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SUMMARY

Accurate battery lifetime prediction is important for maintenance,
warranties, and cell design. However, manufacturing variability
and usage-dependent degradation make life prediction chal-
lenging. Here, we investigate new features derived from capacity-
voltage data in early life to predict the lifetime of cells cycled under
varying charge rates, discharge rates, and depths of discharge. The
early-life features capture a cell’s state of health and the change rate
of component-level degradation modes. Using a newly generated
dataset from 225 nickel-manganese-cobalt/graphite lithium-ion
cells aged under a wide range of conditions, we demonstrate a life-
time prediction of in-distribution cells with 15.1% mean absolute
percentage error (MAPE). A hierarchical Bayesian model shows
improved performance on extrapolation, achieving 21.8% MAPE
for out-of-distribution cells. Our approach highlights the impor-
tance of using domain knowledge of battery degradation to inform
feature engineering andmodel construction. Further, a new publicly
available battery lifelong aging dataset is provided.

INTRODUCTION

Understanding the long-term degradation of lithium-ion (Li-ion) batteries is crucial

for their optimal manufacturing, design, and control.1,2 However, repeatedly assess-

ing cell performance via aging experiments is a time- and cost-intensive task.3 Man-

ufacturers and researchers need quick and accurate methods to screen long-term

performance and to quantify the impact of new designs and control changes without

having to cycle cells to the end of life (EOL) each time a new question arises. Models

using data from early life could significantly shorten the time needed to make accu-

rate predictions of long-term degradation,4 and this could lead to rapid screening of

new battery performance and optimization of charging protocols.5–7

The idea that lifetime can be predicted using measurements from the early stages of

battery aging experiments has its roots in research from over a decade ago by J.

Dahn and researchers at Dalhousie University, who were investigating the impact

of new electrolyte additives and electrode designs on battery performance. In late

2009, they published a paper describing how high-precision measurements of

Coulombic efficiency during the first few cycles could be used to predict cell lifetime

and rank it qualitatively against other cells.8 Coulombic efficiency is an important

performance metric, and it is calculated as the discharge-to-charge capacity ratio,

where an ideal value of unity indicates perfect cyclic efficiency. Measuring cell

Coulombic efficiency with an error of < 0.01% can indicate cell-to-cell differences

caused by different rates of undesirable side reactions that lead to capacity fade. Us-

ing purpose-built high-precision equipment, the Dalhousie team published a paper

in 2011 that compared long-term cycling data (> 750 cycles) with predicted lifetimes
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extrapolated from short-term (< 500 h) high-precision Coulombic efficiency

measurements.9

Since this work, many new studies have been published on ‘‘early-life prediction.’’ In

2013, the Dalhousie University group published another paper demonstrating the

lifetime ranking of 160 Li-ion cells with various electrolyte additives, using high-pre-

cision Coulombic efficiency measurements from the first 50 cycles of data.10 The

Coulombic efficiency measurements strongly correlated with the cells’ lifetimes.

However, many researchers and industry professionals do not have access to high-

precision machines for testing. Furthermore, it would be even more useful to predict

lifetimes using early-life measurements made during faster cycling experiments and

under a broader range of operating conditions, enabling the technology to be de-

ployed in more research areas and even for cells operating in the field.

Research by Baumhöfer et al.11 and Harris et al.12 investigated alternative ap-

proaches not requiring the use of a high-precision cycler. Baumhöfer et al. devel-

oped a lifetime prediction model on 48 cells cycled under identical conditions.11

Hundreds of early-life features extracted from impedance spectra, pulse character-

ization tests at different states of charge, and standard capacity tests were reduced

to a set of 24 features and used for prediction. The model using 24 features was ac-

curate within 16 cycles; however, further analysis showed that model accuracy was

highly dependent on the number of features used, with more features generally

being better, suggesting the model may possibly be overfitting the small dataset

ðN = 48Þ. Harris et al. examined the failure statistics of 24 cells cycled under iden-

tical conditions and established a weak correlation between the cells’ capacity at cy-

cle 80 and the capacity at cycle 500.12 These works suggest simpler and more easily

obtainable early-life features might be found to correlate with eventual lifetime.

Severson et al.5 in 2019 demonstrated an early-life prediction model using features

extracted from the discharge capacity vs. voltage ðQðVÞÞ curves during regular

cycling. The feature extraction method was unique, quantifying the cells’ degrada-

tion rates by tracking the early-life variation of their QðVÞ curves between cycles

10 and 100, referred to as DQ100� 10ðVÞ. The approach was also used in follow-up

work by Attia et al.6 to accelerate an experimental campaign to optimize the con-

stant current portion of a fast charging protocol. The researchers in these papers

generated a large battery aging dataset from 169 lithium-iron-phosphate/graphite

(LFP) cells cycled under various fast charging protocols. This was made publicly avail-

able, and many other researchers have investigated methods of further improving

predictive performance and feature extraction techniques using these data.13–22

Notably, Paulson et al.22 demonstrated accurate early-life prediction on six different

metal oxide cathode chemistries. Fermin-Cueto et al.20 investigated predicting the

knee point (when capacity begins to decrease rapidly) in a cell’s capacity degrada-

tion curve using early-life features. Similarly, Li et al.21 demonstrated a prediction

model capable of projecting the entire capacity degradation trajectory from early-

life features.

Despite this growing body of research, many fundamental questions about battery

life modeling remain unanswered. One fundamental issue is that, in order to train

machine learning models to predict lifetime from early-life cycles, data from the

entire lifetime are required. Therefore, these approaches are best suited to applica-

tions such as screening cells after manufacturing, or relative comparisons, rather

than quantitatively absolute predictions. A second issue is a lack of publicly available

battery lifetime data that covers a wide range of conditions. The dataset published
2 Cell Reports Physical Science 5, 101891, April 17, 2024
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by Severson et al. and Attia et al.5,6 was specifically generated to study high-rate fast

charging protocols for LFP cells, leaving the discharge rate and depth of discharge

fixed. Even though the dataset is relatively large compared to existing publicly avail-

able datasets (N = 169 cells), the limited range of operating conditions, in this case,

induced a single dominant degradation mode (loss of active material at the anode or

negative electrode, ‘‘LAMNE’’), causing all of the capacity degradation trajectories to

have very similar shapes, and perhaps making lifetime prediction easier.23 While the

relationships between cell operating conditions and the corresponding degradation

modes are well understood,1,3,24,25 it remains unclear how the DQðVÞ feature trans-

fers to cells of different chemistries and to situations where multiple interacting

degradation modes are present. This is especially the case for cells that experience

milder degradation resulting in less obvious changes in the QðVÞ curve. Further-

more, all cells in the dataset from Severson et al. and Attia et al.5,6 were cycled under

a fixed depth of discharge, making it easy to extract features from any cycle along

the cell’s degradation trajectory. However, in practice, the depth of discharge of

cells depends on applications and user preferences, and cells may not be subjected

to full depth-of-discharge cycles in many cases. So, there is a need to explore alter-

native methods of collecting early-life feature data and validating results using peri-

odic reference performance tests or other means.

