their labels (i.e., their identities). Unlabelled RFS-based

tractable multi-target filtering algorithm (for instance, the PHD and CPHD) have been

developed for estimating target states, but not target trajectories, at each time step.

The idea of track labelling has been mentioned in [14, 98] to track target trajectories.

This idea has been developed further in a theoretically rigorous and systematic manner

in [24, 99]. This ’labelled RFS’ method has been proposed to estimate multi-target

trajectories via labelling individual target states. A labelled RFS is indeed an RFS where

each element is assigned a distinct label as its identity [24, 97]. The kinematic state

of single target and its identity then can be jointly modelled using this framework.

Further, the labelled RFS framework also provides analytic solutions to the multi-target
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inference and estimation problem [24].

The labelled RFS has several advantages compared to the unlabelled RFS concept

in theoretical and real-world multi-target tracking applications. Specifically, labelled

RFS filters can handle object identity implicitly within their models and can naturally

estimate the target trajectories; the unlabelled counterparts cannot perform this task

without using heuristics [25]. Moreover, while the unlabelled RFSs cannot provide

estimates of information on target ancestries, labelled RFSs conceptually provide a

mechanism to trace targets’ ancestors by incorporating identity ancestry information

into the modelling and estimation of spawning targets [34]. In addition, while the RFS-

based filters without using target identity such as the PHD, CPHD, and the cardinality

balanced multi-Bernoulli are subjected to the ’spooky effect’ (i.e., the effect of shifting

the PHD mass of the miss-detected target onto the detected target without considera-

tion on their physical separation), the RFS filters using target identity (the labelled RFS

filters) are not [16, 100].

Each target state has a distinct label ` to distinguish the time-evolving tracks from

different target states. Each distinct label ` = (s,α) ∈ L at time k comprises two com-

ponents: time of birth, s ≤ k, and a distinctive index α to distinguish targets born at

the same time as illustrated in Figure 2.2. Let Bk be the space of the labels assigned to

targets born at time k, then the space of the labels for all targets is the disjoint union

Lk = Lk−1 ⊎ Bk. Consequently, each labelled target state x at time k is simply an kine-

matic part of state which is unlabelled x ∈ X augmented with a distinct label ` ∈ Lk,

x = (x, `) ∈ X ×Lk.

A labelled multi-target state at time k is then a labelled RFS X ⊂ X ×L consisting

of all elements with their distinct labels.

X = {(x1, `1) , . . . , (xn, `n)} (2.37)

A sequence of labelled states with the identical label at sequential times creates the

trajectory of a unique target [41]. The set integral Eq. (2.3) is rewritten for a function
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f (X) of a labelled RFSX as follows [24, 97]

∫ f (X)δX =
∞
∑
n=0

1

n!
∑

(`1,...,`n)∈Ln
∫
Xn
f ({(x1, `1) ,. . . ,(xn, `n)})d (x1,. . . ,xn) . (2.38)

To extract labels from the set X in Eq. (2.37), the label extraction function L (X) is

defined as follows

L (X)≜{L (x) ∶x ∈X} (2.39)

where L ∶ X × Lk → Lk is the projection that maps from a labelled RFS to the labels

and satisfies L(x, `) = `. The distinct label indicator is denoted as,

∆ (X)=δ∣X∣ (∣L (X)∣) , (2.40)

Figure 2.2: An illustration of label assignment for tracks of births and spawnings. Two
tracks born at time 1 and a track born at time 3 are labelled as (1,1), (1,2), and (3,1)
while a track spawned from track (3,1) at time 5 is assigned the label ((3,1)5,1) [34, 97].

Definition 1. A labelled RFS with state space X and a discrete label space L is an RFS

on X ×L, such that each realisation X has distinct labels, that is, a realisation X of a

labelled RFS always satisfies ∆ (X) = 1.

In the following paragraphs, two specific classes of labelled RFSs, the labelled
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multi-Bernoulli (LMB) and the GLMB [24] are defined.

Definition 2. [24, 101] An LMB RFS is a labelled RFS with state space X and discrete

label space L, which is distributed according to the following the density

π (X)=∆ (X)ω (L (X))[p (⋅)]X (2.41)

where

ω (L)=∏
`∈L

1L (`) r(`)
1 − r(`) ∏

`∈L
(1 − r(`)) (2.42)

p (x,`)=p(`) (x) (2.43)

where r(`) is the existence probability of the target and p(`) (⋅) is the probability density

corresponding to label `∈L.

Definition 3. [24] A GLMB RFS is a labelled RFS with state space X and discrete label

space L, which is distributed according to

π (X)=∆ (X)∑
c∈C

[p(c)]
X
ω(c) (L (X)) (2.44)

where C is a set of arbitrary discrete indexes, and ω(c)(L) and p(c) satisfy:

∑
L⊆L

∑
c⊆C

ω(c)(L)=1, (2.45)

∫
x∈X

p(c)(x,`)dx=1. (2.46)

Eq. (2.44) shows that, a GLMB can be clarified as a mixture of multi-target exponen-

tials. Each mixture component is a product of a weight ω(c) (L (X)) with a multi-target

exponential [p(c)]X , where p(c) is a probability density of each target.

The cardinality distribution and the intensity function (the PHD) of a GLMB RFS

are computed as follows (see Proof. in [24]).

ρ (n)= ∑
L∈Fn(L)

∑
c∈C

ω(c) (L) (2.47)

υ (x)=∑
c∈C
∑
`∈L
p(c) (x,`)∑

L∈L
1L (̀ )ω(c) (L) . (2.48)
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Remark 4. It can be observed from Definition 2 and Definition 3 that when the GLMB

RFS consists of a single component, it is an LMB RFS. It means the LMB is a singular

version of the GLMB.

The δ−GLMB given in the following definition is a stronger form of the GLMB filter

for more efficient implementation of the multi-target GLMB tracker.

Definition 5. [24] A δ−GLMB RFS with state space X and label space L is a special

case of the GLMB RFS with

C=F (L)×Ξ

ω(c) (L)= ω(I,ξ) (L)= ω(I,ξ)δI (L)

p(c)=p(I,ξ)=p(ξ)

in which Ξ is a discrete space. A δ−GLMB RFS is distributed according to,

π (X)=∆ (X) ∑
(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI (L (X))[p(ξ)]
X
, (2.49)

where each I ∈ F (L) is a set of labels of tracks, each ξ ∈ Ξ denotes an association

map history up to current time, each p(ξ) (⋅, )̀ represents a probability density of the

kinematic part of state of track ` for the association map history ξ. The hypothesis that

the set I has an association map history ξ is denoted by the pair (I,ξ). Each weight

ω(I,ξ) is non-negative representing the probability of hypothesis (I,ξ) with

∑
I,ξ

ω(I,ξ)=1.

The cardinality distribution of a δ−GLMB is defined as:

Pr (∣X∣ = n)=∑
I,ξ

ω(I,ξ)δn [∣I∣] .

The track with label ` ∈ L has its existence probability r (̀ ) and probability density
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p (x,`) given as follows:

r (`) =∑
I,ξ

1I (`)ω(I,ξ),

p (x,`) = 1

r (`)∑I,ξ
p(ξ) (x,`)1I (`)ω(I,ξ).

2.4.1 Standard labelled multi-target dynamic model

Given a labelled state x = (x,`) at the current time stepm this state can exist and evolve

to a new state x+ = (x+,`+) at the next time step with survival probability pS (x,`) and

transition probability density fS,+ (x+∣x,`) δ` (`+). However, the state x can ceases with

probability qS (x, `) = 1 − pS (x, `). It should be noted that a labelled state changes its

kinematic part in the transition only, but its label is preserved.

Following [24, 97], the multi-target transition density for the surviving target set

XS is given by

fS,+ (XS,+∣X) = ∆ (XS,+)∆ (X)1L(X) (L (XS,+))[ΦS,+ (XS,+; ⋅)] (2.50)

where

ΦS,+ (XS,+∣x, `) = (1 − pS (x, `)) (1 − 1L(XS,+) (`)) + ∑
(x+,`+)∈XS,+

δ` (`+)pS (x, `) fS,+ (x+∣x, `)

(2.51)

Similarly, at the next time step, for each `+ ∈ B+, a new target with state (x+,̀ +) can

be born with probability pB,+ (`+) and density fB,+ (x+,`+) or unborn with probability

qB,+ (`+) = 1−pB,+ (`+) the setB of new targets born at the next time step is distributed

according to

fB,+ (B) = ∆ (B)ωB,+ (L (B))[pB,+]B . (2.52)

In Eq. (2.52), setB is modelled as an LMB RFS. Hence, the birth weight ωB,+ (⋅) and the

single target birth density pB,+ (⋅, `) are given as in Eq. (2.42) and Eq. (2.43), respectively.

Note that the label space B of newborn targets and label space L of the survival targets

are disjointed (i.e., L ∩B = ∅).

The labelled multi-target state X+ is the disjoint union of survivals and new births
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as follows:

X+=XS,+ ⊎XB,+. (2.53)

Assuming surviving targets and new births are independent, then the multi-target

transition density is described by [24]:

f+ (X+∣X) = fS,+ (XS,+ ∩ (X ×L)∣X)fB,+ (XB,+ − (X×L)) (2.54)

2.4.2 Standard labelled multi-target measurement model

Assuming that, each detection from sensor(s) is not dependent of other detections and

clutter, and conditional onX , the single-sensor multi-target likelihood is presented by

[24, 97]:

g (Z∣X)∝∑
θ∈Θ

1Θ(L(X)) (θ)[ψZ (x,`;θ)]X (2.55)

where Θ is the space of positive 1 - 1 mapping θ ∶ L→ {0,1,. . . ,∣Z∣} , such that [θ (j)=θ (i)>0]⇒

j = i (meaning that each measurement is assigned to a maximum of one target), and

Θ (I) is the subset of Θ with domain I. The function ψZ (x,`;θ) is given by [24]

ψZ (x,`;θ)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pD(x,̀ )g(zθ(`)∣x,̀ )
κ(zθ(`))

, if θ (`)>0

1 −pD (x, `) if θ (`)=0.

(2.56)

where κ (⋅) is the clutter intensity.

2.5 GLMB filter

The central idea of the labelled RFSs concept is that each kinematic part of the target

state is augmented with a unique label (a distinct identity) so that the unique trajectory

of each target can be identified. The GLMB filter has been developed in [24, 97] using

the labelled RFSs concept to model the multi-target state to address the problem of

tracking target trajectories. Since the GLMB filter can guarantee propagating target

tracks with unique labels, it is a true multi-target Bayes filter [25]. The GLMB has

been proved in [24] that it is an exact closed-form solution to the multi-object Bayesian

estimation. Furthermore, it brings on a first computationally tractable exact solution

that has proved to be Bayes-optimal by generalising the concept of the RFSs to that

of the labelled RFSs [16]. Consequently, the GLMB filter has proved to have Bayes
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optimal track management [25].

The GLMB filter has also been used to solve several practical application problems

in multi-target tracking. Moreover, the benefits of this filter are demonstrated in several

applications in other fields of study, for instance, computer vision [39, 102], cell biol-

ogy [31, 32, 35, 49, 103], simultaneous localisation and mapping (SLAM) [37, 38], and

for the control and collaboration of multiple drones [46, 104]. Further, extensions of

the GLMB filter have been used to handle track-before-detect (TBD) [28, 29], spawning

objects [31, 34, 35], merged measurements [27, 105, 106], extended objects [30, 107, 108]

centralised multi-sensor tracking [22], distributed tracking [36, 109, 110]. , and multi-

object state smoothing [41]. The GLMB filter has been studied with sensor control

problems for single-sensor [111] and multiple sensors [112–115]. The GLMB filtering

has also been applied with several methods to manage the problem of multiple sensors,

such as the fusion methods for cooperation of sensors [116, 117], the GCI method for

multi-target data fusion [109, 118], the Cauchy-Schwarz divegence for passive sensor

management [119, 120], an unified method for multi-sensor management [121], and

correlations between two labelled multi-target systems [122]. Particularly, the effec-

tiveness of the GLMB filter has clearly demonstrated in the application of simultane-

ously tracking over a million 2D targets per scan on-the-fly in a significant clutterred

environment using off-the-shelf computing equipment[26]. Therefore, the GLMB filter

is reckoned the most efficacious multi-object tracker currently available [23].

There are two implementations of the GLMB filter: the separate prediction update

process and the joint prediction update process, as given in [24, 40]. The preliminary

work of the author on the GLMB filter using a separate prediction update process has

been reported [68]. This section represents the separate prediction update implementa-

tion of the GLMB filter and summarises the main points of the joint prediction update

process. The details of the GLMB filter with joint-stage are given in the next chapter.

2.5.1 Separate prediction update GLMB filter

GLMB prediction

Given the multi-target filtering density is a δ−GLMB with the form of Eq. (2.49) at

the current time step, then the predicted multi-target density at the next time step is

also a δ−GLMB, and can be computed under the standard multi-target dynamic model



GLMB FILTER 29

Eq. (2.53) as follows [24, Proposition 10]:

π+ (X+)=∆ (X+) ∑
(I+,ξ)∈F(L+)×Ξ

ω
(I+,ξ)
+ δI+ (L (X+))[p(ξ)+ ]

X+
(2.57)

where

ω
(I+,ξ)
+ =ω(ξ)

S (I+∩L)ωB (I+∩B) , (2.58)

p
(ξ)
+ (x,`)=1L(`)p(ξ)S (x,`) + (1 − 1L (`))pB (x, `) , (2.59)

p
(ξ)
S (x,`)=

⟨pS (⋅,`)f (x∣⋅, `) ,p(ξ) (⋅,`)⟩
p̄
(ξ)
S (`)

, (2.60)

p̄
(c)
S (`)=∫ ⟨pS (⋅,`)f (x∣⋅, `) ,p(ξ) (⋅,`)⟩dx, (2.61)

ω
(ξ)
S (L)= [p̄(ξ)S ]

L
∑
I⊆L

1I (L)ω(I,ξ) [q(ξ)S ]
I−L

, (2.62)

q
(ξ)
S (`)= ⟨qS (⋅,`) ,p(ξ) (⋅,`)⟩ (2.63)

In principle, the number of predicted components in the GLMB filtering density is large

since it involves all combinations of target survivals, newborn targets, deaths. For the

efficient implementation of the prediction, approximations must be adopted to increase

diminish the computational requirements by cutting the low-weight components. To

generate the best hypotheses with the highest weights for each parent hypothesis (I, ξ),

the K−shortest path algorithm has been applied in [24]. This algorithm allows finding

the K number of paths between two nodes in a weighted graph with minimum costs

[123].

Generally, the surviving target weights are larger than that of the newborn targets;

components with the newborn target would be dropped [97]. When the number of

predicted components is insuficient, the hypothesis with newborn targets maynot be

retained; consequently, the filter may not detect newborn targets [97]. In the GLMB

filter implementation, the group of newborn targets and the surviving targets are con-

sidered independently; then, the best hypotheses for each group can be generated by

solving the twoK−shortest path problems separately for these two groups. The overall

best predicted hypotheses are created by combining these two groups of hypotheses.

This method of implementation is intuitive and highly parallelisable and can compute

the best terms of predictions.
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GLMB update

Given that the predicted multi-target density is a δ−GLMB filtering density with the

form of Eq. (2.49) at the curent time step and a given set of measurement Z, then the

updated multi-target density is also a δ−GLMB, and is calculated as follows [24, Propo-

sition 11]:

π (X∣Z)=∆ (X) ∑
(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

ω(I,ξ,θ) (Z)δI (L (X))[p(ξ,θ) (⋅∣Z)]
X

(2.64)

where

ω(I,ξ,θ) (Z)=
δθ−1({0∶∣Z∣})(I)ω(I,ξ)[p̄(ξ,θ)Z ]

I

∑
(I,ξ)∈F(L)×Ξ

∑
θ∈Θ

δθ−1({0∶∣Z∣}) (I)ω
(I,ξ)
k [p̄(ξ,θ)Z ]

I
, (2.65)

p(ξ,θ) (x, `∣Z)= p
(ξ) (x,`)ψZ (x,`;θ)

p̄
(ξ,θ)
Z (`)

(2.66)

p̄
(ξ,θ)
Z (`)=⟨p(ξ) (⋅, `) ,ψZ (⋅,`;θ)⟩ . (2.67)

The association map function θ ∶L → {0,1, . . . , ∣Z ∣} belongs to the association map

space Θ, such that θ (i) = θ (j) > 0 implies i = j. This condition implies that each track

can only generate at most one measurement at each time step. ψZ (x,`;θ) is given in

Eq. (2.56).

Theoretically, entire possible associations of measurements to targets must be in-

volved in the update stage of the GLMB filter. However, these associations embrace

the generating and updated components. Hence, the number of associations is too

large and increases because of the increases in the number of targets and measure-

ments. Measurement gating and pruning need to be used to reduce the calculational

expense in the update state and to delete the negligible components and keep the nec-

essary posterior GLMB components using a specific threshold.

A technique called Murty’s ranked assignment algorithm has been proposed in [24]

to implement the truncation with the benefit of not having to propagating all the com-

ponents in the recursion. This technique [124] is an extension of the Hungarian method

[125] used to solve the optimal assignment problem for the best assignments. Using
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Murty’s algorithm in tracking requires a cost matrix with the costs of each object-to-

measurement mapping. An other advantage of the Murty’s algorithm is that it can ob-

tain a given number of the best components (i.e., the components with highest weights)

of the multi-target filtering density without comprehensively generating all probable

mappings. However, the complexity of the GLMB filter implementation depends on

the complexity of Murty’s algorithm, which is quartic in the number of measurements

[24].

2.5.2 Joint prediction update GLMB filter

The standard GLMB filter with two-stage implementation described in Section 2.5.1

requires performing truncations of the GLMB densities in prediction and update stages

independently; it is intuitively and structurally inefficient. Specifically, resolving a

ranked assignment problem for individual term of the predicted GLMB to perform

truncation in the update step results in wasted computations. Since the summation

of the predicted GLMB is truncated separately from the update stage, a meaningful

proportion of the predicted terms can generate updated terms that have minor weights

[40]. Further, as Murty’s ranked assignment algorithm applied to remove insignificant

components in the update stage has a complexity (at best) of quartic of the number of

measurements, large computational resources are wasted. The implementation of this

algorithm in [40] has been proposed using a joint prediction update step to mitigate

computational wastage. The details of this filter are given in Section 3.2.1.

2.6 MS GLMB filter

The Bayesian approach is not only applied to solve the multi-target tracking problem

using single sensor; it is also extended to handle the tracking problem using multiple

sensors. The final objective in the Bayesian approach is to construct the multi-target

posterior probability density given the entire of the noisy measurements reported by

the sensors. As this posterior probability density involves entirely available statisti-

cal information, it is a complete solution to the multi-target problem using multiple

sensors [126, Chap. 15].

In the RFS framework, among several recently proposed multi-sensor multi-target

filters [14, 16], the centralised MS GLMB filter [22] is considered state-of-the-art. While

the Bayes recursive filters used in multi-sensor multi-target tracking usually consist of
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two stages (prediction and update), the MS GLMB filter applies the joint prediction

update for its implementation. This results in a faster and more efficient implementa-

tion with quadratic complexity in the number of hypothesised targets but linearity in

the total number of observed data from all sensors. This section briefly summarises

the main points of this MS GLMB filter.

2.6.1 Multi-sensor multi-target observation model

In the problem of tracking multiple targets using multiple sensors, the likelihood func-

tion in Eq. (2.55) is extended to the multiple sensors case. This concept of this extension

has been introduced in [22]. It is based on the assumption that, V sensors labelled from

1 to V are used in the surveillance area, and all sensors are independent. Particularly,

each single target state x can be detected by a sensor vth ∈ {1 ∶V } with probability of

detection p(v)D (x) and generates a measurement z(v)j ∈ Z(v) with likelihood g(v)D (z(v)∣x),

where Z(v) = z(v)
1∶∣Z(v)∣ ∈Z be the set of measurements. However, this single-target state

can also be miss-detected with probability 1 − p(v)D (x) and generate an empty value

of measurement. Moreover, the sensor can generate measurements from false alarms,

which are different from actual targets, then the set Z(v)may consist of these measure-

ments. The set of measurements originated from false alarms can be modelled by a

Poisson RFS with intensity κ(v). The standard multi-target likelihood function for sen-

sor v is described as follows [24, 97]

g(v) (Z(v)∣X)∝ ∑
θ(v)∈Θ(v)

1Θ(v)(L(X))(θ(v))[ψ
(v,θ(v)○L(⋅))
Z(v) (⋅)]

X

, (2.68)

where: the association maps θ(v) ∶ L → {0 ∶ ∣Z(v)∣} is positive 1 - 1 (i.e., maps satisfy the

condition that a distinct agurment is mapped to a distinct positive value);θ(v)○L (x) =

θ(v) (L (x)); Θ(v) is the set of θ(v); given a domain I , the subset of Θ(v) is defined as

Θ(v) (I); and:

ψ
(v,j)
{z

1∶M(v)}
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p
(v)
D (x)g(v)(zj∣(x,̀ ))

κ(v)(zj)
if j = 1 ∶M (v)

1 − p(v)D (x) if j = 0.

