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Abstract. The analysis of vessel morphology and connectivity has an
impact on a number of cardiovascular and neurovascular applications by
providing patient-specific high-level quantitative features such as spatial
location, direction and scale. In this paper we present an end-to-end ap-
proach to extract an acyclic vascular tree from angiographic data by solv-
ing a connectivity-enforcing anisotropic fast marching over a voxel-wise
tensor field representing the orientation of the underlying vascular tree.
The method is validated using synthetic and real vascular images. We
compare VTrails against classical and state-of-the-art ridge detectors for
tubular structures by assessing the connectedness of the vesselness map
and inspecting the synthesized tensor field as proof of concept. VTrails
performance is evaluated on images with different levels of degradation:
we verify that the extracted vascular network is an acyclic graph (i.e. a
tree), and we report the extraction accuracy, precision and recall.

1 Introduction

Vessel morphology and connectivity is of clinical relevance in cardiovascular and
neurovascular applications. In clinical practice, the vascular network and its ab-
normalities are assessed by inspecting intensity projections, or image slices one
at a time, or using multiple views of 3D rendering techniques. In a number
of conditions, the connected vessel segmentation is required for intervention or
treatment planning [18]. A schematic representation of the vascular network has
an impact in interventional neuroradiology and in vascular surgery by providing
patient-specific high-level quantitative features (spatial localization, direction
and scale). In vascular image analysis these features are used for segmenta-
tion and labelling [13], with the final aim of reconstructing a physical vascular
model for hemodynamic simulations, or catheter motion planning, or identi-
fying (un)safe occlusion points [6]. With this view, previous studies addressed
the problem of extracting a connected vascular network in a disjoint manner.
First, [8, 12] proposed tubular enhancing methods in 3D with the aim of better
contrasting vessels over a background: by using the eigendecomposition of either
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the Hessian matrix, or the image gradient projected on a unit sphere bound-
ary, a scalar vesselness measure is obtained, which represents a vascular saliency
map. Secondly, given the vascular saliency map, local disconnected branches or
fragmented centerlines, [6, 11, 16] proposed a set of methods to recover a con-
nected network: ‘cores’ identify and track furcating branches, whereas vascular
graphs are recovered using minimum spanning tree algorithms on image-intensity
features, or using graph kernels (subtree patterns) matched on a similarity met-
ric. Alternatively, geometrical models embedding shape priors, or probabilistic
models based on image-related features were employed to recover the connected
vessel centerlines and prune artifacts from an initial set of segments. A differ-
ent approach is proposed in [2], where the connected centerlines are recovered
a-posteriori as medial axes of the 3D surface model which segments the lumen.
Given the varying complexity of the vascular network in healthy and diseased
subjects and the lack of an extensive connected ground-truth for complex vascu-
lar networks of several anatomical compartments, the accurate and exhaustive
extraction of the vessel connectivity remains however a challenging task.
Here we propose VTrails, a novel method that addresses vascular connectivity
under a unified mathematical framework. VTrails enhances the connectedness
of furcating, fragmented and tortuous vessels through scalar and high-order vas-
cular features, which are employed in a greedy connectivity paradigm to deter-
mine the final vascular network. In particular, the vascular image is filtered first
with a Steerable Laplacian of Gaussian Swirls filterbank, synthesizing simulta-
neously a connected vesselness map and an associated tensor field. Under the
assumption that vessels join by minimal paths, VTrails then infers the unknown
fully-connected vascular network as the minimal cost acyclic graph connecting
automatically extracted seed nodes.

2 Methods

We introduce in section 2.1 a Steerable Laplacian of Gaussian Swirls (SLoGS)

filterbank used to reconstruct simultaneously the vesselness map and the associ-
ated tensor field. The SLoGS filterbank is first defined, then a multiscale image
filtering approach is described using a locally selective overlap-add method [15].
The connected vesselness map and the tensor field are integrated over scales.
In section 2.2, an anisotropic level-set combined with a connectivity paradigm
extracts the fully-connected vascular tree using the synthesized connected ves-
selness map and tensor field.