In this work, we investigate new early-life features derived from capacity-voltage

data that can be used to predict the lifetimes of cells cycled under a wide range of

charge rates, discharge rates, and depths of discharge. To study this, we generated

a new battery aging dataset from 225 nickel-manganese-cobalt/graphite (NMC/Gr)

cells, cycled in groups of four per condition, under a much wider range of operating

conditions than existing publicly available datasets.26 The cells in our dataset exhibit

larger variations in their capacity degradation trajectories than previous open data-

sets, driven by the interactions and accumulations of various component-level

degradation mechanisms.1,23 To predict the lifetimes of cells experiencing different

degradation pathways accurately, we introduce new early-life features extracted

from the differential voltage (dV=dQ vs. Q) and incremental capacity (dQ=dV

vs. V ) data gathered during regular weekly reference performance tests (RPTs).

The RPTs, two complete cycles at full depth of discharge, enable consistent feature

extraction and lifetime prediction for cells that normally cycle at fractional depths of

discharge, some as low as 4.0%. Using as little as the first 5% of the aging data, we

achieve a mean absolute percentage error ðMAPEÞ of 22% on the lifetime. Including

up to 15% of the entire cell lifetime data, we achieve an average prediction error of

15.1% MAPE and a root-mean-square error ðRMSEÞ of 2.8 weeks on in-distribution

test sets when testing the new features in traditional machine learning models built

with regularized linear regression. Given that our dataset has a hierarchical structure

(i.e., the ‘‘group’’ level and the ‘‘cell’’ level) in nature, we also explore the possibility

of applying hierarchical Bayesian linear modeling to predict lifetime, which achieves

better extrapolation performance on out-of-distribution samples, viz., 7.3 weeks

RMSE and 21.8% MAPE lifetime prediction error.

The major contributions of this work are 4-fold:

(1) proposing a new idea to categorize early-life features into two hierarchical

levels, the condition (upper) and the cell (lower) level, in order to capture

an inherent hierarchical structure in the battery aging data and enable greater

generalization especially to out-of-distribution data;

(2) creating a hierarchical Bayesian model (HBM) to address the hierarchical na-

ture of the aging data and quantify the uncertainty in lifetime predictions;
Cell Reports Physical Science 5, 101891, April 17, 2024 3
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Figure 1. High-level overview of our approach

Unlike existing approaches for early prediction, we extract features from periodic reference performance tests instead of regular cycling data. In this

example, we extract a feature from a partial voltage window of incremental capacity that is highly correlated with lifetime. From this and other features,

we build a machine learning model to predict the lifetimes of new unseen cells.
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(3) demonstrating a new method for extracting predictive features from incre-

mental capacity curves, incorporating optimization of voltage window to

improve correlations with lifetime;

(4) generating and publicly sharing a large battery aging dataset consisting of

225 NMC cells cycled under a wide range of operating conditions, enabling

researchers without access to battery testing equipment to study lifetime

modeling and other related topics.
RESULTS AND DISCUSSION

Approach for predicting lifetime from early-life data

Prediction of lifetime from early data is more challenging when there are multiple

varying stress factors, because this leads to diverging capacity trajectories. Our

approach, outlined in Figure 1, differs from the prior art5,8–10 in several ways.

First, to apply early prediction to cells cycled under different depths of discharge, we

extract features from periodic RPTs instead of regular cycling data. This means that

the discharge voltage curves obtained from periodic RPTs are complete and consis-

tent for every cell, making feature extraction more consistent. Second, we develop

new features based on partial voltage windows of QðVÞ curves and their derivatives

(differential voltage and incremental capacity data). Using a new feature extraction

method (see details in "extracting features from incremental capacity data"), we find

features that better correlate with cell lifetime for our dataset than existing features

reported in the literature.5,15,19 Additionally, we explore using cycling protocol in-

formation
�
Cchg; Cdchg; DoD

�
as features to predict lifetime, establishing a link be-

tween the two. All extracted features are reduced to a highly predictive subset using

a feature selection method (see "feature selection"). Then, the selected features are

used as input to amachine learningmodel to predict cell lifetime. In what follows, we

outline our approach to feature engineering for early-life prediction and discuss

the challenges of applying existing feature engineering methodologies proven on
Cell Reports Physical Science 5, 101891, April 17, 2024
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Figure 2. Overview of battery aging test conditions and capacity data

(A) 3D scatterplot showing train-test split and cycling conditions used—each point represents conditions for a group of four cells, and marker color

indicates a data subset used to generate prediction results in "predicting lifetime using machine learning models."

(B) Discharge capacity fade curves for all 225 NMC/graphite cells plotted past 80% their rated capacity (250 mAh); color of each curve is scaled by cell

lifetime.

(C) Histogram of the cell lifetimes at end of life (EOL) using 80% of rated capacity as threshold.
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LFP/Gr to our NMC/Gr cells that are cycled under a wider range of operating condi-

tions. Last, we introduce HBMs for early-life prediction.
Lithium-ion battery dataset under varying usage conditions

Publicly available datasets, such as those from NASA’s Prognostics Center of Excel-

lence,27,28 the Center for Advanced Life Cycle Engineering (CALCE) at the University

of Maryland, College Park,29,30 and Sandia National Laboratories,31 contain cells of

different chemistries cycled under a range of charge rates, discharge rates, and tem-

peratures. These datasets are frequently used in research studies for battery

modeling since aging commercial-grade Li-ion cells is slow and expensive. Also,

these datasets report measurements including capacity, internal resistance (NASA

and CALCE), voltage, current, and temperature, enabling researchers to study

different aspects of battery modeling. However, the relatively small size of these da-

tasets (roughly 30 cells per group) makes investigating machine learning-based ap-

proaches to early-life prediction challenging. On the other hand, in recent years, da-

tasets such as those from the Toyota Research Institute5,6 and Argonne National

Laboratory22 contain many more cells (>150 cells). However, they focus on a limited

range of operating conditions—fast charging and symmetric C/2 cycling, respec-

tively—making it difficult to build machine learning models that generalize across

cycling conditions.

In light of this, we designed our battery aging dataset to study more cells under a

broader range of operating conditions than current publicly available datasets.26

Our dataset comprises 225 cells cycled in groups of four to capture some of the

intrinsic cell-to-cell aging variability.32 A unique feature of our dataset is the many

capacity degradation trajectories that reflect different accumulated degradation

modes induced by the various operating conditions. These trajectories, shown in

Figure 2, exhibit different one-, two-, and three-stage degradation trends driven

by the interaction and accumulation of hidden, threshold, and snowballing
Cell Reports Physical Science 5, 101891, April 17, 2024 5
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Figure 3. Feature extraction from early-life data

Well-known early-life features do not explain the variance in our dataset, and a newly extracted

feature from incremental capacity curves correlates better with lifetime.

(A) Cell lifetime for 225 NMC cells plotted as a function of varðDQw3�w0ðVÞÞ; Pearson correlation

coefficient �0.686. The two cells highlighted have similar values of varðDQw3�w0ðVÞÞ but very
different lifetimes.

(B) Difference between discharge capacity curves as a function of voltage between week 3 and 0 for

the two cells highlighted in (A).

