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Abstract. Analyzing the behavior of axons in the developing nervous
systems is essential for biologists to understand the biological mecha-
nisms underlying how growing axons reach their target cells. The analy-
sis of the motion patterns of growing axons requires detecting axonal tips
and tracking their trajectories within complex and large data sets. When
performed manually, the tracking task is arduous and time-consuming.
To this end, we propose a tracking method, based on the particle filter-
ing technique, to follow the traces of axonal tips that appear as small
bright spots in the 3D + t fluorescent two-photon microscopy images ex-
hibiting low signal-to-noise ratios (SNR) and complex background. The
proposed tracking method uses multiple dynamic models in the proposal
distribution to predict the positions of the growing axons. Furthermore,
it incorporates object appearance, motion characteristics of the growing
axons, and filament information in the computation of the observation
model. The integration of these three sources prevents the tracker from
being distracted by other objects that have appearances similar to the
tracked objects, resulting in improved accuracy of recovered trajectories.
The experimental results obtained from the microscopy images show that
the proposed method can successfully estimate trajectories of growing
axons, demonstrating its effectiveness even under the presence of noise
and complex background.

1 Introduction

Analyzing how growing axons correctly reach their target neurons is essential
for biologists to better understand the development of a nervous system. The
advances in fluorescence imaging technology, such as two-photon microscopy [1],
have generated amounts of imaging data that enable the analysis of the dy-
namic behavior of developing neurons in real time and in three dimensions (3D).
Analysis of the properties of axon growth requires detecting axonal tips that
can appear as small bright spots and tracing their trajectories in low signal-to-
noise ratios (SNR) image sequences. Figure 1 shows some examples of part of
maximum intensity projection (MIP) images of the fluorescent two-photon mi-
croscopy volumes. As can be seen, in addition to high level of noise, the obtained
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volumes contain some bright spots that have appearances similar to the axonal
tips and other biological structures that increase the difficulty in tracing the ax-
onal tips. These factors make it difficult to manually identify the growing axonal
tips and follow their trajectories. Besides, manual tracing by human experts to
obtain the trajectories of axons is tedious and time-consuming. Therefore, devel-
oping automated tracking methods that produce reliable trajectories for further
analysis is highly required.

Numerous methods have been proposed in the literature for tracking biolog-
ical spot-like particles. A great majority of the tracking methods are based on
two-step approach: the object detection/localization step and the data associa-
tion step [2–4]. The detection step aims at locating the objects of interest (e.g.
the bright spots) by utilizing intensity thresholding [5], wavelet transform [6], or
Gaussian fitting methods [7]. Since the detection step has been performed, the
data association step solves the object correspondence problem between consecu-
tive detection images [5]. Generally, these two steps are performed independently.
Therefore, because the detection results may contain missing or incorrectly de-
tected objects, the data association step tends to produce wrongly associated
trajectories.

Recently, Bayesian tracking approaches have received much attention and
have been successfully applied to spot tracking [8–10]. One advantage of these ap-
proaches is that they integrate the detection and data association steps in a uni-
fied framework, which produces more accurate trajectories. Moreover, they can
deal with nonlinear and non-Gaussian tracking problems. The Bayesian tracking
is usually implemented by using a sequential Monte Carlo (SMC) method, that
is the so-called particle filtering (PF) [11]. Particle filtering techniques use prior
knowledge of the dynamics of the objects to predict the object state modes and
use all the available information (noisy measurements) to compute optimally the
posterior probability density function (pdf).

In this paper, we propose a tracking method, based on the particle filtering
technique, to follow the trajectories of the individual growing axons in the flu-
orescent two-photon microscopy image sequences. The proposed method incor-
porates the important characteristics of growing axons. First, multiple dynamic
models are used to better predict the locations of axonal tips. Furthermore,
the proposed method incorporates information related to object appearance,
motion characteristics of the growing axons, and filaments in the computation
of the likelihood function. The integration of these three sources prevents the
tracker from being distracted by other objects that have appearances similar to
the tracked objects. It ensures that the tracker can successfully follow the traces
of the individual axonal tips, resulting in obtaining more accurate trajectories.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the particle filtering framework, and Section 3 elaborates on the
proposed particle filtering based tracking method that incorporates the charac-
teristics of growing axons. The experimental results obtained from synthetic data
and a 3D + t fluorescent two-photon microscopy data set are shown in Section 4,
followed by conclusions and future work in Section 5.
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(a) MIP at time 86 (b) MIP at time 90

(c) close-up of (a) (d) close-up of (b)

Fig. 1. Examples of part of maximum intensity projection (MIP) of the fluorescent
two-photon microscopy volumes. (a) and (b) show part of MIPs from different times
and demonstrate the dynamics of the growing axons. (c) and (d) are the close-ups of
(a) and (b), respectively. The axonal tips are visualized as small bright spots, indicated
by red circles. The 3D microscopy volumes are of low SNR ratios and contain other
biological structures and some bright spots that have appearances similar to the axonal
tips. These factors increase the difficulty in identifying and tracking the axonal tips.

