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This paper presents a prognostic scheme for estimating the remaining useful life of
Lithium-ion batteries. The proposed scheme utilizes a prediction module that aims to
obtain precise predictions for both short and long prediction horizons. The prediction
module makes use of extreme learning machines for one-step and multi-step ahead pre-
dictions, using various prediction strategies, including iterative, direct and DirRec, which
use the constant-current experimental capacity data for the estimation of the remaining
useful life. The data-driven prognostic approach is highly dependent on the availability of
high quantity of quality observations. Insufficient amount of available data can result in
unsatisfactory prognostics. In this paper, the prognostics scheme is utilized to estimate
the remaining useful life of a battery, with insufficient direct data available, but taking
advantage of observations available from a fleet of similar batteries with similar working
conditions. Experimental results show that the proposed prognostic scheme provides a
fast and efficient estimation of the remaining useful life of the batteries and achieves
superior results when compared with various state-of-the-art prediction techniques.

Keywords: Prognostics; extreme learning machines; one-step prediction; multi-steps pre-
diction; Lithium-ion batteries.
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1. Introduction

Prognostics of Lithium-ion batteries has become of primary importance in the elec-

tronics industry.1–3 In this industry, prognostics and health management (PHM)

techniques are being utilized for improving operation and management, and extend-

ing the lifecycle of systems, machines and batteries, decreasing the risk of failures

and associated unscheduled maintenance costs.4

Quick and accurate estimation of the remaining useful life (RUL) can reduce

the failure occurrences of batteries.5,6 The RUL is a valuable information for the

estimation of a feasible time for battery replacement. The RUL of a battery de-

pends on the battery degradation level and operational conditions.7 The nonlinear

and uncertain degradation profiles of batteries call for nonlinear predictive models.

Monitoring of a battery state during its operational usage has two elements, namely

state of charge (SOC) and state of health (SOH).8 SOC is a measure of remaining

available stored energy9 and SOH is a measure of the battery degradation.10 These

measures provide useful information on the present conditions of a battery.11 The

RUL prediction task can, then, be performed through a wide range of prognostic

methods, that are mainly classified under two major categories of model-based and

data-driven methods.12–17

Model-based approaches account for a majority of the modern RUL estimation

methods, but often in practice it is difficult to have a precise and well-established

model,18 tune its parameters, and update their values during the prediction phase,

for changing operational conditions.19 For example, rapid changes at the final cycles

of usage increase the difficulty to learn the final steps of the degradation profiles.7

Data-driven approaches help address these issues in RUL prediction.5 Data-

driven approaches utilize existing and past observations of the batteries degra-

dation profiles for estimating future values.19 RUL can be estimated by learning

the relationships amongst the degradation features and the degradation trends.19

Informative features, like voltage, capacity, current and impedance have been ex-

tracted and used for battery RUL prediction. The numbers of observations and

informative features play a vital role for achieving an accurate prediction model.20

The data-driven approaches are much faster and easier to implement compared to

model-based approaches,21 even though they require a large number of observations

in the training phase and the prediction model is non-transparent.14

The model-based approaches can be classified into two main categories. The first

group makes use of the degradation modelling strategy.19 The approaches can use

a nonlinear degradation model,22 an adaptive and nonlinear model,22 a hierarchi-

cal model to integrate discharging and degradation processes,23 a sparse Bayeshian

predictive model24 and a degraded Markov model14 to estimate the remaining use

life. Such models are a bit complex and very sensitive to the quality and quantity

of the battery data. The second group makes use of the state/parameter observers,

like extended Kalman filter25 and particle filter.26 These approaches are computa-

tionally expensive and sensitive to the accuracy and robustness of the model. The

data-driven approaches can be classified into three major categories. This group
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of approaches makes use of statistical measures.6 These techniques are quite sim-

ple and straightforward. The second group of approaches aim to map from ex-

tracted features or stressing factors to state of health. These include the use of

support vector machine27,28 and neural networks.29,30 These techniques can be eas-

ily implemented and have a good nonlinear mapping capability. The third group

of approaches aim to map directly from aging cycle to state of health.31,32 These