(C) Cell lifetime plotted as a function of optimized feature meanðDdQ =dV3:60V� 3:90V
w3�w0 ðVÞÞ, Pearson

correlation coefficient � 0:848.

(D) Incremental capacity curves from weeks 3 and 0 for three representative cells (G1C2, G16C1,

and G53C2, respectively); the shaded areas indicate the change of curves between the voltage

bound (3.60 � 3.90 V) after 3 weeks of cycling.
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degradation modes.23 These varying trends produce cell lifetimes from 1.5 to

60.9 weeks. Experimental details and testing procedures used to generate the data-

set can be found in "battery aging test design" and Note S1 and Note S2 of the sup-

plemental information.
Extracting predictive features from early usage data

Initially, we extracted features previously reported to correlate strongly with cell life-

time.5,15,19 We adopt the notation DQw3�w0ðVÞ to describe the features, where the

subscripts w3 and w0 correspond to data obtained from the RPTs from weeks 3 and

0, respectively. Preliminary testing of these well-established early-life features re-

veals that they do not fully explain the variance in our dataset. This is illustrated in

Figure 3A, where we extract the varðDQðVÞÞ feature reported by Severson et al.5 us-

ing discharge data from RPTs varðDQw3�w0ðVÞÞ and plot it against lifetime, revealing

a large unexplained variance in the predicted lifetimes.

To understand why this occurs, consider two cells (G6C4 and G20C1) that have

similar feature values but vastly different lifetimes. In this case, even though the

DQðVÞ curves have the same variance, they do not have the same shape and location

(Figure 3B). It can be seen that the group twenty cell (G20C1) experienced more
6 Cell Reports Physical Science 5, 101891, April 17, 2024
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significant capacity loss during this time, evident by the endpoint of DQðVÞ at 3.0 V.

Other noticeable changes exist in the dV=dQðQÞ curves that differ between the cells

(shown in Note S7 of the supplemental information), indicating additional but more

subtle degradation modes are present. However, these differences in the evolution

of theQðVÞ curve during early life are not captured by the varðDQw3�w0ðVÞÞ feature,
causing the unexplained variance in the dataset. A further analysis compares the

DQw3�w0ðVÞ curves from our dataset with the DQ100� 10ðVÞ curves from the dataset

of Severson et al.,5 shown in Figure S8 of the supplemental information. From this

analysis, we find that the varðDQw3�w0ðVÞÞ feature only captures the capacity fade

within the first 3 weeks in our dataset, which can be attributed to the differences

in the trend of the QðVÞ curve evolution. Both the differences in cell chemistries be-

tween these two datasets and different discharging profiles from which the variance

feature is extracted could contribute to the trend differences. The former impacts

the overall discrepancy of voltage responses due to different phase change mecha-

nisms involved during discharging. The latter, especially for the difference in C-rates,

would cause different levels of heat generation during discharging. The discharge

curve for which Severson et al.5 introduced their feature is at 4 C, and the effect of

self-heating on the voltage response cannot be neglected under this high C-rate,

especially toward the end of discharge. In contrast, we extracted the equivalent

varðDQw3�w0ðVÞÞ feature from measurements at C/5, where self-heating is much

less of a concern.

While we only showed an example in Figure 3 for this particular feature,

varðDQw3�w0ðVÞÞ, the unexplained variance in the data persists using most other

early-life features we tested. Typically, it is not a requirement that all model input

features exhibit a strong correlation with cell lifetime, but finding a few features

that do correlate well is generally advantageous because it can improve model fit

and accuracy. Considering this, we explored extracting features from differential

voltage and incremental capacity curves using partial voltage intervals in order to

capture the diverse cell-specific degradation trends observed in our dataset more

accurately.

Differential voltage (dV=dQ vs. Q) and incremental capacity (dQ=dV vs. V ) curves

have been widely adopted in battery aging diagnostics because certain features

(e.g., peaks and valleys) on these curves are closely associated with phase transitions

of electrodes and allow us to investigate electrode-specific aging modes. For

example, simply plotting dQ=dV vs. V curves over successive cycles within a long-

term aging test and observing changes in positions, amplitudes, and widths of

certain peaks over cycling can help detect the underlying degradation modes

(e.g., loss of active materials on the negative and positive electrodes and loss of

lithium inventory associated with capacity fade) that drive these changes. This diag-

nostic property of differential voltage and incremental capacity curves could even

allow reasonably accurate quantification of degradation modes.33 Also, several bat-

tery lifetime prediction studies include features describing the locations and magni-

tudes of peaks from differential voltage and incremental capacity curves.15,19,22

Here, we present a method to find an optimal incremental capacity feature, which

is backed up by our feature selection process in "feature selection" and Note S11

and Note S12 of the supplemental information.

Rather than only using locations and magnitudes of peaks from incremental capacity

ðdQ =dVðVÞÞ curves, we examine how the incremental capacity curve evolves over

selected voltage intervals. Specifically, segments of the incremental capacity curve

within a certain voltage interval are extracted from two RPT tests (the week 0 RPT and
Cell Reports Physical Science 5, 101891, April 17, 2024 7
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the week 3 RPT, respectively). Then, two major summary statistics—the mean and

the variance—of the difference between these two extracted segments are used

as features to reflect the evolution of the incremental capacity curve within this

voltage interval during the 3 weeks. Rather than manually identifying the voltage in-

terval, a grid search method is employed to find an optimal voltage interval with the

highest correlation between feature and lifetime (see "extracting features from in-

cremental capacity data" for more details). The voltage interval search result using

the mean summary statistics is shown in Figure S9 of the supplemental information.

We find the voltage interval that produces the highest linear correlation with cell

lifetime is a mid-range where the upper and lower voltage limits are centered

around prominent peaks in the incremental capacity curves at 3.60 V and 3.90 V.

Figure 3C shows that the change in incremental capacity in this range is inversely

proportional to lifetime. The new feature captures the change in incremental

capacity intensity, calculated as the mean change in mAh/V over the middle

voltage interval, meanðDdQ =dV3:60V� 3:90V
w3�w0 ðVÞÞ = meanðdQ =dV3:60V� 3:90V

w3 ðVÞ �
dQ =dV3:60V� 3:90V

w0 ðVÞÞ; see Figure 3D. This new feature shows a much stronger cor-

relation with cell lifetime and better explains the variance in our dataset compared

with the traditional feature varðDQw3�w0ðVÞÞ.

The new feature derived from the incremental capacity curve likely captures

the rate of active material loss during early life. This idea is supported by degrada-

tion diagnostics literature, which shows that changes in the intensity of the incre-

mental capacity (mAh/V) curve at constant voltage correspond to a loss of active

material.1,33–35 Also, a close relationship between this feature and average cycling

stress, with a Pearson correlation coefficient of 0.89, can be found in Figures S11

and S14 of the supplemental information, where an increase in our proposed

feature is accompanied by an increase in the Stressavg feature introduced in "ex-

tracting features from cycling conditions." Based on the assumption that higher

stresses induced during cycling are likely to cause more loss of active materials,

the found relationship helps back up our hypothesis that this incremental capacity

feature captures the loss of active materials in general. Additional analysis to un-

derstand this feature regarding degradation information is included in Note S8

of the supplemental information. Additionally, we use the upper and lower voltage

limits imposed during cycling to create two more intervals, 3.00 � 3.60 V and 3.90

� 4.20 V. We then extract two features from each voltage interval using the mean

and variance summary statistics. In total, we extracted six features from DdQ=

dVðVÞ, two from each of the three voltage intervals using the mean and variance

summary statistics.