2 Particle Filtering

The Bayesian tracking aims at recursively estimating the posterior probability
density function, p (st|z1:t), which describes the state st at time t given a series
of (noisy) measurements z1:t from time 1 to time t. The estimation consists of
two steps: prediction and updating.

Prediction The prediction step relies on the Chapman-Kolmogorov equation,
that is,

p (st|z1:t−1) =

∫
p (st|st−1) p (st−1|zt−1) dst−1, (1)

where p (st|st−1) decides the prior dynamics.

Updating The update step uses the Bayes’ rule to modify the prior density
and obtain the posterior density when a measurement zt is available:

p (st|z1:t) ∝ p (zt|st) p (st|z1:t−1) , (2)
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where p (zt|st) represents the likelihood function (observation model).
This recursive estimation of the posterior pdf is intractable, and the particle

filtering is used as a numerical approximation. The particle filtering [12] uses

a set of Ns samples, each of which associates with a weight,
{

sit, w
i
t

}Ns

i=1
, to

represent the posterior p (st|z1:t):

p (st|z1:t) ≈
Ns∑
i=1

witδ
(
st − sit

)
, (3)

where δ ( · ) is the Dirac delta function, and
∑Ns

i wit = 1. These samples are
propagated through time to approximate the posterior pdf at the subsequent
steps via a proposal distribution q (st|st−1, zt). The importance weight of each
sample, wit, is updated as follows:

wit ∝ wit−1
p
(
zt|sit

)
p
(
sit|sit−1

)
q
(
sit|sit−1, zt

) . (4)

The final state at time t can be computed as the maximum a posteriori (MAP)
estimator:

ŝt = argmax
sit

p
(
sit|zt

)
∀i = 1 . . . Ns . (5)

When applied to the tracking problems after a few iterations, the particle
filtering has the degeneracy problem that only few particles carry significant
weights. A resampling procedure is then required to generate a new set of equally
weighted samples based on the importance weights.

3 Proposed Method

The section details the proposed method by starting with the description of the
multiple dynamic models used in the proposal distribution. Then we present
the observation model that integrates information related to object appearance,
object motion, and filaments.

3.1 Multiple Dynamic Models

Before describing the dynamic models, the state of an axonal tip is first intro-
duced. The state of an axonal tip at time t is represented by st = (xt yt zt ẋt ẏt żt)

T
,

where xt, yt, and zt denote the position of the tip in the Cartesian coordinate
and ẋt, ẏt, and żt represent the velocities in the x, y, and z directions. To better
predict the position of the axonal tip at time t, the proposal distribution contains
two dynamic models, defined as

q (st|st−1, zt) = π1p (st|st−1) + π2p (st|st−1, st−2) , (6)
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where p (st|st−1) = N
(
st|st−1, σ2

1

)
and p (st|st−1, st−2) = N

(
st|st−1 + vt−1, σ

2
2

)
are the first-order Markov transition and the second-order Markov transition, re-
spectively, where vt−1 is the velocity at time t−1, given by vt−1 = (ẋt−1 ẏt−1 żt−1).
The notation N

(
:, σ2

)
represents a Gaussian with variance σ2. The first-order

Markov transition models the phenomenon that the growing axons sometimes
stop growing for a short period of time and then resume the growth process,
and the second-order transition captures the typical motion behavior of growing
axons, which tends to follow the growing direction at time t− 1. The weights π1
and π2 , 1− π1 control the mixture for each dynamic model.

3.2 Observation Model

The proposed observation model combines information about object appearance,
object motion, and filaments in order to better follow the axonal tips.