techniques have a good nonlinear mapping capability but are difficult to be imple-

mented. All these techniques are sensitive to the quantity and quality of the battery

data. Several data-driven approaches, including support vector machines,27,28 rel-

evance vector machines,33 and artificial neural networks30 have been implemented

for the prediction of remaining useful life of batteries.34 However, many of such

techniques suffer from computational complexity and higher computational time.34

The work in this paper focuses on the study and comparison of data-driven

techniques for the one-step-ahead prediction (OSP) and the multi-step-ahead pre-

diction (MSP) of batteries RUL. The aim is to develop several predictors based

on extreme learning machines (ELM)35–37 for estimation of the remaining useful

life of batteries. Extreme learning machines (ELM) are known for fast implementa-

tion, low complexity and reliable predictions. The proposed ELM-based predictor

is studied and compared to other state-of-the-art prediction techniques, including

neuro-fuzzy networks (NFs),38–40 group method of data handling (GMDH),41 ran-

dom forests (RF)42 and echo state networks (ESN).43 These predictors are formed

in the nonlinear autoregressive (NAR) structures for OSP and used along within

several MSP structures, namely iterative, direct and DirRec, for the long-term pre-

diction. All these strategies create different training subsets including current and

past observations of the batteries and train several models to predict the future

capacity values in short and long horizons.

The paper also tries to handle the situation of estimating the RUL of a battery,

with insufficient or unusable observations. There is often a situation, particularly

in case of a new equipment, that the available set of observations or data lack the

quantity as well as the quality to be suitable to generate a training subset. The

paper proposes a solution to this problem by utilizing the data available from a

fleet of existing batteries. These batteries are similar and operate under similar

working conditions and degradation processes. The data from the fleet of batteries

are combined to train the prognostic model. Once trained, the model can be utilized

to estimate the RUL of the battery.

The remainder of the paper is structured as follows. Section 2 of the paper briefly

formulates the problem statement. Section 3 presents the proposed techniques to

predict the remaining useful life of the Lithium-ion batteries. Section 4 discusses

and analyses the experimental results. Section 5 presents the conclusion.

2. Problem Statement

The primary goal of the paper is to analyze the degradation process in Lithium-ion

batteries and estimate their remaining useful life over both short and long time
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One-step-ahead Prediction Model (NAR)

Multi-step-ahead Prediction Model - Iterative Strategy

Multi-step-ahead Prediction Model - DirRec Strategy

Multi-step-ahead Prediction Modelc - Direct Strategy

Battery Data

Prediction Module

Predictions
Prognostic Horizon,
Alpha-Lambda accuracy,
RMSE, 
ERUL

Predictions
Prognostic Horizon,
Alpha-Lambda accuracy,
RMSE, 
ERUL

Predictions
Prognostic Horizon,
Alpha-Lambda accuracy,
RMSE, 
ERUL

Predictions
Prognostic Horizon,
Alpha-Lambda accuracy,
RMSE, 
ERUL

Fig. 1. Block diagram of the prediction system. Battery data are fed into the predictive models
for estimating the RUL of the battery.

horizons. Four different battery datasets, namely B5, B6, B7 B18, are used for the

estimation of the remaining useful life in terms of capacity. These datasets were

collected at the Idaho National Lab and can be obtained from the NASA Prog-

nostic Center of Excellence Data Repository.44 The batteries have been charged at

the constant rate of 1.5A, till the voltage reaches 4.2V and, then, the voltage is

sustained at a constant level till the current reduces to 20mA. In discharge cycles,

the batteries maintain a constant current level till the voltage drops below a pre-

set value.14 Batteries B5, B6, B7 and B18 are considered to be fully discharged

when their voltage drops to 2.7V, 2.5V, 2.2V and 2.5V respectively. This charge

and discharge cycles are continued until the rated capacity drops from 2Ahr to

1.4Ahr, a drop of 30%, which is a criteria for battery end-of-life.21 Capacity of

a battery, C(Ahr), is a common index to predict its remaining useful life45 and,

hence, in this paper, capacities from 168 discharge cycles are extracted and uti-

lized to create required inputs for the predictors in order to estimate the RUL of

the batteries.