(2.69)

The map θ(v) prescribes that a target with label ` generates an observation zθ(`) ∈ Z(v),

with miss-detected targets allocated to 0. The positive 1 - 1 characteristic give the

meaning of the θ(v) that it is 1 − 1 on the set of detected labels (i.e., {` ∶ θ(v) (`) > 0}),

and ensures each target generate at most one measurement in Z(v). For the conve-
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nience of representation, the notations in Eq. (2.55) is re-applied in this section with

the superscript (v) added to imply the index of the sensor. Assuming that all sensors

are independent from each other conditionally, 1, the abbreviations used in multi-target

tracking using multiple sensors are given as follows:

Z ≜(Z(1), . . . ,Z(V )) , (2.70)

Θ≜Θ(1)×⋯×Θ(V ), (2.71)

Θ (I)≜Θ(1) (I)×⋯×Θ(V )(I) , (2.72)

θ≜(θ(1),. . . ,θ(V )) , (2.73)

1Θ(I)(θ) ≜
V

∏
v=1

1Θ(v)(I) (θ(v)) , (2.74)

ψ
(j(1),...,j(V ))
Z (x,`) ≜

V

∏
v=1

ψ
(v,j(v))
Z(v) (x,`) , (2.75)

the multi-sensor multi-target likelihood now can be simplified as follows:

g (Z∣X) =
V

∏
v=1

g(v) (Z(v)∣X)∝∑
θ∈Θ

1Θ(L(X)) (θ)[ψ
(θ○L(⋅))
Z (⋅)]

X
. (2.76)

Note that, the extended association map θ with multiple sensors is also positive 1− 1 if

all other terms θ(i), (i = 1, . . . , V ) , are positive 1 − 1, and θ(v) ○L (x) = θ(v) (L (x)).

The truncation technique must be used to truncate the low-weight components at

every single step to prevent the exponential increase in the number of terms in the

GLMB filtering density. By preserving the highest weighted components, the compo-

nent truncation minimises the L1 approximation error [97] and can be formulated as

a multi-dimensional assignment problem [127] which is NP-hard in the implementa-

tion of the MS GLMB. A two-sensor GLMB filter implementation using Murty’s al-

gorithm was introduced in [128]. This solution has a computational complexity of

O ((m(1)m(2))4) .

An algorithm exploiting the Gibbs sampler in [40] for truncating the GLMB sum

using joint prediction update GLMB filter in the MS GLMB filtering density was pro-

posed in [22]. This method is more efficient than Murty’s algorithm since its complex-

1 More precisely, given the (multi-target) state, the uncertainty (which is caused by measurement noise,
misdetections and false alarms) from individual sensor is self-dependent, meaning that the sensors donot
intervene or impact on each other when receiving the measurements or detections.
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ity is linear in the total number of observations and quadratic in the number of hy-

pothesised targets. Hence, this implementation is particularly advantageous in a jam-

packed clutterred environment where a high number of measurements is presented

[25]. Further developments using Gibbs sampling, based on minimally Markovian

stationary distribution to truncate insignificant components of the GLMB, was intro-

duced in [22]. In this development, the stationary distribution has been used as the

’importance function’ for sampling components, as its support involves one of the op-

timal sampling functions [22]. Most importantly, this algorithm results in an online

multi-sensor multi-target tracking with a computational complexity ofO (TP 2∏V
s=1m

(s)),

where P is the number of hypothesised tracks and T is the number of sampled solu-

tions from the Gibbs sampler [22], making it a very applicable and scalable solution in

practice.

2.7 GLMB smoother

The GLMB has been further extended to the multi-scan version, which eliminates track

fragmentation an important drawback in multi-target tracking filters and significantly

improves tracking performance with the smoothing-while-filtering algorithm [41]. The

state-of-the-art GLMB smoother involves the (labelled) posterior density instead of

the filtering density to estimate the multi-target state; therefore, it results in a signifi-

cantly better estimation of multi-target trajectories than the conventional Bayes filters.

Moreover, this smoother can be efficiently implemented based on Gibbs sampling and

overcomes the N-P hard multi-dimensional assignment problem. While the traditional

multi-scan algorithms can handle up to 10 scans, the technique described in [41] can

handle 100 scans. The details of the GLMB smoother have been reported in [41].

The recursive multi-scan GLMB filter initiates newborn trajectories, updates sur-

viving trajectories, ceases vanishing trajectories, and retains trajectories that disap-

peared previously. New trajectory initiations and the update of survival trajectories

in the multi-scan GLMB recursion are identical to those of the recursion of the GLMB

filter without marginalisation of bygone labels and kinematic target states [41]. Since

the computation of smoothing GLMB posterior with more than two scans is NP-hard

problem, one of the proposed solutions for this problem is Gibbs sampling. The details

of this technique when applied to multi-scan GLMB recursion are described in [41].
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While the GLMB smoother has several advantages, it has a high memory require-

ment and complexity. Currently, the GLMB smoother is adopted to the problems of

single-sensor multi-target tracking with prior knowledge of background information.

This allows further investigations of the GLMB smoother in accommodating unknown

background information and in multi-sensor multi-target tracking scenarios.
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CHAPTER 3

MULTI-TARGET TRACKING WITH
AN UNKNOWN CLUTTER RATE

This thesis aims to solve the multi-target tracking problem with unknown clutter,

unknown detection probability and unknown birth model. Since this problem is

generally complicated, the simpler problem of unknown clutter rate is first addressed

in this chapter to improve the readability and serve as a building block for more com-

plex problem with several unknown parameters.

This chapter presents a Bootstrapped-GLMB filter based on the techniques of the

λ-CPHD filter [96] and the conventional GLMB filter [24] to estimate multi-target tra-

jectories without prior information on clutter rate. Specifically, the λ-CPHD is im-

plemented to estimate the unknown clutter rate. The resultant estimate is then boot-

strapped into the GLMB filter to track target trajectories. Provided that the fluctuation

of this unknown parameter varies slower than the rate of measurement data update,

the Bootstrapped-GLMB filter can adaptively learn the background parameter while

filtering. The outcomes of this chapter have been published in the author’s conference

paper [69].

3.1 Introduction

In multi-target tracking, clutter statistics or false alarms are accounted the remarkable

source of uncertainty that highly influences the effectiveness of a tracker [96]. Clutter is

the set of false measurements that are not generated from actual targets. As the clutter

statistics randomly vary with time, the clutter intensity is an unknown information.

Therefore, the assumption on a prior known knowledge of the clutter intensity does

not hold in practical applications. Any mismatch in clutter parameter leads to the

poor implementation of the tracker. Pratically, this parameter must be estimated from

37
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training data or tuned manually [96].

In the literature, there are several proposed filters built on the premise of the RFS

approach to implement multi-target tracking with unknown information on the clutter

rate [96, 129]. In [130], the author proposed using the algorithm of [96] to estimate the

clutter rate, then bootstrapped the resulting value into the CPHD filter [18]. In [129],

a multi-Bernoulli filter has been employed to estimate these unknown parameters us-

ing the same idea with the robust CPHD filter. However, these filters cannot produce

target tracks. Conversely, the GLMB filter can handle unknown clutter rates by consid-

ering clutter false targets which are different from the actual targets [131]. However,

since data association needs to be implemented on these two types of targets, the com-

putational expense is significant. Other methods based on GLMB filter that do require

the clutter rate to be known include the TBD approach [28, 29] and a bootstrapping

method with a robust multi-Bernoulli filter [132]. This chapter contributes an efficient

tracker that can produce target trajectories and accommodate the unknown clutter rate

on-the-fly.

The method in this chapter is to utilise the advances of the existing filters to track

target trajectories efficiently without knowing the clutter statistics. Specifically, this

method exploits the advantage of the λ−CPHD given in [96] to accommodate the ran-

domness of clutter rate and the benefit of the GLMB filter [24] in tracking target trajec-

tories. The structure of this filter is demonstrated in Figure 3.1. Specifically, by running

the λ−CPHD independently to estimate the clutter rate only before bootstrapping into

the conventional GLMB filter, the resultant filter can track target trajectories with low

computational cost.

Section 3.2 presents the concept of using the bootstrapping method to handle the

unknown information on clutter rate. Specifically, the combination of the prediction

and update stages for the main filtering process of the GLMB filter is presented in Sec-

tion 3.2.1. Section 3.2.2 represents the basis of the proposed bootstrapping method for

accommodating the unknown clutter rate. The quantitative studies outlined in Sec-

tion 3.3 examine the accuracy and effectiveness of the proposed bootstrapping method

for the theoretically linear dynamic model and the practically nonlinear dynamic model

when applied to the tracking of multiple marine vessels. Last but not least, Section 3.4
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concludes this chapter.

3.2 Bootstrapped filter with an unknown clutter rate

This section provides the details of the Bootstrapped-GLMB filter that is capable of

tracking multi-target trajectories with no prior knowledge of clutter rate. Particularly,

as shown in Figure 3.1, the λ−CPHD filter is adopted to estimate the value of the clut-

ter rate then this estimated value is bootstrapped into the GLMB filter. The standard

GLMB filter is used as the main process of generating target trajectories. Such a com-

bination is benefited from the low complexity of the CPHD filtering implementation

in estimating clutter rate online and the capability of tracking target trajectories using

labelled RFS formulation of the GLMB filter.

Figure 3.1: The overall diagram for Bootstrapped-GLMB estimator with an unknown
clutter rate

3.2.1 GLMB filtering formulation

Given the standard model Eq. (2.53) of the multi-target dynamic system, and the multi-

target filtering density is a GLMB density as given in Eq. (2.49) at the current time step,

i.e.,

π (X) = ∆ (X) ∑
(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI (L (X)) [p(ξ)]
X

(3.1)

The joint prediction update GLMB filter is constructed by combining the separate

prediction and update stages presented in Section 2.5.1 into a single stage. Hence, the
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resulting measurement-updated GLMB density is described by [40]

π+ (X+∣Z+)∝ ∆ (X+) ∑
I,ξ,I+,θ+

ω(I,ξ)ω(I,ξ,I+,θ+)
Z+ δI+ [L (X+)] [p(ξ,θ+)Z+ ]

X+
, (3.2)

where ξ ∈ Ξ, I ∈ F (L) , I+ ∈ F (L+) , θ+ ∈ Θ+ (I+) is a positive 1 - 1 association map

θ+ ∶ I+ → {0 ∶ ∣Z+∣} with Z+ as set of observed measurements at the next time step, and

ω
(I,ξ,I+,θ+)
Z+ = 1Θ+(I+) (θ+) [1 − p̄

(ξ)
S ]

I−I+ [p̄(ξ)S ]
I∩I+ [1 − rB,+]B+−I+ rB+∩I+B [ψ̄(ξ,θ+)

Z+ ]
I+

(3.3)

p̄
(ξ)
S (`) = ⟨p(ξ) (⋅, `) , pS (⋅, `)⟩ (3.4)

ψ̄
(ξ,θ+)
Z+ (`+) = ⟨p̄(ξ)+ (⋅, `+) , ψ(θ+(`+))

Z+ (⋅, `+)⟩ (3.5)

p̄
(ξ)
+ (x+, `+) = 1L (`+)

⟨pS (⋅, `+) f+ (x+∣⋅, `+) , p(ξ) (⋅, `+)⟩
p̄
(ξ)
S (`+)

+ 1B+ (`+)pB,+ (x+, `+) (3.6)

p
(ξ,θ+)
Z+ (x+, `+) =

p̄
(ξ)
+ (x+, `+)ψ(θ+(`+))

Z+ (x+, `+)

ψ̄
(ξ,θ+)
Z+ (`+)

(3.7)

The multi-target filtering density in Eq. (3.2) involves all possible combinations

of newborn, disappeared, and surviving targets together with associations of new

measurements to hypothesised labels [40]. To propagate Eq. (3.2), for each hypoth-

esis (I, ξ) in the filtering density, a set of pairs (I+, θ+) ∈ F (L+) × Θ+ (I+) with sig-

nificant weights ω(I,ξ,I+,θ+)
+,Z needs to be generated without exhaustively searching the

space F (L+) × Θ+ (I+). A Gibbs sampler, a special case of the Metropolis Hasting

Markov Chain Monte Carlo (MCMC), proposed in [40] is adopted to perform this

task. This sampler is capable of computationally efficiently breaking down a complex

high-dimensional problem into simple, low-dimensional problems. Particularly, in the

GLMB filter, the Gibbs sampler selects significant components (thoses with the highest

weights) of the GLMB filtering density only; this significantly reduces the computa-

tional cost.

Given the GLMB filtering density in Eq. (3.2), the estimated multi-target state or

trajectories can be extracted [24, 31]. Note that the standard GLMB filter formulation

uses the assumption on a known and fixed average intensity of clutter. In this work,

this parameter is unknown and time-varying, it is estimated and bootstrapped into
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the standard GLMB filter from an independently run λ-CPHD filter as introduced in

Section 3.2.2. Both the GLMB and λ−CPHD filters in this section are implemented

using Gaussian mixtures.

For the convenience of representation, in the following, the Gaussian distribution

is denoted by N (x;m,P ), where m and P are, respectively, the mean and covariance

of variable x. The unlabelled target state is distributed according to Gaussian distribu-

tion, (i.e., p (x, `) = N (x,m,P )). The evolution of the unlabelled target state follows a

Gaussian transition density, that is:

f+ (x+∣x, `+) = N (x+, F+x,Q+) (3.8)

where F+ is the matrix of state transition, andQ+ is the covariance of process noise. The

measurement likelihood of generating a noisy measurement z from a detected target is

given by:

g+ (z∣x+, `+) = N (z;H+x+,R+) . (3.9)

where H+ is the measurement matrix, and R+ is the covariance of measurement noise.

The models Eq. (3.8) and Eq. (3.9) are then substituted into Eq. (3.5),Eq. (3.6), and

Eq. (3.7) to compute the GLMB filtering density. Note that, in the performance of the

joint prediction update GLMB estimator, the birth process follows a labelled Poisson

RFS with intensity νB,+ =
n

∑
i=1

ωB,+N (z;mB,+, PB,+) [24] wheremB,+ is the mean of Gaus-

sian birth density of the birth component, and PB,+ is the birth density covariance of

the birth component. The detection probability is state-independent and assumed to

be known and fixed. The clutter is distributed according to Poisson RFS with intensity

κ+ (z) = λcU (Z) with λc be the clutter rate and U(Z) be a uniform density on the space

Z of measurements.

3.2.2 Clutter rate estimation

The basic idea in the λ−CPHD filter is to consider clutter as ’clutter-generated targets’

or ’false targets’ that are different from actual targets, then model them using an RFS.

That is, clutter targets involve new appearances, disappearances and survivals, as well

as detections, misses and measurements. The set of clutter targets also exhibits a sim-

ilar dynamic process as an actual target set. Since the sensor measurements involve
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the information on actual targets and clutter-generated targets, the multi-targets state

is a finite set of these two types of targets estimated using data given in the sequence of

measurement sets. A CPHD filter extended from the ordinary CPHD recursion to acco-

modate the unknown information on clutter rate has been given in [96]. This filter can

implement in an exact closed-form solution to the Bayesian recursion using Gaussian

mixture techniques.

Using the assumption on the known detection profile, the recursion for estimating

the hybrid target state yields information on the target cardinality, individual actual

target states, and the unknown clutter rate. In this section, the method for estimat-

ing the clutter rate using the CPHD recursion is represented. In this CPHD recursion,

the intensity functions of the actual and clutter-generated targets are separately prop-

agated jointly alongside with the cardinality distribution of all targets.

Since there are actual and clutter-generated targets in the multi-target state space,

some definitions are given to facilitate the discussion on handling the unknown clutter

rate using the λ−CPHD filter. These definitions are then used to recursively compute

the intensity and cardinality distribution in the λ−CPHD recursion. Denote X(0) be

the state space for clutter-generated targets; then the hybrid state space is the disjoint

union of two state spaces:

X(c̄) = X(1) ⊎X(0). (3.10)

Suppose that, the actual targets and the clutter-generated targets are statistically inde-

pendent, the hybrid multi-target state denoted by X(c̄) ∈ F (X(c̄)) involves these two

types of targets. Noting that these target states are the unions of corresponding surviv-

ing and new-born target states as described in Eq. (2.12). The evolution of the hybrid

multi-target state at the next time step is denoted by X(c̄)
+ ∈ F (X(c̄)).

Similarly, clutter-generated targets are assumed to have the same spatial measure-

ment distribution, detection and generation probabilities. Furthermore, each clutter-

generated target can generate at most one measurement at each time step [96].

Let ν(c̄)k (⋅) denote the posterior intensity of a hybrid multi-target state at the current
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time step; then, it can be decomposable as follows:

ν(c̄) (x(c̄)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ν(1) (x) , x(c̄) = x

ν(0) (xc) , x(c̄) = xc
(3.11)

where ν(1) (⋅) and ν(0) (⋅) are the posterior intensities for actual and clutter targets,

respectively. Since the posterior intensity ν(0) (⋅) is completely characterised by the

posterior mean number of clutter targets N (0), it is sufficient to recursively propagate

ν(1) (⋅) , N (0), and the posterior cardinality distribution of the hybrid target state ρ(c̄) (⋅)

in the CPHD filter to handle the clutter-generated targets instead of propagating .

The λ−CPHD filter can be implemented to estimate the clutter rate using Gaussian

mixtures or SMC methods. This section represents the implementation of the λ−CPHD

filter using the Gaussian mixture techniques described in [96]. The cardinality distri-

bution of clutter is assumed to be binomial. The λ−CPHD filter can be implemented

with the following assumptions.

● The probability distribution of each actual target state is Gaussian, (i.e., p (x) =

N (x,m,P )), and the state follows the linear Gaussian transition and measurement

models as follows:

f
(1)
+ (x+∣x) = N (x+, F+x,Q+) (3.12)

g+ (z∣x+) = N (z;H+x+,R+) . (3.13)

where F+,Q+ and H+,R+ have been defined under Eq. (3.8) and Eq. (3.9), respectively.

● The survival probability p
(1)
S,+ (⋅) and the detection probability p

(1)
D,+ (⋅) are state

independent.

