230 research outputs found

    LITHIUM-ION BATTERY DEGRADATION EVALUATION THROUGH BAYESIAN NETWORK METHOD FOR RESIDENTIAL ENERGY STORAGE SYSTEMS

    Get PDF
    Batteries continue to infiltrate in innovative applications with the technological advancements led by Li-ion chemistry in the past decade. Residential energy storage is one such example, made possible by increasing efficiency and decreasing the cost of solar PV. Residential energy storage, charged by rooftop solar PV is tied to the grid, provides household loads. This multi-operation role has a significant effect on battery degradation. These contributing factors especially solar irradiation and weather conditions are highly variable and can only be explained with probabilistic analysis. However, the effect of such external factors on battery degradation is approached in recent literature with mostly deterministic and some limited stochastic processes. Thus, a probabilistic degradation analysis of Li-ion batteries in residential energy storage is required to evaluate aging and relate to the external causal factors. The literature review revealed modified Arrhenius degradation model for Li-ion battery cells. Though originating from an empirical deterministic method, the modified Arrhenius equation relates battery degradation with all the major properties, i.e. state of charge, C-rate, temperature, and total amp-hour throughput. These battery properties are correlated with external factors while evaluation of capacity fade of residential Li-ion battery using a proposed detailed hierarchical Bayesian Network (BN), a hierarchical probabilistic framework suitable to analyze battery degradation stochastically. The BN is developed considering all the uncertainties of the process including, solar irradiance, grid services, weather conditions, and EV schedule. It also includes hidden intermediate variables such as battery power and power generated by solar PV. Markov Chain Monte-Carlo analysis with Metropolis-Hastings algorithm is used to estimate capacity fade along with several other interesting posterior probability distributions from the BN. Various informative and promising results were obtained from multiple case scenarios that were developed to explore the effect of the aforementioned external factors on the battery. Furthermore, the methodologies involved to perform several characterizations and aging test that is essential to evaluate the estimation proposed by the hierarchical BN is explored. These experiments were conducted with conventional and low-cost hardware-in-the-loop systems that were developed and utilized to quantify the quality of estimation of degradation

    Predicting battery lifetime under varying usage conditions from early aging data

    Get PDF
    Accurate battery lifetime prediction is important for maintenance, warranties, and cell design. However, manufacturing variability and usage-dependent degradation make life prediction challenging. Here, we investigate new features derived from capacity-voltage data in early life to predict the lifetime of cells cycled under varying charge rates, discharge rates, and depths of discharge. The early-life features capture a cell’s state of health and the change rate of component-level degradation modes. Using a newly generated dataset from 225 nickel-manganese-cobalt/graphite lithium-ion cells aged under a wide range of conditions, we demonstrate a lifetime prediction of in-distribution cells with 15.1% mean absolute percentage error (MAPE). A hierarchical Bayesian model shows improved performance on extrapolation, achieving 21.8% MAPE for out-of-distribution cells. Our approach highlights the importance of using domain knowledge of battery degradation to inform feature engineering and model construction. Further, a new publicly available battery lifelong aging dataset is provided

    Prognostics and Health Management for the Optimization of Marine Hybrid Energy Systems

    Get PDF
    Decarbonization of marine transport is a key global issue, with the carbon emissions of international shipping projected to increase 23% to 1090 million tonnes by 2035 in comparison to 2015 levels. Optimization of the energy system (especially propulsion system) in these vessels is a complex multi-objective challenge involving economical maintenance, environmental metrics, and energy demand requirements. In this paper, data from instrumented vessels on the River Thames in London, which includes environmental emissions, power demands, journey patterns, and variance in operational patterns from the captain(s) and loading (passenger numbers), is integrated and analyzed through automatic, multi-objective global optimization to create an optimal hybrid propulsion configuration for a hybrid vessel. We propose and analyze a number of computational techniques, both for monitoring and remaining useful lifetime (RUL) estimation of individual energy assets, as well as modeling and optimization of energy use scenarios of a hybrid-powered vessel. Our multi-objective optimization relates to emissions, asset health, and power performance. We show that, irrespective of the battery packs used, our Relevance Vector Machine (RVM) algorithm is able to achieve over 92% accuracy in remaining useful life (RUL) predictions. A k-nearest neighbors algorithm (KNN) is proposed for prognostics of state of charge (SOC) of back-up lead-acid batteries. The classifier achieved an average of 95.5% accuracy in a three-fold cross validation. Utilizing operational data from the vessel, optimal autonomous propulsion strategies are modeled combining the use of battery and diesel engines. The experiment results show that 70% to 80% of fuel saving can be achieved when the diesel engine is operated up to 350 kW. Our methodology has demonstrated the feasibility of combination of artificial intelligence (AI) methods and real world data in decarbonization and optimization of green technologies for maritime propulsion