Figure 1 shows the proposed prediction scheme. The following prediction strate-

gies can be considered to construct various predictors and estimate the useful life

of the Li-ion batteries for short and long-term horizons.
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2.1. One-step-ahead prediction (OSP) strategy

One-step-ahead predictions (OSP) are utilized for the estimation of the RUL of a

battery over a short horizon. Nonlinear autoregressive (NAR) structures46 are used

to construct predictive models using the following equation:

ψ̂i+1 = g(ψi, ψi−1, ψi−2, . . . , ψi+1−n) + εi+1 (1)

where ψ symbolizes the battery capacity at discharge cycles, n symbolizes the num-

ber of lags, ε symbolizes the prediction error for each cycle, i symbolizes the cycle

number, and g symbolizes the prediction approximation function during the train-

ing phase.

2.2. Multi-step-ahead prediction (MSP) strategies

(a) Iterative strategy predicts the next future value using OSP method and, then,

uses the predicted value as a known input iteratively to predict the subsequent L

future values. Prediction of the L subsequent values using this technique can be

formulated by the following equation

ψ̂i+l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(ψi, . . . , ψi+1−n) , if l = 1

g(ψ̂i+l−1, . . . , ψ̂i+1, ψi, . . . , ψi+l−n) , if l ∈ {2, . . . , n}
g(ψ̂i+l−1, . . . , ψ̂i+l−n) , if l ∈ {d+ 1, . . . , L}

(2)

where ψ symbolizes the battery capacity at discharge cycles, ψ̂ symbolizes the

predicted battery capacity, n symbolizes the number of lags, i symbolizes the cycle

number, g symbolizes the one-step prediction model and L symbolizes the total

number of predictions.47,48

(b) DirRec strategy predicts multi-step-ahead values similar to iterative

strategy, but, generates a new prediction model after each prediction step.48 Predic-

tion of L subsequent values using this technique can be formulated by the following

equation

ψ̂i+l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gl(ψi, . . . , ψi+1−n) , if l = 1

gl(ψ̂i+l−1, . . . , ψ̂i+1, ψi, . . . , ψi+l−n) , if l ∈ {2, . . . , n}
gl(ψ̂i+l−1, . . . , ψ̂i+l−n) , if l ∈ {n+ 1, . . . , L}

(3)

where gl symbolizes the predictive model constructed at the lth prediction step.49

(c) Direct strategy constructs L distinct models gl to predict L future values

using the following equation49

ψ̂i+l = gl(ψi, ψi−1, . . . , ψi+1−n) , l ∈ [1, L] . (4)
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2.3. Fleet-based predictions

The one-step ahead predictive model for the fleet-based prognostic scheme is gener-

ated using an ensemble of one-step ahead prediction models for all available batter-

ies. For the iterative multi-step ahead predictions, the first future value is estimated

using the one-step model, which is then used as known input iteratively to generate

subsequent future values

ψ̂k,i+1 = gfleet(ψk,i, ψk,i−1, ψk,i−2, . . . , ψk,i+1−n) (5)

where k symbolizes the kth battery in the available fleet and gfleet symbolizes the

one-step ahead predictive models for the various batteries in the fleet.

3. Predictor Models

3.1. Extreme Learning Machine (ELM )

ELM is a generalized, single hidden layer feedforward network (SLFN),35,36 with

the following output function50

fp(x) =

p∑
i=1

βihi(x) = h(x)β , x ∈ R
n , βi ∈ R

o (6)

where p is the number of hidden nodes, β = [β1, . . . , βp]
T stands for the vec-

tor of output weights linking nodes of the hidden layer to the o ≥ 1 out-

put nodes, h(x)=[h1(x), . . . , hp(x)]
T denotes the ELM nonlinear feature mapping.

