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Abstract

Abstract

Studying the dynamics of sub-cellular structures such as receptors, filaments,
and vesicles is a prerequisite for investigating cellular processes at the molecular
level. In addition, it is important to characterize the dynamic behavior of virus
structures to gain a better understanding of infection mechanisms and to develop
novel drugs. To investigate the dynamics of fluorescently labeled sub-cellular
and viral structures, time-lapse fluorescence microscopy is the most often used
imaging technique. Due to the limited spatial resolution of microscopes caused by
diffraction, these very small structures appear as bright, blurred spots, denoted
as particles, in microscopy images. To draw statistically meaningful biological
conclusions, a large number of such particles need to be analyzed. However, since
manual analysis of fluorescent particles is very time consuming, fully automated
computer-based methods are indispensable.

We introduce novel deep learningmethods for detection and tracking ofmultiple
particles in fluorescence microscopy images. We propose a particle detection
method based on a convolutional neural network which performs image-to-image
mapping by density map regression and uses the adaptive wing loss. For particle
tracking, we present a recurrent neural network that exploits past and future
information in both forward and backward direction. Assignment probabilities
across multiple detections as well as the probabilities for missing detections
are computed jointly. To resolve tracking ambiguities using future information,
several track hypotheses are propagated to later time points. In addition, we
developed a novel probabilistic deep learning method for particle tracking, which
is based on a recurrent neural network mimicking classical Bayesian filtering.
The method includes both aleatoric and epistemic uncertainty, and provides
valuable information about the reliability of the computed trajectories. Short and
long-term temporal dependencies of individual object dynamics are exploited
for state prediction, and assigned detections are used to update the predicted
states. Moreover, we developed a convolutional Long Short-Term Memory neural
network for combined particle tracking and colocalization analysis in two-channel
microscopy image sequences. The network determines colocalization probabilities,
and colocalization information is exploited to improve tracking. Short and long-
term temporal dependencies of object motion as well as image intensities are
taken into account to compute assignment probabilities jointly across multiple
detections. We also introduce a deep learning method for probabilistic particle
detection and tracking. For particle detection, temporal information is integrated
to regress a density map and determine sub-pixel particle positions. For tracking, a
fully Bayesian neural network is presented that mimics classical Bayesian filtering
and takes into account both aleatoric and epistemic uncertainty. Uncertainty
information of individual particle detections is considered. Network training for the
developed deep learning-based particle tracking methods relies only on synthetic
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Abstract

data, avoiding the need of time-consuming manual annotation. We performed an
extensive evaluation of our methods based on image data of the Particle Tracking
Challenge as well as on fluorescence microscopy images displaying virus proteins
of HCV and HIV, chromatin structures, and cell-surface receptors. It turned out
that the methods outperform previous methods.
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Zusammenfassung

Zusammenfassung

DieUntersuchung derDynamik subzellulärer Strukturenwie beispielsweise Rezep-
toren, Filamente und Vesikel ist eine Voraussetzung für die Erforschung zellulärer
Prozesse auf molekularer Ebene. Darüber hinaus ist es wichtig, das dynamische
Verhalten von Viruspartikeln zu charakterisieren, um ein besseres Verständnis der
Infektionsmechanismen zu erlangenundneueMedikamente zu entwickeln. Umdie
Dynamik von fluoreszenzmarkierten subzellulären Strukturen und Viruspartikeln
zu untersuchen, ist die Zeitraffer-Fluoreszenzmikroskopie die am häufigsten ver-
wendete Bildgebungstechnik. Aufgrund der begrenzten räumlichenAuflösung von
Mikroskopen, die durch Beugung verursacht wird, erscheinen diese sehr kleinen
Strukturen in Mikroskopiebildern als helle, unscharfe Flecken, die als Partikel
bezeichnet werden. Um statistisch aussagekräftige biologische Schlussfolgerungen
zu ziehen, muss eine sehr große Anzahl solcher Partikel analysiert werden. Da die
manuelle Analyse von fluoreszierenden Partikeln jedoch sehr zeitaufwändig ist,
sind vollautomatische computergestützte Methoden unerlässlich.
Wir haben neuartige Deep Learning Methoden zur Detektion und Verfolgung

(Tracking) mehrerer Partikel in Fluoreszenzmikroskopie-Bildern entwickelt. Wir
stellen eine Partikeldetektionsmethode vor, die auf einem Convolutional Neural
Network basiert, das eine Bild-zu-Bild-Abbildung durch Dichtekartenregression
vornimmt und den Adaptive Wing Loss verwendet. Außerdem stellen wir ein
Recurrent Neural Network für die Partikelverfolgung vor, das vergangene und
zukünftige Informationen sowohl in Vorwärts- als auch in Rückwärtsrichtung
ausnutzt. Die Zuordnungswahrscheinlichkeiten für mehrere Detektionen sowie
die Wahrscheinlichkeiten für fehlende Detektionen werden gleichzeitig berechnet.
UmMehrdeutigkeiten bei der Verfolgung mit Hilfe von Zukunftsinformationen
aufzulösen, werden mehrere Verfolgungshypothesen zu späteren Zeitpunkten
propagiert. Darüber hinaus haben wir eine neuartige probabilistische Deep Learn-
ing Methode für die Partikelverfolgung entwickelt, die auf einem Recurrent Neural
Network basiert, das die klassische Bayes’sche Filterung nachahmt. Die Meth-
ode berücksichtigt sowohl aleatorische als auch epistemische Unsicherheiten und
liefert wertvolle Informationen über die Zuverlässigkeit der berechneten Trajek-
torien. Kurz- und langfristige zeitliche Abhängigkeiten der Dynamik einzelner
Objekte werden für die Zustandsvorhersage ausgenutzt, und zugewiesene De-
tektionen werden zur Aktualisierung der vorhergesagten Zustände verwendet.
Darüber hinaus haben wir ein Convolutional Neural Network mit Lang- und
Kurzzeitgedächtnis für die kombinierte Partikelverfolgung und Kolokalisations-
analyse in zweikanaligen Mikroskopie-Bildsequenzen entwickelt. Das Netzwerk
ermittelt Kolokalisationswahrscheinlichkeiten, und die Kolokalisationsinforma-
tionen werden zur Verbesserung der Verfolgung genutzt. Kurz- und langfristige
zeitliche Abhängigkeiten der Objektbewegung sowie der Bildintensitäten werden
berücksichtigt, um Zuordnungswahrscheinlichkeiten gleichzeitig für mehrere De-
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Zusammenfassung

tektionen zu berechnen. Des Weiteren stellen wir eine Deep Learning Methode für
die probabilistische Partikelerkennung und -verfolgung vor. Für die Partikeldetek-
tion werden zeitliche Informationen integriert, um eine Dichtekarte zu regressieren
und Sub-Pixel-Partikelpositionen zu bestimmen. Für die Verfolgung wird ein voll-
ständig Bayes’sches neuronales Netzwerk vorgestellt, das die klassische Bayes’sche
Filterung nachahmt und sowohl aleatorische als auch epistemische Unsicherheiten
berücksichtigt. Die Unsicherheitsinformationen der einzelnen Partikeldetektionen
werden ebenfalls einbezogen. Das Netzwerktraining für die entwickelten Deep
Learning basierten Partikelverfolgungsmethoden beruht nur auf synthetischen
Daten, so dass eine zeitaufwändige manuelle Annotation nicht erforderlich ist.
Wir haben unsere Methoden anhand von Bilddaten der Particle Tracking Chal-
lenge sowie anhand Fluoreszenzmikroskopie-Bilder, die Virusproteine von HCV
und HIV, Chromatinstrukturen und Zelloberflächenrezeptoren zeigen, umfassend
evaluiert. Es stellte sich heraus, dass die Methoden bessere Ergebnisse als frühere
Methoden erzielen.
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Chapter 1

Introduction

1.1 Motivation

The cell is considered the smallest structural and functional unit of all living
organisms. Cellular systems are affected by internal as well as external signals
and are characterized by a complex interplay of numerous cellular and molecular
processes. Thus, cells can adapt to different conditions and perform a variety of
tasks. Quantifying the dynamic behavior of sub-cellular structures (e.g., receptors
[1], vesicles [2], cytoskeletal filaments [3], chromatin structures [4]) with high
spatial and temporal resolution provides important insights into cellular processes
at the molecular level, which is a prerequisite for understanding higher-level
biological processes such as pathogenesis, neuronal communication, apoptosis,
and embryogenesis. In addition, it is important to investigate the dynamic behavior
of virus particles to achieve a complete understanding of infection mechanisms
(e.g., [5]).

Time-lapse fluorescencemicroscopy is a powerful imaging technique for studying
the dynamics of sub-cellular structures and virus particles specifically labeled with
fluorescent dyes. These very small fluorescent structures appear in microscopic
images as bright, blurry spots, called particles, due to the diffraction-limited
resolution of optical systems. A detailed quantitative characterization of the
underlying dynamic processes can be obtained by reconstructing the observed
particle trajectories, from which biophysical parameters such as the diffusion
coefficient, the velocity, and the acceleration can be determined. In addition,
analyzing protein dynamics in multi-channel time-lapse fluorescence microscopy
images allows estimating binding affinities betweendifferent sub-cellular structures.
To draw statistically significant conclusions in biological studies, a large number of
such particles must be examined. However, since manual detection and tracking
of fluorescent particles is tedious, fully automated computer-based methods are
indispensable.
In recent years, deep learning methods have been introduced yielding state-of-

the-art performance in numerous computer vision and medical image analysis
tasks [6, 7, 8], including image classification [9, 10, 11], object detection [12, 13, 14],
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object segmentation [15, 16, 17], and object tracking [18, 19, 20]. Deep learning has
been used to analyze biological objects in fluorescence microscopy images (e.g.,
[21, 22, 23, 24]), however, most of the existing deep learning-based detection and
tracking methods have been developed for objects (pedestrians, cars) in images
of natural scenes. Compared to images of natural scenes, detection and tracking
of fluorescent particles has additional task-specific challenges (e.g., small objects,
lack of appearance characteristics, high object density, complex motion behavior,
low SNR). In addition, large training data sets consisting of real images, such as
VisDrone-DET [25] or MOTChallenge [26] for natural images, are not available and
difficult to generate for fluorescent particle detection and tracking tasks.
This thesis presents novel deep learning methods for particle detection and

tracking in fluorescencemicroscopy images,while considering various task-specific
challenges. Experiments based on image data of various virus structures (e.g., virus
proteins, virus particles) and sub-cellular structures (e.g., cell surface receptors,
chromatin structures) acquired using different fluorescence microscopy techniques
show that the developed methods yield better results compared to previous
methods. In the following, we describe the acquisition process of fluorescence
microscopy images and elaborate on the tasks and challenges involved in detecting
and tracking fluorescent particles.

1.2 Fluorescence Microscopy

The basic idea of fluorescence microscopy is to irradiate a biological specimen with
light of a specific wavelength (or wavelengths) using a strong light source (e.g.,
Xenon lamp, laser) and then separate the emitted light of a higher wavelength
(Stokes’ shift) from the excitation light [27]. In the detection path of the microscope,
only the emitted light is transmittedbyoptical filters and thenmeasuredby a camera
sensor (e.g., charge-coupled device, complementary metal-oxide-semiconductor
[28]) so that the fluorescent structures are displayed with high contrast on a dark
background. This allows to determine information about the presence, position,
distribution, and number of these fluorescent structures in the specimen. However,
most sub-cellular structures and virus particles have no intrinsic fluorescence
property, so labeling of the objectswithfluorescent probes (e.g.,fluorescent proteins,
dyes, quantum dots) is required for their observation, whereas not labeled objects
are expected to emit no (or little) light and are therefore (almost) invisible. There
exist numerous labeling strategies to specifically bind the fluorescent probes to
the structures of interest (e.g., protein tags, artificial amino acids) [29, 30]. In
multi-channel fluorescence microscopy, different emission wavelengths are measured
(almost) simultaneously, allowing imaging of different fluorescent probes binding
to different types of structures in the specimen. In time-lapse fluorescence microscopy,
images of the fluorescent labeled structures are acquired in a temporally sequential
manner, which enables the observation of the structures over time.
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(a)WFFM (b) CLSM (c) SDCM

Figure 1.1 Illustration of different illumination patterns in fluorescencemicroscopy.

To obtain high magnification and high resolution images, various fluorescence
microscopy techniques have been developed, such as widefield, confocal laser
scanning, and confocal spinning disk microscopy. The main differences of the
illumination patterns are shown in Fig. 1.1. The underlying technical principles are
similar, but with different adaptations, which also indicates their characteristics
and limitations. In widefield fluorescence microscopes (WFFM), image acquisition is
fast and the whole field-of-view is simultaneously illuminated by the light source,
exciting all fluorescent probes and collecting emitted light from the entire depth
[31]. A major drawback of this technique is the limited contrast and resolution
(especially for thick specimens) due to blur caused by out-of-focus light emitted
from the specimen. In contrast, confocal microscopes utilize the pinhole principle to
prevent out-of-focus light from reaching the detector [31, 32]. Confocal laser scanning
microscopes (CLSM) use a laser as light source, that scans specimens sequentially
point-by-point. A photomultiplier tube is typically used for detecting the emitted
light of individual points. However, since each position of the specimen is imaged
individually, image acquisition rates are relatively low and mainly determined by
the scanning speed [31]. In spinning disk confocal microscopy (SDCM), the problem
of scanning speed is solved by the multiplex principle, which allows imaging
of fast dynamic processes and living cells. Numerous excitation light beams are
projected onto the specimen in parallel, and the emitted light is then detected
at the different excitation coordinates. A Nipkow disk with multiple pinholes is
used, which rotates mechanically at high speed. A major limitation of primary
SDCM designs with only one Nipkow disk is poor illumination efficiency (about
4%) [33]. In double-disk SDCM, a Nipkow disk with thousands of pinholes that
produce confocality is combined with a parallel rotating second Nipkow disk
that has a matching array of microlenses. Thus, each pinhole is associated with a
microlens at the same disk coordinate. When illuminated, eachmicrolens produces
a focused spot of light, of which about 40% can pass into the associated pinhole
[28]. Typically charge-coupled device (CCD) cameras are used, which capture
the light from all pinholes simultaneously [31]. CCD cameras have significantly
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higher quantum efficiencies than photomultiplier tubes, and therefore, the available
emission photons are collected more efficiently [34].

Due to diffraction phenomena in optical systems, a fluorescent point source (e.g.,
fluorescent molecule) does not appear as an infinitely sharp point when imaged
with a conventional microscope, but as an blurred focal spot with a finite size
[35]. The imaging process can be described by a convolution operation between
the intensity density map of the specimen and the point spread function (PSF),
which characterizes the response of the optical system of the microscope to a
fluorescent point source and defines its intensity profile in the blurred image
[35, 36, 37]. Consequently, two identical fluorescent point sources separated by a
distance less than the full width at half maximum (FWHM) of the PSF appear as an
unresolvable large blurred spot (’particle’) [35, 38]. Thus, conventional fluorescence
microscopes have limited spatial resolution of about 200 nm in the focal plane
and 500 nm along the optical axis and cannot spatially resolve smaller structures
[39, 40]. The PSF of optical systems can be detemined analytically based on wave
optics or empirically based on point objects. Both approaches have limitations
[41]. In various fluorescence microscopy techniques (e.g., WFFM, CLSM, SDCM),
the Gaussian function is a sufficient approximation of the PSF [42]. Here, sub-
resolution structures appear in the blurred images as Gaussian-like fluorescent
particles whose appearance is parameterized by the peak intensity and standard
deviation of the underlying Gaussian function.
In recent years, several super-resolution microscopy techniques have been de-

veloped that overcome the diffraction-limited spatial resolution in conventional
fluorescence microscopes. These techniques can be divided into two main cate-
gories, but all exploit a chemical or physical property of a fluorescent probe to
keep adjacent molecules in different states (i.e., on and off), allowing them to be
imaged spatially resolved from each other [43]. Techniques of the first category
utilize patterned illumination, whereby not all fluorescent probes are excited simul-
taneously in a diffraction-limited spatial region. This category includes stimulated
emission depletion microscope (STED) [39] and structured illumination microscopy (SIM)
[44]. Techniques of the second category are based on photoswitching or other
processes to stochastically activate and deactivate individual fluorescent probes
in a diffraction-limited spatial region [31]. This category includes photoactivation
localization microscopy (PALM) [45] and stochastic optical reconstruction microscopy
(STORM) [46]. For example, STED has achieved a lateral resolution of about 20
nm in a biological specimen [35]. However, super-resolution microscopes are
significantly more expensive, more complex to operate, and not yet as widely used
as conventional fluorescence microscopes.
Besides limited spatial resolution, there are other challenges in fluorescence mi-

croscopy of biological specimens. Since sub-cellular structures are usually very
small, only a few fluorescent probes can be attached to them. This results in a
relatively weak fluorescence signal. In addition, cells exhibit an intrinsic natural
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fluorescence, called auto-fluorescence, due to some cellular components (e.g., mi-
tochondria) and metabolites [47, 48, 49]. The weak fluorescence signal of labeled
sub-cellular structures combined with cellular auto-fluorescence results in low
image contrast. In addition, exposure to high-intensity excitation light can degrade
fluorescent probes, causing loss of fluorescence properties [50]. This process, known
as photobleaching, occurs particularly during time-lapse fluorescence microscopy,
where a temporal image sequence is acquired. For each image acquisition, the
fluorescent structures are exposed to excitation light, resulting in a decrease of
the fluorescence signal of the labeled structures over time. Photobleaching con-
sequently affects the image acquisition rate (number of images per time interval)
to be selected for an experimental setup. A high image acquisition rate allows
events to be imaged with high temporal resolution, but the sub-cellular structures
can only be observed over a relatively short period of time. A low image acqui-
sition rate allows the sub-cellular structures to be observed over a long period
of time, but the temporal resolution may be too low for relevant short events. A
possible compromise between these two image acquisition strategies is to reduce
the intensity of the excitation light, reducing the degradation of fluorescent probes.
However, this results in weak fluorescence signals. Phototoxicity due to frequent
exposure to high-intensity excitation light leads to cellular damage that can affect
the entire cell physiology and often occurs during live-cell fluorescence microscopy.
Fluorescent probes and cellular organic molecules (e.g., flavins, andporphyrins)
exposed to excitation light can react with oxygen and become degraded, producing
free radicals that severely damage cellular structures and components (e.g., deoxyri-
bonucleic acid, unsaturated fatty acids, enzyme cofactors) [51, 52]. To minimize
phototoxicity, low-intensity excitation light and image acquisition rate should
be preferred [53]. Since few fluorescent probes attach to very small sub-cellular
structures and low-intensity excitation light is used to minimize photobleaching as
well as phototoxicity, the fluorescence signal in time-lapse fluorescence microscopy
of living cells is usually weak. The weak fluorescence signal in combination with
cellular auto-fluorescence and other noise sources in the microscopy system (e.g.,
leakage current, extraneous light, photon noise) generally results in images with
low contrast and signal-to-noise ratio (SNR) [54].

1.3 Tasks and Challenges of Particle Detection and Tracking

To quantitatively characterize the dynamic behavior of fluorescent labeled sub-
cellularorvirus structures from temporalfluorescencemicroscopy image sequences,
particle trajectories must be reconstructed, from which biophysical parameters such
as the diffusion coefficient, the velocity, and the acceleration can be obtained.
The reconstruction of particle trajectories over a temporal image sequence can be
decomposed into two main tasks: (i) detect the particles in each image and (ii) link
individual particle positions over time using the obtained particle detections, i.e.
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(a) HCV proteins (b) HIV-1 particles (c) Cell-surface receptors

Figure 1.2 Example image sections from three different real temporal fluorescence
microscopy image sequences. The images vary greatly and the SNR values are
rather low.

track individual particles. Both tasks are generally demanding in computer vision.
In fluorescence microscopy, the typically low image quality due to image acquisition
limitations must be additionally addressed. In the following, we will describe the
tasks and challenges for particle detection and tracking in time-lapse fluorescence
microscopy images.
The aim of detection is to determine image regions that belong to particles, i.e.

distinguish fluorescent particles from the background. The main limiting factor
of the detection performance is the SNR level of the image data [55, 56]. In most
cases, the SNR level is low due to few fluorescent probes attaching to the very
small structures, auto-fluorescence of the cells, noise sources in the microscopy
system, and low intensity excitation light used to minimize photobleaching as well
as phototoxicity. Moreover, despite recent technological advances, the resolution
of microscopes is too low compared to the size of sub-cellular and virus structures.
Consequently, it is often difficult even for biology experts to distinguish particles
from spurious fluorescent background structures or image noise [55]. The limiting
factors in particle detection typically result in an erroneous set of noisy detections:
Some artifacts are falsely detected as particles (missing detections) and some
particles are not detected (missing detections). To visualize the challenges of
particle detection, Fig. 1.2 shows example fluorescence microscopy image sections
of various sub-cellular and virus structures.

The aim of tracking is to link individual particle positions over time using the ob-
tained particle detections. Correspondence finding addresses the task of determining
whether or not detections in different images belong to the same object [57]. Since
particles usually cannot be distinguished by their appearance, correspondence find-
ing is generally based only on assumptions about the underlyingmotionmodel [58].
However, particles perform various motion types (e.g. Brownian motion, directed
motion), sometimes confined to a very small volume, and undergo abrupt changes
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in direction as well as speed. Due to the complex motion behavior, correspondence
finding becomes very challenging and ambiguous, especially for high particle
densities, which often exist in biological samples. False detections and missing
detections make correspondence finding even more difficult. In addition, since
moving particles can enter and leave the focal plane or imaged region, particle
appearance and disappearance has to be addressed. To incorporate uncertainty
in position estimation, spatio-temporal filtering is usually employed. This is often
formulated within a Bayesian framework, where a posterior distribution on the
position of a particle is estimated recursively over time, based on a sequence of
assigned noisy detections and assumptions about the motion type [58].

1.4 Contributions

In this thesis, novel deep learning methods for particle detection and tracking
in fluorescence microscopy image sequences are presented that address several
task-specific challenges. More specifically, the main contributions are:

• Recurrent Neural Networks for Particle Tracking: A novel particle track-
ing method is presented based on a recurrent neural network that exploits
past information about individual object dynamics for state prediction and
correspondence finding. The network computes assignment probabilities
jointly across multiple detections and determines probabilities for missing
detections. Training is performed using only simulated data, avoiding the
need for tedious manual annotation of training data. As an extension, a new
deep learning method is proposed based on a recurrent neural network that
exploits past and future information in both forward and backward direction.
To handle track initiation and termination, the network calculates existence
probabilities. Information at later time points can be used to resolve ambi-
guities by propagating track hypotheses to future time points. Handcrafted
similarity measures and motion features are not required. In contrast to
classical tracking methods, manual tuning of tracking parameters and prior
assumptions about probability distributions are not required. Compared
to previous deep learning methods for fluorescent particle tracking, future
information and multiple tracking hypotheses are exploited for correspon-
dence finding and track initiation as well as termination. The work has been
published in [59, 60].

• Deep Probabilistic Tracking of Particles in Fluorescence Microscopy Im-
ages: A novel probabilistic deep learning method for fluorescent particle
tracking is introduced, which is based on a recurrent neural network that
mimics classical Bayesian filtering. Compared to previous deep learning
methods for particle tracking, both aleatoric and epistemic uncertainty is
taken into account. Thus, information about the reliability of the computed
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trajectories is determined. Manual tuning of tracking parameters is not nec-
essary and prior knowledge about the noise statistics is not required. Short
and long-term temporal dependencies of individual object dynamics are
exploited for state prediction, and assigned detections are used to update the
predicted states. For correspondence finding, a neural network is used which
computes assignment probabilities jointly across multiple detections as well
as determines the probabilities of missing detections. Training requires only
simulated data and therefore tedious manual annotation of ground truth is
not needed. The work has been published in [61].

• DeepNeural Network for Combined Particle Tracking andColocalization
Analysis: A new deep learning method for combined particle tracking
and colocalization analysis in two-channel microscopy image sequences is
presented. Short and long-term temporal dependencies of object motion
as well as image intensities are taken into account to compute assignment
probabilities jointly across multiple detections and determine colocalization
probabilities. Compared to previous deep learning methods for particle
tracking in fluorescence microscopy images, two channels are exploited,
colocalization analysis is performed, and image intensities are used for
correspondence finding. The work has been published in [62].

