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 Abstract 

Nowadays, batteries in electric vehicles (EVs) are facing a variety of tasks in their 

connection to the power grid in addition to the main task, driving. All of these tasks play a 

very significant role in the battery aging, but they are highly variable due to the change in 

the driver behavior, grid connection availability and weather conditions. The effect of these 

external factors in the battery degradation have been studied in literature by mostly 

deterministic and some stochastic approaches, but limited to specific cases.  

In this dissertation, first, a large-scale deterministic approach is implemented to 

evaluate the effect of variations in the EV battery daily tasks. To do so, a software tool 

named REV-Cycle is developed to simulate the EV powertrain and studied the effect of 

driving behavior, recharging facilities and timings, grid services and temperature/weather 

change effects, one by one. However, there are two main problems observed in the 

deterministic aging evaluation: First, the battery capacity fade factors such as temperature, 

cycling current, state of charge (SOC) … are dependent to the external variables such as 

location, vehicle owner’s behavior and availability of the grid connection. Therefore, it is 

not possible to accurately evaluate the battery degradation with a deterministic model, 

while its inputs are stochastic. Second, the battery aging factors’ dependency is hierarchical 

and it is not easy to follow and implement this hierarchy with deterministic models.  

Therefore, using a hierarchical probabilistic framework is proposed that can better 

represent the problem and realized that the Bayesian statistics with Markov Chain Monte 

Carlo (MCMC) can provide the problem solving structure needed for this purpose. A 

comprehensive hierarchical probabilistic model of the battery capacity fade is proposed 



xii 

using Hierarchical Bayesian Networks (HBN). The model considers all uncertainties of the 

process including vehicle acceleration and velocity, grid connection for charging and utility 

services, temperatures and all unseen intermediate variables such as battery power, 

auxiliary power, efficiencies, etc. and estimates the capacity fade as a probability 

distribution. Metropolis-Hastings MCMC algorithm is applied to generate the posterior 

distributions. This modeling approach shows promising result in different case studies and 

provides more informative evaluation of the battery capacity fade. 
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 Outline 

The battery health and life cycle, similar to a living being, is heavily dependent to 

the events happening in its life. The usage profile and behavior pattern can significantly 

affect the battery health condition. The battery aging phenomena happens deep inside the 

battery cell, in the material level; however, it signs can be noticed in the macro-scale as the 

capacity fade and power fade. The capacity fade of the battery decreases the battery 

durability in a cycle of charge/discharge and its power fade limits its performance in 

providing higher current in specific cycles. Therefore, precise battery degradation 

evaluation and state of health estimation is important to first, have an accurate judgement 

about expectation from the battery performance in its specific application, and second, 

improve the battery health profile in order to enhance its lifespan, like a living being.  

There are different approaches on the research about battery degradation, which can 

be mainly classified in to groups: offline laboratory/simulation-based researches and online 

application-based studies. The first group focuses on the experimental studies in the lab, 

trying to model the battery behavior in different cycling conditions with mathematical 

expressions. Results of these studies are important to add knowledge about the battery’s 

behavior, realistic evaluation of its performance for specific applications and improve the 

design/production process. Although this method of study illustrates the general trend of 

the battery behavior, it has limitations on being exactly applicable to all the battery 

technologies and even different applications of a same battery technology, as each battery 

has its own usage condition.  

The second group, on the other hand, studies the battery in its working environment, 

uses very limited information from the battery manufacturer and mostly relies on the 

measurements while the battery is delivering energy to its specific customer. This method 
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provides estimations about the battery health condition to improve the battery performance 

while working with a better control on the battery management systems (BMS). Note that 

these studies are not completely separate and there is a gray area between these methods.  

My research lies down in the first group of mentioned studies, i.e. the offline 

simulation-based aging evaluation. My goal in this research was to study the battery 

capacity fade in electric vehicle application and find the most realistic evaluation of the EV 

battery capacity fade considering all its external effectual factors and their changes in 

different conditions of either usage or weather. Reviewing the literature in this subject, we 

realized some shortcomings. Some studies perform extensive aging tests on the battery 

cells in constant charge/discharge currents in different temperatures, while an EV current 

profile is very fluctuating. Others that use dynamic current profiles for test rely on the 

standard drive cycles which are significantly different from the real driving cycles. Studies 

that consider driving data eliminate the effect of temperature change. Most of them ignore 

the effect of different charging facilities and/or different utility services. Presented 

mathematical models in these studies suffer from similar limitations.  

All of these problems are because of the multiple effecting factors on the battery 

aging which cannot be applied in one set of tests/simulations due to the time limitations. 

Even if a scenario is defined to perform the testing considering most of the factor, there are 

numerous scenarios that can be defined and it is impossible to study the battery degradation 

in all of them. Most of these factor are stochastic as they depend on the driver behavior or 

weather condition. In this research, the dependency of the battery capacity fade to its 

probabilistic external factors is modeled in a hierarchical approach to cover the mentioned 

shortcomings. This work has been carried out in different phases shown in the graphical 

outline of Fig. 1.  
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Fig. 1. Graphical outline 

The literature review of the battery aging studies helped to decide about the aging 

model that could be used for the evaluation of the EV battery capacity fade. Outcome of 

this part was selecting the Arrhenius equation as the backbone of the capacity fade 

mathematical model. However, to be able to simulate the battery performance in an EV, it 

was necessary to simulate the EV power-train which is done in Phase 1. In this phase, a 

simulation tool in MATLAB named REV-Cycle (Real Electric Vehicle Cycle Analyzer) is 

developed to be able to test an EV battery performance in real driving data. The battery 

electrical equivalent model (ECM) in this tool was obtained experimentally on a 

commercial EV battery. By this simulation tool, the performance of the EV battery in 
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standard driving cycles and recorded real-world driving data are compared. Combining the 

aging model obtained from literature review and REV-Cycle form from Phase 1, in Phase 

2, the effect of different driving behaviors on the battery capacity fade for more than 200 

drivers is studied. The driving style in this part was classified to aggressive, mild and gentle 

based on their average acceleration. The battery energy consumption, power demand and 

the capacity fade were studied for groups of drivers. The capacity fade evaluated 

considering the effect of the battery current rate and ampere-hour.  

The battery aging model simulated in Phase 2 is used in Phase 3 to evaluate the EV 

battery capacity fade in different daily driving, recharging, and vehicle to grid (V2G) 

scenarios. Note that the model itself was deterministic and therefore, the outputs of this 

phase are deterministic. In this phase, for the driving part, recorded data from 50 driver are 

used, for the recharging, standard L1 and L2 charger and for the utility services, either 

recorded data or the real data from online resources are employed. Daily scenarios are 

defined considering different combination and sequences of these events. Also, the effect 

of different climates/thermal management systems are studied. Although the results of this 

part reveals interesting facts about the battery capacity fade in different tasks, they cannot 

reflect the uncertainties of the battery aging external factor and their hierarchy, due to the 

deterministic definition of each scenario. For instance, driving distance is fixed to 29 miles 

per day or the contribution of each charging facility is fixed in the daily charging events. 

Therefore, using the variables (as aging factors), sensitivity of the capacity fade to 

these variables, and the data from Phase 3, in Phase 4, a hierarchical probabilistic solution 

for the battery capacity fade estimation is proposed. Considering that the Bayesian model 

is a strong method of probabilistic modeling, a Hierarchical Bayesian Network model for 

the EV battery capacity fade is generated. A Bayesian Network including all uncertainties 

of the measurements and process models is developed and Markov Chain Monte Carlo 
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method is used to solve this probabilistic problem. The developed model considers effects 

of temperature change, driving behavior change, charging facilities difference, utility 

services possibility plus all uncertainties in the measurements, sampling and modeling 

through probability distributions and presents more informative results about the EV 

battery’s capacity fade. The process that how the model is developed, trained and tested 

with a set of experimental data and used for the EV different case studies are presented. 

Results indicate that Bayesian approach is a very successful tool in estimating the unseen 

hidden variables of the battery capacity fade and it is a strong tool with high accuracy in 

case of limited observation. Also, it is observed that the probabilistic presentation of the 

battery aging conveys more useful information about the battery health condition and 

therefore result are more realistic and reliable.  
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1  

Chapter 1 

 

Analyzing Battery Aging Models1 
 

 

Abstract 

In this chapter, the battery aging models are reviewed and analyzed. In the literature, 

the battery aging studies and proposed models are highly dependent to the requirements of 

different disciplines and researches. Chemical and material scientists are more interested 

in what happens inside the cell, while from the engineering view, the cell’s performance in 

a module, pack or in a specific application is more important. Therefore, the proposed 

battery aging models can be classified based on the research’s view “scale”. This chapter 

explores the different battery aging scales from the material level to electrode, cell, module, 

pack and application level and presents the different mathematical models proposed for 

each level in the literature. Purpose of this chapter is to build the fundamental knowledge 

about the battery aging, which will be useful in the next chapters.  

  

                                                 
1 The material contained in this chapter is in preparation for submission to a journal. 
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1.1 Introduction 

As batteries are found in increasingly more devices, from portable to transportation 

and grid, battery aging remains as a challenging factor for manufacturers and users. 

Batteries, and in particular Li-ion, show high energy density, but limited lifetime [1]. Up 

to this point, batteries were mainly used for single tasks, but this scenario is moving 

towards multiple tasks. An example is an electric vehicle driving, recharging and providing 

grid services. As each task has a different priority, aging cost or benefit, all these factors 

need to be considered when scheduling the tasks during the life of the battery.  

It can become even more relevant when batteries are repurposed for second life. For 

example, in transportation, due to the high power and energy demands, the battery end of 

life is reached when the capacity degrades to an 80% of the original capacity. Therefore, 

there is still available capacity that can be repurposed as a second life in less demanding 

applications [2]. In this second life, the battery starts from a degraded point due to its first 

life and will increase in degradation. Therefore, modeling and identifying the causes of 

degradation is highly relevant. However, approaches are spread out at different scales due 

to the dichotomy of aging taking place at the material level, but decision making and 

control taking place at the system level [3].  

Available reports about the battery aging studies have mostly focused on the 

material-level aging mechanisms and methods and estimation methods without analyzing 

the mathematical aging models used for these purposes. While these are necessary, it may 

not be sufficient for all researchers or engineers, as depending on their perspective, they 

would first need to identify in which scale they need to gain the aging modeling 

information, and second, how to model/simulate the battery aging in that specific scale. 

The objective of this chapter is to analyze the current approaches to the battery aging 
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modeling in each scale, identifying how each model scales up and its applicability to 

different purposes (real-time control, battery repurposing selection, etc.). This review will 

help the readers to identify the main aging factors and variables in each scale, mathematical 

aging models and their strength and weaknesses to be able to simulate the models for their 

own purpose. Fig. 1.1 provides the graphical illustration of this chapter’s trend. 

 

 Trend of the aging models analyses in the chapter 

1.2 Material and Electrode Level Models 

Before discussing the aging phenomenon inside the battery cell, a brief overview on 

the Li-ion battery cell performance will be helpful. A Li-ion battery cell has three main 

parts; negative electrode, electrolyte and positive electrode (Fig. 1.2).  

During discharge, Li ions de-intercalate from the negative electrode, passing through 

the electrolyte, intercalate in the positive electrode. At the same time, electrons travel in 

same direction through the external circuit. The opposite reactions happen during the 

charge. To quantify this phenomenon, the Single Particle (SP) model presented in [4]–[7] 

is used widely in aging study literature. Based on SP, the governing equations of Li-ion 

battery cell include the conservation of charge and species in solid and electrolyte phases 

as follows [6]: 
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Current 
collector

Load

e

Electrolyte

Anode CathodeSeperator

Li+

Charge

Discharge

Current 
collector

External wire

X=0 X=L

Ln Ls Lp

 
 Li-ion cell schematic 

Conservation of charge in solid phase: 

     (1-1) 

Boundary Conditions:  | |  

Conservation of charge in electrolyte phase: 

κ κ ln              (1-2) 

Boundary Conditions: | | 0 

| | 0 

Conservation of species in solid phase: 

             (1-3) 
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Boundary Conditions: | 0, 	 |  

Conservation of species in electrolyte phase: 

            (1-4) 

Boundary Condition: | | 0 

where, the solid and electrolyte potentials  and  and the lithium concentrations in the 

solid and electrolyte phases  and  are the variable of these equations. The electronic 

conductivity 	, ionic conductivity κ and the electrolyte diffusion coefficient  

are corrected by Bruggeman factor [4]. The solid and electrolyte phase volume fractions 

are defined by  and , respectively. Detailed discussion about these equations can be 

found in [8]. The Li-ion current density  can be calculated using Butler-Volmer equation 

as follow: 

	 	 	 	 .  (1-5) 

Here,  is the exchange current density, F, R and T are the Faraday’s constant, the gas 

constant and the temperature, respectively.  and  are the negative and positive 

electrodes transfer coefficients. The local surface over-potential,  can be calculated by: 

        (1-6) 

where U is the open circuit potential and is a function of state of charge (SOC) and can be 

defined empirically [9], [10]. The equation (1-5) can be written for both the positive and 

negative electrodes separately [11]. Solving the Eqs. (1-1)-(1-4) defines the performance 

of the battery cell. These equations are the base for the material and electrode level aging 

studies.  
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Inside a Li-ion battery cell, aging starts in the electrodes/electrolyte interface. The 

degradation in the positive and negative electrodes follow different mechanisms [12]. 

Negative electrode is commonly carbon-based and is made of graphite, titanate or silicon 

[13]. The major source of aging in the negative electrode is the formation of a resistive 

layer between the electrode and electrolyte surface due to the side reactions named solid 

electrolyte interface (SEI) [14]. The SEI is normally formed during first cycling of the 

battery and protects the electrode from corrosion and the electrolyte from reduction [15], 

[16]. However, in the long term, SEI’s thickness and shape continues to grow and 

penetrates the porous structure of the negative electrode leading to (i) loss of effective 

surface of the electrode (ii) increased resistance against Li ions penetration and (iii) loss of 

cycleable lithium [17]–[19]. Note that the electrolyte materials define the SEI shape and 

properties [20]. 

Studies show that the high temperatures enhance the aging associated with SEI 

formation [21]–[23] and low temperatures lead to Li plating due to the lower rate of lithium 

diffusion which reduces the cycleable lithium [24]. Another aging factor in the negative 

electrode can be the mechanical or electrical contact loss between the anode active 

materials and parts due to the cycling [25]. Most of the aging models in the material and 

electrode level focus on the aging in the negative electrode/electrolyte interface as they 

believe that side reactions and as a result SEI formation are more likely in the negative 

electrode due to its potential [26], [27]. Chiu et al. [28] have defined a time-variant 

parameter  to present the loss of Li concentration in the negative electrode at Nth 

cycling. After each cycle, they update the Li concentration in the negative electrode (solid 

phase)  as follow: 

             (1-7) 
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where  is the total discharge time of the cell at the Nth cycle. To calculate the  

general Arrhenius equation is used (1-8) and its parameters  and  are calculated from 

experiments performed by [29].  

exp	 .              (1-8) 

Safari et al. [30] have considered the side reactions kinetic equation as the index for 

SEI formation rate as follow: 

	 , Φ  .            (1-9) 

And the growth rate of the SEI by [31]: 

     (1-10) 

where,  is the SEI thickness. ,  and  refer to rate constant of side reactions and 

solvent concentration in the SEI film, respectively.  is the charge transfer coefficient for 

the side reactions and  and  are the SEI resistance and electrode total current, 

respectively.  stands for the SEI molecular weight and  is its density.  

In [11], [32], Prada et al. have improved the previous model by adding the thermal 

behavior of the battery and also calculating both the capacity fade and power fade from the 

side reactions current density. The capacity fade is quantified by the percentage loss of the 

lithium available charge Q 	in the negative electrode as follow: 

      (1-11) 

where  is the negative electrode’ active surface. To find the power fade, the rate of rise 

of the SEI resistance is calculated from (1-12). 
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    (1-12) 

The increase in SEI film resistance decreases the electrode porosity and effective 

diffusion coefficient which leads to increase in the ohmic resistance and power fade. Note 

that the total SEI film resistance is the sum of the initial resistance and its increase due to 

the SEI formation as follow [33]: 

	 	.      (1-13) 

Randall et al. [34] suggest that the model in [33] has a bulk computation burden for 

the BMS and control purposes. Therefore, they have presented an incremental model for 

SEI resistance and capacity fade calculations with simplifying assumptions as quasi-

equilibrium state for cell and neglecting local electrolyte and electrode surface 

concentration variations, uniform intercalation and side reactions current density in anode 

surface and equal anode and cathode charge transfer coefficients. These simplifications 

account for less than 1% error, based on the results.  

Also, Tanim et al. [35] have developed another reduced order non-linear physic-

based SP model and combined it with the aging calculations of Eqs. (1-11) and (1-12) 

which simplifies and reduces the model computations. Graphical illustration of the 

discussed battery performance and aging models is presented in Fig. 1.3. The current and 

temperature are the input variables for the models. Open circuit voltage (OCV) as a 

function of SOC comes from the experiments and electro-chemical properties are defined 

for every battery chemistry and materials. Output of these models are the battery voltage, 

capacity and power losses. In each iteration of simulation, Li current density is used to 

calculate the side reactions and as a result the aging variables. Then, the SEI resistance and 

Li concentration in negative electrode are updated for the next simulation step.  
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Aging in the positive electrode happens slightly different than the negative electrode. 

The SEI formation in the positive electrode is dependent on the material used in the 

electrode but it cannot be detected easily [36]. Experiments show that the impedance rise 

due to the cycling in the negative electrode is higher than the positive electrode [37] which 

indicates that the main SEI formation takes place on the negative electrode surface. 

Although the first stage of aging in the Li-ion cell is the SEI formation and cycleable Li 

loss in the negative electrode, the second stage in the battery cell aging is the loss of active 

materials in the positive electrode, which causes the cathode to be more intercalated at the 

end of each discharge [23].  

The cathode active material loss can be result of structural disordering, phase 

transitions and metal dissolution [38]. The positive electrode aging is not limited to the 

active materials loss; it also can be caused by the inactive components degradation as 

binder decomposition, corrosion of the current collector and oxidation of the conductive 

agents [39]. Literature in the positive electrode aging mainly focus on the experimentally 

oriented studies and do not present mathematical modeling of aging in the cathode. Fig. 