Lifetime modeling work on NMC/Gr cells by Smith et al.36 showed that the capacity

fade rate due to cycling tracked nearly linearly with the square-root-of-cycling

throughput, calculated as ðCchgDoDÞ0:5, where Cchg is charging C-rate, and DoD is

depth of discharge for the experiments. This metric is described as tracking the con-

centration gradient of lithium ions in the cathode active material and is a proxy for

diffusion-induced stress.36–38 We further investigate this feature as a model input

for early-life prediction (‘‘extracting features from cycling conditions’’) and as a

condition-level grouping variable for our hierarchical Bayesian modeling approach

(‘‘hierarchical Bayesian models for early prediction’’).

In addition to the incremental capacity and stress-related features, the processes of ex-

tracting features from other data sources (e.g., differential voltage, constant-voltage
8 Cell Reports Physical Science 5, 101891, April 17, 2024
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Figure 4. Overview of data partition and feature selection

(A) Scatterplot of mean group lifetime vs. DoD; marker color indicates train/test subset.

(B) Histogram showing each subset’s distribution of cell lifetimes.

(C) Mean and standard deviation of RMSElogðEOLÞ for 5-fold repeated cross-validation on the ten candidate models.
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charging segment, and capacity fade) are reported in Note S9 and Note S10 of the sup-

plemental information. By extracting features froma total of 6 sources, we obtained a set

of 29 candidate features, outlined in Table S2 of the supplemental information. All the

early-life features in this work were extracted from C/5 cycles in RPTs.

Partitioning data for machine learning and feature selection

Dataset partitioning was done at the group rather than the cell level, for three

reasons. First, practical battery aging tests for product validation typically cycle mul-

tiple cells under the same conditions to capture the aging variability due to

manufacturing. Second, it is desirable to build an early prediction model to predict

the lifetimes of cells cycled under previously untested conditions. Finally, although

building an early prediction model with cells tested under rapidly accelerated aging

conditions is useful in minimizing the time and costs of collecting aging data, one

cannot preemptively know the lifetime (before tests), so grouping must be done us-

ing an alternative indicator of cell lifetime. Since the depth of discharge is the domi-

nant cycling stress factor impacting the battery lifetimes in our aging dataset (Fig-

ure 4A), this was used to determine the dataset partitioning.

We first separate our dataset into a high-DoD region and a low-DoD region, with a

boundary at 40% depth of discharge (Figure 4A). In the high-DoD region, we further

divide the data into a training set and an in-distribution high-DoD test set. The high-

DoD test set is used to evaluate themodel’s prediction accuracy for cells with conditions

similar to the ones the model was trained on. Last, we assign all data in the low-DoD re-

gion ð<40%Þ to a second test set used to test the model’s ability to extrapolate to un-

seen test conditions. The dataset split is also visualized in Figure 2A, where each axis is

one of the three cycle aging stress factors
�
Cchg; Cdchg; DoD

�
, and the marker color in-

dicates the data subset that the group belongs to. The training set contains cells with

lifetimes ranging from 3.7 to 36.6 weeks, and the high-DoD test set has cells with life-

times between 5.2 and 31.6 weeks. On the other hand, the low-DoD test set is more

diverse, with lifetimes ranging from 9.7 to 60.9 weeks. Histograms of cell lifetimes for

each data subset are visualized in Figure 4B.

After extracting a total of 29 features, down-selecting a smaller feature subset is

required before training machine learning models for a couple of reasons. First,
Cell Reports Physical Science 5, 101891, April 17, 2024 9



Table 1. Stepwise forward search results

Step number Selected feature Description

1 logðmeanðDdQ =dV3:6V �3:9V
w3�w0 ðVÞÞ best incremental capacity feature from

‘‘extracting features from incremental capacity
data’’ (shown in Figure 3C)

2 logðjDCV Timew3�w0jÞ change in CV hold time (see Note S10 of the
supplemental information)

3 DoD depth of discharge

4 DQ1
w3�w0 change in DVA-based capacity QDVA;1 (see

Note S9 of the supplemental information)

5 Cchg
0:5DoD0:5 charge-induced stress (see ‘‘extracting features

from cycling conditions’’)

6 Cchg charging C-rate

7 logðvarðDdQ =dV3:0V � 3:6V
w3�w0 ðVÞÞ variance of low-voltage incremental capacity

feature (see ‘‘extracting features from
incremental capacity data’’)

8 DQ3
w3�w0 change in DVA-based capacity QDVA;3 (see

Note S9 of the supplemental information)

9 logð��meanðDdQ =dV3:0V � 3:6V
w3�w0 ðVÞ��Þ mean of low-voltage incremental capacity

feature (see ‘‘extracting features from
incremental capacity data’’)

10 logðjDCV Timew0jÞ CV hold time of the initial RPT (see Note S10 of
the supplemental information)
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some features are strongly correlated with one another, known asmulticollinearity. A

model trained with collinear features can be sensitive to minor changes in the feature

values and may extrapolate poorly.39 Second, while the new dataset is large (225

cells) relative to existing publicly available aging datasets, it is still considered small

for training a machine learning model. Small datasets require special care to avoid

overfitting and to improve generalization performance on unseen test data. This is

especially the case when the number of training points is not significantly larger

than the number of features ðNdata [NfeaturesÞ. Therefore, it is crucial to select a

subset of highly predictive features before training.40,41 We performed stepwise for-

ward feature selection on the training dataset following the method described in

"feature selection." To avoid poor performance on the test sets due to overfitting,

we performed a 5-fold cross-validation study five times, using up to 10 features.

With the cross-validated errors, including the mean and standard deviation for

each candidate model, one can evaluate the candidate feature subsets from two as-

pects. As the mean of RMSEEOL decreases, the feature subset fits this training set

better in general. As the standard deviation increases, the feature subset yields

larger run-to-run variation for different folds, which indicates unstable performance

on prediction. So, when selecting features, one must consider both aspects simulta-

neously to ensure good performance, especially for extrapolating to the low-DoD

test set. The trends of the mean and standard deviation of cross-validation

RMSElogðEOLÞ of this trial are reported in Figure 4C, and the selected feature in

each step is listed in Table 1. The model with two features, namely

logðmeanðDdQ =dV3:6V � 3:9V
w3�w0 ðVÞÞ and logðjDCV Timew3�w0ÞjÞ, has the lowest run-

to-run variance and relatively low mean error RMSEEOL. Adding a third feature to

the set, DoD, produces a model with lower mean RMSEEOL but increases the run-

to-run variation. For a more comprehensive evaluation, we compare the results of

models trained using both two and three features.