• Deep Learning for Particle Detection and Tracking: A novel deep learning
method for 3D particle detection in 3D fluorescence microscopy images is
introduced. Instead of pixel-wise binary classification or direct coordinate
regression, image-to-image mapping is performed based on regressing a
density map. Detections close to particles are rewarded during network
training,andhighlynonlineardirectprediction ofpoint coordinates is avoided.
To focus on particles in comparison to background image points, we suggest
using the adaptive wing loss. A weighted loss map is employed to cope with
the very strong imbalance between particle and background image points
for 3D images. Compared to previous deep learning methods for fluorescent
particle detection, density map regression is performed, the adaptive wing
loss is used, and full 3D information is exploited. In addition, the particle
detection method is extended for integrating temporal information and
determining sub-pixel positions, and combined with a fully Bayesian neural
network for tracking. In contrast to previous work, temporal information
is taken into account for fluorescent particle detection and a fully Bayesian
neural network is used for tracking that considers uncertainty information of
individual detections. The work has been published in [63] and submitted
for publication [64].

• Quantitative Performance Evaluation: Quantitative performance studies of
the proposed particle detection and tracking methods have been performed
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based on data from the Particle Tracking Challenge (PTC, [65]) as well as real
fluorescence microscopy images displaying various sub-cellular and viral
structures. It turned out that the proposed methods yield improved results
compared to previous methods.

1.5 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, fundamentals of deep learning
are described, and previous work on object detection and tracking is discussed.
Chapter 3 presents the metrics and state-of-the-art methods used for quantitative
performance evaluation and comparison. Chapter 4 introduces new deep learning
methods for particle tracking in fluorescence microscopy images that exploit
temporal information by recurrent neural networks. In Chapter 5, we introduce a
probabilistic deep learning method for particle tracking in fluorescence microscopy
images. A recurrent neural network mimics classical Bayesian filtering, and a feed-
forward neural network is used for correspondence finding. Chapter 6 presents
a convolutional Long Short-Term Memory based neural network for combined
particle tracking and colocalization analysis in two-channel microscopy image
sequences. In Chapter 7, we propose a method for particle detection based on a
convolutional neural network that performs density map regression. In addition,
a deep learning method for probabilistic detection and tracking of particles in
fluorescence microscopy images is introduced. Chapter 8 summarizes the thesis,
points out limitations, and provides suggestions for future research.
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Chapter 2

Foundations and Previous Work

In this chapter, we describe the fundamental concepts that are essential for this
thesis. We present foundations of deep learning anddiscuss recent developments in
the field of object detection and tracking. In addition, an overview of state-of-the-art
methods for detection and tracking of particles in fluorescence microscopy images
is provided.

2.1 Foundations of Deep Learning

A key feature of intelligent life is the ability to acquire knowledge from experience.
Deep learning is a subfield of machine learning in which artificial neural networks
(ANNs) learn from sample data. Since Deep Learning is a flexible data-driven
approach with universal approximation capabilities, it is used for various tasks.

2.1.1 Artificial Neural Networks

Artificial neural networks (ANNs) mimic the structure and function of biological
neural networks in animals. Similar to neurons in the brain, ANNs consist of
artificial neurons which are connected to each other and arranged in various layers.
An ANN layer with # neurons has the weight parameters W ∈ ℝ"×# and

Figure 2.1 Depiction of an artificial neuron.
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bias parameters b ∈ ℝ# , where " ∈ ℝ represents the number of neurons in
the preceding layer. Fig. 2.1 illustrates the 8 - th neuron of the layer with a bias
parameter 18 ∈ ℝ and " ∈ ℝ connections, each of which receives an input
value G 9 ∈ ℝ from a single neuron 9 in the preceding layer. The input values
x ∈ ℝ"×1 are multiplied by the weight parameters w8 ∈ ℝ"×1 and then summed
together with the bias parameter 18 . Then, an activation function 5 is applied to the
weighted sum B8 to obtain the final output H8 ∈ ℝ of the 8 -th neuron [66, 67]:

H8 = 5 (B8) = 5 (wT
8 x + 18) = 5 (18 +

"∑
9=1

G 9F8 , 9) (2.1)

The output H8 can serve as input for neurons in the subsequent layer or be a part of
the ANN output. The activation function 5 is mainly used to introduce non-linear
variations, allowing complex properties to be captured in the data. An overview
of frequently used activation functions is provided in Sec. 2.1.3. Note that the
bias parameter 1 is not always used in ANNs but sometimes omitted. In network
training, the weight and bias parameters, also known as learnable parameters, are
adjusted to a specific task by applying optimization algorithms given a training set of
input-output pairs. Applying trained neural networks to data is called inference.
The neural network architecture describes the pattern according to which the
individual artificial neurons are connected and must be adapted to the complexity
as well as nature of the task. Typically, ANNs are organized into three different
parts:

(1) Input layer: The first layer of an ANN, which accepts the input data (e.g.
images, measurements) and passes it directly to the first hidden layer.

(2) Hidden layer: An intermediate layer between the input and output layers.
ANNs can have one or more hidden layers that perform numerous tasks such
as data transformation and feature extraction. An ANN with more than two
hidden layers is commonly referred to as a deep neural network (DNN) [68].

(3) Output layer: The last layer of an ANN computing and representing the
network output for given input data.

The simplest ANN architecture is the feed-forward neural network (FFNN), in which
information can only flow in the forward direction. This means that the output of a
layer feeds forward to the neurons of the subsequent layer, and there are no cycles
that would allow direct feedback. Typically, FFNNs consist of fully-connected (FC)
layers in which each neuron is connected to every neuron in the adjacent layers. In
Fig. 2.2, the architecture of an FFNN is shown. An early single-layer FFNN (no
hidden layer) that uses the Heaviside step function as activation function and acts
as linear binary classifier is called Perceptron [69]. A multi-layer Perceptron (MLP)
has at least one hidden layer. In general, the universal approximation theorem
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Figure 2.2 Feed-forward neural network with two hidden layers.

proves that an FFNN with one hidden layer and a finite number of neurons can
approximate any continuous function in a compact subset Ω ∈ ℝ= with arbitrary
precision [70, 71]. However, the number of neurons can become exponentially large,
making the training of such a network very difficult. Thus, neural networks that can
be learned more effectively in practice are needed. The universal approximation
theorem has also been proved for FFNNs with several hidden layers [72, 73], which
are much more efficient than shallow FFNNs in terms of computation and number
of neurons.

2.1.2 Neural Network Training

In ANN training, an optimization algorithm is utilized to minimize the loss by
adjusting all learnable parameters. Due to the non-linearity and depth (i.e., number
of hidden layers) of an ANN, the loss surface is not convex and contains local
minima, which makes the training procedure difficult. However, it is sufficient
to find a local minimum with a reasonably low loss, which avoids the need to
determine the global minimum. Gradient descent algorithms combined with back-
propagation are by far the most common technique to train neural networks. In the
following, the individual steps of the training procedure to determine the weight
parameters are described:

(1) Initialization: Appropriate initialization of learnable parameters is essential
for efficient neural network training. The bias values are usually set to be
zero. The weights are initialized with random values so that they maintain a
certain distribution over several layers, andbreak the symmetry, allowing each
neuron to learn adifferent feature. In addition, to avoidvanishing orexploding
gradients, the activations should be zero-mean and have uniform variance
across every layer. The most common methods for weight initialization use
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random values in the weight matrix W sampled from a scaled uniform
distribution or a Gaussian distribution with zero-mean. To ensure uniform
variance of activations in adjacent layers, the initializationmethod introduced
by Glorot and Bengio [74] uses a distribution with zero-mean and a variance
computed as follows:

Var(W) = 2
#in +"out

(2.2)

where #in and "out are the number of neurons in the preceding and current
layer, respectively. However, this method was developed for sigmoid-based
activation functions, and for functions such as ReLU and PReLU, half of
the results are truncated. To solve this problem, He et al. [75] proposed a
modified initialization method using a Gaussian distribution with zero-mean
and a variance computed as follows:

Var(W) =
√

2
#in

(2.3)

(2) Forward pass: During the forward pass, a batch of input samples is fed
into the network and passed sequentially through all layers until the last
layer computes the output for each sample. Since the weights are initialized
randomly, the performance of the network is usually poor at the beginning
of the training.

(3) Loss computation: The lossℒ is computed tomeasure the difference between
the network output and the ground truth (desired output) for a batch of
training samples. Loss functions are discussed in more detail in Sec. 2.1.4.

(4) Back-propagation (backward pass): The back-propagation algorithm uses
the chain rule of derivatives to compute the gradient of the loss with respect
to each learnable parameter of the neural network. For a weight parameter
F8 9 ∈ ℝ of the weight matrix W, the gradient ∇F8 9ℒ is computed as follows:

∇F8 9ℒ =
%ℒ
%F8 9

=
%ℒ
%H

%H

%F8 9
(2.4)

where H is the final output of the neuron computed according Eq. (2.1).

(5) Gradient descent: The gradient descent algorithm performs an update for
each learnable parameter of the neural network based on the computed
gradients. The update F8 9 ,new of weight parameter F8 9 is given as:

F8 9 ,new = F8 9 − �∇F8 9ℒ (2.5)
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where � ∈ ℝ+ denotes the learning rate, which controls how much learnable
parameters are adjusted at each update step. The learning rate � must be
chosen properly, since a too small value leads to an unnecessarily long training
procedure trapped in a sub-optimal local minimum, while a too large value
can make the training unstable and even cause divergence. In practice, a
learning rate schedule is often used that defines exactly when the learning
rate is reduced (or increased) (e.g., [76, 77]).

(6) Iterations: Steps (2) - (5) are repeated with all training batches until the loss
converges or a maximum number of epochs is reached. The training progress
is monitored by the validation loss using an unbiased data set.

For any bias parameter 1, back-propagation and gradient descent work in the same
way as described in steps (1) - (6) for the weight parameter F8 9 . A major challenge
in training very deep neural networks with gradient descent and back-propagation
is the vanishing and exploding gradient problem [78, 79]. It occurs mainly because the
gradient flows backwards through all layers using the chain rule of derivatives,
i.e., the gradients of the neurons are obtained by multiplying the gradients in later
layers (closer to the output layer). Vanishing gradients result from an accumulation
of small gradients in later layers and lead to insignificant parameter updates,
while exploding gradients result from an accumulation of large gradients and
lead to very large parameter updates. Both effects lead to unstable training or
poorly trained neural networks. In addition to the back-propagation algorithm,
improper parameter initialization and inappropriate choice of activation function
also contribute to the vanishing and exploding gradient problem. Methods to cope
with this challenge are discussed later in this chapter.

The most commonly used gradient descent algorithms are typically refinements
or extensions of the stochastic gradient descent (SGD) algorithm [80]. Compared
to vanilla gradient descent, SGD performs a parameter update based on each
training sample instead of the entire training data set. Since frequent updates with
high variance lead to oscillations of the loss, in practice parameters are typically
updated based on several training samples (mini-batch) instead of a single one.
SGD oscillates strongly in areas of the loss surface with long and narrow ravines,
which are often located near local minima [81]. Moreover, SGD often gets trapped
in sub-optimal local minima and converges relatively slowly. SGD with momentum
addresses these problems by accumulating an exponentially decaying moving
average of previous gradients [66, 82]:

F8 9 ,new = F8 9 − E8 9 ,new (2.6a)

E8 9 ,new = �E8 9 + �∇F8 9ℒ (2.6b)
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where E8 9 represents the velocity vector and � ∈ [0, 1] is the momentum term
that regulates the influence of the previous gradients. This accelerates SGD in the
relevant direction, resulting in faster convergence and a reduction in oscillations.
Since the gradient magnitude of the learnable parameters varies greatly and
changes during network training, a pre-defined global learning rate is often not
appropriate. Thus, optimizers have been introduced which adjust the learning
rate for each update step and parameter individually (e.g. [83, 84, 85, 86]). This
can greatly improve the speed and robustness of the learning process. Root mean
squared propagation (RMSProp) [84] is a widely used and very effective extension
of SGD that addresses the problem of very strongly decreasing learning rates of
adaptive gradient (AdaGrad) [83]. The key idea of RMSprop is to modify the learning
rate for each parameter based on an exponentially decaying average of squared
gradients (∇F8 9ℒ)2 ∈ ℝ:

F8 9 ,new = F8 9 − �
∇F8 9ℒ√
E8 9 ,new + &

(2.7a)

E8 9 ,new = �E8 9 + (1 − �)(∇F8 9ℒ)2 (2.7b)

where & ∈ ℝ+ is a very small value added to prevent division by zero and � ∈ ℝ+
defines the influence of the momentum (typically � = 0.9 is used). Adaptive moment
estimation (Adam) is another very popular optimizer that determines adaptive
learning rates for each network parameter [85]. Besides using the exponentially
decaying average of squared previous gradients E8 9 as in RMSProp (second mo-
mentum), the exponentially decaying average of previous gradients <8 9 is also
included as in SGDwithmomentum (first momentum). Since<8 9 and E8 9 are biased
toward zero (especially during the first update steps), Adam additionally includes
bias-corrected estimates of the first <̂8 9 and second Ê8 9 moments:

F8 9 ,new = F8 9 − �
<̂8 9 ,new√
Ê8 9 ,new + &

(2.8a)

<̂8 9 ,new =
<8 9 ,new

1 − �1
(2.8b)

Ê8 9 ,new =
E8 9 ,new

1 − �2
(2.8c)

<8 9 ,new = �1<8 9 + (1 − �1)∇F8 9ℒ (2.8d)

E8 9 ,new = �2E8 9 + (1 − �2)(∇F8 9ℒ)2 (2.8e)
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where �1 ∈ [0, 1] and �2 ∈ [0, 1] define the influence of the moments <8 9 and E8 9 ,
respectively. Typically �1 = 0.9 and �2 = 0.999 are used.AMSGrad is an extension of
Adam that avoids large abrupt changes in learning rate to improve the convergence
and generalization properties of the optimizer [86]. Instead of the exponentially
decaying average, the maximum of the previous squared gradients is used to
update the parameters.

F8 9 ,new = F8 9 − �
<̂8 9 ,new√
Ê8 9 ,new + &

(2.9a)

<̂8 9 ,new =
<8 9 ,new

1 − �1
(2.9b)

Ê8 9 ,new =
max(E8 9 ,new, Ê8 9)

1 − �2
(2.9c)

<8 9 ,new = �1<8 9 + (1 − �1)∇F8 9ℒ (2.9d)

E8 9 ,new = �2E8 9 + (1 − �2)(∇F8 9ℒ)2 (2.9e)

2.1.3 Activation Functions

In a neural network, the activation function 5 transforms the sum B of the bias value
and weighted input values into the final output of the neuron. The activation
function is usually a non-linear function that allows learning complex structures in
the data, but it can also be the identity function (linear function). Activation functions
are typically differentiable, which is required for training neural networks using
back-propagation. The effect of their derivatives on the gradient is an important
issue. In the literature, several non-linear functions have been introduced (e.g.,
[75, 87, 88, 89]). The sigmoid function (�) squashes B to the range of [0, 1]:

�(B) = 1
1 + 4−B (2.10)

Since the output of the sigmoid function is not zero-centered, all gradients of the
parameters will either all be positive or all be negative, which can lead to zig-zag
dynamics in the gradient updates. This can be overcome by using the zero-centered
hyperbolic tangent (tanh) function, which squashes B to the range of [−1, 1]:

tanh(B) = 4 B − 4−B
4 B + 4−B (2.11)

Compared to sigmoid, tanh leads to easier and faster learning. However, both
sigmoid and tanh saturate relatively quickly due to their boundedness, resulting
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in gradients close to zero and vanishing gradients in deep neural networks. The
non-bounded and non-zero-centered Rectified Linear Unit (ReLU) is one of the most
commonly used activation functions in neural networks [87, 90], where all negative
values of B are set to zero.

ReLU(B) = max(0, B) (2.12)

ReLU is computationally cheap and has been shown to significantly accelerate the
convergence speed when training neural networks with SGD compared to sigmoid
as well as tanh [91]. In addition, since ReLU is not saturating for positive values of
B, deep neural networks do not suffer from the vanishing gradient problem [87].
However, since ReLU outputs zero and has gradients of zero for all negative values
of B, ReLU can saturate at zero and become inactive (dead) forever. To reduce this
so-called dying ReLU problem, several extended variants have been introduced. The
Leaky Rectified Linear Unit (LReLU) [88] allows small negative outputs when B is
less than zero by introducing a predefined leakage parameter 0 = 0.01:

LReLU(B) =
{
B, if B > 0
−0B, otherwise

(2.13)

Compared to ReLU, LReLU is more balanced and may therefore learn faster.
However, LReLU does not retain the sparse characteristic of ReLU, where only
subsets of neurons are active due tomapping negative values to zero. The Parametric
Rectified Linear Unit (PReLU) [75] is a generalization of LReLU where the leakage
parameter is not predefined but learned along with the other network parameters
during training. The softmax function is commonly used as an activation function in
the output layer of neural networks acting asmulti-class classifiers [66]. It normalizes
the outputvalues of the : neurons in the layer to a probabilitydistribution consisting
of : probabilities that always sum to one. The final output softmax(B8) ∈ [0, 1] of
the 8 -th neuron in the layer is computed as follows:

softmax(B8) =
4 B8∑:
9=1 4

B 9
(2.14)

2.1.4 Loss Functions

A loss function (also called cost function) quantifies the difference between the
output computed by the algorithm and the ground truth (desired output). The loss
ℒ usually represents the average of the individual sample losses of a mini-batch or
an entire data set:

ℒ = 1
#

#∑
8=1
ℒ8 (2.15)

where # denotes the number of samples and ℒ8 is the loss of sample 8. For neural
networks, several loss functions exist for both classification and regression tasks.
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In classification tasks, each sample is assigned to exactly one of two (binary)
or multiple possible classes. Thus, one ground truth label H̃8 exists for each
sample 8. The most common loss function used for classification tasks is the cross-
entropyℍ, which originates from information technology and generally measures
the difference between two probability distributions ? and @ [92]. For discrete
probability distributions, the cross-entropyℍ is given as:

ℍ(?, @) = −
∑
9

?(9) log(@(9)) (2.16)

where ?(9) and @(9) denote the probabilities for event 9 in ? and @, respectively. For
a sample 8, the cross-entropy loss is computed as follows:

ℒCE
8 = −

�∑
9=1

H̃8 , 9 log(H8 , 9) (2.17)

where � is the number of possible classes and ỹ8 ∈ {0, 1}� is a one-hot encoding
vector representing the ground truth labels, i.e., a vector whose elements are
all zeros except at the index of the true class. The vector y8 ∈ [0, 1]� represents
the normalized class probabilities computed by the neural network for sample 8,
i.e.,

∑�
9=1 H8 , 9 = 1, where H8 , 9 represents the probability for class 9. In multi-class

classification tasks, the cross-entropy is often referred to as the categorical cross-
entropy and the softmax activation function is used in the output layer of the neural
network. Since ỹ8 is one-hot encoding vector, Eq. (2.17) can be simplified:

ℒCE
8 = − log(H8 , 9) (2.18)

where 9 is the index of the true class. For binary classification tasks, Eq. (2.17) can be
written as:

ℒBCE
8 = −(H̃8 log(H8) + (1 − H̃8) log(1 − H8)) (2.19)

where H̃8 ∈ {0, 1} defines the ground truth class and H8 ∈ [0, 1] is the probability for
class 1 computedby the neural network. The binary cross-entropy is often combined
with the sigmoid activation function in the output layer. To cope with strong class
imbalance in neural network training (e.g., object detection), the focal loss has been
introduced by Lin et al. [93]. Here, the binary cross-entropy is dynamically scaled,
with the scaling decreasing with increasing confidence in the correct class. The
focal loss ℒFL

8
for a sample 8 is given as:

ℒFL
8 = −(1 − H8)� log(H8) (2.20)

where � ≥ 0 is a focusing parameter that down-weights easy samples and emphasizes
hard samples. Classification tasks can also be considered from the perspective

19



Chapter 2 Foundations and Previous Work

of set theory. In this case, loss functions based on the Dice coefficient (e.g., [94]),
Jaccard similarity coefficient, and cosine similarity can be used.

In regression tasks, a continuous real-value quantity is predicted instead of a class
label, and the loss function is typically based on a ℓ? norm ‖.‖? [66]. The ℓ1 norm
‖.‖1 is used in theℒℓ1 loss, which is also known asmean absolute error (MAE). For an
individual sample 8, the ℒℓ1

8
loss between the predicted vector y8 and the ground

truth vector ỹ8 is computed as:

ℒℓ1
8
= ‖y8 − ỹ8 ‖1 (2.21)

The ;1 norm is robust to outliers, but does not always have a unique solution,
making its optimization difficult. The ℓ2 norm ‖.‖2, also called Euclidean norm, has
a unique solution and is typically preferred over the ℓ1 norm. To avoid the square
root in norm computation and stabilize the training, the squared ℓ2 norm is used
in the ℒℓ2 loss, which is also known as mean square error (MSE). For a sample 8, the
ℒℓ2
8
loss is given as follows:

ℒℓ2
8
= ‖y8 − ỹ8 ‖22 (2.22)

However, since squared terms strongly increase the error, the ℒℓ2 loss is very
sensitive to outliers. The Huber loss combines the advantages of both loss functions
[95]. It behaves like the ℒℓ1 loss for errors larger than the threshold � ∈ ℝ+, and
like the ℒℓ2 loss otherwise. Thus, it is more robust than the ℒℓ2

8
loss. For a sample 8,

the loss between the predicted vector y8 ∈ ℝ and the ground truth vector ỹ8 ∈ ℝ 

is computed by summing the per-element Huber loss:

ℒH
8 =

�∑
9=1

{
1
2(H8 , 9 − H̃8 , 9)2, 8 5

��H8 , 9 − H̃8 , 9 �� ≤ �

�(
��H8 , 9 − H̃8 , 9 �� − 1

2�), otherwise
(2.23)

2.1.5 Neural Network Regularization

Training a deep neural network to generalize well to new data is a challenging
task. A network with a capacity that exceeds the training data set is prone to
overfitting. In this case, even the smallest random fluctuations and noise in the
training data are learned and reproduced, resulting in poor generalization and
performance on new data. Regularization methods have been introduced to reduce
the network complexity during training, preventing overfitting. The commonly
used ℓ2 regularization prevents overfitting by forcing the neural network to have
small weights (but not equal to zero). In addition, the network is encouraged to use
all inputs consistently. The loss function is extended with a regularization term
defined by the ℓ2 norm (Euclidean norm) of the weights:

ℒreg = ℒ + #
#∑
9=1

F2
9 (2.24)
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where # ∈ ℝ is the regularization rate and # represents the number of weights in
the neural network [67]. The frequently used ℓ1 regularization extends the loss
function with a regularization term defined by the ℓ1 norm of the weights:

ℒreg = ℒ + #
#∑
9=1
|F 9 | (2.25)

It ensures that the networkweights are very small or even zero for irrelevant features.
This leads to sparseweightmatrices, so that onlymeaningful features are considered
[67]. In general, ℓ2 regularization performs better than ℓ1 regularization and is
easier to adapt. ℓ1 and ℓ2 regularization can also be combined, which is known
as elastic net regularization. The maximum norm method provides regularization
and avoids large weights by constraining the norm of weights to an absolute
upper bound defined by a constant [96]. To enforce this constraint, the projected
gradient descent is used [67]. An effective and simple method to address the
problem of overfitting is Dropout [97]. During training, individual neurons with
all their connections are temporarily removed (dropped) from the network with a
probability ?. Thus, dropout can be considered as an ensemble technique where
multiple sub-networks are trained jointly. Dropout prevents strong dependencies
between neurons (co-adaptation), which may lead to overfitting. Moreover, it
forces the neural network to favor redundant representations. In general, dropout
increases training time but improves network performance. Batch normalization
(BN) is a commonly used method that normalizes the output of layers based on
the mean �1 ∈ ℝ and variance �2

1
∈ ℝ+ of the current mini-batch [98]. This reduces

the internal covariate shift, leading to stabilization and acceleration of the neural
network training. Since a training sample is presented several times in different
randommini-batches, �1 and �2

1
can be considered as noise for the training sample

providing regularization [99]. For the output H8 of neuron 8, BN is computed during
network training as follows:

BN(H8) = �8 Ĥ8 + �8 (2.26)

where the learnable parameters �8 and �8 represent the scale and the shift, respec-
tively. The normalized output Ĥ8 ensuring zero mean and unit variance is defined
as:

Ĥ8 =
H8 − �1√
�2
1
+ &

(2.27)
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Figure 2.3 Vanilla RNN architecture.

where & ∈ ℝ+ is a very small value added to prevent division by zero. The
mini-batch statistics �1 and �2

1
are given as:

�1 =
1
#

#∑
9=1

H 9 (2.28a)

�2
1
=

1
#

#∑
9=1
(H 9 − �1)2 (2.28b)

where # is the number neurons in the same layer as neuron 8. For inference, a
fixed mean � ∈ ℝ and variance �2 ∈ ℝ+ are used, which are computed based on
the whole training data or approximated by running statistics during training.