1.4 summarizes the aging causes in the positive and negative electrodes.  
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In summary, the material and electrode level capacity and power fade models can be 

simulated by: first, calculating the side reactions current, second, obtaining the SEI film 

thickness, then SEI resistance growth for power fade analysis and third, calculating the 

cycleable lithium loss for the capacity fade analysis. These models have high accuracy due 

to their detailed inside-the-cell dynamic equations without requiring bulk experimental 

measurements, but they have complicated differential equations to be solved in each 

iteration and therefore, high computational load.  

1.3 Cell Level Models 

Aging models in the material and electrode level include the governing electro-

chemical differential equations to simulate both the real time performance and aging of the 

battery, as observed in the previous section. These equations are solved simultaneously and 

after each iteration, the parameters related to the aging such as cycleable lithium loss and 
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SEI resistance are updated. However, in the cell level aging models, the battery cell is 

considered as an electrical equivalent circuit with time-variant elements. Scaling up from 

the material level to the cell level is changing the view from the electro-chemical reactions 

inside the cell to the electrically measurable variable as voltage, impedance, ampere-hour 

(Ah) on the cell terminals.  

The battery aging phenomenon happens in both the storage and cycling modes. The 

aging associated with the storage period, “calendar aging” is dependent to the storage 

temperature, SOC of the battery and time (1-14) [40]. As the SOC of the battery and its 

terminal voltage are directly related, some literature have translated the battery SOC to its 

storage voltage [41], [42]. For the aging caused by the battery utilization, “cycle aging”, 

the effectual factors are ambient temperature, SOC, depth of discharge (DOD), 

charge/discharge current and number of cycles (1-15) [43]–[45].  

. , ,       (1-14) 

. , , , / ,     (1-15) 

. and . refer to the percentage calendar and cycle capacity fade. The calculation 

from the mentioned aging factors to the capacity and power losses is shown in Fig. 1.5.  

Studies on the cell level aging modeling are empirically-oriented and present fitted 

mathematical models which follow the data derived from extensive experimental work. 

Due to the large amount of time and work needed for the battery aging tests, these tests are 

performed under accelerated aging condition with elevated temperatures. Note that the 

higher temperature has significant effect on the battery aging acceleration [45]. So, Bloom 

et al [46] tested 0.9Ah 18650 cells in temperatures above 40°C to investigate the calendar 

and cycle life of the battery. They used general Arrhenius equation to fit the experimental 

data (1-16). 
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	     (1-16) 

where, B is pre-exponential factor,  is the activation energy in J, R is universal gas 

constant, T is the temperature and t is time. z is the power factor. Numerical values of these 

parameters for different test conditions are presented in [46]. Their model explains the 

battery capacity fade and power fade in both the calendar and cycle aging with power law 

of time. Although the time is a reasonable variable in the calendar aging evaluation, the 

capacity fade due to the cycling is more dependent to the Ampere-hour (Ah) throughput. 

In addition, in constant current charge and discharge cycles, the Ah throughput is directly 

related to the time. Therefore, authors in [47] altered the time to Ah in Arrhenius equation 

to be able to study the effect of different C-rates on the battery aging (1-17). Based on their 

model, the pre-exponential factor and activation energy are a function of C-rate and the 

power factor is a constant value. 

. 	 . .       (1-17) 
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Ah in this equation can be calculated as: 

. .      (1-18) 

where, C is the rated capacity of the battery cell and N is the number of cycles. Numerical 

data for B provided in [47] adopted to fit an exponential function of C-rate as follow [48]: 

ln 1.226 exp 0.2797	 9.263.   (1-19) 

This model includes the effect of temperature, DOD, C-rate and number of cycles, 

however it is not considering the impact of SOC. Authors in [49] present a similar model 

relating the pre-exponential factor B to the SOC of the battery during cycling (1-20). 

. 	      (1-20) 

Values for , , 	and z can be found in [49]. These models are helpful to evaluate 

the battery health condition. However, they are valid only in identical repetitive conditions. 

Han et al [50] have employed accumulated damage theory and modeled the battery 

degradation in each cycle which can be different from the previous cycling conditions. 

They have presented a discrete capacity fade model (1-21)-(1-23) calculating the capacity 

loss associated with each cycle and adding it to the capacity loss of previous cycles.  

. 	 . 			,								 1          (1-21) 

. . 	 	 . .      (1-22) 

		, 	 , 		   (1-23) 

This model provides the parameters resulted from tests and it is a practical model 

that should be calibrated to avoid accumulated error due to the difference in the test and 

real world conditions.  
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Another practical model that can be used for real world battery degradation 

simulations is presented by Lam et al. [51] considering the effect of SOC, DOD, 

temperature and Ah throughput. Authors referred to [52] to calculate the average SOC, 

 and its standard deviation,  from the SOC profile of the battery after a 

cycling as (1-24) and (1-25).  

     (1-24) 

       (1-25) 

Following Millner’s work [49], the capacity fade is calculated by the multiplication 

of exponentials of  and .	However, Lam’s experimental results fitting shows 

an empirical function. By including the temperature effect, the capacity fade model is 

concluded as follow: 

.
	 , exp 	 ,

exp 	 ,
exp	

1 1
.  (1-26)

where, k1 to k4 are calculated from the experimental results’ fitting. Although the 

temperature dependency in most of the aging models is indicated by the Arrhenius law, 

Omar et al [53] claim that the Li-ion cells characteristic is not completely exponential and 

therefore they suggest polynomial function for the temperature factor simulation in the 

battery model (1-27) based on the test results. 

          (1-27) 

where CL is the cycle number before end of life (EOL) of the battery. Similarly, they use 

the experimental data to fit exponential functions to include the discharge current Id, DOD 

and charge current Ich. 
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exp 	exp	           (1-28) 

exp 	exp	    (1-29) 

exp 	exp	           (1-30) 

k1 to k16 are concluded from the fittings and can be found in [50]. Considering these 

equations as core part of the model, authors evaluate the effect of each factor in each 

cycling and calculate the maximum number of cycling in different conditions.  

Not all the aging models focus on the cycle aging, some studies explore the calendar 

aging specifically. Ecker et al [41] suggest that the calendar aging is square root of time 

and is affected by the temperature and voltage which can be calculated by experimental 

data fitting method used by [54], [55] for super capacitor aging calculations. However, the 

calendar aging does not always change by the square root of the time. Different tests show 

that it may have linear dependency to time or even combination of both [44]. Considering 

both perspectives, battery calendar aging can be fitted to (1-31). 

. 	 	 √      (1-31) 

Where, k1 and k2 can represent the effect of the temperature and the SOC/voltage by an 

exponential function, polynomial function or combination of both. Marongui et al [42] 

consider the square root dependency of capacity fade to the time ( 0) and define an 

exponential fitting function for k2  as follow: 

exp . exp 	     (1-32) 

where, V stands for the storage voltage.  

To present a more comprehensive study, [40] considers both the calendar and cycle 

degradation in the capacity fade modeling. For the calendar life, it studies the storage 
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voltage, V, and temperature effect and for the cycle life, it tests the effect of DOD and the 

average voltage, . By testing the battery cells in both the storage and cycling modes 

and combining their aging effectual factor, the aging model is presented as follow: 

. 	 . 	 	 . 	 .    (1-33) 

where: 

exp	       (1-34) 

	 	     (1-35) 

And k1 to k7 are calculated from fitting results. In [56], an energy based aging model 

considering calendar and cycle aging is presented. A new term as “state of energy (SOE)” 

is defined which is very similar to the SOC. Total capacity fade in this model is sum of 

calendar and cycle agings as: 

. 	 .     (1-36) 

where the calendar life is affected by the SOE and the temperature as follow: 

. . exp . exp √ .      (1-37) 

.  is the nominal capacity fade in the condition with  and .  and  are 

fitting parameters. For the cycle aging, different cycles’ accumulated capacity fade is 

considered. For each cycle, a polynomial function of change of SOE as (1-38) calculates 

the capacity fade. 

. ∑ Δ Δ Δ         (1-38) 

Again, k3 to k5 are fitting parameters from experiments. 
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As indicated in Fig. 1.6 and similar to the material and electrode level models, the 

current and temperature are the input variables in the cell level models. OCV and circuit 

elements (R, L and C) are obtained from the experiments as functions of SOC and 

temperature. SOC from the performance model is used besides the current and temperature 

to calculate the aging and update the capacity. 

Battery Performance Model

 SOC, voltage drops (ΔV)  

Current

Temp.

OCV=f(SOC,T)
Circuit Elements

R, L, C = g(SOC,T)

Voltage

Battery Aging Model
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SOC Capacity

Capacity loss

Power loss
 

 Cell level aging models block diagram 

As observed, cell level aging models rely on the experimental results and therefore, 

they are valid only for the specific battery technology and defined test conditions. Although 

these models are easy to simulate and reduce the computational load, they are less accurate 

compared to the material level models. One way to improve the accuracy of these models 

is to recalibrate the model parameters for any specific condition. 

1.4 Module and Pack Level 

A single Li-ion battery cell has limited power and capacity. Thus, for the high power 

and energy applications, the cells are connected in series or parallel configurations to form 

battery modules and pack with increased voltage, current and stored energy capability. 

However, internal differences among the cells of a module or a pack is unavoidable. The 
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source of this difference can be either the difference in the cells’ production process, or 

different working conditions such as temperature and loading [57]. Among 20,000 fresh 

cells, measured initial capacity has a normal distribution with 1.3% deviation. Direct 

current internal resistance result for these cells has the same distribution with 5.8% 

deviation [58].  

This phenomenon leads to inhomogeneous aging in the connected cells of a module 

or pack. For instance, two parallel-connected cells with 20% difference in the internal 

resistance experience 40% higher peak currents [59] compared to the case that two cell 

work dependently. These increased current peaks cause extra heat production in the cell. 

Also, the location of the cell inside the module and pack affects its heat dissipation and 

changes the cell temperature [60]. Therefore, boosted current and temperature causes 

expedited aging in these cells, refereeing to the aging models of previous section. Based 

on Gonoana et al., 20% difference in internal resistance of a pair of parallel cells can reduce 

the cycle life of both cells by 40 % [61]. In the series connected cells, the expediting aging 

factor is temperature, as the currents in series cells are equal.  

Considering this discussion, aging models developed for the cell level are not 

sufficient to predict the aging behavior of a module or a pack. Pack simulation from cell 

model is valid only if the cell-to-cell variations are considered [62]. First step in solving 

the problem is to calculate/estimate the amount of imbalance between the cells to have 

quantitative understanding of the different working conditions for the cells. “State of 

Balance” is a concept presented by Wang et al. [57] to estimate the cells imbalance for 

dynamic equalization adjustment. One major imbalance factor is temperature which causes 

mismatch on the cell resistance leading to unbalanced currents and different aging 

behavior. During the discharge of a module with parallel cells, cell with higher temperature 

has higher current extraction until 75% DOD. After that, current falls until 90 % DOD and 
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then rises again to the end of discharge. This result shows significant impact of temperature 

in cells’ performance, reported in [63]. Authors indicate linear relationship between the 

capacity fade difference and temperature difference between cells. Also, Le Bel et al. [64] 

explored the parallel connected cells aging by an electro-thermal model to include the 

current imbalance effect for better understanding of the aging difference in single cell and 

pack. Incremental capacity analysis (ICA) is reported to be a suitable tool for study of the 

difference in cell and pack capacity fade due to difference in the internal resistance, 

temperature too [65], [66].  

Next step is to bridge the gap between cell aging models and module/pack aging 

calculations. In a battery pack with parallel and series cells, the basic approach is to neglect 

the current imbalance in the parallel cells and consider them as a bigger cell due to the 

passive balance control, then, calculate the aging for the series cells considering their 

working condition by updating the cell aging model using the SOC and SOH information 

from the pack. At this point, deciding about the pack capacity fade from cells’ aging 

information can follow several methods [67]–[69]. The simplest method is to select the 

most aged cell as the representative of whole pack and calculate the pack capacity fade as 

follow [70], [71]: 

max , 					 1:      (1-39) 

where, ,  is each cell’s capacity fade and M is the number of cells. Disadvantage of this 

method is that it overestimates the pack capacity fade. Taking the average of cells capacity 

fade for the pack aging estimation is another approach that underestimates the total capacity 

fade. Therefore, authors in [58], [69] suggest to use probabilistic aging estimation, which 

finds the probability distribution of cells capacity and presents the whole pack capacity by 

a probability distribution function. However, the results show that although the estimation 

error is improved, this method still underestimates the pack aging, slightly.  
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Another method presented in [67], [68] defines chargeable and dischargeable electric 

quantities (CEQ and DEQ) for each cell to relate the pack capacity to individual cells 

capacity. Based on their definition, the pack capacity is the sum of minimum CEQ and 

minimum DEQ among the pack’s cells as follow: 

min . min	 1 .          (40) 

where, SOC and C are the all cells’ SOC and capacity vectors. The graphical illustration 

of the process to calculate the pack capacity from cells’ capacities is indicated in Fig. 1.7 

which is named “Electric quantity -Capacity Scatter Diagram” (ECSD). In this method, for 

a specific SOC, the cell with minimum chargeable electric quantity to 100% SOC and the 

cell with minimum dischargeable electric quantity to 0% SOC are distinguished. These 

quantities are the charge and discharge capability of the whole cell before reaching to the 

voltage limits of full charge and full discharge. Therefore, total capacity of the pack is the 

sum of these quantities. As noticed, the pack capacity in this method is not necessarily 

defined by the cells with minimum capacity.  
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1.5 Application Level 

All the aging models presented in the cell level and the methods discussed to use 

those models and expand them to the module and pack level aging are concluded in the test 

condition that the battery is separated from its application and it is possible to test the 

battery as many time as required for the study. However, in a real-world battery life it is 

not easy to stop the battery’s task, separate it from the defined application and test it 

frequently. Therefore, in the application level other methods are used to simplify the aging 

estimation with minimum measurement and test requirements. Note that, studies in this 

level do not present aging models for the simulation purposes and they focus on the 

estimation methods to be implemented in BMS in real life battery applications. 

The main objective in these methods is to prevent stopping the battery task and they 

can be categorized in two principle groups: experimentally oriented and adoptive methods 

[72]. The experimental methods measure and store the aging related variables and calculate 

the aging in each state of life of the battery using simplified aging model and knowledge 

from the history of the battery performance. Resistance measurement in different current 

signals [73], joule effect which is the generated heat by the internal resistance [74] and Ah 

throughput counting [75], [76] are some of these approaches. Remmlinger et al. [77] 

proposed a resistance estimation method using a specific current signal detection while the 

battery is working and measuring the voltage for resistance calculation. Ah throughput 

counting method using the aging model presented in [43] is another study presented in [78]. 

As the working condition of a battery such as loading and temperature change during its 

life, total Ah counting rises the aging estimation error. Therefore, Marano et al. [79] 

suggested to use effective Ah counting which defines weighting coefficients for each Ah 

considering the different working conditions. Although these methods have low 
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computational burden and are easy to implement in the BMS, they require large data storing 

capacity and also, they have less accuracy due to the accumulated error during time.  

Adoptive methods calculate the parameters sensitive to the aging such as resistance 

and estimate the life of the battery from those calculations. These methods eliminate the 

need for bulk measurements and simulations of the battery performance. For this purpose, 

they use different algorithms such as Kalman filter [80] and its improved versions, 

observers [81], fuzzy logic [82], artificial neural networks [83] and least squares [84]. All 

these methods can target specific aging related parameter in the battery. For example, 

Gholizadeh et al. [85] have used sliding mode type observer (SMO) and Remmlinger et al. 

[86] employed linear parameter-varying (LPV) model on series resistance measurements. 

They have used general measurements which are available in the BMS. In [87], Kalman 

filter is applied for aging estimation by cell capacitance from Randles’ equivalent circuit 

model and it is shown that the aging of the battery has linear relationship with that 

capacitive property. Adoptive methods have higher accuracy compared to the experimental 

methods, however they have high computational load and are not easy to implement.  

Along with the experimental and adoptive methods that focus on the measurement 

of an aging related parameter and/or development of a computational method using several 

measured parameters, another approach is to reduce the measurements and computations 

by sampling small group of cells [88]. In this method, a new circuit topology of the battery 

pack is needed which separates it into two test and main groups. The circuit configuration 

is in a way that while the main group is working, the test group cells can be separated by 

relays and measurements can be performed without disturbing the function of the battery. 

This method simplifies and reduces the computational burden with the cost of slightly 

lowering the accuracy.  
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1.6 Conclusions 

This chapter reviewed the battery aging models and classified them in different 

scales. The material and electrode level models focus on the electrochemical equation of 

the inside the cell materials. Although these models are more detailed, but they have 

complicated analyses and high amount of calculation burden. Cell level models are derived 

from the experimental data and they are useful in simulation. However, they cannot used 

for the cases very different from the test conditions. Module, pack and application level 

studies do not present mathematical model, instead they use cell level models and adapt 

them for the higher scales. Considering the gained knowledge about the aging models, the 

suitable choice for our research is a mathematical model from the cell level studies (Eq. (1-

17)) and update it for EV application. To do so, we need a tool that simulates the EV and 

its battery performance. Therefore, the first step is to develop the EV power-train model, 

which is presented in the next chapter.  
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Chapter 2 

 
REV-Cycle: A MATLAB-based Tool 

for Large-Data Analysis of Real-Life Driving 

Cycles for Electric Vehicles1 

 

Abstract 

Electric vehicles are increasingly being adopted due to environmental awareness and 

competitive technical performance and reducing prices. Their research and development 

has sometimes relied on the use of standard driving cycles. However, these cycles cannot 

reproduce the variations of traffic flow in real world. That is why in this chapter a software 

tool is developed which is able to analyze real-life driving cycles for electric vehicles. To 

do so, a driving trajectory process tool is used to obtain large data for vehicles driving in 

the same stretch of highway. To show the performance of the developed tool, sample cycles 

are analyzed and simulated for electric vehicles automatically in the REV-Cycle (Real 

Electric Vehicle Cycle analyzer) software presented.   