Predicting lifetime using machine learning models

There are two types of machine learning models used in this study: one is elastic net

regression, and the other one is the HBM. Except for the dummy model and HBM,

the rest of the models compared in this section are trained with elastic net models
10 Cell Reports Physical Science 5, 101891, April 17, 2024



Table 2. Prediction errors for selected models tested using the high- and low-DoD test datasets

Model Nfeature

MAPE (%) RMSE (weeks)

Training High DoD Low DoD Training High DoD Low DoD

Dummy model 0 35.0 31.5 47.5 6.5 4.8 18.5

Cycling conditions 3 24.8 19.0 23.7 4.0 3.3 9.8

Discharge model5 5a 23.9 28.0 24.8 4.6 4.7 11.5

Degradation-
informed

2 17.3 16.0 24.4 3.2 3.0 7.8

Degradation-
informed

3 16.5 15.1 33.0 3.1 2.8 9.7

HBM 2b 18.6 16.9 21.8 3.3 3.1 7.3

HBM 3b 17.4 15.8 24.1 3.1 2.9 7.5
aThe discharge model5 contains six features, with one of them being the difference between the

maximum capacity and capacity at cycle two, DQmax� 2. However, this feature cannot be calculated for

our dataset due to the partial depth of discharge cycling and the continuously decreasing capacity-

fade curves for all cells and has thus been omitted.
bThe number of features listed refers to the number of cell-level input features. For both HBMs, a single

cycling condition-level feature is used for grouping cells, and, as indicated in the table, either two or three

cell-level features are used for regression.
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on different feature sets. To predict the lifetime, we initially establish a pair of base-

line models. The first baseline model is a dummy model that does not use any input

features or have any trainable parameters, and instead, it predicts the mean cell life-

time of the training set for all cells. This is a good way to determine if a more complex

model is truly learning new information from the input data or instead only appears

to be learning because of similar training/test dataset distributions that lead to

similar error metrics. When tested on the two test datasets, the dummy model

achieves MAPEEOL of 31.5% and 47.5% on the high-DoD and low-DoD test sets,

respectively. The error metrics for all models tested are shown in Table 2.

The second baseline model is built using only the cycling condition parameters as

input features. This model predicts lifetimes without using cell-specific aging mea-

surements. This model achieves an MAPEEOL of 19.0% and 23.7% on the high-

DoD and low-DoD test sets, respectively. The substantial decrease in prediction er-

ror over the dummy model shows that the usage parameters convey a significant

amount of information that can be used to predict lifetime accurately. This result

is expected, as a great deal of battery lifetime modeling work36,42,43 has already

explored the strong connection between usage and degradation. However, only us-

ing condition-level cycling features does not account for intrinsic cell-to-cell vari-

ability. Hence, the next set of models we tested included cell-level features ex-

tracted from the early aging data.

The first cell-level feature model is the ‘‘discharge model’’ described in Severson

et al.5 and ‘‘extracting predictive features from early usage data.’’ This model, and

all other models built on cell-level inputs, use features extracted from the RPTs of

weeks 0 and 3, which is just under 18% of the average lifetime. The original

‘‘discharge model’’ has six features, with five of them from statistics of DQðVÞ curves
and one feature DQmax� 2 capturing the capacity recovery at initial cycles. Due to the

monotonic decreasing capacity trajectories observed in our dataset, an analogous

feature for DQmax� 2 cannot be extracted and thus is omitted. The main feature

included is varðDQw3�w0ðVÞÞ; however, we found that this did not completely

describe the variance in our dataset. When tested on the high- and low-DoD test da-

tasets, the discharge model achieved 28.0% and 24.8% MAPEEOL, respectively. The

performance on the two test datasets is slightly worse than the cycling condition
Cell Reports Physical Science 5, 101891, April 17, 2024 11
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model, yet still better than the dummymodel, indicating that the features used in the

discharge model do carry useful information but are not optimal for our dataset (see

Table 2).

The remaining models we compare are the degradation-informedmodel and HBM.We

refer to our elastic net models as degradation-informed in Table 2 because of the newly

developed degradation-based features used as model inputs. Both the degradation-

informed model and HBM use the same sets of input features, and for thoroughness,

we compare models built using two and three features each. Compared to the cycling

condition baseline, the two-feature elastic net model shows decreased MAPEEOL on

the high-DoD test of 16.0% and a slight increase in error on the low-DoD test set to

24.4%. However, the RMSEEOL of the low-DoD test set drops considerably from 9.8 to

7.8 weeks. For the HBMs, we observe small increases in the training and the high-

DoD test errors with a noticeable improvement in the low-DoD test errors over the

degradation-informed models using the same set of features.

For both the degradation-informed and hierarchical models, we observe that including

the third feature decreases model prediction error on the training and high-DoD test

datasets but increases error for the low-DoD test dataset. When the third feature is

added, both models overfit the training dataset and exhibit poor extrapolation capa-

bility to the low-DoD test dataset where the cells have longer lifetimes. Regardless, the

HBM trained with three features still performs better when predicting the low-DoD test

set compared with its elastic net counterpart. Generally, by comparing the evaluation

metrics of the two models (degradation-informed model and HBM), we find that the

HBM has better generalizability to the low-DoD test set but at the cost of slightly

higher training and high-DoD test errors.

The large improvement in performance observed for models using cell-level (as

opposed to only using cycling condition features) features prompts us to further

investigate why the feature logðmeanðDdQ =dV3:6V � 3:9V
w3�w0 ðVÞÞ explains cell-to-cell

variability better than other features. Firstly, it is more accurate to use measured

health metrics from individual cells in operation to predict their lifetime. This re-

veals the intrinsic cell-to-cell variability that could cause different aging behaviors

under identical cycling conditions. Secondly, this optimized feature, which likely

captures how much loss of active material happens during early life, has a

balanced representation of the variability within the group and among the entire

dataset.

In summary, we find that the best feature logðmeanðDdQ =dV3:6V � 3:9V
w3�w0 ðVÞÞ explains

the cell-to-cell variability well for a majority of cells. The remaining variance in the

feature-lifetime correlation may be contributed jointly by measurement inaccuracy

and unexplained manufacturing variability. Hence, our analysis of the results sug-

gests that a predictive early-life feature should capture the variability introduced

by the difference in cycling conditions and information about intrinsic cell-to-cell

variation that causes different performances under identical loads. Also, our feature

engineering methodology (‘‘extracting features from incremental capacity data’’)

can be extended to find good features for other cell chemistries. Additional analyses

on benchmarking different feature subsets and machine learning models are

included in Note S16 of the supplemental information.

Analysis of HBM results

The probabilistic nature of HBMs enables us to extract a deeper understanding by

considering both the mean and the uncertainty of lifetime predictions. Assuming
12 Cell Reports Physical Science 5, 101891, April 17, 2024



ll
OPEN ACCESSArticle
individual cluster fitting parameters and noise variance, qj and sj respectively, are in-

dependent, the posterior predictive distribution can be written as

p
�
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���Yj

�
=

ZZ
p
�
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��Yj

�
p
�
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��Yj

�
p
�
y�
j

���qj ;sj

�
dqjdsj; (Equation 1)

where y�j is the predicted lifetime of a new cell belonging to the j th group, and Yj

represents all lifetime observations associated with the j th group. For a point-

wise prediction, one can estimate the mean value of pðy�j jYjÞ. Table 2 lists the perfor-

mance of the HBM built using two different feature sets. The first uses two cell-level

features, logð��meanðDdQ =dV3:6V � 3:9V
w3�w0 ðVÞ��Þ and logðDCV Timew3�w0Þ, and achieves

3.1 weeks RMSE and 16.9% MAPE for the high-DoD test set, which is almost the

same as the performance of the degradation-informed model using the same

feature set, while for the low-DoD test set, the HBM achieves 7.3 weeks RMSE and

21.8% MAPE, which outperforms the degradation-informed model by 7% and

10% for RMSE and MAPE, respectively.

