13 research outputs found

    Segmentation of nerve bundles and ganglia in spine MRI using particle filters

    Get PDF
    14th International Conference, Toronto, Canada, September 18-22, 2011, Proceedings, Part IIIAutomatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.National Institutes of Health (U.S.) (NAMIC award U54-EB005149)National Science Foundation (U.S.) (CAREER grant 0642971

    VTrails: Inferring Vessels with Geodesic Connectivity Trees

    Get PDF
    The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale. In this paper we present an end-to-end approach to extract an acyclic vascular tree from angiographic data by solving a connectivity-enforcing anisotropic fast marching over a voxel-wise tensor field representing the orientation of the underlying vascular tree. The method is validated using synthetic and real vascular images. We compare VTrails against classical and state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field as proof of concept. VTrails performance is evaluated on images with different levels of degradation: we verify that the extracted vascular network is an acyclic graph (i.e. a tree), and we report the extraction accuracy, precision and recall

    VTrails: Inferring vessels with geodesic connectivity trees

    Get PDF
    The analysis of vessel morphology and connectivity has an impact on a number of cardiovascular and neurovascular applications by providing patient-specific high-level quantitative features such as spatial location, direction and scale. In this paper we present an end-to-end approach to extract an acyclic vascular tree from angiographic data by solving a connectivity-enforcing anisotropic fast marching over a voxel-wise tensor field representing the orientation of the underlying vascular tree. The method is validated using synthetic and real vascular images. We compare VTrails against classical and state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field as proof of concept. VTrails performance is evaluated on images with different levels of degradation: we verify that the extracted vascular network is an acyclic graph (i.e. a tree), and we report the extraction accuracy, precision and recall

    Segmentation of nerve bundles and ganglia in spine MRI using particle filters

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 41-44).Automatic segmentation of spinal nerve bundles originating within the dural sac and exiting the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this thesis, we present an automatic tracking method for segmentation of nerve bundles based on particle filters. We develop a novel approach to flexible particle representation of tubular structures based on Bezier splines. We construct an appropriate dynamics to reflect the continuity and smoothness properties of real nerve bundles. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We evaluate the results by comparing them to expert manual segmentation, and we demonstrate accurate and fast nerve tracking.by Adrian Vasile Dalca.S.M

    Existing and Potential Statistical and Computational Approaches for the Analysis of 3D CT Images of Plant Roots

    Get PDF
    Scanning technologies based on X-ray Computed Tomography (CT) have been widely used in many scientific fields including medicine, nanosciences and materials research. Considerable progress in recent years has been made in agronomic and plant science research thanks to X-ray CT technology. X-ray CT image-based phenotyping methods enable high-throughput and non-destructive measuring and inference of root systems, which makes downstream studies of complex mechanisms of plants during growth feasible. An impressive amount of plant CT scanning data has been collected, but how to analyze these data efficiently and accurately remains a challenge. We review statistical and computational approaches that have been or may be effective for the analysis of 3D CT images of plant roots. We describe and comment on different approaches to aspects of the analysis of plant roots based on images, namely, (1) root segmentation, i.e., the isolation of root from non-root matter; (2) root-system reconstruction; and (3) extraction of higher-level phenotypes. As many of these approaches are novel and have yet to be applied to this context, we limit ourselves to brief descriptions of the methodologies. With the rapid development and growing use of X-ray CT scanning technologies to generate large volumes of data relevant to root structure, it is timely to review existing and potential quantitative and computational approaches to the analysis of such data. Summaries of several computational tools are included in the Appendix

    Particle Filtering Methods for Subcellular Motion Analysis

    Get PDF
    Advances in fluorescent probing and microscopic imaging technology have revolutionized biology in the past decade and have opened the door for studying subcellular dynamical processes. However, accurate and reproducible methods for processing and analyzing the images acquired for such studies are still lacking. Since manual image analysis is time consuming, potentially inaccurate, and poorly reproducible, many biologically highly relevant questions are either left unaddressed, or are answered with great uncertainty. The subject of this thesis is particle filtering methods and their application for multiple object tracking in different biological imaging applications. Particle filtering is a technique for implementing recursive Bayesian filtering by Monte Carlo sampling. A fundamental concept behind the Bayesian approach for performing inference is the possibility to encode the information about the imaging system, possible noise sources, and the system dynamics in terms of probability density functions. In this thesis, a set of novel PF based metho
    corecore