2.1 SLoGS Curvilinear Filterbank

With the aim of enhancing the connectivity of fragmented, furcating and tortu-
ous vessels, we propose a multi-resolution analysis/synthesis filterbank of Steer-
able Laplacian of Gaussian Swirls, whose elongated and curvilinear Gaussian
kernels recover a smooth, connected and orientation aware vesselness map with
local maxima at vessels’ mid-line.
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Fig. 1. SLoGS filterbank: definition of a Dictionary of Filtering Kernels and synthesis
of the Tensor Field within the overlap-add block b at the given scale s.

Steerable Laplacian of Gaussian Swirls (SLoGS). Similarly to [1] and
without losing generality, given an image V : R3 → R, the respective SLoGS
vesselness response is obtained as VSLoGS,s := Vs ∗K, for any given scale s and
any predefined SLoGS filtering kernel K : R3 → R. Here we formulate and de-
rive the SLoGS filtering kernel K by computing the second-order directional
derivative in the gradient direction of a curvilinear Gaussian trivariate function
Γ : R3 × R3

+ × R3 → R. The gradient direction and its perpendicular constitute
the first-order gauge coordinates system (ω,υ). These are defined as ω = ∇Γ

‖∇Γ‖ ,

and υ = ω⊥, with the spatial gradient ∇. The function Γ has the form
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where x = x1i + x2j + x3k, with {i, j, k} the Euclidean image reference system,
σ modulates the elongation and the cross-sectional profiles of the Gaussian dis-
tribution, and the curvilinear factor c accounts for planar asymmetry and two
levels of curvilinear properties (i.e. bending and tilting orthogonally to the elon-
gation of the distribution) by means of quadratic- and cubic-wise bending of the
support, respectively. For any σ and c, Γ (x,σ, c) represents therefore the smooth
impulse response of the Gaussian kernel. By operating a directional derivative
on Γ along ω, i.e. Dω, we obtain the SLoGS filtering kernel K as

K = Dω [DωΓ ] = Dω
[
ω
t∇Γ

]
, ωtH (Γ )ω, where H (Γ ) =

Γii Γij ΓikΓji Γjj Γjk
Γki Γkj Γkk

 (2)

is the Hessian matrix of the Gaussian kernel. Given that Γ is twice continuously
differentiable, H(Γ ) is well defined. Since H(Γ ) is symmetric, an orthogonal ma-
trix Q exists, so that H(Γ ) can be diagonalized as H(Γ ) = QΛQ−1. The eigen-
vectors q

l
form the columns of Q, whereas the eigenvalues λl, with l = 1, 2, 3,

constitute the diagonal elements of Λ, so that Λll = λl and ‖λ1‖ ≤ ‖λ2‖ ≤ ‖λ3‖.
Given a point x, K(x) can be reformulated as K(x) = ωt

(
QΛQ−1

)
ω. Geomet-

rically, the columns of Q represent a rotated orthonormal basis in R3 relative
to the image reference system so that q

l
are aligned to the principal directions



of Γ at any given point x. The diagonal matrix Λ characterizes the topology
of the hypersurface in the neighbourhood of x (e.g. flat area, ridge, valley or
saddle point in 2D) and modulates accordingly the variation of slopes, being the
eigenvalues λl the second-order derivatives along the principal directions of Γ .
Factorizing K(x), we obtain: K(x) = (ωtQ)Λ(Q−1ω), so that the gradient direc-
tion ω is mapped onto the principal directions of Γ for any point x. Solving (2)

K(x) =
1
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modulate the respective components of the canonical Laplacian of Gaussian
(LoG) filter oriented along the principal directions of Γ . It is clear that given any
arbitrary orientation Ω as an orthonormal basis similar to Q, the proposed dic-
tionary of filtering kernels can steer by computing the rotation transform, which
maps the integral orientation basis of each Gaussian kernel ΦΓ =

∫
(Γ (x)·Q(x))dx

‖
∫
(Γ (x)·Q(x))dx‖

on Ω. Together with the SLoGS filtering kernel K, we determine the second-
moment matrix T associated to the filter impulse response Γ by adopting the
ellipsoid model in the continuous neighborhood of x. A symmetric tensor T (x)
is derived from the eigendecomposition of H(Γ ) as T (x) = Q Ψ Q−1, where Ψ is
the diagonal matrix representing the canonical unitary volume ellipsoid

Ψ =
(∏3

l=1 ψl
)− 1

3

(
ψ1 0 0
0 ψ2 0
0 0 ψ3

)
, being ψ1 =

|λ1|√
|λ2λ3|

, ψ2 =
|λ2|
|λ3|

, and ψ3 = 1 (4)

the respective semiaxes’ lengths. Conversely from H(Γ ), which is indeterminate,
the tensor field T is a symmetric positive definite (SPD) matrix for any x ∈ R3.

