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Abstract

Lithium-ion batteries are fuelling the advancing renewable-energy based world. At the core of
transformational developments in battery design, modelling and management is data. In this
work, the datasets associated with lithium batteries in the public domain are summarised. We
review the data by mode of experimental testing, giving particular attention to test variables and
data provided. Alongside highlighted tools and platforms, over 30 datasets are reviewed.
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1. Introduction

Lithium batteries currently dominate the battery market and the associated research environ-
ment. They display favourable properties when compared to other existing battery types: high
energy efficiency, low memory effects and proper energy density for large scale energy storage
systems and for battery/hybrid electric vehicles (HEV) [1]. Given these facts, lithium production
has been expanding rapidly and the use of lithium batteries is wide spread and increasing [2].

From design and sale to deployment and management, and across the value chain [3], data
plays a key role informing decisions at all stages of a battery’s life. During design, data-informed
approaches have been used to accelerate slower discovery processes such as component devel-
opment and production optimisation (for electrodes, electrolytes, additives and formation) [4, 5].
At sale, they can classify batteries based on expected lifetime [6, 7]. At deployment, data on the
expected lifetime and performance of batteries – for a range of chemistries, geometries, capac-
ities and manufacturers – can help to determine the best battery for a given application: under
different ageing stresses such as various charge/discharge currents [8, 6, 9], operating tempera-
tures [10, 11, 12], depth of discharges (DODs) [13, 14] and periods of disuse [15, 16]. In use,
the battery management system (BMS), controlling the battery’s operation, relies heavily on data
both for its own design and for the training and calibration of the models it uses.

Data driven approaches are showing great promise and proof of this is the growing body of
literature exploring the interplay between data-driven techniques and battery applications [17,
18, 19, 20]. The approach has been deployed in the design of new models for the estimation
of state of health (SOH) [21, 22, 23, 24], state of charge (SOC) [25, 26] and internal resistance
(IR) [27, 28]; the prediction of remaining useful life (RUL) under cycling degradation [6, 7,
29], calendar ageing [30] and from electrochemical impedance spectroscopy (EIS) data [31];
the identification and prediction of phase change-points in capacity fade curves (knees) [7] and
IR rise curves (elbows) [32]; new general online estimation methods for advanced BMSs [33].
Moreover, the data-driven paradigm has been used to improve fault detection [34, 35, 36], charge
management [37, 38], thermal management [39] and so much more: from materials development
based on atomistic principles [40] to techno-economic analysis [41, 42, 43, 44] and approaches
to recycling [45].

Batteries are subjected to a wide range of operating conditions in turn influencing their per-
formance, and thus, data covering these conditions is fundamental to the design and validation of
accurate models. Physics-based and empirical models, often used in the BMS or ‘in the cloud’
with new ‘digital twin’ approaches [18, 46], require careful calibration of model parameters; and,
machine learning and statistical based approaches require large amounts of data for training and
perform poorly when predicting ‘out of distribution’ (in circumstances which differ greatly from
those present in the data used to train the models). Within their vast scope of deployment, bat-
teries undergo application specific degradation: the demands placed on an electric vehicle (EV)
battery – periods of high, varying, load followed by extended rest – are quite different from those
placed on powertools, laptops, cellphones, stationary energy storage, aeroplanes or satellites. For
this reason, application specific data is needed and we bring attention to this in our discussion.

Well formatted and easily accessible public datasets will bring ‘fresh eyes’ to problems. Not
everyone has access to a Lab to run experiments or the funds required to purchase data. Data that
remains local to its generating lab can be leveraged only by a tiny fraction of a wide community
of experts. The benefits of public data are numerous: researchers performing experiments gain a
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reference for their design and new insights into their data as other researchers with cross-domain
expertise employ it; modellers and industry profit greatly from the ability to validate results and
speed up discovery on public data; and, the barrier to entry is lowered for those new to an area.
More data means more research and research is essential for economic growth, job creation and
societal progress [47].

The main contribution of this work is to provide an actionable summary of publicly avail-
able lithium-ion battery data, giving particular attention to explored test variables and provided
data. With this information, we hope to inform future research and experimental design, and
encourage the sharing of new, accessible and well formatted datasets. To assist the reader, at
the end of the main sections we provide tables summarising the presented datasets by cell, test
variables, given data and number of cells with hyperlinks.

This work is organised as follows. The accessible testing data is categorised in Section 2
according to type and includes datasets available on request. Tools, libraries, platforms and a
perspective on current limitations are covered in Section 3. Section 4 contains the conclusion of
this review work and is followed by a nomenclature listing.

Links to data: All web links have been verified (at final submission). The links are given
with bibliographical number and direct hyperlinks attached to the word ‘URL’.

License: Datasets are provided under certain license attributions mainly according to Cre-
ative Commons [48, URL], the Open Database License [49, URL] and the Database Contents
License [50, URL]. We refer to the supplementary material Section 1 for a summary description
of the shorthand nomenclature.

Reference for 18650 type cells: Where full cell descriptions for a dataset were not given by
the generating authors we refer to the resource [51, URL] which provides an extensive reference
for the identification of 18650 type batteries.

2. Where is the Data?

Historically, interest in different cell chemistries, testing conditions and procedures evolved
reflecting the technological improvements batteries underwent. The first significant public bat-
tery dataset can be traced back to 2008 published by NASA [52]. As new battery chemistries
appeared, the interest shifted from lithium iron phosphate (LFP) to lithium nickel manganese
cobalt oxide (NMC) and lithium nickel cobalt aluminium oxide (NCA) batteries. Both NMC and
NCA chemistries are better suited for power tools, e-bikes and other electric powertrains as they
offer higher specific energy, reasonably good specific power and long lifespan. In Fig.1, a hier-
archical architecture of existing battery datasets across time is given. The number of cells tested
and the variety of testing variables explored has increased with growing interest in data-driven
techniques and a desire to understand more complex interactions.

Cell chemistry, number of tested cells and testing conditions are key to determine the use-
fulness of a specific battery dataset. We provide a comprehensive examination of the available
datasets, in particular, highlighting these three elements.

2.1. Cycle ageing data
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Fig. 1: Hierarchical architecture of the existing battery datasets from an historical point of view.

The generation of cycling data from the beginning to the end of a battery’s life requires
a significant investment of time and resources spanning many months or years. Experiments
are run to investigate the influence of in-cycle factors (charging current, discharging current,
temperature and DOD) on the capacity retention and (sometimes) rise in the internal resistance
of batteries. Typically, cycle ageing datasets include in-cycle measurements of current, voltage
and temperature, and per-cycle measurements of capacity and IR or impedance. Models are
then developed according to the recorded cycling dataset to, among other things, predict future
capacity retention, internal resistance growth and other health metrics. An overview of the typical
recorded data and modelling pipeline for cycling (in particular, high-throughput) degradation
datasets is illustrated in Fig.2.

We prioritise in this section datasets with multiple cells, frequent in-cycle measurements and
labs with multiple datasets. Smaller datasets (with only a few cells) and datasets without any
in-cycle measurements are left to the end of this section (section 2.1.8). The reader is invited to
consult Table 2, at the end of the section, for an overview of the datasets discussed here.

2.1.1. National Aeronautics and Space Administration

NASA hosts two high-throughput battery datasets on their website [53, URL] totalling 62
cells. We provide here a brief description of the datasets, for a full cell-by-cell experimental
description see the ‘ReadMe’ file accompanying the datasets.

The first of these datasets ‘Battery Data Set’ [10] contains data for 34 Li-ion 18650 cells
with a nominal capacity of 2Ah (we were unable to confirm the chemistry of these cells). This
dataset was also the first publicly available battery dataset and has had a profound impact on
the field; Table 1 summarises representative research work drawing on this dataset, giving a
glimpse at its influence. Cells were cycled in a range of ambient temperatures (4◦C, 24◦C,
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Fig. 2: The typical plots of a high-throughput cycling dataset encompassing measured terminal current,
voltage and temperature variations. Capacity, IR, voltage and temperature can then be used for the ageing
analysis.

