506 research outputs found

    Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis

    Get PDF
    Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light’s diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we’ve termed the interpretation problem

    Deep Learning Methods for Detection and Tracking of Particles in Fluorescence Microscopy Images

    Get PDF
    Studying the dynamics of sub-cellular structures such as receptors, filaments, and vesicles is a prerequisite for investigating cellular processes at the molecular level. In addition, it is important to characterize the dynamic behavior of virus structures to gain a better understanding of infection mechanisms and to develop novel drugs. To investigate the dynamics of fluorescently labeled sub-cellular and viral structures, time-lapse fluorescence microscopy is the most often used imaging technique. Due to the limited spatial resolution of microscopes caused by diffraction, these very small structures appear as bright, blurred spots, denoted as particles, in microscopy images. To draw statistically meaningful biological conclusions, a large number of such particles need to be analyzed. However, since manual analysis of fluorescent particles is very time consuming, fully automated computer-based methods are indispensable. We introduce novel deep learning methods for detection and tracking of multiple particles in fluorescence microscopy images. We propose a particle detection method based on a convolutional neural network which performs image-to-image mapping by density map regression and uses the adaptive wing loss. For particle tracking, we present a recurrent neural network that exploits past and future information in both forward and backward direction. Assignment probabilities across multiple detections as well as the probabilities for missing detections are computed jointly. To resolve tracking ambiguities using future information, several track hypotheses are propagated to later time points. In addition, we developed a novel probabilistic deep learning method for particle tracking, which is based on a recurrent neural network mimicking classical Bayesian filtering. The method includes both aleatoric and epistemic uncertainty, and provides valuable information about the reliability of the computed trajectories. Short and long-term temporal dependencies of individual object dynamics are exploited for state prediction, and assigned detections are used to update the predicted states. Moreover, we developed a convolutional Long Short-Term Memory neural network for combined particle tracking and colocalization analysis in two-channel microscopy image sequences. The network determines colocalization probabilities, and colocalization information is exploited to improve tracking. Short and long-term temporal dependencies of object motion as well as image intensities are taken into account to compute assignment probabilities jointly across multiple detections. We also introduce a deep learning method for probabilistic particle detection and tracking. For particle detection, temporal information is integrated to regress a density map and determine sub-pixel particle positions. For tracking, a fully Bayesian neural network is presented that mimics classical Bayesian filtering and takes into account both aleatoric and epistemic uncertainty. Uncertainty information of individual particle detections is considered. Network training for the developed deep learning-based particle tracking methods relies only on synthetic data, avoiding the need of time-consuming manual annotation. We performed an extensive evaluation of our methods based on image data of the Particle Tracking Challenge as well as on fluorescence microscopy images displaying virus proteins of HCV and HIV, chromatin structures, and cell-surface receptors. It turned out that the methods outperform previous methods

    Particle Filtering Methods for Subcellular Motion Analysis

    Get PDF
    Advances in fluorescent probing and microscopic imaging technology have revolutionized biology in the past decade and have opened the door for studying subcellular dynamical processes. However, accurate and reproducible methods for processing and analyzing the images acquired for such studies are still lacking. Since manual image analysis is time consuming, potentially inaccurate, and poorly reproducible, many biologically highly relevant questions are either left unaddressed, or are answered with great uncertainty. The subject of this thesis is particle filtering methods and their application for multiple object tracking in different biological imaging applications. Particle filtering is a technique for implementing recursive Bayesian filtering by Monte Carlo sampling. A fundamental concept behind the Bayesian approach for performing inference is the possibility to encode the information about the imaging system, possible noise sources, and the system dynamics in terms of probability density functions. In this thesis, a set of novel PF based metho

    Global parameter identification of stochastic reaction networks from single trajectories

    Full text link
    We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell--cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation, and efficient exact stochastic simulation algorithms that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems Biology

    Tracking Growing Axons by Particle Filtering in 3D+t Fluorescent Two-Photon Microscopy Images

    Get PDF
    International audienceAnalyzing the behavior of axons in the developing nervous systems is essential for biologists to understand the biological mechanisms underlying how growing axons reach their target cells. The analysis of the motion patterns of growing axons requires detecting axonal tips and tracking their trajectories within complex and large data sets. When performed manually, the tracking task is arduous and time-consuming. To this end, we propose a tracking method, based on the particle filtering technique, to follow the traces of axonal tips that appear as small bright spots in the 3D+t fluorescent two-photon microscopy images exhibiting low signal-to-noise ratios (SNR) and complex background. The proposed tracking method uses multiple dynamic models in the proposal distribution to predict the positions of the growing axons. Furthermore, it incorporates object appearance, motion characteristics of the growing axons, and filament information in the computation of the observation model. The integration of these three sources prevents the tracker from being distracted by other objects that have appearances similar to the tracked objects, resulting in improved accuracy of recovered trajectories. The experimental results obtained from the microscopy images show that the proposed method can successfully estimate trajectories of growing axons, demonstrating its effectiveness even under the presence of noise and complex background

    Single Particle Tracking: Analysis Techniques for Live Cell Nanoscopy.

    Get PDF
    Single molecule experiments are a set of experiments designed specifically to study the properties of individual molecules. It has only been in the last three decades where single molecule experiments have been applied to the life sciences; where they have been successfully implemented in systems biology for probing the behaviors of sub-cellular mechanisms. The advent and growth of super-resolution techniques in single molecule experiments has made the fundamental behaviors of light and the associated nano-probes a necessary concern among life scientists wishing to advance the state of human knowledge in biology. This dissertation disseminates some of the practices learned in experimental live cell microscopy. The topic of single particle tracking is addressed here in a format that is designed for the physicist who embarks upon single molecule studies. Specifically, the focus is on the necessary procedures to generate single particle tracking analysis techniques that can be implemented to answer biological questions. These analysis techniques range from designing and testing a particle tracking algorithm to inferring model parameters once an image has been processed. The intellectual contributions of the author include the techniques in diffusion estimation, localization filtering, and trajectory associations for tracking which will all be discussed in detail in later chapters. The author of this thesis has also contributed to the software development of automated gain calibration, live cell particle simulations, and various single particle tracking packages. Future work includes further evaluation of this laboratory\u27s single particle tracking software, entropy based approaches towards hypothesis validations, and the uncertainty quantification of gain calibration
    • …
    corecore