                                                 
1 The material contained in this chapter was previously published in iTEC 2015 Conference and Expo. 
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2.1 Introduction 

The transportation sector shift towards electrified vehicles is consolidating due to 

policy incentives, increasingly competitive energy storage performance and cost, and 

growing social awareness on sustainability, among other factors [1]. The transition to 

electrified vehicles has heavily relied on already in-use procedures for internal combustion 

engine (ICE) vehicles. One of the most common tests carried out for ICE-powered vehicles 

is the fuel economy test [2]. This test is, for the U.S., a federal standardized test designed 

by the U.S. Environmental Protection Agency (EPA). The tests are carried out in a 

laboratory controlled environment, where the vehicle is tested under city and highway 

driving cycles. The carbon in the exhaust is then an indicator of the fuel burned during the 

test, giving as a result the vehicle fuel economy [3].  

Even if the fuel economy test is extensively used for ICE-powered vehicles, it is of 

no use for electric vehicles when the vehicle is exclusively powered by energy storage 

systems and/or fuel cells. However, these cycles are regularly used to model, simulate and 

estimate the battery performance and state-of-charge (SOC) for electric vehicles [4]. This 

allows developing experimentally validated powertrain components models, battery SOC 

estimation algorithms [5], and vehicle energy management [6], among others. However, 

real driving conditions greatly differ from standardized ones, as they include sudden 

accelerations and braking, and traffic flow dynamics that cannot be easily standardized [7].  

The electric vehicle performance greatly depends on these variable driving 

conditions, as well as on the battery technology, sizing, temperature, and battery ageing 

[8]. It is therefore necessary to be able to methodologically study the electric vehicle 

performance under real driving conditions, as the consumer satisfaction on its performance 

is key to increase the electric vehicle adoption. Available work on this area is focused on a 
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particular driving pattern or location [9], a single vehicle driving cycle [10], does not 

formally link traffic flow theory with electric vehicle simulation [11] and cannot represent 

accurately battery performance. Most of these challenges are due to the interdisciplinary 

nature of the work needed, which include deep knowledge of traffic flow theory, electric 

vehicle powertrain components, and battery testing and modeling. 

This chapter presents a software tool, REV-Cycle (Real Electric Vehicle cycle 

analyzer), that is able to connect results from a large-data vehicle driving trajectories under 

real traffic flow dynamics with an electric vehicle model in MATLAB. The cycles obtained 

(in the order of hundreds), can be organized through MATLAB, and fed to the electric 

vehicle model. The model includes an experimentally validated Li-ion based battery model. 

This will allow studying the effects of varying driving conditions on the vehicle 

requirements and its effect on the battery performance. 

2.2 Large Data Real-Life Driving Cycles 

The driving data are obtained in a collaboration with Dr. Zhang form the department 

of civil and environmental engineering at MTU. These freeway dataset collected detailed 

vehicle trajectory (time-distance profile) data with 0.1 second time resolution on eastbound 

I-80 in the San Francisco Bay area in Emeryville, CA, on April 13, 2005. The study area 

was approximately 500 meters (1,640 feet) in length and consisted of six freeway lanes, 

including a high-occupancy vehicle (HOV) lane. The grade is 0 percent throughout this 

section. Seven synchronized digital video cameras, mounted from the top of a 30-story 

building adjacent to the freeway, recorded vehicles passing through the study area.  

The stretch of highway I-80 studied is depicted in Fig. 2.1(a). As it can be observed, 

the data was collected using a digital video camera mounted on top of the building 

overlooking the highway. The aerial photograph in Fig. 2.1(b) shows the extent of the I-80 
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study area in relation to the building from which the video cameras were mounted. The 

coverage area shows the number of lanes and location of the Powell Street onramp within 

the I-80 study area. A driving cycle processing procedure is implemented in an open source 

transportation data hub software tool – NeXTA [12] to process driving cycles for all the 

vehicles on this stretch freeway. Using this driving cycle processing procedure, the driving 

cycle of each individual vehicle along this stretch of freeway is saved into an individual 

*.csv file. Each *.csv file is a real-life driving cycle and ready for driving cycle analysis. 

For the sake of readability, Fig. 2.2 only shows 5 vehicle driving cycles on I-80 for 200 

ms. The differences seen in these 5-vehicle driving cycles indicate that the standard driving 

cycles cannot represent the real-life driving situations, since vehicles drive differently in 

real-life even along the same stretch of freeway.  

  

(a) (b) 

 Data recording method: (a) Digital video camera recording and (b) Aerial 
photograph 
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 Real-life Driving Cycles of 5 Vehicles along I-80 

2.3 REV-Cycle Software Tool 

A MATLAB-based software tool (REV-Cycle) has been developed in order to 

analyze the large data of real traffic measurements obtained in the previous Section. The 

proposed software is a user friendly interface that provides a tool to analyze a specific cycle 

[13] and also simulates an electric vehicle. Results of the simulations are stored in arrays 

which then are displayed to the user by means of graphs and numeric results as popup 

windows. 

The proposed software provides, among other parameters, information of the power, 

traction force and energy required to overcome the real cycle. In addition, REV-Cycle 

simulates an electric vehicle running on that particular real cycle by means of a validated 

Li-ion battery model. The main window of the developed tool is depicted in Fig. 2.3. 

On the left hand side, the user introduces the vehicle, control and electric machine 

properties and on the right hand side it analyzes the cycle and simulates, for that particular 

real traffic cycle, the electric vehicle behavior. It is worth noting that a browser tool to 
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select a *.csv file that contains speed, time, grade, etc. of the real traffic, is also part of the 

developed software. In addition, the software allows to run and analyze all of the *.csv files 

contained in the folder automatically without user intervention. This allows a large data 

analysis of all the vehicles driving through a particular road section in a uniform and 

traceable way.  

The simulated electric vehicle is implemented with a driver control over the velocity 

as well as on the electric machine current, thus, being able to accurately follow the velocity 

profile described in the *.csv file. Note that these profiles are a capture of real traffic data. 

Therefore, considerable programming has been carried out in order to control the vehicle, 

as initial velocity is not zero and time frame changes depending on each particular file. The 

user can modify the control parameters so that the simulation follows the target velocity, 

therefore, being able to provide an accurate value of energy consumption, SOC, etc. 

 

 Main window of the developed tool REV-Cycle 
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2.4 Electric Vehicle Model 

This section deals with the model developed for the EV. There are three main parts 

in the model; mechanical aspects, electrical parts and control system. On the mechanical 

side, the vehicle longitudinal resistances are considered for the longitudinal dynamics as 

the sum of the aerodynamic drag, the rolling resistance and the grade. 

. . . . 0.5  (2-1) 

where, ρ is the air density (1.225 kg/m3), Cx the aerodynamic coefficient, Af the vehicle 

frontal area, W the vehicle weight, fr the rolling coefficient and θ the road grade. The total 

resistive force of the vehicle is calculated by summing up the aerodynamic, the rolling and 

the gradient forces as follow, and included in the traction force calculation: 

. . . .     (2-2) 

where, Fveh. is the traction force and m. is the vehicle mass . The transmission model 

includes inertia and transmission ratio for the gearbox and differential. Transmission ratio 

is defined as the ratio between the input speed and the output speed of the transmission 

acting as a speed reducer and as a torque multiplier. 

On the electrical side, the electric machine is modeled considering electro-

mechanical conversion and transfer function of windings. It is important to note that the 

parameters for modeling are entered by the user through user interface window. The 

voltage applied to electric machine is the output variable of the power electronic converter 

which is controlled by the modulation coefficient. The main focus for the EV modeled is 

its battery, as it is the sole energy source for the vehicle and studying its behavior during 

driving cycles is one of main objectives in this study.  
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The battery model used in developed tool REV-Cycle is an experimentally validated 

Li-ion battery model. To extract battery model parameters from experiment, first, 

frequency bandwidth of demand power from the battery in driving cycles is calculated and 

then frequency domain test is performed on battery in the obtained bandwidth. Note that 

the frequency domain tests are performed on different SOC values to obtain the relation 

between battery impedance parameters and SOC. Nyquist plot of test and fit results for 

20%, 60% and 90% SOC are shown in Fig. 2.5. This figure indicates that the developed 

model is able to follow the frequency behavior of the battery impedance with high 

accuracy. Note that the model’s accuracy is valid for all considered SOC values in test. 

Considering the calculated parameters, it is possible to define a time domain electrical 

model for the battery which is shown in Fig. 2.5. In this equivalent circuit, all resistors and 

capacitors are polynomial function of SOC as follows: 

R1= 0.170 - 0.035 SOC - 0.035 SOC2    (2-3) 

C1= 5942 - 9678.84 SOC + 9602.76 SOC2    (2-4) 

R2= 0.020 - 0.015 SOC - 0.004 SOC2    (2-5) 

C2= 45.79 - 36.81 SOC +13.67 SOC2.    (2-6) 

Also, open circuit voltage (OCV) indicated in figure is related to SOC as follow: 

OCV (V) =26.05+0.15 SOC+3.51 SOC2.    (2-7) 

Note that, the experiments are performed on a battery module and for the EV battery 

pack model, parallel and series combination of this model is used to reach the desired power 

and energy rating. To show the battery model accuracy, one of the experimental results is 

presented in Fig. 2.6, where the simulated and experimental battery voltages are depicted. 

Error was found to be below a 2.5%, depending on the cycle harshness.  
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 Measured and fitted impedance at 20%, 60%, and 90% SOC 
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(b) 

  (a) Battery experimental vs. simulated voltage, (b) the error  

Table 2-1. Simulation parameters 

Mechanical properties 

Vehicle mass (kg) 1650 

Frontal area (m2) 2.304 

Drag Coeff.  0.28 

Rolling Coeff. 0.007 

Differential gear ratio 3.29 

Transmission ratio 1.5 

Wheel diameter (m) 0.52 

Electrical properties 

Electric machine voltage (V) 400 

Electric machine current (A) 337 

Rated speed (rpm) 2840 

Rotor inertia (kg.m2) 0.12 

Battery capacity (kWh) 36 

Battery voltage (V) 380 

The last part of the EV model is the control system which is implemented with two 

PI controllers on velocity and electric machine current. The PI controllers force the EV 
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model velocity to follow the reference velocity described in the selected driving cycle by 

controlling the electric machine voltage and battery current. Note that the PI coefficients 

for current control are calculated using the electric machine parameters, while the velocity 

control PI coefficients are entered by the user as a damping ratio and rise time in the 

“Control Properties” section of the user interface window. Main mechanical and electrical 

parameters of the simulations are presented in Table 2-1.  

2.5 Results for Highway Driving Cycles 

Simulation results for the developed REV-Cycle tool are presented for three cases: 

standard highway cycles (HW-FET and higher acceleration HW-US06), high velocity 

cycles which are the cycles recorded during light traffic hours in the I-80 highway and low 

velocity cycles related to heavy traffic hours in same highway as discussed before. For the 

sake of readability, 5 cycles are selected for each driving case. Table 2-2 presents the 

statistical analyses of cycles simulated in REV-Cycle tool. There are significant differences 

between standard cycles and real driving cycles. As shown in Table 2-2, the average 

acceleration of the real driving cycles for both high and low velocity cycles are much higher 

than standard cycles. 

Even for the HW-US06 which is known as high acceleration cycle, average 

acceleration is about one third of real driving cycles. Because of this large difference in the 

acceleration profile, the maximum charge and discharge current and power for the battery 

in the real driving cycles are much higher compared to the standard cycles, even though 

the average current and power pulled out of the battery is lower in the real driving cases. 

This means that the EV battery is in more stressful conditions in real driving and so its 

aging process will be faster. 
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Table 2-2. Statistical Analyses of Simulated Cycles 
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Module Current (A) Battery Power (kW) A
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A
verage  

Standard 

Cycles 

HWFET 2.1245 25.62 21.41 4.99 39.18 29.82 7.11 0.1713 

HW_US06 1.9437 36.10 72.90 9.55 56.19 89.45 13.07 0.3273 

Real-Life 

High 

Velocity 

Vehicles 

#1 0.1069 54.51 136.60 5.02 88.91 143.53 5.74 0.7622 

# 2 0.1201 72.72 188.85 5.41 122.44 168.40 5.52 0.8830 

# 3 0.1287 64.43 194.69 5.79 106.93 173.66 5.47 1.150 

# 4 0.1102 61.37 198.65 5.15 101.26 172.10 5.29 0.9687 

# 5 0.1334 70.14 222.76 6.82 117.35 179.61 6.44 1.022 

Real-Life 

Low 

Velocity 

Vehicles 

#1 0.0818 35.75 95.78 1.34 56.21 121.41 1.69 0.7402 

# 2 0.0968 44.85 107.85 2.46 71.75 123.13 3.09 0.7004 

# 3 0.1336 45.50 164.87 3.06 72.9 158.7 3.56 0.9019 

# 4 0.0914 30.06 95.26 2.12 46.70 112.85 2.72 0.7053 

# 5 0.1172 41.94 112.99 2.58 66.53 127.72 3.02 0.8135 

Comparing the real-life high and low velocity cycles, the average acceleration, 

battery current and power are lower for low velocity cycles, and obviously the consumed 

SOC is also lower in average. Figs. 2.7 and 2.8 presents the velocity vs. time for the studied 

cycles. In Fig. 2.7, the two standard cycles are shown. Average velocity and acceleration 

for HW-FET is lower than HW-US06, while the cycle’s duration is about twice.  

Figs. 2.8(a) and 2.8(b) indicates the real-life high and low velocity cycles, 

respectively. Considering these figures and comparing them with standard cycles, real 

driving cycles are more dynamic and reflect the traffic flow in real-life highway driving. 
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Even during light traffic hours in highway, vehicles have very dynamic velocity profile, 

which is not reflected in standard cycles. It is important to note that although the standard 

cycles look very dynamic in figure, but zooming in and comparing in the same time scale, 

the difference between the standard and real-life driving cycles will be considerable as 

observed in the statistical analysis. Also, during heavy traffic hours, vehicles experience 

several stops and go, while standard highway driving cycles do not have this aspect.  

 
 Velocity profile for standard cycles HW-FET and HW-US06 

The two main differences between the high and low velocity cycles (Figs. 2.8(a) and 

2.8(b)) are the average velocity and stops that the vehicles experience in heavy traffic 

conditions. Both cycles have a very dynamic flow and severe changes in velocities, as 

shown by the high acceleration and deceleration during driving period. As a result of this 

high acceleration and deceleration in real driving cycles compared to standard cycles, the 

SOC profile in real driving cycles will be harsh and EV battery will experience severe 

charge and discharge conditions which affects its state of health and aging. 

Figs. 2.9 and 2.10 depict the battery pack SOC variations for standard and real-life 

driving cycles, respectively. As expected, the SOC variation for standard cycles is higher 

than for real driving cycles, because of its high average velocity and cycle duration. Also, 

the SOC has very dynamic change in real driving cases as it is obvious from Figs. 2.10(a) 
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and 2.10(b), while the standard cycles are more gentle, if the same time scale is taken for 

the comparison. Also, SOC consumption during the low velocity cycles is lower than the 

high velocity cycles, on average.  

 
(a) 

 
(b) 

 Velocity profile for real-life driving cycles: (a) high velocity and (b) low 
velocity cases 

 

 SOC change in studied standard cycles 
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(a) 

 

(b) 

 SOC change for real driving cycles: (a) high velocity and (b) low velocity 
cases 

2.6 Conclusion 

In this chapter, the MATLAB-based software tool named “REV-Cycle” is presented 

to analyze an EV performance in real-life driving cycles. Considering the presented results, 

although the standard highway driving cycles are useful to perform basic vehicle tests and 

present an index to compare different vehicles, they do not reflect the real-life driving 

patterns. Therefore, besides the regular standard tests, to study an EV performance, it is 

essential to test the vehicles or models in real driving cycles, especially in battery health 

and aging researches. So, using a software tool such as REV-Cycle with the capability of 
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analyzing large scale data can be very useful to study real-life performance of an EV. The 

proposed tool has modeled an EV from the battery to the wheels and has used an 

experimentally validated model for the battery pack modeling. The REV-Cycle allows the 

user to change different parameters in the vehicle and test it in real driving conditions.  

The developed tool will be used in the next chapter to study the difference of driving 

styles and their effect on the power and energy demand from the battery and its capacity 

fade.  
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Chapter 3 

 

Simulation and Analysis of the Effect of Real-World 

Driving Styles in an EV Battery Performance and 

Aging1 
 

Abstract 

This chapter presents the large data analysis of the real-world driving cycles and 

studies the effect of different driving styles on the EV battery performance and aging. For 

this study, the presented tool in the previous chapter (REV-Cycle) is used. Also, the real-

world driving data are the recorded as mentioned in Chapter 2. In this study, driving cycles 

are classified to three styles as aggressive, mild and gentle driving based on their average 

acceleration. Also, two standard driving cycles (EUDC and HWFET) are simulated by the 

software and the results are compared. The results show that the real driving cycles are 

very different from the standard cycles. On the other hand, the driving style has 

considerable effect on the energy consumption and the battery aging. From the aging point 

of view, the aggressive driving style leads to higher Crate demand from the battery and it 

expedited the capacity fade process.   

                                                 
1 The material contained in this chapter was previously published in IEEE Transactions on Transportation 
Electrification. 
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3.1 Introduction 

There are different studies on the EV battery performance, aging modeling and health 

monitoring in the literature [1-8]. Han et al. [1-2] have tested several commercial lithium-

ion batteries for the aging mechanisms and capacity fade estimation. In these studies, 

constant charge and discharge cycles are used to test the batteries and genetic algorithms 

are employed to estimate the battery aging. In [3-5], the test results are used to provide a 

mathematical analysis for the battery performance and aging estimation. Although these 

studies are useful to understand the battery behavior and develop a mathematical model to 

estimate its aging and capacity fade, however, they mostly have used simple constant 

current charge/discharge profiles or the standard driving cycles for the test and so, they 

suffer from the lack of real-world driving experience and performance of the battery in the 

EV. 