43◦C), charged with a common CC-CV protocol and with different discharging regimes. The
dataset includes in-cycle measurements of terminal current, voltage and cell temperature, and
cycle-to-cycle measurements of discharge capacity and EIS impedance readings. The dataset is
provided in ‘.mat’ format under a double-attribution license1. The experiments were ended when
cell capacity fell below 30% or 20% of nominal capacity.

The second dataset hosted by NASA, the ‘Randomised Battery Usage Data Set’ [9], contains
data for 28 lithium cobalt oxide (LCO) 18650 cells with a nominal capacity of ∼2.2Ah. The cells
in this dataset were continuously operated. The dataset consists of 7 groups of 4 cells each group
cycled at a set ambient temperature (room temp, 40◦C); for 5 of these groups the cells were CC-
charged to a fixed voltage and then discharged with currents selected at random from the group’s
discharge distribution table (7 different regimes). The other two groups were randomly charged
and discharged. The dataset includes in-cycle measurements of terminal current, voltage and cell
temperature, and measurements of discharging capacity and EIS impedance readings at 50 cycle
intervals. The dataset is provided in a ‘.mat’ format and measurements appear to have been taken
until the cells reached between 80% to 50% SOH.

1As per the NASA description: ‘Publications making use of databases obtained from this [the NASA] repository are
requested to acknowledge both the assistance received by using this repository and the donors of the data.’
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Category SOH estimation and RUL pre-
diction

Health prognostics and fault di-
agnostics

Battery modelling Algorithms introduction and
comparison

Ref [54, 55, 56, 57, 58, 59, 60] [61, 62, 63] [64, 65] [66]

Table 1: NASA dataset repository: Related papers and the corresponding research conducted. (See addi-
tionally Supplementary material Table 3 for full details.)

2.1.2. Centre for Advanced Life Cycle Engineering

The Centre for Advanced Life Cycle Engineering (CALCE) battery group has carried out
substantive cycling tests for a diverse range of LCO/graphite cells. These datasets are hosted on
their website [67, URL] – publications using the data should cite the corresponding CALCE arti-
cle(s). Data is grouped by cell specification and not all data for a given specification comes from
the same publication. We provide here a brief description of the datasets, for a full experimental
description see the description on the website and the associated papers.

CALCE hosts data for 15 LCO prismatic CS2 cells grouped by experimental conditions (and
publication) into ‘Type-1’ to ‘Type-6’. ‘Type-1’ and ‘Type-2’ accompany one paper [68] and
‘Type-3’ to ‘Type-6’ another [69]. Type-1’ consists of four 0.9Ah cells, ‘Type-2’ of four 1.1Ah
cells and ‘Type-3’ to ‘Type-6’ each contain between one and two 1.1Ah cells. The cells appear
to have been cycled at room temperature (23◦C) and the experiments investigate different depths
and ranges of partial charge and discharging, with a variety of C-rates. The dataset provides
the cell cycler logs in Excel or ‘.txt’ format containing measurements of current, voltage, dis-
charge/charge capacity and energy, internal resistance and impedance. For each cell there are
multiple files each containing the data for multiple cycles; the files are named according to the
date at which they were recorded and, in our opinion, a significant amount of pre-processing
is required to use this dataset. The data was recorded until batteries had (at least) passed their
end of life (EOL), 80% SOH, with less than 200 cycles of data for the ‘Type-1’ batteries and
approximately 800 cycles for the other cells.

The second set of cells tested by CALCE are 12 LCO prismatic CX2 cells with a rated
capacity of 1.35Ah. Which, similarly to the CS2 cells, are grouped into ‘Type-1’ to ‘Type-6’.
‘Type-1’ and ‘Type-2’ (four cells each) were cycled in the same way as ‘Type-1’ of the CS2 cells
[70]. The other four groups each have a single cell cycled with a variety of charge/discharge
protocols; one of the cells was cycled at a range of temperatures (25◦C, 35◦C, 45◦C, 55◦C). The
datasets are provided in the same format as the CS2 data with the same measurements.

In subsequent battery experiments [13], the group examined the influence of different depths
of discharge (DOD) and discharging current stresses on the ageing of pouch cells: testing 16
LCO 1.5Ah pouch cells in a ‘semi-temperature controlled’ room (25±2◦C) [13]. The dataset is
grouped by DOD and discharging protocol, provided in ‘.mat’ format, containing cycler voltage,
current and charge/discharge capacity data for between 400 and 800 ‘equivalent cycles’.

2.1.3. Toyota Research Institute in partnership with MIT and Stanford

In partnership with MIT and Stanford, the Toyota Research Institute (TRI) has published
two substantial and easy to use high-throughput cycling datasets. Combined, these datasets con-
tain data for 357 (= 124 + 233) commercial LFP/graphite cells manufactured by A123 Systems
(APR18650M1A) with a rated capacity of 1.1Ah. These two datasets are hosted online [71,
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URL], with accompanying experimental descriptions, under ‘CC BY 4.0’2. The datasets are pro-
vided in ‘.csv’, MATLAB struct and (second dataset only) JSON struct formats and a link to a
GitHub repository with initial scripts is provided with the data. We point to the file structure of
these datasets as a reference for future work: organised by cell→ cycle→ recorded data. Papers
utilising the data should cite the appropriate publication.

The first of these datasets [6] (124 cells) was designed to explore the influence of fast charging
protocols on cell ageing. Each cell was cycled with one from a range (72 different profiles) of
one or two step fast charging protocols and a common CC-discharge protocol. The cells were
cycled in a temperature controlled environment (30◦C). Data was logged from cycle 2 until a
cell reached its EOL (80% SOH) – between 150 to 2300 cycles. The dataset contains in-cycle
measurements of temperature, current, voltage, charge and discharge capacity, as well as per-
cycle measurements of capacity, internal resistance and charge time. The data is split into three
batches corresponding to three blocks of experiments carried out separately. In the accompanying
paper [6] a feature based model is built on data from the first 100 cycles to predict the EOL. Since
the dataset’s release, numerous other papers have been published working with this data.

The second of these datasets [72] (233 cells) builds on the first: designing an approach to
quickly optimise fast charging protocols. Again, cells were cycled in a temperature controlled
environment (30◦C) with a common discharging protocol. The dataset is split into five batches
of between 45 and 48 cells each; these batches were tested sequentially: for the first batch one of
224 different six-step charging protocols was chosen at random for each cell, the cells were tested
for 100 cycles and then a model (trained on previously collected data) was used to predict the
EOL based on this data. This prediction was used to inform the selection of charging protocols
for the next batch of cells. This was repeated with the first four batches; the final batch was then
tested until past the EOL comparing the selected optimal charging protocols with several other
protocols. The dataset contains the same readings as the first dataset of 124 cells [6] except for
the exclusion of IR readings. An attempt has been made to recover this missing data [32] where
the IR has been predicted with a CNN model trained on the first dataset; this predicted IR data
can be found online [73, URL].

2.1.4. Sandia National Lab

The Sandia National Lab has performed testing for three chemistries of 18650 form cells:
‘LFP from A123 Systems (APR18650M1A, 1.1Ah), NCA from Panasonic (NCR18650B, 3.2Ah),
and NMC from LG Chem (18650HG2, 3Ah)’ [11]. In total there are 86 cells (30 LFP, 24 NCA
and 32 NMC). The data from this study has been made available on the Battery Archive website
[74, URL] – see Section 3.1 below. The data is shared under a double attribution license and on
the website is denoted by the ‘SNL’ keyword. The experimental description is available on the
Battery Archive page and in the relevant publication [11]. The cells were cycled at a range of
temperatures (15◦C, 25◦C and 35◦C) with different DODs (0-100%, 20-80% and 40-60%) and
discharge currents (0.5C, 1C, 2C and 3C); at least 2 cells from each chemistry were cycled in
each combination of temperature, DOD and discharge current (12 groups) apart from the 3C dis-
charge for the NCA cells. All cells were charged with a fixed rate of 0.5C. The cells were cycled
until reaching their EOL (80% SOH) – at the time of publication cycling was still ongoing. The

2To avoid confusion with Constant Current (CC), we add quotation marks when referring to a Creative Commons
License.
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dataset contains in-cycle measurements of current, voltage, temperature and energy (Wh), and
per-cycle measurements of charged/discharged capacity (bottom to top of DOD range) and other
summary statistics. Periodically (roughly every 3% capacity loss), EIS measurements were taken
measuring the full capacity of the cell. The data is provided in ‘.csv’ format

2.1.5. Battery Intelligence Lab at the University of Oxford

The Battery Intelligence Lab at the University of Oxford hosts several battery degradation
datasets on their homepage [75, URL]. We review here the ‘Path dependence battery degradation
dataset’ [16] which is made of three parts. The files are provided under ‘.mat’ format and all are
licensed under Open Data Commons’ ODbL v1.0 & DbCL v1.0 license. The dataset parts can
be found as follows: Part 1 [75, URL] or [76, URL]; Part 2 [77, URL]; and Part 3 [78, URL].