Hidden nodes may include different output functions. Particularly, hi(x) can be

defined as

hi(x) = f(ωix+ bi) , ωi ∈ R
p , bi ∈ R

p (7)

where f(ωx+b) stands for a nonlinear piecewise continuous function, which satisfies

the universal approximation capability of ELM, in which (ω, b) are the hidden node

parameters.35

Given a set of observations S = {(xj , yj)|xj ∈ R
n, yj ∈ R

o}, a standard SLFN

with p hidden nodes and an arbitrary activation function can be modeled as follows

fp(xj) =

p∑
i=1

βihi(xj) =

p∑
i=1

βif(ωixj + bi) , j = 1, . . . ,m (8)

where ωi = [ωi1, . . . , ωip]
T stands for the weight vector linking the ith hidden node

and the input nodes, bi denotes the threshold of the ith hidden node and f stands

for the activation function. There exist various types of activation functions such

as sigmoid, hyperbolic tangent, Gaussian, hard limit, cosine/Fourier basis, sine and

radial basis function (RBF).35 Here, the sigmoid function has been used, which can

be defined as follows

f(ωixj + bi) =
1

1 + exp(−(ωixj + bi))
, ωi ∈ R

p , bi ∈ R
p . (9)
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ELM randomly generates p hidden nodes (step 1), without the need for tuning,

to approximate the input-output relation among the m pairs of observations with

the minimum training error, εj =
∑p

i=1 ‖fp(xj) − yj‖, i.e., it determines (ωi, bi)

and βi such to satisfy the following

p∑
i=1

βif(ωixj + bi) = yj + εj , j = 1, . . . ,m (10)

where ε stands for the error or noise and yj denotes the output vector at the jth

row. This can be reformulated as follows

Hβ = Y (11)

where

H =

⎡
⎢⎢⎣
h(x1)

...

h(xm)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
f(ω1x1 + b1) · · · f(ωpx1 + bp)

...
. . .

...

f(ω1xm + b1) · · · f(ωpxm + bp)

⎤
⎥⎥⎦
m×p

(12)

β =

⎡
⎢⎢⎢⎣

βT
1

...

βT
p

⎤
⎥⎥⎥⎦
p×o

(13)

and

Y =

⎡
⎢⎢⎢⎣

yT1
...

yTm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
y11 . . . y1o
...

. . .
...

ym1 . . . ymo

⎤
⎥⎥⎦
m×o

(14)

in which H stands for the randomized matrix of the hidden layer output of the

network and Y stands for the target matrix. ELM computes the matrix of hid-

den layer outputs H (step 2) and, then, computes the vector of output weights

(step 3).

The optimal solution can be found, then, by the smallest least-square solution

of the linear system (see Eq. (11)) as follows

β̂ = H†Y (15)

where H† stands for the Moore-Penrose generalized inverse of matrix H .35

Figure 2 illustrates the ELM training structure, where the output matrix is

generated using the input matrix and the hidden layer matrix. The hidden layer

parameters can be generated randomly, independent of the input matrix and, thus,

decrease considerably the training time of the model.
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Fig. 2. Extreme learning machine model topography.

4. Experimental Results

The proposed prognostic scheme uses the ELM predictor and other state-of-the-

art methods, including GMDH, NF, RF and ESN, in a set of experiments for

one-step and multi-steps ahead predictions. Results are compared in terms of root

mean square error (RMSE), prediction error (ERUL), prognostic horizon and alpha-

lambda accuracy. RMSE calculates the difference between the target and predicted

values. ERUL indicates the error in the prediction at the end of life that can be

calculated as the difference between the actual and predicted cycle numbers at

which the battery reaches the end of life, when the value of capacity crosses a

predetermined threshold. For these experiments, the threshold values for batteries

B5, B6 and B7 are 1.299V , 1.424V and 1.41V , respectively. Prognostic horizon

indicates the difference of the battery end of life cycle and the cycle where the

prediction first reaches a specified performance criteria.51 For these experiments,

the alpha for the prognostic horizon is set at 10%. Alpha-lambda accuracy indicates

the quality of estimations by checking if the estimations are within a specified range

at particular cycles.51 For these experiments, the alpha for the accuracy is set at

20%. The fleet-based prognostics scheme utilizes the combined datasets of batteries

B5, B6 and B7 to form the training subset in a set of experiments for one-step

and multi-steps ahead predictions of the battery B18. The threshold value for the

battery B18 is set at 1.4V . Only iterative strategy is used for the multi-steps ahead

predictions using the fleet-based prognostics.