    A BAYESIAN NETWORK APPROACH TO BATTERY AGING IN ELECTRIC VEHICLE TRANSPORTATION AND GRID INTEGRATION

    Get PDF
    Nowadays, batteries in electric vehicles (EVs) are facing a variety of tasks in their connection to the power grid in addition to the main task, driving. All of these tasks play a very significant role in the battery aging, but they are highly variable due to the change in the driver behavior, grid connection availability and weather conditions. The effect of these external factors in the battery degradation have been studied in literature by mostly deterministic and some stochastic approaches, but limited to specific cases. In this dissertation, first, a large-scale deterministic approach is implemented to evaluate the effect of variations in the EV battery daily tasks. To do so, a software tool named REV-Cycle is developed to simulate the EV powertrain and studied the effect of driving behavior, recharging facilities and timings, grid services and temperature/weather change effects, one by one. However, there are two main problems observed in the deterministic aging evaluation: First, the battery capacity fade factors such as temperature, cycling current, state of charge (SOC) … are dependent to the external variables such as location, vehicle owner’s behavior and availability of the grid connection. Therefore, it is not possible to accurately evaluate the battery degradation with a deterministic model, while its inputs are stochastic. Second, the battery aging factors’ dependency is hierarchical and it is not easy to follow and implement this hierarchy with deterministic models. Therefore, using a hierarchical probabilistic framework is proposed that can better represent the problem and realized that the Bayesian statistics with Markov Chain Monte Carlo (MCMC) can provide the problem solving structure needed for this purpose. A comprehensive hierarchical probabilistic model of the battery capacity fade is proposed using Hierarchical Bayesian Networks (HBN). The model considers all uncertainties of the process including vehicle acceleration and velocity, grid connection for charging and utility services, temperatures and all unseen intermediate variables such as battery power, auxiliary power, efficiencies, etc. and estimates the capacity fade as a probability distribution. Metropolis-Hastings MCMC algorithm is applied to generate the posterior distributions. This modeling approach shows promising result in different case studies and provides more informative evaluation of the battery capacity fade

    Extreme Learning Machine Based Prognostics of Battery Life

    Get PDF
    This paper presents a prognostic scheme for estimating the remaining useful life of Lithium-ion batteries. The proposed scheme utilizes a prediction module that aims to obtain precise predictions for both short and long prediction horizons. The prediction module makes use of extreme learning machines for one-step and multi-step ahead predictions, using various prediction strategies, including iterative, direct and DirRec, which use the constant-current experimental capacity data for the estimation of the remaining useful life. The data-driven prognostic approach is highly dependent on the availability of high quantity of quality observations. Insufficient amount of available data can result in unsatisfactory prognostics. In this paper, the prognostics scheme is utilized to estimate the remaining useful life of a battery, with insufficient direct data available, but taking advantage of observations available from a fleet of similar batteries with similar working conditions. Experimental results show that the proposed prognostic scheme provides a fast and efficient estimation of the remaining useful life of the batteries and achieves superior results when compared with various state-of-the-art prediction techniques

    Bayesian hierarchical modelling for battery lifetime early prediction

    Get PDF
    Accurate prediction of battery health is essential for real-world system management and lab-based experiment design. However, building a life-prediction model from different cycling conditions is still a challenge. Large lifetime variability results from both cycling conditions and initial manufacturing variability, and this—along with the limited experimental resources usually available for each cycling condition—makes data-driven lifetime prediction challenging. Here, a hierarchical Bayesian linear model is proposed for battery life prediction, combining both individual cell features (reflecting manufacturing variability) with population-wide features (reflecting the impact of cycling conditions on the population average). The individual features were collected from the first 100 cycles of data, which is around 5-10% of lifetime. The model is able to predict end of life with a root mean square error of 3.2 days and mean absolute percentage error of 8.6%, measured through 5-fold cross-validation, overperforming the baseline (non-hierarchical) model by around 12-13%

    Real-time aging trajectory prediction using a base model-oriented gradient-correction particle filter for Lithium-ion batteries

    Get PDF
    Predicting batteries' future degradation is essential for developing durable electric vehicles. The technical challenges arise from the absence of full battery degradation model and the inevitable local aging fluctuations in the uncontrolled environments. This paper proposes a base model-oriented gradient-correction particle filter (GC-PF) to predict aging trajectories of Lithium-ion batteries. Specifically, under the framework of typical particle filter, a gradient corrector is employed for each particle, resulting in the evolution of particle could follow the direction of gradient descent. This gradient corrector is also regulated by a base model. In this way, global information suggested by the base model is fully utilized, and the algorithm's sensitivity could be reduced accordingly. Further, according to the prediction deviations of base model, weighting factors between the local observations and base model can be updated adaptively. Four different battery datasets are used to extensively verify the proposed algorithm. Quantitatively, the RMSEs of GC-PF can be limited to 1.75%, which is 44% smaller than that of the conventional particle filter. In addition, the consistency of predictions when using different size of training data is also improved by 32%. Due to the pure data-driven nature, the proposed algorithm can also be extendable to other battery types

    Lithium-ion battery data and where to find it

    Get PDF
    Lithium-ion batteries are fuelling the advancing renewable-energy based world. At the core of transformational developments in battery design, modelling and management is data. In this work, the datasets associated with lithium batteries in the public domain are summarised. We review the data by mode of experimental testing, giving particular attention to test variables and data provided. Alongside highlighted tools and platforms, over 30 datasets are reviewed
    • …
    corecore