Here, the definition of the tensor kernel T in (4) can be further reformulated ex-
ploiting the intrinsic log-concavity of Γ . By mapping Γ 7→ Γ̃ = − log(Γ ), a convex
quadratic form is obtained, so that H(Γ̃ ) is an SPD, as the modelled tensor T . In
either case, the manifold of tensors can be mapped into a set of 6 independent
components in the Log-Euclidean space, which greatly simplifies the computa-
tion of Riemannian metrics and statistics. We refer to [3] for a detailed method-
ological description. The continuous and smooth tensor field T inherits the steer-
able property. Similarly to diffusion tensor MRI, the kernel shows a preferred
diffusion direction for a given energy potential, e.g. the scalar function Γ itself
(fig. 1). This allows to define an arbitrary dictionary of filtering kernels (DFK)

that embeds anisotropy and high-order directional features to scalar curvilinear
templates, which enhances and locally resembles typical, smooth vessel patterns.
Together with the arbitrary SLoGS DFK, we also introduce an extra pair of non-
curvilinear kernels for completeness. These are the pseudo-impulsive δLoG, an
isotropic derivative filter given by the Laplacian of Gaussian of Γδ(x,σ, c = 0),

representing a Dirac delta function for σ → 0. Also, the uniformly flat νLoG

is another isotropic degenerate case, where the Laplacian of Gaussian derives



from Γν(x,σ, c = 0), which is assumed to be a uniform, constant-value kernel
for σ → ∞. The purpose of introducing the extra kernels is to better contrast
regions that most likely relate to vessel boundaries and to image background,
respectively. Although δLoG and νLoG have singularities, ideally they represent
isotropic degenerate kernels. Therefore we associate pure isotropic tensors for
any given x ∈ R3, so that TδLoG(x) = TνLoG(x) = I3 (Identity). The respective
directional kernel bases Φ(δLoG) = Φ(νLoG) are undetermined.

Connected Vesselness Map and the Tensor Field. The idea is to convolve
finite impulse response SLoGS with the discrete vascular image in a scale- and
rotation-invariant framework, to obtain simultaneously the connected vesselness
maps and the associated tensor field. For simplicity, the filtering steps will be
presented for a generic scale s. Scale-invariance is achieved by keeping the size
of the small compact-support SLoGS fixed, while the size of the vascular image
V varies accordingly with the multi-resolution pyramid. Also, different σ will
produce SLoGS kernels with different spatial band-pass frequencies. V is down-
sampled at the arbitrary scale s as proposed in [7] to obtain Vdwn. An early
saliency map of tubular structures Vtube is then determined as

Vtube =
∑
Ω

V
(Ω)
tube , where V

(Ω)
tube = max

(
0, Vdwn ∗K(Ω)

tube

)
. (5)

Ktube is derived from the discretized tubular kernel Γtube(x, σ1 > σ2 = σ3, c = 0)
(fig. 1), whereas Ω is defined as a group of orthonormal basis in R3, using an
icosphere at arbitrary subdivision level n to determine the orientation sampling
in 3D. Vtube is meant to provide an initial, coarse, although highly-sensitive set
of saliency features in Vdwn: the vessel spatial locations and orientations. The
identification of such features has two advantages; firstly it restricts the problem
of the rotation-invariant filtering to an optimal complexity in 3D avoiding un-
necessary convolutions; secondly it allows to use a locally selective overlap-add
(OLA) [15] for the analysis/synthesis filtering. In detail, vessel spatial locations
are mapped as voxel seeds S̃, and the associated set of orientations Θ forms a
group of orthonormal basis in R3. We define S̃ as