2.1.6 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a special class of neural network architectures
designed to solve sequence learning tasks. Unlike feed-forward layers, recurrent
layers also have cyclic (recurrent) connections that allow information encoded in
the hidden state to flowbackwards and persistwithin the network. Thus, sequential
dependencies can be be exploited [67].
The vanilla RNN shown in Fig. 2.3 is the most basic RNN layer and has been

used in a variety of applications. The hidden state hC ∈ ℝ# of a vanilla RNN layer
with # neurons at time C is computed as follows:

hC = 5 (WTxC +UThC−1 + b) (2.29)

where 5 denotes a sigmoid (�) or tanh activation function, hC−1 ∈ ℝ# is the
previous hidden state, and xC ∈ ℝ" is the output of the preceding layer with "
neurons. W ∈ ℝ"×# and U ∈ ℝ#×# are the weight parameters, and b ∈ ℝ#

denotes the bias parameters. Note that the hidden state hC also represents the
output of the vanilla RNN layer at time point C. Since the network architecture
includes cyclic (recurrent) connections, an RNN cannot be trained directly using
the back-propagation algorithm described in Sec. 2.1.2. However, the RNN can
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Figure 2.4 Schematic illustration of unrolling an RNN over time.

be transformed into an FFNN by unrolling it over time (see Fig. 2.4), where the
network is replicated for each time point. Connections with shared recurrent
weights link consecutive time replicas, resulting in a very deep FFNN that can
be trained by gradient descent algorithms combined with back-propagation. This
training strategy for RNNs is called back-propagation through time (BPTT) [100].
However, since BPTT also back-propagates gradients through time using the chain
rule of derivatives, vanilla RNNs are prone to vanishing and exploding gradients
(see Sec. 2.1.2) and thus not suitable for learning long-term dependencies [78, 79].

The Long Short-Term Memory (LSTM) was developed to avoid the vanishing and
exploding gradient problem in BPTT [101, 102]. A major component of the LSTM
is the cell state c, which acts as a long-term memory. Internal mechanisms called gates
interact with each other to regulate the flow of information and update the hidden
state h and the cell state c. In the following, we consider one forward pass through
an LSTM layer with # units that receive the input vector xC ∈ ℝ" at time point C
(see Fig. 2.5). Matrices W ∈ ℝ"×# and U ∈ ℝ#×# represent weight parameters,
and vectors b ∈ ℝ# denote bias parameters. First, the forget gate fC ∈ ℝ# [102]
determines which information is removed from the previous cell state cC−1 ∈ ℝ# :

fC = �(WT
5
xC +UT

5
hC−1 + b 5 ) (2.30)

The next step is to define what new information enters the cell state. The input gate
iC ∈ ℝ# decides which information is updated and a tanh layer extracts candidate
values c̃C ∈ ℝ# that could be added to the cell state:

iC = �(WT
8 xC +UT

8 hC−1 + b8) (2.31)

c̃C = tanh(WT
2̃
xC +UT

2̃
hC−1 + b2̃) (2.32)
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Figure 2.5 LSTM architecture.

Following, the new cell state cC ∈ ℝ# is computed as:

cC = fC � cC−1 + iC � c̃C (2.33)

where � denotes the Hadamard product. Finally, the new hidden state hC ∈ ℝ# is
determined, which is also the output of the LSTM. The output gate oC ∈ ℝ# decides
which information of the new cell state cC is used. To ensure that only the desired
information is output, oC is multiplied by the cell state that previously passed
through a tanh activation:

oC = �(WT
>xC +UT

>hC−1 + b>) (2.34)

hC = oC � tanh(cC) (2.35)

TheGatedRecurrentUnit (GRU)was introduced to reduce the number of learnable
parameters and the computational burden of the LSTM, while maintaining the
ability to learn both short- and long-term dependencies in sequential data [103].
To get rid of a gate and its corresponding learnable parameters, the GRU combines
the forget and input gates into a single update gate z. A second gate of the GRU is
called reset gate r. Basically, these two gates decide which information is kept and
which information is removed. In addition, the GRU has just a hidden state and
no cell state. The architecture of the GRU is sketched in Fig. 2.6. In the following,
we consider one forward pass through an GRU layer with # units that receive
the input vector xC ∈ ℝ" at time point C. W ∈ ℝ"×# and U ∈ ℝ#×# are weight
matrices, and b ∈ ℝ# represents bias parameters. First, the reset gate rC ∈ ℝ# and
the update gate zC ∈ ℝ# are computed as:

rC = �(WT
A xC +UT

A hC−1 + bA) (2.36)

zC = �(WT
IxC +UT

IhC−1 + bI) (2.37)
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Figure 2.6 GRU architecture.

Following, the candidate hidden state h̃C ∈ ℝ# is computed using the reset gate rC :

h̃C = tanh(WT
h̃
xC +UT

h̃
(rC � hC−1) + bh̃) (2.38)

Finally, the new hidden state hC ∈ ℝ# is determined by weighting the previous
hidden state hC−1 ∈ ℝ# and the candidate hidden state h̃C using the update gate zC :

hC = (1 − zC) � hC−1 + zC � h̃C (2.39)

2.1.7 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a special class of neural networks that
use convolutional layers to extract important information from multidimensional
input (e.g., 2D image, 3D volume). In convolutional layers, a linear convolution
operation is applied to the input using filters (also called kernels), followed by a
non-linear activation function. The filters have a defined size :ℎ × :F (e.g., height
and width), which is significantly smaller than the input. However, the number
of filter channels � is equal to the number of input channels. Each filter slides
step-wise across the entire input and computes for each position the dot product
between the learnable filter weights and the corresponding region of the input. This
results in an output called feature map. Applying # filters to the input yields #
feature maps, each representing different features [104]. Following, the feature
maps are passed through a non-linear activation function 5 (e.g., sigmoid, tanh,
ReLU). The output y of a convolutional layer receiving input x is defined as:

y = 5 (W ∗ x + b) (2.40)

where ∗ denotes the convolution operation, W ∈ ℝ:ℎ×:F×�×# represents the weight
parameters of the# filters, andb ∈ ℝ# are the bias parameters. Since theweights of
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Figure 2.7 Example of a 2 × 2 max-pooling operation with a stride of 2.

the filters are fixed for the entire input (referred to as weight sharing), convolutional
layers require less learnable parameters compared to FC layers, which increases
efficiency. Stacking convolutional layers to form deep CNNs allows learning of
low-level features in early layers (e.g., edges) as well as high-level or abstract
features in later layers (e.g., objects). In CNN training, the filter weights and the
bias parameters are optimized for a specific task and data set.

To achieve local translation invariance and reduce the number of convolutional
layers, the feature maps are down-sampled, i.e., the spatial resolution is reduced. In
general, filters applied to a down-sampled feature map have a higher receptive field
than filters applied to the original feature map. Down-sampling can be achieved by
using a convolution layer with increased stride, which defines the step size the filter
slides across the input. However, a more efficient and robust approach is to employ
pooling layers, which apply a pooling operation to each feature map independently.
The most common pooling operations are max-pooling and average-pooling, which
provide the maximum or average value for each patch of the feature map. Fig. 2.7
shows an example of a 2 × 2 max-pooling operation with a stride of 2. In contrast
to pooling layers, dilated convolutions (also called atrous convolutions) introduce
gaps between the weights in the convolutional filters to increase the receptive field
without additional learnable parameters [105]. To increase the spatial resolution of
feature maps (e.g., for networks that perform image-to-image mapping), simple
and effective up-sampling layers that have no learnable parameters can be used.
Common up-sampling layers perform interpolation (e.g., nearest neighbor, bilinear,
bicubic). Note that interpolation can also be used for down-sampling. Transposed
convolution uses learnable weights instead of a predefined interpolation method to
increase the spatial resolution of the input [106].

The basic CNN architecture includes stacks of convolutional and pooling layers,
followed by one or more fully-concatenated (FC) layers. The first two layer types
are used for feature extraction, while FC layers are employed to compute a final
output vector or value based on the extracted features [107]. However, numerous
improved CNN architectures have been introduced for different tasks and applica-
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Figure 2.8 Residual block.

tions. AlexNet has five convolutional layers and three FC layers [91]. It employs
max-pooling layers, ReLU activations, and dropout. In addition, local response
normalizationwas introduced. The VGGNet architecture is based on AlexNet, but
convolutional layers with a large receptive field are replaced by three stacked
convolutional layers with a small receptive field (kernel size of 3, stride of 1) [108].
This significantly reduces the number of learnable parameters. Several variants of
the VGGNet have been proposed, differing only in the total number of layers in the
network. In 2014, GoogleLetNet was introduced, which uses the inception module to
analyze information at different scales and aggregate it locally [109]. The inception
module processes the input feature maps in parallel by three convolutional layers
with different filter sizes (1, 3, and 5) and a max-pooling layer. The respective
outputs are then concatenated. To reduce the number of learnable parameters and
computations, 1 × 1 convolutional layers which perform channel-wise pooling are
applied before the convolutional layers with large filter sizes (3 and 5) and after
the max-pooling layer. The Inception module was later improved (e.g., by using
spatially separable convolution and batch normalization). In 2015, the Residual
Network (ResNet) architecture has been introduced yielding superior results [110].
The key component of ResNet is the residual block, which improves the training of
very deep neural networks. A residual block is a stack of layers with connections
that skip one or more layers (see Fig. 2.8). These connections are called skip
connections and provide an alternative shortcut for the gradient. This avoids the
vanishing and exploding gradient problem. The Densely Connected Convolutional
Network (DenseNet) architecture is a logical extension of ResNet in which each layer
is directly connected to every other layer within a dense block [111].MobileNets are
lightweight CNN architectures that employ depth-wise separable convolutional
layers to significantly reduce the number of learnable parameters compared to a
CNN with conventional convolutional layers and the same depth [112].
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2.1.8 Bayesian Deep Learning

Bayesian deep learning aims to enable neural networks to accurately quantify their
predictive uncertainty,which can result from both inherent noise in the data (aleatoric
uncertainty) as well as the uncertainty of the network parameters (epistemic
uncertainty). Aleatoric uncertainty can be modeled by placing a distribution over the
output of the neural network and cannot be reduced by providing more training
data. Epistemic uncertainty results from a lack of knowledge due to limited or
inappropriate training data and can be capturedbyBayesianNeuralNetworks (BNNs).
Conventional neural network training leads to deterministic point estimates of the
learnable parameters, which can be interpreted as maximum likelihood estimation. In
contrast, BNNs specify a prior distribution %(W) over the learnable parameters W
(e.g., Gaussian distribution), which is updated to the posterior distribution %(W|X,Y)
by using Bayesian inference [113]:

%(W|X,Y) = %(Y,X|W)%(W)∫
%(Y,X|W)%(W)3W

(2.41)

where %(Y,X|W) denotes the likelihood function that defines the variation of the
training labels Y given the neural network inputs X. The posterior distribution
%(W|X,Y) captures all plausible learnable parameters given the training data.
However, Eq. (2.41) is typically not tractable for neural networks, so different
approximations have been introduced (e.g., [114, 115, 116, 117, 118]). In variational
inference, the posterior distribution is approximated with a simple surrogate dis-
tribution &�(W) parameterized by �. For example, &�(W) can be assumed to be
Gaussian, with � representing mean and variance. In neural network training,
the parameters � are learned instead of directly optimizing the original network
parameters W by maximum likelihood or maximum a posteriori estimation [113].
This involves maximizing the Evidence Lower Bound (ELBO), which equals mini-
mizing the Kullback-Leibler (KL) divergence between &�(W) and the true posterior
distribution %(W|X,Y) (e.g., [114, 115, 119]). Thus, the intractable problem of av-
eraging over all learnable parameters (referred to as marginalization) is replaced
by an optimization task [113]. To train such BNNs with a standard gradient de-
scent algorithm, the gradient of the ELBO with respect to � can be estimated
using the reparameterization trick introduced by Kingma and Welling [119]. Dropout
variational inference is a common and simple approach to approximate Bayesian
inference in large neural networks [117, 118]. Basically, this approach is equivalent
to performing variational inference [113]. Here, dropout (see Sec. 2.1.5) is applied
not only during training but also at test time to sample from the approximate
posterior by performing stochastic forward passes (Monte Carlo dropout). Dropout
can be interpreted as an approximation to the posterior with a distribution that is a
mixture of two Gaussians with small variances. The mean of one of the Gaussians
is fixed at zero. Bayesian learning based on stochastic gradient Langevin dynamics
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is a simple approach compared to variational inference [120]. During iterative
learning from small mini-batches, noise is added to each estimate of the gradient,
resulting in iterates that converge to samples from the true posterior of the learn-
able parameters. Ensemble learning is a simple and powerful scheme providing
predictive uncertainty of neural networks. Predictions for the same input obtained
from different networks are combined to determine a final prediction, with the
variance interpreted as epistemic uncertainty. To obtain diverse network ensembles,
various approaches have been introduced such as stochastic weight averaging
(SWA), snapshot ensembling, and random parameter initialization. SWA combines
weights obtained at different stages of the network training and is based on the
assumptions that the SGD trajectory provides useful information about the shape
(local geometry) of the true posterior distribution [121]. In snapshot ensembling, the
neural network converges to and escapes from several local minima using a cyclic
(cosine) learning rate schedule. At each local minimum, a snapshot of the neural
network is taken and used as ensemble member. In other ensemble approaches,
the neural network is trained several times with different parameter initializations
[122, 123].

2.2 Object Detection

Object detection is a computer vision task that involves identifying and localizing
semantic instances of specific objects (e.g., pedestrians, animals, vehicles) in images.
The detection result represents the exact position of an object by the axis-aligned
bounding box or a single point coordinate (e.g., centroid). In this section, we describe
deep learning methods for object detection in general computer vision (Sec. 2.2.1),
and then provide an overview of previous classical and deep learning methods
for particle detection in fluorescence microscopy images (Sec. 2.2.2). For more
comprehensive reviews, we refer to [55, 56, 124, 125].

2.2.1 Deep Learning Methods in Computer Vision

In recent years, numerous deep learning methods for object detection in computer
vision have been introduced providing state-of-the art performance. In general,
these methods can be classified into two-stage and single-stage detectors.

Two-stage detectors consider object detection as a classification task, where region
proposals are generated and then classified as object or background. Such detectors
are usually more flexible and accurate than single-stage detectors. Region-based
Convolutional Neural Network (R-CNN) is one of the first methods that successfully
use CNNs for bounding box-based object detection [126]. A selective search
algorithm is applied to generate and extract class-independent region proposals
from the image that might contain objects (e.g., candidate bounding boxes) [127].
These region proposals, cropped from the image and warped to the same size, are
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used as input to a deep CNN (e.g., AlexNet [91]) for feature extraction. Following,
the extracted features are fed into a set of class-specific linear support vector
machines (SVMs) to distinguish the region proposals into object classes. Finally,
a simple class-specific linear regressor is employed to refine the bounding boxes.
Since CNN-based feature extraction is performed independently for each region
proposal in every image, the training and application of R-CNN is slow and storage
intensive. Moreover, since R-CNN is a multi-stage pipeline involving separate
components (region proposal, feature extractor, classifier, bounding box regressor),
it cannot be trained end-to-end. Fast R-CNN has been proposed to overcome
some of these limitations [128]. A CNN enables end-to-end detector training by
simultaneously learning classification and bounding box regression. Moreover,
training and application is significantly faster compared to R-CNN by sharing
the convolution computations for all region proposals. In Fast R-CNN, instead of
individual region proposals, the entire image is fed into the CNN. To generate a
fixed-size feature vector for region proposals of arbitrary size, the feature map of
the last convolutional layer is fed into a region of interest (ROI) pooling layer. The
extracted feature vector can then be passed through fully-connected (FC) layers.
Finally, a softmax layer determines the object class of the region proposal and
a FC layers computes the offset values of the bounding box. The classification
and regression task are learned by minimizing a multi-task loss function which is
composed of the cross-entropy and the Huber loss [95]. Faster R-CNN integrates
the region proposal algorithm into the CNN to improve speed and detection
performance [129]. A single unified network architecture consists of the so-called
Region Proposal Network (RPN) and the Fast R-CNN with shared convolutional
layers. The RPN is a fully-convolutional network (FCN) that acts as an attention
mechanism for the Fast R-CNN. It generates multiple region proposals with different
scales as well as aspect ratios (anchors) and computes the corresponding binary
objectness scores. To reduce redundancy, non-maximum suppression (NMS) is
applied to the region proposals based on their objectness scores [129].Mask R-CNN
extends Faster R-CNN with a third branch for predicting a pixel-wise binary mask
in parallel to the two existing branches for computing the object class and the
offset values of the bounding box [130]. The third branch is a FCN on top of the
CNN feature map. To avoid misalignment due to quantization operations, a ROI
alignment layer is used instead of the ROI pooling layer.

Single-stage detectors omit the region proposal stage andperformdetection directly
over a small sampling of possible locations. In general, one-stage detectors are
simpler and faster compared to two-stage detectors. You Only Look Once (YOLO)
considers object detection as a regression task and employs a single CNN that takes
the entire image as input and is trained end-to-end [12]. YOLO divides the input
image into a grid of cells with equal size. For each grid cell, class probabilities as
well as bounding boxes with the corresponding confidence values are computed.
Thus, the grid cell in which the center of an object is located is responsible for
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its detection. Detections with a low confidence value are removed directly. Since
some objects may be detected multiple times (e.g., large objects), NMS is applied to
remove overlapping bounding boxes of the same class. YOLO has been improved
in several follow-up works (e.g., [131, 132, 133]). The Single-Shot MultiBox Detector
(SSD) [134] builds on VGG-16 [108] using a set of auxiliary convolutional layers
instead of FC layers. Small objects are detected in the early layers of the network,
and the deeper layers are responsible for box offsets as well as aspect ratios [125].
The bounding box regression technique of SSD is based onMultiBox introduced
by Szegedy et al. [135]. Confidence scores, box offsets, and class probabilities are
computed for a fixed set of bounding boxes. The final detections are obtained by
applying NMS. During neural network training, hard negative mining and data
augmentation are utilized. In CenterNet, each object is represented by one center
point and a pair of corners (triplet of keypoints) [136]. A backbone FCN uses
cascade corner pooling and center pooling to compute two corner heatmaps as
well as one center point heatmap. Similar to CornerNet [137], candidate bounding
boxes are determined by using corner pairs and similar embeddings. Then, the
final bounding boxes are determined based on the center points. EfficientDet [138] is
a family of scalable object detectors that utilizes EfficientNet [139] as the backbone
network, Bi-directional Feature Pyramid Network (BiFPN) as the feature extractor,
as well as a shared classification and bounding box prediction network. BiFPN
enables simple and fast cross-scale connections of input features. A new compound
scaling method is employed to simultaneously increase the resolution and all
dimensions of the backbone, BiFPN, and classification/bounding box networks.

Commonly used backbone networks in object detectors include AlexNet [91],
VGGNet [108], GoogleLeNet [109], ResNet [110], and EfficientNet [139]. Swin Trans-
former [140] builds on the work of Dosovitskiy et al. [141] and adapts transformers
from natural language processing (NLP) to computer vision. Transformers are a
special type of neural network architecture based on the self-attention mechanism
that weights each part of the input data according to its importance. Swin Trans-
former generates hierarchical feature maps by starting with small image patches
that are gradually merged in deeper layers. A shifted window scheme restricts
self-attention to non-overlapping local windows,while also allowing cross-window
connection. Thus, Swin Transformer is able to consider image information at vari-
ous scales, with the computational complexity being linear to the input image size.
In contrast to previous transformer-based architectures, these attributes enable
Swin Transformer to serve as a general-purpose backbone network for computer
vision tasks such as object detection. For detecting objects at vastly different scales,
Feature Pyramid Network (FPN) [14] can be used as a generic feature extractor in
detectors (e.g., Faster R-CNN). FPN comprises a top-down architecture with lateral
connections to generate high-level semantic feature maps at various scales [14].
It comprises a bottom-up as well as top-down pathway. The bottom-up pathway
computes a feature hierarchy at different scales, while the top-down pathway
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up-samples spatially coarser (but semantically stronger) feature maps from higher
levels to high-resolution features. To enhance these high-resolution features based
on features from the bottom-up pathway, lateral connections are used.

2.2.2 Particle Detection in Fluorescence Microscopy Images

In previous work on particle detection in fluorescence microscopy images, classical
methods have been introduced which often comprise three subsequent steps: noise
reduction, signal enhancement of fluorescent particles, and signal thresholding.
Noise reduction is performed to increase the signal-to-noise ratio (SNR) and improve
the quality of the input image ℐ. A common method is linear filtering, where at
each pixel the intensity is replaced by a linear combination of the intensities of its
neighborhood. In most cases, a Gaussian filter kernel �2D

� with standard deviation
� is used, which is defined in 2D as follows:

�2D
� (G, H) =

1
2��2 exp

(
−
G2 + H2

2�2

)
(2.42)

For a noisy 2D input image ℐ, the filtered image J is obtained by the following
convolution:

J(G, H) = (�2D
� ∗ ℐ)(G, H) (2.43a)

J(G, H) =
=∑

8=−=

=∑
9=−=

�2D
� (8 , 9)ℐ(G − 8 , H − 9) (2.43b)

where the kernel size is defined as # = 2= + 1. Since the intensity profile of
fluorescent particles can usually be approximated by a Gaussian function, this filter
corresponds to a matched filter that maximizes the SNR of images with additive
white Gaussian noise [42, 55, 142]. The threshold step can already be applied to the
filtered image J to obtain particle detections. In practice, however, this typically
leads to poor results due to inhomogeneous background and strongly varying
particle intensities. Further methods for noise reduction include non-linear filters
(e.g., median filter), wavelet transform-based denoising (e.g., [143, 144]), variance-
stabilizing schemes (e.g., [145]), and patch-based techniques (e.g., [55, 146]). Signal
enhancement is used to enhance the intensity of regions belonging to particles while
suppressing the signal of background structures. Some of the methods also include
noise reduction, which eliminates the need to perform this step separately. The
optimal filter (whitenedmatched filter) for reducing noise and enhancing Gaussian-
like particles in fluorescence microscopy images can be well approximated by the
Laplacian of Gaussian (LoG), also referred to as the Mexican hat filter [147]. For a
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2D image, the LoG2D
� filter kernel is defined as follows:

LoG2D
� (G, H) =

G2 + H2 − 2�
�4 �2D

� (G, H) (2.44)

where the standard deviation parameter � must be adapted according to the size
of the particles. Due to the associative property of convolution, applying the LoG
filter is equivalent to using a Gaussian filter followed by a Laplacian filter. In the
case of fluorescent particles, the LoG filter is also known as the spot-enhancing
filter (SEF). For strongly varying particle sizes, SEF with different � values can
be applied. In [148], a method for automatically selecting the optimal standard
deviation parameter � is presented. Additional signal enhancing methods are
based on wavelet decomposition (e.g., [143, 145]), image features (e.g., [149]),
dynamic thresholding (e.g., top-hat filter [150]), and h-dome transformation [55].
The output map C of the signal enhancing step is converted into a binary mask
based on thresholding or more complex methods such as Bayesian segmentation.
Thresholding approaches assume that pixels in C with a signal greater than the
threshold represent particles and all other pixels belong to the background. Since
the result strongly depends on the selected threshold, it must be tuned to the
data. Thus, techniques for adaptive thresholding and automatic determination of
the optimal threshold have been introduced (e.g., [148, 151]). To assign a unique
label to each set of adjacent foreground pixels (connected regions) representing
individual particles, a connected-components labeling algorithm is applied to the
binary mask. The label mask is used to determine the particle properties such
as position and size. To localize particles with sub-pixel resolution, non-fitting
and numerical fitting methods have been introduced [38]. Non-fitting methods are
usually fast, effective, and widely applicable (e.g., centroid computation [152]).
Numerical fitting methods are more specific and more commonly used. Here, a
model function that depends on the appearance of the object is fitted to the image
intensities using maximum likelihood estimation or least-square minimization. For
fluorescent particles, the intensity profile corresponds to the PSF of the microscope,
which can be well approximated by a Gaussian function. A major drawback of
classical methods for particle detection in fluorescence microscopy images is that a
predefined appearance model is required, which does not necessarily hold.

Most existing deep learning-based detection methods have been developed for
objects (e.g., pedestrians, cars) in images of natural scenes (see Sec. 2.2.1). Deep
learning also shows promising results for object detection in microscopy images
(e.g., cells [15, 24]). However, fluorescent particle detection involves task-specific
challenges (e.g., low SNR, clustering, missing appearance characteristics, small
object size) that need to be addressed. In [153, 154, 155, 156], a CNN performs
image-to-image mapping based on pixel-wise binary classification. The result is a
binary mask in which fluorescent particles are represented by one or a few pixels.
In [153, 154, 155], a sliding window scheme is employed. Dmitrieva et al. [157] use
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a lightweight CNN to select candidate detections generated by a multi-scale SEF.
Zakrzewski et al. [158] use a neural network architecture that is based on RetinaNet
[93] to directly regress offsets of bounding boxes. In [159], feature extraction is
performed by U-Net [15] and the input image is divided into grid cells by a second
encoder. Similar to YOLO [12], the network computes the confidence and position
of a particle for each grid cell.