Appearance Likelihood The appearance likelihood aims at modeling the prior
knowledge about the image formation process in the microscopy imaging systems
(point spread function (PSF)). Now, let Iidealt (x, y, z) be the ideal intensity,
without the effect of noise, at point (x, y, z) at time t, and is given by [13]

Iidealt (x, y, z) =
∑
i

Pi,t (x, y, z) + bt, (7)

where Pi,t is the object profile, and bt is the background intensity. Here, Gaussian
functions are used to approximate the PSFs of the microscopy.

However, because of the noise generated during the image acquisition process,
the observed intensity Iobst is the addition of the ideal intensity Iidealt and the
noise Nt that is assumed to be additive and Gaussian:

Iobst = Iidealt +Nt. (8)

To compute the likelihood, the residual image between the observed image and
the ideal image is first obtained by

Rt = Iobst − Iidealt . (9)

After the residual image is obtained, the appearance likelihood is therefore com-
puted as

p (Rt|st) =
1

Z1
exp (−α1||Rt||2) , (10)

where α1 is a constant, and Z1 is a normalizing constant.

Motion Model It is established in biology that axons reach their target cells
in the developing nervous system by the guidance of molecular gradients [14, 15].
Accordingly, the growing axons do not abruptly change their growing directions.
In other words, the turning angles of the growing axons between consecutive time



6 H.-F. Yang, X. Descombes, C. Kervrann, C. Medioni, F. Besse

sequences are small, leading to smooth trajectories. The likelihood is designed
to model this characteristic of the movement patterns of growing axons. Assume
that rt is the motion direction vector at time t. The angle difference, dt, between
the motion direction vectors at time t and at time t− 1 is given as

Dt = arccos (rt, rt−1) . (11)

Therefore the motion likelihood is defined as

p (Dt|st) =
1

Z2
exp (−α2Dt) , (12)

where α2 is a constant, and Z2 is a normalizing constant.

Filament Model Frangi’s vessel enhancement filter [16] is applied to enhance
the filaments in the images. The basic idea of Frangi’s method is to use the
eigenvalues of the Hessian (second-order information) to measure the vesselness.
Now, let λk represent the k-th smallest eigenvalue obtained from a Hessian ma-
trix (i.e., |λ1| ≤ |λ2| ≤ |λ3|), and the eigenvalues of an ideal tubular structure in
a 3D volume has the following properties: (1) |λ1| ≈ 0, (2) |λ1| � |λ2|, and (3)
λ2 ≈ λ3.

To quantitatively distinguish the tubular-like structure from blob-like and
plate-like structures, two geometric ratios RA and RB are defined. They are

RA = |λ2|
|λ3| and RB = |λ1|√

|λ2λ3|
, where RA is for distinguishing between plate-

like and line-like structures, and RB accounts for the deviation from a blob-
like structure. Besides, because background pixels have small magnitudes of the
eigenvalues, a measurement S is used to distinguish the tubular-like structures

from background and is defined as S =
√∑

j λ
2
j .

Finally, a vesselness function Vδ (p) that integrates the above 3 measurements,
RA, RB , and S, at scale δ is given by

Vδ (p) =

{
0 if λ2 > 0 or λ3 < 0(

1− exp
(
−RA(p)2

2γ2

))
exp

(
−RB(p)2

2β2

)(
1− exp

(
−S(p)

2

2c2

))
,

(13)
where γ, β, and c are parameters that control the sensitivity of the line filter to
the measures RA, RB , and S, respectively, and p denotes a voxel.

Equation (13) is analyzed at different scales to measure the vesselness in
an image so the final estimate of the vesselness is the maximum filter response
among all the scales, that is

V (p) = max
δmin≤δ≤δmax

Vδ (p) , (14)

where δmin and δmax are the minimum and maximum scales at which relevant
structures are expected to be found. Figure 2(b) shows the MIP image by apply-
ing Frangi’s vessel enhancement filter. The tubular-like structures are enhanced
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(a) MIP of the original volume (b) MIP of applying Frangi’s filter to (a)

Fig. 2. MIPs of the original volume and of the Frangi’s filtered volume. The tubular-like
structures are enhanced and the other structures including background are suppressed
in (b) after Frangi’s filter is applied to (a). Note that the filter is applied to 3D volumes,
and the MIPs of these 3D volumes are shown here for the visualization purpose.

and the others are suppressed when compared to the original MIP shown in
Figure 2(a).

Let l be the trajectory (a line segment) that an axon moves from time t− 1
to time t and Vl,t be the average value of the measured vesselness through this
trajectory. The filament likelihood is therefore given by

p
(
Vl,t|st

)
=

1

Z3
exp

(
−α3

(
1− Vl,t

))
, (15)

where α3 is a constant, and Z3 is normalizing constant.