Similar to the degradation-informedmodel, we observe that the HBMmodel overfits

the training dataset when the third feature ðDoDÞ is added. This is evident by the

increased performance on the training and high-DoD test set but worse perfor-

mance on the low-DoD test set. Specifically, under the high-DoD test set, RMSE

improved from 3.1 to 2.9 weeks, and MAPE improved from 16.9% to 15.8%. Howev-

er, for the low-DoD test set, RMSE increased from 7.3 to 7.5 weeks, and MAPE

increased from 21.8% to 24.1%. Notably, the HBM shows more resistance to over-

fitting than the degradation-informed model, whose performance decreased sub-

stantially more than the HBM when the third feature was included in the feature

set. Similar results can also be found in Tables S3 and S4 of the supplemental infor-

mation, where the HBM consistently shows better robustness on unseen test sam-

ples (i.e., the low-DoD test set) compared to elastic net models on different feature

sets or different machine learning algorithms on the same feature set.

Figure 5B shows the uncertainty (2 standard deviations) of pðy�j
���YjÞ for posterior life-

time predictions of each cluster. The uncertainty levels for clusters 0 and 1 are

around G 4.5 weeks (at 2 SD), whereas for clusters 2 and 3, the uncertainty levels

are around G 9.5 and 10.5 weeks, respectively, which reflects the model’s uncer-

tainty when predicting cells from unseen cycling conditions. According to Table 3,

there are only 12 cells from cluster 3 in the training set, while there are 23 cells from

cluster 3 in the low-DoD test set. Due to the lack of data, the uncertainty for all

regression parameters ðq3 ;s3Þ for cluster 3 is much larger than that of clusters

0 and 1. On the other hand, as the prediction uncertainty becomes large for

long-life cells, uncertainty itself can be used as an indicator to denote whether

one should include more early-life data for feature calculation. For example,

when running HBM in a forward mode (using the trained model to give predictions),

for test samples in cluster 3, large prediction uncertainty is observed (>10 weeks).

One may consider including the 4th or 5th week of training data to retrain the model

so that the prediction uncertainty on cluster 3 test samples can be reduced. Since

the used 3 weeks of training data only take up 7% of the average lifetime for cluster

3 samples, using 1–2 more weeks train data still only covers the very early stage of

these long-life cells.

Further analysis of uncertainty for model parameters can be found in Note S15 of the

supplemental information. This uncertainty on both lifetime predictions and model

parameters can be more beneficial to real-world applications compared to only a

point-wise prediction. For example, instead of knowing the exact EOL lifetime,
Cell Reports Physical Science 5, 101891, April 17, 2024 13
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Figure 5. Overview of HBM prediction results

(A) Relationship between logð��meanðDdQ =dV3:6V � 3:9V
w3�w0 ðVÞ��Þ and true lifetime across different clusters and train-test split (‘‘Test’’ denotes samples from

both high- and low-DoD sets). Fits, corresponding to mean parameter values, are plotted for each cluster.

(B) Predictions for each cluster with 2 standard deviations as the corresponding error bar for each sample. The embedded histograms show a summary

of error bars.
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customers care more about a warranty for the worst-case lifetime, which can be satis-

fied by using the standard deviation of prediction distributions.

In this study, we have developed two data-driven models to tackle the problem of

battery early-life prediction on a large and unique aging dataset, which consists of

225 NMC cells cycled under a wide range of charge and discharge C-rates (0.5 C–

3 C) and DoDs (4%–100%). Our feature engineering process identifies a new

predictive feature, meanðDdQ =dV3:60V� 3:90V
w3�w0 ðVÞÞ, derived from incremental capacity

curves and closely related to the degradation induced by loss of active materials.

Also, our analysis shows that the widely used DQðVÞ features in the existing early

prediction literature may not explain cell-to-cell lifetime variability within our

dataset.

In terms of results, two distinct machine learning models are trained to predict the life-

time. Our degradation-informed model, trained using elastic net regression, yields 3.0

and 7.8 weeks RMSE and 15.1% and 33.0% MAPE on the high- and low-DoD test

sets, respectively. The HBM produces 3.1 and 7.3 weeks RMSE and 16.9% and 21.8%
Table 3. Summary of train-test split for each cluster

Cluster ID Stressavg

n samples

Training High-DoD test Low-DoD test

0 1.12 30 18 0

1 0.95 41 24 4

2 0.76 33 18 22

3 0.51 12 0 23

Total 0.86 116 60 49

14 Cell Reports Physical Science 5, 101891, April 17, 2024



ll
OPEN ACCESSArticle
MAPE for the high- and low-DoD test sets, respectively. While the HBM shows perfor-

mance improvement for point-wise predictions on the low-DoD test set, it also gives un-

certainty information for its predictions, which can be used in applications like the cell

lifetime warranty. And we found that the uncertainty grows across groups with the

decrease of cycling stress factor Stressavg, which indicates the lack of observability for

cell-to-cell differences from early-life features, and thus more cycling time range may

need to be included for cells under mild cycling conditions.

A limitation of this work is that the models are demonstrated on battery aging data

collected in a well-controlled laboratory setting under constant cycling conditions

over the life of the cells. However, depending on the applications, battery data

from real-world applications may be more variable and noisy, posing a challenge

to feature extraction and lifetime prediction. To investigate this further, we will

expand the dataset by aging cells using electric grid duty cycle protocols (e.g., pro-

tocols simulating peak shaving and frequency regulation). This duty cycle dataset is

currently being collected in the Reliability Engineering and Informatics Laboratory at

the University of Connecticut. It will add a valuable addition to the ISU-ILCC dataset,

particularly in evaluating lifetime models on cells with dynamic cycling profiles.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for any additional information about this work should be directed to the

lead contact, Chao Hu (chao.hu@uconn.edu).

Materials availability

No new material was generated in this study.

Data and code availability

� The battery aging dataset collected and used for this work is available for

download from the open-access data repository of Iowa State University

(Iowa State University DataShare) at https://doi.org/10.25380/iastate.

22582234.44 Please refer to the dataset as the ISU-ILCC NMC/Gr battery aging

dataset. A sample code for preprocessing the data is included.

� The code for feature extraction and early prediction modeling is available at

https://doi.org/10.5281/zenodo.10648587.

Cell and tester specifications

The Li-ion cells used in this study were commercial 502030 size Li-polymer cells with

NMC as the positive electrode and graphite as the negative electrode, manufac-

tured by Honghaosheng Electronics in Shenzhen, China. The rated capacity is

250 mAh (giving 1 C as 250 mA), and the operating voltage ranges from 3.0 to

4.2 V. All cells were tested on two 64-channel Neware BTS4000 battery testers, in

thermal chambers set at 30�C.

