22,977 research outputs found

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors

    Get PDF
    Meaningful quantification of data and structural uncertainties in conceptual rainfall-runoff modeling is a major scientific and engineering challenge. This paper focuses on the total predictive uncertainty and its decomposition into input and structural components under different inference scenarios. Several Bayesian inference schemes are investigated, differing in the treatment of rainfall and structural uncertainties, and in the precision of the priors describing rainfall uncertainty. Compared with traditional lumped additive error approaches, the quantification of the total predictive uncertainty in the runoff is improved when rainfall and/or structural errors are characterized explicitly. However, the decomposition of the total uncertainty into individual sources is more challenging. In particular, poor identifiability may arise when the inference scheme represents rainfall and structural errors using separate probabilistic models. The inference becomes ill‐posed unless sufficiently precise prior knowledge of data uncertainty is supplied; this ill‐posedness can often be detected from the behavior of the Monte Carlo sampling algorithm. Moreover, the priors on the data quality must also be sufficiently accurate if the inference is to be reliable and support meaningful uncertainty decomposition. Our findings highlight the inherent limitations of inferring inaccurate hydrologic models using rainfall‐runoff data with large unknown errors. Bayesian total error analysis can overcome these problems using independent prior information. The need for deriving independent descriptions of the uncertainties in the input and output data is clearly demonstrated.Benjamin Renard, Dmitri Kavetski, George Kuczera, Mark Thyer, and Stewart W. Frank

    Bayesian comparison of latent variable models: Conditional vs marginal likelihoods

    Full text link
    Typical Bayesian methods for models with latent variables (or random effects) involve directly sampling the latent variables along with the model parameters. In high-level software code for model definitions (using, e.g., BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on the latent variables. This can lead researchers to perform model comparisons via conditional likelihoods, where the latent variables are considered model parameters. In other settings, however, typical model comparisons involve marginal likelihoods where the latent variables are integrated out. This distinction is often overlooked despite the fact that it can have a large impact on the comparisons of interest. In this paper, we clarify and illustrate these issues, focusing on the comparison of conditional and marginal Deviance Information Criteria (DICs) and Watanabe-Akaike Information Criteria (WAICs) in psychometric modeling. The conditional/marginal distinction corresponds to whether the model should be predictive for the clusters that are in the data or for new clusters (where "clusters" typically correspond to higher-level units like people or schools). Correspondingly, we show that marginal WAIC corresponds to leave-one-cluster out (LOcO) cross-validation, whereas conditional WAIC corresponds to leave-one-unit out (LOuO). These results lead to recommendations on the general application of the criteria to models with latent variables.Comment: Manuscript in press at Psychometrika; 31 pages, 8 figure

    Contrasting Multiple Social Network Autocorrelations for Binary Outcomes, With Applications To Technology Adoption

    Full text link
    The rise of socially targeted marketing suggests that decisions made by consumers can be predicted not only from their personal tastes and characteristics, but also from the decisions of people who are close to them in their networks. One obstacle to consider is that there may be several different measures for "closeness" that are appropriate, either through different types of friendships, or different functions of distance on one kind of friendship, where only a subset of these networks may actually be relevant. Another is that these decisions are often binary and more difficult to model with conventional approaches, both conceptually and computationally. To address these issues, we present a hierarchical model for individual binary outcomes that uses and extends the machinery of the auto-probit method for binary data. We demonstrate the behavior of the parameters estimated by the multiple network-regime auto-probit model (m-NAP) under various sensitivity conditions, such as the impact of the prior distribution and the nature of the structure of the network, and demonstrate on several examples of correlated binary data in networks of interest to Information Systems, including the adoption of Caller Ring-Back Tones, whose use is governed by direct connection but explained by additional network topologies

    Bayesian Item Response Modeling in R with brms and Stan

    Get PDF
    Item Response Theory (IRT) is widely applied in the human sciences to model persons' responses on a set of items measuring one or more latent constructs. While several R packages have been developed that implement IRT models, they tend to be restricted to respective prespecified classes of models. Further, most implementations are frequentist while the availability of Bayesian methods remains comparably limited. We demonstrate how to use the R package brms together with the probabilistic programming language Stan to specify and fit a wide range of Bayesian IRT models using flexible and intuitive multilevel formula syntax. Further, item and person parameters can be related in both a linear or non-linear manner. Various distributions for categorical, ordinal, and continuous responses are supported. Users may even define their own custom response distribution for use in the presented framework. Common IRT model classes that can be specified natively in the presented framework include 1PL and 2PL logistic models optionally also containing guessing parameters, graded response and partial credit ordinal models, as well as drift diffusion models of response times coupled with binary decisions. Posterior distributions of item and person parameters can be conveniently extracted and post-processed. Model fit can be evaluated and compared using Bayes factors and efficient cross-validation procedures.Comment: 54 pages, 16 figures, 3 table
    • 

    corecore