The 3-year long project [16], spanning 2017-2020, studied ageing ‘path dependence’ of Li-
ion cells by subjecting them to combined load profiles comprising fixed periods of calendar and
cyclic ageing. The path dependence phenomena reflects the ageing sensitivity of cells to the
order and periodicity of calendar ageing and cyclic ageing. The study analysed 28 commercial
3Ah 18650 NCA/graphite cells (NCR18650BD). The dataset is provided in 3 parts (Part 1, 2 &
3) with the 28 cells split among ten groups (9 groups of 3 cells; 1 group of 1 cell), all tested at
24◦C. We provide a small breakdown for reference and point to the informative ‘ReadMe’ files.
The data provided includes time, current, voltage, capacity and temperature, and the RPT and
EIS testing data.

Group 1-4, 3 cells per group, were aged through cycling at a low C rate (C/2 and C/4) fol-
lowed by 5 or 10 days of calendar ageing with RPTs run every 48 cycles. The first 18-months
of experimental data is presented in ‘Part 1’ with months 19-36 presented in ‘Part 2’. Additional
to cell Groups 1-4, in Part 2 one finds Group 5 & 6 as control experiments. The cells of Group
5 are exposed to continuous C/2 cycling while Group 6 is exposed only to calendar ageing (at
90% SOC). Group 7-10 are presented in the dataset’s ‘Part 3’ and parallels Group 1-4. Here,
each group is cycled with CC-CV profiles then 5 or 10 days of calendar ageing. Reference per-
formance tests (RPT) and EIS tests are used periodically to characterise the cells to differentiate
the influence of different storage times and C-rates on battery degradation.

2.1.6. Hawaii Natural Energy Institute

Researchers from the Hawaii Natural Energy Institute (HNEI) investigated the variability of
cell degradation across 51 cells through cycling [79]. Data for 15 of these cells is shared on the
Battery Archive website [80, URL] (denoted by ‘HNEI’ dataset). These 15 cells are commercial
2.8Ah NMC-LCO/graphite 18650 cells (LG Chem, model ‘ICR18650 C2’). The cells were
cycled with fixed 1.5C discharge and C/2 charge protocols at 25◦C for ∼1000 cycles. The dataset
contains in-cycle measurements of current, voltage and charged/discharged capacity and energy,
and per cycle measurements of charge/discharge capacity. Roughly every 100 cycles RPTs were
run which are also present in the data. Files are in ‘.csv’ format and shared under ‘CC BY 4.0’
plus ‘source attribution’ to Battery Archive. Additional experimental details and cell summary
statistics (e.g. initial cell weight and received SOC) can be found in the accompanying paper
[79].
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2.1.7. EVERLASTING project

The recent European Commission funded project ‘Electric Vehicle Enhanced Range, Life-
time And Safety Through INGenious battery management’ (EVERLASTING) [81, URL] has
published several battery related datasets on the ‘4TU.ResearchData’ website [82, URL]. Of par-
ticular interest are the three datasets connected with the technical report produced by the project
[83]. The report explores ageing from three different angles: drive cycle, calendar and CC-CV
ageing at a range of temperatures; the datasets are described in the relevant sections of our paper.

Of these datasets, one experiment ‘Lifecycle ageing’ was carried out to investigate the in-
teractions between temperature, charge/discharge C-rates and capacity loss. These experiments
were performed on 28 Li-ion 18650 3.5Ah commercial cells for a range of temperatures (0◦C,
10◦C, 25◦C and 45◦C), discharge C-rates (0.5C, 3C) and charge C-rates (0.5C, 1C). Two cells
were tested at each possible pairing of temperature/charge-rate and temperature/discharge rate
(except for 0◦C discharge). All ‘charge’ (‘discharge’) experiments had a common discharge
(charge) profile. The data is hosted separately grouped by temperature (0◦C and 10◦C) [84,
URL] and (25◦C and 45◦C) [85, URL]. The provided data is in ‘.csv’ format with cycler logs
(including voltage, current, charge/discharge capacity and energy) from characteristic cycles run
roughly every two months – it is unclear if the data is complete.

2.1.8. Others

The Karlsruhe Institute of Technology (KIT) provides cycling data for 4 battery packs each
consisting of 11 NMC/graphite 40Ah cells on their website [86, URL] (under ‘CC BY 4.0’). The
batteries were cycled, at room temperature, in series with a range of charge/discharge profiles
(detailed in the relevant paper [8]). The dataset provides high frequency (cell-by-cell and battery
wise) measurements of voltage, temperature and inverter current/voltage for each of the tested
charge/discharge profiles. The dataset is provided in well structured folders with ‘.csv’ files and
a starter MATLAB script.

Provided on the University College London (UCL) data website [87, URL] is cycling data for
a single 3.5Ah LG Chem NCA INR18650 MJ1 cell, given under ‘CC0 1.0’. The cell was cycled
according to the manufacturers recommendations in a fixed ambient temperature (24◦C) for 400
cycles [88]. The dataset provides in-cycle measurements of temperature, voltage and capacity,
and per-cycle measurements of charge/discharge capacity, given in ‘.csv’ format.

Berkeley provides data from a single Sanyo 18650 3.7V 2.6Ah LCO/graphite cell on the
Dryad Data website [89, URL] (under ‘CC BY 4.0’). The cell was cycled with a variety of
non-standard fast charging protocols. The dataset contains in-cycle measurements of voltage,
current, temperature and charge/discharge capacity for 46 consecutive cycles and is provided in
‘.csv’ format.

Researchers from Xi’an Jiaotong University [90, 91] deploy the Coulomb counting method
in combination with data-driven techniques to propose methods for SOC calibration and esti-
mation. Both works use the same cycling data for battery cells under a regime of fast capacity
degradation. The cells full physical description is found in the relevant paper [90, Table 1]. To
summarise, two lithium-ion pouch cells with chemistry NMC/graphite and nominal capacity of
27Ah were cycled from new until reaching 80% capacity. The cells were cycled with a CC-CV
charge and CC discharge followed by a 30min relaxation period between cycles; the chamber’s
temperature was fixed at 40◦C and a total of about 400 cycles is recorded. The full cycling data
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and description file can be found in the paper’s supplementary material [90] and it is unclear
under which sharing license it is offered. However, provided separately [92, URL] under ‘CC0
1.0’ are the first 100 cycles of data (in ‘.xlsx’ format). The experimental data recorded is: battery
voltage, current, charging/discharging capacity and energy.

Diao et al. [12] provide a dataset considering the influence of ambient temperature, discharg-
ing current stress and cut-off points of charging current for CC-CV cell ageing. This dataset
is hosted on the Mendeley data platform [93, URL] and shared under ‘CC BY-NC 3.0’. In the
experiment, 192 LCO/graphite pouch-type 3.36Ah cells were tested using the above three stress
factors. The dataset contains capacity measurements taken at 50 cycle intervals, is given in ‘.mat’
format and only 182 of the 192 cells appear to be listed.

Researchers at Poznan University of Technology provide data for 28 Samsung NMC/carbon
2.6Ah 18650 cells on the Mendeley data platform [94, URL] (under ‘CC BY 4.0’). The cells were
cycled at a variety of temperatures, DODs and charging/discharging currents until reaching 80%
SOH. The dataset consists of ‘learning data’ from 28 cells containing summary measurements
of ambient temperature, discharging current, DOD, average charging current and number of
equivalent cycles for cells at a range of SOH values (9 measurements from 100% to 80% SOH),
given in ‘.xlsx’ format. This data was used in the paper [14] to train several models to predict
the cell’s current SOH.