● The PHD of the actual newborn target RFS is a Gaussian mixture, described by:

ν
(1)
B,+ (x+) =

JνB ,+
∑
i=1

ω
(i)
νB ,+N (x+;m

(i)
νB ,+, P

(i)
νB ,+) (3.14)

where JνB ,+ is the maximum number of Gaussian components corresponding to new-

born targets, ω(i)
νB ,+ is the weight of the ith component corresponding to ith newborn

target, and m(i)
νB ,+ and P (i)

νB ,+ are the mean and covariance of the newborn target x.
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Prediction ∶ [96, Proposition 5] Given the posterior mean number of clutter gener-

ator N (0), posterior cardinality distribution ρ(c̄) and the predicted intensity ν(1) at the

current time step in the form of a Gaussian mixture:

ν(1) (x) =
J

∑
i=1

ω(i)N (x;m(i), P (i)) (3.15)

then the prediction of intensity at the next time step is also a Gaussian mixture and

ν
(1)
+ (x+) = ν(1)B,+ (x+) + p(1)S,+

J

∑
j=1

ω(j)N (x+;m
(j)
S,+, P

(j)
S,+) (3.16)

N
(0)
+ = N (0)

B,+ + p
(0)
S,+N

(0) (3.17)

ρ
(c̄)
+ (n(c̄)) =

n(c̄)

∑
j=0

ρ
(c̄)
B,+ (n(c̄) − j)

∞
∑
l=j
C ljρ

(c̄) (l) (1 − φ)l−j φj , (3.18)

where

φ =
⎛
⎜⎜⎜⎜
⎝

p
(1)
S,+

J

∑
i=1

ω(i) + p(0)S,+N
(0)

p
(1)
S,+

J

∑
i=1

ω(i) +N (0)

⎞
⎟⎟⎟⎟
⎠

(3.19)

and ν(1)+ (x+) is given in Eq. (3.14),

m
(j)
S,+ = Fm

(j), (3.20)

P
(j)
S,+ = Q + FP (j)F T . (3.21)

Update ∶ [96, Proposition 6] Given ν(1)+ (x+) is a Gaussian mixture given by:

ν
(1)
+ (x+) =

J+
∑
i=1

ω
(i)
+ N (x+;m

(i)
+ , P

(i)
+ ) (3.22)

and given the measurement set Z+, the updated values of the intensity, mean number

of clutter-generated targets and hybrid cardinality distribution are given as follows
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ν
(1)
+ (x+∣Z+) = ν(1)+ (x+)

q
(1)
D,+ (x+)

⟨Υ(1)+ [ν(c̄)+ ;Z+],ρ(c̄)+ ⟩

⟨Υ(0)+ [ν(c̄)+ ;Z+],ρ(c̄)+ ⟩

J+
∑
i=1

ω
(i)
+ +N (0)

+

+ ∑
z∈Z+

J+
∑
j=1

ω
(j)
D,+ (z)N (x+,m(j)

+ (z) , P (j)
+∣Z+) , (3.23)

N
(0)
+∣Z+ =

q
(0)
D,+ (x+)

⟨Υ(1)+ [ν(c̄)+ ;Z+],ρ(c̄)+ ⟩

⟨Υ(0)+ [ν(c̄)+ ;Z+],ρ(c̄)+ ⟩
J+
∑
i=1

ω
(i)
+ +N (0)

+

N
(0)
+

+ ∑
z∈Z+

p
(0)
D,+ (x+) g(0)+ (z)

p
(0)
D,+N

(0)
+ g

(0)
+ (z) + p(1)D,+

J+
∑
i=1

ω
(i)
+ q

(j)
+ (z)

N
(0)
+ (3.24)

ρ
(c̄)
+∣Z+ (n

(c̄)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 n(c̄) < ∣Z+∣
ρ
(c̄)
+ (n(c̄))Υ

(0)
+ [ν(c̄)+ ;Z+](n(c̄))

⟨ρ(c̄)+ ,Υ
(0)
+ ⟩

n(c̄) ≥ ∣Z+∣,
(3.25)

where

Υ
(u)
+ [ν(c̄)+ ;Z+] (n(c̄)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 n(c̄) < ∣Z+∣ + u

P∣Z+∣+uΦn(c̄)−(∣Z+∣+u) n(c̄) ≥ ∣Z+∣ + u
(3.26)

Φ+ = 1 −
p
(1)
D,+

J+
∑
i=1

ω
(i)
+ + p(0)D,+N

(0)
+

J+
∑
i=1

ω
(i)
+ +N (0)

+

, (3.27)

ω
(j)
D+ (z) =

p
(1)
D,+ω

(j)
+ q+ (z)

p
(0)
D,+N

(0)
+ g

(0)
+ (z) + p(1)D,+

J+
∑
i=1

ω
(i)
+ q

(j)
+ (z)

, (3.28)

q
(j)
+ (z) = N (z;H+m

(j)
+ ,H+P

(j)
+ HT

+ +R+) , (3.29)

m
(j)
+ (z) =m(j)

+ +K(j)
+ (z −H+m

(j)
+ ) , (3.30)

P
(j)
+∣Z+ = [I −K(j)

+ H+]P (j)
+ , (3.31)

K
(j)
+ = P (j)

+ HT
+ [H+P

(j)
+ HT

+ +R+]
−1
. (3.32)

The estimated mean number of actual targets and estimated mean clutter rate are given
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by

N̂
(1)
+ =

J+
∑
j=1

ω
(j)
+ . (3.33)

λ̂c+ = N (0)
+ p

(0)
D,+. (3.34)

While performing CPHD filtering for an unknown clutter rate, the total number of mix-

ture components exponentially increases with time; then, the pruning and merging of

these mixture components must be implemented. Further, the truncation of posterior

cardinality at a sufficiently high number of components enables a tractable propaga-

tion [96]. The truncation implementation is, therefore, employed. These procedures

are similar to those of the conventional CPHD and PHD filters [18, 78].

3.3 Numerical study

The implementation of the Bootstrapped-GLMB filter is compared to the other three

filters: the λ−CPHD filter [96], the ideal GLMB filter [24], and the robust GLMB filter

[131] to validate its accuracy and effectiveness. These comparisons are conducted with

theoretical linear and nonlinear dynamic models in an unknown clutter rates environ-

ment.

The adjective ′ideal′ is used with the meaning that the filter runs with known and

fixed parameters of clutter rate and probability of detection. The “Robust-GLMB filter”

is defined for the filter given in [131] with a known detection rate and an assumed

unknown clutter rate. Further, clutter statistics in both the ideal-GLMB and Robust-

GLMB are assumed to follow a Poisson RFS with uniform spatial density.

For comparison of the Bootstrapped-GLMB filter with the other three filters men-

tioned, the optimal sub-pattern assignment (OSPA) [133] and the OSPA(2) [26] are ap-

plied. Specifically, the OSPA metric is used to calculate the distance (error) between

the true set of targets and the estimated set of targets at each time step of the filtering

process. The OSPA error consists of two components: the localisation and cardinality

errors.

The OSPA distance d̄(co)p between two finite setsX = {x1, . . . , xm} and Y = {y1, . . . , yn} ∈
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F (X) , (m ≤ n) is defined as follows

d̄(co)p (X,Y ) ≜ ( 1

n
(min
π∈∏n

m

∑
i=1

d(co) (xi, yπ(i))
p + cpo (n −m)))

1
p

(3.35)

where order parameter p ≥ 1 and cut-off parameter co > 0 determine the sensitivity to

outliers and the weighting for errors due to cardinality and localisation, respectively

[133]. d(co) (x, y) ≜ min (co, ∣∣x − y∣∣) ,∀x, y ∈ X, and ∏n denote the set of permutation

on {1,2, . . . , n} , n ∈ N.

The OSPA(2) metric is constructed from the OSPA metric to capture errors between

two sets of tracks over a certain period of time. From the OSPA metric, given two tracks

f, g ∈ U where U is the space of tracks, a base distance is defined as a time-averaged

OSPA distance over a window of length lw as follows [26]

d̃(co) (f, g) ≜ 1

lw

lw

∑
t=1

d(co) ({f (t)} ,{g (t)} ) (3.36)

Given two sets of tracks X = {f (1), f (2), . . . , f (m)}, Y = {g(1), g(2), . . . , g(n)}, where

X,Y ∈ F (U) andF (U) is the space of all finite subsets of U, the OSPA(2) metric is given

as follows [26]

d̃(co)p (X,Y ) ≜ ( 1

n
(min
π∈∏n

m

∑
i=1

d̃(co) (f (i), g(π(i)))
p
+ cpo (n −m)))

1
p

(3.37)

The OSPA metric captures the differences between the set of actual targets and that

of the estimated targets among all four filters. The OSPA(2) metric is used in three

GLMB filters to capture the difference between the true and estimated sets of target

tracks over a certain time window. Since the CPHD filter estimates a set of target states

at each scan only, the The OSPA(2) metric cannot be applied to this filter. In this section,

both OSPA and OSPA(2) have the norm order of p = 1 and cut-off of co = 100m for linear

and nonlinear scenarios. The window length for the OSPA(2) metric is set at lw = 10

time steps .
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3.3.1 Linear dynamic model

For the experiment with linear dynamic model, the tracking scenario involved 12 tar-

gets that follow a linear Gaussian model and move with constant velocities. The

ground truths of the start and end positions of each target track are demonstrated in

Figure 3.2. Each kinematic part of target state is described by a 4D vector with com-

ponents be the target’s position and velocity defined in planar coordinates, i.e, xk =

[px, py, ṗx, ṗy]T , where T is the transpose operator. The information on the position of

a target at each time step is captured in the noisy measurement vector zk = [zx, zy]T .

The linear Gaussian transition density and measurement model for a single target are

given as follows:

f+ (x+∣x) =N (x+;Fx,Q) (3.38)

h (z∣x+) =N (z;H+x+,R+) (3.39)

where F =
⎡⎢⎢⎢⎢⎢⎣

I2 tI2

02 I2

⎤⎥⎥⎥⎥⎥⎦
;Q = σ2

ν

⎡⎢⎢⎢⎢⎢⎣

t4

4 I2
t3

2 I2

t3

2 I2 t2I2

⎤⎥⎥⎥⎥⎥⎦
;H = [ I2 02 ], R = σ2

εI2. In, 0n, and

t denote the n × n identity and zero matrices, and sampling time, respectively. The

standard deviations of the process noise and measurement noise are set at σν = 5m/s2

and σε = 10m.

An area of [−1000,1000]m×[−1000,1000]m is chosen as the surveillance of interest,

that is, the volume of the surveillance area is V = 4 × 106 (m2). The total time steps set

at K = 100 are simulated with t = 1s.

New births for actual targets are assumed to be distributed with labelled Poisson

RFS distribution with intensity ν(1)B (x) = ∑4
i=1 ωBN (x;m

(i)
B , PB) where ωB = [0.04,0.02],

m
(1)
B = [0,0,0,0]T , m(2)

B = [400,−600,0,0]T ,m(3)
B = [−800,−200,0,0]T , m(4)

B = [−200,800,0,0]T

and PB = diag([10,10,10,10]T )2. The survival probability is fixed at pS = 0.99.

In this linear tracking scenario, the detection probability for sensor measurements

is p(1)D = 0.98. For all three filters, clutter returns are generated to a binomial cardinality

with N (0) = 100, p
(0)
D = 0.7, and clutter probability density 1/V is uniform spatial over

the surveillance region. The mean value of the clutter rate is then 70 points per scan,

and the average clutter intensity is γ(0)c = N (0)p(0)D /V = 1.75 × 10−5 (m−2) . Note that
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Figure 3.2: Ground truths of the linear tracking scenario

this value is unknown to the filter. The clutter-generated targets are modelled to the

filter with the mean rate of newborn N
(0)
B = 30, while the deaths are given by the

survival probability of p(0)S = 0.9, and returns are given by detection probability p(0)D =

0.4. The density of clutter returns g(0)+ (z) is assumed to be uniform in the space of

measurements. For the initialisation of the filter, the initial value of intensity for actual

targets is set at zero; then, the number of actual targets is zero. The initial clutter rate is

given by subtracting of the total received measurement at the first time scan from the

average newborn targets and the rate of detections for actual targets.

Note that, the ideal-GLMB filter uses mean clutter rate of λc = 70 returns at each

scan, the average intensity γc = 1.75 × 10−5 (m−2) , and the detection probability pD =

0.98 as known and fixed parameters for its implementation.

Pruning and merging thresholds for Gaussian components at each scan are 10−5

and 4m, respectively. The highest number of Gaussian terms is set at Jmax = 100, and

the joint clutter-actual target cardinality distribution is Nmax = 300 terms.

The evaluation of the implementation of the four filters using the OSPA metric
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over 100 Monte Carlo (MC) runs is shown in Figure 3.3. While all filters estimate the

target state at each time step in the clutter environment well, the implementation of

the Bootstrapped-GLMB filter is slightly better than the robust-GLMB filter and the

λ−CPHD filter. Since the ideal-GLMB is assumed to run with the correct clutter rate, it

has the lowest OSPA errors among all four filters.
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Figure 3.3: Linear tracking scenario: Mean OSPA errors for the four filters.

The comparison of trajectory estimates among three GLMB filters using the OSPA(2)

metric is shown in Figure 3.4. In terms of the miss distance, using OSPA(2) on the es-

timated target positions, the best performance is still the ideal-GLMB filter; however,

there is a small difference between the implementation of the Bootstrapped-GLMB and

that of the Robust-GLMB filter. This result is reasonable since the ideal-GLMB is pro-

vided with the correct clutter rate, and the other two GLMB filters must estimate this

parameter in their implementation. The same number of maximum hypotheses were

used for our Bootstrapped-GLMB and the Robust-GLMB filters. However, since the

Robust-GLMB filter requires more hypotheses to sufficiently capture the data associa-

tions of the actual and clutter targets, the number of hypotheses is exhausted. Hence, it

does not perform as well as our method, which only needs to perform data association
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for actual targets. The cardinality estimations are demonstrated in Figure 3.5. It can

be observed that the proposed Bootstrapped- GLMB filter tends to overestimate the

number of targets when new-born targets appear. This phenomenon might be due to

the high number of clutter measurements and the proposed filter underestimates the

clutter rate. Howewer, this underestimation is unnoticeable and the filter converges to

the correct number of targets rapidly.
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Figure 3.4: Linear tracking scenario: Mean OSPA(2) errors for three GLMB-based fil-
ters.

3.3.2 Nonlinear dynamic model

This subsection describes how the four filters are implemented in the nonlinear dy-

namic model to track 10 marine ships using Doppler measurements with an unknown

clutter rate. Each ship is assumed to move with a constant turn motion model. The

Doppler measurement system involves two spatially distributed receivers and a coop-

erative transmitter. The ground truths, start and end positions of the target trajectories,

as well as the positions of the sensing equipment, are shown in Figure 3.6. Each ship

is presented by a 5D state vector x in the surveillance area x = [µ, µ̇, λ, λ̇, α]T , where:

µ and λ are longitudinal and latitudinal positions of the target, respectively, with µ̇

and λ̇ being their corresponding velocities and α is the course (or turn rate) of the tar-
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Figure 3.5: Linear tracking scenario: Mean estimated cardinality for the four filters.
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Figure 3.6: The groundtruths of the marine ships tracking scenario (○ ∶ initial track
position; ∆ ∶ end track position).
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get. Note that the longitudinal and latitudinal measurements are in degrees (○) and the

distance, speed and time are given in nautical miles (M), knots (kn), and hours (h),

respectively. The transition model for a single target is a Gaussian:

f+ (x+∣x) = N (x+;F (x,α)x,Q) (3.40)

where1

F (x,α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(αt)
α 0

(cos(αt)−1)
α 0

0 cos(αt) 0 − sin(αt) 0

0 − (cos(αt)−1)
α 1 − sin(αt)

α 0

0 sin(αt) 0 cos(αt) 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;Q =
⎡⎢⎢⎢⎢⎢⎣

σ2
αGG

T 0

0 σ2
v

⎤⎥⎥⎥⎥⎥⎦
,G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t2

2 0

t 0

0 t2

2

0 t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.41)

The sample period is set at t = 0.15 (h) and the standard deviations of speed noise

and course noise are σv = 2 (kn) and σα = π/180(rad/h), respectively. The survival

probability is pS = 0.95, and the prediction for the augmented part of the state is set

according to coefficient kβ = 1.1.

The measurement system uses the Doppler effect to measure the speed of a target

at a distance by computing the altered frequency of the returned signals that originate

from the emitting pulses of radio signals and are reflected to a radar after reaching

the target [134]. Specifically in this work, each observed measurement is a 2D vector

z = [z(1), z(2)], where z(s) is the Doppler measurement observed from the sth receiver

which is computed as:

z(s) = −vT
⎛
⎜
⎝
p − p(s)r

∥p − p(s)r ∥
+ p − pt

∥p − pt∥
⎞
⎟
⎠
ft
c
C +w, (3.42)

in which p = [µ,λ]T and v = [µ̇, λ̇]T are the position and velocity of a target; pt =

[µt, λt]T and p(s)r = [µ(s)
r , λ

(s)
r ]T are the positions of the transmitter and the sth receiver,

1 Equation Eq. (3.41) is resulted from the assumption that the surveillance area is far from the two poles.
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respectively. Specifically:

pt = [ 16○58′16′′N 107.02′48′′E ]
T

,

p(1)r = [ 12○22′43′′N 116○28′25′′E ]
T

,

p(2)r = [ 25○22′47′′N 115○07′19′′E ]
T

.

wherew be zero-mean Gaussian noise;w ∼ N (⋅; 0,R), with covarianceR = diag([ 1Hz2 1Hz2 ]
T

),

ft = 300MHz be the frequency of the signal emitted from the transmitter; c = 3 ×

108 (m/s) be the light speed; and C ≈ 1.94 be the unit conversion constant.

Note that in this experiment, each target is dynamic in its direction which is differ-

ent from the other targets. Hence, the value of measurement z(s) in Eq. (3.42) could

either negative or positive in the known interval [−f0,+f0] of the Doppler sensor. Two

receivers share the same measurement space of [−200Hz,200Hz]. Both the state equa-

tion and the measurement equation are highly nonlinear.

The newborn targets are assumed to be distributed with LMB RFS distributions of

parameters fB (x) = {r(i)B , p
(i)
B }

4

i=1
where the common existence probabilities are r(1)B =

r
(2)
B = 0.04,r

(3)
B = r(4)B = 0.02, and p(i)B (x) = N (x, x̂(i)B , PB) with

x̂
(1)
B = [15.6○N,0,113○E,0,0]T ;

x̂
(2)
B = [13.2○N,0,107.5○E,0,0]T

x̂
(3)
B = [18.2○N,0,110.7○E,0,0]T ;

x̂
(4)
B = [22.3○N,0,118.8○E,0,0]T ;

PB = diag ([2′N,30 (kn) ,2′E,30 (kn) ,6π/180 (radh−1)]) .

The surveillance area is Sr = [10○N − 30○N,100○E − 125○E]. The probability that the

sensor can detect a target and generate a measurement is set to p̃(1)D = 0.98, and clutter

returns are generated according to a binomial cardinality distribution with parameters

N (0) = 70 and p(0)D = 0.4 . Therefore, the mean clutter rate is 28 points per scan. Table 3.1

tabulates the initial states of 10 vessels with a random time of birth and death. The

average turn rate is set to ᾱ = π/90(rad/h).
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The implementation of the Bootstrapped-GLMB filter is compared with the three

filters (the ideal-GLMB filter [24], the λ−CPHD filter [16] and the Robust-GLMB filter

[131]). In this experiment, the ideal-GLMB filter uses the fixed and known parameters

pD = 0.98 and λc = 30 points per scan. However, the mean clutter rate λc is unknown

to the other three filters. All filters are initiated with zero intensity of actual targets

and no number of actual targets with the average birth N
(0)
B = 30. The initial clutter

rate is calculated based on the total measurements received at the first time step and

the corresponding values for average birth and detection rate of actual targets for the

linear scenario given in Section 3.3.1.

The comparison results using the OSPA metric are illustrated in Figure 3.7. All fil-

ters accurately estimate target cardinality. In terms of the errors on OSPA miss distance

and localisation, the results of the Bootstrapped-GLMB are almost identical to those of

the ideal-GLMB. The ideal-GLMB filter has the best performance on the OSPA metric

of all filters. This best performance is due to the correct parameters supplied to the

ideal-GLMB filter. While the performances of the λ−CPHD and the Robust-GLMB are

nearly coincident, they are significantly worse than those of the ideal-GLMB filter. The

Robust-GLMB filter shows a higher number of OSPA errors than the Bootstrapped-

GLMB filter. This result might be the consequence of the additional data association

performed in the GLMB recursion due to the measurements of clutter targets. More im-

portantly, the λ−CPHD inherites the CPHD filter downside of the spooky effect, which

causes this filter to temporarily drop tracks due to missed detections and to declare

multiple estimates for existing tracks in place of dropped tracks.

The results of OSPA(2) evaluation with window length lw = 10 among three GLMB-

based filters are given in Figure 3.8. The ideal-GLMB filter has the smallest OSPA(2)

errors as it is assumed using the correct value of clutter rate. The Bootstrapped-GLMB

filter performes target tracking better than the Robust-GLMB in the presence of an un-

known clutter rate. By comparison, the Bootstrapped-GLMB filter performes better on

the OSPA(2) miss distance and cardinality components than the Robust-GLMB filter.

This might arise as while the Robust-GLMB filter uses the same number of hypotheses

as the other two GLMB filters, it needs a higher number of hypotheses to handle mea-

surement clutter targets. The cardinality statistics for three filters over 100 MC trials are

shown in Figure 3.9. This result could be foreseen from OSPA cardinality and OSPA(2)
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Figure 3.7: Comparison of cardinality, location and distance errors for the four filters
using the OSPA metric.
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Figure 3.8: Comparison of cardinality, location and distance errors for the three GLMB
- based filters using the OSPA(2) metric.
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cardinality. In this tracking scenario, the Bootstrapped-GLMB and ideal-GLMB out-

perform the Robust-GLMB and the λ−CPHD filters on the mean estimated cardinality

versus time.
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Figure 3.9: Cardinality estimations for the four filters.

3.4 Conclusion

This chapter presents the tracking algorithm using the bootstrapping method, which

combines the advantages of the existing filters to handle the unknown information on

clutter rate. Using the GLMB filter with an unknown clutter rate requires perform-

ing data association for both actual targets and measurement clutter targets which in-

creases computational expense. The λ−CPHD filter, therefore, is applied to run inde-

pendently with the conventional GLMB filter to accomodate the random variation of

the clutter rate only. Then, the conventional GLMB filter uses this estimated clutter

rate as a known parameter for tracking targets with their identities. Using this simple

combination of the λ−CPHD and the GLMB filters, the computational expense from

the tracking implementation of the GLMB filter with an unknown clutter rate is sig-

nificantly reduced compared to that of the Robust-GLMB filter. The effectiveness and

accuracy of this combination are validated in Section 3.3 for the linear and non-linear
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tracking scenarios. While the former simulates the theoretical linear tracking problem,

the latter tracks multiple marine ships using Doppler measurements. These experi-

ments show that the Bootstrapped-GLMB filter can accurately estimate targets in an

unknown clutter rate environment.
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CHAPTER 4

ADAPTIVE TRACKING USING THE
BOOTSTRAPPING METHOD

This chapter extends the work described in Chapter 3 to provide an online adaptive

multi-target tracker, developed from the Gibbs sampler - based efficient GLMB

filter, that:

• does not need prior information of detection probability

• does not need prior information of joint detection probability and clutter rate

• can initiate new tracks without prior information of birth locations.