A group of studies on EV batteries [6-8] have focused on the statistical analysis of 

the battery performance in the driving tests. In [6] and [7], the data is collected from driving 

an EV in a specific driving cycle and used to analyze the battery performance on the tested 

driving cycles by performing statistical analysis on the data. Weng et al. [8] have suggested 

data measurement on a set of test driving cycles to study the state of health (SOH) of the 

EV battery. In these cases, the results are more reliable due to the data collection method 

they have used, however, this method is costly and time consuming due to the real driving 

tests. In addition, the tested driving cycles are mostly repetition of a driving loop to model 

a daily driving cycle and so, they do not exactly follow the real-world driving patterns. On 

the previous cases, a single vehicle was tested, making difficult the extrapolation of results 

to a larger population of vehicles and cases. 
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Real-world driving conditions greatly vary from the standard driving cycles used for 

the regular tests, as they have sudden changes in the acceleration due to the different driving 

styles and traffic flow conditions. The EV’s battery performance is greatly dependent to 

the driving conditions, the battery technology, sizing, temperature, and battery aging [9-

11]. Available work on this area has not linked the real traffic flow to the EV performance 

testing and therefore cannot represent the battery performance completely. Most of these 

challenges are due to the interdisciplinary nature of the work needed, which include deep 

knowledge of traffic flow theory, electric vehicle powertrain components, and battery 

testing and modeling. Considering the discussed issues, developing an EV model based on 

a mathematical model validated by the experimental study and testing it by the real-world 

driving patterns to evaluate the battery performance will cover the gap between the 

different methodologies. In this chapter, a large data analysis of real-world driving cycles 

is presented using REV-Cycle. It connects the results from large-data vehicle driving 

trajectories under real traffic flow dynamics with an EV model. The EV battery 

performance is tested in real driving patterns and the effect of different driving styles on 

the battery behavior and aging is studied. 

3.2 Simulations and Results for Highway Driving Cycles 

The driving cycles obtained from the I-80 highway and used in the simulations can 

be classified in two main groups: the cycles recorded during light traffic hours of the 

highway which have high velocity (referred as “light traffic cycles”) and the cycles related 

to the heavy traffic hours of the highway with low velocity (referred as “heavy traffic 

cycles”). 240 cycles obtained from the highway camera recording and NeXTA software 

are fed into it and the output results for the presented EV model are displayed in two 

sections: single cycle simulation results and driving style analysis in all cycles. 
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3.2.1 Single Cycle Simulation Results 

To show the EV model performance, EUDC and HWFET standard driving cycles 

and two sample driving cycles are tested through “analyze cycle” button of the main user 

interface window and the results are presented in Figs. 3.1 and 3.2. The EV model follows 

the reference velocity given by the driving cycle with a high precision. Fig. 3.1 shows the 

velocity profiles for the standard driving cycles. Figs. 3.2(a) and (b) shows the reference 

and modeled velocity profile for a heavy traffic cycle and a light traffic cycle, respectively. 

The main difference between standard and real driving cycles is that the real driving cycles 

are more dynamic because they reflect the real traffic condition and driving styles. 

  
(a) 

 
(b) 

 (a) EUDC and (b) HWFET driving cycles velocity 

The difference between the heavy and light traffic cycles is their velocity, as the 

average velocity for the light traffic cycle is about three times the heavy traffic cycle’s 
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average velocity. Because of this difference, the vehicle in light traffic cycle travels the 

study area in less time and consumes more energy in this period. 

 

(a) 

 

(b) 

  (a) Heavy and (b) Light traffic cycles velocity 

The power demanded from the battery while modeling the presented driving cycles 

are shown in Figs. 3.3 and 3.4. Comparing the standard and real driving cycles power 

demand, the standard cycles require lower power because of their low acceleration and 

deceleration, while in the real driving cases, power demand from the battery is very high. 

Also, as shown in Fig. 3.4, the battery power in the heavy traffic cycle is more dynamic 

than the light traffic cycle due to the traffic flow in the highway. During the heavy traffic 
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hours, the drivers need to accelerate and brake more frequently, and consequently require 

more dynamic power than during light traffic hours. The SOC for these driving cycles are 

shown in Fig. 3.5(a) and (b) as the energy consumption profile. As it can be observed, the 

depth of discharge (DOD) for light traffic cycle is higher, because of the higher average 

velocity. 

  

(a) 

 

(b) 

  Battery power: (a) EUDC cycle and (b) HWFET cycle 
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(a) 

 

(b) 

 Power demand from the battery: (a) heavy traffic cycle and (b) light traffic 
cycle  

  

(a) 
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(b) 

 SOC profiles: (a) heavy traffic and (b) light traffic cycle 

3.2.2 Driving Style Analysis in All Cycles 

As mentioned before, 240 driving cycles, representing large data analysis of real-

world driving patterns, have been simulated and tested by means of the developed software. 

This part of the analysis is performed automatically by running the driving cycles one by 

one, simulating them and saving the pre-defined output variables such as battery voltage, 

current, SOC and power, electric machine voltage and current, velocity and acceleration, 

etc. In addition, the written code processes the data for each cycle and saves it in specific 

output variables.  

To present the detailed output data from the simulation of all cycles and to be able to 

compare them, all variables are normalized. The acceleration, velocity, SOC and gradient 

of SOC are normalized based on the maximum value occurred in all driving cycles. The 

power is normalized with the rated power of the electric machine and the base value for 

the current is the value at which the battery is completely discharged in 1h.  

Considering the fact that both the velocity and the acceleration heavily influence the 

demanded battery power, the maximum power demand from the battery for each driving 

cycle versus velocity and acceleration is depicted in Fig. 3.6. The x-axis of this plot is the 
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acceleration at the time of maximum power multiplied by the velocity. Information is 

presented as per-unit (p.u.) values to allow comparison between cycles, as relative to the 

rated power and the maximum acceleration and velocity obtained. Data from all driving 

cycles are classified into 4 groups: (1) cycles with the acceleration and velocity lower than 

the average values, (2) cycles with lower acceleration and higher velocity than the average 

values, (3) cycles with lower acceleration and higher velocity than average values and (4) 

cycles with higher acceleration and velocity than average values. It can be highlighted that 

in general, the drivers with higher acceleration demand higher maximum power from the 

battery, while the low acceleration driving style demands lower maximum power. Also, it 

can be concluded that, among tested driving cycles, the drivers with low acceleration that 

travel faster demand lower maximum battery power than the drivers with high acceleration 

which go slower, on average. Considering this figure, it is necessary to classify the different 

driving cycles based on their velocity and acceleration for detailed study of different 

driving patterns on the battery performance and aging. 

 
 Maximum battery power versus acceleration*velocity 

It is important to note that the cycles are classified into two groups based on the 

velocity as the heavy traffic cycles and light traffic cycles, as mentioned before. From the 

acceleration point of view, the developed tool classifies the cycles into three groups of 
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driving styles as aggressive, mild and gentle driving, based on the average acceleration 

each driver had while driving on the data recorded part of the highway. Since the maximum 

acceleration happens instantly and it does not reflect the driving style in a longer driving 

period, it is not a proper index to classify the driving styles. When the simulation is run for 

all the cycles, the user will have the following outputs: 

• A structure for each saved variable (current, power, SOC, gradient of SOC, 

acceleration, velocity, etc.) containing the name of simulated cycles and data profile 

of each cycle. 

• Classification of driving styles as aggressive, mild or gentle driving. 

• A variable containing statistical data (average, maximum, minimum, etc.) of all saved 

variables for each cycle with their classification. The data of this variable are used 

for the basic interpretation of output variables and the plots. 

• A variable indicating the frequency of Crate values in the current profile of all driving 

cycles and the battery capacity loss associated with each driving style in all cycles. 

Fig. 3.7(a) and (b) shows the average battery power versus average acceleration for 

the standard cycles, the heavy and the light traffic cycles. Since the standard driving cycles 

have higher average velocity, their results are presented in light traffic cycles group. 

Considering this figure, standard cycles have lower average acceleration and therefore 

lower average power compared to the real driving cycles. In the studied heavy traffic 

cycles, the dominant driving style is mild driving with 57% of total. The aggressive and 

gentle driving styles are 18% and 25%, respectively. However, in the light traffic cycles, 

the dominant group is aggressive driving with 55%. The contribution of the mild and gentle 

driving styles is 25% and 20%, respectively.  

Considering this data, it can be concluded that during the heavy traffic hours in the 

highway, driving style is heavily constrained by the traffic flow and a higher percentage of 
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drivers tend to drive less aggressive. But, in the light traffic hours, drivers are slightly (or 

not) constrained by the traffic flow and therefore more percentage of them can drive more 

aggressively, e.g. overtaking a slow lead vehicle. Also, considering Fig. 3.7, for the heavy 

traffic cycles, the drivers with higher acceleration (or aggressive drivers) demand 56.3% 

more power from the battery than the gentle drivers and about 23.9% more compared to 

the mild drivers, on average. In the light traffic cycles, the extra power demand percentage 

for the aggressive drivers is 46.6% and 16.6% compared to the gentle and mild drivers. 

 
(a) 

 
(b) 

 Average battery power versus average acceleration: (a) heavy traffic 
cycles and (b) standard and light traffic cycles 

Demanding more power from the battery in the aggressive driving causes a higher 

consumption of energy and higher DOD. Fig. 3.8 shows the DOD versus average 

acceleration for the standard and real-world driving cycles. The standard cycles have lower 

DOD due to the lower power demand from the battery. For the real-world driving cycles, 
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as the road stretch for all vehicles in this work is the same, it can be concluded that more 

acceleration (or pushing the gas and brake pedal more frequently) in driving leads to higher 

energy consumption on the battery. 

 
(a) 

 
(b) 

 DOD versus average acceleration: (a) heavy traffic cycles and (b) standard 
and light traffic cycles  

To have a better insight on the energy consumption of the EV in the different driving 

styles, the kWh/100miles is used as an index and calculated for all vehicles in this test. The 

kWh/100miles index in the electric vehicles is similar to the L/100km index in the 

conventional gas vehicles. Fig. 3.9 presents the maximum and average kWh/100miles for 

heavy and light traffic cycles. Based on this figure’s data, aggressive drivers extract 43% 

more energy from the battery compared to the gentle drivers in heavy traffic hours of the 

highway, on average. Also, in light traffic cycles, the extra energy consumption is 41.5% 

for the aggressive driving style. 
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(a) 

 
(b) 

 Average and maximum kWh/100miles of 240 cycles: (a) heavy traffic 
cycles (b) light traffic cycles 

The average gradient of SOC versus average acceleration for the standard cycles and 

heavy and light traffic cycles are depicted in Fig. 3.10(a) and (b). The gradient of SOC 

shows the energy transfer rate of the battery. These figures indicate that energy transfer 

rate in the battery for the standard cycles is lower than real driving cycles. Also, between 

different driving styles, it is higher for the aggressive driving in both the heavy and light 

traffic cycles. 

From the battery aging point of view, the higher power and current demand from the 

battery reduces its life time and expedites the aging process. The capacity fade of the 

battery is dependent to the time, temperature, Crate and DOD [12-13]. To illustrate the effect 

of different driving styles on the degradation of the battery with quantitative results, a 

capacity loss model is simulated in the developed tool. 
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(a) 

 
(b) 

 The average gradient of SOC: (a) heavy traffic cycles and (b) standard and 
light traffic cycles 

Based on the model used, the capacity fade can be expressed as follow [13-14]: 

	 	    (3-1) 

where, Closs is the percentage of capacity fade in the battery, B the pre-exponential factor, 

Ea the activation energy, R the gas constant and T the temperature. Ah in (3-1) is dependent 

to the number of cycles N, the DOD and the rated capacity of the battery C which can be 

calculated as (3-2).  

Ah= N. DOD. C              (3-2) 

The power law factor z relates the capacity loss to the square root of the time. To calculate 

the B and Ea, (3-3) and (3-4) can be used, respectively [15]. 
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ln 	9.263 	 . 	         (3-3) 

31500 370.5	    (3-4) 

Considering that the current profile of the battery in the EV is not a uniform profile, 

the current data for each driving cycle is sampled every second, the Crate and DOD are 

calculated for each sample and the frequency of each Crate is counted. Then, the capacity 

fade for all driving cycles in each driving style is calculated. The results are in good 

agreement with the experimental tests performed on the battery [14-15]. 

Fig. 3.11(a) and (b) shows the frequency of different values of Crate and the Rayleigh 

probability density function (PDF) of different driving styles in heavy traffic cycles. 

Considering these figures, Crate is more concentrated around lower values for the gentle 

driving style, while it is more distributed on higher values for the aggressive driving style. 

Also, this result can be noticed from the PDF of gentle, mild and aggressive driving groups. 

Similar results are obtained for the light traffic cycles as depicted in Fig. 3.12(a) and (b). 

Fig. 3.12 also includes the results for the standard driving cycles. As shown in this figure, 

concentration of Crate around lower values is higher for the standard cycles compared to 

both heavy and light traffic cycles.  

Comparing the heavy and light traffic cycles, the distribution of Crate for the heavy 

traffic cycles is heavily concentrated around lower values than the light traffic cycles, 

because of the traffic density in the heavy traffic hours. In addition, considering the PDF 

of Crate (Figs. 3.11(b) and 3.12(b)) for two driving groups, in both heavy and light traffic 

cycles, the aggressive driving group has higher average value than the mild and gentle 

driving groups. 
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(a) 

 

(b) 

  (a) Frequency and (b) the Rayleigh probability density function of Crate 
distribution for the heavy traffic cycles 

The Rayleigh probability density function for the Crate distribution can be written as 

(3-5).  

	 . 	
.

    (3-5) 

where, b is the scale factor of the Crate data. The average value and variance for the Crate 

distribution can be expressed as (3-6). 

										    (3-6) 
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(a) 

 

(b) 

  (a) Frequency and (b) Rayleigh probability density function of Crate 
distribution for the standard cycles and light traffic cycles 

The scale factor, average and variance for PDF of Crate data are presented in Table 

3-1 for the standard cycles and different driving styles in both heavy and light traffic cycles. 

Based on these results, standard driving cycles have lower Crate values which was 

concluded from Fig. 3.12.  

The variance for the aggressive driving group is higher and it shows the distribution 

of Crate in higher values. Also, as shown in the PDF of Crate, the aggressive driving style 

tend to have higher positive Crate values which can be numerically noticed from the average 

values depicted in the table.  
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Table 3-1. Rayleigh Distribution Parameters of Crate Data 

  Scale factor Average Variance  

Heavy Traffic Cycles 

Aggressive 0.206576 0.258901 0.018318 

Mild 0.197932 0.248067 0.016817 

Gentle 0.175201 0.219579 0.013176 

Light Traffic Cycles 

Aggressive 0.46963 0.588585 0.094672 

Mild 0.36084 0.452239 0.055891 

Gentle 0.30763 0.385551 0.040623 

HWFET  0.124491 0.156024 0.006653 

EUDC  0.156562 0.196218 0.010522 

Based on the Crate distribution in the tested driving cycles and using the model of (3-

1), capacity fade for each driving group is calculated and displayed in Fig. 3.13. 

Considering the figure’s data, the capacity fade caused by the standard driving cycles is 

lower than real driving cases. So, they cannot accurately reflect the battery real aging 

process. Also, in the tested real-world driving cycles, the aggressive driving groups have 

higher battery degradation than the mild and gentle driving groups in both heavy and light 

traffic cycles.  
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However, the capacity loss for the mild driving group is less than the gentle driving 

group for the heavy traffic cycles. The possible reason for this result can be the non-

linearity of the capacity fade model, especially in the very low Crate values. Note that this 

model is obtained from the real behavior of the battery in the experiments [12]. 

To illustrate the standard cycles and real-world driving patterns, Table 3-2 presents 

the summary of results for all analyzed cycles. Based on the presented data, the standard 

driving cycles have lower average acceleration than the real driving cases, so they are less 

dynamic and demand lower current and power from the battery and as a result they offer 

less capacity fade to the battery. Therefore, they do not reflect the real driving patterns 

effect on the EV battery.  

Considering the results for the real driving cycles, the gentle drivers with less average 

acceleration demand less average power from the battery, in the both heavy and light traffic 

cycles, as noticed in Fig. 3.7. However, the maximum acceleration and power do not follow 

the average value’s pace. For instance, the maximum acceleration and power for the mild 

driver in the heavy traffic cycles is more than these values for aggressive drivers. This can 

be noticed in maximum current, too.  

The DOD and kWh/100 miles for the different driving styles in the both heavy and 

light traffic cycles follow the pattern of the average acceleration, i.e. the higher average 

acceleration, the more energy consumed during the driving period. Also, results show that 

driving with higher velocities consumes more kWh/100 miles; however, the velocity is a 

matter of road condition and traffic flow. In addition, the aggressive drivers cause more 

capacity loss compared to the mild and gentle drivers. 
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Table 3-2. Statistical Results of All Simulated Cycles 

 Heavy traffic cycles Light traffic cycles Standard Cycles 

             Aggressive Mild Gentle Aggressive Mild Gentle EUDC HWFET 

Acceleration 

(m/s2) 

Max. 14.61 15.22 13.57 15.70 10.93 13.92 1.389 1.475 

Ave. 1.039 0.848 0.684 1.199 0.988 0.849 0.194 0.172 

Power 

(kW) 

Max. 178.4 189.6 175.3 185.7 184.3 181.5 35.32 31.46 

Ave 6.716 5.434 4.296 18.81 15.86 12.89 7.701 8.225 

DOD 

(%) 

Max. 0.293 0.259 0.264 0.357 0.302 0.225 0.120 0.122 

Ave. 0.223 0.189 0.156 0.293 0.248 0.209 

kWh per 

100miles 

Max. 74.11 65.53 55.75 90.53 86.54 56.80 30.99 27.89 

Ave. 56.45 47.89 39.48 74.66 61.22 52.82 

Current  Max. 4.841 4.987 4.754 4.941 4.658 4.375 0.56 0.51 

Capacity fade (%) 0.429 0.319 0.354 0.240 0.212 0.195 0.079 0.076 

3.3 Conclusion 

In this chapter, the large data analysis of the electric vehicle in real-world driving 

cycles is presented and the effect of different driving styles on the EV battery performance 

and capacity fade is studied. Also, two standard driving cycles, EUDC and HWFET, are 

tested in this study and results are compared with the real-world driving cycles.  Based on 

the results, the standard driving cycles substantially differ from the real-world driving 

patterns and are therefore unable to reflect the real drivers’ behavior. As a result, using 

real-world driving patterns provides a more realistic approach to EV modeling, especially 

in terms of battery performance analysis and aging. Also, considering the real-world 

driving cycles’ results, the traffic condition affects the driving style and the driving style 

has significant influence on both the energy efficiency and the battery aging. From the 240 

cycles studied, it was observed that mild driving style was dominant during heavy traffic, 

due to the traffic flow constraint. However, aggressive driving was observed to be 

dominant in light traffic conditions. In general, aggressive driving showed higher energy 
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consumption than mild or gentle driving. However, aggressive and mild styles were similar 

in kWh/100miles in the heavy traffic, whilst during the light traffic, it was mild and gentle 

driving styles the ones that showed similar energy consumption. The difference in the 

traffic flow and its impact on battery performance was also observed in the probability of 

Crate for each driving style. During heavy traffic, the highest probability was for the battery 

to be between 0 and 0.5 Crate. Also, differences between driving styles were reduced due 

to the constraint imposed by the traffic flow. However, for light traffic, differences between 

driving styles were more visible and the probability of higher Crate values was higher too. 