Lastly, we mention data, shared by researchers at the University of Oviedo under ‘CC BY
4.0’, for two LFP pouch cells [95, URL]. The cells were tested at room temperature (23◦C) for
a single full charge/discharge cycle at a constant current rate of C/25 [96]. The dataset contains
voltage, current and temperature readings, from the charge/discharge cycle, sampled every 2s for
a total experimental time of 60 hours (details can be found in the associated paper [96, Section
5]).
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Location Paper Cell Test variables Data given No. of
with weblink Ref (form size chemistry) cells

NASA [53, URL] [10] 18650 2Ah (?) Dhrg, T Q, IR, V, I, T 34
[9] 18650 2.2Ah LCO Chrg, Dhrg, T Q, IR, V, I, T 28

CALCE [67, URL]
[68, 70] prismatic 1.1Ah LCO Chrg, Dhrg Q, IR, E, V, I, T 15
[68, 70] prismatic 1.35Ah LCO Chrg, Dhrg, T Q, IR, E, V, I, T 12

[13] pouch 1.5Ah LCO Chrg, DOD Q, V, I 16

TRI [71, URL] [6] 18650 1.1Ah LFP/gr Chrg Q, IR, V, I, T 124
[72] Chrg Q, V, I, T 233

Sandia [74, URL] [11] 18650 multiple Dhrg, DOD, T Q, E, V, I, T 86

Oxford [75, URL] [16] 18650 3Ah NCA/gr Chrg, Cal Q, E, V, I, T 28

HNEI [80, URL] [79] 18650 2.8Ah NMC-LCO/gr – Q, E, V, I 15

EVERLASTING [83] 18650 3.5Ah NCA/gr Chrg, Dhrg, T Q, E, V, I 28[84, URL] [85, URL]

KIT [86, URL] [8] — 40Ah NMC/gr Chrg, Dhrg V, I, T 44
UCL [87, URL] [88] 18650 3.5Ah NCA/gr – Q, V, T 1

Berkeley [89, URL] – 18650 2.6Ah LCO/gr Chrg Q, V, I, T 1
Xi’an Jiaotong [92, URL] [90, 91] pouch 27Ah NMC/gr – Q, E, V, I 2

Diao et al.[93, URL] [12] pouch 3.36Ah LCO/gr Chrg, Dhrg, T Q 192
Poznan [94, URL] [14] 18650 2.6Ah NMC/carbon Chrg, Dhrg, DOD, T Q, I, T 28

Table 2: Overview of cycle ageing datasets. ‘gr’ stands for ‘graphite’, ‘Cal’ denotes calendar ageing, ‘Chrg’ charge protocol and ‘Dhrg’ discharge, ‘E’
denotes ‘energy’. Here, we use ‘IR’ to denote both internal resistance and impedance. No ‘test variables’ indicates that all cells in the experiment were
cycled in the same way.
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2.2. Drive cycle data

Energy is required to propel an automobile. With a conventional internal combustion en-
gine the combustion of fossil fuels, converted to mechanical energy, drives the vehicle forward.
However, with global concern surrounding greenhouse gas levels there is an urgent push for the
automobile industry to reduce carbon emissions. For this reason, standardised testing procedures
capturing the dynamic power demands of driving are indispensable: allowing the relative effi-
ciency and performance of engines to be compared. These standard test procedures are referred
to as driving cycles.

A driving cycle is a standardised dynamic vehicle drive schedule encoded by a velocity-time
table/profile. The velocity and acceleration are pre-scheduled per time step, and thus the required
mechanical power is a function of time. The integral of mechanical power over the duration
of the driving schedule represents the total energy required for a specific driving cycle. For
electric vehicles the battery system generates this required mechanical energy. Datasets collected
by cycling batteries according to the drive schedules can be used to compare the efficiency of
EVs with traditional vehicles and to test the performance of derived battery models and SOC
estimation algorithms under realistic conditions.

The globally recognised driving cycle tables can be divided into three groups: European driv-
ing cycles, US driving cycles and Asian (Japanese, Chinese -Beijing) driving cycles [97, 98]. For
example, the Urban Dynamometer Driving Schedule (UDDS) [99] is commonly used for ‘city-
based EV driving cycle tests’ representing light-duty city driving conditions. US06 represents
an aggressive driving cycle with high engine loads. The european drive cycle ARTEMIS [100]
contains 12 driving cycles that range across several driving conditions: congested urban, free-
flow urban, secondary roads, main roads and motorways. The Highway Fuel Economy Driving
Schedule (HWFET) is used to describe cars cruising under 60mph on a highway. And, the Air
Resources Board LA92 dynamometer driving profile was developed to depict a driving cycle
with higher top and average speed, lower idle time, fewer stops per mile and a higher maximum
rate of acceleration when compared with UDDS.

An overview of driving cycle data reviewed in this section can be found in Table 5.

2.2.1. University of Wisconsin-Madison & McMaster University

The battery research group at the University of Wisconsin-Madison offers a battery testing
dataset covering four typical driving cycles: US06, HWFET, UDDS and LA92. The dataset,
published on the Mendeley data website [101, URL] (under ‘CC BY 4.0’), contains data from a
single 2.9Ah NCA Panasonic 18650PF cell. The cell was cycled according to the above driving
cycles and an additional ‘neural network driving cycle’ systematically through a range of tem-
peratures (25◦C, 10◦C, 0◦C, -10◦C, and -20◦C, in that order). A full experimental description
can be found in the accompanying ‘ReadMe’ file. The dataset includes characterisation data
from Hybrid Power Pulse Characterisation (HPPC) and EIS tests, and in-cycle measurements
from the driving cycles including voltage, current, capacity, energy and temperature. The data is
presented in ‘.mat’ and ‘.csv’ files with a well structured format sorted by temperature, test type
and drive cycle.

The same group, but operating at McMaster University, provides another driving schedule
test dataset for a series of battery tests carried out for a single 3Ah LG Chem INR18650HG2
NMC cell [102, URL]. The cell was cycled at six different ambient temperatures (40◦C, 25◦C,
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10◦C, 0◦C, -10◦C, and -20◦C) according to the same mix of drive cycles as the Panasonic cell.
The dataset contains the same data as for the Panasonic cell (in a similar format) with the addition
of ‘prepared data’ which has been processed in order to train and test a provided SOC estimator.

The above two driving cycle datasets, hosted by University of Wisconsin-Madison and Mc-
Master University, provide a benchmark for driving cycle tests and are at the heart of crucial
contributions in the development of SOC estimation algorithms and battery models; some of
these works are reviewed in Table 3 and Table 4.

Category Ref Detail

SOC estimation [103] This paper introduces a data-driven approach for State of Charge (SOC) estimation of Li-ion batteries using a
Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM).

[104] This paper proposed a stacked bidirectional LSTM neural network for SOC estimation of lithium-ion batteries.

Battery modelling [105] In this paper, the potential of applying advanced machine learning techniques to model lithium-ion batteries is
explored. Rather than using the more common ECM and physics-based models, a data-driven approach is used to
build battery models.

[106] In this paper, ECMs of lithium-ion batteries are built to capture various the electrochemical properties of the battery.
The ECMs are validated by a series of five automotive drive cycles performed at temperatures ranging from -20◦C
to 25◦C.

Table 3: Panasonic 18650PF Li-ion Battery Data: Related paper and the corresponding research conducted.

Category Ref Detail

SOC estimation [107] This paper introduces a data-driven approach for State of Charge (SOC) estimation of Li-ion batteries using a
Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM).

[108] This paper proposed a stacked bidirectional LSTM neural network for SOC estimation of lithium-ion batteries.

Table 4: LG 18650HG2 Li-ion Battery Data: Related paper and the corresponding research conducted.