Specifically, the unknown detection probability is first considered in the bootstrap-

ping method by using the pD−CPHD filter technique given in [96]. Second, this un-

known parameter and the unknown clutter rate are jointly estimated by an indepen-

dent, robust CPHD filter [96]. The resulting values are then bootstrapped to a standard

GLMB filter [40] for filtering process. Conversely, the method of using the measurement-

driven birth model proposed in [101] is adopted to initiate new tracks at each time step.

The information on measurement-to-track association is obtained from the GLMB fil-

ter. In addition to not requiring prior knowledge of detection probability, clutter rate

and parameters of newborn targets’ model, the proposed algorithm in this work in-

herits all advantages of a labelled RFS filter. The results of this chapter have been

published in the author’s journal articles [70, 71] and [72].

Section 4.1 briefly introduces some existing methods for tracking with unknown

detection probability, jointly unknown detection profile and clutter rate, and unknown

birth model. In Section 4.2, the techniques to accommodate the unknown detection

profile solely and the unknown background (i.e., the jointly unknown detection pro-

61
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file and clutter rate) are presented in Section 4.2.1 and Section 4.2.2, respectively. Sec-

tion 4.2.3 extends the technique reported in Section 4.2.2 to solve the problem of an

unknown background and an unknown birth model. Section 4.3 demonstrates the im-

plementation and efficacy of the proposed algorithm using using numerical studies of

linear and nonlinear models. Finally, Section 4.4 concludes some main points of this

chapter.

4.1 Introduction

In the context of multi-target tracking, adaptive tracking refers to the task of tracking

multiple targets with unknown information on the probability of target detection, clut-

ter statistics, and locations of newborn targets. This problem is generally hard to solve,

because of the increases in state-space dimension and uncertainty. For an unknown

target’s detection probability, current approaches accommodate the this parameter by

augmenting it into the single-target state, then it is jointly estimated alongside with

the single-target state in the augmented state space. Conversely, the clutter rate is es-

timated by considering clutter as the false targets, which is assumed to be different

from and independent of the actual targets. Then, by estimating the clutter set, the

clutter profile can be inferred as described in Section 3.1.Despite the difficulties, sev-

eral filtering approaches used the concept of the RFSs have been proposed to tackle

this adaptive tracking problem in the literature. In [135], the authors introduced a

method to estimate the detection probability online based on the standard CPHD fil-

ter. This method was then further investigated in additionally estimating the clutter

rate as presented in [96]. The resultant algorithm of this investigation is referred to as

the robust CPHD filter. Several approaches constructed based on the other available

filters have also been introduced to estimate these two unknown parameters on-the-fly

such as the Kronecker delta mixture and Poisson (KDMP) filter and the MeMBer filter

[129, 132, 136]. Ong et al. [45], used a new detection model for multiple cameras with

varying detection probability to track people in a 3D setting. Recently, a variation of

the standard GLMB filter has been presented in [131] to address the problem of esti-

mating the unknown information on the background parameters (i.e., the probability

of target detection and clutter rate). Nonetheless, since clutter targets are also included

in the data association, this filter requires large computational memory.

In addition to the two mentioned parameters, the third parameter that significantly



INTRODUCTION 63

affects the accuracy of the tracking algorithm is the model of newborn target locations

(i.e., the model for track initiations). In most of the RFS-based filtering algorithms, the

prior knowledge about the locations and number of newborn targets is assumed to be

known and fixed. The other assumption on homogeneity of the newborn targets in the

field of view is also given to reduce the challenge in the initiation of newborn target

tracks. However, newborn targets can appear randomly in time and places with un-

known number in the surveillance area. Furthermore the intensity of newborn targets

is unknown in practice. Consequently, these assumptions may not hold in practice and

lead to the inaccuracy and inefficiency of the tracker such as biased prediction, large

computational cost, high clutter rate and deferred confirmation of newborn targets

[137]. Moreover, the convergent rate and matching time of the estimates and the actual

targets rely on the correctness of the track initiation. Hence, it is desired to model the

newborn target tracks from the measurement data.

To resolve unknown parameters of the birth model, Maggio and Cavallaro [138]

proposed using the PHD filter to spatially adapt new births and clutter intensities us-

ing the Gaussian mixture model. Based on the SMC-PHD/CPHD filter, Ristic et al.

[139] proposed a method to adapt with the variation in the intensity of newborn tar-

gets at each time scan by distinguishing the newborn and persistent targets using the

measurement-driven birth intensity. Beard et al. [140] proposed a method acommo-

dating the benefit of measurement origins in the state space to initiate the tracks of

newborn targets. This method is resulted in a partially uniform birth model applying

for the PHD and CPHD filtering recursions. Huang et al. [137] introduced a discrete

kernel estimator with an exponential weighted moving average scheme to estimate

the intensity and cardinality distribution of the newborn targets. The estimated target

birth intensity and cardinality are then fed back to the GM-CPHD filter for filtering at

each time step. Further, in [141], and [101], Reuter et al., respectively, proposed the

use of measurement-driven birth models for the cardinality balanced MeMBer filter

and the LMB filter. Lin et al. [142] presented a measurement-driven birth model to

reduce the dependence on a prior knowledge of the newborn target distribution for

the GLMB filter by adatively generating newborn targets from the measurement data.

Beard et al. [26] used the measurement-driven approach to generate birth intensities to

track over a million targets in a large-scale surveillance region using the GLMB filter.
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Recently, a method proposed in [143] can tractably initialise new tracks by extending

the measurement-driven birth model given in [101] and [142] in the multiple sensor

GLMB filtering context.

4.2 Bootstrapped GLMB filter

This section describes the detailed techniques of the Bootstrapped-GLMB filter that

has the capability of tracking multiple targets with minimum prior knowledge from

users. Specifically, the technique that handles the unknown detection probability and

the technique that jointly estimates the unknown clutter rate and detection probability

are described. Finally, the unknown prior knowledge of locations of newborn tar-

gets is managed by adopting a measurement-driven birth model. These techniques

are then combined with the conventional joint prediction update GLMB filter given in

Section 3.2.1 to estimate target trajectories given the labelled RFS formulation of the

GLMB filter.

4.2.1 Detection probability estimation

The underlying idea of the filter to estimate the unknown information on the prob-

ability of target detection is that the this unknown parameter is augmented into the

single target state. It can then be estimated using the CPHD recursion. This estimated

value is then bootstrapped into the joint prediction update GLMB filter for producing

target trajectories. In this method, clutter is assumed to be a known and fixed param-

eter to the filter. The diagram of the Boostraping GLMB filter with unknown detection

probability is presented in Figure 4.1.

Since the detection probability is unknown and augmented into the single target

state, the target state becomes an augmented one and belongs to the augmented state

space. For consistency in notations, we use the superscript (ā) to denote functions or

variables in the augmented state space.

X(ā) = X(1) ×X(∆) (4.1)

where X(1) = Rnx (with nx is the dimension of the kinematic state of a target) and X(∆) =

[0,1] denote the state space of target kinematics and detection probability, respectively.

Each usual kinematic state x ∈ X(1) is replaced by an augmented state x(ā) = (x, a) ∈
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Figure 4.1: Structure of the Bootstrapped-GLMB filter with an unknown detection pro-
file. The meaning of the input and output notations has been given in Section 2.3.2 and
Section 2.5.1.

X(ā) where a ∈ X(∆) = [0,1] is the unknown target detection probability of x. Conse-

quently, the augmented multi-target state of n targets at the current time step is:

X(ā) = {x(ā)1 , . . . , x(ā)n } = {(x1, a1) , . . . , (xn, an)} . (4.2)

The set integral of a function f (ā) ∶ X(ā) → R has the form [96]:

∫
X(ā)

f (ā) (x(ā))dx(ā) = ∫
X(∆)

∫
X(1)

f (ā) (x, a)dxda (4.3)

The augmented single-target survival probability and augmented transition den-

sity at the next time step are given by:

pS,+ (x(ā)) = p(ā)S,+ (x, a) = p(1)S,+ (x) (4.4)

f
(ā)
+ (x(ā)+ ∣x(ā)) = f (ā)

+ (x+, a+∣x, a)

= f (1)
+ (x+∣x) f (∆)

+ (a+∣a) . (4.5)

The newborn targets are represented by an intensity ν(1)B,+ (x, a) for augmented states

and the corresponding cardinality distribution ρ(1)B,+ (⋅). The augmented detection prob-

ability and single-target likelihood function are described in Eq. (2.33) and Eq. (2.35).

Compared to the conventional CPHD filter, the likelihood function is g (z∣x(h)) = g(1) (z∣x)

(for x ∈ X(1) is the kinematic state of the target), but the detection probability pD (x) in
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Eq. (2.23) is replaced by a.

The probability of detection can be estimated using the derivation of the conven-

tional CPHD recursion in which the augmented state is applied in single-target motion

and measurement models. This resulting filter propagates the posterior cardinality dis-

tribution ρ (⋅) and posterior intensity function ν(1) (⋅) in the prediction and update re-

cursion as given in [96, Propositions 7 and 8]. Further, clutter follows the conventional

CPHD model given by Poisson false alarms with intensity function κ (⋅).

Prediction: Given the pair (ν(1) (⋅) , ρ (⋅)) at the current time step, the predicted car-

dinality distribution ρ+ and predicted intensity ν(1)+ are given by:

ρ+ (n) =
n

∑
j=1

ρ
(1)
B,+ (n − j)Π+ [ν(1), ρ] (j) (4.6)

ν
(1)
+ (x+, a+) = ν(1)B,+ (x+, a+) +∬

1

0
pS,+ (x) f (∆)

+ (a+∣a) f (1)
+ (x+∣x)ν(1) (a, x)dadx (4.7)

where

Π+ [ν(1), ρ] (j) =
∞
∑
l=j
C ljρ (l)

⟨pS,+, ν(1)⟩ j ⟨1 − pS,+, ν(1)⟩ l−j

⟨1, ν(1)⟩ l
(4.8)

Update: Given measurement set Z+, the predicted intensity and cardinality distribu-

tion is updated at the next time step as follows:

ν
(1)
+ (x+, a+∣Z+) = (1 − a+)

⟨Υ(1)
+∣Z+ [ν

(1)
+ ;Z+] , ρ+⟩

⟨Υ(0)
+∣Z+ [ν

(1)
+ ;Z+] , ρ+⟩

ν
(1)
+ (x+, a+)

+ ∑
z∈Z+

ψ
(ā)
+,z (x+, a+)

⟨Υ(1)
+∣Z+ [ν

(1)
+ ;Z+ − {z}] , ρ+⟩

⟨Υ(0)
+∣Z+ [ν

(1)
+ ;Z+] , ρ+⟩

ν
(1)
+ (x+, a+) , (4.9)

ρ+ (n∣Z+) =
Υ

(0)
+∣Z+ [ν

(1)
+ ;Z+] (n)ρ+ (n)

⟨Υ(0)
+∣Z+ [ν

(1)
+ ;Z+] , ρ+⟩

, (4.10)
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where

Υ
(u)
+∣z+ [ν

(1)
+ , Z+] (n) =

min(∣Z+∣,n)
∑
j=0

(∣Z+∣ − j)!ρK,+∣Z+ (∣Z+∣ − j)

× Pnj+u
⟨1 − p(ā)D,+, ν

(1)
+ ⟩n−(j+u)

⟨1, ν(1)+ ⟩n
ej (Ξ+∣Z+ (ν

(1)
+ , Z+)) , (4.11)

p
(ā)
D,+ (x+, a+) = a+, (4.12)

ψ
(ā)
+,z (x+, a+) =

⟨1, κ+⟩
κ+ (z) g+ (z∣x+) ⋅ a+, (4.13)

Ξ+ (ν(1)+ , Z+) ={⟨ν(1)+ , ψ
(ā)
+,z ⟩ ∶ z ∈ Z+} , (4.14)

ej (Z+) = ∑
S⊆Z+,∣S∣=j

⎛
⎝∏ξ∈S

ξ
⎞
⎠

with e0 (Z+) = 1. (4.15)

The target cardinality can be estimated from either the cardinality distribution or the

intensity by using the mode N (1)
+ = arg max

n
ρ+ (n) or the mean N (1)

+ = ⟨1, ν(1)+ ⟩, respec-

tively.

Note that, when the cardinalities are described by the Poisson distribution, the

CPHD recursion reduces to the PHD recursion as follows:

ν
(1)
+ (x+, a+) = ν(1)B,+ (x+, a+) +∬

1

0
pS,+ (x) f (∆)

+ (a+∣a) f (1)
+ (x+∣x)ν(1) (a, x)dadx

(4.16)

ν
(1)
+ (x+, a+∣Z+) = (1 − a+)ν(1)+ (x+, a+) + ∑

z∈Z+

a+ ⋅ g+ (z∣x+)ν(1)+ (x+, a+)
κ+ (z) + ⟨a+ ⋅ g+ (z∣⋅) , ν(1)+ ⟩

. (4.17)

The CPHD filter for unknown detection profiles can be implemented using the Beta

- Gaussian mixture technique. Specifically, the augmented target state includes two

parts: the augmented part for unknown detection probability and the kinematic part.

The unknown parameter a is modelled by Beta distribution βs,t (⋅) , and the kinematic

part of the state x is modelled by Gaussian distribution. The term Beta - Gaussian

distribution refers to a product of a Beta distribution and a Gaussian distribution.

For the convenience of representation, let β (⋅; s, t) denote a Beta distribution with

parameter s > 1, t > 1 where the mean value is µβ = s
s+t and the variance is σ2

β =
st

(s+t)2(s+t+1) . Since Eq. (4.9) involves both a and 1 − a, it results in products of the form
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as (1 − a)t after multiple recursions. The Gaussian density with mean m and covari-

ance P is denoted as N (⋅;m,P ) .

The implementation of the CPHD filter using the Beta - Gaussian mixture technique

is based on the following assumptions.

● Each actual target follows a Gaussian dynamical model given in Eq. (3.12) and

Eq. (3.13).

● While the target survival probability pS+ (⋅) is state-independent, the probability

of detection is the augmented part of the state p(a)D+ (x+, a+) = a+.

● The intensity of the newborn target RFS is a Beta - Gaussian mixture

ν
(1)
B,+ (x+, a+) =

JνB ,+
∑
i=1

ω
(i)
νB ,+β (a+; s

(i)
νB ,+, t

(i)
νB ,+)N (x+;m

(i)
νB ,+, P

(i)
νB ,+) (4.18)

where JνB ,+, ω
(i)
νB ,+, s

(i)
νB ,+, t

(i)
νB ,+,m

(i)
νB ,+, P

(i)
νB ,+, i = 1, . . . , JνB ,+ are given model parameters

in which JνB ,+, ω(i)
νB ,m(i)

νB ,+, P
(i)
νB ,+ have been defined below Eq. (3.14), and s

(i)
νB ,+, t

(i)
νB ,+

are the two parameters of a Beta distribution of the ith newborn target.

● The time prediction for the augmented variable a+ is completely governed by

Beta densities:

β (a; s, t)→ (a+; s+, t+)

● The mean µβ,+ is kept unchanged while the variance is multiplied by a prescribed

factor kβ, which is typically chosen as kβ > 1 to enlarge the predicted variance (i.e.,

σ2
β,+ = kβσ2

β).

Given a predicted density is a Beta - Gaussian mixture which is the product of Beta

density and a Gaussian mixture, the update of each Beta-Gaussian component involv-

ing the computation of particular forms of this product is described in the following.

Given two Gaussians N (x;m,P ) and N (z;Hx,R) with R and P positive definite,

their product is [18]:

N (x;m,P )N (z;Hx,R) = q (z)N (x; m̃, P̃ ) (4.19)
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where

q (z) = N (z,Hm,R +HPHT ) (4.20)

m̃ =m +K (z −Hm) (4.21)

P̃ = (I −KH)P (4.22)

K = PHT (HPHT +R)−1
. (4.23)

It means that the product of two Gaussians is replaced by appropriate Gaussians

that are used to update intensity in the conventional CPHD recursion. The products of

Beta density with a given weight are described by the following identities

(1 − a+)β (a+; s+, t+) =
B (s+, t+ + 1)
B (s+, t+)

β (a+; s+, t+ + 1) , (4.24)

a+β (a+; s+, t+) =
B (s+ + 1, t+)
B (s+, t+)

β (a+; s+ + 1, t+) , (4.25)

which results in weighted Beta densities in a+. In the above identities, the Beta function

evaluated at s, t is defined as B (s, t) = ∫ 1
0 a

s−1 (1 − a)t−1 da. By using the augmented

state, the integration ∬ a+β (a+; s+, t+)N (x+;m+, P+)da+dx+ in the update step re-

duces to s+
s++t+ [96].

(1 − a+)β (a+; s+, t+) =
B (s+, t+ + 1)
B (s+, t+)

β (a+; s+, t+ + 1) , (4.26)

a+β (a+; s+, t+) =
B (s+ + 1, t+)
B (s+, t+)

β (a+; s+ + 1, t+) , (4.27)

which results in weighted Beta densities in a+. Hence, using the assumption of Beta -

Gaussian mixture for predicted intensity in Eq. (4.18), the CPHD filter can update the

intensity with an unknown probability of detection.

As mentioned in Section 4.2.1, the number of targets can be estimated from the

mean N̂ (1)
+ = ∑J+j=1 ω

(j)
+ or the mode N̂ (1)

+ = arg max
n

ρ+ (n) .

Since the number of mixture components grows unboundedly, pruning and merg-

ing need to be used. By using component pruning, the mixture components with

weights lower than a predetermined threshold will be removed. Component merg-

ing is implemented using the Hellinger distance 0 < dij < 1 between two Beta - Gaus-
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sian components β (a+; s
(i)
+ , t

(i)
+ )N (x+;m

(i)
+ P

(i)
+ ) and β (a+; s

(j)
+ , t

(j)
+ )N (x+;m

(j)
+ P

(j)
+ )

as follows.

dij =

¿
ÁÁÁÁÁÁÁÀ

1 −
B ( s

(i)
+ +s(j)+

2 ,
t
(i)
+ +t(j)+

2 )
√
B (s(i)+ , t

(i)
+ )B (s(j)+ , t

(j)
+ )

√
N (0;m

(i)
+ −m(j)

+ , P
(i)
+ + P (j)

+ )

det8π ([P (i)
+ ]

−1
+ [P (j)

+ ]
−1

)
1
4

. (4.28)

The number of components is limitted to a predetermined threshold, and only the

highest weighted components are retained. These remaining weights are re-normalised

to maintain the total mass. Further, the truncation on the distribution of the target car-

dinality is implemented to make it a tractable propagation.

Given the PHD of the form:

ν
(1)
+ (x+, a+) =

JνB ,+
∑
i=1

ω
(i)
ν,+β (a; s

(i)
ν,+, t

(i)
νB ,+)N (x+;m

(i)
ν,+, P

(i)
ν,+) (4.29)

The average p̄D,+ is computed as:

p̄D,+ =
Jν,+
∑
i=1

ω
(i)
ν,+E (β (a+; s

(i)
νB ,+, t

(i)
νB ,+)) (4.30)

where E (β (⋅; ⋅, ⋅)) is the expected value of β (⋅; ⋅, ⋅).

4.2.2 Estimation of the joint clutter rate and detection probability

This section develops the methods presensted in Section 3.2.2 and Section 4.2.1 to ad-

dress the estimation problem that exists when the clutter rate and probability of detec-

tion are both unknown. From the discussion in Section 2.3.3, the joint probability of

survival and the joint transition density are redefined piecewise as follows [96]:

p
(h)
S,+ (x(h)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p
(1)
S,+ (x) if x(h) = (x, a) ∈ X(1) ×X(∆)

p
(0)
S,+ if x(h) = (xc, b) ∈ X(0) ×X(∆)

, (4.31)

f
(h)
+ (x(h)+ ∣x(h)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(1)
+ (x+∣x) f (∆)

+ (a+∣a) if x(h)+ = (x+, a+) , x(h) = (x, a) ∈ X(1) ×X(∆)

f
(0)
+ (xc+∣xc) if x(h)+ = (xc+, b+) , x(h) = (xc, b) ∈ X(0) ×X(∆)

0 otherwise

.