Also, the probability distribution function for the Crate for light traffic show higher average 

and variance value for aggressive driving, showing a dominance of acceleration over the 

rest of styles. Aging simulations point towards mild driving styles being less sensitive to 

traffic conditions, whilst aggressive driving styles show a significant difference in capacity 

fade depending on the traffic conditions.  

Next chapter will focus on the battery capacity fade in combination of EV daily tasks, 

including driving, recharging and vehicle to grid. We will try to study different daily 

scenarios and include possible battery cycling events to have a realistic comparison of the 

battery capacity fade in different situations. Also, the effect of temperature change in 

different locations on the battery degradation will be explored.  
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4  
 

Chapter 4 

 

Deterministic Aging Evaluation:  

Real-World Daily Driving and Vehicle-to-Grid 

Services 1 

 

Abstract 

In this chapter, battery lifetime estimation of an electric vehicle (EV) using different 

driving styles on arterial roads integrating recharging scenarios in the neighborhood of the 

vehicle-to-grid (V2G) integration is studied. The real-world driving cycles from a fleet of 

connected vehicles are evaluated in an EV model with different charging options. Daily 

utility services are added to the simulations to explore the whole day performance of the 

battery and its daily degradation. Fifty driving cycles from different drivers on arterial 

roads are classified into aggressive, mild and gentle drivers based on their driving 

acceleration behavior. The standard level 1 and 2 chargers are considered for recharging 

and the frequency regulation, peak shaving and solar energy storage are assumed for the 

daily ancillary services. Also, the effect of temperature change on the battery degradation 

is explored. Simulation of active vs. passive thermal management systems in three different 

climates shows the significant impact of the battery temperature on its capacity fade. 

                                                 
1 The material contained in this chapter was previously published in IEEE Transactions on Transportation 
Electrification. 
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4.1 Introduction 

When widening the focus from the battery itself to its dependence on the EV 

environment’s conditions, the basic aspect is to explore the battery performance and 

capacity fade under varying driving dynamics [1]. The power that an EV demands from its 

battery is not constant and has harsh fluctuations. These fluctuations originate from varying 

mechanical forces, road conditions and traffic flow dynamics [2]. As an example, Li et al 

have modeled the EV battery voltage variations under the dynamic current profiles and 

validated their model using on-board driving test results [3]. Recharging strategies are 

another aspect of interest in EV batteries, as studies show that the recharging strategy has 

a considerable effect on the battery performance [4]. Also, recharging behavior affects the 

optimal storage sizing of the charging stations [5]. Lunz et al [6] have studied the effect of 

different recharging patterns on the battery aging and energy costs. Bashash et al [7] have 

tried to optimize the charging strategy to reduce the electricity cost and the battery 

degradation. Other effectual factor on the EV battery application and its aging studies is 

the possibility of vehicle-to-grid (V2G) integration, as explored in the recent literature [8-

13]. Importance of V2G is because it affects not only the battery health, but also the 

distribution system [14]. In [8] an empirical and in [9], a semi-empirical aging models for 

the EV battery with daily V2G services are developed which shows the significant impact 

of V2G on the battery aging. In another study, Bishop et al. [10] have suggested that the 

most effectual factor on the battery aging is the energy throughput. However, these studies 

have relied on the standard NEDC driving cycle. Other authors such as Peterson et al [11] 

have performed a similar experimental study on the battery cell degradation in simulated 

daily driving and ancillary services using UDDS cycle. Authors in [12] have developed 

models for the battery performance and its aging using pulse current and validated them 

with scaled-down driving power in the lab to study the V2G effect. In [13], authors apply 
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an energy-based model for battery aging and simulation results illustrate the battery aging 

in different cases. In these studies, the V2G service is simplified to a constant discharge 

current simulating the power flow from the vehicle to the grid. Note that the standard 

driving cycles does not reflect the real-world driving styles [2] and omits the possibility of 

comparison among the different drivers. 

Considering three main factors of the EV battery aging in the daily use as driving, 

recharging and V2G services, all these studies have focused on one or two of these aging 

factors, while a real battery is subjected to combination of all. To the best of authors’ 

knowledge, there is no comprehensive study that estimates and compares the battery life 

considering different driving styles like gentle or aggressive driving, recharging equipment 

and scheduling and different utility services, all together.  

The main purpose of this chapter is to conduct a comparative study on the EV battery 

performance and lifetime estimation under different daily patterns including driving, 

recharging and V2G activities using real-world driving and utility services’ data. This is to 

answer the questions about the battery aging behavior due to the change in the daily pattern. 

Therefore, in this chapter, we extend REV-Cycle, where automatic daily schedules for 

vehicles can be assembled based on their driving, parking and recharging and V2G services 

to analyze the battery daily operation and aging by type of service. The daily driving 

patterns are generated using on-board collected real-world driving data. This allows 

classifying the driving style shown by the drivers into three groups: gentle, mild and 

aggressive drivers. Also, different charging options (standard level 1 and 2) and drivers’ 

different recharging behaviors are simulated. In addition, the EV simulated daily tasks 

include utility services such as frequency regulation, peak shaving and solar energy 

storage.  
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4.2 Driving Data 

To study the battery aging in daily patterns, we need longer driving cycles, while our 

driving data in previous chapters were in the order of 10 seconds. So, Dr. Zhang’s research 

group provided new driving data and we used these data which were longer, including 

urban and highway driving sessions. This section explains the procedure used to obtain this 

driving data. In this chapter, we processed real-world high-resolution (i.e. 0.1 second) 

connected vehicle driving data from the Basic Safety Message (BSM) dataset in the Safety 

Pilot Model Deployment (SPMD) program in the State of Michigan. The SPMD dataset 

contains the connected vehicle records from volunteered drivers using their own vehicles 

in the southeast of Michigan in April and October 2012. We process 50 driving cycles of 

50 drivers to evaluate EV driving and battery energy management in the proposed EV 

simulation model. The 50 driving cycles are selected on several arterial road and highway 

segments with speed limits of 35 and 65mph on the same day. The BSMs are expected to 

be transmitted as periodic broadcast at a frequency of 10 Hz to meet latency and accuracy 

requirements of vehicle safety applications as is defined in Dedicated Short-Range 

Communications (DSRC) Message Set Dictionary (SAE J2735) [15]. Fig. 4.1 presents the 

driving cycle departure/arrival pattern.  

The raw BSM dataset contains timestamp and position information with positioning errors 

(typically within a range of 5-300 meters). To identify the vehicle trajectory from the raw 

dataset to a path in the real-world traffic network, the implementation of a map-matching 

algorithm was able to match the 0.1-second high-resolution GPS-based driving trajectory 

to the traffic network using geographic and topologic information [16]. Through the 

algorithm, the traveled road segments were identified for each location of the connected 

vehicle driving trajectories. Fifty connected vehicles’ driving cycles of different drivers on 

arterial roads in the Ann Arbor area were selected for this study.  
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Fig. 4.1. Driving time patterns of SPMD connected vehicle dataset 

To perform the simulation for daily task scenarios and to evaluate the EV 

performance and estimate the battery capacity fade, the basic feature of REV-Cycle is 

expanded to include driving, recharging and utility services. It is important to note that 

every single task’s desired data (driving cycles, charging preference, etc.) should be 

provided as csv files and saved in the working folder. For the daily driving parts, simulation 

tool runs an EV model for the defined driving cycle, while for the battery charging or utility 

services, it only runs the battery model, as the rest of the EV model is not involved in these 

tasks. At the end of simulations, it saves all the required variables to estimate the battery 

aging associated with that day’s tasks. The graphical explanation of simulation process is 

shown in Fig. 4.2.  

4.3 Driving Cycles Analysis 

To make a valid estimation on the battery aging which is close to a real EV battery 

performance, it is necessary to reproduce a generic and extensible daily driving pattern. 

Three main characteristics define the daily driving pattern: velocity profile, traveled 

distance and number and time of the trips in a day. We have obtained this information from 
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our recorded data. However, we have adjusted the simulated daily distance to the average 

distance of 29 miles to be able to make similar and comparable scenarios for the aging 

results. This daily travelled distance is in accordance with National Household Travel 

Survey (NHTS) [17].  
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Fig. 4.2. EV battery performance and aging simulation process 

To explore the driving cycles, a part of our recorded sample driver’s velocity profile 

is shown in Fig. 4.3 (upper trace). It is worth noting that the duration of driving cycles 

varies among different drivers and this figure shows a part of sample driving which is 20 

minutes long. A complete driving session is longer depending on the different driving 

styles. Running the electric vehicle model in such a driving cycle demands power from the 

battery as shown in Fig. 4.3 (lower trace) with the average value of 6.36 kW. We have also 

considered regenerative braking (RB) system in the simulations which is reported to be 8-

13% for a conventional EV [18-19]. Note that the percentage of RB power can be different 

for HEVs, as their battery capacity and electric machine’s power are smaller. The negative 

values in the power profile indicate the RB power back to the battery. Considering a fully 

charged battery at the beginning of the driving, the SOC profile for the mentioned driving 

cycle will be as Fig. 4.4 (upper trace). Considering this figure, 3.8% of the battery energy 

is consumed for 20 minutes of driving. 
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Fig. 4.3. Velocity profile and Battery power for a single driving 

 

Fig. 4.4. Battery SOC and voltage profile for a single driving  

Note that the positive slope of the SOC curve (increasing SOC) indicates the RB 

energy charging the battery. As the battery current in the driving period is not constant and 

it is time-variant, the voltage drop on the internal impedance of the battery is variable and 

therefore the battery terminal voltage has harsh fluctuations (Fig. 4.4 (lower trace)). In this 

figure, the maximum voltage drop on the internal impedance is 33.8V which is 8.9% of 

OCV at that instant in time. However, the overall trend of the battery voltage is descending, 

due to the battery being discharged during driving. 
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All drivers in this study are classified into three groups as Gentle, Mild and 

Aggressive drivers, as before. Based on this classification, among 50 drivers, 14 drive 

gently, 26 are mild drivers and 10 are aggressive. All drivers’ single trip are simulated 

using the EV model and their current demand profiles from the battery are sampled with 

the resolution of 1 second and classified into 7 C-rates. There are two points that should be 

considered: First, the experimental driving cycles’ resolution is 0.1 second whilst the 

simulated current profile is sampled by 1 second resolution to reduce the number of 

generated data and simplify the further calculations, Second, this classification adds some 

error to the calculations due to the difference in the real C-rate and the assigned C-rate in 

aging calculation which can be minimized by increasing the number of groups.  

Fig. 4.5 (upper trace) shows the average frequencies of each C-rate for a single trip 

between three different driving styles. As expected, the aggressive drivers have larger 

number of C-rates compared to mild and gentle drivers for the same traveled distance. The 

average daily driving time is calculated for all drivers and are shown in Fig. 4.5 (lower 

trace). The driving distance was equal for all drivers, but the total driving time for 

aggressive drivers is slightly longer than for mild and gentle drivers. The conclusion of 

these results is that aggressive driving habits do not necessarily lead to faster arrival to the 

destination, as it reflects aggressive acceleration, but not sustained higher velocities. 

4.4 Aging Evaluation Model 

For the battery aging analysis throughout the cycles, we have used a general 

Arrhenius equation to model and calculate the battery capacity fade associated with the 

driving cycles. Bloom et al. [20] have used experimental data to present the battery capacity 

fade as a function of the time and the temperature. 
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Fig. 4.5. C-rates’ frequencies and daily driving duration for the different driving 
styles 

Wang et al. [21] adopted and completed their results to develop an aging model 

relating the capacity fade to the C-rate, the total Ah and the temperature (4-1).  

% 	 ⁄      (4-1) 

where, Q is capacity fade and z is power factor. R is the gas constant and T is the 

temperature. Ea is activation energy and B is the pre-exponential factor. In this equation, 

Ah is the total ampere-hour throughput in a cycle and can be calculated as follow: 

. .     (4-2) 

where N is the number of cycles and DOD is depth of discharge for each cycle. Authors 

have related Ea and B to C-rate to show the effect of different C-rates on the aging. Ea is 

defined by (4-3) and B is expressed as an exponential equation by (4-4) in [22].  

31700 370.3     (4-3) 
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ln 1.226 . 9.263        (4-4) 

This model does not include the effect of SOC in the battery aging calculation. Suri 

et al. [23] have presented a similar model for the same battery cell including the effect of 

SOC as follows: 

31500 152.5     (4-5) 

. 	      (4-6) 

where,  and  can be defined for different ranges of average SOC: 

2896.6			 7411.2					 		 0.45	
2694.5			 6022.2					 		 0.45.  (4-7) 

As this model uses average SOC of the cycle for aging evaluation and defines the 

parameters based on the SOC intervals smaller and greater than 0.45, it may result in error 

on deep cycling and/or middle SOCs. To calculate the capacity fade for a driving cycle, 

the battery current and SOC are needed to calculate the C-rate and DOD. However, the 

battery current during the driving cycle is not constant and so it is not possible to put a 

single C-rate value for the whole cycle as the C-rate affects the battery aging behavior. 

Therefore, a numerical method is used after running the EV model for each driving cycle. 

The battery current data is sampled with 1 sec resolution and C-rates are calculated for 

each second and are grouped in different values as Fig. 4.5 (upper trace).  

The DOD associated with each C-rate is calculated. So, the Ah and capacity fade 

caused by each C-rate in a single cycle is expressed as follows:  

.     (4-8) 

⁄          (4-9) 

where, n indicates the variables value corresponding to each C-rate. The total capacity fade 

will be: 
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∑ .    (4-10) 

Eq. (4-10) calculates the capacity fade for a single cycle. To consider the repetition 

of cycles in daily pattern, for example in kth cycle, the total Ah for each C-rate is summed 

up from 1st cycle to kth cycle, and the capacity fade is calculated by total Ah throughput for 

each C-rate. At the end of each cycle’s simulation, the capacity is updated for the next 

cycling. This approximation method adds error to the calculation’s result and its 

correctness needs to be validated. Therefore, it is simulated and compared with available 

experimental results and manufacturer data to test its mathematical consistency in different 

test conditions.  

The cycle life of A123 Systems’ 2.4 Ah 26650 LPF cell is presented in its datasheet 

[24]. Three different cycling tests for various temperatures and charge/discharge currents 

are simulated for two aging models [21, 23] with mentioned approximation (Fig. 4.6). As 

shown in upper trace of Fig. 4.6, the estimated battery capacity after 600 cycles in the 

model based on C-rates and SOC for three tests are 97.2%, 93.1% and 91.6% and for the 

model based on C-rates, the battery capacity are 93.8%, 85.2% and 82.7 % (Fig. 4.6, lower 

trace). Comparing these number to the manufacturer data which are about 98%, 95% and 

92% indicates that the approximation method overestimates the capacity loss in the battery 

cycle life. This overestimation is about 1% for the model based on C-rates and SOC which 

is in acceptable error range. However, the model based on C-rates calculates the battery 

capacity loss 7.8% more, which is not negligible. Based on this comparison, we selected 

the model with less error and compared it with the rest of available experimental data. Fig. 

4.7 shows the comparison of estimated battery cell capacity and experimental data from 

[25] which has tested different cells with cell level current profiles in real driving cycles at 

around 65% SOC and 45℃. The estimated capacity is very close to the experimental data 
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with a slight overestimation. Another set of experimental data are obtained from [21] with 

2C charge/discharge currents in 10% DOD/60C, 50% DOD/45C and 90% DOD/60C and 

compared to the estimated cell capacity in Fig. 4.8. This figure indicate that the simulated 

results follow the experimental data and the presented estimation method is successful in 

evaluation of battery cycle aging. Also, it is expected to notice higher capacity loss in 10% 

DOD compared to 90% DOD for the same amount of Ah throughput in the same 

temperature, because the battery has higher SOC. The estimation results show this 

difference which is not reported in [21] as they have not considered the effect of SOC in 

their model, although the experimental data reflects that cycling in higher SOCs leads to 

higher battery degradation.  

 
Fig. 4.6. Cycle aging estimation of 2.4 Ah 26650 LPF cell 

 
Fig. 4.7. Comparison of estimated cell capacity with experimental data of [21] 
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Fig. 4.8. Estimated cell capacity compared to experimental data from [23] 

Considering the presented comparison between the capacity estimation simulations 

and the experimental data from [21, 24-25], the aging model has acceptable prediction of 

LFP cell aging and can be used for the EV battery’s daily cycles aging evaluation. Note 

that this aging model estimates the cycle aging of the cell and it does not include the 

calendar aging.  

Using the mentioned equations, the DOD and the capacity fade for all driving cycles 

are calculated and presented in Fig. 4.9 to evaluate single driving cycle aging difference 

among the drivers. The x-axis shows the 50 driving cycles which are sorted by their average 

acceleration from the smallest to the largest values. The upper trace and lower trace of the 

figure depict the DOD and capacity fade for single driving task, respectively. 