2.3 Object Tracking

Object tracking is a computer vision task that aims to link individual object positions
over time using the obtained detections. Correspondence finding addresses the
problem whether two detections from different images belong to the same object
or not. In addition, track initiation and termination must be considered to deal with
a variable number of objects. The final tracking result represents the individual
object trajectories. In this section, we describe deep learning methods for object
tracking in general computer vision (Sec. 2.3.1), and then provide an overview of
previous classical and deep learning methods for particle tracking in fluorescence
microscopy images (Sec. 2.3.2). For more comprehensive reviews, we refer to
[160, 161, 162].

2.3.1 Deep Learning Methods in Computer Vision

In recent years, numerous deep learning-based methods for object tracking in
computer vision (e.g., cars, pedestrians) have been introduced yielding state-of-the
art performance. Here, neural networks are used to perform one or more tasks
(e.g., feature extraction, assignment score computation, motion prediction).

CNNs are commonly used to learn rich representations and extract meaningful
visual features from image data, which are then incorporated into a classical
tracking algorithm (e.g., multiple hypothesis tracking [163]). The Deep Learning
Tracker (DLT) is based on a stacked denoising autoencoder (DAE) that learns robust
generic image features [164]. The final network output acts as a confidence in a
classical particle filtering framework. Structured Outcome DLT (SO-DLT) improves
DLT by replacing the stacked DAE with a CNN that computes a pixel-wise
probability map to distinguish between objects and background [165]. This allows
a structured loss and yields computational scalability. Ma et al. [166] use rich
feature hierarchies extracted from a CNN for visual object tracking. To exploit both
important semantic features encoded in the last layer and more precise spatial
information captured by earlier layers, linear correlation filters are applied to
the feature maps of three different convolutional layers. To localize the object, a
coarse-to-fine search is performed on the resulting correlation response maps. In
[167], similar to Ma et al. [166], a switching mechanism is developed to consider
two complementary convolutional layers from different levels. Thus, both semantic
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and discriminative features are considered jointly. To reduce redundancy and
improve performance by removing irrelevant and noisy featuremaps, a featuremap
selection method is introduced. In [168], visual features of samples are extracted
from a CNN and classified by an online trained SVM. To create a saliency map for
each positive sample, object-relevant features of the sample are identified based on
the SVM and subsequently back-propagated through the CNN. Bayesian filtering
is employed to perform tracking by exploiting the combined saliency maps of the
positive samples. Chi et al. [169] propose a dual network to fine-tune the features
extracted by VGGNet for a specific object. In [170], the appearance embedding is
integrated into a single-shot detector. To compute the similarity between objects
and detections based on the appearance embeddings, cosine similarity is used.

Deep learning is commonly employed to compute assignment scores, typically by
learning a similarity measure directly from the data. This eliminates the need of
heuristic hand-crafted features. To establish one-to-one correspondences based on
the computed assignment scores, a classical combinatorial optimization algorithm
(e.g., Hungarian algorithm [171]) can be used. The Siamese INstance Search Tracker
(SINT) builds on a two-stream Siamese deep neural network that learns a similarity
measure to determine the candidate patch that best matches the initial object patch
[172]. Candidate patches are generated based on the radius sampling strategy
[173]. Quadruplet Convolutional Neural Networks (Quad-CNN) combine appearance
embedding with motion-aware position embedding to learn a similarity measure
that is used for correspondence finding via minimax label propagation [174]. In
addition, bounding box regression is performed by Quad-CNN to fine-tune the
initial object detections. Sadeghian et al. [19] propose a hierarchical RNN that
exploits temporal dependencies in appearance, motion, and interaction of an object
to compute the assignment score for a candidate detection. In [175], a Siamese LSTM
exploits temporal and spatial features to compute a assignment score between
two trajectories for correspondence finding. Ma et al. [176] use a bidirectional
GRU to split tracklets of different objects into sub-tracklets. Then, all sub-tracklets
belonging to the same object are re-connected based on the assignment scores
computed by a Siamese GRU. A bilinear LSTM is employed to learn a measure
for motion and appearance gating in a classical multiple hypothesis tracking
(MHT) framework [177]. The CNN-based Deep Affinity Network (DAN) determines
assignment scores between objects in different images using appearance features
at different levels of abstraction [178].
Deep learning is also used to perform regression tasks for object tracking (e.g.,

motion prediction). The social LSTM introduced by Alahi et al. [179] predicts the
future trajectories of all objects jointlybasedon theirpastdynamicbehaviors. A social
pooling layer is proposed to include inter-object dependencies. In [180], the Behavior-
CNN learns to predict the dynamics of all objects based on a behavior encoding
scheme that provides a general representation of the past object dynamics. Milan
et al. [18] present an RNN-based neural network that mimics classical Bayesian
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filtering. The network learns to predict the next object position and to update it
based on an assigned detection. In addition, track initiation and termination are
identified by computing existence probabilities. For correspondence finding, an
LSTM-based RNN is used that receives as input the Euclidean distance between the
predicted position and the detections. Recurrent YOLO (ROLO) combines YOLO
with LSTM for single object tracking [181]. ROLO exploits previous positions and
high-level visual features of an object to directly regress bounding box coordinates
or heatmaps. Tracktor++ predicts the next object position by using bounding box
regression of the detector [182]. In Faster R-CNN, this is achieved by applying
the ROI pooling operation to the features of the current image but with the
previous bounding box. However, it is assumed that the bounding boxes of an
object overlap in successive images. To generate appearance feature vectors for
object re-identification, a Siamese neural network is utilized.

2.3.2 Particle Tracking in Fluorescence Microscopy Images

In previous work on particle tracking in fluorescence microscopy images, both
classical methods as well as deep learning-based methods have been introduced.
Classical methods can be subdivided into deterministic and probabilistic ap-
proaches [58].

Deterministic methods perform tracking by establishing correspondences between
particle detections in images from different time points. Since fluorescent particles
usually cannot be distinguished by their appearance, only the motion behavior
of the objects is considered. Assumptions about the underlying motion model
are translated into a cost function that defines the degree of correspondence
between two detections obtained at different time points. For Brownian particles,
the nearest neighbor (NN) model is commonly used, which is based only on position
information [162]. The assignment cost 2 8 , 9C between detection y8

C−1 at the previous
time point C − 1 and detection y9C at the current time point C is computed as follows:

2
8 , 9

C = ‖y9C − y8C−1‖ (2.45)

The lower the cost 2 8 , 9C , the higher the degree of correspondence between y8
C−1 and

y9C . A simple strategy based on the NN model is the nearest neighbor search (NNS)
(e.g., [183, 184]), where a correspondence is established between the detections y8

C−1
and y9C by determining the minimum cost 2 8 , 9C . To consider only likely assignments,
gating can be performed where a threshold defines the maximum cost (or distance)
between two detections at different time points. However, since NNS considers
the correspondences of all detections at time point C − 1 independently, conflicting
correspondencesmay not be resolved properly. To address this issue, establishing
one-to-one correspondences between two sets of detections from two consecutive
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time points C − 1 and C can be formulated as a combinatorial optimization problem:

min
#C−1∑
8=0

#C∑
9=0

2
8 , 9

C 0
8 , 9

C (2.46a)

#C∑
9=0

0
8 , 9

C = 1, 1 ≤ 8 ≤ #C−1 (2.46b)

#C−1∑
8=0

0
8 , 9

C = 1, 1 ≤ 9 ≤ #C (2.46c)

where #C−1 and #C are the number of particle detections at time point C − 1
and C, respectively. The binary assignment variable 0 8 , 9C is equal to 1 if y8

C−1 is
assigned to y9C , or 0 if not. Assignments of y8

C−1 and y9C to dummy detections
representing missing detections are denoted by 0 8 ,0C and 00, 9

C . The assignment costs
2 8 ,0C and 20, 9

C are usually equal to the gating threshold. Combinatorial optimization
approaches such as the Hungarian algorithm [171], Munkres algorithm [185]. and
Jonker–Volgenant shortest augmenting path algorithm [186] are used to solve
Eq. (2.46). Since correspondences of all detections from the same time point
are considered simultaneously and the NN model is used as cost function, this
technique is called global nearest neighbor (GNN) method (e.g., [187, 188, 189]). For
particles that perform directed motion, the nearly constant velocity (NCV) model is
commonly used as cost function (e.g., [144]). In NCV, it is assumed that the velocity
vector (speed and direction) of a particle changes only slightly between successive
time points [162]:

2
8 , 9

C = ‖(y9C − y8C−1) − (y
8
C−1 − y8

′
C−2)‖ (2.47)

where y8′
C−2 denotes the detection at time point C − 2 assigned to y8

C−1. The more
constant the velocity of a particle, the smaller becomes 2 8 , 9C . To improve the tracking
performance under challenging conditions (e.g., low SNR, high object density),
the cost function can also be minimized over more than two time points (e.g.,
[147, 190]). In this case, Lagrangian relaxation techniques are typically applied to solve
the NP-hard combinatorial optimization problem [162]. Deterministic methods are
computationally efficient but do not consider uncertainties, which often reduces
the performance under challenging conditions (e.g., low SNR, high object density).

Probabilistic methods are formulated within a Bayesian framework and incorporate
uncertainties by defining a posterior distribution on the variables (e.g., position,
velocity) that describe the particle state based on a set of detections and assumptions
about the dynamic behavior. The spatial-temporal posterior can be resolved
recursively over time by using a sequential Bayesian filter such as the Kalman filter
[191] or particle filter. Bayesian filtering is described in more detail in Sec. 5.2.2.
The Kalman filter is computationally efficient and was developed for linear systems
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with additive Gaussian noise. The posterior corresponds to a Gaussian distribution
whose mean and covariance are updated recursively. Methods based on the
Kalman filter perform particle detection and state estimation independently (e.g.,
[151, 192, 193, 194, 195]). For each particle, one filter is utilized to which detections
are assigned by using a correspondence finding approach. The particle filter (e.g.,
[58, 149, 196, 197]) performs sequential importance sampling with additional
resampling to approximate the posterior distribution by a set of weighted random
samples (’particles’) [198]. Thus, in contrast to the Kalman filter, it is a non-
parametric approach that can cope with non-linear and non-Gaussian systems.
In addition, particle detection and state estimation are combined by directly
considering multiple image positions, which leads to more robust results. To
ensure a good approximation of the posterior distribution, a large number of
samples is required, resulting in high computational costs. Thus, for tracking
multiple objects, the Kalman filter is usually preferred over the particle filter.
Probabilistic methods that include uncertainties for the task of correspondence
finding have also been introduced. Joint probabilistic data association (JPDA) [199] is
a well-known method that estimates correspondences over two consecutive time
points. Normalized probabilities are computed jointly for all possible assignments.
Then, Bayesian filters are used to update the particle states based on all detections
weighted according to the joint probabilities. However, JPDA assumes that the
number of particles is known in advance and does not change over time. Multiple
hypothesis tracking (MHT) [200] is well suited to address numerous challenges
such as particle appearance and disappearance, detection errors, and conflicting
correspondences. MHT maintains multiple competing track hypotheses so that
later time points can be exploited to resolve ambiguities. Finally, the most likely
combination of non-competing tracks is selected. However, computational and
memory costs increase rapidly with the number of particles and time points.
Thus, approximations and adaptations of JPDA (e.g., [151, 201, 202]) and MHT
(e.g., [193, 203, 204, 205]) have been developed for particle tracking in fluorescence
microscopy images. In general,majordrawbacks of classicalmethods forfluorescent
particle tracking are the required manual tuning of (numerous) parameters and
selection of a suitable motion model. Moreover, assumptions about the probability
distributions are needed, which do not necessarily hold.

Most existing deep learning-based tracking methods have been developed
for objects in images of natural scenes (e.g., pedestrians, cars, see Sec. 2.3.1).
Deep learning also shows promising results for object tracking in microscopy
images (e.g., cells [21, 206, 207, 208]). However, fluorescent particles differ greatly
from natural objects and cells (e.g., size, shape, dynamic behavior). In addition,
the appearance of (almost) indistinguishable Gaussian-like particles does not
provide reliable information for correspondence finding, and low SNR values
lead to numerous detection errors. Thus, specialized deep learning methods are
required for particle tracking in fluorescence microscopy images. In [209], a bi-
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directional convolutional LSTM exploits a temporal sequence of image patches
to approximate the posterior position density of a particle. For correspondence
finding, a classical nearest neighbor search is performed instead of deep Learning.
Yao et al. [210] presented an LSTM-based RNN that exploits past hand-crafted
motion features of a particle to compute the assignment score for a candidate
detection. In addition, the network predicts the particle position at the next time
point to cope with a missing detection. The network is trained in a multi-task
fashion by minimizing the weighted sum of the cross-entropy loss (assignment
score) and the Huber loss [95] (predicted position). In the follow-up work [22],
hand-crafted and learned features are combined to compute the assignment score
for a candidate sequence of detections at successive time points. Smal et al. [211]
use a denoising autoencoder and score matching within a classical MHT-based
approach to learn the underlyingmotionmodel directly from the data and compute
the assignment score for a candidate detection. To cope with missing detections,
the denoising autoencoder estimates the next particle position based on the learned
motion model. In [22, 210, 211], the assignment scores of a particle are computed
independently for each candidate detection or sequence.
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Chapter 3

Performance Metrics and
State-of-the-Art Methods

In this chapter, we describe the metrics for quantitative performance evaluation of
the developed particle detection and tracking methods. In addition, state-of-the-art
methods used for performance comparison are presented.

3.1 Performance Metrics

To quantitatively evaluate the tracking performance, we used the fivemetrics , �, JSC,
JSC�, and RMSE introduced by Chenouard et al. [65]. First, pairing is performed
by establishing one-to-one correspondences between a set X of #estimated estimated
tracks and a setY of#true true tracks (ground truth). To dealwithmissing estimated
tracks, X is extended with a set ∅ of #true dummy tracks resulting in Z. A dummy
track consists only of dummy detections, which are also used for missing points
in an estimated track. The degree of correspondence between a true track .9 ∈ Y
and an estimated or dummy track /8 ∈ Z is represented by the pairing distance
3(/8 , .9), which is equal to the gated Euclidean distance over all time points C:

3(/8 , .9) =
)∑
C=1
‖x-8C − x.9C ‖2,& (3.1)

where ) is the total number of time points and xC represents the position of a track
at time point C. Two tracks are non-matching at time C if their Euclidean distance
is larger than the gating parameter & ∈ ℝ+, which is selected according to the
Rayleigh criterion and also acts as a fixed penalty for unpaired track points. The
total pairing distance 3(X,Y) between X and Y is computed as:

3(X,Y) =
#true∑
9=1

3(/8 , .9) (3.2)
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where /8 represents an estimated or dummy track paired with the true track .9 . To
determine the globally optimal pairing, 3(X,Y) is minimized using the Munkres
algorithm [185]. In the absence of a matching estimated track, each true track is
paired with a dummy track, resulting in a maximum total pairing distance of
3(∅,Y). All five tracking metrics are computed based on the optimal pairing with
a total pairing distance 3∗(X,Y). The overall degree of matching between X and
Y without considering the set of unpaired estimated tracks X is represented by
 ∈ [0, 1]:

 = 1 − 3
∗(X,Y)
3(∅,Y) (3.3)

The metric � ∈ [0, ] additionally penalizes X using the term 3(∅,X):

� =
3(∅,Y) − 3∗(X,Y)
3(∅,Y) + 3(∅,X)

(3.4)

 = � when there are no estimated tracks in X. The rate of correct track points in X
is determined by the Jaccard similarity coefficient JSC ∈ [0, 1]:

JSC = TP
TP + FN + FP (3.5)

where TP (true positives) and FP (false positives) are the total number of paired and
unpaired track points in X, respectively. FN (false negatives) is the total number of
dummy detections paired with a true track. The Jaccard similarity coefficient for
entire tracks JSC� ∈ [0, 1] is computed as:

JSC� =
TP�

TP� + FP� + FN�
(3.6)

where TP� and FP� are the total number of paired and unpaired tracks in X,
respectively. FN� is the total number of dummy tracks paired with a true track.
The root mean square error RMSE represents the overall localization accuracy
of correctly estimated track points (TP in Eq. (3.5)). For all metrics except RMSE,
better tracking performance is indicated by a higher value.

To quantitatively evaluate the detection performance, we used the metrics F1 score
and RMSE. For each image, the globally optimal pairing between the set X of
estimated detections and the set Y of true particle positions (ground truth) is
determined by minimizing the total pairing distance, which is equal to the gated
Euclidean distance over all pairs. The gate parameter is selected according to
the Rayleigh criterion and combinatorial optimization is performed by using the
Jonker-Volgenant shortest augmenting path algorithm [186]. Both detectionmetrics
are computed based on the optimal pairing. The F1 score ∈ [0, 1] represents the
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harmonic mean of precision and recall:

�1 = 2 ·
precision · recall
precision + recall =

2TP
2TP + FP + FN (3.7a)

precision = TP
TP + FP (3.7b)

recall = TP
TP + FN (3.7c)

where TP and FP are the total number of paired and unpaired detections in X,
respectively. FN is the total number of unpaired true positions in Y. A higher
F1 score indicates a better detection performance. The overall localization accuracy
of the correct particle detections is determined by the RMSE.

3.2 State-of-the-Art Methods

We evaluated our proposed tracking approaches using data from the Particle Tracking
Challenge (PTC, [65]) and compared the performance with the overall top-three
methods of the challenge (Methods 5, 1, and 2).

• Method 5 [151]: The spot-enhancing filter (SEF, [147]) is used for particle
detection and the Kalman filter [191] is employed for spatio-temporal filtering.
Correspondences are established based on probabilistic data association.

• Method 1 [187]: For particle detection, local maxima selection and iterative
intensity-weighted centroid computation is performed. Combinatorial opti-
mization based on greedy hill climbing with nearest neighbor initialization
and topological constraints is used for correspondence finding.

• Method 2 [204]: Particle detection involves a convolution step with a disk- or
spherical-shaped filter, followed by adaptive local-maxima selection. Corre-
spondence finding is based on multiple multiple hypothesis tracking (MHT).

We also assessed our tracking methods based on real fluorescence microscopy
images displaying different virus structures and sub-cellular structures. We com-
pared the performance with three state-of-the-art methods for fluorescent particle
tracking that are widely used and publicly available.

• ParticleTracker (PT, [187]): PT uses iterative intensity-weighted centroid for
particle detection and combinatorial optimization via greedy hill climbing for
correspondence finding. This method is implemented in the ImageJ plugin
MosaicSuite and corresponds to Method 1 of the PTC.

• Kalman filter based approach (KF, [189]): KF employs SEF for particle
detection and the Kalman filter for motion prediction. Correspondence
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finding is consideredas a linearassignmentproblem,which is very similar tou-
track [190] and solved using theMunkres algorithm [185]. KF is implemented
in the ImageJ plugin TrackMate.

• Multiple hypothesis tracking (MHT, [193]): A wavelet-based method is
applied for particle detection [143]. MHT, which uses Kalman filters and
multiple motion models, is implemented in Icy [212].

We evaluated our proposed methods for particle detection using image data
from the PTC as well as real fluorescence microscopy images, and conducted a
quantitative performance comparison with three state-of-the-art methods.

• Spot-enhancing filter (SEF, [147]): The Laplacian of Gaussian (LoG) filter
is applied to enhance the signal of regions belonging to particles while
reducing noise and removing background structures. Thresholding followed
by connected component labeling is used to identify individual particles in
the filtered image. For a more detailed description of SEF, see Sec. 2.2.2.

• DetNet [156]: An hourglass-shaped deep neural network performs image-to-
imagemapping based on pixel-wise binary classification. Individual particles
are detected in the binary mask based on a connected component labeling
algorithm. In the 3D version of DetNet (DetNet3D), all 2D convolutions have
been replaced by 3D convolutions.
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Chapter 4

Recurrent Neural Networks for
Particle Tracking

In this chapter, we introduce deep learning methods for particle tracking in fluo-
rescence microscopy images that exploit temporal information by using recurrent
neural networks. We first describe a method that considers past information, and
then present an extension that additionally takes into account future information.

4.1 Recurrent Neural Network for Particle Tracking Using Past
Information

In this section, we present a particle tracking method based on a recurrent neural
network that exploits past information about object dynamics for state prediction
and correspondence finding. The work has been published in [59].

4.1.1 Introduction

Previous work on tracking biological particles can be subdivided into deterministic
and probabilistic methods. Deterministic approaches follow a two step-paradigm
comprising particle detection and correspondence finding (e.g., [147, 187]). Prob-
abilistic approaches are formulated within a Bayesian framework and take into
account uncertainties to improve the robustness. The solution is determined using
Kalman filters or particle filters (e.g., [65, 151, 193, 194, 205]). A disadvantage of
traditional tracking methods is that a handcrafted similarity measure is used to
determine the degree of correspondence between detections in successive images.
In addition, a suitable dynamic model needs to be selected, and often tedious
manual tuning of (numerous) parameters is required. Often, these approaches
have difficulties in cluttered environments with clustering objects. Deep learning
methods have the potential to improve the performance. This has been demon-
strated for different tasks such as segmentation and classification in the fields of
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computer vision and medical image analysis (e.g., [7]), however, much less work
exists on tracking.

In the field of computer vision, Milan et al. [18] proposed a recurrent neural
network (RNN) for tracking pedestrians in video images of natural scenes. However,
tracking pedestrians is quite different from tracking biological particles since the
motion and shape are very different, and appearance is not a reliable cue. Also,
in [18] a handcrafted similarity measure is used for correspondence finding.
In addition, two separate networks need to be trained for state prediction and
data association. Sadeghian et al. [19] introduced an appearance-based RNN
for tracking pedestrians in video images. However, there the similarity measure
for correspondence finding is determined independently for each detection, and
information on missing detections is not provided by the network. Also, a fixed
input sequence length is used (last 6 timepoints). For training,manually labeleddata
was used. Yao et al. [210] used a similar approach as in [19] to track microtubules
in synthetic data. However, the similarity measure for correspondence finding is
not jointly computed across multiple detections, and a fixed input sequence length
is used (as in [19]). In addition, objects are not automatically detected but ground
truth positions are used, and real microscopy data was not considered. He et al.
[206] introduced an approach based on convolutional neural networks (CNNs) for
tracking of cells. However, this approach does not use an RNN, and tracking of
particles was not considered.

In this contribution, we introduce a new approach for particle tracking in time-
lapse fluorescence microscopy images based on an RNN. Both short- and long-
term temporal dependencies of individual object dynamics are exploited for state
prediction and correspondence finding using a Long Short-Term Memory (LSTM)
[101]. The network automatically learns to determine assignment probabilities for
correspondence finding, without requiring a handcrafted similarity measure. In
contrast to [19, 210], our network computes assignment probabilities jointly across
multiple detections, and also determines the probabilities of missing detections.
In addition, the input sequence length is not limited but can be arbitrary long.
Thus, we exploit more information and intrinsically cope with missing detections.
Moreover our approach does not require manually labeled data (in contrast
to [18, 19, 210]). Both state prediction and data association are trained within
one network. Compared to traditional tracking methods, the dynamic model is
automatically selected, and tuning of tracking parameters is not required. We
performedaquantitative evaluationusingdata from theParticle TrackingChallenge
as well as using real live cell microscopy data of human immunodeficiency virus
type 1 (HIV-1) particles and hepatitis C virus (HCV) proteins. It turned out that
our approach yields better tracking results than previous methods.
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4.1.2 Method

Our approach, denoted as Deep Particle Tracker (DPT), relies on a tracking-by-
detection paradigm. For spot detection, we use the spot-enhancing filter (SEF) [147]
yielding a set of detections. For correspondence finding, we introduce an LSTM-
based recurrent neural network that determines assignment probabilities between
tracked objects and particle detections. To establish one-to-one correspondences
using the computed assignment probabilities of all objects and the probabilities of
missing detections, the Hungarian algorithm is employed.

Network Architecture

In our DPT approach, for each object we use one neural network with the same
network architecture. We employ both LSTM and fully-connected (FC) layers each
consisting of  units (we used  = 250). We apply Gaussian dropout after each
layer. Below, we describe the network architecture in more detail.
Let the vector x8C ∈ ℝ� denote the state of an object 8 at time point C. In our

work, we used x8C = (G 8C , H 8C , B 8C , 8C), i.e. � = 4. (G 8C , H 8C) is the object position. The
speed and direction of the object motion is denoted by B 8C and 8C (computed using
the positions at two successive time points). The detections (positions as well as
speed and direction for an assignment to object i) are represented by the vector
y8C ∈ ℝ"·� , where " is the overall number of detections. Note that " is often very
high (in cluttered environments) and varies strongly between different images of a
sequence. On the other hand, the neural network requires a fixed input vector size.
To address this, in our approach we exploit theM-nearest detections (we usedM =
5). For each time point C − 1, the network computes two output vectors for the next
time point C: x̂8C ∈ ℝ� is the predicted object state, and a8C ∈ [0, 1]"+1 represents the
assignment probabilities between object 8 and the "-nearest detections as well as
probabilities for missing detections.