4.1. One-step ahead predictions

Various one-step ahead predictions are performed on all battery datasets by varying

the number of input lags from two to five. Besides, the size of the training set is

also varied between 40%, 60% and 80% of the total set.
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Fig. 3. Prediction results for the test with two input lags and the use of first 40% of the obser-
vations for training.

Figure 3 depicts the prediction result generated by each predictor along with the

target for the test 40% — 2 on the B5 data. This indicates that the first 40% of the

observations are used for training and the input contains two lags. This figure shows

that all methods perform well in predicting the target over a one-step prediction

model, since sufficient samples are available for training.

Our experiments indicate that increasing the number of lags does not improve

the performance of the predictors.

Figure 4 depicts the distribution of the RMSE for each OS predictor for different

tests on all the battery datasets. The boxes represent the distribution range of the

RMSE values (dots) between the first and third quartiles, the solid line represents

the median value of the RMSE for each OS predictor, the dash lines show the

outlier range, the crosses represent the outliers and the solid square represents

the mean of the RMSE values for each OS predictor. Presence of the solid line

in the middle of the box indicates that the values are uniformly distributed. The

predictors are ranked w.r.t. the mean values as ELM, ESN, NF, RF and GMDH.

ELM has the smallest box, which indicates the least variation among the RMSE

values and the most stable predictions. GMDH produces the biggest window and

also has the maximum number of outliers, i.e., the most unstable results.

Figure 5 depicts the distribution of ERUL values for each OS predictor for

different tests on all the batteries’ datasets. A negative (positive) value for ERUL

indicates an early (late) prediction, which means that the prediction profile passes

through the threshold sooner (later) than the actual target profile in terms of cycles.
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Fig. 4. Box-plots representing the distribution of the RMSE values calculated by each OS pre-
dictor, for all performed tests on all battery datasets.

Prediction Techniques
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Fig. 5. Box-plots representing the distribution of ERUL values calculated by each OS predictor,
for all performed tests on all battery datasets.
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This figure indicates that ELM and NF accurately predict the end of lifecycle.

GMDH has several early predictions. The predictors are ranked in terms of ERUL

as ELM, ESN, NF, RF and GMDH.

The results for the OS predictions show that ELM is the best OS predictor in

terms of RMSE and ERUL, and, thus, it can be selected for OS prediction of the

RUL of the batteries.

4.2. Multi-steps ahead predictions

Various prediction techniques along with the MS prediction strategies (iterative,

DirRec and direct) are used to estimate the RUL of batteries over long horizons.

Figure 6 illustrates the MSP results generated by each predictor for all three

MSP strategies, along with the target for the test 40% — 3 on the B5 data.
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(b) DirRec Approach: 40% - 3
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Fig. 6. Prediction results for three strategies using three input lags and the first 40% of the
observations for training.
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This indicates that the input has three lags and the first 40% of the observations

are used for training. Panels (a) and (b) in the figure show that the iterative and

DirRec strategies achieve large prediction errors for the small sequence of obser-

vations. The error generated at each prediction step propagates through the next

steps and leads to a significant deviation from the target. The direct strategy, on

the other hand, attains better prediction results for small sequences of observations

(see panel c). However, many of the predictors fail to quickly reach the threshold.

Figure 7 illustrates the MSP result generated by each predictor for all three

MSP strategies, along with the target for the test 60% — 3 on the B5 data. This

indicates that the input has three lags and the first 60% of the observations are

used for training. Increasing the length of the sequence of observations improves
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(b) DirRec Approach: 60% - 3
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Fig. 7. Prediction results for three strategies using three input lags and the first 60% of the
observations for training.

1850036-12

In
t. 