Battery aging test design

The aging experiments were designed around three main stress factors that impact

battery lifetime: charge rate ðCchgÞ, discharge rate ðCdchgÞ, and depth of discharge

ðDoDÞ. To make the scope of our aging campaign manageable and work within

the limitations of our equipment, we decided not to introduce temperature as an

additional variable stress factor. Therefore, as also mentioned in ‘‘cell and tester

specifications,’’ all cells were placed in thermal chambers set at 30�C over the entire

span of the aging experiments. The design of experiments for our aging campaign
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involved deliberately subjecting various groups of cells to different stress levels be-

tween RPTs, achieved by randomly sampling the three stress factors within a wide

design space. This treatment contributed to a wide distribution of the EOL in this da-

taset. However, this aging dataset is limited in reflecting realistic usage profiles,

particularly dynamic charging/discharging profiles where the charge and discharge

rates vary rapidly over time.

To track the full discharge capacity of cells with partial depths of discharge cycling,

we periodically ran RPTs that measured cell capacity and gathered complete QðVÞ
data for feature engineering. Each RPT consisted of two cycles performed at slow

rates (C/2 and C/5) to capture cell voltage response while minimizing the impact

of the cell kinetics. Before beginning the aging tests, an initial RPT was conducted

to determine the beginning-of-life health. Aging tests consisted of 1 week of

cycling followed by an RPT, and they were repeated until cell capacity decreased

below 200 mAh (80% of the rated capacity). In real field operations, the necessity

of incorporating RPTs to obtain consistent measurements (e.g., capacity-voltage

data) from cells varies. Taking electric vehicles (EVs) as an example, the onboard

charge controller could regulate the charging process, ensuring all EVs of the

same model operate under certain constant-current conditions until sufficient

data are collected. Then, data-driven diagnostics or prognostics can be achieved

solely based on these data.45 However, in grid storage applications, both the

charging and discharging profiles can be random and noisy in operation, especially

the profiles for frequency regulation.46 Extracting clear predictive features can be

practically infeasible in these applications. Therefore, periodic RPT cycles can

help collect consistent measurements to estimate the state of health and predict

lifetime. Since the grid may have multiple power-generation sources (e.g., power

plants, wind farms, and solar farms) and large battery storage systems, the down-

time of battery storage systems during diagnostic cycles, ideally executed in alter-

nating batches, would have less impact on the overall operation of the grid or stor-

age system. Furthermore, the frequency of RPTs can be less often, i.e., monthly or

quarterly, to provide flexibility and avoid disruption in real applications—the

weekly frequency in our aging campaign is to capture the rapid degradation due

to the nature of the accelerated aging test.

As previously mentioned, four cells were cycled at each test condition. We refer to a

specific cell using its group number and cell identifier, e.g., G7C3, where the

numbers following each letter indicate the group and cell, respectively. Initially,

we aimed to study two stress factors: DoD and Cchg. Conditions were selected using

a grid search, with the discharge rate fixed at 0.5 C for all cells. Later, we expanded

the dataset to study the third stress factor, Cdchg. Additional conditions were then

selected using random sampling. The charge/discharge rates and depths of

discharge were sampled evenly from the ranges 0.5 C–3 C and 25%–100%,

respectively.

The cycling conditions for all cell groups can be found in Table S1 of the supple-

mental information. However, the depth of discharge design values do not exactly

match the measured depths of discharge from the cycling experiments. When we

programmed the cycling protocols, we determined the cutoff voltages using

a reference discharge capacity vs. voltage curve from a cell cycled at C/2. Unfor-

tunately, the voltage hysteresis that the cells experience under C/2 discharge

causes the cells to reach the cutoff voltage quicker than expected, thus

causing the difference between the measured and designed depth of discharge.

In this paper, we present and discuss the depth of discharge using the actual
16 Cell Reports Physical Science 5, 101891, April 17, 2024
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measured values since they more accurately represent the test conditions the cells

experienced.

Extracting features from incremental capacity data

Extracting features from incremental capacity curves is a natural extension to using

the QðVÞ discharge curve since it is defined over the same fixed voltage range for

every cell. After fitting a spline and downsampling each cell’s QðVÞ curve to 1,000

points, we calculated incremental capacity ðdQ =dVðVÞÞ as a finite difference

approximation (difference quotient) of the first derivative of QðVÞ based on mea-

surements of theQ and V time series.5 It is well documented that incremental capac-

ity analysis is an effective method for cell degradation diagnostics.1,33,47 Measuring

changes to the incremental capacity curve over the lifetime enables the diagnosis of

different degradation modes, specifically loss of lithium inventory, and loss of active

material in each electrode. Hence, we calculate core summary statistics of DdQ=

dVðVÞ over a partial voltage interval so as to focus the feature extraction on specific

areas that may correspond to specific degradation modes. This approach is inspired

by work in Greenbank and Howey,13 where the authors showed a strong correlation

between the time a cell spends in a specific voltage interval and its capacity loss,

although here the incremental capacity curve is a result of degradation rather than

a cause. Instead of manually specifying the voltage interval to calculate the summary

statistics, we exhaustively searched the entire 3.0� 4.2 V range in increments of 0.01

V, with a minimum window size of 0.02 V searching for the maximum Pearson corre-

lation coefficient.

Literature in this field reports a wide range of possible features for lifetime predic-

tion, either derived from capacity, voltage, and temperature measurements during

cycling or other measurements such as impedance spectra from electrochemical

impedance spectroscopy.5,11,13,19,22 Most of these features are hand-crafted based

on direct mathematical manipulation and are not always optimized for maximum

correlation with lifetime. As a distinction from other feature extraction processes,

the method we used to extract the DdQ=dVðVÞ feature optimizes the correlation co-

efficient by an exhaustive grid search. So, even though the optimal voltage interval

identified for our aging dataset, i.e., 3.60 � 3.90 V, may not directly apply to other

aging datasets, the general methodology of optimizing a voltage interval when

identifying early-life features allows researchers the possibility of extracting features

of higher predictive power from their own datasets.

Extracting features from cycling conditions

As briefly mentioned in ‘‘extracting predictive features from early usage data,’’ we

consider a set of stress-related features for early-life prediction, which is

Stresschg = Cchg
0:5DoD0:5. This feature captures the square-root-of-cycling charge

throughput and is a proxy for diffusion-induced stress in the electrode active mate-

rials.36–38 In addition to the charge-based feature, we also calculate a discharge

feature, Stressdchg = Cdchg
0:5DoD0:5. Further, to capture the effects of different

charge and discharge rates in a single feature, we calculate an average stress feature

as Stressavg = ðStresschg + StressdchgÞ=2 and also calculate a multiplicative stress

feature as Stressmult = Stresschg$Stressdchg. For all features, we use the measured

DoD from the first week of cycling in the calculation. A unique characteristic of these

features is that they require no cell-specific measurements, assuming the calculation

of DoD is accurate and accounts for voltage hysteresis. For this reason, these fea-

tures are excellent candidates as condition-level grouping variables in our hierarchi-

cal Bayesian modeling approach to early prediction (see ‘‘hierarchical Bayesian

models for early prediction’’).
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Feature selection

To minimize collinearity and the risk of overfitting, we perform stepwise forward se-

lection using a linear model and repeated cross-validation with RMSEEOL as the eval-

uation metric. Starting with a null model, one feature is added to the model for each

step until the number of selected features reaches a preset threshold ðNfeature = 10Þ.
During each step, all features are tested in the model, and the feature that reduces

the mean of the cross-validation RMSEEOL the most is selected and added to the

model for the next step. Simultaneously, we evaluated the selected model at each

step using the standard deviation of the cross-validation RMSEEOL. We then select

the features to use corresponding to the set with a balance between low mean

and small standard deviation of cross-validated RMSEEOL. In practice, we tend to-

ward selecting fewer features so that the resulting model will be less complex and

extrapolate better.