We use an LSTM to predict the state of an object 8 for the next time point C. The
LSTM is composed of layers interacting which each other to determine the new
hidden state h8C ∈ ℝ of dimension  which also represents the output. The main
component of an LSTM is the cell state c8C ∈ ℝ which serves as long-term memory
[101]. At each time point C, different types of gates determine which information is
added to or removed from the previous cell state c8

C−1. Note that all gates compute
their output based on the previous hidden state h8C−1 and the current input. In our
case, the input is the object state x8

C−1 mapped to the vector z8C ∈ ℝ by using a
fully-connected (FC) layer and a hyperbolic tangent activation function. At time
point C, the LSTM for an object 8 is updated as follows:

i8C = �(WI8z8C +Wℎ8h8C−1 + b8) (4.1)

f8C = �(WI 5 z8C +Wℎ 5h8C−1 + b 5 ) (4.2)
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o8C = �(WI>z8C +Wℎ>h8C−1 + b>) (4.3)

g8C = tanh(WI6z8C +Wℎ6h8C−1 + b6) (4.4)

c8C = f8C � c8C−1 + i
8
C � g8C (4.5)

h8C = o8C � tanh(c8C) (4.6)

where i8C is the input gate, f8C is the forget gate, o8C is the output gate, and g8C is
the input modulation gate. Weight matrices W ∈ ℝ × and bias vectors b ∈ ℝ 

represent the parameters of a gate. � is the logistic sigmoid activation function,
and � denotes element-wise (Hadamard) multiplication. We use the new hidden
state h8C of the LSTM to compute the predicted object state x̂8C by employing a FC
layer and a hyperbolic tangent activation function. Since h8C is a function of all
object states x81:C−1 from time point 1 to time point C − 1, the network can exploit
both short and long-term temporal dependencies for state prediction.

The vector y8C of the detections is passed to a FC layer with a hyperbolic tangent
activation function for mapping it to a  -dimensional vector, which is then concate-
nated with the hidden state h8C of the LSTM. The resulting vector of dimension 2 
is passed to another FC layer which maps it to a vector of dimension  . This vector
is fed into a fully connected linear output layer with softmax normalization so
that the final network output vector a8C can be interpreted as " + 1 assignment
probabilities, i.e. ∀8 :

∑"+1
9=1 0

8 9

C = 1, where 0 8 9C denote the assignment probabilities
between object 8 and detection 9 (9 = 1, ..., "), and 0 8("+1)

C are the probabilities of
missing detections. The computed assignment probabilities and the probabilities
for missing detections (dummy detections in the probability matrix) are used as
input for the Hungarian algorithm. Note that a handcrafted similarity measure for
the predicted state and the detections (e.g., Euclidean distance) is not required to
compute the assignment probabilities.

The LSTM-based neural network is trained by minimizing the loss ℒ over all
trajectories defined by:

ℒ =
#∑
8=1
ℒ 8 , ℒ 8 =

) 8∑
C=1

(
1
�
‖x̂8C − x̃8C ‖2 −

"+1∑
9=1

0̃
8 9

C log(0 8 9C )
)

(4.7)

where # is the overall number of trajectories, ℒ 8 denotes the loss for the trajectory
of object 8, x̂8C is the predicted state and x̃8C the true state at time point C. The
deviation between the states is quantified by the mean squared error (MSE). The
cross-entropy is used to measure the deviation between the computed assignment
probabilities 0 8 9C and the ground truth 0̃ 8 9C . )

8 defines the total number of time points
for a trajectory.
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Training

Since deep learning architectures involve a large number of parameters, vast
amounts of training data are generally required. However, ground truth for
microscopy image sequences of biological particles is hardly available and manual
annotation is very tedious. Therefore, in our approach we do not use manually
labeled data but rely on synthetic data for training. We generated a large number
of simulated trajectories of particles, which perform Brownian motion or directed
motion. The diffusion coefficients and velocities of individual particles were
sampled fromauniformdistribution and the initial positionswere chosen randomly.
In addition, we randomly removed particle positions which enables the network
to learn coping with missing detections.
For training our network, we used the RMSprop optimizer [84] with an initial

learning rate of 3 × 10−5, which was decreased by 5% when the validation loss
stopped improving. To avoid overfitting, we employed early stopping and set the
Gaussian dropout rate to ? = 0.2. We used a dataset with 85,000 synthetically
generated trajectories with variable track length. The dataset was split into 82% for
training and 18% for validation. We used a mini-batch size of 10 trajectories.

4.1.3 Experimental Results

Particle Tracking Challenge Data

We evaluated our DPT approach based on data of the Particle Tracking Challenge
[65] and compared the performance with the overall top-three approaches (Meth-
ods 5, 1, and 2) described in Sec. 3.2. In addition, we compared the performance
of DPT with a recent approach employing a piecewise-stationary motion model
smoother (PMMS) [194]. This approach uses SEF for particle localization and linear
programming for linking (extension of u-track [190]).

To study the performance in cluttered environments, we used data of the
vesicle scenario for signal-to-noise ratios of SNR = 4 and SNR = 7 as well as
medium and high particle densities (medium: 500 particles/frame, high: 1000
particles/frame). The data is challenging due to conflicting correspondences (in
total 15,682 trajectories). The image sequences consist of 100 images (512×512
pixels) with random appearance and disappearance of particles. To quantitatively
assess the performance of the tracking methods, we computed the metrics , �,
�(�, �(��, and '"(� [65] described in Sec. 3.1.
The quantitative results are presented in Table 4.1 (bold values indicate the best

performance). It can be seen that DPT performs best for all metrics and cases. Note
that for PMMS the results in [194] are given only up to two decimal places and
'"(� is not provided. Note that for our DPT approach, we did not use the Particle
Tracking Challenge data for training, but used our own generated synthetic data
as described in Sec. 4.1.2 above.
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Table 4.1 Tracking performance of different approaches for data of the vesicle
scenario from the Particle Tracking Challenge. Bold indicates best performance.

Density SNR Method  � �(� �(�� '"(�

Medium

4

Method 5 0.658 0.588 0.641 0.776 0.754
Method 1 0.687 0.609 0.652 0.767 0.607
Method 2 0.582 0.514 0.59 0.757 0.97
PMMS 0.67? 0.60? 0.64? 0.77? -
DPT 0.695 0.624 0.658 0.790 0.545

7

Method 5 0.677 0.605 0.646 0.783 0.667
Method 1 0.7 0.619 0.65 0.758 0.544
Method 2 0.611 0.547 0.606 0.775 0.828
PMMS 0.68? 0.61? 0.64? 0.78? -
DPT 0.711 0.631 0.651 0.790 0.525

High

4

Method 5 0.488 0.408 0.466 0.671 1.004
Method 1 0.531 0.442 0.487 0.641 0.801
Method 2 0.43 0.356 0.429 0.649 1.208
PMMS 0.51? 0.44? 0.48? 0.67? -
DPT 0.547 0.462 0.505 0.680 0.746

7

Method 5 0.533 0.453 0.503 0.698 0.931
Method 1 0.582 0.494 0.526 0.683 0.683
Method 2 0.466 0.395 0.458 0.665 1.027
PMMS 0.55? 0.48? 0.51? 0.69? -
DPT 0.590 0.507 0.535 0.702 0.677

Real Fluorescence Microscopy Images of Virus Structures

We also evaluated the performance of the DPT approach using real fluorescence
microscopy image sequences displaying human immunodeficiency virus type 1
(HIV-1) particles and hepatitis C virus (HCV) proteins. The fluorescence labeled
HIV-1 particles were imaged by a confocal spinning disk microscope and an EM-
CCD camera. For our evaluation we used two image sequences (each 50 time points,
1000×1000 pixels, 16-bit) denoted by Seq. A and Seq. B. We also used one image
sequence showing the HCV nonstructural protein 5A (30 time points, 1000×1000
pixels, 16-bit) denoted by Seq. C (an example section with 115×115 pixels is shown
in Fig. 4.1). The images were acquired by a confocal spinning disk microscope and
a CMOS camera. This dataset is challenging due to relatively low SNRs and clutter
(high particle density, often crossing of trajectories). Ground truth trajectories for
regions with clutter and large motion were determined by manual annotation.
Seq. A, Seq. B, and Seq. C comprise 117, 125, and 55 ground truth trajectories,
respectively (with up to 30 time points).
We compared the performance of DPT with the ParticleTracker (PT) [187], a

Kalman filter based approach (KF) [189], and multiple-hypothesis tracking (MHT)
using multiple motion models [193] (see Sec. 3.2). For PT, KF, and MHT we
performed a grid search to determine optimal parameter settings. Note that for
DPT, adaption of tracking parameters was not necessary (except the two detection
parameters for SEF), i.e. we directly applied our tracking approach to the real data
while training was performed only on synthetic data (see Sec. 4.1.2 above). Table 4.2
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Figure 4.1 Section of image sequence Seq. C (HCV). The image contrast was
enhanced.

Table 4.2 Tracking performance of different approaches for real fluorescence
microscopy images. Bold indicates best performance.

Sequence Method  � �(� �(�� '"(�

Seq.A
(HIV-1)

PT 0.312 0.255 0.348 0.442 2.701
KF 0.388 0.317 0.421 0.456 2.775

MHT 0.367 0.304 0.454 0.440 3.393
DPT 0.413 0.360 0.462 0.497 2.673

Seq. B
(HIV-1)

PT 0.328 0.261 0.338 0.399 2.559
KF 0.352 0.312 0.396 0.373 2.121

MHT 0.366 0.303 0.429 0.416 2.991
DPT 0.435 0.331 0.444 0.527 2.717

Seq. C
(HCV)

PT 0.590 0.496 0.629 0.557 1.064
KF 0.559 0.481 0.564 0.550 1.088

MHT 0.540 0.480 0.588 0.611 1.237
DPT 0.647 0.571 0.669 0.625 1.024

shows the tracking performance for all three image sequences. It turns out that
DPT outperforms the other methods for all metrics and sequences (except '"(�

for Seq. B). Sample results for Seq. C are shown in Fig. 4.2. It can be seen that DPT
yields the best result and maintains the correct identity for all three particles. KF
causes an identity switch (between the blue and green trajectory). MHT yields a
broken trajectory (yellow).

4.1.4 Conclusion

We presented a novel approach for tracking particles in time-lapse microscopy
images using anLSTM-based recurrentneural networkwhich computes assignment
probabilities jointly across multiple detections and also determines probabilities
for missing detections. Manually labeled data is not required. In addition, a
handcrafted similarity measure is not needed. We evaluated our approach based

51



Chapter 4 Recurrent Neural Networks for Particle Tracking

(a) Ground truth (b) KF (c) MHT (d) DPT

Figure 4.2 Ground truth and results of different tracking approaches for image
sequence Seq. C (HCV). The image contrast was enhanced for better visualization.

on synthetic and real image sequences. It turned out that our approach yields
better results than previous methods.

4.2 Recurrent Neural Network for Particle Tracking Using Past
and Future Information

In this section, we introduce a new particle tracking approach based on a recurrent
neural network that exploits past and future information about object dynamics
for correspondence finding. The work has been published in [60].

4.2.1 Introduction

In previous work on tracking of particles in fluorescence microscopy images, tradi-
tional deterministic and probabilistic methods have been introduced. Deterministic
approaches are based on a two-step paradigm comprising particle detection and
correspondence finding (e.g., [187, 190, 213, 214, 215, 216]). While being efficient,
deterministic approaches do not incorporate spatial-temporal uncertainties, which
reduces the performance in demanding tracking scenarios (e.g., low SNR, high
particle density). Probabilistic approaches formulatedwithin a Bayesian framework
take into account spatial-temporal uncertainties by defining a posterior distribution
on the variables describing the object state. The spatial-temporal posterior can
be resolved via a Kalman filter (e.g., [144, 151, 192, 193, 194]) or a particle filter
(e.g., [58, 149, 196, 197]). Probabilistic approaches for correspondence finding have
also been proposed. These include joint probabilistic data association (JPDA) (e.g.,
[151, 202]) and multiple hypothesis tracking (MHT) (e.g., [193, 203, 204, 205]).
Disadvantages of traditional tracking methods are that generally tedious manual
tuning of (numerous) parameters is required and that the expected dynamic model
must be selected. In addition, assumptions about the probability distributions need
to be made (e.g, probability of object appearance, disappearance, and occlusion),
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which do not necessarily hold. Often, traditional approaches have difficulties in
cluttered environments and low SNR image data.
Deep learning methods have the potential to improve the performance. This

has been demonstrated for different computer vision and medical image analysis
tasks, including image classification, object detection, and object segmentation
(e.g., [6, 7, 8]). In recent years, deep learning approaches have been introduced for
tracking objects in video images of natural scenes (e.g., pedestrians, cars). Typically,
convolutional neural networks (CNNs) are used for learning appearance models
(e.g., [217, 218]). Other approaches include temporal information by recurrent
neural networks (RNNs) (e.g., [18, 19, 177, 219]),which typically exploit appearance
information anddetermine the similaritymeasure independently for eachdetection.
Compared to video images of natural scenes, much less work exists on deep

learning methods for tracking biological objects in microscopy images. In [21, 206],
CNN- and recurrent CNN-based approaches for cell tracking were introduced
which exploit appearance features and do not use future information. However,
cell tracking and tracking objects in natural scenes is quite different from tracking
biological particles since the motion and shape are very different, and appearance
can hardly be exploited. In [153, 154, 155, 156], CNNs were used for particle detec-
tion in fluorescence microscopy images. However, deep learning was not employed
for correspondence finding. [209] describes an RNN to approximate the filter-
backward-sample-forward algorithm for Bayesian filtering to track clathrin-coated
pits. For correspondence finding, a traditional local nearest neighbor algorithm
was used, but deep learning was not employed. In [210], an RNN-based approach
was employed to track microtubules in synthetic data. For correspondence find-
ing, a similarity measure based on handcrafted motion features is computed
independently for each detection. In [211], a denoising autoencoder was used to
approximate the motion model within a traditional MHT-based approach to track
microtubules in real data. The assignment scores are computed independently
for each possible track extension, and track initiation and termination are not
handled by the network. In our previous work [59] (described in Sec. 4.1), we
introduced a deep learning approach for tracking virus particles in real microscopy
images. A Long Short-Term Memory (LSTM)-based RNN determines assignment
probabilities jointly across multiple detections using handcrafted motion features.
None of the previous methods for particle tracking in fluorescence microscopy
images uses a deep neural network that exploits future information and multiple
track hypotheses for correspondence finding as well as determines assignment
probabilities jointly across multiple detections.

In this contribution, we introduce a new deep learning method for particle
tracking in temporal fluorescence microscopy images. Our method is based on a
deep RNN architecture that exploits past and future information in both forward
and backward direction. Assignment probabilities are determined jointly across
multiple detections, and the probability of missing detections is also computed. To
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handle track initiation and termination, the network computes existence probabili-
ties. In addition, multiple track hypotheses are exploited so that decisions about
correspondences can be delayed until ambiguities are resolved. This is similar
to the classical multiple hypothesis tracking algorithm [200], however, here we
suggest a deep learning formulation. An advantage of our formulation is that it
corresponds to a two-dimensional assignment problem including past and future
information,which can be solved efficiently since it has only polynomial complexity.
In contrast, the traditional MHT corresponds to a multi-dimensional assignment
problem,which is NP-hard and the solution is typically approximated by relaxation
methods (e.g., [203]). Our novel deep neural network includes fully-connected
(FC) layers, temporal convolution layers, and stacked bidirectional LSTMs [220]
that utilize short and long-term dependencies in both directions. The length of
the temporal sequence of learned features in our network is not limited, but can
be arbitrary long. Manually labeled data is not required for network training.
The network is trained using only simulated data and then applied to all data
sets in the experiments. A handcrafted similarity measure is not necessary for
correspondence finding, and assignment and existence probabilities are computed
within one network. Handcrafted motion features (e.g., velocity) are not required.
Instead, our approach directly employs the position information. Compared to
traditional tracking methods, the dynamic model does not need to be selected,
and tuning of tracking parameters as well as prior assumptions about probability
distributions (e.g., probability of object appearance, disappearance, and occlusion)
are not necessary.

We introduce the first deep learning method for particle tracking in fluorescence
microscopy that exploits future information and multiple track hypotheses for
correspondence finding as well as determines assignment probabilities jointly
across multiple detections. We quantitatively evaluated the performance of our
approach using data from the Particle Tracking Challenge as well as using real
live cell microscopy image sequences displaying fluorescently labeled human
immunodeficiency type 1 (HIV-1) particles and hepatitis C virus (HCV) proteins.
It turned out that our approach outperforms previous methods.

4.2.2 Method

In this section, we describe our deep learning approach for particle tracking
in microscopy images, denoted as Deep Particle Hypotheses Tracker (DPHT),
including the construction of the track tree, the network architecture, the loss
function, and the training of the network.

Overview of the Tracking Approach

A schematic overview of the proposed DPHT approach is shown in Fig. 4.3.
DPHT relies on a tracking-by-detection framework. For spot detection, we use the
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Figure 4.3 Schematic overview of the proposed DPHT approach.

spot-enhancing filter (SEF) [147] combined with Gaussian fitting yielding a set of
detections. For correspondence finding at a certain time point, we introduce a deep
RNN that determines assignment probabilities between tracked objects and particle
detections by exploiting track hypotheses propagated into the future by track trees.
The network architecture consists of FC layers, 1D max-pooling layers, temporal
convolution layers, and stackedbidirectional LSTMs (BLSTMs) [220]. Information at
past and future time points is used in forward and backward direction to improve
correspondence finding at the current time point. The computed assignment
probabilities of all objects and the probabilities of missing detections are used
for a two-dimensional assignment problem, which can be solved efficiently by
employing the Jonker-Volgenant shortest augmenting path algorithm [186] to
establish one-to-one correspondences. To handle track initiation and termination,
our DPHT network computes existence probabilities.

Track Tree Construction

In the following,we describe the construction of the track tree. The set of"C particle
detections at time point C is denoted by YC = {y9C}

"C

9=1, where each detection y9C ∈ ℝ�

is represented by the image coordinates (G 9C , H
9

C ) for � = 2. The set of #C existing
tracks at time point C is denoted by�C = {)8C}

#C
8=1, where each track )8C is a temporal

sequence of assigned detections corresponding to the same object 8. For an object,
the track up to time point C is defined as )8C = {y

8 , 9

C 8
8=8C

, . . . , y8 , 9C }, where C 8
8=8C
≤ C is the
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Figure 4.4 Example tree representing potential extensions of track )8C for two
subsequent time points (3 = 2). Numbers in the circles denote the index 9 of the
detections at the corresponding time point. Each node represents a detection,which
is either a (real) detection (9 > 0) or a dummy detection (9 = 0). Dashed red lines
indicate hypothetical assignments and black lines denote confirmed assignments.
For simplification, we used " = 2 (real) detections in this example.

time point of track initiation and y8 , 9C is the detection assigned at time point C. Note
that the dummy detection y8 ,0C represents a missing detection at time point C (false
negative, e.g., due to occlusion).

Let us assume that a set of confirmed tracks �C are available at time point C.
For time point C + 1, the track )8C corresponding to object 8 can be assigned either
with a (real) detection y9

C+1 ∈ YC+1 or with a dummy detection y0
C+1 representing

a missing detection. All possible assignments of )8C at time point C + 1 form a set
of track hypotheses �8C+1 = {$

8 , 9

C+1}
"C+1
9=0 , where $

8 , 9

C+1 = {)
8
C , y

9

C+1} denotes the track
hypothesis formed by the hypothetical assignment of )8C with detection y9

C+1, which
is either a real detection (9 > 0) or a dummy detection (9 = 0). We recursively
apply this assignment process for every set {�8C+1, . . . , �

8
C+3}, yielding the set of

all possible track hypotheses �8
C+1:C+3 from time point C + 1 to C + 3. Note that

the number of detections " is often very high (in cluttered environments) and
varies strongly between different images of a sequence. On the other hand, a
neural network requires a fixed input vector size. To address this, in our approach
each track hypothesis is assigned with the "-nearest detections (we used " = 4)
at the next time point to form " + 1 new track hypotheses. Thus, the set of all
track hypotheses for all detections 9 is given as �8

C+1:C+3 = {$
8
C+1:C+3,:}

("+1)3
:=1 and

the overall number of hypotheses over 3 time points is (" + 1)3. As illustrated in
Fig. 4.4, the potential extensions of existing tracks can be represented by trees of
hypothetical assignments with detections from time point C + 1 to C + 3.
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Figure 4.5 Architecture of the proposed subnetwork to compute the score of
individual track hypotheses. Red boxes with bold arrows denote Gaussian dropout
during network training. Dashed red lines indicate hypothetical assignments and
black lines indicate confirmed assignments. Unfilled black circles denote constant
padding before temporal convolution.

Network Architecture

In our DPHT approach, for each object 8 we use one neural network with the
same network architecture. For hypothesis scoring, the network includes (" + 1)3
identical subnetworks, one for each track hypothesis $8

C+1:C+3,: ∈ �8
C+1:C+3. The

network input is a tensor of size ("+1)3×ΔC×� representing all track hypotheses
in the track tree. ΔC = C + 3 + 1 − C 8

8=8C
denotes the temporal length of the track

hypotheses. First, the input tensor is sliced into (" + 1)3 matrices of dimension
ΔC × �, each of which is used as input for a different subnetwork. In the following,
we describe the network and subnetwork architecture in more detail.

The subnetwork architecture is sketched in Fig. 4.5 and the layer configuration
is provided in Table 4.3. To avoid defining handcrafted motion features (e.g.,
velocity), we directly use the position information (image coordinates of particles)
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Table 4.3 Subnetwork layer configuration.
Layer type Output size

Input ΔC × �
Padding (ΔC + 2) × �

Temporal convolution ΔC × !
BLSTM ΔC × 2 
BLSTM ΔC × 2 
BLSTM 2 
FC layer  

FC layer 1

and perform a temporal convolution with ! filters (we used ! = 12) employing
a convolution window size of ) time points (�>=E)×�×!, we used ) = 3) on the
track hypothesis padded with a constant (we used ”-1” for constant padding).
This results in a temporal sequence of learned dynamic features represented by
a tensor of size ΔC × !. Note that when using only position information without
temporal convolution the training of the network was not successful. To exploit
both short and long-term dependencies in forward and backward direction in
the sequence of learned dynamic features, we use =; stacked bidirectional Long
Short-Term Memory (BLSTM) [220] layers. Bidirectional RNNs were previously
used for object tracking (e.g., [176, 209, 221]), but have not yet been introduced
for determining assignment probabilities jointly across multiple detections or
exploiting multiple track hypotheses. Each BLSTM layer consists of a forward
Long Short-Term Memory (LSTM) [101] sublayer and a backward LSTM sublayer.
Both LSTM sublayers consist of  blocks (we used  = 64), known as memory
blocks. Eachmemory block contains in our case one recurrently connectedmemory
cell whose activation is called cell state and three multiplicative gates. The gates,
called input, output, and forget gate, provide functions analogous to write, read,
and reset operations that control the information to and from the cell state. More
precisely, the input to the cell state is multiplied by the activation of the input gate,
the output is multiplied by the activation of the output gate, and the previous
cell state is multiplied by the activation of the forget gate. Thus, the network can
only interact with the memory cell via the gates. The forward LSTM sublayer
processes the temporal input sequence (i.e., the learned dynamic features or the
output of the previous BLSTM layer) from time point C 8

8=8C
of track initiation for

an object 8 to C + 3, while the backward sublayer processes the temporal input
sequence from time point C + 3 to C 8

8=8C
. The output of the forward and backward

sublayer are combined by a concatenation operation to form the BLSTM layer
output. Note that the length of the input sequence in our network is not limited as
in [19, 209, 210, 219], but can be arbitrary long. The 2 -dimensional output vector
of the last BLSTM layer is passed to a fully-connected (FC) layer with  rectified
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Table 4.4Network layer configuration. For simplification, slicing and concatenation
operations are not shown.

Layer type Output size
Input (" + 1)3 × ΔC × �

Subnetworks (" + 1)3
1D max-pooling " + 1

FC layer FC layer   

FC layer FC layer   

Softmax Softmax " + 1 2

linear units (ReLUs) mapping it to a  -dimensional vector, that is fed into a single
ReLU to compute the score for the hypothesis $8

C+1:C+3,: .
The overall architecture of our DPHT network is sketched in Fig. 4.6, and the

layer configuration is provided in Table 4.4. The computed scores of all hypotheses
in the track tree are concatenated to form an (" + 1)3-dimensional vector. To
select the highest score of all track hypotheses containing the same detection at
time point C + 1, we perform 1D max-pooling over a window size of (" + 1)3−1.
The resulting vector of dimension " + 1 is fed into two separate output paths,
each comprising two consecutive FC layers with  ReLUs followed by a fully
connected linear output layer with softmax normalization. The network output
vector a 8

C+1 ∈ [0, 1]"+1 computed by the first output path can be interpreted as
" + 1 assignment probabilities for time point C + 1, i.e.