S̃ = div (∇Vtube)<0 ∧ λ
Vtube
1,2,3 < 0 ∧ Vtube ≥ Qp(V +

tube) , (6)

where div (∇Vtube) is the divergence of Vtube’s gradient vector field, λVtube1:3 are the
eigenvalue maps derived from the voxel-wise eigendecomposition of H(Vtube), and
Qp(V

+
tube) is the pth quantile of the positive Vtube samples’ pool. With S̃, the ori-

entations Θ are automatically determined as the set of eigenvectors associated
to λ

Vtube
1:3 . The greater the intensity threshold Qp(V

+
tube), the greater the image

noise-floor rejection, the lower the number of seeds and the fewer the details
extracted from Vtube. Also, the cardinality of S̃ and Θ is a trade-off for the con-
volutional complexity in each OLA filtering step. The analysis/synthesis filtering
can be embedded in a fully parallel OLA, by considering an overlapping grid of
3D cubic blocks spanning the domain of Vdwn, and by processing each block b
so that at least one seed exists within it. The integral connected vesselness map
CVM

(b)
s , for each block b at any given scale s, has the form

CVM
(b)
s =

∑
K∈DFK

∑
θ∈Θ(b)

V
(b,K,θ)
S , where V

(b,K,θ)
S = max

(
0,
(
V

(b)
dwn · H

)
∗K(θ)

)
. (7)



Here, V (b,K,θ)
S is the convolutional filter response given the considered SLoGS

kernel. In detail, V (b)
dwn is the down-sampled image in b, H is the 3D OLA Hann

weighting window, and K(θ) is the steered filtering kernel along θ ∈ Θ(b), those
being the seeds’ orientations in b. Note that in the discrete domain each voxel has
a spatial indexed location b ∈ b. The anisotropic tensor field TF

(b)
s is synthesized

and normalized in the Log-Euclidean space as the integral weighted-sweep of
each steered tensor patch within the block b, and has the form

TF
(b)

s,(LE)
=

1

W
·

∑
K∈

{
DFK,
δLoG,
νLoG

}
∑
θ∈Θ(b)

∑bbe⊂b
weights︷ ︸︸ ︷

V
(b,K,θ)
S · Γ (θ)

(K)
· Ξ ·

patch︷ ︸︸ ︷
T

(θ)

K,(LE)


︸ ︷︷ ︸

within-block patch sweep

, so that

det
(
TF (b)

s (b)
)

= H(b), and W=

∑
K∈

{
DFK,
δLoG,
νLoG

} ∑
θ∈Θ(b)

∑
bbe⊂b V

(b,K,θ)
S ·Γ (θ)

(K)
·Ξ

,

(8)

where W is the integral normalizing weight-map accounting for all vessel, bound-
ary and background components; V (b,K,θ)

S is the modulating SLoGS filter response
at b as in (7); Γ (θ)

(K) is the steered Gaussian impulse response associated to the
kernel K ∈ {DFK, δLog, νLoG}; Ξ is the Hann smoothing window in the neigh-
bourhood bbe centred at b, and T (θ)

K,(LE) is one of the 6 components of the discrete
steered tensors patch T in the Log-Euclidean space. Note that all 6 tensorial com-
ponents are equally processed, and that the neighbourhood bbe and the SLoGS

tensors patch T
(θ)

K,(LE) have the same size. In (8), TF
(b)

s,(LE) integrates also the
isotropic contributions from vessel boundaries and background to better contrast
the tubular structures’ anisotropy and to reduce synthetic artifacts surrounding
the vessels (fig. 1). In particular, TF

(b)

s,(LE) is averaged with an identically null
tensor patch in the Log-Euclidean space in correspondence of boundaries and
background, and V

(b,K,θ)
S |{δLoG,νLoG} is computed as in (7), where the image

negative of V (b)
dwn is considered. Lastly, the connected vesselness maps and the as-

sociated synthetic tensor field are reconstructed by adding adjacent overlapping
blocks in the OLA 3D grid for the given scale s.