J.
 A

rt
if

. I
nt

el
l. 

T
oo

ls
 2

01
8.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
01

/0
8/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 5, 2018 14:20 IJAIT S0218213018500367 page 13

1st Reading

Extreme Learning Machine Based Prognostics of Battery Life

RF
GMDH NF

ELM
ESN

R
M

S
E

0
0.1
0.2
0.3

(a) Iterative Approach

RF
GMDH NF

ELM
ESN

R
M

S
E

0
0.1
0.2
0.3

(b) DirRec Approach

Prediction Techniques

RF
GMDH NF

ELM
ESN

R
M

S
E

0
2
4

(c) Direct Approach

Fig. 8. Box-plots representing the distribution of the RMSE values calculated by each MS pre-
dictor on all performed tests for all three strategies.

the prediction result for all three MSP strategies, especially for the iterative and

DirRec strategies.

Figure 8 illustrates the distribution of the RMSE for each MS predictor for all

three strategies on all the battery datasets. Figure 8 shows that ELM outperforms

all predictors and has the lowest mean, the smallest box and thus, the lowest range of

outliers. It also shows that the KELM predictors closely follow the ELM predictor.

These MS predictors are ranked w.r.t. RMSE as ELM, ESN, RF, NF and GMDH.

Figure 9 illustrates the distribution of the ERUL values for each MS predictor

on all the battery datasets. Figure 9 clearly illustrates that ELM outperforms other

predictors in estimating the remaining life for all the batteries and has a much

smaller box representing more stable results for all MSP strategies. The predictors

are ranked w.r.t. to ERUL as ELM, RF, ESN, NF, GMDH.

The attained results can also be studied in terms of multi-steps ahead prediction

strategies, which are not presented here due to space limitation. The rank of these

strategies, when the predictions generated by the strategies are compared in terms

of RMSE and ERUL, is direct, DirRec and iterative.

Figure 10 illustrates the prognostic horizon and alpha-lambda accuracy plots

for the distribution of ERUL values attained by each MS predictor on all the bat-

tery datasets for the iterative strategy. The prognostic horizon plots show that

ELM, closely followed by ESN, generate predictions which are always within the

boundaries of the prognostic horizon for all battery datasets. In the alpha-lambda

accuracy plots, ELM makes the earliest estimation within the accuracy level for
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Fig. 9. Box-plots representing the distribution of the ERUL values attained by each MS predictor
on all performed tests for all three strategies.

battery datasets and the generated predictions outnumber all other competitors

to fall within the accuracy boundaries. The figure shows that ELM can generate

accurate and reliable predictions, even with a smaller training subset.

The attained results for the MS predictions show that ELM is the best MS

predictor in terms of RMSE, ERUL, prognostic horizon and alpha-lambda accuracy

and thus, it can be selected for MS prediction of the RUL of batteries.

4.3. Fleet-based prognostics

For the purpose of fleet-based prognostics, the combined datasets of the batteries

B5, B6 and B7 are used to generate an overall training subset, which is then used

to estimate the RUL of the battery dataset B18. Both OS and MS predictions

are performed on the battery dataset B18. Only iterative strategy has been used

for the MS predictions, as other techniques are either not suited for a fleet-based

prognostics or computationally challenging.

Figure 11 illustrates the OS prediction result generated by each predictor along

with the target on the B18 data. This indicates that the entire 100% of the ob-

servations from B5, B6 and B7 are used for training and the input contains five

lags. This figure shows that the ELM produces predictions close to the target. Both

GMDH and RF show spikes in the predictions, instead.

Figure 12 illustrates the distribution of the RMSE and ERUL values calculated

by each OS predictor for fleet-based prognostics. The figure shows that ELM pro-
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Fig. 10. Prognostic horizon and alpha-lambda accuracy plot representing the distribution of the
ERUL values attained by each MS predictor on all performed tests for iterative strategy.

1850036-15

In
t. 

J.
 A

rt
if

. I
nt

el
l. 