2.2.2. Others

Researchers from the University of Science and Technology of China (USTC) have explored
the co-estimation of model parameters and SOC for batteries and ultra-capacitors [109]. The data
accompanying this research has been shared in the journal ‘Data in Brief’ [110, URL] along with
an experimental description, under ‘CC BY 4.0’. A lithium battery pack (LFP-1665130-10Ah,
produced by Fujian Brother Electric CO., LTD of China – 4 prismatic cells in series) and an ultra-
capacitor (BCAP3000 P270 2.7V/3.0Wh, produced by Maxwell Technologies, Inc.) were each
cycled once according to two different driving cycles (DST and UDDS) at room temperature. The
dataset, provided in ‘.xlsx’ format, contains per second measurements of current and voltage for
the battery and ultracapacitor during the two drive cycle profiles.

The EVERLASTING project provides two drive cycling datasets both shared under ‘CC BY-
NC 4.0’. The first of these datasets [111, URL] contains data for two battery modules each
built from 16 NCA/graphite 3.5Ah LG Chem INR18650 MJ1 cells. The modules were cycled
at a variety of temperatures according to an ‘adapted real driving profile’. The dataset contains
in-cycle measurements of pack voltage, current, charge/discharge capacity, ambient temperature
and per-cell temperature. The second of these datasets, described in the EVERLASTING report
[83], contains data for 16 NCA 3.5Ah LG Chem INR18650 MJ1 cells cycled according to a
recorded city drive profile for two DOD ranges (70-90% and 10-90%) and at a variety of tem-
peratures (0◦C, 10◦C, 25◦C and 45◦C) – 2 cells per combination. In addition, 2 cells were cycled
according to a recorded highway drive profile at 25◦C (10-90% DOD). This dataset is stored in
two locations according to temperature: (10◦C and 0◦C) [84, URL] and (45◦C and 25◦C) [85,
URL]. The datasets are both in ‘.csv’ format but with different information depending on the
temperature. The cells cycled at 25◦C and 45◦C include measurements of voltage, current and
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charge/discharge capacity and energy; whereas, the data for the cells at 0◦C and 10◦C has a
different file structure and additionally includes temperature readings.

The Oxford Battery Intelligence Laboratory provides the ‘Battery Degradation Dataset 1’
[112] on their website [75, URL], licensed under Open Data Commons’ ODbL & DbCL. This
dataset contains data for eight 740mAh lithium-ion pouch cells manufactured by Kokam (part
number SLPB533459H4). The cells were cycled at a constant ambient temperature (40◦C) using
a CC-CV charging regime and the ARTEMIS [100] driving cycle discharging profiles until their
EOL (80% SOH). The dataset is provided in ‘.mat’ format containing voltage, temperature and
discharge capacity (mAh) measurements. These measurements (taken at 10 minute intervals)
were recorded during characterisation tests performed every 100 cycles. A full experimental
description can be found in the PhD thesis of C. Birkl [112, Chapter 5.2].

The Institute for Power Electronics and Electrical Drives at Aachen University hosts drive cy-
cling data for 28 Samsung 18650 NCA/carbon+silicon cells with a nominal capacity of 3.4Ah on
their website [113, URL] (under ‘CC-BY-4.0’). The cells were cycled at a fixed ambient temper-
ature (25◦C) with a CC-CV charging regime and a recorded drive cycling discharge profile. The
dataset contains in-cycle measurements of voltage, current and temperature, and checkup tests
every 30 cycles with capacity, quasi open-circuit voltage (OCV) and pulse tests (at 80%, 50%
and 20% SOC). The dataset is provided in ‘.csv’ format and a detailed experimental description
can be found in the accompanying ‘MetaData’ file.

For completeness, we mention a dataset available to ‘IEEE DataPort’3 subscribers [114,
URL], under ‘CC BY 4.0’, containing data from simulated driving cycles composed accord-
ing to the Federal Test Procedure repository. We point the reader to the data description given on
their website.

Location Cell Test variables Data recorded No. of
with URL (form size chemistry) cells

Madison [101, URL] 18650 2.9Ah NCA cycle, T Q,V, I, E, T, EIS 1
McMaster [102, URL] 18650 3Ah NMC cycle, T Q,V, I, E, T, EIS 1

USTC [110, URL] prismatic 10Ah LFP cycle V, I 1

EVERLASTING 18650 3.5Ah NCA/gr
[111, URL] 16 cell modules T Q,V, I, T 2
[84, URL] [85, URL] 18650 3.5Ah NCA/gr cycle, DOD, T Q,V, I, E, T 18

Oxford [75, URL] pouch 0.74Ah — – Q,V, T 8
Aachen [113, URL] 18650 3.4Ah NCA/C+Si – Q,OCV, V, I, T 28

Table 5: Overview of Driving cycle data. ‘cycle’ here denotes the use of different drive cycle profiles, ‘E’
denotes ‘energy’. No ‘test variables’ indicates that all cells in the experiment were cycled in the same way.

3This dataset is not ‘public’ but we are aware that many readers may have IEEE memberships. We have not verified
the contents of this dataset.
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2.3. Characterisation data for cell modelling

The cycling performance of different lithium battery chemistries is varying and highly de-
pendent on operating conditions (temperature, current load, age). To evaluate the viability of
lithium batteries to a given application, features of battery performance such as the OCV-SOC
table, impedance and IR are necessary. These cycling features can then be used to model the
electrical dynamics and cycling performance of a battery. The experimental data collected for
this purpose mainly targets the short-term responses of current and voltage, and focuses on the
impedance variance at different battery SOC levels and temperatures.

2.3.1. In-cycle battery data

The CALCE battery group has piloted the research in terms of battery modelling and inter-
nal state estimation providing a series of baseline in-cycle datasets for cells from different types
of lithium batteries [67, URL] (under ‘attribution’ license). Two experiments, namely, low-
current OCV and incremental-current OCV, have been deployed to collect OCV for commercial
INR 18650-20R 2Ah NMC/graphite cells. The OCV dataset includes different OCV-SOC tables
achieved at three ambient temperatures (0◦C, 25◦C and 45◦C). Voltage responses under different
dynamic current profiles, such as, the Dynamic Stress Test (DST), Federal Urban Driving Sched-
ule (FUDS), US06 Highway Driving Schedule and Beijing Dynamic Stress Test, are provided
to test the accuracy of the proposed SOC estimation algorithms [115, 116] and analyse the de-
pendence of SOC estimation on OCV variations due to temperature [117]. Since the OCV-SOC
table is temperature-sensitive, further investigation has been conducted by CALCE battery group
providing a temperature-dependent OCV-SOC dataset for 2.23Ah A123 LFP/graphite cells. The
temperature-dependent OCV-SOC dataset is collected from low current OCV tests for a wide
range of temperatures spanning from -10◦C to 50◦C with an interval of 10◦C. Additionally, the
experimental data of DST and FUDS tests performed in the corresponding ambient temperatures
is available. All data is given in ‘.xlsx’ format and provided is the data from the OCV tests and
in-cycle data from the drive cycles (including voltage, current, charge/discharge capacity and
energy, IR and impedance).

In order to develop an advanced model which reproduces the thermal and electrical dynamics
of the battery, Planella et al. [118] at Warwick University tested the cycling behaviours of com-
mercial 5Ah LG INR21700 M50 NMC cells with a range of ambient temperatures (0◦C, 10◦C
and 25◦C) and C-rates (0.1C, 0.5C, 1C and 2C). In their experiments, four cells are tested per
specific C-rate and temperature. The dataset, along with experimental description and additional
scripts, is hosted on Github [119, URL] (under BSD 3-Clause License). The data is the cycler
logs given in ‘.csv’ format containing voltage, current, capacity, energy and temperature readings
from cycles run to compare the derived model with real data.

Few works have been conducted to test the discharging power behaviour of cells. One
publicly available dataset [120, URL], under ‘CC BY-NC 3.0’, has investigated the behaviour
of 4 types of 18650 Li-ion cells, produced by 4 different cell manufacturers (LG 18650-HB6
1.5Ah NMC, Panasonic NCR18650B 3.35Ah NCA , Shenzhen IFR18650 1.5Ah LFP and Efest
IMR18650 3.1Ah LMO – between 8 and 13 cells per manufacturer), at different constant power
discharge rates [121] and a constant ambient temperature (25◦C). In particular, the experiments
were designed to capture the available power response of cells at high (out of specification) cur-
rent loads. The provided data, given in ‘.csv’ and ‘.mat’ format, appears to contain cycler logs
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for each cell (spanning ∼6 hours) with voltage, current, temperature, charge/discharge capacity
and power measurements, however, no column headings or ‘ReadMe’ file are given.