Elastic net regression for lifetime prediction

To predict cell lifetime, we formulate a regression problem with the extracted early-

life features X = ½x1; x2;.; xm� as inputs and the measured cell lifetimes y =

½y1; y2;.; yn�T in logarithmic scale as outputs, wherem is the number of early-life fea-

tures, and n is the number of cells. Each element of X is a column vector containing

the specific features selected through the technique introduced in ‘‘feature selec-

tion.’’ We assume that the lifetime is a linear function of the early-life features, giving

by = f ðXÞ = b0 +Xb1; (Equation 2)

where b0 is an n31 column vector of the intercept, and b1 is a vector of coefficients,

one for each feature, b1 = ½b1;b2;.;bm�T .

To find the coefficients of this equation, we formulate an optimization problem with

elastic net regularization, which is a combination of L1 and L2 penalization. The

objective function is

bb = argmin
b0 ;b1

�
ky � b0 � Xb1Þk22 + l

�
1 � a

2

��bk22 + a
��bk1		; (Equation 3)

where a and l are hyperparameters that control the balance between the L1 and L2
penalties and the magnitude of regularization, respectively. To select optimal values

of a and l, we perform repeated cross-validation using randomized dataset splits.

Hierarchical Bayesian models for early prediction

As a comparison and contrast to the method in the previous section, we also

consider HBMs for lifetime prediction. These have a layered structure that canmodel

changes in the feature-target relationship throughout the dataset. HBMs have been

applied tomodel naturally structured data in various research fields, from ecology to

sociology, psychology, and computer vision.48,49 Several studies in the battery field

explored the concept of HBM to solve different problems, such as estimating the

state of health against Ah throughput50 and identifying parameters of an equivalent

circuit model.51 However, their applications were not early-life prediction, and the

model structures adopted in their studies differed from those used in this work.

Clustering for hierarchical modeling

For our problem of early-life prediction, features can be viewed as coming from two

levels: the ‘‘cycling condition’’ level and the ‘‘individual cell’’ level. Condition-level

features relate to user-defined test protocols rather than measured data. For our da-

taset, the charge/discharge C-rates and depth of discharge (Cchg, Cdchg, DoD), and

any mathematical combination of these are all condition-level features. In contrast,
18 Cell Reports Physical Science 5, 101891, April 17, 2024



Figure 6. Overview of HBM structure

Model parameters can be classified as either individual-level ðqj ;sjÞ or conditional-level ðg;sÞ; j
represents cycling condition group index, i represents individual cell index, yji represents lifetime

of i th cell in j th cycling group. The two-level structure allows the individual cell-level feature-label

ðxji � yjiÞ relationship to vary with cycling condition based on cycling condition-level features ðgjÞ.
The hyper-priors are assumed to be g � Nðg = 0; 10Þ and s � HalfCauchyðb = 1Þ.
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features that require specific cell measurements during cycling are considered cell-

level features. Features such as meanðDdQ =dV3:60V� 3:90V
w3�w0 ðVÞÞ and varðDQw3�w0ðVÞÞ

are examples of cell-level features that are unique to each cell.

To validate the hypothesis that conditional-level features have a strong impact on

the relationship between cell-level features and lifetime, we calculate the condi-

tion-level feature Stressavg = ðCchg
0:5DoD0:5 +Cdchg

0:5DoD0:5Þ=2 described in ‘‘ex-

tracting features from cycling conditions.’’ This represents the average diffusion-

induced stress that a cell experiences.36 To take advantage of an HBM’s ability to

model the change in feature-target relationship across different levels, we

investigate clustering cell data based on cycling conditions, quantified by average

stress ðStressavgÞ. In general, we expect cells with similar average stress levels

to share the same feature-lifetime relationship, enabling the HBM to better fit the

dataset. We adopt a constrained K-means clustering algorithm,52 which is an

improved version of the traditional K-means algorithm that imposes minimum and

maximum cluster size limits. An optimal cluster number K = 4 is used in later analysis,

where details can be found in Note S15 of the supplemental information.

Bayesian hierarchical linear model

Similar to the HBM used in our preliminary study,53 the model in this study also has a

bi-level structure, as shown in Figure 6. The first level considers the cycling condition

parameters. As mentioned previously, cells are first divided into four clusters (in-

dexed from 0) based on their average stress Stressavg, calculated using the cycling

condition parameters.

At this level, we aim to find the mapping (parameterized by g;s) between condition-

level features ðgjÞ and the cell-level regression parameters ðqj ; sjÞ. Notice that,

different from Zhou and Howey,53 the noise terms sj are assumed to come from

the same hyper-prior distribution HalfCauchyðsÞ:
qj = gugj

sj � HalfCauchyðsÞ (Equation 4)

After the coefficients ðqj ; sjÞ are decided for each cluster, the individual cell-level

regression is built as the second level of the HBM. The cell-level regression uses
Cell Reports Physical Science 5, 101891, April 17, 2024 19
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individual health features ðxjiÞ and coefficients ðqj ;sjÞ to give lifetime predictions

ðyjiÞ for individual cells.

yji � N
�
qj

uxji ; s
2
j

�
(Equation 5)

The overall training objective is to infer posterior distributions for both the condi-

tion-level model and the individual cell-level models, Pðqj
��YjÞ and PðgjfYgÞ respec-

tively, where Yj represents lifetimes from only the j th group but fYg represents

data from all lifetimes. More details about the training procedure are included in

Note S14 of the supplemental information.
Model evaluation metrics

We use two standard error metrics to evaluate the lifetime prediction accuracy of our

approaches, namely, mean absolute percentage error ðMAPEEOLÞ and root mean

squared error ðRMSEEOLÞ, both calculated using the measured and predicted values

of cell lifetime on a linear scale. The metrics are

MAPEEOL =
1

n

Xn

i = 1

����y i � by i

y i

����3 100% (Equation 6)
RMSEEOL =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðy i � by i Þ2;
s

(Equation 7)

where y are the measured cell lifetimes, by are the predicted cell lifetimes, and n

is the number of cells. These two error metrics are commonly used to measure

the prediction accuracy in regression problems. MAPE measures the overall pre-

diction error on a percentage scale, while RMSE penalizes predictions with larger

errors, making this error metric more sensitive to outliers.54 Lower values are more

desirable for both error metrics, indicating the model has better prediction

accuracy.
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