Although there are some outlier points in this graph due to the different velocity 

profiles of the drivers for the same travelled distance, the total trend of DOD illustrates that 

the higher average acceleration (aggressive driving habits) leads to higher power demand 

from the battery. And in general, a higher average acceleration causes increased battery 

degradation due to the higher DOD and Crates, based on these driving data.  
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Fig. 4.9. Driving cycles’ DOD and capacity loss trend (ordered in the x-axis by 

increasing average acceleration) 

4.5 Daily Case Scenarios Study 

The daily use pattern of an electric vehicle includes several driving periods followed 

by recharging and possible utility services. To estimate its battery’s cycle life in a general 

daily task, this chapter assumes several case scenarios. To generate these scenarios, the 

possible daily tasks options are as driving styles (aggressive, mild and gentle), recharging 

facilities (level 1 (1.5kW) and level 2 (7.6kW)) chargers and ancillary services as frequency 

regulation, load peak shaving and storage for solar energy. It is worth noting that similar 

to the driving cycles that are real-world driving data, the real frequency regulation data is 

obtained from Pennsylvania-New Jersey-Maryland (PJM) Interconnection for August 2016 

[26] and solar power data is collected in the Keweenaw Research Center at Michigan Tech. 

for August 2016 [27]. In addition, based on a report by Idaho National Lab. about the 

charging behavior of EV drivers in USA [28], 98% of the charging events happen at the 

home and work with mostly L-1 and L-2 chargers (99%) rather than with fast DC chargers. 

So, considering only L-1 and L-2 stations in the daily scenarios is a valid assumption. Table 

4-1 presents detailed information about these scenarios. The simulated scenarios are 
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selected to reflect different tasks a vehicle can provide both to the driver and to the grid. 

These scenarios are presented in three groups as the aging due to (1) Driving styles, (2) 

Recharging options and (3) V2G services. 

Table 4-1.Simulated case scenarios 

Daily scenarios Travelled 

distance (Miles) 

Type and time of charging 

(1.5 or 7.6kW) 

Utility service type 7.6 

kW 

Driving 29 L-1 overnight - 

Driving with different 

recharging options 

29 L-2 overnight - 

29 
Uncontrolled vs. controlled 

L-2 
- 

58 
L-2 overnight 

(Every other day) 
- 

Driving, recharging 

and  

V2G services 

29 L-2 overnight Frequency regulation 

29 L-2 overnight 
Freq. Reg. and 

peak shaving 

58 
L-2 overnight 

(every other day) 
Frequency regulation 

29 L-2 overnight 
Solar energy storage and 

peak shaving 

4.5.1 Aging of different driving styles: Scenario 1: Daily driving and 
overnight L-1 charging 

In this scenario, the daily pattern consists of the daily 29 miles driving followed by 

the L-1 overnight recharging. This plan is simulated for all three driving groups 

(aggressive, mild and gentle). Fig. 4.10 shows the simulated 24-hour battery power and 

SOC for a sample driver in this scenario with three trips at 7:30am, 12:30pm and 4:30pm 

and L-1 recharging. For this driver, the whole day driving extracts 6.56 kWh energy from 

the battery and overnight charging takes about 4 hours and 25 minutes. Average charging 

time for three gentle, mild and aggressive driver groups are 4h29m, 5h29m and 6h53m, 

respectively. As a result, aggressive driving behavior leads to spending more time on 
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recharging. The trend of overnight L-1 charging time for all drivers is shown in Fig. 4.11. 

Based on this result, the aggressive driving behavior leads to longer recharging time 

overnight. It is important to note that the outlier points in the recharging time are originated 

from the different DODs for all drivers at the end of day. 

This scenario is repeated until 100,000 miles of travelled distance in simulation and 

the battery cell capacity fade vs. its total Ah throughput is estimated and shown in Fig. 

4.12. Two main differences among different driving groups are noticeable. First, for the 

same travelled distance, gentle drivers’ group extract 3443Ah from a cell while the mild 

and aggressive groups have 4341Ah and 5566Ah, respectively, which are 26% and 61% 

higher than gentle group. Second, the average cell capacity for gentle, mild and aggressive 

driving groups are 92.6%, 91% and 89.4% in this scenario, which shows the effect of 

driving behavior on the battery’s cycle aging. Aggressive drivers not only extract higher 

amount of Ah from the battery, but also, they demand higher C-rates which accelerate the 

cycling capacity loss even more.  

 

Fig. 4.10. Daily battery power and SOC for scenario 1 
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Fig. 4.11. All drivers’ overnight charging time trend 

 

Fig. 4.12. Battery capacity for all drivers, comparison of driving styles 

4.5.2 Aging of different recharging options 

As the different recharging facilities and habits affect the battery aging, they are 

simulated as three case scenarios to compare the recharging options impact on the battery. 

4.5.2.1 Scenario 2: Difference of charging facilities: L-1 vs L-2 

This case scenario is similar to the previous one, with the only difference being that 

the overnight charging uses an L-2 charging station, to make a comparison between L-1 

and L-2 charging. The overnight recharging with L-2 charger takes about 52 minutes, 

which is about five times less than L-1 charger for the same sample driver. No significant 

difference in the battery capacity fade results of L-1 and L-2 chargers was noticed in the 
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simulations (Fig. 4.13) due to the small C-rates of both chargers compared to the driving 

C-rates, although the capacity fade for L-2 charger is slightly higher in numbers.  

 
Fig. 4.13. Different charging facilities effect on the cell’s capacity fade: aggressive 

(red), mild (yellow) and gentle (green) 

4.5.2.2 Scenario 3: Recharging behavior: uncontrolled vs. controlled charging 

Uncontrolled charging stands for the charging without considering any specific time 

of day and charging happens whenever the vehicle is plugged in, while controlled charging 

delays the charging to a time of day in which the grid has extra power and the energy price 

is lower which mostly happens after midnight. Controlled charging helps the grid to 

perform load shifting with filling it valley during night and indirectly prevent higher peaks 

during day. So, the controlled charging can be considered as a utility service, too. In 

uncontrolled charging, after each driving session, the vehicle is considered to be plugged 

in and start charging. Therefore, three driving cycles are followed by three charging 

periods. This case is compared to the controlled overnight charging. Note that the total Ah 

throughput will not change in these two cases.  

The comparative results of the battery capacity are depicted in Fig. 4.14. Although 

uncontrolled charging reduces the risk of running out of the battery for unexpected long 
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driving, it increases the battery degradation. Daily controlled charging increases the battery 

durability by 15.8% compared to uncontrolled charging, on average. This is because of 

higher SOC of the battery for uncontrolled charging during cycling.  

 
Fig. 4.14. Battery capacity comparison for uncontrolled and controlled charging: 

aggressive (red), mild (yellow) and gentle (green) 

4.5.2.3 Scenario 4: Every-other-day L-2 charging  

In this case, one day only has driving cycles and the other day has driving cycles in 

addition to overall recharging with L-2 charger. This scenario is applicable to most of city 

life daily patterns. The charging time for this scenario is 1hour and 44minutes. Fig. 4.15 

indicates the battery capacity comparison for every day and every other day L-2 charging 

methods. The battery life increases by 26.3% for this scenario. This improvement in the 

battery capacity loss is higher for the aggressive driving group, due to higher cell Ah 

throughput for this group after similar travelled distance (Fig. 4.15).  

4.5.3 Aging of daily utility service  

In the advanced V2G integration environment, the utility services are included as one 

of the EV daily tasks, and in particular frequency regulation, peak shaving and solar energy 

integration. In this section, to emphasize on the aging effect of the utility services, the 
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results represent the average of all driving cycles, regardless of the driving style 

classification.  

 

Fig. 4.15. Daily and every other day charging effect on the battery capacity 

4.5.3.1 Scenario 5: Frequency regulations and peak shaving with L-2 charging 

In this case, for the sample driver, after morning and noon driving, there are 2 hours 

of frequency regulation task as part of the EV daily pattern from 2-4pm. Then, the evening 

driving takes place, after which the EV can participate in grid tasks by load peak shaving 

at 7pm. After these, the L-2 overnight charging completes the daily pattern. It is important 

to note the peak shaving is performed by a bi-directional L-2 connection between the EV 

and the grid.  

Fig. 4.16 depicts the battery power and SOC for this pattern. Aging model simulation 

results show that adding the daily frequency regulation increases the average battery 

capacity fade for all drivers by 14.3% (Fig. 4.17(a)). It also leads to 900Ah more Ah 

throughput from the cell which is equivalent to 187.5 full cycles. Adding 2 hours daily 

peak shaving to EV tasks has more aging effect on the cell with 22.8% higher capacity fade 

and 533 equivalent full cycles Ah throughput (Fig. 4.17(b)). 
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In addition, including the peak shaving in daily pattern along with the frequency 

regulations leads to 35.6% more decreased capacity and 3460Ah more total Ah throughput, 

on average. Note that the aging model is not linear and therefore, the aging due to both 

services together is not equal to the sum of aging caused by individual services.  

 

 

Fig. 4.16. Daily battery power and SOC for scenario 5 
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(b) 

Fig. 4.17. Comparison of frequency regulation and peak shaving impact on the cell 
capacity 

4.5.3.2 Scenario 6: Every other day L-2 charging with frequency regulations 

As noticed from scenario 5 results, performing utility services by the EV causes a 

notable change in the battery life. However, users can gain the V2G incentives provided 

by the utility. As noticed before in the scenario 4 results, every other day charging helps to 

decrease the battery capacity loss due to cycling in lower SOCs. It seems that reducing the 

charging frequency to every other day and performing the utility services in lower SOCs 

can prevent the severe battery aging under V2G scenarios, and potentially add economic 

benefits.  

Fig. 4.18 shows and compares the battery capacity results for daily L-2 charging and 

every other day L-2 charging with frequency regulations. This figure indicates that there is 

very small difference in capacity fade between these two cases, although the total Ah 

throughput is increased by adding frequency regulation. Therefore, every other day 

recharging allows performing frequency regulations and gaining profit from the utility for 

almost the same battery life of every day recharging. Note that the peak shaving is not 

0 2000 4000 6000 8000

Total Ah throughput (Ah)

85

90

95

100

C
el

l C
ap

ac
it

y 
(%

)

with peak shaving
with peak shaving and
frequency regulation
no utility services

2%
3.2%

2560Ah

3460Ah



96 

possible in this case, as it requires higher DODs and every other day charging provides the 

driving energy requirements.  

 

Fig. 4.18. Cell capacity for Scenario 6 

4.5.3.3 Scenario 7: Morning solar energy storage for evening peak shaving 

It is assumed that the vehicle’s battery is used as storage for the output power of PV 

panels before noon and it provides power for the peak shaving during high load peaks of 

evening. For this scenario, after morning driving, the vehicle is plugged in and absorbs the 

PV panels’ power from 8 AM to 12 PM.  

The PV panels’ provided current is shown in Fig. 4.19. Note that the duration of this 

mode depends on each driver’s SOC when the vehicle is plugged at the morning. Following 

this daily scenario leads to 37.2% more capacity fade after similar travelled distance to the 

case with no utility services (Fig. 4.20) which is due to the higher SOCs, similar to 

frequency regulation service. However, this scenario has significant benefit for the grid in 

its daily load management. The added total Ah throughput in this case is same as the 

scenario with peak shaving service.  
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Fig. 4.19. PV panels generated current for storage in the EV battery 

 

Fig. 4.20. Effect of morning solar energy storage and evening peak shaving on the 
cell capacity 

4.6 Different Climates’ Impact on Battery Aging 

Temperature is one of the key factors on the battery capacity fade [29], as both high 

and low temperatures adversely affect the battery life. Active thermal management systems 

on the EV battery pack unifies the thermal distribution inside the pack and keeps the 

temperature in pre-defined value with acceptable tolerance, while passive thermal 

management systems use cabin/ambient air for battery’s heat dissipation [30]. In the 

6AM 9AM 12PM 3PM 6PM 9PM 12AM

Time

0

2

4

6

8

10

C
u

rr
en

t 
(A

)

EV is plugged
in, storing PV
power

0 2000 4000 6000 8000

Total Ah throughput (Ah)

85

90

95

100
no utility services
with PV charging
and peak shaving

3.25%

2560Ah



98 

previous section, active thermal management is considered for the simulations. To 

investigate the impact of temperature changes on the battery capacity fade, we assume a 

second thermal scenario in which the battery has passive thermal management system. The 

daily average temperature data of year 2016 for Ann Arbor, Michigan (the city that the 

driving data are collected) [31] is used to compare the capacity fade difference between 

active and passive thermal management systems.  

The capacity fade results of two thermal management systems for scenario 1 is shown 

in Fig. 4.21. As noticed, changes in the battery temperature cause higher capacity fade for 

the same daily scenario. Cyclic fluctuations in the capacity fade is resulted from the cyclic 

temperature change. To compare the effect of different climates, the daily average 

temperature data of the same year for two other cities in US (Miami, Florida and Phoenix, 

Arizona) are used to evaluate the battery capacity fade (Fig. 4.22). The daily scenario for 

these three climates is same and only the temperature profile is changed. Based on these 

results, for the same daily scenario, the battery capacity fade in Phoenix and Miami is 

higher than Ann Arbor, due to the higher temperatures.  

In addition, it is noticed that the capacity fade curve for Phoenix and Ann Arbor has 

higher cyclic fluctuations than Miami. The answer for this difference can be found in the 

annual temperature distribution of these cities. If the temperature data of these cities is 

fitted to a normal distribution as seen in Fig. 4.23, it is clear that the temperature data of 

Ann Arbor and Phoenix are more dispersed around their average value, which means that 

the temperature difference in hot and cold seasons is larger. This fluctuation in the 

temperature leads to different capacity fade rates during the entire year.  
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Fig. 4.21. Capacity fade for active vs. passive thermal management systems 

 
Fig. 4.22. Capacity fade in different climates 

 
Fig. 4.23. Normal distribution of temperature data 
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4.7 Discussion  

The presented results are summarized in Table 4-2 to make a quantitative comparison 

between the different daily scenarios. All the provided data in this table are average values. 

It is important to note that the presented quantitative results are based on the data pool used 

for this study and reflect the statistical analysis of these data. Although the data used in this 

study are real-world recorded data, it can vary for different locations and weathers. The 

statistical results for the driving data shows that the higher accelerations in driving lead to 

larger power demand from the battery and therefore larger DOD. The aggressive driving 

group demands 9% and 18% more power from the battery compared to the mild and gentle 

drivers, respectively. Considering different driving time duration, the aggressive group 

consumes about 28.9% and 45.7% more energy than the mild and the gentle groups, 

respectively.  

Difference in the energy consumption of different driving groups is originated from 

different acceleration/deceleration profiles and daily driving duration. Aggressive driving 

group’s average acceleration is about two times the gentle drivers’ average acceleration. 

Higher acceleration/deceleration rates significantly increase the power demand from the 

battery. Although the vehicle is equipped with regenerative braking, it only collects up to 

a 10% of the braking/deceleration power and the rest of it is wasted by mechanical brake. 

In addition, aggressive driving group spend more time for their daily commute compared 

to gentle drivers. Also, the capacity fade for higher accelerations is faster. 

For a single driving cycle, the battery degradation for the gentle driving group is 30% 

and 14% less than the aggressive and mild driving groups. Hence, in general, aggressive 

driving behavior causes higher energy consumption and faster battery degradation, which 

raises both short-term and long-term costs. The charging time for the different charger 
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options and their battery life estimation results indicate that using the L-2 charger is time 

efficient (about 5 times less) and has no considerable difference on the battery aging. 

The capacity loss percentage after 100,000 miles of driving for different daily 

scenarios are estimated and presented in Table 4-2, too. It is noticed that uncontrolled 

charging behavior accelerates the battery capacity loss, while controlled every day or every 

other day charging not only decrease the battery aging, but also helps the grid in daily load 

shifting for overnight valley filling.  

After similar driving distance, the lowest capacity fade is for the scenario 4 which is 

for three driving events a day and every other day L-2 charging. The daily 2-hour frequency 

regulation can reduce the battery life about 14% and peak shaving can decrease the life by 

23% although it has a positive benefit from the grid’s perspective.  

The impact of peak shaving service on the cycle aging is more than frequency 

regulation (8.5%) after equal days of service due to higher Ah throughput. However, for a 

similar Ah throughput, the aging slope is higher for the frequency regulation service and it 

leads to more capacity fade compared to peak shaving. This is because the peak shaving 

has higher DOD and therefore the Ah related to peak shaving happens in lower SOCs, 

while the frequency regulation has very small DOD due to its fluctuating power and it 

keeps the SOC higher which increases aging slope. The maximum capacity loss among 

scenarios is in the case of solar energy storage and peak shaving as V2G services. 

Comparing the cell total Ah throughput in different scenarios indicates that daily 29 

miles of driving results in about 926.5 full cycle equivalent Ah throughput at the end of 

100,000 miles travelled distance. Including daily frequency regulation leads to 1114 full 

cycle equivalent in total and peak shaving increases it to 1460. Solar energy storage does 

not increase the total Ah throughput, as it just compensates a part of required recharging.  
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Results of the different thermal management systems show that passive thermal 

management increases the capacity fade by 9.8%. The reason for this difference is the 

excessive capacity fade due to the harsh weather condition which is eliminated in the active 

thermal management. It is also noticed that the capacity fade for the same daily scenario in 

Ann Arbor is 18.6% and 21.8% less than Phoenix and Miami weather conditions.  

Table 4-2. Statistical results of simulations 

  Drivers 

  Aggressive Mild Gentle 

Driving cycles 

Ave. Acc. (m/s2) 0.981 0.713 0.514 

Ave. P (kW) 6.571 6.012 5.567 

Ave. daily DOD (%) 31.78 24.838 19.87 

Daily energy (kWh) 10.48 8.126 7.192 

Cycle capacity fade 0.027 0.022 0.019 

Recharging duration  
L-1 charging  6h 53m 5h29m 4h29m 

L-2 charging 1h20m 1h4m 52m 

Daily scenarios’ 

Capacity 

loss % 

L-1 overnight  10.35 8.80 7.38 

L-2 overnight  10.54 8.92 7.45 

Uncontrolled L-2 12.2 10.4 8.62 

Every other day L-2 6.20 5.32 4.48 

L-2 and Freq. Reg. 11.6 10.0 8.60 

L-2 and peak shaving 12.2 10.8 9.50 

L-2, Freq. Reg. and peak shaving 13.4 12.0 10.7 

Every other day L-2, Freq. Reg. 10.1 8.7 7.53 

Solar energy storage, peak shaving 13.6 12.1 10.9 

Different Climates Capacity

loss % (Passive Cooling) 

Ann Arbor, Michigan 11.6 9.78 8.18 

Miami, Florida 14.2 12.1 10.0 

Phoenix, Arizona 14.9 12.6 10.5 
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4.8 Conclusions 

Considering the ongoing interest of both the vehicle owners and manufacturers on 

the electric vehicles, and different charging options and possibilities of V2G services, we 

have quantified the effect of different daily patterns on the EV battery performance and 

lifetime estimation. For this purpose, a set of real-world connected vehicle driving data 

were used to develop daily scenarios that included driving, charging and utility services. 