2.3.2. Impedance Spectroscopy data

Applying electrochemical impedance spectroscopy (EIS) to measure the impedance of lithium
batteries is widely accepted in battery research [122]. EIS can separate the dependence of differ-
ent components by varying the frequency of applied AC currents. Allowing the contribution of
the solution resistance, charge transfer/polarisation resistance, double layer capacity, wire induc-
tance etc., to be interpreted from the measured responses. The EIS provides a tool to understand
and model the complicated non-linear electrochemical process occurring inside a battery. A
typical characterisation process for a lithium battery, using EIS measurements according to the
frequency domain analysis and modelling, can be found [123]; the frequency setting of EIS in-
puts are standard for most systems: ranging from 20mHz to 10kHz. In general, high-frequency
EIS responses are considered indicative of inductive behaviour and low-frequency responses in-
dicative of capacitive behaviour.

Fig. 3: A typical Nyquist plot: Battery characterisation using EIS measurements

As given in Fig. 3, the Nyquist representation of an impedance spectrum (acquired from
the lithium battery test) is used to fit an equivalent circuit model (ECM) – an ECM provides
a simplified battery model as a circuit of standard components whose parameters are fitted to
approximately replicate the measured response. The lithium Nyquist plot can, in general, be
divided into three parts based on the frequency responses. In the high-frequency segment the
inductive behaviour of wires is dominant, contributed to by the cables impedance, fittings, con-
nectors, cell tabs and current collectors. Over the middle-frequency segment the shape of the
Nyquist plot behaves like a depressed semi-circle, representing the charge transfer resistance and
double-layer capacitance, its shape affected by the temperature. For the low-frequency segment
the slower ion-diffusion process dominates the cell dynamics and measuring the resistance re-
sponse here takes longer to perform. In addition, this process can be influenced by many factors,
such as electrode material, porosity, operating temperatures, SOC and voltages. Typically, cell
capacitance has a very steep slope (around 90 degrees). As illustrated in Fig.3, at points the
frequency responses behave closely to those of a capacitor.

One of the largest broad-scale datasets of EIS measurements has been shared on the ‘zenodo’
platform [124, URL] (under ‘CC BY 4.0’) containing over 20,000 EIS readings collected from
12 Eunicell LR2032 45mAh LCO/graphite cells. The cells were cycled at a range of different
temperatures (25◦C, 35◦C and 45◦C) with multiple frequencies of EIS measurements taken at
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different SOC levels. The experiment was stopped when cells reached their EOL (80% SOH).
The dataset was recorded to accompany research exploring the prediction of RUL and SOH from
EIS data [31]. The provided data contains the EIS measurements (resistance, impedance and
phase at a range of frequencies) and, separately, measurements of capacity in ‘.txt’ format.

In Section 2.7 below, we refer to another EIS dataset [125] available upon request.

2.4. Calendar ageing

Calendar ageing ‘comprises all ageing processes that lead to the degradation of a battery cell
independent of charge-discharge cycling’ [15]. Such ageing is most pronounced in applications
where periods of idleness are longer than operation, such as with electric vehicles. It is argued
that calendar ageing may also play a role in cycle ageing studies where cycle depths and current
rates are low [126]. In this section we overview datasets dedicated to calendar ageing see Table
6 for an overview of the datasets.

Outside the battery cycling data, the CALCE group has also studied calendar ageing and a
dataset appears on their website [67, URL] (‘Pouch Cells: Storage Data and Test Description’):
144 LCO/graphite 1.5Ah pouch-type cells with three different initial SOC values (0%, 50% and
100%) were calendar aged at four different storage temperatures (-40◦C, -5◦C, 25◦C and 50◦C).
There are three testing groups, 48 cells per group, with capacity and impedance measurements
taken every 3 weeks, 3 months and 6 months, respectively. The dataset is provided in ‘.xls’ format
and contains the cycler data (current, voltage, charge/discharge capacity and energy, internal
resistance and impedance) from the periodic characterisation cycles.

Group 6 in ‘Part 2’ [127, URL] of the Oxford ‘Path dependence battery degradation dataset’
[16] contains the data of one single cell exposed to continuous calendar ageing at 90% SOC. We
do not provide further details here and refer the reader to the description given already in Section
2.1.5.

As part of the EVERLASTING project [81] (see Section 2.1.7) calendar ageing was per-
formed on several NCA/graphite 18650 3.5Ah LG Chem cells (model INR18650 MJ1). The
testing was carried out for a range of temperatures (0◦C, 10◦C, 25◦C and 45◦C) and the cells
were stored at OCV with different initial SOC levels (10%, 70% and 90%). The data shared
online does not appear to be complete; however, data for 2 cells stored at 25◦C [128, URL], 3
cells stored at 0◦C and 3 cells stored at 10◦C [129, URL] is available. The provided data is in
‘.csv’ format, shared under license ‘CC BY-NC 4.0’, and contains cycler data (voltage, current,
capacity and energy) from characterisation tests performed periodically.

Lastly, we refer the reader to Section 2.7 regarding ‘Data on demand’. We mention the
dataset made available by Dr Dhammika Widanalage (Warwick Manufacturing Group, Warwick
University (UK)) which contains many cells tested under calendar ageing.

2.5. Aeroplanes, satellites and energy storage

Beyond traditional cycling, calendar and drive cycle ageing, there are a few public datasets
containing battery cycle data from more specialist applications. We review here four datasets
relating to usage in aeroplanes, satellites and energy storage.
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Location Cell Test variables Data recorded No. of
with URL (form size chemistry) cells

CALCE [67, URL] pouch 1.5Ah LCO/gr SOC, T, time Q, IR, E, V, I 144

Oxford [127, URL] 18650 3Ah NCA/gr – Q, E, V, I, T 1

EVERLASTING 18650 3.5Ah NCA/gr SOC, T Q, E, V, I 8[128, URL] [129, URL]

Table 6: Overview of Calendar Ageing degradation data. Here, ‘time’ denotes the frequency at which
ageing was interrupted to take measurements.

2.5.1. Aeroplane usage battery data

Another NASA Ames Prognostics Data Repository [53, URL] dataset is the ‘HIRF Battery
DataSet’ [130]. It contains usage data from one single battery powering a small electric un-
manned aerial vehicle [54]. The data in provided in ‘.mat’ format under a double attribution
license (see Section 2.1.1) a ‘reference document’ is provided on the NASA website explaining
the file structure and experimental details.

Researchers from Carnegie Mellon University provide the ‘eVTOL Battery Dataset’ [131,
URL] (shared under ‘CC BY-NC-SA 4.0’). The dataset consists of discharge data from 22 Sony-
Murata 18650 3Ah VTC-6 cells cycled with simulated Electric Vertical Takeoff and Landing
(eVTOL) duties [132]. The data is provided in ‘.csv’ format and includes voltage, temperature,
current and charge/discharge capacity and energy measurements. The provided ‘ReadMe’ file
and corresponding paper [132] give a full experimental description. This dataset is the first of its
kind: providing public eVTOL data.

2.5.2. Simulated satellite operation profile battery data

The last dataset hosted by NASA [53, URL] that we report on is the ‘Small Satellite Power
Simulation Data Set’ [133]. The dataset is provided in ‘.mat’ format under a double attribution
license (see Section 2.1.1). It contains data for two BP930 batteries (off-the-shelf 18650 Li-ion
cells rated at 2.1Ah) run ‘continuously with a simulated satellite operation profile completion
for a single cycle’ – experimental description in the corresponding paper [134, Section IV].
Additional details and data descriptions can be found by consulting the ‘reference document’
provided on the NASA website.