(4.32)
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For a definition of the superscripts used in this section, see Section 2.3.3. Similarly, the

joint birth intensity is given by ν(1)B,+ (x+, a+) for the actual target state or ν(0)B,+ (xc+, b+)

for the clutter state. The joint birth cardinality distribution is

ρ
(h)
B,+ (n(h)) = (ρ(1)B,+ ∗ ρ

(0)
B,+) (n(h)) (4.33)

The robust CPHD filter propagates the posterior intensity ν(h)+ and the posterior cardi-

nality distribution ρ(h)+ (⋅) of the hybrid and augmented state X(h)
+ in time. Note that ,

in this propagation, the intensity ν(h)+ is decomposed into the intensity functions of ac-

tual targets ν(1)+ (⋅, ⋅) and clutter-generated targets ν(0)+ (⋅, ⋅). The unknown values of the

clutter rate and detection probability are estimated in this recursion. Since the detec-

tions b+ generated by clutter targets are independent of the actual value of the clutter

state c+, the posterior intensity ν
(0)
+ (c+, b+) is characterised by a dependent variable

ν
(0)
+ (b+).

Using the filtering formulation given in Section 2.3.3, the recursion of the CPHD

for estimating these two unknown parameters is as follows.

Prediction: [96, Proposition 11] Given the intensities ν(1), ν(0), and the hybrid car-

dinality distribution ρ(h), their respective predictions to next time step are calculated

as follows

ν
(1)
+ (x+, a+) = ν(1)B,+ (x+, a+) +∬

1

0
pS,+ (x) f (∆)

+ (a+∣a) f (1)
+ (x+∣x)ν(1) (a, x)dadx,

(4.34)

ν(0) (b) = ν(0)B,+ (b) + p(0)S,+ν
(0) (b) , (4.35)

ρ
(h)
+ (n(h)) =

n(h)

∑
j=0

ρ
(h)
B,+ (n(h) − j)

∞
∑
l=j
C ljρ

(h) (l) (1 − φ)l−j φj . (4.36)

where

φ =
⎛
⎜
⎝

⟨ν(1), p(1)S,+⟩ + ⟨ν(0), p(0)S,+⟩
⟨1, ν(1)⟩ + ⟨1, ν(0)⟩

⎞
⎟
⎠

(4.37)

It can be observed that while Eq. (4.34) is identical to Eq. (4.7), the posterior mean

number of clutter targets N (0) in Eq. (3.17) is replaced by the posterior intensity of

clutter targets ν(0) (b) , and the clutter state-space (c̄) in Eq. (3.18) is replaced by the
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hybrid and augmented state-space (h) in Eq. (4.36).

Update ∶ [96, Proposition 12] Given measurement set Z+, the predicted intensities

and cardinality distributions are updated as follows

ν
(1)
+ (x+, a+∣Z+) = ν(1)+ (x+, a+)

(1 − a+)
⟨Υ(1)+ [ν(h)+ ;Z+],ρ(h)+ ⟩

⟨Υ(0)+ [ν(h)+ ;Z+],ρ(h)+ ⟩

⟨1, ν(1)+ ⟩ + ⟨1, ν(0)+ ⟩

+ ∑
z∈Z+

a+ ⋅ g(1)+ (z∣x+)
⟨ν(0)+ , p

(0)
D,+g

(0)
+ (z)⟩ + ⟨ν(1)+ , p

(1)
D,+g

(1)
+ (z∣⋅)⟩

ν
(1)
+ (x+, a+) (4.38)

ν
(0)
+ (b+∣Z+) = ν(0)+ (b+)

(1 − b+)
⟨Υ(1)+ [ν(h)+ ;Z+],ρ(h)+ ⟩

⟨Υ(0)+ [ν(h)+ ;Z+],ρ(h)+ ⟩

⟨1, ν(1)+ ⟩ + ⟨1, ν(0)+ ⟩

+ ∑
z∈Z+

b+ ⋅ g(0)+ (z)
⟨ν(0)+ , p

(0)
D,+g

(0)
+ (z)⟩ + ⟨ν(1)+ , p

(1)
D,+g

(1)
+ (z∣⋅)⟩

ν
(0)
+ (b+) (4.39)

ρ
(h)
+ (n(h)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 n(h) < ∣Z+∣
ρ
(h)
+ (n(h))Υ

(0)
+ [ν+;Z+](n(h))

⟨ρ(h)+ ,Υ
(0)
+ ⟩

n(c) ≥ ∣Z+∣
(4.40)

where

Υ
(u)
+ [ν(h)+ ;Z+] (n(h)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 n(h) < Z+ + u

P
(n(h))
∣Z+∣+uΦn(h)−(∣Z++u∣)

+ n(h) ≥ ∣Z+ + u
, (4.41)

Φ = 1 −
⟨ν(1)+ , p

(1)
D,+⟩ + ⟨ν(0)+ , p

(0)
D,+⟩

⟨1, ν(1)+ ⟩ + ⟨1, ν(0)+ ⟩
, (4.42)

p
(1)
D,+ (x+, a+) = a+, (4.43)

p
(0)
D,+ (b+) = b+. (4.44)

where Pnj = n!
(n−j)! is the permutation coefficient, and u = 0,1.

Remark 6. At each time step, the clutter rate can be inferred via the updated cardinality

distribution (from which the average clutter intensity λc can be calculated). In particu-

lar, the average number of measurement clutter targets can be computed at any given
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time using [96]:

N
(0)
+ = ⟨ν(0)+ , p

(0)
D,+⟩ . (4.45)

Moreover, the mean value of the detection probability, p̄(1)D,+, can be calculated by aver-

aging the estimated detection probability of actual targets.

The performance of the robust CPHD recursion is based on the following assump-

tions:

● The intensity of the actual target birth RFS is a Beta - Gaussian mixture

● The intensity of the birth RFS for clutter targets is a Beta mixture

Remark 7. The implementation of the robust CPHD filter can be derived via Beta and

Gaussian mixtures as given in Section 4.2.1 and Section 3.2.2. While assumptions on

the dynamic and measurement models are the same, there is a difference in the as-

sumptions for newborn targets. Specifically, the intensity of newborn actual target RFS

is a Beta - Gaussian mixture, and that of clutter newborn target RFS is a Beta mixture

as given in Eq. (4.46) and Eq. (4.47), respectively.

ν
(1)
B,+ (x+, a+) =

J
(1)
νB+

∑
i=1

ω
(i,1)
νB ,+β (a+; s

(i,1)
νB ,+, t

(i,1)
νB ,+)N (x+;m

(i,1)
νB ,+, P

(i,1)
νB ,+) , (4.46)

ν
(0)
B,+ (b+) =

J
(0)
νB,+

∑
i=1

ω
(i,0)
νB ,+β (b+; s

(i,0)
νB ,+, t

(i,0)
νB ,+) . (4.47)

Following [96, Proposition 13], given the posterior hybrid cardinality distribution

ρ(h), and the posterior intensities ν(1) and ν(0) in the form of Beta - Gaussian and Beta

mixtures:

ν(1) (x, a) =
J(1)

∑
i=1

ω(i,1)β (a, s(i,1), t(i,1))N (x;m(i,1), P (i,1)) , (4.48)

ν(0) (b) =
J(0)

∑
i=1

ω(i,0)β (b, s(i,0), t(i,0)) , (4.49)

then the predicted intensities ν(1)+ and ν(0)+ are also Beta - Gaussian and Beta mixtures,
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respectively, and:

ν
(1)
+ (x+, a+) = ν(1)B,+ (x+, a+) + p(1)S,+

J(1)

∑
j=1

ω(j,1)β (a; s
(j,1)
S,+ , t

(j,1)
S,+ )N (x;m

(j,1)
S,+ , P

(j,1)
S,+ ) ,

(4.50)

ν
(0)
+ (b+) = p(0)S,+ν

(0) (b) + ν(0)B,+ (b+) , (4.51)

ρ
(h)
+ (n(h)) =

n(h)

∑
j=0

ρ
(h)
B,+ (n(h) − j)

∞
∑
l=j
C ljρ

(h) (l) (1 − φ)l−j φj . (4.52)

where ν(1)B,+ (x+, a+) is given in Eq. (3.14):

φ =
p
(1)
S,+∑

J(1)
i=1 ω(i,1) + p(0)S,+∑

J(0)
i=1 ω(i,0)

∑J(1)i=1 ω(i,1) +∑J(0)i=1 ω(i,0)
, (4.53)

s
(j,1)
S,+ =

⎛
⎜⎜
⎝

µ
(j,1)
β,+ (1 − µ(j,1)

β,+ )

[σ(j,1)
β,+ ]

2
− 1

⎞
⎟⎟
⎠
µ
(j,1)
β,+ , (4.54)

t
(j,1)
S,+ =

⎛
⎜⎜
⎝

µ
(j,1)
β,+ (1 − µ(j,1)

β,+ )

[σ(j,1)
β,+ ]

2
− 1

⎞
⎟⎟
⎠
(1 − µ(j,1)

β,+ ) , (4.55)

m
(j,1)
S,+ = Fm(j,1), (4.56)

P
(j,1)
S,+ = Q + FP (j,1)F T , (4.57)

with µ(j,1)
β,+ = µ(j,1)

β = s(j,1)
s(j,1)+t(j,1) and [σ(j,1)

β,+ ]
2
= ∣kβ ∣ [σ(j,1)

β ]
2
= ∣kβ ∣ s(j,1)t(j,1)

(s(j,1)+t(j,1))2(s(j,1)+t(j,1)+1)
.

Given a measurement set Z+, the predicted hybrid cardinality ρ(h)+ and predicted

intensities ν(1)+ and ν(0)+ given by the Beta - Gaussian and Gaussian mixtures

ν
(1)
+ (x+, a+) =

J
(1)
+
∑
i=1

ω
(i,1)
+ β (a+, s(i,1)+ , t

(i,1)
+ )N (x+;m

(i,1)
+ , P

(i,1)
+ ) , (4.58)

ν
(0)
+ (b+) =

J
(0)
+
∑
i=1

ω
(i,0)
+ β (b+, s(i,0)+ , t

(i,0)
+ ) , (4.59)

then the updated intensities ν(1)+ (⋅∣Z+) and ν
(0)
+ (⋅∣Z+) are also Beta - Gaussian and

Gaussian mixtures in which
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ν
(1)
+ (x+, a+∣Z+) =

J
(1)
+
∑
j=1

ω
(j,1)
M,+ (z)β (a+, s(j,1)+ , t

(j,1)
+ + 1)N (x+;m

(j,1)
+ , P

(j,1)
+ ) ,

+ ∑
z∈Z+

J
(1)
+
∑
j=1

ω
(j,1)
D,+ (z)β (a+, s(j,1)+ + 1, t

(j,1)
+ )N (x+;m

(j,1)
+∣Z+ , P

(j,1)
+∣Z+ ) (4.60)

ν
(0)
+ (b+∣Z+) =

J
(0)
+
∑
j=1

ω
(j,0)
M,+ (z)β (b+, s(j,0)+ , t

(j,0)
+ + 1)

+ ∑
z∈Z+

J
(0)
+
∑
j=1

ω
(j,0)
D,+ (z)β (b+, s(j,0)+ + 1, t

(j,0)
+ ) , (4.61)

ρ
(h)
+ (n(h)∣Z+) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 n(h) < ∣Z+∣
ρ
(h)
+ (n(h))Υ

(0)
+ [ν(h)+ ,Z+](n(h))

⟨ρ(h)+ ,Υ
(0)
+ ⟩

n(h) ≥ ∣Z+∣
, (4.62)

where Υ
(u)
+ with u = 0,1 has been given in Eq. (4.41) with

Φ+ = 1 − ∑
J
(1)
+
i=1 ω

(i,1)
+ d

(j,1)
+ +∑J

(0)
+
i=1 ω

(i,0)
+ d

(j,0)
+

∑J
(1)
+
i=1 ω

(i,1)
+ +∑J

(0)
+
i=1 ω

(i,0)
+

(4.63)

d
(j,u)
+ = s

(j,u)
+

s
(j,u)
+ + t(j,u)+

, (4.64)

ω
(j,u)
M,+ (z) = ω(j,u)

+

B(s(j,u)+ ,t
(j,u)
+ +1)

B(s(j,u)+ ,t
(j,u)
+ )

⟨Υ(1)+ [ν(h)+ ,Z+],ρ(h)+ ⟩

⟨Υ(0)+ [ν(h)+ ,Z+],ρ(h)+ ⟩

∑J
(1)
+
i=1 ω

(i,1)
+ +∑J

(0)
+
i=1 ω

(i,0)
+

, (4.65)

ω
(j,0)
D,+ (z) =

ω
(j,0)
+

B(s(j,0)+ +1,t
(j,0)
+ )

B(s(j,0)+ ,t
(j,0)
+ )

g
(0)
+ (z)

∑J
(0)
+
i=1 d

(j,0)
+ ω

(i,0)
+ g

(0)
+ (z) +∑J

(1)
+
i=1 d

(j,1)
+ ω

(i,1)
+ q

(j,1)
+ (z)

, (4.66)

ω
(j,1)
D,+ (z) =

ω
(j,1)
+

B(s(j,1)+ +1,t
(j,1)
+ )

B(s(j,1)+ ,t
(j,1)
+ )

q
(1)
+ (z)

∑J
(0)
+
i=1 d

(j,0)
+ ω

(i,0)
+ g

(0)
+ (z) +∑J

(1)
+
i=1 d

(j,1)
+ ω

(i,1)
+ q

(j,1)
+ (z)

, (4.67)

q
(j,1)
+ (z) = N (z,H+m

(j,1)
+ ,H+P

(j,1)
+ HT

+ +R+) , (4.68)

m
(j,1)
+ (z) =m(j,1)

+ +K(j,1)
+ (z −H+m

(j,1)
+ ) , (4.69)

P
(j,1)
+∣Z+ = [I −K(j,1)

+ H+]P (j,1)
+ , (4.70)

K
(j,1)
+ = P (j,1)

+ HT
+ [H+P

(j,1)
+ HT

+ +R+] . (4.71)

and I denotes identity matrix. The estimated mean number of actual targets and
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that of the measurement clutter targets are N̂ (1)
+ = ∑J

(0)
+
j=1 ω

(i,0)
+ respectively, and the

estimated mean clutter rate is λ̂c+ = ∑J
(0)
+
j=1 ω

(i,0)
+ d

(j,0)
+ .

Remark 8. Similar to conventional CPHD recursion, the robust CPHD uses pruning and

merging of mixture components in its implementation. This This step helps retaining

the highest weighted components and renormalising the remaining weights to keep

the total mass unchanged. Note that a predetermined threshold Jmax is set to limit the

number of retained components. The cardinality distribution needs to be truncated to

Nmax components to make the robust CPHD filter a tractable propagation.

4.2.3 Measurement-driven birth model

The model for measurement-driven (or adaptive) births presented in [101] is adopted

in this work to initialise new tracks. This model is constructed on the basis of the in-

tuition that the lower the probability that z ∈ Z is related to an existing target at the

current time step, the higher the probability that a measurement z is generated by a

newborn target at the next time step. Hence, each measurement in the current mea-

surement set can be used to initialise a new track whose existence probability depends

on the (track) association probability of the measurement.

As can be observed from Eq. (2.52), the birth targets can be modelled as an LMB

distribution in the GLMB filter. This distribution can be completely characterised by a

set of birth probabilities and corresponding spatial distributions, that is,

{r(`)B (z) , pB (⋅, ⋅; z) ∶ ` = `B (z)} .

In other words, a newborn target initiated by a measurement z is assigned to a label

`B (z) ; this target has probability of existence rB (z) and probability density pB (x, `; z).

The probability density of the newborn LMB RFS is given by [142]:

πB (X+) = ∆ (X+)ωB (L (X+)) [pB]X+ (4.72)

where

ωB (I) =∏
i∈B

(1 − r(i)B )∏
`∈I

1B (`) r(`)B
1 − r(`)B

. (4.73)

In the GLMB recursion, this weight can be used to replace ωB in Eq. (2.58).
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The measurment-driven birth model exploits this fact and generates two sets of

spatial distributions of targets. The first set is with lower birth probability is around

existing targets, and the second set is with higher birth weights around all other areas

where measurements were received. While the measuremetn-driven birth model uses

the set of current measurements Z and the set of hypotheses obtained at the current

time step, it is applied at the next time step. Specifically, given a GLMB filtering density

of the form Eq. (2.49), the probability that a measurement z is connected to a track rU(z)

is defined as follows [101]:

rU (z) = ∑
(I,θ)∈F(L(i))×ΘI

1θ (z)ω(I,θ) (4.74)

where the inclusion function 1θ(z) warrants that the sum of weights only considers

hypotheses that assign the measurement z to one of its tracks, and ω(I,θ) is presented

in Eq. (2.65). ΘI is the subset of the current association maps with domain I . Then, the

probability of a Bernoulli measurement-driven birth given the measurement z at the

next time step in Eq. (4.73) depends on its newborn likelihood obtained at the current

time [101]:

rB,+ (z) = min(rB,max,
1 − rU (z)

∑ξ∈Z (1 − rU (ξ)) .λB,+) (4.75)

where λB,+ denotes the expected number of newborn targets at the next time step and

rB,max ∈ [0,1] is the maximum value of birth probability. rB,max is set to guarantee that

the resulting rB,+ (z) ≤ 1 when λB,+ is too large.

Depending on the application, the value of rB,max can be chosen differently. Gener-

ally, the larger the value of rB,max , the faster the track confirmation but the higher the

incidence of false tracks, and vice versa. Since the mean cardinality of a multi-Bernoulli

RFS is calculated from the sum of the existence probabilities, the mean cardinality of

the newborn targets is:

∑
ξ∈Z

rB,+ (ξ) ≤ λB,+ (4.76)

Assuming that the new birth of a Bernoulli RFS generated near a measurement z with

non-zero newborn likelihood is distributed according to a Gaussian mixture, then the
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probability distribution of the measurement-driven birth model is [142]:

pB,+ (x+, `+; z) =
Mb

∑
i=1

1

Mb
δ
x
(i)
z

(x+) , (4.77)

x(i)z ∼ N (x+;mB,+ (z) , PB,+ (z)) , i = 1, . . . ,MB (4.78)

WhereMb denotes the number of generated states for new births,mB,+ (⋅) is a func-

tion mapping from a measurement z to its corresponding target state where the infor-

mation can be recovered, and PB,+ (⋅) is the covariance matrix that specifies the distri-

bution of newborn target states. The smaller the value of PB,+, the better the accuracy

in general.

The probability distribution given in Eq. (4.77) is then substituted into Eq. (3.6) of

the joint prediction-update GLMB filter provided in Section 3.2.1.

4.2.4 Target trajectories estimation

This chapter describes the application of the conventional joint prediction update GLMB

presented in Section 2.5.2 for the main filtering processes of tracking target trajectories

with the aforementioned techniques. Given the GLMB filtering density, the estimated

multi-target state and the trajectories can be extracted [24, 31]. The joint prediction

and update approach with a Gibbs sampler was adopted to select significant com-

ponents (ones with high weights) of the GLMB filtering density [40] as represented in

Section 3.2.1. Since the implementation of this filter has been presented in Section 2.5.2,

this subsection summarises the main points of the Bootstrapped-GLMB tracker.

This section outlines the performance of the tracker that can track multiple targets

does not require the prior knowledge on background information and model for new-

born targets. The technique described in Section 4.2.1 was adopted to estimate the

mean value of the detection probability. This estimated value was then bootstrapped

into a standard GLMB filter to generate tracking results. Similarly, the technique in Sec-

tion 4.2.2 is combined with the GLMB filter to track target trajectories with unknown

prior information on clutter and the detection probability. The structure of this method

is demonstrated in Figure 4.2. Note that the GLMB filter formulation using these two

techniques was applied for the main filtering process. The set of new births XB,+ is
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assumed to be known by the filter.

Figure 4.2: The structure of the robust Bootstrapped-GLMB filter.

As there is no prior information on the locations of newborn targets, the technique

discussed in Section 4.2.3 was utilised for new track initiations. Using this technique

with the GLMB filter results in an adaptive Bootstrapped-GLMB filter where the tracks

of newborn targets are initiated from a measurement-driven birth model. Further-

more, in this adaptive Bootstrapped-GLMB filter, the average intensity of clutter λc

and the detection probability pD are unknown and are estimated using an indepen-

dently run robust CPHD filter, as presented in Section 4.2.2. Therefore, this adaptive

Bootstrapped-GLMB filter has the capability of tracking multiple targets with mini-

mum prior knowledge from the users. Figure 4.3 demonstrates this proposed adaptive

Bootstrapped-GLMB filter.