Note that the capacity fade model estimates the cycle aging only and it does not include 

the calendar aging. Also, effect of temperature on the battery life is explored for three 

different US cities based on their annual temperature data. These are the highlighted 

findings and observations from the results: 

 In the driving cycles’ analysis, we observed that variations among driving styles are 

responsible for an 18% power demand and a 45% energy consumption difference 

between gentle and aggressive drivers. Also, the driving style has considerable impact 

on the battery aging, as the aggressive drivers’ battery life is 23.5% and 38.9% less 

than the mild and gentle drivers, respectively. 

 Uncontrolled recharging leads to increased battery degradation due to the higher SOCs. 

Scheduling the recharging to after midnight times not only reduces the electricity costs 

and helps the grid to perform load shifting, but also leads to a 15.8% more battery life 

than uncontrolled charging during the day. There is no significant difference in the 

aging results of using different charging facilities (L-1 or L-2), although the charging 

time is significantly less for L-2 charger.  

 Daily V2G tasks decreases the battery capacity with different rates. Based on the 

results, the negative effect of the peak shaving service on the battery aging is more 

pronounced than for frequency regulation for similar number of days because of higher 
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DODs of peak shaving. However, for equal Ah throughput, capacity fade slope is 

higher for frequency regulations due to higher SOCs. Using EV battery as storage for 

PV panels’ output power for evening peak shaving does not change the total Ah 

throughput the cell, however it leads to about 37% battery degradation.  

 Active thermal management reduces the battery aging rate by controlling the battery 

temperature, while the passive thermal management can increase the capacity fade due 

to the harsh thermal conditions in the cold and hot seasons. This increase depends on 

the different climates and their annual temperature distribution, e.g. it is 9.8% for Ann 

Arbor, 25.9% for Miami and 29.2% for Phoenix. Therefore, the EV battery’s health 

condition should be evaluated based on its thermal management system and climate.  

After exploring the battery capacity fade in different conditions, it is observed that 

all the effectual factors of the battery capacity fade are subjected to change due to the 

difference in time, location, vehicle’s owner, availability of chargers, and utility services 

possibility. It is not possible to simulate and study all the possible scenarios. All these 

variations make the aging phenomena more probabilistic than deterministic. Therefore, the 

perspective is changed and the battery capacity fade is modeled considering all 

uncertainties in its effective variables. With this analysis method, it is possible to consider 

the variations in the daily task, change in temperature, and all other factors that may not be 

known. Next chapter is going to present such a probabilistic method of capacity fade 

modeling based on Bayesian Networks.  
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5  
 

Chapter 5 

 
Probabilistic Aging Evaluation:  

Hierarchical Bayesian Network Model1 

 

Abstract 

This Chapter proposes a probabilistic estimation of the electric vehicle (EV) battery 

capacity fade in Bayesian framework. Since the battery aging factors such as temperature, 

current, and SOC are not fixed and they change in different times, locations and by the 

different users, the deterministic models cannot accurately evaluate the battery capacity 

fade. Therefore, a probabilistic presentation of the capacity fade including all uncertainties 

of the measurements/observations of the variables can be a proper solution. We have 

developed a hierarchical Bayesian Network (BN) model for the EV battery capacity fade 

considering all the possible effectual variable. The mathematical expression of the model 

is extracted based on Bayes’ theorem, the probability distributions for all variables and 

their dependencies are carefully chosen and Metropolis-Hastings Markov Chain Monte 

Carlo (MCMC) sampling method is applied to generate the posterior distributions. The 

model is trained with a subset of experimental data (85%) to obtain its unseen parameters 

and tested with other 15% of data to prove its accuracy. Also, three case studies for different 

drivers, different grid services’ frequencies and different climates are explored with the 

developed model to show its flexibility with different input data.  

                                                 
1 The material contained in this chapter is in preparation for submission to a journal. 
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5.1 Introduction 

The battery degradation is evaluated by two main approaches: data-driven 

prognostics and model-based methods [1]. The data-driven methods are mostly used for 

real-time applications and after training through a set of data, they use present 

measurements data from the battery to predict the battery SOH. Different types of Kalman 

filters (KF) [2], relevance vector machine (RVM) [3] and functional principal component 

analyses (FPCA) [4] are some of these methods. These methods need expert knowledge to 

relate the available data to the battery health condition and superior programming skills. 

However, they are less complicated in calculations and easy to implement in online 

applications.  

The model-based approach, on the other hand, is based on the historical data of the 

battery performance and relies on the mathematical expression for the battery capacity fade 

evaluation. Electrochemical models, equivalent circuit models (ECMs), and empirical 

aging models are different groups of this approach. Electrochemical models evaluate the 

battery degradation with chemical properties of the battery components such as solid 

electrolyte interface (SEI) layer growth, cycleable lithium loss or lithium concentration 

decrease [5], [6]. ECMs simulate the battery aging with change in the value of the circuit 

components with cycling and mainly use the electrochemical impedance spectroscopy 

(EIS) test results to estimate the circuit elements’ value [7], [8]. The empirical aging 

models [9]–[11] are fitting mathematical equation to extensive experimental results 

obtained from accelerated aging tests on the battery. These models mostly use different 

forms of Arrhenius equation to include the effect of different aging factors such as SOC, 

C-rate and temperature. 
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The shortcoming of the model-based aging studies is that they rely on deterministic 

mathematical equations and consider the aging effectual factors as fixed values during 

cycling. However, neither the aging phenomena is deterministic, nor it effecting factors 

stay constant during the life of the battery. In electric vehicle (EV) application, the capacity 

fade of the battery during cycling is directly affected by the driver’s behavior, charging 

facilities availability, grid services presence and the temperature/weather condition [12]. 

None of these factors can be defined by fixed values and they carry significant 

uncertainties. Therefore, deterministic models are not reliable in evaluating the battery 

capacity fade for different usage conditions and probabilistic methods including the 

uncertainties of the measurements and process such as Bayesian models can present more 

informative and accurate evaluation of the battery capacity fade [13].  

Different Bayesian models are applied to estimate the battery SOH which are mostly 

proposed for online applications. He et al. [14] proposed the online SOH estimation with 

the Dynamic Bayesian networks (BN). In this study, the terminal voltage measurements in 

the constant current charging cycle is used to estimate the SOC of the battery in different 

time interval. Their model uses the charging voltage profile as input and gives the 

probability of the battery being in different capacity classes. Similarly, Jin et al. have 

estimated the spacecraft secondary life battery’s capacity fade using online 

charge/discharge measurements [15]. In [16], Electrochemical Impedance Spectroscopy 

(EIS) test results are used to estimate the battery internal impedance as a battery health 

index. Simplified Bayesian model known as “naive” Bayes is proposed in [17] to predict 

the battery SOH. Naive Bayes assumes that unobserved variables are independent and 

therefore it simplifies the Bayes theorem. This method of modeling eliminates the 

hierarchical parts of Bayesian network which present the intermediate hidden states. 

Mishra et. al. [18] have maintained the hierarchical properties of BN in their model, 
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however, they use simple ECM model and estimate the end of life of the battery based on 

discharge measurements and do not consider the effect of temperature and dynamics of the 

cycling current. Refs. [19], [20] have used the capacity measurements to make prediction 

of the remaining useful life (RUL) of the battery.  

In these previous Bayesian approaches there is a more focused effort on using it as a 

classifier or estimator without considering the external factors and their variations. We 

propose that there is as better quality to BNs that can be used for battery degradation 

modeling, and that is the fact that it surfaces dependency and causality. Causality is of 

utmost importance for batteries as their aging is affected by a high number of hierarchical 

variables that depend upon external factors to the battery, which is the strength of BN 

models [21], [22].  

Acknowledging the advantage of Bayesian models in considering the uncertainties 

of the variables and estimating the hidden states of the process and providing probability 

distributions instead of point value estimations, we proposed a hierarchical Bayesian model 

for the probabilistic battery capacity fade evaluation in the EV application. This model 

does not target online application and is focused around proposing a Bayesian framework 

that can relate external factors to battery aging evaluation. The Bayesian network for this 

problem is developed including all observed and unobserved variables and mathematical 

presentation of the model is extracted. The probability distributions for the variables are 

defined and Markov Chain Monte Carlo (MCMC) sampling is employed to obtain the 

posterior distributions. The model training, test and case study are presented to show its 

performance. This model reflects the uncertainties of measurements and process, it 

precisely evaluates the capacity fade and provides more informative results, and it is 

applicable for any type of input data with proper training.  



112 

5.2 Bayesian Models and EV Battery Aging Factors 

Contrary to deterministic models that use direct mathematical equations to present 

the relationship between variables, BN models are probabilistic presentation of variables 

conditional to observed data. Graphical representation of the BN includes “nodes” and 

‘edges” in which each node is a random variable connected to its parent nodes through 

edges. The relationship between parents and child nodes is defined by Bayes’ theorem. The 

key point of BN is that it classifies the variables into two groups: “Observations” and 

“Unobserved variable” and treats all unobserved quantities as random variables. Based on 

the Bayes’ theorem, the unobserved variables including unmeasured/unseen quantities and 

model parameters ( ) are conditional to observations/measurements ( ) as follow: 

|      (5-1) 

where, |  is the posterior distribution, |  is the likelihood of observations,  

is the prior distribution of unobserved variables, and  is the marginal distribution of 

vector of observations and can be calculated by (5-2). The bold style denotes “vector” of 

variables.  

| .    (5-2) 

This presentation of a problem is capable to include all uncertainties of the 

measurements, sampling, parameters, and modeling. However, analytically solving of (2) 

is not possible for large number of the unobserved variables x. Therefore, it should be 

solved by numerical approximation methods like Markov Chain Monte Carlo (MCMC) 

sampling.  

The main capacity fade factors of the electric vehicle battery are temperature, SOC, 

cycling C-rate, and total Ah throughput (5-3) [9], [23]. Among these factors, temperature 
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is independent, and all other factors are dependent to the frequency of daily tasks (driving, 

recharging, utility services) and human factors (driving styles and recharging habits).  

, , ,     (5-3) 

None of these factors are fully determined and there are uncertainties in each. 

Temperature pattern cannot be fully predicted, the driving distance and style are dependent 

to the needs of the vehicle owner and his/her personality, and recharging and possibility of 

the utility services are upon access to the power grid. Therefore, it is not possible to 

accurately estimate the battery capacity fade using a deterministic mathematical model 

while its variables are stochastic, and BN probabilistic approach can be a proper solution 

for the battery capacity fade modeling. 

5.3 BN Modeling Process 

5.3.1 Network Development 

In the first step to develop the BN for EV battery capacity fade, observations and 

unobserved quantities are defined. The battery cell’s capacity fade percentage is 

measurable (q), however it has measurement uncertainty and it should be estimated to 

consider the measurement error ( ). The estimated capacity fade percentage is affected by 

the total Ampere-hour throughput (Ah), state of charge (SOC), temperature distribution ( ), 

and C-rates ( ). The temperature distribution can be obtained from its measurements (T) 

including the measurement and sampling uncertainties. SOC and Ah can be obtained from 

C-rates and C-rates is dependent to the battery voltage (u) and battery power ( ). The 

battery voltage has a distribution between its fully charged and fully discharged voltage 

values. , on the other hand, is dependent to the wheel power ( ), auxiliary power ( ), 

EV mechanical and electrical parts’ efficiencies index ( ), the charging/grid services power 
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( ) and all these factors’ contribution coefficients (kn , n=1,2…,7). The contribution 

coefficients are considered for probabilities of driving, standard L1, L2, and L3 chargers, 

frequency regulations, peak shaving and solar power integration. The powers for charging 

and grid services ( 		: L1, L2 and L3 chargers powers, , 	 , : solar panel, 

frequency regulations and peak shaving powers) are considered to be perfectly observed 

and therefore they do not reflect any uncertainties. Also,  is considered to have 

distribution between 5-15% of the driving power. The charging power is assumed to be 

known and the grid services is performed by the standard L2 charging station.  

The wheel power can be calculated from the vehicle velocity distribution ( ̅) and the 

acceleration distribution ( ) using the governing mechanical equations. ̅ and  are 

obtained from the velocity and acceleration measurements (v and a) considering their 

measurement and sampling errors. Also, parameters are defined to relate all these variables 

dependencies as aging parameters, α, β, Ea , η, ζ, , and vehicle mechanical parameters, γ, 

ω, and φ.  

In our problem, there are i=1…N observations and in each observation, we have K, 

M, and J measurements for v and a, T, and q, respectively. Our expert domain knowledge 

was used to create the network structure based on the observations and unobserved 

variables as shown in Fig. 5.1. Note that other such models may be differently developed 

but statistically indistinguishable based on the independencies/dependencies entailed by 

the model. The network has three main parts: “data” shows the observations/measurements, 

“process model” includes the aging and EV variables and ‘parameters’ define the model 

variables’ dependencies. Solid edges refer to the probabilistic relationship, while the 

dashed edges show deterministic dependencies and the nodes at the beginning of these 

arrows are not random variables. 
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Fig. 5.1. Graphical view of the developed BN 

5.3.2 Mathematical Expression 

Considering the nodes and edges of the network in Fig. 5.1, the mathematical 

expression of the model considering all variables’ uncertainties can be written as (5-4) to 

(5-8). In (5-4), “[ ]” denotes the “probability of” the variable inside the brackets. Note that 

the sign between left and right side of the equation is not “=” and it is “∝”, because the 

marginal distributions of the observations (refer to the denominator of (5-1)) are not 

included in this equation. Therefore, the MCMC sampling method is used to draw large 

number of samples from the posterior distributions and estimate them with distribution 

fitting. To apply MCMC, the probability distribution function (PDF) of all variables should 

be defined based on their properties and full conditionals for all variables should be written. 
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, , , , , , , , , , , , , , , , 	, , , , , |	 , , , ∝ 

| | 	 | 	 | ̅  

								 ̅ | | | |  

								 | 	  

(5-4) 

exp  (5-5) 

 (5-6) 

1
								 2, … ,7 (5-7) 

̅ ̅ ̅  (5-8) 

Referring to the model’s variables and exploring their properties, it is possible to 

define a proper distribution function for them. Among variables, λ, Ah, u, and ̅ are 

definitely equal to or greater that zero. Therefore, gamma PDF is used to define their 

distribution. For the same reason, the gamma PDF is used to define the parameters, too. 

The SOC and  values vary in [0-1] interval, so a Beta PDF is more appropriate for these 

variables. C-rates are mostly concentrated on positive small values and it has a tail toward 

larger numbers. Therefore, a Rayleigh PDF defines its properties better. The rest of 

variables including powers, acceleration and temperature are defined with the normal PDF 

as they are centered around a value with possibility of both positive and negative tails. 

Using the defined PDFs, we have derived the full conditionals for all variables to apply the 

MCMC. An example of full conditionals for , , ̅, and  are presented in (5-9) to (5-12).  
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| ∙ ∝ N G |  (5-9)

| ∙ ∝ G | G |  

																								 B | R |  

(5-10)

̅ | ∙ ∝ N | G | ̅ 	 G ̅  (5-11)

| ∙ ∝ N | B 	 (5-12)

where, | ∙  stands for the  conditional to all the variables related to it and it should 

include all the terms that have  from (5-4). Also, N, G, B, and R refer to normal, gamma, 

beta, and Rayleigh PDFs, respectively. It is important to note that all these PDFs require 

values for their standard deviation (SD) to calculate the probabilities, which are defined 

based on the properties of each variable. For example, we have considered 10% of the 

capacity fade measurements as their distribution’s SD.  

5.3.3 MCMC Sampling Implementation  

The model requires the initial values for all variables to initiate the MCMC. For the 

unseen variables such as SOC, Ah and powers, calculations from the input data are used to 

define the initial guess. However, for the parameters which are more important to be 

initiated properly, different sources of information are used.  is the residual of (5-5) and 

therefore, its initial value is considered to be zero.  and  are activation energy and power 

factor respectively, and based on the reports from literature [24], their initial guess is 31000 
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and 0.5, respectively. Initial values for α, β, and η are selected based on the engineering 

judgment. Considering the governing mechanical equations of the vehicle,  reflects the 

total vehicle mass which is the mass of vehicle in addition to the mass of passengers. Initial 

value of  is calculated from (5-13) to reflect the effect of aerodynamic drag of the vehicle 

and for , the initial value is calculated by (5-14) to include the impact of rolling resistance 

and road grade.  

0.5  (5-13)

 (5-14)

where, ρ is the air density, Cx is the aerodynamic coefficient, Af is the vehicle frontal area, 

m is the vehicle mass, fr is the rolling coefficient and θ is the road grade.  (n=1,2,..7) are 

initiated based on the different daily tasks probability and their contribution on the total Ah 

throughput of the battery. Initial value for k1 is the driving task contribution on the Ah. This 

value for k2, k3, and k4 which are related to the portion of each charging facility (L1, L2 

and L3, respectively) is obtained based on a report from Idaho National Lab about the 

charging patterns of EVs in USA [25]. For k5 to k7, contribution of the solar integration, 

frequency regulation and peak shaving in the daily tasks’ Ah is considered as the first guess. 

The MCMC sampling starts with the defined initial values for all variables ( ). In 

iteration r, a random proposal value ( ) is offered based on the current value of the 

variable ( ), for the next value of x as: 

∗ ~N ,  (5-15)

where,  is tuning SD. Then, the full conditional is calculated for both the proposal and 

current values and Metropolis-Hastings sampling criteria is used to accept or reject the 

proposal value as (5-16). 
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min	 1,
∙ 	

∙

	
 (5-16)

The proposal value is accepted as the next value of the variable in the chain ( ) 

with probability R and it is rejected and the current value is kept by probability 1-R. 

Applying this method to all variables and repeating it generates draws from the posteriors 

which can be used to estimate their distributions.  

The last challenge in MCMC implementation is when the number of measurements 

in an observation is high (e.g. the acceleration data with resolution of 1 second in 30 

minutes of driving). In that case, the multiplication of probabilities leads to a significantly 

small quantity that prevents the sampling criteria from accepting the proposal values. To 

solve this issue, we have reduced the number of data by taking their average value. 