∑"
9=0 a

8 , 9

C+1 = 1, where a
8 , 9

C+1
denote the assignment probabilities between object 8 and detection 9 (9 = 1, ..., "),
and a 8 ,0

C+1 are the probabilities of missing detections. To establish one-to-one
correspondences at time point C+1, the computed assignment probabilities and the
probabilities for missing detections (dummy detections) are used as input for the
Jonker-Volgenant shortest augmentingpathalgorithm [186]. Note that ourapproach
corresponds to a two-dimensional assignment problem, which can be solved
efficiently since it has only polynomial complexity. This is an advantage compared
to the traditional MHT which corresponds to a multidimensional assignment
problem, which is NP-hard and where the solution is typically approximated by
relaxation methods (e.g., [203]). The network output vector 98

C+1 ∈ [0, 1]2 computed
by the second output path can be interpreted as normalized existence probabilities.
The first element �8 ,0;8E4

C+1 indicates the probability that object 8 exists at timepoint C+1,
whereas the second element �8 ,3403

C+1 represents the probability that object 8 does
no longer exist. Note that since we used a 1D max-pooling layer the number of
learnable parameters of the network is independent of 3.

Track Tree Maintenance

After having established one-to-one correspondences between confirmed tracks�C

and detections YC+1 for time point C + 1, we prune the trees to preserve their
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Figure 4.6 Network architecture of the proposed DPHT approach. Red boxes with
bold arrows denote Gaussian dropout during network training.

compatibility with the updated tracks�C+1. The principle is sketched in Fig. 4.7
for the track tree in Fig. 4.4. Track initiation and termination is handled using
the computed existence probabilities. For each detection y9

C+1 ∈ YC+1 that is not
assigned to a track )8C+1 ∈ �C+1, a new tree with is constructed with y9

C+1 as root
node. If �0;8E4

C+1 is larger than �3403
C+1 for the tree with root node y9

C+1, then y9
C+1 is

considered to belong to a newly appearing object and a new track is initiated.
Otherwise y9

C+1 is marked as false positive detection and the newly constructed
tree is discarded. The track of an object 8 is terminated when �8 ,3403

C+1 is larger than
�8 ,0;8E4
C+1 .

Loss Function

Our network is trained by multi-task learning using the loss function

ℒ = ℒa(a , ã) + �ℒ9(9, 9̃) (4.8)

where the first term is the cross-entropy loss used tomeasure the deviation between
the computed assignment probabilities a and the ground truth ã:

ℒa(a , ã) = −
"∑
9=0

ã 9 log(a 9) (4.9)
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Figure 4.7 Principle of the treemaintenance strategy illustrated for a track)8C for two
subsequent time points (3 = 2). Numbers in the circles represent the index 9 of the
detections at the corresponding time point. Dashed red lines denote hypothetical
assignments and black lines denote confirmed assignments. All branches on the
left that are in conflict with the newly established assignment between object 8
and detection y2

C+1 are removed yielding the pruned track tree on the right. For
simplification, we used " = 2 (real) detections in this example.

The second term is the cross-entropy loss for the predicted existence probabili-
ties �0;8E4 and �3403 using the ground truth �̃0;8E4 and �̃3403:

ℒ9(9, 9̃) = −(�̃0;8E4 log(�0;8E4) + �̃3403 log(�3403)) (4.10)

In all our experiments we used � = 1 in Eq. (4.8).

Network Training

Deep learning architectures generally require a vast amount of training data to
achieve convergence without overfitting while still generalizing well to new data.
However, ground truth for microscopy image sequences of fluorescent particles
is hardly available and manual annotation is very time-consuming. Therefore, in
our approach we do not use manually labeled data but rely on simulated data for
training. We simulated trajectories and generated different image sequences. For
the dynamics of particles we used four different motion models, namely Brownian
(random-walk)motion,directedmotion at constant velocity,acceleratedmotion,and
random switching between Brownian motion and directedmotion. The parameters
for the motion of individual particles and the particle density were sampled from
uniform distributions. The initial particle positions were chosen randomly. The
particles appear and disappear randomly, and we also simulated movement out of
the focus and the field of view. The SNRs of the image sequences were also sampled
from a uniform distribution. We used SNR = (�0 − �16)/

√
�> as in [187], where �0

denotes the maximum particle intensity and �1 is the mean background intensity.
To enable our network to learn assignment and existence probability computation
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under consideration of detector errors, we generated training samples based on
real detections. Given the synthetically generated image sequences, particles were
automatically detected using the spot-enhancing filter [147]. Then, the detections
were mapped to ground truth trajectories by nearest neighbor search (using a
validation gate of 5 pixels). The resulting trajectories consisting of real detections
were used for network training. Thus, prior knowledge about detection errors
is not required. In contrast, in our previous work [59], prior knowledge about
the probabilities of missing detections was required. There, simulated particle
trajectories were used for network training, and missing detections were included
by randomly removing a predefined percentage of particle positions. In addition,
false positive detections were not taken into account.

We trained our network using the Adam optimizer [85] with an initial learning
rate �8=8C = 0.001, as well as �1 = 0.9 and �2 = 0.999. To avoid overfitting, we
employed early stopping and Gaussian dropout with a rate of ? = 0.25. For
training and validation we used trajectories and detections from 10 synthetic image
sequences each consisting of 40 images (512 × 512 pixels, 16-bit). The data set was
split into 85% for training and 15% for validation. We used a mini-batch size of 32
samples.

4.2.3 Experimental Results

We evaluated the performance of our DPHT approach based on data of the Particle
Tracking Challenge [65] as well as real live cell fluorescence microscopy data
displaying human immunodeficiency virus type 1 (HIV-1) particles and hepatitis
C virus (HCV) proteins. We also performed a comparison with previous methods
as well as a unidirectional DPHT approach.

Particle Challenge Data

We applied the DPHT approach to image sequences of the Particle Tracking
Challenge [65] and performed a comparison with the overall top-three approaches
(Methods 5, 1, and 2) described in Sec. 3.2. We also performed a comparison with a
recently introduced approach employing piecewise-stationary motion modeling
and iterative smoothing (PMMS) [194]. PMMS establishes correspondences by
linear programming [190] and localizes particles by SEF. In addition, we compared
the performance of our (bidirectional) DPHT approachwith a unidirectional DPHT
variant (DPHT-uni), which processes the information only in forward direction
by using =; forward LSTM layers ( = 100) instead of =; BLSTM layers ( = 64).
We also performed a comparison with our previous deep particle tracker (DPT)
approach [59] (Sec. 4.1), which employs an LSTM-based RNN for correspondence
finding, but does not exploit future information and multiple track hypotheses.
Note that for DPHT, DPHT-uni, and DPT we used the same set of detections. Note
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also that for these approaches we did not use the Particle Tracking Challenge data
for training, but our own generated simulated data as described in Sec. 4.2.2 above.

To study the performance for different motion models under demanding con-
ditions, we used image data from the microtubule and receptor scenario of
the Particle Tracking Challenge with medium (∼500 particles/frame) and high
(∼1000 particles/frame) particle densities, and SNRs of 2 and 4. In total, the data
comprises 37,613 trajectories. The image data is challenging due to image noise,
particle clustering, and particle appearance and disappearance leading to con-
flicting correspondences and detection errors. Each temporal image sequence
consists of 100 images (512 × 512 pixels, 8-bit). The microtubule data (pixel size
of 50 nm) includes elongated particles (anisotropic Gaussian appearance) which
perform a directed motion with constant velocity. The receptor data (pixel size
of 67 nm) shows round particles (isotropic Gaussian appearance) that switch
between random walk and randomly oriented directed motion. Appearance and
disappearance of individual particles is defined by a random process. The Rayleigh
distance (minimum distance between diffraction-limited particles to allow visual
separation) of the image data is 5 pixels. The tracking performance was quantified
using the five metrics , �, �(�, �(��, and '"(� [65] described in Sec. 3.1.

We investigated how the number of BLSTM layers =; in our DPHT approach
affects the tracking performance and computation time. We studied different values
=; = 1, 2, 3, 4, and 5. In Fig. 4.8, the tracking performance and computation time of
DPHT are shown as a function of =; for the receptor scenario with medium and
high particle density for SNR = 4. It can be seen that for =; = 3, DPHT yields the
best overall performance. The computation time increases only somewhat with =; .
Thus, we use =; = 3 in all our experiments (for DPHT and DPHT-uni).

In addition, we investigated how the hyperparameter 3 (number of future time
points for track tree construction) in our DPHT approach affects the tracking
performance and computation time. We tested different values 3 = 2, 3, 4, and 5.
In Fig. 4.9, the tracking performance and computation time of DPHT are shown as
a function of 3 for the receptor data with medium and high particle density for
SNR = 2 and SNR = 4. It can be seen that increasing 3 up to 4 time points generally
improves the tracking performance of DPHT,while for 3 = 5 the performance often
decreases. The reason is probably that exploiting too many future time points in
cluttered environments causesmerged tracks due to appearance anddisappearance
events in close proximity. The computation time increases with 3. Since 3 = 4
is a good compromise between tracking performance and computation time, we
use this value in all our experiments (for DPHT and DPHT-uni). Interestingly,
for SNR = 2 the performance for high density is better than for medium density
(for several metrics), and this is also the case for other methods (cf. Table 4.5).
The reason is probably that for high density the particles are better visible due to
higher contrast compared to medium density. Computations were performed on
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Figure 4.8 Tracking performance and computation time as a function of the number
of BLSTM layers =; for our DPHT approach. We used image data from the receptor
scenario withmedium and high particle density and SNR = 4. Red circles indicate
the best performance.
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a workstation with Intel Core i7-8700K CPU (six cores at 3,7 GHz), 32 GB RAM,
NVIDIA GeForce GTX1070, and 64-bit Linux operating system.
We also studied the robustness of DPHT with respect to detection errors. We

generateddata setswith specific percentages of false positive (FP) and false negative
(FN) detections based on the ground truth data. Neighboring detections with
an Euclidean distance smaller than the Rayleigh distance in the data (5 pixels)
were replaced by a single detection to obtain data sets with 0% FN. By randomly
removing or adding detections we generated data sets with defined percentages
of FN (0%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, and 70%) and FP (0%, 25%,
50%,and70%). In Fig. 4.10, the trackingperformance ofDPHT is shownas a function
of the FN percentage and for different FP percentages for the receptor scenario
with medium density and SNR = 4. It can be seen that the tracking performance
decreases with increasing FN percentage. With increasing FP percentage, the
tracking performance also decreases but less compared to the FN percentage.
The quantitative results for the receptor scenario and microtubule scenario are

shown in Table 4.5 and Table 4.6, respectively. Bold and underline represents the
best performance, and bold indicates the second best performance. It can be seen
that DPHT generally outperforms the other methods. In seven out of eight cases,
DPHT performs best in terms of , �, and �(�. For the receptor scenario with
medium density and SNR = 2, DPHT performs second best. In terms of �(��,
DPHT performs best in six cases and second best in the two other cases. For three
cases DPHT outperforms the other approaches in terms of '"(�. DPHT-uni often
performs second best. Note that for PMMS the results in[194] are not provided
for SNR = 2 and '"(�, and all values are given only up to two decimal digits.
Example results for image sections (215×215 pixels) of the receptor andmicrotubule
scenario with medium density and SNR = 4 for DPHT are provided in Fig. 4.11. It
can be seen that the tracking result well agrees with the ground truth.
In addition, we performed an evaluation of our DPHT approach for all SNR

levels (SNR = 1, 2, 4, 7) and all particle densities (low, medium, high) for all 2D
scenarios of the Particle Tracking Challenge (receptor, microtubule, vesicle). In
total, the data set comprises 36 temporal image sequences and 113,246 trajectories.
The results for the overall top-three approaches (Methods 5, 1, and 2), PMMS,
DPT, DPHT-uni, and DPHT are provided as Supplementary Material (Table S-I,
Table S-II, and Table S-III). The results generally confirm our findings. For , �, �(�,
�(��, and '"(�, the DPHT approach performs best in 22, 26, 21, 23, and 6 out
of 36 cases, respectively. DPHT-uni often performs second best. The overall mean
values of the tracking performance are given in Table 4.7. It can be seen that DPHT
outperforms the other approaches in terms of , �, �(�, and �(��. DPHT-uni
performs second best. For RMSE the results of DPHT, DPHT-uni, and DPT are
similar. Note that PMMS is not included in the table since in [194] results are not
provided for SNR = 1 and SNR = 2, and thus the overall performance cannot be
determined. To investigate whether the improvement of DPHT compared to the
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Figure 4.9 Tracking performance and computation time as a function of the number
of future time points 3 for our DPHT approach. We used image data from the
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circles indicate the best performance.
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Table 4.5 Tracking performance of different approaches for data of the receptor
scenario from the Particle Tracking Challenge. Bold and underline represents the
best performance, and bold indicates the second best performance.

Density SNR Method  � �(� �(�� '"(�

Medium

2

Method 5 0.414 0.347 0.428 0.586 1.207
Method 1 0.21 0.172 0.197 0.41 0.884
Method 2 0.439 0.375 0.474 0.618 1.253
PMMS - - - - -
DPT 0.395 0.289 0.351 0.416 0.840

DPHT-uni 0.448 0.368 0.441 0.59 0.851
DPHT 0.447 0.370 0.443 0.602 0.827

4

Method 5 0.714 0.662 0.712 0.828 0.586
Method 1 0.758 0.704 0.740 0.840 0.477
Method 2 0.647 0.560 0.632 0.722 0.751
PMMS 0.78 0.74 0.78 0.86 -
DPT 0.738 0.677 0.713 0.816 0.45

DPHT-uni 0.805 0.764 0.802 0.877 0.401
DPHT 0.811 0.771 0.808 0.878 0.411

High

2

Method 5 0.404 0.345 0.423 0.613 1.179
Method 1 0.396 0.306 0.352 0.48 0.881
Method 2 0.448 0.354 0.451 0.588 1.129
PMMS - - - - -
DPT 0.432 0.345 0.416 0.566 0.894

DPHT-uni 0.438 0.352 0.421 0.578 0.878
DPHT 0.499 0.436 0.515 0.681 0.825

4

Method 5 0.545 0.474 0.529 0.712 0.797
Method 1 0.622 0.55 0.59 0.731 0.573
Method 2 0.584 0.504 0.578 0.701 0.857
PMMS 0.68 0.62 0.67 0.78 -
DPT 0.617 0.546 0.587 0.736 0.572

DPHT-uni 0.707 0.655 0.699 0.801 0.522
DPHT 0.710 0.659 0.703 0.809 0.513
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Table 4.6 Tracking performance of different approaches for data of the microtubule
scenario from the Particle Tracking Challenge. Bold and underline represents the
best performance, and bold indicates the second best performance.

Density SNR Method  � �(� �(�� '"(�

Medium

2

Method 5 0.283 0.248 0.351 0.562 1.721
Method 1 0.262 0.197 0.324 0.496 2.16
Method 2 0.371 0.158 0.266 0.306 2.282
PMMS - - - - -
DPT 0.348 0.263 0.349 0.491 1.506

DPHT-uni 0.410 0.352 0.456 0.616 1.526
DPHT 0.443 0.393 0.505 0.674 1.586

4

Method 5 0.46 0.402 0.523 0.696 1.403
Method 1 0.353 0.264 0.373 0.55 1.682
Method 2 0.465 0.225 0.341 0.363 2.036
PMMS 0.44 0.39 0.58 0.7 -
DPT 0.488 0.373 0.449 0.556 1.066

DPHT-uni 0.625 0.561 0.663 0.772 1.073
DPHT 0.655 0.618 0.723 0.839 1.118

High

2

Method 5 0.183 0.163 0.24 0.48 1.899
Method 1 0.19 0.153 0.25 0.512 2.178
Method 2 0.296 0.126 0.223 0.301 2.354
PMMS - - - - -
DPT 0.307 0.209 0.294 0.4 1.663

DPHT-uni 0.374 0.306 0.415 0.576 1.667
DPHT 0.402 0.320 0.438 0.551 1.71

4

Method 5 0.314 0.264 0.371 0.602 1.633
Method 1 0.272 0.21 0.299 0.544 1.715
Method 2 0.396 0.194 0.306 0.361 2.102
PMMS 0.35 0.3 0.46 0.63 -
DPT 0.414 0.313 0.389 0.524 1.209

DPHT-uni 0.509 0.451 0.546 0.709 1.198
DPHT 0.548 0.501 0.605 0.758 1.255
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(a) Ground truth, receptor scenario (b) DPHT, receptor scenario

(c) Ground truth, microtubule scenario (d) DPHT, microtubule scenario

Figure 4.11 Ground truth and tracking results for image sections (215×215 pixels)
of the receptor scenario (top) and microtubule scenario (bottom) with medium
density and SNR = 4. The image contrast was enhanced for better visualization.
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Table 4.7 Overall mean values of the tracking performance of different approaches
for all 2D image data from the Particle Tracking Challenge (all SNR levels and
all particle densities for receptor, microtubule, and vesicle). Bold and underline
represents the best performance, and bold indicates the second best performance.

Method  � �(� �(�� '"(�

Method 5 0.454 0.408 0.480 0.615 1.319
Method 1 0.391 0.342 0.400 0.542 1.227
Method 2 0.441 0.352 0.444 0.549 1.597

DPT 0.464 0.400 0.449 0.584 1.034
DPHT-uni 0.503 0.455 0.514 0.651 1.068
DPHT 0.515 0.473 0.533 0.673 1.069

other methods (Method 5, Method 1, Method 2, DPT, DPHT-uni) is statistically
significant for , �, �(�, and �(��, we performed a Wilcoxon signed-rank test
(non-parametric test) with significance level of 5% for all 2D Particle Tracking
Challenge data (all SNR levels and all particle densities for receptor, microtubule,
and vesicle; Table 4.7). We obtained ? < 0.002 for �(� and ? < 0.0005 for , �, and
�(��. Thus, DPHT yields a statistically significant improvement compared to the
other methods.

To study the reproducibility of DPHT, we have performed multiple training runs
(15 runs) and applied the approach to data of the receptor scenario with medium
density and SNR = 4. For themean and standard deviation for the five performance
metrics we obtained:  = 0.811 ± 0.004, � = 0.771 ± 0.006, �(� = 0.809 ± 0.007,
�(�� = 0.878 ± 0.005, '"(� = 0.412 ± 0.002. Compared to the original values in
Table 4.5 ( = 0.811, � = 0.771, �(� = 0.808, �(�� = 0.878, '"(� = 0.411) the
results are very similar and the standard deviation is very small indicating a good
reproducibility.

Real Live Cell Fluorescence Microscopy Images

Wealso evaluated theDPHTapproachbasedon real fluorescencemicroscopy image
sequences displaying human immunodeficiency virus type 1 (HIV-1) particles and
hepatitis C virus (HCV) proteins. We used five image sequences with fluorescently
labeled HIV-1 particles acquired with a confocal spinning disk microscope and
an EM-CCD camera. Each image sequence consists of 50 images (16-bit) with
1000× 1000 pixels (Seq. 1 to Seq. 5). We also used three image sequences displaying
the nonstructural protein 5A (NS5A) of HCV (30 time points, 1000×1000 pixels,
16-bit) denoted by Seq. 6 to Seq. 8. The images were acquired by a confocal
spinning disk microscope and a CMOS camera. Example sections of Seq. 2 with
230×230 pixels and Seq. 6 with 115×115 pixels are shown in Fig. 4.12. The image
sequences of this data set differ in the level of image noise, the motion behavior
of the particles, and the particle density. For the real images, ground truth for
performance evaluation for regions with clutter and large motion was obtained by
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Table 4.8 Real Live Cell Fluorescence Microscopy Image Sequences.
Sequence Object type No. of particles
Seq. 1 HIV-1 particles 86
Seq. 2 HIV-1 particles 117
Seq. 3 HIV-1 particles 70
Seq. 4 HIV-1 particles 113
Seq. 5 HIV-1 particles 87
Seq. 6 NS5A (HCV) 75
Seq. 7 NS5A (HCV) 55
Seq. 8 NS5A (HCV) 90

(a) Seq. 2 (HIV-1) (b) Seq. 6 (HCV)

Figure 4.12 Sections of image sequence Seq. 2 (HIV-1) and Seq. 6 (HCV). The image
contrast was enhanced for better visualization.

manual annotation using the ImageJ plugin MTrackJ [222]. An overview of the
used image sequences is given in Table 4.8.

We compared the performance of DPHT with the ParticleTracker (PT) [187], the
Kalman filter based approach (KF) implemented in the ImageJ plugin TrackMate
[189], the multiple-hypothesis tracking (MHT) approach using Kalman filters and
multiple motion models [193] implemented in the Icy software [212], and our
previous DPT approach [59] (Sec. 4.1). For PT, KF, and MHT, we tested different
parameter settings and applied the settings which yielded the best results. PT
uses iterative intensity-weighted centroid calculation for particle localization and
establishes correspondences by greedy hill-climbing optimization with topological
constraints. We used a radius of 5 pixels, a cutoff of 0.001, a percentile of 0.3, a
displacement of 10 pixels, and a linking range of 2 for the HIV-1 data. For the HCV
data we set the radius to 3 pixels, the percentile to 1, and the displacement to 5.
KF employs SEF for particle localization and particle linking is based on a linear
assignment method used in u-track [190]. For the HIV-1 data, we used a diameter
of 10 pixels and a threshold of 5, while for the HCV data we set the diameter
to 5 pixels and the threshold to 60. We used an initial search radius of 15 pixels
and a search radius of 20 pixels for the HIV-1 data, and for the HCV data we set
both parameters to 7.5 pixels. For the other parameters we used the default values.
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MHT localizes particles by a wavelet-based detection scheme. We used a scale
of 4 with a coefficient threshold of 65 for the HIV-1 data, and a scale of 2 with a
coefficient threshold of 55 for the HCV data. For theHIV-1 data,we set the detection
probability for each particle to 0.95, the expected number of new tracks per frame
to 10 for HIV-1 and 30 for HCV, the expected number of objects in the first frame
to 100, the expected track length to 8, the average length of displacement to 12.5,
and the threshold for the existence probability to 0.01. For the other parameters we
used the automatically estimated values. For DPT, we set the hyperparameters as
described in [59]. Note that for DPHT, DPHT-uni, and DPT we used the same set
of detections, and tracking parameters were not adapted (except the two detection
parameters for SEF), i.e. we directly applied our approaches to the real data while
training was performed using only simulated data (see Sec. 4.2.2 above). The
computation time for one image sequence of the HIV-1 and HCV data was about
0.5 min and 1 min, respectively, using a workstation as specified in Sec. 4.2.3 above.
The quantitative results for all approaches for the HIV-1 data and the HCV

data are shown in Table 4.9 and Table 4.10, respectively. It can be seen that for
most real image sequences, DPHT outperforms the other methods. For � and �(�,
DPHT performs best for all eight images sequences. DPHT outperforms the other
approaches in terms of  for seven image sequences, and in terms of '"(� for
three image sequences. For �(��, DPHT performs best for four image sequences
and second best for three image sequences. DPHT-uni often performs second best.
Sample tracking results for image sequence Seq. 4 (HIV-1) are shown in Fig. 4.13.
The sequence includes five real particles in close proximity. It can be seen that
DPHT yields the best result and maintains the correct identity for all particles. PT
yields a broken trajectory (blue) and a missing trajectory (green) due to missing
detections. KF causes an identity switch between the blue and green trajectory.
Also, the green trajectory was terminated too early and a false positive track was
initiated due to a spurious particle detection (red trajectory). MHT and DPT yield
a broken trajectory (green) due to temporal occlusion causing that two particles
were falsely detected as one particle. In addition, the red trajectories consist of two
track segments belonging to different particles (green trajectory and an already
terminated trajectory). Sample tracking results for image sequence Seq. 7 (HCV)
are shown in Fig. 4.14. The sequence includes two particles in close proximity. It
can be seen that DPHT maintains the correct identity of the particles, while the
other approaches yield a broken trajectory (yellow) due to a temporal merging
event.

4.2.4 Conclusion

We introduced a new deep learning approach for tracking multiple particles in
temporal fluorescence microscopy images. Our deep particle hypotheses tracker
(DPHT) is based on an RNN architecture that exploits past and future information
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Table 4.9 Tracking performance of different approaches for real fluorescence
microscopy images displaying HIV-1 particles. Bold and underline represents the
best performance, and bold indicates the second best performance. Mean values
are also shown.