Joint Likelihood Assuming the independence of object appearance, object
motion, and filament measurement, the joint likelihood for the observation model
is defined as

p (zt|st) = p (Rt|st) p (Dt|st) p
(
Vl,t|st

)
. (16)

4 Experimental Results

The experiments were carried out on synthetic data and a fluorescent microscopy
data set to evaluate the performance of the proposed method. The performance is
quantitatively measured by comparing the computer generated tracking results
to the ground truth based on evaluation metrics.

4.1 Experiments on Synthetic Data

Data To validate our method, a synthetic data set, with a size of 100×100×35,
that simulates the movement of growing axons is generated. Different levels of
Gaussian noise with standard deviation (STD) of 5 and 7 were added to the
synthetic data, resulting in a total of 2 image sequences. Figures 3(a) and 3(b)
show the generated synthetic images corrupted by Gaussian noise with STD = 5
and STD = 7, respectively.
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(a) STD = 5 (b) STD = 7 (c) STD = 5 (d) STD = 7

Fig. 3. Generated synthetic images with different levels of Gaussian noise and tracking
results. (a) and (b) show the synthetic images by adding Gaussian noise with STD = 5
and STD = 7, respectively. (c) and (d) show the tracking results in red and the ground
truth in green. The results produced by the proposed method are consistent with the
ground truth. Note that the contrast of images is enhanced for visualization.

Results To quantitatively measure the performance of the proposed tracking
method, the tracked trajectories were compared to manually generated ground
truth by measuring the root mean square error (RMSE) [10] of positions between
the tracked trajectories and the ground truth. The RMSE is defined as

RMSE =

√√√√ 1

K

K∑
k=1

MSE2
k , (17)

where K is the number of independent runs, and

MSE2
k =

1

M

M∑
m=1

1

Tm

∑
t∈Tm

‖rm,t − r̂km,t‖2, (18)

where rm,t is the true position of object m at time t, r̂km,t is the estimated
position, and Tm is the number of frames where object m exists.

Figures 3(c) and 3(d) show the comparison between the tracking results gen-
erated by the proposed method, shown in red, and the ground truth, shown in
green. By visual comparison, the computer generated tracks are consistent with
the ground truth.

Using RMSE as the performance measure metric, the localization errors for
the synthetic data set corrupted by Gaussian noise with STD = 5 and STD = 7
were 2.5565 and 2.6174 pixels, respectively, which indicates that the proposed
method can correctly follow the movement of growing axons.

4.2 Experiments on Fluorescent Two-Photon Microscopy Data

Data A 3D+t fluorescent two-photon microscopy data set of the intact Drosophila
fly brains was used to evaluate the performance of the proposed tracking method.
The volume size at each time is 1012× 548× 16 (x× y× z) voxels, and 170 such
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(a) Original image (b) Objects (c) Background

Fig. 4. Obtained moving objects and partial background by using the HullkGround
software. As can be seen, the original frame (a) contains noise and complex background,
and the background subtraction step decomposes the original image into an image
containing moving objects (b) and an image containing slightly moving background
(c).

volumes are generated. Each volume has a size of 133.75×72.36×12 µm3, with a
resolution of 0.132×0.132×0.8 µm3/voxel. To analyze the dynamics of axons in
the developing nervous system, the trajectories of the individual growing axons
have to be tracked.

Preprocessing The fluorescent microscopy data set was obtained by imaging
the living tissue at different time points so the subsequent volumes had to be
aligned to obtain the correct motion patterns of growing axons. In addition, the
raw images contain noise and complex background that have to be removed in
order to obtain more accurate trajectories. Hence, prior to the tracking, two
preprocessing steps, registration and background subtraction, were performed.

Registration Motion2D [17], a software to estimate 2D parametric motion models
in an image sequence, was used to register the images in order to eliminate the
living sample’s drift problem caused during the image acquisition process. To
register the 3D+t image sequence, the MIP image at each time was first obtained,
and the registration process was performed to estimate an affine motion model
for each pair of consecutive MIP images. The obtained motion models were then
used to register each individual frame. Though a 3D registration method that
registers consecutive volumes may be more appropriate for this case, we observed
that this 2D registration approach was able to give satisfying results.