T
oo

ls
 2

01
8.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 E
N

G
L

A
N

D
 o

n 
01

/0
8/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 5, 2018 14:20 IJAIT S0218213018500367 page 16

1st Reading

R. Razavi-Far et al.

Cycles
0 20 40 60 80 100 120

C
ap

ac
ity

 (
A

hr
)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Target
RF
GMDH
NF-FCM
ELM
ESN

Threshold

Fig. 11. OS prediction results for battery B18 using three input lags and the entire observations
of the three batteries for training.
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Fig. 12. Box-plots representing the distribution of the RMSE and ERUL values calculated by
each OS predictor for fleet-based prognostics.

duces lower RMSE, accurate RUL predictions and more stable results, indicated by

the smaller box size. The predictors are ranked w.r.t. to RMSE as ELM, NF, ESN,

GMDH and RF and w.r.t ERUL as ELM, ESN, GMDH, RF and NF.

Figure 13 illustrates the MS prediction result generated by each predictor along

with the target on the B18 data using the iterative strategy. This indicates that the

entire 100% of the observations from B5, B6 and B7 are used for training and the
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Fig. 13. MS prediction results for battery B18 using iterative strategy, three input lags and the
entire observations of the three batteries for training.

input contains three lags. This figure shows that all predictors, except NF, produce

predictions close to the target.

Figure 14 illustrates the distribution of the RMSE and ERUL values calculated

by each MS predictor for fleet-based prognostics. The figure shows that, similar to

OS predictions, ELM produces lower RMSE, accurate RUL predictions and more

stable results, indicated by the smaller box size. The predictors are ranked w.r.t.
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Fig. 14. Box-plots representing the distribution of the RMSE and ERUL values calculated by
each MS predictor for fleet-based prognostics.
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Fig. 15. Prognostic horizon and alpha-lambda accuracy plot representing the distribution of the
ERUL values attained by each MS predictor for iterative strategy.

to RMSE as ELM, NF, ESN, GMDH and RF and w.r.t. ERUL as ELM, ESN, RF,

GMDH and NF.

Figure 15 illustrates the prognostic horizon and alpha-lambda accuracy plots

for the distribution of ERUL values attained by each MS predictor on the battery

B18 dataset for the iterative strategy. The prognostic horizon plots clearly show

that ELM is the only predictor whose predictions are always within the boundaries

of the prognostic horizon for all battery datasets. In the alpha-lambda accuracy

plots, ELM makes the earliest predictions within the accuracy level for battery

datasets and on aggregate, predicts EOL within the accuracy boundaries more than

other predictors. This indicates that ELM is an excellent predictor for fleet-based

prognostics, producing accurate and reliable predictions.

5. Conclusions

This paper proposes an efficient prognostic scheme for one-step and multi-step

ahead predictions of the remaining useful life of Lithium-ion batteries. An Extreme

Learning Machine-based prediction technique has been devised along with various

one-step and multi-step prediction strategies to estimate the RUL of Lithium-ion

batteries. The primary goal of the paper is to deliver a fast and efficient data-

driven prognostic scheme to predict the remaining life of batteries over short and

long time horizons, even when insufficient observations are available. The attained

results show that ELM prediction techniques are fast when compared to other

competitors and generate accurate prediction profiles. The ELM predictive model

outperforms other competitors for the one-step ahead and the multi-step ahead
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RUL predictions. The ELM predictive model also outperforms the competitors for

the fleet-based prognostics.

The implementation of an effective prediction model can often be challenging.

The performance of data driven prediction models highly depend on the availability

of observations. However, excessive amount of information can often lead to over-

fitting of data. Observations for a time-series data, similar to the ones used in

this paper, often generates different predictive models for different time intervals.

Hence, using the entire set of observations as a training dataset may not be ideal

to generate a prediction model. The proposed scheme in the paper is designed for a

prediction model in a standard batch environment. It could be easily transformed

into an online just-in-time environment using online variants of the ELM algorithm.

An online prediction model for estimating the remaining useful life of the battery,

where new observations are fed into the system, one at a time or in batches, would be

an interesting direction for the future research in order to improve the prognostics

of battery life.
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