Sequence Method  � �(� �(�� '"(�

Seq. 1

PT 0.349 0.141 0.245 0.173 2.989
KF 0.398 0.314 0.445 0.518 2.737

MHT 0.456 0.392 0.618 0.525 3.155
DPT 0.483 0.403 0.525 0.564 2.747

DPHT-uni 0.508 0.452 0.618 0.553 2.833
DPHT 0.535 0.478 0.633 0.573 2.815

Seq. 2

PT 0.262 0.145 0.216 0.254 3.410
KF 0.347 0.228 0.328 0.359 2.818

MHT 0.367 0.304 0.454 0.440 3.393
DPT 0.389 0.287 0.409 0.390 3.158

DPHT-uni 0.371 0.287 0.401 0.396 2.943
DPHT 0.404 0.332 0.460 0.457 3.089

Seq. 3

PT 0.317 0.066 0.119 0.074 2.680
KF 0.381 0.209 0.325 0.227 2.586

MHT 0.397 0.257 0.364 0.295 2.714
DPT 0.406 0.255 0.392 0.327 2.671

DPHT-uni 0.498 0.429 0.550 0.402 2.517
DPHT 0.507 0.446 0.564 0.425 2.401

Seq. 4

PT 0.248 0.069 0.121 0.114 3.139
KF 0.388 0.270 0.394 0.370 2.964

MHT 0.409 0.357 0.536 0.464 3.242
DPT 0.424 0.326 0.481 0.428 2.901

DPHT-uni 0.422 0.352 0.509 0.414 2.909
DPHT 0.442 0.375 0.541 0.434 2.789

Seq. 5

PT 0.346 0.157 0.235 0.219 2.797
KF 0.397 0.282 0.379 0.372 2.757

MHT 0.382 0.350 0.518 0.457 3.239
DPT 0.435 0.360 0.477 0.523 2.498

DPHT-uni 0.430 0.392 0.508 0.500 2.624
DPHT 0.439 0.411 0.545 0.495 2.632

Mean values

PT 0.304 0.116 0.187 0.167 3.003
KF 0.382 0.261 0.374 0.369 2.772

MHT 0.402 0.332 0.498 0.436 3.149
DPT 0.428 0.326 0.457 0.446 2.795

DPHT-uni 0.446 0.382 0.517 0.453 2.765
DPHT 0.465 0.409 0.549 0.477 2.745
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Table 4.10 Tracking performance of different approaches for real fluorescence
microscopy images displaying HCV proteins. Bold and underline represents the
best performance, and bold indicates the second best performance. Mean values
are also shown.

Sequence Method  � �(� �(�� '"(�

Seq. 6

PT 0.545 0.506 0.635 0.644 1.253
KF 0.528 0.505 0.586 0.659 0.979

MHT 0.560 0.527 0.648 0.693 1.210
DPT 0.606 0.559 0.649 0.644 0.904

DPHT-uni 0.599 0.567 0.664 0.713 1.072
DPHT 0.610 0.575 0.676 0.697 1.016

Seq. 7

PT 0.590 0.496 0.629 0.557 1.064
KF 0.559 0.481 0.564 0.550 1.088

MHT 0.540 0.480 0.588 0.611 1.237
DPT 0.633 0.540 0.632 0.605 1.008

DPHT-uni 0.603 0.531 0.616 0.568 1.025
DPHT 0.619 0.556 0.652 0.622 1.117

Seq. 8

PT 0.324 0.306 0.382 0.414 1.255
KF 0.525 0.432 0.499 0.529 1.137

MHT 0.436 0.422 0.507 0.588 1.299
DPT 0.614 0.499 0.586 0.527 1.068

DPHT-uni 0.609 0.493 0.592 0.519 1.082
DPHT 0.626 0.510 0.614 0.538 1.052

Mean values

PT 0.487 0.436 0.549 0.538 1.191
KF 0.537 0.473 0.550 0.579 1.068

MHT 0.512 0.476 0.581 0.631 1.249
DPT 0.617 0.533 0.623 0.592 0.993

DPHT-uni 0.604 0.530 0.624 0.600 1.060
DPHT 0.618 0.547 0.647 0.619 1.062
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(a) Ground truth (b) PT (c) KF

(d) MHT (e) DPT (f) DPHT

Figure 4.13 Ground truth and results of different tracking approaches for image
sequence Seq. 4 (HIV-1). The image contrast was enhanced for better visualization.

(a) Ground truth (b) PT (c) KF

(d) MHT (e) DPT (f) DPHT

Figure 4.14 Ground truth and results of different tracking approaches for image
sequence Seq. 7 (HCV). The image contrast was enhanced for better visualization.
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in both forward and backward direction. Also, our network determines assignment
probabilities jointly across multiple detections, and computes the probabilities
of missing detections. In addition, DPHT propagates track hypotheses into the
future so that information at later time points can be used to resolve ambiguities.
To handle track initiation and termination, existence probabilities of individual
objects are calculated. Manually labeled data and a handcrafted similarity measure
are not needed. Tuning of tracking parameters and selection of a dynamic model
are not required. Also, prior assumptions about probability distributions are not
necessary.

We evaluated the performance of our approach using image data of the Particle
TrackingChallenge aswell as realfluorescencemicroscopy image sequences ofvirus
structures. Our experimental results show that exploiting information from future
time points by propagating hypotheses improves the tracking performance. In
addition, processing the temporal information in forward and backward direction
improves the result compared to processing the information only in forward
direction. A quantitative comparison with previous methods showed that our
approach yields superior results.
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Chapter 5

Deep Probabilistic Tracking of
Particles

In this chapter, we present a novel probabilistic deep learning method for particle
tracking in fluorescence microscopy images. The work has been published in [61].

5.1 Introduction

In previous work on tracking particles in fluorescence microscopy images, classical
deterministic and probabilistic approaches have been introduced. Deterministic
approaches comprise two steps: Particle detection and correspondence finding (e.g.,
[187, 213, 214, 215, 216]). While being computationally efficient, these approaches
do not take into account spatial and temporal uncertainties which often leads to
difficulties under challenging conditions (e.g., low SNR, high object density). In
comparison, probabilistic approaches follow a Bayesian paradigm and define a
posterior distribution on the variables describing the object state. The posterior
can be resolved via a sequential Bayesian filter such as the Kalman filter (e.g.,
[144, 151, 192, 193, 194, 223]) or the particle filter (e.g., [58, 149, 196, 197]). However,
probabilistic approaches typically require selecting a suitable dynamic model and
use prior assumptions about the noise statistics (e.g., image and motion noise),
which do not necessarily hold. Moreover, classical tracking methods often involve
numerous parameters that are difficult to adjust, particularly for non-experts, and
do not always have a biophysical interpretation.

Deep learningmethods provide state-of-the-art performance in various computer
vision tasks including image classification, object detection, and segmentation (e.g.,
[6, 7, 8]). Approaches for tracking objects in video images of natural scenes (e.g.,
pedestrians, cars) use deep learning for different purposes [161]. Convolutional
neural networks (CNNs) are employed for extracting appearance features (e.g.,
[224]), for generating a discriminative appearance model (e.g., [225]), for object
detection (e.g., [130, 226]), for computing assignment scores (e.g., [227]), and
for motion prediction (e.g., [228, 229]). Recurrent neural networks (RNNs) are
often used to compute assignment scores between tracklets and detections (or
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tracklets and other tracklets) (e.g., [18]), which typically exploit appearance features
(e.g., [19, 230]) which can hardly be exploited to track indistinguishable particles.
In Farrell et al. [231], CNNs and an RNN are combined for correspondence
finding between detector hits in simulated high-energy physics data without using
prediction and update steps as in Bayesian filtering.

Recently, deep learning methods for tracking biological objects in microscopy
images have been introduced showing promising results. CNNs and RNNs
have been used to exploit appearance features for cell tracking (e.g., [21, 206,
207, 208]). Since cells (and natural objects) are very different from fluorescent
particles both regarding shape and dynamics, these approaches cannot be directly
applied for particle tracking. In addition, appearance features are not a reliable
cue for correspondence finding for (almost) indistinguishable particles. Few works
employed CNNs for particle detection in fluorescence microscopy images (e.g.,
[153, 155, 156, 157]). In Zhong et al. [232], a CNN was used to determine the
position of individual polystyrene particles along the z-direction of epifluorescence
microscopy images. Sun and Paninski [209] proposed an RNNwhich approximates
the posterior transition probability densities to track clathrin-coated pits. However,
for correspondence finding a classical nearest neighbor strategy is used. RNNs
using (past) temporal information for correspondence finding of fluorescent
particles were introduced in Yao et al. [210] and in our work in Spilger et al.
[59] (see Sec. 4.1). Smal et al. [211] employ a denoising autoencoder and score
matching to learn a motion model from data within a classical multiple hypotheses
tracking (MHT) framework. We introduced a bidirectional RNN exploiting past
and future information as well as multiple track hypotheses for correspondence
finding (see Sec. 4.2). Yao et al. [22] described an RNN that uses handcrafted and
learned features. However, none of these deep learning methods takes into account
uncertainty, neither in the network model (epistemic uncertainty) nor the inherent
noise in the image data (aleatoric uncertainty).

Deep neural networks considering uncertainty have been introduced for natural
and medical images for different tasks such as segmentation (e.g., street traffic
scenes, CT images), disease detection (e.g., fundus images), super-resolution (e.g.,
diffusion MR images), and image translation (e.g., CT images to MR images) (e.g.,
[233, 234, 235, 236]). Since neural networks generally consist of a large number
of parameters as well as non-linear activations, computing the (multi-modal)
posterior distribution of a network output is intractable. Thus, approximation
methods have been introduced, which are mainly based on Bayesian inference or
Monte-Carlo sampling. Bayesian neural networks represent the parameters (weights)
by probability distributions instead of using single values (e.g., [115, 119, 237,
238]). Consequently, the network outputs can also be represented by probability
distributions and calculated analytically employing graphical models [239] or non-
linear belief networks [240]. Alternatively,Monte-Carlo sampling can be employed.
Often, Monte-Carlo samples are obtained using ensembles of neural networks.
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These ensembles can be generated by differently trained neural networks (e.g.,
[122, 241]) or employing dropout during training and testing (Monte-Carlo dropout,
[118]). However, Monte-Carlo sampling approaches include epistemic uncertainty
(model uncertainty) but not aleatoric uncertainty (data uncertainty). In Kendall and
Gal [113], Monte-Carlo dropout was employed to capture epistemic uncertainty
and a standard deviation variable is added to each output to include aleatoric
uncertainty. None of the above described methods considering uncertainty was
employed for object tracking in microscopy images.

In this contribution, we present a novel deep neural network architecture for
tracking particles in fluorescence microscopy images which exploits both aleatoric
and epistemic uncertainty. Inspired by classical Bayesian filtering, the network
learns to predict the next state and to correct the predicted state based on an as-
signed detection. Gated Recurrent Units (GRUs) [103] are used to exploit both short-
and long-term temporal dependencies of individual object dynamics. Epistemic
uncertainty is incorporated by variational Bayesian learning using an approxima-
tion of the lower bound for efficient learning [115, 119], which does not require
computationally expensive iterative inference schemes such asMarkov chainMonte
Carlo. Bayesian layers with reparameterization are employed, where parameters
are represented by Gaussian distributions. During network training via variational
inference the parameters of these probability distributions are learned instead of
directly learning the network weights. To capture aleatoric uncertainty due to the
particle detector and noise of object motion, the network learns estimating the
mean and standard deviation of Gaussian distributions from which the predicted
and updated state can be determined. We also introduce a neural network that
determines assignment probabilities for correspondence finding based on the Eu-
clidean distance between the predicted states and particle detections obtained by
the spot-enhancing filter [147] and Gaussian fitting. Assignment probabilities are
computed jointly acrossmultiple detections, and probabilities ofmissing detections
are also determined. Network training is based on synthetic data only andmanually
annotated data is not needed. We propose a novel scheme to generate synthetic
training images using automatically extracted information from the images in
an application. This enables simulating a large number and spectrum of training
images that represent well the images in an application. In contrast, our previous
scheme in Spilger et al. [60] (described in Sec. 4.2) did not use automatically ex-
tracted information from the real data to generate training images. The uncertainty
information determined by our approach for the computed trajectories is important
to assess their reliability and, for example, to exclude unreliable tracks (or track
points) to increase the accuracy of subsequent motion analysis (e.g., mean-squared
displacement analysis) as we show in our experiments. In addition,we demonstrate
that the uncertainty can be exploited to assess the suitability of the training data
and to select the generated training data set with the best-suited motion model so
that the training data better represents the real data in an application.
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Our approach is the first probabilistic deep learning method for particle tracking
in microscopy images and takes into account both aleatoric and epistemic uncer-
tainty. We verified that both types of uncertainty are captured by the network.
Besides taking into account and exploiting uncertainty information, we propose a
novel neural network architecture which differs from our previous work in Spilger
et al. [60] (Sec. 4.2), where prediction and update steps as in Bayesian filtering were
not used nor Bayesian layers and GRU layers. In addition, we here use a different
loss function, namely a balanced focal loss [93] and different activation functions
PReLUs, [75]). We have conducted a quantitative performance evaluation based on
synthetic and real 2D as well as 3D fluorescence microscopy images. We used data
from the Particle Tracking Challenge as well as real live cell microscopy image
sequences displaying the hepatitis C virus (HCV) protein NS5A, the HCV associ-
ated protein ApoE, and chromatin structures (labeled during DNA replication). It
turned out that our approach yields state-of-the-art or improved results compared
to previous methods.

5.2 Method

In this section, we present our novel probabilistic deep learning approach for
tracking multiple particles in live cell fluorescence microscopy images, denoted
as Deep Probabilistic Particle Tracker (DPPT). First, we give an overview of our
approach. Then, we describe the classical Bayesian filtering framework used in
previous particle tracking approaches. After that, we introduce our deep learning
architecture mimicking classical Bayesian filtering and taking into account both
aleatoric andepistemic uncertainty.We also present a neural network architecture to
compute assignment probabilities for correspondence finding. Finally, we provide
details on the network training.

5.2.1 Overview of the Proposed Tracking Approach

Fig. 5.1 provides a schematic overview of the proposedDPPT approach. For particle
detection, we employ the spot-enhancing filter (SEF) [147] and Gaussian fitting
yielding a set of detections represented by image positions. For state prediction and
state update, a recurrent neural network (RNN) with Gated Recurrent Units (GRUs)
[103] is introduced mimicking classical Bayesian filtering. The network takes into
account both aleatoric and epistemic uncertainty. Epistemic uncertainty is captured
by learning Gaussian distributions for the parameters of the network. To take
into account aleatoric uncertainty, the network estimates the mean and standard
deviation of Gaussian distributions from which the predicted and updated states
are computed. For correspondence finding, we introduce a neural network that
determines assignment probabilities as well as probabilities of missing detections
between the predicted states and particle detecions. The Jonker-Volgenant shortest
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Figure 5.1 Overview of the proposed Deep Probabilistic Particle Tracker (DPPT).

augmenting path algorithm [186] is employed to establish one-to-one correspon-
dences based on the computed assignment probabilities of all objects and the
probabilities of missing detections.

5.2.2 Bayesian Filtering

We represent a biological particle 8 in a temporalmicroscopy image sequence at time
point C by the state vector x8C ∈ ℝ� , which is reflected by the noisy measurement
(detection) y9C ∈ ℝ� . In our settings, both the particle state x8C and the detection y9C
are described by the image position at time point C, and therefore � equals the
number of image dimensions in an experimental setup.
The goal of Bayesian filtering is to estimate x8C recursively over time based on

a sequence of noisy detections y91:C . For each time point C, this estimation process
comprises two consecutive steps: Prediction and update. Based on the posterior
distribution ?(x8

C−1 |y
9

1:C−1) at time point C − 1, the prediction step evaluates the
particle dynamics using a dynamical model ?(x8C |x8C−1) to determine the prior
distribution ?(x8C |y

9

1:C−1) at time point C:

?(x8C |y
9

1:C−1) =
∫

?(x8C |x8C−1)?(x
8
C−1 |y

9

1:C−1)dx8C−1 (5.1)
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In the update step, Bayes’ rule is applied to compute the posterior distribution
?(x8C |y

9

1:C) at time point C from the prior distribution ?(x8C |y
9

1:C−1) by incorporating
the detection y9C via a measurement model ?(y9C |x8C):

?(x8C |y
9

1:C) ∝ ?(y
9

C |x
8
C)?(x8C |y

9

1:C−1) (5.2)

The state x8C can be determined from the posterior distribution ?(x8C |y
9

1:C). The two
most common approaches for solving Eq. (5.1) and Eq. (5.2) are the Kalman filter
and the particle filter. In contrast, we propose a deep learning approach to mimic
classical Bayesian filtering.

5.2.3 Bayesian Neural Network for Prediction and Update

The proposed probabilistic neural network mimics classical Bayesian filtering. The
network architecture can be subdivided into a state prediction and update block
(see Fig. 5.2). The prediction block employs a GRU-based RNN [103] exploiting
both short- and long-term temporal dependencies in the dynamics of an individual
particle to estimate its next state. The update block corrects the predicted state based
on the assigned detection. Bayesian layers [115, 119] are used within the network
to take into account epistemic uncertainty. In addition, the standard deviation for
the predicted and updated state is computed to provide information about the
aleatoric uncertainty. In contrast, previous work on object tracking did not consider
uncertainty (e.g., [18, 19, 22, 59, 60, 210]). For each time point C − 1, the network
computes two output vectors for particle 8 for the next time point C: The predicted
state x̂8C ∈ ℝ� and the updated state x8C ∈ ℝ� .
The prediction block of our network comprises ! GRU layers (we used ! = 2)

each consisting of  units. The structure of GRU allows capturing both short- and
long-term temporal dependencies. To solve the vanishing and exploding gradient
problems that occur in standard RNNs, GRU uses a hidden state and two gates
regulating the information to be kept or discarded at each time point. The gating is
designed similarly to that in the Long Short-Term Memory (LSTM) [101], however,
GRU is less complex than LSTM (e.g., it has only two gates instead of three in the
LSTM) and is faster to compute. The reset gate of GRU determines which part
of the previous hidden state is combined with the current input to compute a
candidate state. The update gate of GRU determines which portion of the previous
hidden state is preserved and which portion of the candidate state (derived from
the reset gate) is added to the final hidden state. In more detail, the hidden state of
layer ; at time point C is represented by h8 ,;C ∈ ℝ (for ; = 1, . . . , !), while h8 ,0C ∈ ℝ�

denotes the network input vector. The output of the last GRU layer is denoted by
h8 ,!C . To predict the state of object 8 for the next time point C, the state vector x8

C−1 of
the object at time point C − 1 is used as input vector, i.e. h8 ,0C = x8

C−1. For a particular
GRU layer ; and time point C, the update gate z8 ,;C and reset gate r8 ,;C are computed

84



Chapter 5 Deep Probabilistic Tracking of Particles

Figure 5.2Architecture of the proposed probabilistic neural network. Red indicates
the network block for state prediction, and green the network block for state update.
The dashed line indicates how the hidden state of the last GRU layer is exploited
by the update block.

based on the previous hidden state h8 ,;
C−1 at time point C − 1 and the hidden state

h8 ,;−1
C of the previous GRU layer:

z8 ,;C = �(W;
Ih

8 ,;−1
C +U;

Ih
8 ,;
C−1 + b;I) (5.3)

r8 ,;C = �(W;
Ah

8 ,;−1
C +U;

Ah
8 ,;
C−1 + b;A) (5.4)

where W;
I , U;

I , b;I , W;
A , U;

A , and b;A represent the learnable parameters of the two
gates. � is the logistic sigmoid activation. Then, the new candidate state h̃8 ,;C is
computed as follows:

h̃8 ,;C = tanh(W;
ℎ
h8 ,;−1
C +U;

ℎ
(r8 ,;C � h8 ,;

C−1) + b;
ℎ
) (5.5)

where W;
ℎ
, U;

ℎ
, and b;

ℎ
are the learnable parameters. � denotes the element-wise

(Hadamard) multiplication and tanh is the hyperbolic tangent activation function.
The previous hidden state h8 ,;

C−1 and the candidate state h̃8 ,;C are weighted by the
update gate z8 ,;C to determine the new hidden state h8 ,;C :

h8 ,;C = z8 ,;C � h8 ,;
C−1 + (1 − z8 ,;C ) � h̃8 ,;C (5.6)

Finally, the hidden state h8 ,!C of the last GRU layer ! is fed into two separate heads,
each comprising two consecutive Bayesian layerswith and� Parametric Rectified
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Linear Units (PReLUs, [75]), respectively. We used PReLU since this activation
function includes a learnable parameter (slope parameter for negative input values)
to overcome shortcomings of the dying ReLU problem (inactive ReLU which
outputs zero for any input value) and the inconsistent predictions of LeakyReLU
for negative input values. The output vectors of the two heads represent the
mean -

8 ,prior
C ∈ ℝ� and standard deviation 2

8 ,prior
C ∈ ℝ� of the prior probability

distribution modeled as Gaussian distribution N�
(
-
8 ,prior
C , diag(2 8 ,priorC )

)
. From

this prior distribution the predicted state x̂8C is obtained:

x̂8C ∼ N�
(
-
8 ,prior
C , diag(2 8 ,priorC )

)
(5.7)

Therefore, the predicted state depends only on the current state x8
C−1 of the object

and the hidden states h8 ,1:!
C−1 of the GRU layers.

Given the assigneddetectiony9C ∈ ℝ� for the next timepoint C, the state is updated.
First, the vectors y9C ∈ ℝ� and x̂8C are concatenated, and passed to a FC layer with
PReLUs mapping it to a vector of dimension  . Then this vector is concatenated
with the hidden state h8 ,!C of the last GRU layer resulting in a vector of dimension 2 
passed to another FC layer with  PReLUs. Finally, this  -dimensional vector is
fed into two separate heads, each comprising two consecutive Bayesian layers with
 and � PReLUs, respectively. The output vectors of the two heads represent the
mean -

8 ,post
C ∈ ℝ� and standard deviation 2

8 ,post
C ∈ ℝ� of the posterior probability

distribution modeled as Gaussian distributionN�
(
-
8 ,post
C , diag(2 8 ,postC )

)
. From this

posterior distribution the updated state x8C is obtained:

x8C ∼ N�
(
-
8 ,post
C , diag(2 8 ,postC )

)
(5.8)

The computed standard deviations 2 8 ,priorC and 2
8 ,post
C reflect the noise in the data

(e.g., detector noise and motion noise) and are denoted as aleatoric uncertainty.

To take into account not only aleatoric uncertainty but also epistemic uncertainty
(model uncertainty), we employ Bayesian layers in the two heads of the prediction
and update block (four network heads in total), where learnable parameters are rep-
resented by probability distributions instead of single values. Since exact Bayesian
inference is intractable, we employ a variational approximation. A differentiable
estimator of the lower bound that can be optimized straightforwardly using a
standard stochastic gradient approach is obtained by a reparameterization of the
variational lower bound, also called evidence lower bound (ELBO) [115, 119]. This
reparameterization strategy enables efficient learning of the neural network param-
eters, without requiring computationally expensive iterative inference schemes
such as Markov chain Monte Carlo (e.g., [242, 243]). In more detail, a variational
posterior distribution &(W;�) parameterized by � is used over the learnable pa-
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rameters W. The parameters � of the variational posterior distribution &(W;�)
representing the uncertainty of W are learned using variational inference. This is
done by maximizing the evidence lower bound objective:

ELBO(�) = −
∫

dW&(W;�) log%(Y|X,W) +
∫

dW&(W;�) log &(W;�)
%(W) (5.9)

where%(W) is the priordistribution over theweights that represents the uncertainty
in theweights before network training. The Bayesian layerperforms a regularization
and imposes the constraint that the posterior distribution &(W;�) is close to the
prior distribution %(W). For &(W;�) and %(W), we use a multivariate normal
distribution. %(Y|X,W) is the likelihood function that specifies the variation in the
labels Y given the network inputs X and the learnable parameters W. While the
second term (Kullback-Leibler divergence of &(W;�) regarding %(W)) is used for
regularization and determined analytically, the first term is used to compute labels
from the inputs and is approximated by drawing a single random set of weights
from &(W;�). The sampling for computing the first term yields an ensemble of
different network outputs. Since always a new set of weights is sampled according
to &(W;�), we obtain a different prior distributionN�

(
-
i,prior
C , diag(2i,prior

C )
)
and

posterior distributionN�
(
-
i,post
C , diag(2i,post

C )
)
for each time the fournetworkheads

are applied. Thus, the diversity in the estimated prior and posterior distributions
reflects the uncertainty in theweights (model uncertainty). In our sampling strategy,
for each time point C and particle 8, the four network heads are applied # times
yielding # prior and # posterior distributions. We used # = 20, which is a good
compromise between computation time and tracking performance. From each
of these prior and posterior distributions a predicted state and updated state
is obtained, respectively. The final predicted state x̂8C and updated state x8C are
determined by averaging over all predicted and updated states, respectively.