4.3 Numerical study

Both the linear and nonlinear dynamic models presented in Section 3.3 are re-investigated

to demonstrate the effectiveness of the bootstrapped tracker. The implementation com-

parisons of the four filters (i.e., the ideal-GLMB [24], Robust-GLMB [131], Robust-

CPHD [96], and the Bootstrapped-GLMB), are conducted in different scenarios. The

OSPA [133] and OSPA(2) metrics [26] presented in Section 3.3 are applied over 100 MC

runs to evaluate multi-target tracking performance. The norm order and cut-off pa-

rameters are respectively, set to p = 1 and co = 100 for both OSPA and OSPA(2) as in

Section 3.3. The window length for OSPA(2) calculation is set to lw = 10 time steps.
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Figure 4.3: Structure of the adaptive GLMB tracker with unknown information on
clutter rate, detection probability and locations of newborn targets.

4.3.1 Linear dynamic model

There are three filtering scenarios in this experiment: unknown detection probability,

jointly unknown detection probability and unknown clutter rate, and unknown back-

ground combined with an unknown birth model.

Scenario 1: Linear tracking with unknown detection probability

For the filters with unknown detection probability only, the mean clutter rate is known

and fixed at λc = 30 points per scan. Since the target state, in this case, is an augmented

state, the intensity of the birth process for actual targets is rewritten with additional

Beta mixture ν(1)B (a, x) = ∑4
i=1 rBβ (a;uB, vB)N (x;m

(i)
B , PB) where uB = vB = 1, r

(1)
B =

r
(2)
B = 0.02; r

(3)
B = r(4)B = 0.04. The detection probability p(1)D = 0.98 is used in the ideal-

GLMB filter to generate measurements, but this value is not known to the filters and

it must be implicitly estimated at the location of each track at each time step. For

coherency, the pD-CPHD filter [96] used in this scenario is called the robust CPHD

filter. Filters are initiated to a zero state.
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Pruning and merging of the Beta - Gaussian mixture is applied at each time step

with a weight threshold of 10−5, a merging threshold of 4 and a maximum of Jmax =

1000 Beta - Gaussians. Maximum terms to calculate the cardinality distribution is

capped at Nmax = 300.
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Figure 4.4: Comparisions of estimation errors for the four filters using the OSPA metric.

The OSPA metric given in Section 3.3 is applied in this experiment over 100 MC

runs and its results are shown in Figure 4.4. It could be observed that three GLMB

filters estimated target states much more accurately than the Robust-CPHD filter with

unknown detection probability. Further consideration of the improved localisation

component reveals that due to the spooky effect, the robust CPHD filter temporarily

drops tracks that are subjected to miss detections and declare multi-target estimates

for existing target states in place of dropped tracks. The three GLMB filters propagate

filtering density more accurately due to the use of target identities; the filters generally

localise targets better than the Robust-CPHD filter. The improvement in cardinality

performance of the three GLMB filters over the Robust-CPHD filter is mainly the result

of a lower estimated cardinality variance, which is not shown in Figure 4.4. The evalu-

ation of the OSPA miss distance and its localisation and cardinality components for the

three GLMB filters shows that while the best performance is with the ideal-GLMB fil-
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ter, which runs with correct parameters of detection probability, the difference between

this ideal filter and the other two GLMB filters is insignificant.
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Figure 4.5: Comparisons of trajectory estimations for the three GLMB-based filters
using the OSPA(2) metric.

Similarly, the errors for trajectory estimations using the OSPA(2) metric are shown

in Figure 4.5. Comparisons once again show the similarity among the results for the

trajectory estimations of the three GLMB-based filters. Using OSPA(2) miss distance,

the performance of the Bootstrapped-GLMB filter is slightly better than that of the

Robust-GLMB since its main filtering process uses the known average detection prob-

ability, which is estimated from an independently run CPHD filter. The OSPA(2) errors

also exhibit that the multi-target tracking performance of the ideal-GLMB filter is the

best of the GLMB filters.

The cardinality estimations from GLMB filters shown in Figure 4.6 are superior

to that of the Robust-CPHD filter. Note that, the GLMB filters could propagate the

filtering density more accurately than the Robust CPHD thank to the use of labelled

RFSs, which results in a better cardinality estimate.
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Figure 4.6: Cardinality estimations in an unknown detection probability scenario using
the four different filters.

Scenario 2: Linear tracking with jointly unknown detection probability and clutter

rate

This subsection illustrates and compares the performance of the four filters for jointly

unknown detection profiles and clutter rate. While the ideal-GLMB filter is run with

correct parameters, the other filters operate with unknown information about detec-

tion probability, as in Section 4.3.1, and unknown clutter rate, as in Section 3.3.1. The

results of OSPA and OSPA(2) metrics in evaluating the tracking errors among the four

filters are shown in Figure 4.7 and Figure 4.8, respectively. While all GLMB filters

almost identically localise target states, the Robust-GLMB filter still has the highest er-

rors in OSPA miss distance with cardinality component compared to the Bootstrapped-

GLMB and ideal-GLMB filters. The evaluation of the OSPA(2) metric, demonstrated in

Figure 4.8, indicates that the ideal-GLMB filter has the best performance for tracking

target trajectories, as it is supplied the correct parameters for the clutter rate and detec-

tion probability. In addition, the Bootstrapped-GLMB performes slightly better than

the Robust GLMB filter. The cardinality estimations among the four filters are com-

pared in Figure 4.9, which once again confirms the advantage of the GLMB filters over
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the CPHD filter.
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Figure 4.7: Evaluation of tracking errors for the four filters using the OSPA metric.

Scenario 3: Linear tracking with unknown background and unknown birth model

The scenario extends the experiment in Section 4.3.1 to deal with the unknown in-

formation about the birth model. The initial values of the detection probability and

the surviving probability of actual targets are set to pD=0.95, and pS = 0.99, respec-

tively. Similarly, the corresponding values of clutter-generated targets are pDc = 0.95

and pSc = 0.9. The birth probability of newborn targets is set to rb = 0.01, and the birth

covariance PB is unchanged, i.e., PB = diag([10,10,10,10]). The correct clutter rate is

set to λc = 50 per scan.

Since the Robust-GLMB filter [131] and the Robust-CPHD [96] consider the un-

known information on clutter and detection probability only, they are not mentioned

in this experiment. Rather, the performance of the Bootstrapped-GLMB filter with an

unknown birth model is compared with the ideal-CPHD filter and the ideal-GLMB

filter, where the word ’ideal’ means that the birth model and backgrounds are prior

known to the filter. There is a capped 5000 components of hypotheses for both the
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Figure 4.8: Estimation on trajectory errors among four filters using OSPA(2) metric

0 10 20 30 40 50 60 70 80 90 100

Time

0

2

4

6

8

10

12

C
a
rd

in
a
lit

y

True Cardinality

ideal-GLMB

Robust-CPHD

Bootstrapping-GLMB

Robust-GLMB

Figure 4.9: Comparison of cardinality estimation for the four filters.
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Bootstrapped-GLMB and ideal-GLMB filters. Figure 4.10 and Figure 4.11 respectively

demonstrate the estimated values of the detection probability and the clutter rate us-

ing the Bootstrapped-GLMB algorithm. With the adoption of the independent robust-

CPHD in the Bootstrapped-GLMB tracker, the estimated clutter rate is approximately

the correct value, while it takes some time to make the estimated detection probability

approach to its true value.
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Figure 4.10: Estimated detection probability.

The comparisons of the OSPA and OSPA(2) errors from 100 MC runs are given in

Figure 4.12 and Figure 4.13, respectively. In addition, results for the ideal-CPHD filter

are excluded in OSPA(2) plots as this filter does not have a mechanism to provide tracks

without heutistics. The OSPA errors show that while the performance of the ideal-

GLMB is the best, the difference between the ideal-CPHD and the Bootstrapped-GLMB

is insignificant. Furthermore, the results in the OSPA(2) evaluation are obvious since

the ideal-GLMB filter uses the correct parameters of backgrounds and birth models.

Last but not least, Figure 4.14 compares the results of estimating target cardinality

(from 100 MC runs) using three filters. These results demonstrated that the Bootstrapped-

GLMB tracker adapted well with unknown information on clutter rate and detection
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Figure 4.11: Estimated clutter rate.
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Figure 4.12: Linear tracking scenario: Mean OSPA errors for the three filters.
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Figure 4.13: Linear tracking scenario: Mean OSPA(2) errors for the two GLMB filters.
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Figure 4.14: Linear tracking scenario: Cardinality estimation for the three filters.
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probability as well as unknown parameters of the birth model. Its performance is com-

parable to the ideal-GLMB and ideal-CPHD filters in the linear tracking scenario.

4.3.2 Nonlinear dynamic model

The three filtering scenarios given in Section 4.3.1 were reapplied to implement the

filters in a nonlinear dynamic model.

Scenario 1: Nonlinear tracking with unknown detection probability

This experiment is conducted to test the efficacy of the Bootstrapped-GLMB tracker

in the tracking scenario with unknown detection probability. The clutter is assumed

to follow a Poisson RFS with a known and fixed average rate λc = 50. The detection

probability p(1)D is unknown a priori and varies in the range 0.75, 0.98.

The OSPA and OSPA(2) metrics, are used to evaluate the efficacy of the Bootstrapped-

GLMB tracker with the other three filters the Robust-CPHD [96], Robust-GLMB [131]

and ideal-GLMB [24]. The evaluations of tracking performance using the OSPA metric

are demonstrated in Figure 4.15. The results illustrate the capability of the Bootstrapped-

GLMB tracker, which is almost identical to the Robust-GLMB filter and outperformed

the Robust-CPHD filter. Furthermore, the tracking accuracy of the Bootstrapped-GLMB

filter with unknown pD is comparable to that of the ideal-GLMB filter under the OSPA

metric. These results are similar to those given in Figure 4.4.

Similarly, the results of the evaluation of tracking trajectories for the three GLMB

filters using the OSPA(2) metric are shown in Figure 4.16. The ideal-GLMB filter has

the smallest errors in OSPA(2) miss distance with the localisation and cardinality com-

ponents. The Bootstrapped-GLMB filter slightly outperforms the Robust-GLMB filter.

Further, a comparison of estimated cardinality among these four filters is shown in

Figure 4.17. All four filters accurately estimate the number of targets. However, the

Robust-GLMB filter slightly underestimates the cardinality.

Scenario 2: Nonlinear tracking with jointly unknown detection probability and clutter

rate

In this experiment, the problem of tracking multiple marine vessels using multiple

Doppler radars presented in Section 3.3.2 with the ground truths demonstrated in Fig-
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Figure 4.15: Comparison of OSPA errors for the four filters.
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Figure 4.16: Comparison of OSPA(2) errors for the three GLMB filters.
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Figure 4.17: Comparison of cardinality estimation of the four filters with an unknown
detection profile.

ure 3.6 is considered. The clutter rate and the detection probability are assumed to be

known and fixed at λc = 50 and pD = 0.98 to the ideal-GLMB filter. However, these

parameters are unknown and fluctuated to the Boostrapping-GLMB and two robust

filters. Specifically, clutter rate varies from 28 to 70 and detection probability varies

0.75 to 0.98. The OSPA(2) metric uses the window length lw = 10 to compute the errors

between the true and estimated sets of trajectories. The parameter set c0 = 100 and

p = 1 is adopted for the computation of the OSPA and OSPA(2) errors.

Figure 4.18 and Figure 4.19, respectively, show the estimated values of detection

probability and clutter rate using the Bootstrapped-GLMB filter. While the estimated

detection probability is approaching the true value, the evaluated clutter rate is around

the upper bound of the clutter rate range. These results show that there is an inter-

twined relationship between the detection probability and the clutter rate due to the

Beta distribution of the former. Specifically, a detection event would update the Beta

distribution by increasing the parameter s by 1, and a miss-detection event would in-

crease t by 1. The details of this inter-twined relationship are analysed in Chapter 7.

One hundred MC runs is used to evaluate the effectiveness of the bootstrapping
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Figure 4.18: Estimations of the detection probability with respect to time using the
Bootstrapped-GLMB filter.
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Figure 4.19: Estimations of the clutter rate with respect to time using the Bootstrapped-
GLMB filter.
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method compared to the ideal-GLMB, Robust-GLMB and Robust-CPHD filters. The

errors on distance, location, and cardinality components between the set of true multi-

target states and that of estimated target states are also computed at each time step

using OSPA metric [133] (see Figure 4.20). The obvious errors in distance and loca-

tion using the Bootstrapped-GLMB filter are comparable to those of the ideal-GLMB

and are significantly better than those of the two robust filters (see Figure 4.20). Fur-

thermore, while the ideal-GLMB and the Bootstrapped-GLMB are almost identical in

tracking errors of cardinality statistics, these results are better than the errors measured

by the Robust-CPHD and Robust-GLMB filters. One hypothesis is that in some com-

ponents of the Robust-GLMB filtering density, the measurements generated by clutter

statistics might be connected to truly miss-detected tracks (i.e., those components with

insignificant weights).
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Figure 4.20: Tracking errors in distance, location and cardinality components for the
four filters using the OSPA metric.

The cardinality with 100 MC runs using the Bootstrapped-GLMB filter is shown

for the ideal-GLMB and the other two robust filters (see Figure 4.22). This figure again

certifies the superior performance of the GLMB filters over the CPHD filter.
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Figure 4.21: Tracking errors in distance, location and cardinality components for the
three GLMB-based filters using the OSPA(2) metric.
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Figure 4.22: Comparison of cardinality tracking results for the four filters.
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Scenario 3: Nonlinear tracking with unknown background and unknown birth model

Currently, there is no adaptive GLMB filter or adaptive CPHD filter that can man-

age the problem of both unknown background and unknown birth model. Therefore,

the implementation of the Bootstrapped-GLMB filter is evaluated comparing to those

of the ideal-GLMB and ideal-CPHD filters. Specifically, the number of hypotheses is

capped at 5000 components for the Bootstrapped-GLMB and ideal-GLMB algorithms.

The OSPA and OSPA(2) metrics are adopted to compare the tracking errors of the given

filters over 100 MC runs. These comparisons are demonstrated in Figure 4.23 and Fig-

ure 4.24, respectively. The result of estimating target cardinality over time is illustrated

in Figure 4.25. In addition, Figure 4.26 and Figure 4.27 present the results of estimated

detection probability and estimated clutter rate with 3-sigma bounds over time using

the Bootstrapped-GLMB filter, respectively,.
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Figure 4.23: Mean OSPA errors for the three filters.

From the simulation results using the OSPA and OSPA(2) metrics, it could be ob-

served that there filters were almost identical in OSPA errors. However, the ideal-

GLMB filter outperforms the Bootstrapped-GLMB filter in OSPA(2) errors. This is

reasonable since the two ideal filters are supported by correct parameters of back-
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Figure 4.24: Mean OSPA(2) errors for the ideal-GLMB and the Bootstrapped-GLMB
filters.
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Figure 4.25: The estimated cardinalities for the two ideal filters and the Boostrapping-
GLMB filter.
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grounds and birth model while these parameters are unknown to the Bootstrapped-

GLMB filter. Overall, the outstanding implementation of the ideal-GLMB filter fur-

ther demonstrates the correct choice of using it as the backbone for the plug-and-play

Bootstrapped-GLMB tracker. Most importantly even with unknown parameters such

as the clutter rate, detection probability and birth model the implementation of the

Bootstrapped-GLMB filter is comparable to the two ideal filters in estimating the car-

dinality of targets. For the estimation of unknown backgrounds, Figure 4.11 and Fig-

ure 4.26, respectively, demonstrate the convergence of the estimated values of detec-

tion probability and clutter rate to their correct value as more measurement data are

updated, ceasing the initial high uncertainties.
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Figure 4.26: Estimated detection probability for the Bootstrapped-GLMB filter.

4.4 Conclusions

This chapter describes how the Bootstrapped-GLMB filter given in Chapter 3 has been

extended to accommodate the unknown detection probability; jointly unknown clut-

ter rate and unknown detection probability; unknown parameters of the birth model.

Most importantly, using the combination of techniques given in Section 3.2.2 and Sec-

tion 4.2.1, the resultant low-cost tracker mitigates the requirements for offline training
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Figure 4.27: Estimations of the clutter rate using the Bootstrapped-GLMB filter.

data or tediously manually tuning. The experimental results validate the efficacy and

accuracy of the proposed filter that is comparable to an ideal-GLMB filter (supplied

with correct parameters) in tracking target trajectories. The resultant tracker is robust

enough for many medium-clutter and low-clutter multi-target tracking applications

such as air traffic control, surveillance, defence, space applications, oceanography, au-

tonomous vehicles and robotics, remote sensing, computer vision, and biomedical re-

search. For instance, this method has been recently applied to online cell biology track-

ing [35, 144]. For the future research, this bootrapping method is investigated with the

use of multiple sensors, object spawning and multi-scan state estimation.



CHAPTER 5

ROBUST MULTI-SENSOR
MULTI-TARGET TRACKING

This chapter presents an efficient and robust multi-sensor multi-target algorithm

that leverages the advantages of existing RFS-based filters to estimate target tra-

jectories when the probability of target detection and the clutter rate are unknown and

vary over time. Specifically, this algorithm is constructed using the combination of the

MS-GLMB filter and multiple robust CPHD filters. The performance of the resulting

robust MS-GLMB filter has been compared to the optimal MS-GLMB filter which is

supplied with correct parameters of background information. The experimental stud-

ies demonstrate the efficacy and effectiveness of the robust MS-GLMB filter with its

capability of achieving the near-optimal implementation comparing to the optimal MS-

GLMB filter. More impresively, this robust MS-GLMB filter outperforms other robust

filters in handling the unknown background information. This is contributed to the ca-

pability of the robust bootstrapped filter to estimate the background parameters while

operating.

5.1 Introduction

Multi-sensor multi-target tracking is an emerging technology that tracks multiple tar-

gets more efficiently using combined measurements from several sensors [126]. Multi-

sensor settings are frequently used in multi-target tracking applications to de-escalate

the uncertainty of the tracking system, thereby they enhance the ability of the tracking

approaches to accomodate the ambiguity of the target states. Currently, there are three

common multi-sensor architectures1 for multi-target tracking: centralised, distributed,

1 This categorisation is given in [126]. However, in the author’s publication [73],by considering each
fusion centre with its connected sensors as a node, the decentralised and distributed architectures are
combined.

99
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and decentralised [145–147], as shown in Figure 5.1.

In the centralised architecture (see Figure 5.1(a)), information collected from all sen-

sors is delivered to a central fusion node. This central node uses this information to

direct compute the multi-target density and fuses all the acquired measurements and

updates the tracks. While this architecture is considered the theoretically optimal set-

ting in terms of tracking performance as there is no information loss, it may not be

feasible because of limited resources, such as communication bandwidth and compu-

tational power in a large surveillance area with many sensors [148, Chap.5].

To improve the reliability and performance of this architecture by reducing the

communication among central fusions nodes, the decoupled, replicated centralised

settings and distributed or hierarchical architecture without feedback were proposed

[148]. The decoupled architecture partitions the centralised one into groups of sensors

- fusion nodes. This architecture has the lowest computational and communication re-

quirements as it uses multiple fusion nodes, in which each node is responsible for only

the sensors in its set. However, the performance of this architecture highly depends

on the partition of sensors. The replicated centralised architecture [149] uses multiple

fusion nodes to process the same data from overlapping sets of all sensors. These fu-

sion nodes do not communicate with each other. Although the decoupled architecture

has high performance and reliability, it has drawbacks of heavy communication and

processing.

The distributed or hierarchical architecture (see Figure 5.1(c)) is proposed to pre-

vent the high load of communication and computational cost of the central fusion [146].

In the hierarchical architecture, the fusion nodes are hierarchised with low-level nodes

and a high-level node. Data collected from each sensor group are processed by a low-

level node to form local estimates. These local estimates are delivered to a high-level

node for final processing to form posterior multi-target density. This hierarchical archi-

tecture reduces the communication and processing cost and increases reliability. The

downside of this architecture is that it requires a strong correlation between the fused

(from distributed sensor nodes) and the actual multi-sensor updated densities for a

consistent capability of tracking. [22].

When the surveillance area is large and there is no communication from the central
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fusion node to all local fusion nodes, then both the centralised and distributed track-

ings are impossible. An alternative architecture, the decentralised architecture (see

Figure 5.1(b)) is applied in this case [126]. Instead of using a central fusion node, the

decentralised architecture uses multiple fusion nodes to connect with one or more sen-

sors. Each fusion node receives measurements from its connected sensor(s) then uses

information in these measurements to update its tracks. As each node can communi-

cate with its neighbours, it also updates tracks with additional information delivered

from its neighbours. The limitation of this architecture is that each fusion node can

only communicate with its neighbours and cannot broadcast its results.