Background Subtraction As demonstrated in Figure 1, the obtained images are
noisy and contain other biological structures (background) that may affect the
tracking performance. To remove noise and partial background, the HullkGround
software [18], which performs background subtraction by convex hull estimation,
was used to decompose the registered data set into two dynamic components:
(1) an image sequence containing moving objects and (2) an image sequence
showing the slightly moving background. Figures 4(b) and 4(c) show the image
containing moving objects and the image containing the background, respec-
tively. As can be seen, because of the high complexity of the background, only
partial background is removed from the original image shown in Figure 4(a). As
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(a) (b) (c)

Fig. 5. Visual comparison between the tracking results of the proposed method and the
manually created ground truth in 2D and 3D. The red trajectories are produced by the
proposed method, and the green are the ground truth manually created by the expert;
both are overlaid on the MIPs (a) and (b) and visualized in 3D (c). The computer
generated tracks are consistent with the ground truth in general, with minor differences
between the estimated positions and the ground truth positions. The differences are
caused by the noise and by the effect of complex background.

a result, the image shown in Figure 4(b) still contains some parts of the back-
ground. Even so, the proposed tracking method still yielded better results on
the moving objects images than the original images.

Tracking Results The proposed tracking method was applied to the tracking
of growing axons in the image sequence containing moving objects, which was
obtained by background subtraction. The initial positions of the axonal tips were
manually set by the user, and the tracking algorithm followed the traces of the
growing axons in the subsequent images. In the experiments, a set of 200 samples
was used in the particle filter. The weights (i.e. π1 and π2 in Equation (6)) for
the two dynamic models were set to 0.5. The parameters α1, α2, and α3 in the
observation model were set to 0.2, 2.5, and 0.25, respectively. Figure 5 shows
the 2D and 3D visual comparisons between the tracked trajectories produced
by the tracking algorithm, shown in red, and the ground truth tracks, shown in
green. As can be seen, the computer generated trajectories are consistent with
the manually created ground truth in general, with minor differences between
the estimated positions and the true positions, which is caused by the noise
and complex background. This indicates that the proposed method was able to
successfully follow the traces of axonal tips.

Using RMSE as the performance measure metric, for all the tracks, the overall
localization error of the proposed method is 4.56 pixels.

The mean computation time using a Matlab implementation of the proposed
method on a laptop with Intel Core i5 CPU (2.53 GHz) and 4GB memory
was 1.8926 seconds for tracking one axonal tip at a time step. Note that this
computation time does not include the time required for reading frames and
applying Frangi’s filter.
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Performance Comparison Between Different Likelihood Combinations
To investigate how each likelihood term in the observation model affects the
tracking results, we evaluated the tracking performance with 3 different likeli-
hood combinations: (1) appearance and motion likelihoods and (2) appearance
and filament likelihoods, and (3) appearance, motion, and filament likelihoods.
The appearance likelihood is commonly used in most of the tracking methods
and hence is retained in each combination. Hence, the main focus is on the in-
vestigation of how motion and filament likelihoods affect the performance. The
localization errors for the 3 combinations in order were 7.51, 7.87, and 4.83
pixels. The integration of appearance, motion, and filament likelihoods in the
observation model increases the localization accuracy.

5 Conclusions and Future Work

This paper presented a tracking method, based on the particle filtering tech-
nique, to follow the trajectories of the individual growing axons in fluorescent
microscopy images. The proposed method uses multiple dynamic models in the
proposal distribution in order to predict the positions of the axonal tips. Besides,
information related to object appearance, motion, and filament is integrated in
the computation of the likelihood. The fused information prevents the tracker
from being distracted by the other objects that have appearances similar to the
axonal tips; consequently, the proposed tracking method can successfully esti-
mate the trajectories of the axonal tips in the image sequences that are noisy
and have complex background. The experimental results obtained from a 3D + t
fluorescent two-photon microscopy image sequence demonstrate the effectiveness
of the proposed method.

Future work includes designing a detection method to automatically initialize
the tracking process and quantitatively analyzing the tracked trajectories to
gather statistical parameters of the growing axons. Current detection methods
usually produce many false positives in detecting the axonal tips and thus a
detection algorithm that is suitable for task is required. For analysis of the
axons, the parameters, such as curvatures, turning angles, and growing lengths,
will be extracted and used for mathematically modeling the growing patterns of
axons. We expect that this statistical analysis and modeling will provide valuable
insight into a better understanding of the characteristics of growing axons in the
developing nervous system.

Acknowledgement. This work was partially supported by ARC DATA (IN-
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