Integration over Multiple Scales. Each scale-dependent contribution is up-
sampled and cumulatively integrated with a weighted sum

CVM =
∑
s

1
sCVM s, and, TF (LE) = 1

CVM

∑
s

(
1
sCVM s

)
· Ts,(LE). (9)

Vesselness contributions are weighted here by the inverse of s, emphasizing re-
sponses at spatial low-frequencies. We further impose that the Euclidean TF has
unitary determinant at each image voxel; for stability, the magnitude of the ten-
sors is decoupled from the directional and anisotropic features throughout the
whole multi-scale process, since tensors’ magnitude is expressed by CVM . Note
that with the proposed method we do not aim at segmenting vessels by thresh-
olding the resulting CVM , we rather provide a measure of vessels’ connectedness
with maximal response at the centre of the vascular structures.



2.2 Vascular Tree of Geodesic Minimal Paths

Following the concepts first introduced in [4], we formulate an anisotropic front
propagation algorithm that combined with an acyclic connectivity paradigm
joins multiple sources S̃ 7→ S propagating concurrently on a Riemannian speed
potential P. Since we want to extract geodesic minimal paths between points, we
minimize an energy functional U(x) = minπ

∫
π
P (π(x), π′(x)) dx for any possible

path π between two generic points along its geodesic length, so that ‖∇U(x)‖ = 1,

and U(S) = 0. The solution to the Eikonal partial differential equation is given
here by the anisotropic Fast Marching (aFM ) algorithm [4], where front waves
propagate from S on P, with P (π, π′) =

√
π′t · M · π′ describing the infinitesimal

distance along π, relative to the anisotropic tensor M. In our case, M = TF ,

and π′ ∝ 1
CVM

. Note that the anisotropic propagation is a generalised version of
the isotropic propagation medium, M ≡ I3. The acyclic connectivity paradigm
is run until convergence together with the aFM to extract the vascular tree of
multiple connected geodesics Π.

Anisotropic FM and Acyclic Connectivity Paradigm. Geodesic paths
are determined by back-tracing U when different regions collide. The connecting
geodesic π is extracted minimizing U at the collision grid-points. The aFM maps,
i.e. U ; the Voronoi index map V, representing the label associated to each prop-
agating seed; and the Tag T , representing the state of each grid-point (Front,
Visited, Far), are then updated within the collided regions, so that these merge
as one and the front is consistent with the unified resulting region. This is con-
tinued until all regions merge.

Initialization. The seeds S̃ are aligned towards the vessels’ mid-line with a
constrained gradient descent, resulting in an initial set of sources S. All 26-
connected components π

(S)
p ∈ S initialize the aFM maps, i.e., U(π

(S)
p ) = 0,

V(π
(S)
p ) = p, T (π

(S)
p ) = Front , and constitute also the initial geodesics π(S)

p → Π.

Fast Marching Step. The aFM maps are updated by following an informative
propagation scheme. We refer to [4] for the 3D aFM step considering the 48
simplexes in the 26-neighbourhood of the Front grid-point with minimal U .

Path Extraction. Collision is detected when Visited grid-points of different re-
gions are adjacent. A connecting π is determined by linking the back-traced min-
imal paths from the collision grid-points to their respective sources πA, πB ∈ Π
with a gradient descent on U (fig. 2). The associated integral geodesic length
Uπ =

∫ πB
πA
Udπ is computed and the connectivity in Π is updated in the form of

an adjacency list. Lastly, the grid-points of the extracted π are further considered
as path seeds in the updating scheme, since furcations can occur at any level of
the connecting minimal paths.

Fast Updating Scheme. A nested aFM is run only in the union of the col-
lided regions (A∪B) using a temporary independent layer of aFM maps, where
Ũ(π) = 0, T̃ (π) = Front , and T̃(A∪B) = Visited . Ideally, the nested aFM is run until
complete domain exploration, however, to speed up the process, the propagation
domain is divided into the solved and unsolved sub-regions, and the update is
focused on the latter (A∪B)u (fig. 2). The boundary geodesic values of (A∪B)u
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S̃ Descent . . . Π ← p i Π ← p i+1 Π ← p i+2 Stop Criterion
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∪

T
r
ia
ls

V

P ∪ S (A ∪ B)u (A ∪ B)u (A ∪ B)u Geodesic U

Fig. 2. Sequential acyclic connectivity paradigm on a synthetic 2D image.

equal the geodesic distances U at the collision grid-points. Lastly, the aFM maps
are updated as: U(A∪B)u = min {U(A∪B)u , Ũ(A∪B)u }, V(A∪B) = min {VA, VB}, and
T(A∪B)u = T̃(A∪B)u .