In the RFS framework, these mentioned architectures have been adopted to solve

the problem of multi-sensor multi-target tracking. The decentralised setting has been

addressed with the PHD-CPHD filters [150–153], the multi-Bernoulli filter [154–157]

and the LMB-GLMB filters [36, 118, 158]. The distributed architecture has been ap-

plied for the PHD and CPHD filters [85] and the LMB and marginalised GLMB filters

[48, 110]. Solutions to the tracking problem using centralised architecture have been

developed using PHD and CPHD filters [159, 160], the multi-Bernoulli filter [161], and

the LMB filter [113, 116, 117, 162]. Notably, the recent centralised MS-GLMB filter [22]

demonstrates its applicable and scalable solution in practice via efficiently implemen-

tation of the joint sensor update with low computational complexity ofO (TP 2∏V
s=1m

(s))

as mentioned in Section 2.6.1.

The performance of multi-target trackers is highly influenced by the background

information (such as the probability of target detection and clutter statistics). In practi-

cal applications, the background parameters often vary with time and and are known

a priori. However, these parameters are usually assumed to be known and constant

leading to the biased or degraded tracking performance of the trackers. In multi-sensor

architectures, since each sensor needs the background parameters for generating ac-

curate measurements, incorrect values of these parameters make a worsened perfor-

mance of the trackers. The problem of tracking targets with unknown background

information has been addressed to the single-sensor systems with the CPHD filter

[96, 130] and GLMB filter [131], as well as a bootstrapped filter using a combination

of the CPHD and GLMB filters [70, 71]. However, this problem has not been examined

in the multi-sensor systems.
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Figure 5.1: Three common multi-sensor architectures [126].
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This chapter presents a robust tracker which uses the centralised multi-sensor ar-

chitecture to estimate target trajectories in an unknown background information. This

tracker is constructed using a systematic combination of the robust CPHD filters [96]

and a MS-GLMB filter [22].

Section 5.1 delivers background information on multi-target tracking using the RFS

concept. Section 5.2 outlines the formulation and implementation of the proposed

robust MS-GLMB tracker. The expermental implementation of this filter in different

tracking scenarios is demonstrated in Section 5.3 followed by some concluding marks

on the main contribution of this chapter in Section 5.4. Although the proposed robust

filter in this chapter can accommodate different types of sensors, this chapter focuses

on the tracking scenario using bearing-only sensors as published in the author’s jour-

nal article [73].

5.2 Robust multi-sensor multi-target tracking

This section describes the implementation of the robust MS-GLMB tracker that solves

the problem of multi-target tracking without prior known information of the detection

probability and clutter rate based on the advantage exploitation of the validated RFS-

based filters. In particular, the MS-GLMB filter [22] is adopted for the main filtering

process. In addition, a number of the robust CPHD filters [96] are used corresponding

to the number of the sensors in the system in which each filter estimates the clutter rate

for a sensor. These robust CPHD filters use the intensity and cardinality distribution

of the targets set contained in the MS-GLMB density at the previous time step to inde-

pendently estimate the clutter rates. The mean values of these estimated clutter rates

is then bootstrapped into the MS-GLMB filter. The schematic of the algorithm is given

in Figure 5.2.

5.2.1 Main filtering process

The MS-GLMB filter [22] is adopted for the main filtering process of the robust GLMB

tracker. The MS-GLMB filter is a new version of the efficient GLMB filter [40] applied

to the centralised multi-sensor architecture. Consequently, the MS-GLMB filter is for-

mulated to propagate the labelled multi-target density, providing estimates of target

tracks. The robust MS-GLMB tracker exploits this capability of tracking target trajec-

tories of the MS-GLMB filter in its implementation. Since the unknown information
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Figure 5.2: The diagram of the robust MS-GLMB tracker based on the combination of
an MS-GLMB and several robust CPHD filters.

on the target detection probability is augmented into the single-target state, the MS-

GLMB in this work is formulated to estimate this parameter and carries out the main

process. The information on the sensors’ clutter rates is bootstrapped from the robust

CPHD filters.

Suppose that the probability of detecting a target on each sensor is independent of

those of the other sensors. Since the detection probability α is augmented into a single

target state x with label `,the state distribution of this single-target state can be written

as p(ξ)(x,α, `) = p(ξ)(x, `)∏V
v=1 p

(ξ)(αv), where ξ is the association history. The state

transition model given in Eq. (2.51) now can be described with the augmented part as

follows:

ΦS+ (XS,+∣x,α, `) = ∑
(x+,`+)∈XS+

δ` (`+)pS (x, `) fS,+ (x+∣x, `)

×
V

∏
v=1

f
(v)
∆,+ (αi+∣αi) + [1 − 1L(XS,+) (`)] qS (x, `) .

(5.1)

in which f
(v)
∆,+ (⋅∣⋅) denotes the state transition density of the probability of the sensor

vth in detecting a target.

The likelihood function given in Eq. (2.55) for single-sensor case is now extended

to the multi-sensor case as proposed by by Vo et. al. [22]. In particularly, given the

multi-target state X , the sensor vth can detect a target (x,α, `) ∈X or miss-detect this
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target. If the target is detected then a measurement z(v)j is generated with the proba-

bility of target detection αv with likehood g(v)(z(v)∣x, `). If the target is miss-detected,

then it becomes an empty measurement with the probability 1 − αv. In addition, the

sensor vth can detect clutter as actual targets and generate the corresponding measure-

ments. Therefore, the set of all measurements produced by the sensor vth is given by

Z(v) = {z(v)
1∶∣Z(v)∣} ∈ Z which involves the measurements generated from actual targets

and clutter. The set of the clutter-generated measurements is modelled by Poisson RFS

with the intensity (rate) κ(v). Noting that, in the robust MS-GLMB tracker, the mean

values of clutter rates estimated by the robust-CPHD filters are bootstrapped into the

MS-GLMB filter. The MS-GLMB filter uses these values as its known parameters.

Using the abbreviations given in Eq. (2.70) to Eq. (2.75), and the assumption that all

sensors are conditionally independent, the likelihood function for single-sensor multi-

target tracking Eq. (2.55) is extended as described in Eq. (2.76).

5.2.2 Estimation of unknown background information using the robust CPHD re-

cursion

The CPHD filter is constructed using the concept of the (unlabelled) RFSs. This filter

is an extension of the PHD filter. Since the CPHD uses the cardinality distribution in

addition to the intensity (PHD) of the targets to estimate the multi-target density, it is

more accurate than the PHD filter. Further, as the complexity of the CPHD is O (∣Z ∣3)

or even O (∣Z ∣2 log2(∣Z ∣)) [18], this filter is benefited from a low-cost computation. An

extension of the CPHD, the robust CPHD filter, has been introduced in [96] to jointly

estimate the clutter rate and detection probability while filtering. In this work, we pro-

pose using several robust CPHD filters to estimate the clutter rates of the sensors (each

filter jointly estimates the two background parameters of one sensor). The mean val-

ues of the estimated clutter rates are then bootstrapped into the MS-GLMB filter. Note

that, while the GLMB filter can jointly estimate these two unknown background pram-

eters of each sensor using the data association method as presented in [131], it has a

complexity ofO (T ∣Z ∣3) (where T is the number of request terms and ∣Z ∣ is the number

of measurements) for each prior component of the GLMB density. Furthermore, this

method is applied with single-sensor setting only. Due to the NP-hard dimensional

assignment problem in the multi-sensor setting, the data association method is almost

imposible to apply. Hence, the solution on using the GLMB filter to estimate the de-
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tection profile and several robust CPHD filters to estimate the clutter rates of sensors

is introduced as a trade-off between the computational cost and the accuracy of the

robust MS-GLMB tracker. This chapter can be considered an extension of Chapter 3.

The robust CPHD filtering method to jointly estimate the unknown information on

the clutter rate and detection profile in Section 4.2.2 is extended in this work. Note that,

since the measurements from all sensors are delivered to the MS-GLMB filter, this filter

have more accurate updated intensity and cardinality distribution than those using

measurements from a single sensor. Therefore, in this work, the robust CPHD filter

corresponding to the vth sensor receives the prior intensity and cardinality distribution

from the MS-GLMB density instead of using its prior information and running parallel

with the GLMB filter as in Section 4.2.2. In addition to the received prior information,

the robust CPHD filter uses the set of measurements from its corresponding sensor to

calculate the multi-target density at each time step.

Given the GLMB prior of the form in Eq. (2.44), the intensity and cardinality distri-

bution of an actual target state can be computed as follows:

υ̃(1) (x) =∑
I,ξ

∑
`∈I
ω(I,ξ)p(ξ)(x, `)

V

∏
v=1

p(ξ)(αv)dαv, (5.2)

ρ̃(1)(n) =∑
I,ξ

δn (∣I ∣)ω(I,ξ). (5.3)

Since the targets involve actual targets and clutter-generated targets, the cardinality

distribution of targets on the hybrid state space is given by the convolution ρ̃(h) =

ρ̃(1) ∗ ρ(0) (′∗′ is the convolution operator).

Given Eq. (5.2) and Eq. (5.3) and the prior information of the current sensor clutter-

generated targets, the prediction stage of the robust CPHD can be implemented as
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expressed in Section 4.2.2:

ν
(v,1)
+ (x+, a+) =ν(1)B+ (x, a) + ∫ ∫ p

(1)
S (x) f (1)

+ (x+∣x) f (∆)
+ (a+∣a) ν̃(1) (x, a)dadx (5.4)

ν
(v,0)
+ (b) =ν(v,0)B,+ (b) + p(v,0)S ν(v,0) (b) (5.5)

ρ
(v,h)
+ (n) =

n

∑
j=0

ρ
(v,h)
B,+ (n − j)

∞
∑
i=j
Cij ρ̃

(v,h)(i)(1 − φv)i−jφjv (5.6)

φv =
⟨ν̃1, p

(1)
S ⟩ + ⟨ν(v,0), p(v,0)S ⟩

⟨1, ν̃(1)⟩ + ⟨1, ν(v,0)⟩
(5.7)

where Cij = i!
j!(i−j)! is the binomial coefficient.

Given the set of measurements Z(v)
+ of the sensor vth, the updated intensity and

cardinality distribution are computed as [96]:

ν
(v,1)
+ (x+, a+∣Z(v)

+ ) =

(1 − a+) ×
⟨Γ
(v,1)
Z
(v)
+

[ν(v,h)+ ,Z
(v)
+ ],ρ(v,h)+ ⟩

⟨Γ
(v,0)
Z
(v)
+

[υ(v,h)+ ,Z
(v)
+ ],ρ(v,h)+ ⟩

⟨1, ν(v,1)+ ⟩ + ⟨1, ν(v,0)+ ⟩
ν
(v,1)
+ (x+, a+)

+ ∑
z∈Z(v)+

a+ × g(v,1) (z∣x+)
⟨ν(v,0)+ , p

(v,0)
D,+ µ

(v)⟩ + ⟨ν(v,1)+ , p
(v,1)
D,+ g

(v,1) (z∣⋅)⟩
ν
(v,1)
+ (x+, a+)

(5.8)

ν
(v,0)
+ (b+∣Z(v)

+ ) =
(1 − b+) ×

⟨Γ
(v,1)
Z
(v)
+

[ν(v,h)+ ,Z
(v)
+ ],ρ(v,h)+ ⟩

⟨Γ(v,0)+ [ν(v,h)+ ,Z
(v)
+ ],ρ(v,h)+ ⟩

⟨1, ν(v,1)+ ⟩ + ⟨1, ν(v,0)+ ⟩
ν
(v,0)
+ (b+)

+ ∑
z∈Z(s)+

b+ × µ(v)(z)
⟨ν(v,0)+ , p

(v,0)
D,+ µ

(v)⟩ + ⟨ν(v,1)+ , p
(v,1)
D,+ g

(v,1) (z∣⋅)⟩
ν
(v,0)
+ (b+) (5.9)

ρ
(v,h)
+ (n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, n < ∣Z(v)
+ ∣

ρ(n)⋅Γ(v,0)[ν+Z(v)+ ](n)
⟨ρ(v,h)+ ,Γ

(v,0)
+ ⟩

, n ≥ ∣Z(v)
+ ∣

(5.10)

where

Γ
(v,u)
+ [ν(v,h)+ Z

(v)
+ ] (n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, n < ∣Z(v)
+ ∣ + u

P
(n)
∣Z(v)+ ∣+u

Φ
(n−(∣Z(v)+ ∣+u))
v,+ , n ≥ ∣Z(v)

+ ∣ + u,
(5.11)
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Φv,+ =1 −
⟨ν(v,1)+ , p

(v,1)
D,+ ⟩ + ⟨ν(v,0)+ , p

(v,0)
D,+ ⟩

⟨1, ν(v,1)+ ⟩ + ⟨1, ν(v,0)+ ⟩
, (5.12)

p
(v,1)
D,+ (x, a) =a, (5.13)

p
(v,0)
D,+ (b) =b, (5.14)

and Pnj is the permutation coefficient, i.e.,Pnj = n!
(n−j)! .

This work used the assumption of Beta - Gaussian mixture on the distribution of

joint kinematic and detection probability, as given in Section 4.2.2. The analytic imple-

mentation can be found in [96, Propositions 13, 14]. Given the assumptions that the

set of clutter statistics is a Poisson RFS and the clutter state is uniformly distributed

on the measurement space, the mean value κ̄(v) of the clutter rate for the sensor vth is

calculated as [96]:

κ̄(v) =
J(v,0)

∑
i=1

ω
(v,0)
i

s
(v,0)
i

s
(v,0)
i + t(v,0)i

(5.15)

Practically, the step for estimating the clutter rate and detection profile can be par-

allelised for V sensors to reduce the computational time.

5.2.3 Main filtering process using MS-GLMB filter

The MS-GLMB filter uses the set of estimated clutter rates κ̄(1∶V ) (see Eq. (5.15)) as

known parameters to perform the main multi-target filtering. Given the initial GLMB

density of the form in Eq. (2.44), with the transition models in Eq. (2.54) and Eq. (5.1),

and the likelihood model in Eq. (2.76), at the next time step, the GLMB filtering density

is computed as:

π+ (X+∣Z+)∝ ∆ (X+) ∑
I,ξ,I+,θ+

ω(I,ξ)ω(I,ξ,I+,θ+)
Z+ δI+ [L (X+)] [p(ξ,θ+)Z+ ]

X+
, (5.16)

where I ∈ F (L) , ξ ∈ Ξ, I+ ∈ F (L+) , θ+ ∈ Θ+ (I+) , and

ω
(I,ξ,I+,θ+)
Z+ = 1Θ+(I+) (θ+) [1 − P̄

(ξ)
S ]

I−I+ [P̄ (ξ)
S ]

I∩I+ [1 − rB,+]B+−I+ rB+∩I+B,+ [ψ̄(ξ,θ+)
Z+ ]

I+
,

(5.17)

P̄
(ξ)
S (`) = ⟨p(ξ) (⋅, `) , PS (⋅, `)⟩, (5.18)
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ψ̄
(ξ,θ+)
Z+ (`+) =∫ p̄

(ξ)
+ (x+, `+)

V

∏
v=1

p(ξ)(αv)ψ(θ+(`+))
Z+ (x+, α+, `+)dx+dα1∶V , (5.19)

pS (x+, α+, `+) =∫ PS (x, `+) fS,+ (x+∣x, `+)p(ξ) (x, `+)dx

×
V

∏
v=1
∫ p(ξ)(αv)f (v)

∆,+(αv,+∣αv)dαv, (5.20)

p̄
(ξ)
+ (x+, α+, `+) =1L (`+)

pS (x+, α+, `+)
P̄

(ξ)
S (`+)

+ 1B+ (`+)pB,+ (x+, `+) , (5.21)

p
(ξ,θ+)
Z+ (x+, α+, `+) =

p̄
(ξ)
+ (x+, α+, `+)ψ(θ+(`+))

Z+ (x+, α+`+)

ψ̄
(ξ,θ+)
Z+ (`+)

. (5.22)

The truncation need to used to prevent the exponential growth in the number of

the components in the GLMB filtering density. This work is performed to truncate the

components with low weights and select the significant components with the high-

est weights to keep the filter tractable. One of the truncation methods is to formulate

the multi-dimensional assignment on the extendend association maps. Nevertheless,

given the high number of the sensors, solving the resulted multi-dimensional assig-

ment problem is NP-hard, and intractable. Conversely, the Gibbs sampler can be used

to effeciently sample significant components from a stationary distribution. Never-

theless, in multi-sensor scenarios, this approach requires a large amount of memory

to reposit the high-dimensional distribution, that leads to the intractability of the fil-

ter. In [22], the authors assumed the minimally-Markovian (between sensors) on the

stationary distribution to overcome the drawback of the mentioned Gibbs sampler in

multi-sensor multi-target tracking. The resultant algorithm significantly reduces the

time of computation and the requirement on memory usage. More importantly, this

work allows tracking multiple targets online with a high number of sensors. The pro-

cedure of filtering process is presented in [22, Algorithm 2].

In the implementation of the robust MS-GLMB tracker, the kinematic of the system

is modelled by the Gaussian distribution and the detection probability of the sensor is

modelled by the independent Beta distribution. The prediction and update of each Beta

distribution are given in [96]. The pseudo-code for this implementation is given in Al-

gorithm 1. Specifically, the modelCPHD and modelGLMB involve the corresponding

models of transition and likelihood for the robust CPHD and MS-GLMB filters as pre-

sented in Section 5.2.1 and Section 5.2.2. Given the posterior density, the multi-target
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[24] or multi-trajectory [22, 31] filtering approaches can be adopted to extract target

tracks. In this chapter, the sub-optimal multi-target filtering approach introduced in

[24] is applied to estimate target tracks. Since the MS-GLMB filter has the complexity

of O (TP 2 (∣∑Vv=1Z
(v)∣)), the overall complexity in the robust MS-GLMB algorithm is

O (TP 2 (∣∑Vv=1Z
(v)∣)).

Input: modelGLMB,priorGLMB, modelCPHD, [priorCPHD](1∶V ), Z+
Output: posteriorGLMB, [posteriorCPHD](1∶V ), EstimatedTracks

Compute ρ̃(1),υ̃(1) via Eq. (5.2)) and Eq. (5.3) using priorGLMB .
for v = 1 ∶ V (parallelisable)

posteriorCPHD(v)=robust-CPHD-Recursion (ρ̃(1), υ̃(1),modelCPHD,priorCPHD(v), Z+)
Compute κ̄(v) via Eq. (5.15) and p(v)D using posteriorCPHD(v)

end
posteriorGLMB= MS-GLMB-Recursion(κ̄(1∶V ), p̄(1∶V )

D , modelGLMB, priorGLMB, Z+);
EstimatedTracks=MultiTargetEstimator(posteriorGLMB)

Algorithm 1: The pseudo-code for the implementation of the robust MS-GLMB
tracker.

5.3 Numerical study

This section presents a number of experiments to test the accuracy and effectiveness

of the robust MS-GLMB filter by comparing its performance with those of the MS-

GLMB (sub-optimal implementation) and iterated corrector GLMB (IC-GLMB) estima-

tors. Eight bearing-only sensors are used in a 2D surveillance area to track 10 targets

with their true trajectories illustrated in Figure 5.3. Each kinematic state of a target is

represented by a 4D vector x = [px, py, ṗx, ṗy]T , where px, py are the planar positions

and ṗx, ṗy are the corresponding planar velocities of the state x, and T is the matrix

transpose operator. The transition density for a single target is a Gaussian:

fS+ (x+∣x, `) = N (x+;Fx,Q) , (5.23)

where N (⋅; x̄, P ) denotes a Gaussian distribution with mean x̄ and covariance P , F =
⎡⎢⎢⎢⎢⎢⎣

I2 ∆I2

02 I2

⎤⎥⎥⎥⎥⎥⎦
, Q = σ2

a

⎡⎢⎢⎢⎢⎢⎣

∆4

4 I2
∆3

2 I2

∆3

2 I2 ∆2I2

⎤⎥⎥⎥⎥⎥⎦
, with σa = 0.15(m/s), ∆ = 1(s) and In is a n × n

identity matrix. The survival probability is set at pS = 0.98. There are 6 new-born

targets modelled by an LMB RFS with parameters {(rB+, p(i)B+)}6
i=1 where rB,+ = 0.01
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and p(i)B,+ = N (x;m
(i)
B,+,QB,+) with QB,+ = diag([10,5,10,5]) and:

m
(1)
B,+ = (100,100,0,0), m

(2)
B,+ = (100,500,0,0), m

(3)
B,+ = (100,900,0,0),

m
(4)
B,+ = (900,100,0,0), m

(5)
B,+ = (900,500,0,0), m

(6)
B,+ = (900,900,0,0).