2.5.3. Stationary energy storage

Researchers from the University of Oxford and ‘EnergyVill’, with data provided on the Ox-
ford Research Archive [135, URL], built a battery ageing model to serve a techno-economic
analysis for grid-connected batteries [41, 42, 43]. Six Kokam 16Ah lithium polymer cells (model
SLPB-78205130H) were aged following profiles corresponding to optimal trading strategies for
stationary batteries in the Belgian day-ahead market of 2014. Experimental details can be found
in the mentioned references and the PhD thesis of J. Reniers [42]. The cycling ageing tests were
performed for up to one year to record the entire battery degradation process from the beginning
of life to EOL. This dataset contains measured current, voltage and operating temperatures at
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∼200 second intervals, and monthly capacity measurements (details provided in ‘ReadMe’ file).
Files are given in ‘.csv’ format and the database is shared under both the ODbL v1.0 and DbCL
v1.0 license.

2.6. Synthetic data

Data driven approaches require data; thus, a lack of data is a significant barrier to their use.
The obvious solution of collecting more data, covering a wide range of operating conditions, is
expensive and time-consuming. Another approach is to use the available data to generate more
data. This can be achieved by perturbing the data (data augmentation) or by generating artificial
data. In this subsection we will review examples of the latter: producing so-called synthetic data
for battery cells. Synthetic data can enhance existing datasets improving the performance of
trained models and allowing for interpolation between cycling conditions not included in the ex-
perimental data. This interpolation step may be particularly important to data driven approaches
enabling prediction ‘outside the distribution’ of the experimental data.

Here, we briefly describe one approach [136] to generate synthetic current and voltage data.
For the generation of current curves a Markov chain approach can be used: transition probability
matrices are constructed from real EV cycling data and then by iterating through the matrices
(Markov chain propagation) synthetic current data can be obtained. From the generated current
profile ‘voltage cluster centroids’ (the average value of temporally local voltage clusters obtained
via k-means clustering) can then be predicted by a neural network trained on real data. These
clusters have been shown to provide an effective feature for the prediction of SOC [137].

A comprehensive synthetic diagnostic dataset containing more than 500,000 individual volt-
age vs. capacity curves has been generated alongside a prognostic dataset with more than 130,000
individual degradation paths for a commercial graphite based LFP battery [138]. The diagnostic
datasets [139, URL] and the prognostic dataset [140, URL] are both available on the Mendeley
data website under a ‘CC BY 4.0’ license. The data is given in ‘.mat’ format.

2.7. Data by request

Research projects are often subject to restrictions on the public release of generated datasets,
however, upon publication some authors make their data ‘available upon request’. This section
briefs on such works and the corresponding datasets.

We mention here research carried out at the University of Warwick (UK). Dr Dhammika
Widanalage, the principal investigator for the project, has provided us with the following de-
scription: ‘Warwick University (UK) has been conducting thorough ageing tests on a batch of
commercial LG M50 21700 cells (graphite/Si-NMC811). These tests consider two types of cell
ageing: calendar and cycling. The calendar ageing tests cover four different ambient tempera-
tures (0◦C, 25◦C, 45◦C, and 60◦C) and thirteen different initial SOC settings. Three cells were
tested for each combination of ambient temperature and initial SOC. The cycling ageing tests
consist of cells cycled at a variety of current C-rates for two low ambient temperatures (0◦C
and 10◦C); the cells were immersed in an oil bath for thermal management. For all experiments
(calendar and cycling) RPT were performed periodically to measure capacity losses, IR growth,
and to log the pseudo-OCV values. In detail, first the discharge capacity was measured by the
CC discharging protocol then the resistance at five different SOC levels (100%, 80%, 50%, 20%,
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5%) was measured using pulse charge/discharge HPPC tests. The RPT procedures were run ev-
ery four weeks for the calendar ageing tests and approximately every two weeks for the cycling
ageing tests.’ The above described experiments provide a comprehensive ageing dataset and set
a benchmark for future data collection. The ageing data can be used for the analysis, modelling,
prediction and tracing of ageing trajectories. Unfortunately, an external link to freely access the
data cannot be offered. However, the datasets and on-going research progress (corresponding
experimental cell data) are available for academic use, on request. If interested, please contact
Dr Dhammika Widanalage via email Dhammika.Widanalage@warwick.ac.uk.

Other researchers at the University of Warwick have performed an ageing investigation based
on EIS measurements for four NCA 18650 cells [141, 125]. Their EIS dataset has been deposited
onto the university data repository [142, URL] and is accessible by request. Additional research
manuscripts making use of datasets that remain private but whose authors point that the research
datasets are available by request are listed in Table 7. A fuller description of their data and ex-
perimental work is detailed in the works themselves and summarised in Supplementary material
Section 3 (expanding Table 7).

Applications Ref Data features

SOC/SOH estimation [143] real-word EV data; bulk datasets (300 EV & 400 HEV); battery pack health; NMC batteries; long-term test (over
12 months);used for big data analysis and machine learning method

[144] single cell tests (3 cells); SOC/SOH; statistical data-driven model fusion; 18650 LCO; DST and capacity tests

Battery modelling [145] a small batch of cells tested (51 cells/20 cells); cylindrical and pouch cells; NMC and NMC-LMO batteries; varied
temperatures and accelerated ageing tests; electrical/thermal/ageing modelling

[146] a few cells tested (27 cells); calendar ageing test; long-term tests (over one year); NCA batteries; varied temperatures
and initial SOC; calendar ageing modelling

Fault identification [36] 31 NMC cells; charge profiles (rate ranged from 4C-9C); data driven method; Li-Plating; 450 cycles; 30◦C test
temperature; capacity, end-of-charge rest voltage (EOCV), open circuit voltage (OCV), and Coulombic efficiency
(CE) were recorded

Capacity related early heath
prognostics/ RUL prediction

[147] a small batch of cells tested (35 cells); NMC batteries; early fault detection; real data collected on production lot
samples; data-driven methods

[148] a few of cells tested; varied temperatures; incremental capacity analysis; LFP, NCM capacity data

Table 7: Non-publicly available Battery Data: Related paper and the corresponding research conducted.
(See additionally Supplementary material Section 3.)

3. Data governance, repositories, tools and future outlook

Lithium batteries have been widely deployed and a vast quantity of battery data is generated
daily from end-users, battery manufacturers, BMS providers and other original equipment man-
ufacturers. Two elements are key in enabling the value of data: accessibility and ease of use.
If no one can find or understand a public dataset it has no value. And, much of the time spent
pre-processing data could be saved given a widely used standard publication format.

In this section, we review data platforms and online repositories that can be used to host data;
tools for data validation and processing; and community maintained living reviews

3.1. Data repositories and platforms

Data storage platforms provide a common and easily navigable location to find and (possibly)
share data. They also promote standardisation in data format and descriptions. We point here to
several repositories hosting public battery data.

• Scholarly usable, citable and freely accessible
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1. Battery Archive [80, URL]: Battery archive, developed at the City University of
New York Energy Institute, provides a free repository of battery testing data which
is easily searchable by cell chemistry, form, capacity and test variables. Different
datasets, shared by various institutions, have common file formats and the website
provides easy access to the data. We highlight their ‘rules for metadata’ section
proposing a common nomenclature to use for descriptions of cells and cycling con-
ditions.

2. DOE OE [149, URL]: The U.S. Department of Energy’s Office of Electricity (DOE
OE) has collaborated with two national labs, Sandia National Laboratories and Pa-
cific Northwest National Lab, to carry out battery research addressing energy storage
risk assessment and mitigation. Their website provides free access to the resulting
research data including abuse tests, cycling tests and EIS measurements.

3. NREL [150, URL]: The National Renewable Energy Laboratory is a national labo-
ratory of the U.S. Department of Energy’s Office of Energy Efficiency and Renew-
able Energy, operated by the Alliance for Sustainable Energy, providing free battery
datasets to aid in the development of cell models and tools to facilitate the deploy-
ment of renewable energy. Regarding their battery research, well-rounded testing
data encompassing the failure data collected from hundreds of abuse tests (nail pen-
etration, thermal abusing, and internal short-circuiting), ageing cycling data, driving
cycle data and other commercial oriented battery operating data (collected from EV
operation) has been provided.

• Public Digital data repositories
There are several curated data platforms that make research data discoverable, freely
reusable and citable. A non-exhaustive list of the publicly accessible data repositories
where battery data has been deposited is outlined as follows.