However, to define the number samples that are correlated and can be averaged, the 

autocorrelation of the data are calculated and the data points with an autocorrelation smaller 

than 0.2 are considered to be uncorrelated. The autocorrelation for observation data y can 

be calculated as (5-17).  

 (5-17)

where, E is expected value operator,  and  are the average and SD of the data. As shown 

in Fig. 5.2 for a sample acceleration data, for the samples with index difference of 7 or 

greater, the autocorrelation is less than 0.2 (uncorrelated) and therefore, every 7 data points 

are used for averaging and reducing the number of data. This method is used for other input 

data, too.  
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Fig. 5.2. Sample autocorrelation for acceleration data 

5.4 Training Data 

To train the model and obtain the parameters, we have used three sets of experimental 

results on A123 ANR26650, 2.3 Ah LFP cells’ capacity fade in different cycling conditions 

[26]. These data are shown in Fig. 5.3 which relates the capacity fade percentage to the 

total Ah throughput. The tests are performed different in temperature, SOC and C-rates. 

 

Fig. 5.3. Capacity fade data for three different test conditions [26] 

From these data, 70 data points are randomly selected to be used in training. The 
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measurements and initial values for the intermediate variables and generates chains of 

10000 samples for each variable using the mentioned MCMC sampling method. Fig. 5.4(a) 

shows the MCMC samples for one of the capacity fade data points which is draws from 

posterior distribution. Based on this figure, the model is consistent in sampling and it does 

not wander around different values. These samples are used to fit distributions to the 

variables. Histogram and fitted gamma distribution of the samples in Fig. 5.4(a) are 

depicted in Fig. 5.4(b). Variation of fitted distribution’s mean and SD for this data chain 

with 95% confidence interval are ±0.8 and ±0.03, respectively. 

 

Fig. 5.4. (a) Chain of samples for a capacity fade data point and (b) Histogram and 
gamma distribution of the sample chain 

The procedure is applied for all the variables and their fitted PDFs are obtained. The 

model’s capacity fade estimation gamma distributions based on the measurements are 

depicted in Fig. 5.5(a). Each of these PDFs reveals the fact that the capacity fade percentage 

is not a fixed value and it varies between values with different probabilities to include the 

uncertainties of the measurements and the modeling process. For instance, the bold black 
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plotted PDF in Fig. 5.5(a) shows variation between 11-17% capacity fade with average of 

13.51% for two measurements of 13.6% and 14.5% and other uncertainties in the 

temperature, C-rate, and all other measurements.  

To show that the results of the model’s training are reliable, we have compared the 

mean value of PDFs in Fig. 5.5(a) to the mean of experimental measurements of the 

capacity fade (Fig. 5.5(b)). This figure also indicates the estimation dispersion in two SD 

interval ( 2 ). These results indicate that the model’s training and parameters’ tuning are 

successful.  

 

Fig. 5.5. Training set: (a) Capacity fade percentage gamma PDFs and (b) mean of 
PDFs compared to experimental data 

Using the results of the training set, we have obtained the model parameters’ 

distribution. The PDFs for α, β, ζ, and  are plotted in Fig. 5.6 where, α, β, and ζ have 

gamma distribution and  has normal distribution.  

0 5 10 15 20 25
Capacity fade (%)

0

1

2

3

0 5 10 15 20 25 30 35
Data points (-)

0

5

10

15

20

Experimental Estimated (μ±2σ)

(b)

(a)



123 

 

Fig. 5.6. Model parameters’ PDF 

5.5 Model Evaluation with Test Set 

From the data, 12 data points (different from the training set) are used to test the 

model’s estimation precision. Note that these data points are for six observations with two 

measurements in each observation. The gamma distribution of the estimated capacity fade 

percentage for these observations are shown in Fig. 5.7(a) and the mean of these 

distributions are compared to the measurements in Fig. 5.7(b). Considering these figures, 

in most cases the estimated average is between two measured values and the model is 

successful in estimating the capacity fade percentage. The R2 for this comparison is 0.95 

which indicates acceptable precision of the model estimation. The merit of this model is 

that it can be applied to any set of experimental data and after tuning the parameters, it can 

estimate the battery capacity fade with high accuracy.  
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Fig. 5.7. Test set: (a) capacity fade estimation distributions and (b) comparison of 
estimated and measured capacity fade 

5.6 Case Study: BN Model Performance 

In this section, we show how the developed BN model can estimate the battery 

capacity fade in different cases with different provided data to indicate its flexibility. Three 

cases are studies here. First, the effect of different drivers is explored by the model. The 

variables that are directly affected in this case are shown in Fig. 5.8 network with green 

color. The second case explores the impact of the frequency of grid services which directly 

changes contribution coefficients and the grid power (red section in Fig. 5.8). Last, the 

battery capacity fade in four different states of USA depending on their weather condition 

is simulated using their daily temperature data (blue variables in Fig. 5.8).  
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Fig. 5.8. Directly affected parts of BN network in driving data (green), grid services 
frequency (red) and different locations/weather (blue) 

5.6.1 EV Daily Driving and Grid Services 

In this case, it is considered that the EV is going to have its driving sessions in 

addition to grid services such as solar integration, frequency regulations and peak shaving, 

provided by it. Therefore, its battery cycling will include the driving, recharging and utility 

services. To simulate different drivers impact, recorded driving data of 45 drivers in Ann 

Arbor, MI [27] is used to simulate the daily driving pattern. For the recharging, based on 

an INL report [25], it is assumed that 38%, 55%, and 7% of all recharging events are 

performed by L1, L2, and L3 chargers, respectively. Grid services are simulated by using 

recorded solar power data and PJM frequency regulations and peak shaving data. Note that 
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this information is used to calculate the initial values of the contribution coefficients. The 

model is run for the capacity fade estimation after about 100000 miles of driving.  

The model output for the driving cycles includes 45 independent distributions, with 

their kernel plotted in Fig. 5.9(a) to present the whole driving data distribution. This figure 

shows that the velocity data varies between 15 and 45 mph. Fig. 5.9(b) shows the 

acceleration PDFs for these driving cycles. The color code in this figure is based on the 

average absolute acceleration, (red to green color change refers to high to low values). We 

assume that the drivers with higher average acceleration (red curves) which means more 

frequent accelerations/decelerations during driving period are more aggressive drivers, 

while the gentle drivers have lower average acceleration (green curves). More information 

on how this was concluded can be found in [27]. 

 

Fig. 5.9. (a) Velocity kernel and (b) acceleration PDFs 
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The model’s estimation for the efficiencies and the auxiliary power are shown in Fig. 

5.10 (a) and (b). The battery power includes the effect of the charging events and grid 

services, as well. Therefore, the contribution of the driving and each of the recharging 

facilities in addition to grid services’ contributions are estimated by the model and shown 

in Fig. 5.10(c). Reminding that k1 refers to driving contribution, k2 to k3 stands for 

recharging facilities and k5 to k7 shows the grid services contribution coefficients, the 

driving’s contribution is centered at 0.286 with higher values accounting for the 

regenerative braking and lower values referring to the auxiliary power. The L1, L2 and L3 

chargers have contribution distributions, centered at 0.123, 0.18, and 0.021, respectively. 

Also, the contribution of solar integration, frequency regulation and peak shaving are 

0.096, 0.093, and 0.151, respectively. 

 

Fig. 5.10. PDFs of (a) EV power train efficiencies, (b) Auxiliary power and (c) 
contribution coefficients of driving and recharging events 

The model output for the SOC and Ah distributions are depicted in Fig. 5.11(a) and 
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indicates that the gentle drivers SOC distributions have higher mean values, while there is 

no significant difference on the distributions’ variance. However, they have lower total Ah 

throughput mean values with lower variances which shows that the model estimates the 

higher Ah distributions with more uncertainties. It is important to note that the SOC and 

Ah have direct relationship with capacity fade and therefore, based on the trend of these 

distributions, these two factors are in race.  

 

Fig. 5.11. (a) Beta PDFs of SOC and (b) gamma PDFs of Ah for all drivers 

The most important result of the model is capacity fade percentage estimation which 

is shown in Fig. 5.12. Considering Fig. 5.12(a), the capacity fade PDFs have higher mean 

value for the aggressive drivers. The SD of distributions are similar, varying between 1.2 

and 1.4. From red to green, the SD is decreasing, which can be the effect of Ah 

distributions’ SD. Comparing the effects of Ah and SOC in Fig. 5.12(b) indicates that the 

Ah is more dominant factor in capacity fade, as the drivers with higher Ah have higher 

capacity fade at the end of driving period, although their SOC is lower. Considering the 
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color change (refers to average acceleration) in these figures’ data, there are outlier points 

which indicates that the capacity fade has no linear relationship with the acceleration 

profile. However, the general trend shows strong relationship between aging and driving 

aggressiveness.  

 

(a) 

 

(b) 

Fig. 5.12. (a) Capacity fade PDFs and (b) mean of capacity fade PDFs respect to Ah 
and SOC means 
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simulated 5 patterns for the frequency of three mentioned grid services as never, once a 

month, every week, every other day, and daily. Running the model for these patterns 

changes the contribution coefficient’s estimation as shown in Fig. 5.13. In this figure, k1 

(driving) is shown in trace (a), k2 to k3 (charging) and k5 to k7 (grid services) are aggregated 

and shown in trace (b) and (c), respectively. It is obvious that if the frequency of grid 

services events increases, the portion of driving and recharging in the total battery Ah 

decreases, although the total Ah increases significantly by adding more grid services events 

(Fig. 5.14 (a)). This increase in Ah increases the capacity fade percentage accordingly, as 

indicated in Fig. 5.14(b). Note that adding different number of these events changes the 

battery power, C-rate and SOC distributions, as well.  

 

Fig. 5.13. Contribution Coefficients PDFs in different frequency of grid services 
events 
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Fig. 5.14. (a) Total Ah and (b) capacity fade PDFs for different frequency of grid 
services events 

5.6.3 Impact of location/weather change 

If the EV is driven in different climates, the capacity fade will change based on the 

temperature pattern. To explore the effect of temperature change, we have extracted the 

daily temperature data for four US cities with different climates (Phoenix, Ann Arbor, 

Miami, and Portland) in 2017 and run the model for these temperature observations. The 

normal distribution of the annual temperature in these cities are shown in Fig. 5.15 (a). 

These temperature patterns lead to different capacity fade estimations as plotted in Fig. 

5.15 (b). From the figure, there is no significant difference between Phoenix and Miami, 

as their average temperature is similar, however the small difference can be cause by the 

higher range of temperature change in Phoenix and making more harsh temperature 

condition for the battery. Ann Arbor has a very wide annual temperature range because of 

its cold winters, while Oregon’s temperature distribution has smaller SD. Lowest capacity 

fade happens in Oregon and highest is in Phoenix.  
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Fig. 5.15. (a) Temperature and (b) capacity fade distributions for different climates 

5.7 Conclusion 

The battery capacity fade modeling and estimation has uncertainties due the 

probabilistic nature of its effectual factors such as current and temperature. Therefore, 

deterministic models cannot completely explain the capacity fade process. Bayesian 

models are proved to successfully map the causality in probabilistic processes and the 

battery aging phenomena has similar process. Therefore, in this chapter, we proposed a 

probabilistic model using a hierarchical Bayesian model for the EV battery capacity fade 

estimation to include the uncertainties in the variables’ measurements and modeling 

process. The Bayesian network for this purpose is developed, the mathematical expression 

of the model including all random variables are extracted and Metropolis-Hastings MCMC 

sampling method is used to calculate the posterior distributions. The model is trained and 

tested by a set of experimental data. Test results show that the model is successful in 

estimating the capacity fade percentage with 95% accuracy. Also, three case studies are 
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explored by the model to show its performance in different input data. The effect of 

different driving styles, different grid services tasks, and different temperature profiles are 

examined to estimate the capacity fade and result are presented. The outputs of model for 

all the variables are probability distributions which reflect their inherited uncertainties. 

Overall results prove that the probabilistic modeling of the capacity fade through Bayesian 

networks is a promising solution for the battery degradation estimation in different cycling 

conditions. The merit of this method is that it is applicable for any kind of 

experimental/measured inputs, if it is trained by the prior data.  
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 Conclusions  

This dissertation presents four stages of my research about evaluation of the electric 

vehicle’s battery aging and proposes a Bayesian Network approach for probabilistic 

modeling of the capacity fade estimation. In first step, REV-Cycle, the simulation tool for 

the EV battery performance and aging evaluation is developed. Second step explores the 

effect of different driving styles and aggressiveness on the battery energy consumption and 

capacity fade. Third step includes the charging equipment and utility services to the EV 

daily tasks and examines the capacity fade in different daily scenarios. In addition, the 

effect of temperature change is studies in this step. Last step of this research proposes a 

Hierarchical Bayesian Network model for estimation of the battery capacity fade 

considering all uncertainties of the variables, measurements and modeling process. The 

model is developed with full conditionals and Markov Chain Monte Carlo algorithm 

employed to generate the posterior distributions and Metropolis-Hastings sampling criteria 

is used to accept the proposal values of the chain. The distributions for the variables are 

selected based on their properties using the expert domain knowledge. The results of model 

are presented and discussed in detail. Here are highlighted findings of different phases of 

work: 

 Phase 1: Comparing the battery performance in the standard driving cycles and real-

world driving data indicates that the power and current demand from the battery in 

standard cycles are very smooth, while these profiles has very harsh fluctuations in real 

driving cases. Note that the current profile has significant effect on the battery aging. 

Therefore, standard driving cycles are not reliable source for aging evaluation and real 

driving data should be used for this purpose.  
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 Phase 2: Study of 240 driving cycles in a recorded section of highway shows that the 

traffic flow significantly affects the driving style, as light traffics encourages more 

aggressive behaviors. On average, aggressive drivers consume 43% more kWh 

compared to the gentle drivers. Also, they demand higher current peaks from the battery 

due to their accelerations and their C-rate distribution is averaged in higher values. The 

higher current demand and consequently higher Ah in aggressive driving style leads to 

higher driving capacity fade percentage compared to the mild and gentle drivers. The 

results show significant relationship of acceleration profile and energy consumption 

and battery degradation, regardless of the driving distance. 

 Phase 3: Including the different recharging facilities and behaviors in addition to the 

grid services to the daily EV tasks and evaluating the battery capacity fade in different 

daily scenarios illustrates that: First, there is not significant difference in capacity fade 

results between L1 and L2 chargers, however, the controlled overnight charging causes 

less capacity fade compared to uncontrolled charging. Second, in different utility 

services, peak shaving has higher impact on the battery aging than the frequency 

regulations due to the higher extracted Ah. Solar integration does not change the total 

Ah throughput, but it increases the capacity fade due to the higher SOCs. Third, thermal 

management system has significant impact on the battery health, as passive cooling 

cannot maintain the battery temperature in the optimum point and ambient temperature 

causes higher capacity fade in harsh weather conditions. In general, external factors of 

the battery capacity fade are not constant and vary in different ways. Therefore, it is 

not possible to study all of the scenarios one by one and this problem should be studied 

considering the effectual factors’ probabilities and uncertainties.  
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 Phase 4: The Bayesian models have proven success upon modeling the probabilistic 

processes, considering the all uncertainties of the measurements, parameters, process. 

It can include the causality of battery aging factors from the vehicle owner’s behavior 

in driving, recharging and willingness to the grid services to the temperature and 

climate conditions in a hierarchical modeling approach. It is adoptable to different input 

data and all unseen variables can be estimated based on their natural properties by 

defining proper distribution functions. Our developed model have shown successful 

estimation of the battery capacity fade on experimental data and therefore it can be used 

for estimation of different EV battery usage case studies. The model considers the 

contribution of different cycling events (driving, recharging and grid services) in 

battery capacity fade, however, due to the lack of data, it does not includes the 

probability of the frequency of different grid services. The advantage of this model is 

that it is flexible to be expanded to include other unseen factors and it can be combined 

with other Bayesian models, e.g. residential battery storage BN model. In addition, it 

is flexible in being used for different technologies and applications of the batteries, if 

it is trained with proper prior data. In a nutshell, Bayesian modeling approach is 

demonstrated to be more informative and flexible tool in estimating the EV battery 

capacity fade compared to the deterministic point value estimating approaches.  
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 Contributions 

After analyzing different aging evaluation methods and models and realizing that the 

deterministic aging models fail to completely and accurately evaluate the battery 

degradation behavior considering its varying external factors, a probabilistic aging model 

is proposed based on the Hierarchical Bayesian Networks. So, the main contribution of this 

dissertation is developing HBN model and estimation of the EV battery capacity fade 

considering all uncertainties of the measurements, process and modeling. Since the 

developed model is a hierarchical model, it can represent the dependency of the battery 

aging to the very far external factors, such as driver aggressiveness or solar panel output. 

And because it is based on the probability distributions for all of the variables, it 

successfully maps the changes in the EV battery tasks such as driving distance or charging 

frequency. These changes cannot be tracked by deterministic models. Combination of HBN 

and MCMC algorithm provides a strong tool which helps to evaluate the EV battery 

capacity fade more accurate (due to lower sensitivity to input data and its uncertainty such 

as measurement error) and complete (due to including unseen variables and their 

uncertainty). The proposed method of battery aging evaluation is not limited to EV 

application and it can be easily adopted and used in other application and cycling 

conditions which opens a new path in the battery degradation modeling.  
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 Future work 

This dissertation proposed a Bayesian Network approach for probabilistic estimation 

of the EV battery capacity fade considering uncertainties of driving behavior, recharging 

facilities and availability, and grid services. However, there are some shortcomings that 

can be studied in future researches of this topic as follows: 

 The proposed model does not include the calendar aging of the battery which plays 

significant role in the overall health condition of the battery. Another BN can be 

developed for the calendar aging and connected to the presented model to completely 

predict the remaining useful life of the EV battery.  

 This model focuses on the capacity fade of the battery which directly affects the EV’s 

range. However, another important aging factor is power fade which decreases by the 

battery internal impedance rise. Future studies can focus on the power fade of the EV 

battery as another index of the battery state of health.  

 The last but not least suggestion is to study the probabilistic optimization of the 

mentioned entities. This optimization can be performed in two ways: first, to develop 

the cost function based on the interested variable of the target entity and consider other 

entities’ constraints such as EV battery aging constraint, second, to bring all variables 

in the cost function, instead of limiting their contribution.  
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