Each bearing-only sensor vth is located at a fixed position s(v) = (s(v)x , s
(v)
y ) , v = 1,2, ...,8,

as illustrated in Figure 5.3. For sensor vth, the likelihood that a measurement z(v) is

generated from a target (x, `) is described as follows:

g(v) (z(v)∣x, `, s(v)) = N (z(v);hθ(v)(x, s(v)), σ2
θ) , (5.24)

where

hθ (x, s) = arctan(px − sx
py − sy

) , (5.25)

and σθ = π/180(rad). Note that the single-target kinematic transition Eq. (5.23) and

the likelihood Eq. (5.24) models are applied to both the MS-GLMB and robust CPHD

filters.

In this experiment, there are 3000 sampled components in the update stage and

a maximum 1000 components in the posterior density. These values are set identi-

cally in all three filter for a fair performance comparison. The efficacy and accuracy

of these trackers are compared using the OSPA [133] and OSPA(2) [26] metrics with

100 MC runs. Similar to the experiment in Section 4.3.2, the cut-off parameter is set to

c0 = 100(m) and the norm order of the metrics is set to p = 1. The OSPA(2) metric is

performed with window length lw = 10 (s). The experiment is investigated in three

different scenarios with different settings of the detection probability and clutter rate.

The details of these three scenarios are given in Table 5.1. These settings are the same

for all eight sensors. In all scenarios, MS-GLMB and IC-GLMB are supplied with cor-

rect pD and κ for each sensor while our robust MS-GLMB estimates these parameters

on the fly.

To validate the robustness of the proposed tracker, the parameters are kept un-

changed for our tracker across all scenarios. In addition, we only demonstrate the

results from one sensor (for each scenario) since the estimated values of the detection

probability p̄D and the clutter rate κ̄ for all eight sensors are similar in each tracking
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Figure 5.3: Layout of the tracking scenario with 10 targets and 8 sensors.
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scenario.

Detection probability pD Clutter rate κ̄(1,...,V )

1 0.9 30
2 0.5 5
3 varying in the range [0.5 - 0.9] varying in the range [5 - 30]

Table 5.1: Three different tracking scenarios with different settings of unknown back-
ground parameters.

5.3.1 Scenario 1

In the first tracking scenario, the implementation of the three filters are conducted with

high values of the detection probability and clutter rate. Specifically, the detection

probability is set at p̄D = 0.9 and the clutter rate is set at ¯κ = 30. These parameters are

known to the IC-GLMB and MS-GLMB filters, but unknown to the robust MS-GLMB

filter.

Figure 5.4 and Figure 5.5 demonstrate the comparisons of the correct parameters

of the detection probability and clutter rate with their corresponding estimated val-

ues from the robust MS-GLMB filter, respectively. From Figure 5.4, the estimated de-

tection probability starts around 0.7 (the initial setting value of the robust MS-GLMB

tracker) then approaches to the correct value at 0.9 after some fluctuations. In Fig-

ure 5.5, it could be observed that the estimated clutter rate quicky approaches to the

lower vincinity of the correct value of 30.

Regarding filtering performance, Figure 5.6 and Figure 5.7 show that there are few

tracking errors in the localisation and cardinality estimation of the robust MS-GLMB

filter. Conversely, while the IC-GLMB filter gives reasonably few errors in localisa-

tion, this filter drastically decays in the quality of estimating the cardinality estima-

tion, hence the high overall number of errors. Moreover, its 0.4 − σ bounds over 100

MC runs demonstrate that the tracking performance of the IC-GLMB filter is unstable

at each time step. In comparison between the robust MS-GLMB and the MS-GLMB, it is

shown that the tracking errors using OSPA and OSPA(2) metrics are similar, as given in

Figure 5.6 and Figure 5.7. These results demonstrate that the robust MS-GLMB is com-

petitive to the MS-GLMB filter. Note that, the correct parameters of the background

information is supplied to the MS-GLMB filter, while there is no prior information on

these parameters supplied to the robust MS-GLMB filter.
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Figure 5.4: Scenario 1: Mean estimated detection probability (with 0.4−σ bound) using
the robust MS-GLMB filter.
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Figure 5.5: Scenario 1: Mean estimated clutter rate (with 0.4−σ bound) using the robust
MS-GLMB filter.
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Figure 5.6: Scenario 1: Mean OSPA errors for the three filters (with 0.4 − σ bound).

Figure 5.8 shows that with the tracking scenario using multiple sensor, the IC-

GLMB fails to estimate the correct number of targets. However, the robust MS-GLMB

filter estimates target cardinality slightly better than the MS-GLMB filter.

5.3.2 Scenario 2

Unlike in Section 5.3.1, in this scenario, the detection probability and the clutter rate

are set to low values to test the tracking capability of the IC-GLMB, MS-GLMB and

the robust MS-GLMB filters. Specifically, the detection probability is set at p̄D = 0.5,

and the clutter rate is set at κ̄ = 5. While these two values are known to the IC-GLMB

and MS-GLMB filters, they are unknown and being estimated online in the robust MS-

GLMB filter.

Figure 5.9 shows that the robust MS-GLMB filter slightly overestimates the target

detection probability. Particularly, the mean value of this estimated parameter initiates

from around 0.65 (closed to the initial setting value), then it decreases to 0.55 after

some fluctuations. Note that the true value of detection probability in this scenario is
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Figure 5.7: Scenario 1: Mean OSPA(2) errors for the three filters (with 0.4 − σ bound).
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Figure 5.8: Scenario 1: Mean estimated cardinality (with 0.4 − σ bound) for the three
filters.
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0.5. Figure 5.10 indicates that the clutter rate of sensors is correctly estimated using the

robust MS-GLMB filter.
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Figure 5.9: Scenario 2: Mean estimated detection probability (with 0.4 − σ bound) for
the robust MS-GLMB filter.

In terms of filtering performance, Figure 5.11 and Figure 5.12 show while the MS-

GLMB and the robust MS-GLMB filters provide reliable estimates with the use of mul-

tiple sensors, the IC-GLMB does not. Conversely, in comparison of the tracking errors

using the OSPA and OSPA(2) metrics, the results of the robust MS-GLMB filter and the

MS-GLMB filter are almost coincident, as demonstrated in Figure 5.11 and Figure 5.12.

Engagingly, despite of using the assumption on no prior background information for

the robust MS-GLMB filter, this filter has slighly lower OSPA(2) errors than the MS-

GLMB filter.

It could be observed from Figure 5.13 that the estimated cardinality using the MS-

GLMB filter and the robust MS-GLMB filter are almost identical in the first 30 time

steps. From time steps 30 to 60 the MS-GLMB filter has better results of estimating

target cardinality than the robust MS-GLMB filter. However, the situation is changed

from time step 60 onward. In particular, the MS-GLMB filter tends to overestimate the

target cardinality, while the robust MS-GLMB slightly underestimates this parameter.
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Figure 5.10: Scenario 2: Mean estimated clutter rate (with 0.4 − σ bound) using the
robust MS-GLMB filter.
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Figure 5.11: Scenario 2: Mean OSPA errors (with 0.4 − σ bound) using the three filters.
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Figure 5.12: Scenario 2: Mean OSPA(2) errors (with 0.4 − σ bound) for the three filters.

In addition, Figure 5.13 also shows that the IC-GLMB does not produce reliable target

cardinality.

5.3.3 Scenario 3

This scenario tests the capability of the three filters in tracking targets with the varia-

tions of the detection probability pD and clutter rate κ̄(1,...,V ). Specifically, these values

vary from low to high with time during the tracking period. The condition for the ex-

periment is set for tracking period of 100 MC runs. For the first 50 time steps, the detec-

tion probability and clutter rate are set at low values ( for parameters, see Section 5.3.2).

For the last 50 time steps, these parameters are set at high values (for parameters, see

Section 5.3.1). The IC-GLMB and MS-GLMB are performed with the average values of

detection probability and clutter rate. These values are set to pD = 0.7 and κ̄ = 17.5 (i.e.,

the mean of the their variation ranges).

Figure 5.14 and Figure 5.15, respectively, present the estimated detection probabil-

ity and clutter rate from the robust MS-GLMB filter. This filter correctly captures the

variations in the parameters of the background information. Furthermore, the robust
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Figure 5.13: Scenario 2: Mean estimated cardinality (with 0.4 − σ bound) for the three
filters.
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Figure 5.14: Scenario 3: Mean estimated detection probability (with 0.4 − σ bound)
using the robust MS-GLMB filter.
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Figure 5.15: Scenario 3: Mean estimated clutter rate (with 0.4 − σ bound) using the
robust MS-GLMB filter.

MS-GLMB filter is more sensitive to the variation in the clutter rate than to that in the

detection probability.

The accuracy of the tracking performance is evaluated using the OSPA and OSPA(2)

metrics. The results in Figure 5.16 demonstrate that the robust MS-GLMB filter has a

high accuracy of tracking targets given its capability of adapting to the variations in the

background information. More importantly, while the MS-GLMB filter has lower er-

rors (i.e., better performance) than the IC-GLMB filter, these two filters fail to track tar-

gets. It could be observed from Figure 5.17 that, the filters with known and fixed back-

ground parameters incorrectly estimate the target cardinality in this scenario. Con-

versely, although the robust MS-GLMB filter tends to slightly underestimate the target

cardinality from time step 30 onward, it demonstrates reliable estimation results. For

the overal comparison on tracking performance of all three filters, the mean OSPA(2)

errors is evaluated (over 100 MC runs) throughout the entire tracking period and pre-

sented in Table 5.2. The results show that the IC-GLMB filter has the worst perfor-

mance in all three scenarios. While in the scenario 1, the robust MS-GLMB filter has

worse performance than the MS-GLMB filter, it is competitive with the MS-GLMB fil-
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Figure 5.16: Scenario 3: Mean OSPA errors (with 0.4 − σ bound) for the three filters.
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Figure 5.17: Scenario 3: Mean OSPA(2) errors (with 0.4 − σ bound) for the three filters.
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ter in the scenario 2. (Note that the MS-GLMB is supplied with the correct background

parameters in all tracking scenarios). In the scenario 3, the robust MS-GLMB filter has

the best performance given its capability to adapt to the notable changes in the tracking

environment. Despite of accuracy in tracking target cardinality, there are some differ-

Scenario IC-GLMB MS-GLMB Robust MS-GLMB
1 94.44(±7.74) 28.81(±10.45) 40.51(±10.55)
2 93.24(±3.61) 47.63(±9.83) 46.59(±12.36)
3 99.38(±1.22) 84.31(±3.91) 30.16(±10.62)

Table 5.2: The estimated OSPA(2) errors (with ±σ bound) (m) over 100 MC runs with
window length be the entire tracking period (lw = 100(s)) for the three filters in three
different scenarios.

ences in the estimation of the mean detection probability and clutter rate. While the

former is overestimated, the latter is underestimated. This might be associated with the

hypothesis on the association of the clutter measurements and the true miss-detected

tracks in some GLMB components (those with small weights). In Section 5.3.1, there

is a greater underestimation of the clutter rate as the number of clutter measurements

is high. Conversely, due to the characteristics of the beta distribution2 and the high

value of the detection probability in this tracking scenario, the underestimation of de-

tection probability is unremarkable. Similarly, the under estimation of the clutter rate

in Section 5.3.2 is unnoticeable since this parameter is small. However, the detection

probability in Section 5.3.2 is overestimated remarkbly. This overestimation is due to

the low detection probability of the tracking scenario.

5.4 Conclusions

This chapter presents a robust multi-sensor multi-target tracking algorithm for multi-

target tracking. This algorithm is constructed based on the the MS-GLMB filter and the

robust CPHD filters. The combination of these two types of RFS-based filters is bene-

fited from the capability of the MS-GLMB filter in estimating multi-target trajectories

using multiple sensors and the low computational cost of the CPHD filters in estimat-

ing the clutter rate. Consequently, the resultant robust tracker estimates not only the

target trajectories using multiple sensors but also the background information online

effeciently. The investigations in experiments with different tracking scenarios using

2 In scenarios with low detection probability, the mean value of this parameter would be increased
more significantly than in scenarios with high detection probability.
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Figure 5.18: Scenario 3: Mean estimated cardinality (with 0.4 − σ bound) for three
filters.

bearing-only sensors demonstrate the efficacy and accuaracy in the performance of

the proposed robust MS-GLMB filter compared to the IC-GLMB and MS-GLMB filters.

Notably, on the one hand, these experimental results show that the IC-GLMB filter fails

to track targets given a high number of the bearing-only sensors. On the other hand,

while the robust MS-GLMB filter has to estimated the unknown background param-

eters online, its performance is almost identical to that of the MS-GLMB filter which

is supplied with the correct and fixed background information. Most importantly, the

robust MS-GLMB filter outperforms the MS-GLMB filter in the scenario with varying

backgrounds. This outperformance is due to the capability of the robust MS-GLMB

filter in learning and adapting to the changes in background parameters.

In the performance of the robust MS-GLMB filter currently proposed in this chap-

ter, the distribution of newborn targets is assumed to be known in priori to the fil-

ter. However, this assumption does not hold in many practical applications as the

appearance of newborn targets is random in time and places in the surveillance area.

Recently, the measurement adaptive birth model given in [101, 142] for single-sensor

multi-target tracking has been extended to the MS-GLMB filter. This method is intro-
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duced in [143] to accommodate the unknown information on the model parameters

of newborn targets. However, since this method associates measurements from differ-

ent sensors to form the birth density, it is computationally expensive. Future avenues

will invenstigate in an efficient method to handle the randomness of the newborn tar-

gets. A further expectation will be a more adaptive multi-sensor multi-target tracking

algorithm that is an extension of the work in Chapter 4 to the multi-sensor version.
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CHAPTER 6

CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

This chapter discusses and concludes the contents of the dissertation and presents

directions for future researches.

6.1 Conclusions

This dissertation proposes two simple and effective multi-target trackers for tracking

a random and time-varying number of targets without prior knowledge in model pa-

rameters based on the existing RFS-based filters. These trackers are called Bootstrapped-

GLMB filters as they associate the CPHD filter with the GLMB filter in estimating un-

known parameters while performing target trajectories tracking. The first Bootstrapped-

GLMB tracker adaptively accommodates the unknown information on the clutter statis-

tics, the probability of target detection, and the model of newborn targets which are

usually presumed to be known a priori in conventional filters using a sensor. The sec-

ond presents a robust technique for tracking multiple targets using multiple sensors

that can estimate the target trajectories while estimating clutter and detection profile

on-the-fly. Those trackers are meaningful in practical applications as they solve the

uncertainty in multi-target tracking problems and accelerate the processing by paral-

lelising the implementation of real-world systems.

Chapter 3 extends the existing RFS-based algorithms to tackle the tracking appli-

cations with unknown clutter rates. Specifically, the GLMB filter was combined with

a generation of the CPHD filter, the λ-CPHD, to track multi-target trajectories with-

out prior knowledge of the clutter rate. The λ−CPHD filter is applied to get the es-

timated value of the clutter rate before bootstrapping this parameter into the GLMB

filter. To demonstrate the correctness of the proposed estimator, the implementation

127
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of the bootstrapping algorithm was compared to those of the four other RFS-based

filters in numerical studies with both linear and non-linear tracking scenarios. The

Bootstrapped-GLMB filter has shown competitive performance with state-of-the-art

multi-target tracking solutions in the literature.

Chapter 4 extends the work described in Chapter 3 by considering the jointly un-

known clutter rate and detection profile as well as the birth model. Particularly, an

adaptive multi-target tracker has been constructed based on the recent effective GLMB

filtering algorithm to handle the random variations in probability of detection, clut-

ter statistics, and model of newborn targets. This tracker used the robust CPHD fil-

ter running parallel to the GLMB filter to evaluate the unknown probability of detec-

tion, and estimated the jointly unknown clutter rate and detection probability online in

two different experiment scenarios. The resultant time-varying parameters were then

bootstrapped into the GLMB filter. The use of the robust CPHD filter in this tracker

is benefited in low computational cost. Furthermore, the GLMB filter adopted the

measurement-based adaptive birth model to handle the newborn targets. These com-

binations resulted in an efficient plug-and-play multi-target tracker robust enough for

several medium-clutter and low-clutter multi-target tracking applications. This tracker

overcomes the challenges for users in finding the parameters for initiating trajectories,

clutter, and detection probability. The accuracy of the proposed method was compared

to other well-known RFS-based filters and was demonstrated by numerical studies.

The second Bootstrapped-GLMB filter which handles the multi-sensor multi-target

tracking problem was presented in Chapter 5. This filter is an extension of the filter

presented in Chapter 4. While in Chapter 4, the robust CPHD filter ran independent

of the GLMB filter, in Chapter 5, the parallel robust CPHD filters received their prior

information from the output of the GLMB filter in a multi-sensor counterpart. Further,

while the technique in Chapter 5 can be applied to several types of sensors, the scenario

using bearing-only sensors was used for demonstration purposes.

The work in this dissertation has illustrated that by using the benefits of the existing

RFS-based filters, the resultant algorithm can handle practical applications where the

model parameters are usually unknown a priori in a simple but effective way.
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6.2 Future research directions

The work presented in this dissertation could be further extended in terms of theoreti-

cal developments and applications in multiple ways.

●Multi-sensor multi-target tracking using the GLMB model with an unknown clut-

ter rate and unknown detection profile has been presented in this dissertation. While

the multi-sensor adaptive birth strategy for the GLMB filter was introduced recently in

[143], it is based on the assumption of prior knowledge of detection probfile and clutter

statistics. The work described in Chapter 5 that handles the unknown information in

the birth model could be extended to develop an adaptive multi-target tracking tracker

using multiple sensors.

● While this dissertation considered both single-sensor and multi-sensor multi-

target tracking with unknown background information, it only considered the filter-

ing problem (i.e., estimating target states and trajectories using filtering density). The

smoothing method mentioned in Section 2.7 yields significantly better estimates than

filtering since it envolves entire historcal information of the target states up to the cur-

rent time in the posterior density [41]. The future work could investigate the imple-

mentation of the Bootstrapped-GLMB smoother based on the combination of multi-

scan GLMB [41] with the Bootstrapped-GLMB filter given in this dissertation.

● Currently, there are two state-of-the-art techniques for tracking target trajectories:

the multi-scan GLMB filter [41], the MS-GLMB filter [22] and the multi-scan MS-GLMB

filter [42]. Future work could investigate on the combination of these two techniques

in real-world applications to handle the unknown model parameters and produce the

best estimates on target states and target trajectories.

● The new filter can be used to accommodate multi-scan filtering [41] to improve

tracking performance. In applications with a large number of targets, a parallel pro-

cess could be applied as in [26] to reduce the computational effort and effectively utilise

the hardware. Furthermore, RFS-based multi-object Bayesian filters for merged or ex-

tended objects [27, 30] can be used to track multiple targets with an unknown back-

ground, unknown birth model and spawning targets. Conversely, the application of

the proposed filter can be extended to other applications, such as spatial object surveil-
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lance to track objects with collision, or after launching events.



APPENDIX 7

Relationship between the detection
probability and the clutter rate

There is an inter-twined relationship between the detection probability and the clut-

ter rate. In general, when the detection probability is overestimated, the clutter rate is

underestimated since there are more hypotheses with clutter measurements being as-

sociated with tracks. In contrast, when the detection probability is underestimated, the

clutter rate is overestimated since there are more hypotheses with tracks are considered

as miss-detected and more true measurements not being associated with tracks.

On the other hand, the detection probability is affected by the parameters of Beta

distribution. Note that from the identity presented in Mahler2011CPHD, a detection

event will update the beta distribution by increasing the parameter s by 1 and a miss-

detection event will increase t by 1. The relationship between s, t, and the mean detec-

tion probability is given in the following Figure 7.1.

It can be observed that, at low detection probability scenarios (usually associated

with high t), if a track is associated with a measurement, the mean detection probability

will increase more significantly than in the scenarios with high detection probability.

The discussed behavior is, respectively, reflected in Figure 5.4 and Figure 5.5 where

the detection probability is slightly overestimated and clutter rate is underestimated.

Since there are many clutter measurements, it is more likely that a truly miss-detected

track being associated with clutter measurement in some hypotheses. However, due

to the high detection probability, the overestimation of detection probability is not no-

ticeable (due to the characteristic of the beta distribution).

This behavior is also observed in Figure 5.9 and Figure 5.10. However, since the

number of clutter measurements is low in Section 5.3.2, the underestimation of clutter
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Figure 7.1: Mean detection probability versus different Beta parameters. The initial
values of s and t in our experiments are 2 and 1, respectively.

132



rate is not remarkable. Nevertheless, given the low value of the detection probability

in this scenario, the overestimation of the detection probability is more noticeable.

Although it is desirable to correctly estimate the detection probability and clutter

rate, the ultimate goal of the filter is to accurately estimate the target states, which has

been achieved as shown by our experimental results.
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