1. Dryad [151, URL]

2. Zenodo [152, URL]

3. European federation of data driven innovation hubs [153, URL]

4. Mendeley data centre [154, URL]

5. 4TU.ResearchData [82, URL]

6. Google Database [155, URL]

3.2. Community maintained reviews and standards

There are a few community maintained online resources listing publicly available battery
datasets. The approaches taken to curate such lists differ but represent a critical initial step
from the community to make public datasets more accessible and understandable. This review
includes, at the time of publication, the datasets in these referred community maintained re-
sources and several other datasets with corresponding descriptions. Researchers with knowledge
on where to find battery datasets are heartily invited to contribute to the living reviews listed
below.

• Community databases of publicly available battery datasets maintained by
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1. Dr. Valentin Sulzer (University of Michigan): [156, URL]
(by way of private communication, this resource is no longer maintained)

2. Dr. Bolfazl Shahrooei (Iranian Space Research Center): [157, URL]
(community maintained and active)

• Standards and identification references

1. BatteryStandards.info [158, URL]: Website containing information on around 400
standards for rechargeable batteries including: battery test standards across cate-
gories such as characterisation tests, safety tests, performance tests and requirements.

2. An extensive identification reference for lithium-ion Battery of size-type 18650 cov-
ering brand, model, capacity, chemistry, max charge/discharge and link to product
specification datasheet is presented in: [51, URL].

3.3. Data processing and validation tools

Battery cycling data is highly complex. Different cycling protocols, cycler manufacturers
and experimental configurations make it difficult to compare datasets and validate models. As a
result, several high quality open source packages have been created to perform data processing,
parsing and validation. We provide a non-exhaustive summary of available tools.

• Tools for data management and validation4

1. BEEP (Battery Evaluation and Early Prediction) [160, URL]: a package for pars-
ing and featurizing battery cycling data specifically geared towards cycle life predic-
tion [161].

2. cellpy [162, URL]: a package which parses Arbin cycler data and enables manipu-
lation of cycling data using pandas dataframes. In addition, it enables incremental
capacity (dQ/dV) analysis and the extraction of open circuit relaxation points.

3. impedance.py [163, URL]: a package for the analysis of electrochemical impedance
spectroscopy (EIS) data. Core functionality includes plotting experimental impedance
spectra, fitting impedance spectra to equivalent circuit models, computing and plot-
ting the impedance spectra of equivalent circuit models and validation of impedance
spectra using the Kramers-Kronig relations.

4. Bayesian Hilbert transform [164, URL]: Python implementation of [165] provid-
ing validation of EIS data via the Kramers-Kronig relation recast under a Bayesian
framework.

Lastly, we point to means of extracting numerical data from data visualisations, for instance,
the open-source software WebPlotDigitizer [166, URL]. Given an image of a plot the raw data
points are identified in a semi-automated manner. Numerical data is extracted based on the
identified data points and user-defined calibration points marked on the plot. Such an approach
has been used in [23] (with MATLAB’s GRABIT tool) to extract capacity fade curve data from
published work.

4The authors kindly thank J. Koeller [159] for his assistance in developing this list.
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3.4. Current limitations

Effective energy storage is critical. Improvements in safety, density and longevity mean
more reliable devices, vehicles requiring less frequent charging and replacement, and efficient
and long lasting stationary energy solutions. Currently, the communication of data between end-
users, manufacturers, distributors and providers is weak. Greater transparency in this aspect
would accelerate scientific progress in all areas. Fig.4 illustrates the wide ranging deployment of
batteries across industries.
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space devices 
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Fig. 4: Lithium battery sample applications.

Regarding the data reviewed in the manuscript, we failed to find many examples of ‘on field
data’ where the varying conditions of battery usage can be seen. Examples of such data would be:
data regarding aerospace applications either from the perspective of aeroplane electrification or
simply from satellite usage where batteries are a mission critical element; battery usage data for
energy storage systems (either at home-owner level or at the electric grid level); data regarding
electric heavy-duty vehicles (e.g., firetrucks or buses); data linking material science data to cy-
cling data or data connecting manufacturing to degradation; data that can be used to optimise the
cell selection process for the purpose of battery pack formation. Moreover, all the data reviewed
in this manuscript is from first life applications where the battery was tested from new. We have
not found any data on the so-called battery 2nd life where the battery, say, was redeployed from
a EV into a stationary application like grid energy storage. Lastly, left out of this study was a
review of data relating to abuse testing and data containing mechanical measurements. A repre-
sentative of the latter would be datasets that include mechanical measurements, e.g., cell dilation
or weight.

Battery testing is costly and lengthy, and this is unlikely to change: how can one understand
the life-cycle of a battery that lives for 10 years without carrying out 10 years of testing? A
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sub-problem in this context is the sparsity of recorded data, for example, cells are usually tested
within a (dotted) range of fixed temperatures and with fixed cycling conditions. These conditions
do not reflect the variability of real use. And, many approaches fall short when interpolating
between recorded data: how does one predict cell degradation at 25◦C from data recorded at
40◦C and 10◦C. Methodologies addressing this problem are beginning to emerge [29, 167].

From a holistic point of view, the publicly available datasets come in all shapes and sizes.
Files appear in ‘.mat’, ‘.txt’, ‘.csv’ or ‘Excel’ format (‘.mat’ and ‘.csv’ being the more common)
with wildly varying file structures: from raw cycler data – split by cycle, week, month or not
at all – to structured data with explanatory scripts and text to assist the user. From our under-
standing, there is a general lack of consensus on the way to present data. For instance, different
brands of cell cycling machines output data in different ways including varying nomenclature
for the same quantities. In this regard, we highlight again the open-source Python-based frame-
work BEEP (Battery Evaluation and Early Prediction) [160] for the management and processing
of high-throughput battery cycling data and the Battery Archive’s ‘Rules for Metadata’ section
[80] proposing a common nomenclature for the descriptions of cells and cycling conditions. In
the Author’s opinion, exemplary datasets for file format and description are those provided by
P. Kollmeyer in Section 2.2.1 and the Toyota Research Institute data in Section 2.1.3. We leave
a suggestion for any group sharing data: to provide a basic accompanying script (MATLAB or
Python) that plots the uploaded data (time series/EIS or capacity/resistance change) and text ex-
plaining file structure. This, on its own, would expedite the understanding of datasets; however,
there is a clear and greater benefit which could be gained from researchers adopting a uniform
file format.

4. Conclusions

Comprehensive battery datasets play a critical role for battery research both in academia and
industry. However, publicly available datasets are distributed sporadically as battery testing is
costly and lengthy. In this work, a review of the existing battery datasets in the public domain
is provided with a category-type break-down covering the testing regimes, cell specifications
and provided data. This informs a long view on the available datasets hinting at gaps in the
experimental space which in itself presents an opportunity for further work. Lastly, high-quality
open source packages for a variety of battery-related tools are also reviewed.

With this work we wish to convey two further messages,
1. the academic community is starved for research data, and

2. we strongly encourage any person or group (academic or industrial) to share their data.

Nomenclature

BMS Battery management system
CALCE Centre for Advanced Life Cycle Engineering
CC Constant-current
CC-CV Constant-current constant-voltage
CV Constant-voltage
DOD Depth of discharge
DOE OE U.S. Department of Energy’s Office of Electricity
DST Dynamic stress test

25



ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
EOL End of life
EV Electric vehicle
eVTOL Electric vertical takeoff and landing
FUDS Federal Urban Driving Schedule
HEV Hybrid electric vehicles
HPPC Hybrid power pulse characterisation
HWFET Highway Fuel Economy Driving Schedule
IR Internal resistance
LCO Lithium cobalt oxide (LiCoO2)
LFP Lithium iron phosphate (LiFePO4)
LMO Lithium ion manganese oxide (LiMn2O4)
NASA National Aeronautics and Space Administration
NCA Lithium nickel cobalt aluminium oxide (LiNiCoAlO2)
NMC Lithium nickel manganese cobalt oxide (LiNiMnCoO2)
OCV Open-circuit voltage
RPT Reference performance tests
RUL Remaining useful life
SOC State of charge
SOH State of health
UDDS Urban Dynamometer Driving Schedule
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