3 Experiments and Results

Dataset. A 3D hand-crafted tortuous and convoluted phantom (HCP) is de-
signed to account for complex vessel patterns, i.e. branching, kissing vessels, scale
and shape variations induced by pathologies. Also a set of 20 synthetic vascular
trees (SVT) (64 × 64 × 64 voxels) were generated using VascuSynth [10] consid-
ering two levels of additional noise (N1: N (0, 5) + Shadows: 1 + Salt&Pepper: 1h;

N2: N (0, 10) + Shadows: 1 + Salt&Pepper: 2h). Together with the synthetic data, a
cerebral Phase Contrast MRI (PC) (0.86×0.86×1.0 mm), a cerebral Time of Flight
MRI (TOF) (0.36× 0.36× 0.5 mm) and a carotid CTA (0.46× 0.46× 0.45 mm) were
used. Vascular network ground-truths (GT) are given in the form of connected
raster centerlines for all the synthetic images and for both TOF and CTA.

Experiments. The scalar vesselness responses of both HCP and PC images
are determined using the state-of-the-art Frangi filter (FFR) [8], and Optimally
Oriented Flux (OOF) [12]. Also, the connected vesselness map (CVM ) and the
associated tensor field (TF ) are synthesized for the same dataset using VTrails.
The connectedness of the considered scalar maps is qualitatively assessed and
the TF is inspected as proof of concept in section 3.1.
VTrails is used to extract the connected geodesic paths for all the synthetic
SVT and for TOF and CTA images. In section 3.2, each set of connected geodesic
paths is verified to be an acyclic graph, then it is compared against the respective
GT. The robustness to image degradation, the accuracy, precision and recall are
evaluated voxel-wise for the identified branches with a tolerance factor % as in [1].
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Fig. 3. Vesselness response maps for Frangi, OOF, and proposed scalar CVM with
associated tensor field on a digital phantom example and on data of a phase contrast
cerebral venogram.

3.1 Connectedness of the Vesselness Map

Fig. 3 shows the connectedness of vessels recovered from state-of-the-art vascu-
lar enhancers and curvilinear ridge detectors FFR and OOF together with the
proposed CVM for the synthetic HCP and the real PC images. On the synthetic
phantom, FFR shows a fragmented and rough vesselness response in correspon-
dence of irregularly shaped sections of the structure. Also, the response at the
bifurcation is not smoothly connected with the branches (triangular loop). Con-
versely, OOF recovers the phantom connectedness at the branch-point, and the
vesselness response is consistent along the tortuous curvilinear section, however
ghosting artifacts are observed as the shape of the phantom becomes irregular
(C-like) or differs from a cylindrical tube. Also, close convoluted structures, which
change scale rapidly in the HCP, produce inconsistent responses of OOF (fig. 3).
CVM shows here a strongly connected vesselness response in correspondence of
both regular and irregular tubular sections, with local maxima at structures’
mid-line. The connectedness of the structures is emphasized regardless the com-
plexity of the shape, and it resolves spatially the tortuous curvilinear ‘kissing
vessels’ without additional ghosting artifacts, despite the smooth profile.
Similar results are observed on the PC dataset: FFR has a poor connected re-
sponse in the noisy and low-resolution image. Vessels are overall enhanced, how-
ever thin and fragmented structures remain disconnected. Overall, the vesselness
response is not uniform within the noisy structures, where maximal values are
often off-centred. A more consistent response is obtained from OOF, where the
connectedness of vessels is improved. Maximal response is observed at the mid-
line of vessels, however, noise rejection is poor. CVM strongly enhances here the
vessel connectivity. The fragmented vessels of PC have a continuous and smooth
response in CVM with higher values and a more defined profile. Large vessels
shows solid connected regions with local maxima at mid-line as in OOF. Con-
versely from OOF, CVM shows improved noise rejection in the background.
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Image GT VTrails Image GT VTrails

N
1

C
T
A

N
2

T
O

F

Fig. 4. Comparison of the vascular connected trees against the relative ground-truth for
a representative set of synthetic data, and for a carotid CTA and for a middle cerebral
artery TOF MRI. Note that main branches are correctly identified and connected.

The respective tensor fields (TF ) synthesized on both HCP and PC show consis-
tent features. The TF ’s characteristics are in line with the connectedness of CVM :

enhanced and connected vessels are associated with high anisotropy, whereas
background areas show a predominant isotropic component.

3.2 Connected Geodesic Paths as Vascular Tree

Representative examples of degraded synthetic images from SVT and the re-
spective GT are shown in fig. 4 together with the connected graphs extracted
by VTrails. Analogously, the same set of images are reported for the real images
TOF and CTA in fig. 4. Qualitatively, the extracted set of connected geodesic
paths shows remarkable matching with the provided GT in all cases. First, we
verify the acyclic nature of the graph. We found no cycles, degenerate graphs
and unconnected nodes, meaning that the extracted connected geodesic paths
represent a connected geodesic tree. Precision and recall are then evaluated for
the identified branches. Also, error distances are determined as the connected
tree’s binary distance map evaluated at GT. Average errors (ε) precision and
recall are reported (mean±SD) in table 1. Note that no pruning of any spurious
branches is performed in the analysis.

4 Discussion and Conclusions

We presented VTrails, a novel connectivity-oriented method for vascular image
analysis. The proposed method has the advantage of introducing the SLoGS fil-
terbank, which simultaneously synthesizes a connected vesselness map and the
associated tensor field in the same mathematically coherent framework. Inter-
estingly, recent works [9, 17] are exploring Riemannian manifolds of tensors for
high-order vascular metrics, however the coherent definition of a tensor field is
not trivial for an arbitrary scalar image, as its topology cannot be generally
approximated simply by an ellipsoid model [14]. The steerability property of



Table 1. Connectivity tree error distances, precision and recall (mean±SD): (left)
synthetic vascular tree at degradation levels N1 and N2; (right) TOF and CTA. Note
the invariance of all metrics regardless the degradation level.

Synthetic Vascular Trees [10] Clinical Angiographies

N1 N2 TOF CTA

ε

[v
o
x
e
ls
]

2.15± 0.65 2.09± 0.37

[m
m

]

1.07± 2.65 1.1± 1.63

% 2 1.42 1.57

Precision 88.21± 2.58% 87.93± 2.56% 77.12% 89.67%

Recall 68.31± 7.44% 69.18± 3.69% 89.49% 83.97%

SLoGS stands out as key feature for i. reducing the dimensionality of the kernels
parameters in 3D, ii. determining the filterbank’s rotation-invariance and iii.
optimizing the 3D filtering complexity in the OLA. Also, the combined rotation-
and curvature-invariance of the filtering process results in branch-points that
coincide with the locally integrated center of mass of the multiple SLoGS filter
responses. This explains the strong response in the CVM at the branch-point in
fig. 3. Regarding the acyclic connectivity paradigm employed in VTrails, we ex-
perimentally verified that the resulting set of connected geodesic paths Π forms
a tree. The assumption of a vascular tree provides a natural and anatomically
valid constraint for 3D vascular images, with few rare exceptions, such as the
complete circle of Willis [5]. It is important to note that the proposed algo-
rithm can include extra anatomical constraints to correct for locations where
the vascular topology is not acyclic or where noise it too high. Note that de-
spite the optimal formulation of the anisotropic front propagation, a limitation
of the greedy acyclic connectivity paradigm is the possibility of miss-connecting
branches, potentially disrupting the topology of the vascular network. Overall,
promising results have been reported from this early validation, with a fully-
automatic extraction configuration. Missing branches occur in correspondence
of small vessels, where the effect of degradation is predominant: tiny terminal
vessels completely occluded by the corrupting shadows will not automatically
produce seeds, hence cannot be recovered under such configuration. Globally, ε
values are comparable to the evaluation tolerance %, suggesting that the con-
nected geodesic paths extracted by VTrails lie in the close neighbourhood of the
vessels’ centerlines. Moreover, the reported values are comparable regardless the
level of degradation. Future developments will address the optimization of the
CVM integration strategy in section 2.1 to account for an equalized response
over the vascular spatial frequency-bands. Also, the topological analysis of vas-
cular networks on a population of subjects will be investigated in future works
to better embed priors in the acyclic connectivity paradigm.
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