The parameters of our probabilistic network are learned by minimizing the loss
function:

ℒ 8x,C = −

©«
log%

(
x̃8C |-

i,prior
C , 2

i,prior
C

)
︸                         ︷︷                         ︸

state prediction

+� log%
(
x̃8C |-

i,post
C , 2

i,post
C

)
︸                          ︷︷                          ︸

state update

ª®®®®®¬
(5.10)

where x̃8C is the true state of particle 8 at time point C. The loss function consists of
two terms: The negative log-likelihood loss for state prediction and state update.
The loss function represents the loss for one training sample corresponding to a
single time point C of an individual particle 8. We used � = 1 in all our experiments.
For training, the prediction and update block are employed as a unified network.
For performing tracking, the two blocks are used sequentially.
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Figure 5.3Architecture of the proposedneural network for correspondence finding.

5.2.4 Correspondence Finding

For correspondence finding, we propose a deep neural network which computes
assignment probabilities and probabilities of missing detections. The network
consists of four consecutive FC layers, each with ' PReLUs (we used ' = 512),
followed by a fully connected linear output layer with softmax normalization. For
each FC layer except the output layer, we employed dropout with a rate of 0.4
during training to avoid overfitting [97]. The network architecture is sketched in
Fig. 5.3.

For each particle 8 and time point C − 1, the network takes as input the vector d8C ∈
ℝ" , whose components are defined by 38 , 9C = ‖x̃8C − y9C ‖2 as the Euclidean distance
between the predicted state of particle 8 and detection 9 at time point C. " is the
number of detections within a gate of radius A6 (we used A6 = 20 pixel) around
the predicted position of particle 8 at time point C. Since the number of detections
within the gate varies and our network requires a fixed input size, we consider
at most the "-nearest detections (we used " = 4) within the gate. If there are
less than " detections within the gate, we pad the vector 38 , 9C with a placeholder
(we used ’−1’). The final output vector a8C ∈ [0, 1]"+1 of the network contains the
normalized assignment probabilities for time point C, i.e.

∑"
9=0 0

8 , 9

C = 1, where 0 8 ,0C
denotes the probability of a missing detection and 0 8 , 9C represents the assignment
probability between particle 8 and detection 9 (for 9 = 1, ..., "). The computed
probabilities adapt to the local neighborhood, for example, in regions with high
object density the probability of a missing detection is lower. We employ the
Jonker-Volgenant shortest augmenting path algorithm [186] using the computed
assignmentprobabilities andprobabilities ofmissingdetections as input to establish
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one-to-one correspondences between all tracked particles and the set of detections
obtained at time point C. Since the network computes probabilities, a threshold to
determine missing detections is not needed.

To measure the deviation between the computed assignment probabilities a8C and
ground truth ã8C , we use a multi-class variant of the -balanced focal loss described
in Lin et al. [93]. The loss ℒ 8a,C for one training sample (one time point C of an
individual particle 8) is given as:

ℒ 8a,C = −
"∑
9=0

 9(1 − 0 8 , 9C )
� · 0̃ 8 , 9C log(0 8 , 9C ) (5.11)

where � is a focusing parameter down-weighting easy samples and emphasizing
hard samples. In all our experiments we used � = 2.  9 ∈ ℝ� represent weighting
factors that address class imbalance in the training data and are calculated based
on the class distribution in the training data.

5.2.5 Network Training

Training neural networks typically requires a vast amount of data to achieve
convergencewithout overfitting. Since ground truth of particles in real fluorescence
microscopy images is hardly available and accurate manual annotation is very
tedious, our DPPT network is trained using simulated data only. In our data
simulator, particle trajectories were simulated based on different motion models
and the image data was generated using a Poisson noise model and automatically
extracted information from the real images. For the particle dynamics we used
four different motion types, namely directed motion, Brownian motion, random
switching between directed motion and Brownian motion, and accelerated motion.
Motion model parameters (e.g., diffusion coefficient, velocity, acceleration) of
individual particles were drawn from uniform distributions. For the diffusion
coefficient, we used a uniform distribution in the interval [1, 6] both for the Particle
Tracking Challenge data and the live cell fluorescence microscopy images. For
the velocity we used an interval of [1, 6] (directed motion) and [1, 4] (accelerated
motion and switching motion), and for the acceleration we employed [0.2, 0.8]. We
used relatively large intervals to increase network generalization. Initial particle
positions andparticle appearance aswell as disappearance are governed by random
processes. Movement out of the field of view and out of focus was also simulated.
The image noise is reflected by the SNR = (�<0G − �16)/

√
�<0G [187], where �<0G is

the maximum intensity of the particle and �16 denotes the background intensity.
Different to our previous work [59, 60] (Secs. 4.1 and 4.2), we use automatically
extracted information from the real images to generate training images that well
represent the real data. In our scheme, we detect particles in the real images by the
spot-enhancing filter [147], and automatically determine the SNR, the particle size,
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and the particle density based on the detected positions and local neighborhood
information. We use Gaussian fitting at the detected positions to determine �<0G
and �16 to compute the SNR as well as to determine the particle size �. For �<0G , �16 ,
and �, we computed the mean and standard deviation over all detected particles.
The SNR of the training data was set according to the determined SNR in the real
data. The appearance parameters of individual particles (�<0G , �) in the training
data were sampled from Gaussian distributions with mean values and standard
deviations determined in the real data. The particle density in the training data was
set according to the determined average number of particle detections per frame in
the real images. Instead, in our previous work, these parameters were drawn from
uniform distributions with fixed manually defined intervals. Image size, stack
size, and bit depth were set according to the meta-information of the real data.
Main differences to the Particle Tracking Challenge simulator [65, 212] are that
our simulator includes out-of-focus movement and accelerated motion as well as
uses automatically extracted information from the real images to generate training
images that well represent the real data. In addition, we exploit the computed
uncertainty of our network to select the generated training data set with the best-
suited motion model so that the training data well represents the real images. This
was done by training our network with different motion models and then using the
tracking results with the lowest epistemic uncertainty (see Sec. 5.3.1 below). Thus,
we take advantage of the fact that the epistemic uncertainty of the network is lower
when the particle motion in the training data agrees well with the motion in the
real data. This strategy for automated motion model selection is novel and has not
been used in previous work. Moreover, to generate training data we use automatic
detections in the synthetically generated images to enable the network to learn
the detector errors. Particle detection was performed using the spot-enhancing
filter (SEF) [147] and Gaussian fitting. Then, the resulting detections were mapped
to the ground truth trajectories using a nearest neighbor search with a validation
gate of 5 pixel. The trajectories and the detections mapped on them were used
for network training. Thus, our approach does not require prior knowledge about
detection errors but learns this information from the image data. This training
strategy allows generating synthetic training data that well represents the real
data.

For network training, we employed the AMSGrad optimizer [86] with �1 = 0.9
and �2 = 0.999. We used a mini-batch size of 64 and an initial learning rate of
�init = 0.02 for the Bayesian neural network and �init = 0.001 for the network
computing assignment probabilities. To avoid overfitting, early stopping was
performed after convergence was reached. For training and validation we used
about 102.400 training samples from synthetic image sequences. A training sample
includes one time point for an individual particle. We split the data set into 80%
for training and 20% for validation. The image dimensions are normalized to the
range [0, 1]. Our model is implemented in Python 3.7 using Tensorflow 2.1.0 [244]
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and TensorFlow Probability 0.9.0 [245]. We used a laptop with Intel(R) Core(TM)
i7-7700HQCPU,NVIDIAGeForce GTX 1050 Ti GPU, and a Linux operating system.

5.3 Experimental Results

In this section, we present experimental results of our Deep Probabilistic Particle
Tracker (DPPT). First, we verify that DPPT captures both aleatoric and epistemic
uncertainty. A performance evaluation is carried out using 2D as well 3D data
of the Particle Tracking Challenge. In addition, we study the impact of using
the uncertainty information for subsequent motion analysis. We also evaluate
DPPT based on 2D and 3D real live cell fluorescence microscopy images. The five
performance metrics , �, �(�, �(��, and RMSE [65] are described in Sec. 3.1.

5.3.1 Evaluation and Analysis of Aleatoric and Epistemic Uncertainty

First,we evaluateduncertainty estimation by ournetwork andverifiedwhetherboth
aleatoric and epistemic uncertainty are captured. To this end, we trained and tested
DPPT based on generated 2D synthetic image sequences with varying conditions.
The synthetic images (512×512, 8-bit) simulate real fluorescencemicroscopy images
displaying multiple particles. The particles have an isotropic Gaussian intensity
structure with Gaussian distributed standard deviation (mean �G,H = 1.8 pixel)
and the images are distorted by additive Poisson noise (we used SNR = 4). For
directed motion, the particle position at the next time point was determined by the
current position plus the velocity vector (given by the velocity from the previous to
the current time point) and an additional random change (Gaussian distribution)
of both the position and the velocity vector. The changes in the position and
the velocity vector were determined from a multivariate normal distribution
with covariance matrix & = @((�2

11, �
2
12), (�2

12, �
2
22)) for each image dimension as

in Chenouard et al. [65]. �2
11 denotes the variance of the position noise, �2

12 the
covariance of position and velocity noise, �2

22 the variance of the velocity noise,
and @ the motion noise influence factor. For all data we used �2

11 = (1/3) frame3,
�2

12 = (1/2) frame2, and �2
22 = 1 frame. The motion noise of directed motion can

be defined by the standard deviation �< =
√
@(�2

11 + 2�2
12 + �2

22), which represents
all elements of the covariance matrix & and follows from the general formula
for the variance of the sum of two random variables describing directed motion
(Var(0-+1.) = 02Var(-)+201Cov(-,.)+12Var(.)). ForBrownianmotion (random
walk), the next particle position was determined by sampling from a Gaussian
distribution centered at the current position and with standard deviation �< . For
each studied conditionwe generated three synthetic image sequences, two ofwhich
were used for network training (training data) and one for testing (test data). Each
temporal image sequence comprises 100 time points.
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(a) �< = 0 pixel (b) �< = 2 pixel (c) �< = 4 pixel

Figure 5.4 Example image sections (225×225 pixels) from generated synthetic
image sequences displaying particles performing directed motion with different
levels of motion noise �< (time point C = 12). The image contrast was enhanced for
better visibility.

Evaluation of Aleatoric and Epistemic Uncertainty

To evaluate uncertainty estimation by DPPT, we established ground truth image
data which is used as benchmark. We first considered uncertainty estimation of
the state predictionwhich captures the motion noise. We generated synthetic image
sequences with seven different levels of motion noise �< (�< = 0, 0.5, 1, 2, 3, 4,
and 5 pixel) for both Brownian motion and directed motion, and evaluated how
well the motion noise is estimated by our network. In this experiment we did not
consider detection noise (but in the following experiment). Example image sections
with ground truth particle trajectories are shown in Fig. 5.4 for directed motion
and in Fig. 5.5 for Brownian motion. It can be seen that the random fluctuation
in the particle position (Brownian motion) and the deviation from a straight path
(directed motion) increase with the strength of the motion noise �< . We applied
DPPT to the generated image sequences and evaluated uncertainty estimation.
We considered aleatoric uncertainty (�alea) and epistemic uncertainty (�epi). In
Fig. 5.6 (a) and (b), ground truth and mean values of computed aleatoric and
epistemic uncertainty of state prediction (over all trajectories) by DPPT are shown
as a function of �< . It can be seen that the epistemic uncertainty is much smaller
than the aleatoric uncertainty, which is expected for a well-trained network. For the
image sequences of both motion models the computed aleatoric uncertainty agrees
already relatively well with the ground truth. The RMSE between the aleatoric
uncertainty and the ground truth is 0.143 pixel for Brownianmotion and 0.134 pixel
for directedmotion. The result is further improvedwhen considering the computed
combined uncertainty comprising aleatoric and epistemic uncertainty (defined as
the square root of the sum of the variances �2

alea and �2
epi), which yields a lower

RMSE of 0.133 pixel for Brownian motion and 0.116 pixel for directed motion. This
shows that both types of uncertainty (aleatoric and epistemic uncertainty) should
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(a) �< = 0 pixel (b) �< = 2 pixel (c) �< = 4 pixel

Figure 5.5 Example image sections (225×225 pixels) from generated synthetic
image sequences displaying particles performing Brownian motion with different
levels of motion noise �< (time point C = 20). The image contrast was enhanced for
better visibility.

be taken into account for motion noise estimation. The experiment demonstrates
that the motion noise is well captured by our network.

In addition, we evaluated uncertainty estimation of the state update by DPPT.
We generated synthetic image sequences using two motion models (Brownian
motion, directed motion), simulated detections with different levels of additive
white Gaussian noise (�3 = 0, 0.5, 1, 2, 3, 4, and 5 pixel), and evaluated how well
the detection noise is estimated by our network. For the motion noise we used
�< = 10 pixel. Since the detection noise is smaller than the motion noise (i.e.
the detection noise has a higher reliability) and since we considered only track
points with an assigned detection, the state update mainly takes into account the
detection information and the computed uncertainty represents the detection noise.
In Fig. 5.6 (c) and (d), ground truth and computed mean aleatoric and epistemic
uncertainty of state update (over all trajectories) by our network are shown as
a function of the detection noise level. Also in this experiment the epistemic
uncertainty is much smaller than the aleatoric uncertainty as expected for a well-
trained network. For both motion models the computed aleatoric uncertainty
agrees already relatively well with the ground truth. The RMSE between the
aleatoric uncertainty and the ground truth is 0.208 pixel for Brownian motion and
0.181 pixel for directed motion. The result is further improved when considering
the computed combined uncertainty yielding a lower RMSE of 0.191 pixel for
Brownian motion and 0.161 pixel for directed motion. This shows that both types
of uncertainty (aleatoric and epistemic uncertainty) should be taken into account
for detection noise estimation. The experiment demonstrates that the detection
noise is well captured by our network.
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(a) State prediction, Brownian motion
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(b) State prediction, directed motion
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(c) State update, Brownian motion
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(d) State update, directed motion

Figure 5.6 Computed mean aleatoric and epistemic uncertainty of state prediction
as a function of the motion noise level for (a) Brownian motion and (b) directed
motion, andof state update as a function of the detection noise level for (c) Brownian
motion and (d) directed motion. Black lines indicate the ground truth.
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Figure 5.7Mean epistemic uncertainty of state prediction and state update of DPPT
as a function of the number of training samples.

Further analysis of epistemic uncertainty and exploitation to assess the suitability of the
training data

To furtheranalyze the epistemicuncertainty,we trainedDPPTwithdifferentnumbers
of training samples (ranging from 6.4 × 103 to 102.4 × 103) using synthetic image
data with directed motion and SNR = 4. One training sample represents one
time point of a particle. The mean epistemic uncertainty over all particles and
image dimensions as a function of the number of training samples is displayed in
Fig. 5.7. As expected, the mean epistemic uncertainty decreases with the number
of training samples, which demonstrates that the epistemic uncertainty is captured
by our network. We also generated image data with different particle dynamics
(SNR = 4). We used three different motion models, namely directed motion,
Brownian motion, and accelerated motion. We trained DPPT on the training data
of one of the three motion models and then applied it to the test data of all three
motion models. We did this for all three models resulting in nine training and test
data combinations. Fig. 5.8 (a) shows the mean epistemic uncertainty as heatmap
for the nine combinations. It can be seen that the mean epistemic uncertainty is
lowest when the same motion model is used for the training and test data, and
otherwise the mean epistemic uncertainty is higher. This verifies that the epistemic
uncertainty is captured by our network, and that the epistemic uncertainty can be
exploited to assess the suitability of the training data for a considered test data. In
addition, Fig. 5.8 (b) shows the tracking performance in terms of � as heatmap for
the different motion models. It can be seen that selecting the training data set with
the correct motion model improves the tracking performance.

5.3.2 Particle Tracking Challenge Data

We evaluated our DPPT approach based on both 2D as well as 3D image data
from the Particle Tracking Challenge [65] and compared the tracking performance
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Figure 5.8 (a) Mean epistemic uncertainty and (b) tracking performance of DPPT
for different motion models.

with the overall top-three methods (Methods 5, 1, and 2) described in Sec. 3.2.
We also performed a comparison with our previous deep learning approaches
Deep Particle Tracker (DPT) [59] (Sec. 4.1) and Deep Particle Hypotheses Tracker
(DPHT) [60] (Sec. 4.2). DPT employs an LSTM-based RNN for state prediction
and correspondence finding. This approach was developed for 2D data and was
not applied to the 3D data. DPHT is based on a bidrectional LSTM-based RNN
that exploits multiple track hypotheses for correspondence finding. Note that DPT
and DPHT use deep learning for correspondence finding, while DPPT uses deep
learning also for state prediction and update (as in classical Bayesian filtering)
as well as for taking into account aleatoric and epistemic uncertainty. For DPPT,
DPT, and DPHT, we used the same set of detections. The networks were trained
based on own generated synthetic data, and we did not use the data of the Particle
Tracking Challenge for network training.

We assessed the performance for different object dynamics using temporal image
sequences from the 2D vesicle and 3D virus scenario of the Particle Tracking
Challenge with medium (∼500 particles/frame) and high (∼1000 particles/frame)
particle densities, andall SNR levels (SNR = 1, 2, 4, and 7). The data set (comprising
65.462 trajectories) is challenging due to complex motion in dense environments as
well as image noise causing clutter and numerous detection errors. The 2D images
of the vesicle scenario (512 × 512 pixels, 8-bit) display round particles performing
Brownian (random walk) motion. The 3D image data of the virus scenario (512 ×
512 × 10 voxels, 8-bit) shows spherical particles switching between Brownian and
directed motion. For both scenarios, each image sequence consists of 100 images.
Random processes define appearance and disappearance of individual particles
compensating each other on average. The computation time for one image sequence
of the vesicle scenario with high object density and SNR = 2 was about 203 seconds,
using a laptop as specified above (end of Sec. 5.2.5).

The quantitative results are presented in Tables 5.1 and 5.2. The best performance
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Table 5.1Quantitative tracking performance of different approaches for data of the
vesicle scenario from the Particle Tracking Challenge. The best performance values
are highlighted bold and underlined, and the second best performance values are
bold.

Density SNR Method  � �(� �(�� RMSE

Medium

1

Method 5 0.162 0.142 0.225 0.458 2.172
Method 1 0.027 0.026 0.034 0.300 1.533
Method 2 0.198 0.111 0.192 0.335 2.386

DPT 0.122 0.071 0.106 0.198 1.701
DPHT 0.128 0.100 0.155 0.380 1.858
DPPT 0.172 0.139 0.223 0.407 2.164

2

Method 5 0.448 0.391 0.489 0.664 1.325
Method 1 0.398 0.298 0.340 0.411 0.840
Method 2 0.517 0.417 0.510 0.629 1.254

DPT 0.450 0.356 0.413 0.577 0.795
DPHT 0.520 0.448 0.526 0.680 0.874
DPPT 0.562 0.485 0.564 0.700 1.014

4

Method 5 0.658 0.588 0.641 0.776 0.754
Method 1 0.687 0.609 0.652 0.767 0.607
Method 2 0.582 0.514 0.590 0.757 0.970

DPT 0.695 0.624 0.658 0.790 0.545
DPHT 0.697 0.638 0.671 0.804 0.567
DPPT 0.686 0.630 0.669 0.813 0.641

7

Method 5 0.677 0.605 0.646 0.783 0.667
Method 1 0.700 0.619 0.650 0.758 0.544
Method 2 0.611 0.547 0.606 0.775 0.828

DPT 0.711 0.631 0.651 0.790 0.525
DPHT 0.705 0.641 0.661 0.820 0.539
DPPT 0.708 0.645 0.673 0.820 0.638

High

1

Method 5 0.136 0.120 0.198 0.460 2.296
Method 1 0.091 0.064 0.089 0.231 1.859
Method 2 0.163 0.080 0.147 0.324 2.531

DPT 0.059 0.056 0.076 0.443 1.654
DPHT 0.121 0.104 0.158 0.444 1.984
DPPT 0.158 0.123 0.189 0.391 2.055

2

Method 5 0.353 0.295 0.382 0.607 1.484
Method 1 0.294 0.217 0.256 0.379 1.088
Method 2 0.356 0.249 0.331 0.515 1.582

DPT 0.372 0.293 0.353 0.536 1.025
DPHT 0.383 0.311 0.376 0.580 1.044
DPPT 0.421 0.341 0.416 0.601 1.232

4

Method 5 0.488 0.408 0.466 0.671 1.004
Method 1 0.531 0.442 0.487 0.641 0.801
Method 2 0.430 0.356 0.429 0.649 1.208

DPT 0.547 0.462 0.505 0.680 0.746
DPHT 0.531 0.458 0.500 0.685 0.751
DPPT 0.543 0.464 0.510 0.690 0.867

7

Method 5 0.533 0.453 0.503 0.698 0.931
Method 1 0.582 0.494 0.526 0.683 0.683
Method 2 0.466 0.395 0.458 0.665 1.027

DPT 0.590 0.507 0.535 0.702 0.677
DPHT 0.573 0.506 0.534 0.717 0.703
DPPT 0.577 0.503 0.541 0.722 0.827
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Table 5.2Quantitative tracking performance of different approaches for data of the
virus scenario from the Particle Tracking Challenge. The best performance values
are highlighted bold and underlined, and the second best performance values are
bold.

Density SNR Method  � �(� �(�� RMSE

Medium

1

Method 5 0.086 0.082 0.117 0.341 1.788
Method 1 0.088 0.066 0.086 0.221 1.525
Method 2 0.057 0.018 0.034 0.155 2.454
DPHT 0.114 0.101 0.143 0.412 1.551
DPPT 0.150 0.121 0.174 0.314 1.718

2

Method 5 0.646 0.590 0.716 0.802 1.085
Method 1 0.581 0.517 0.595 0.641 0.776
Method 2 0.655 0.581 0.714 0.742 1.062
DPHT 0.631 0.567 0.670 0.777 0.891
DPPT 0.642 0.546 0.633 0.702 0.855

4

Method 5 0.776 0.748 0.854 0.891 0.754
Method 1 0.748 0.712 0.818 0.869 0.875
Method 2 0.769 0.725 0.826 0.880 0.724
DPHT 0.739 0.686 0.752 0.829 0.576
DPPT 0.767 0.695 0.757 0.814 0.534

7

Method 5 0.760 0.726 0.825 0.876 0.734
Method 1 0.772 0.737 0.839 0.891 0.806
Method 2 0.786 0.738 0.827 0.872 0.651
DPHT 0.751 0.691 0.741 0.802 0.448
DPPT 0.827 0.775 0.833 0.869 0.449

High

1

Method 5 0.122 0.115 0.164 0.438 1.768
Method 1 0.140 0.099 0.130 0.253 1.560
Method 2 0.105 0.046 0.081 0.261 2.305
DPHT 0.189 0.154 0.221 0.459 1.536
DPPT 0.223 0.173 0.245 0.390 1.651

2

Method 5 0.553 0.495 0.606 0.729 1.101
Method 1 0.528 0.460 0.539 0.610 0.870
Method 2 0.576 0.486 0.611 0.682 1.140
DPHT 0.542 0.472 0.555 0.680 0.880
DPPT 0.547 0.469 0.548 0.645 0.877

4

Method 5 0.670 0.619 0.712 0.805 0.796
Method 1 0.642 0.582 0.677 0.776 0.936
Method 2 0.699 0.646 0.742 0.833 0.792
DPHT 0.672 0.607 0.667 0.766 0.587
DPPT 0.670 0.582 0.641 0.727 0.606

7

Method 5 0.665 0.617 0.718 0.806 0.831
Method 1 0.665 0.612 0.702 0.794 0.881
Method 2 0.725 0.673 0.757 0.844 0.706
DPHT 0.706 0.645 0.694 0.781 0.506
DPPT 0.738 0.660 0.710 0.782 0.504
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(a) Ground truth, vesicle scenario (b) DPPT, vesicle scenario

Figure 5.9Ground truth and tracking results ofDPPT for an image section (215×215
pixels) of thevesicle scenariowithmediumdensity andSNR = 2. The image contrast
was enhanced for better visibility.

values are highlighted in bold and underlined, and bold indicates the second best
performances. It can be seen that DPPT yields best or second best tracking results
for almost all cases and SNR levels of the vesicle scenario. For the virus scenario,
DPPT performs best or second best for the lowest (SNR = 1) and highest SNR level
(SNR = 7). Overall for both scenarios, DPPT outperforms for � the other methods
in eight out of 16 cases, and is second best in three cases. DPPT performs best in
terms of , �(�, �(��, andRMSE in six, seven, five, and two cases, respectively, and
yields the second best result for , �(�, and RMSE in four cases, and for JSC� in
two cases. For the vesicle scenario, DPPT is somewhat better for SNR = 2 compared
to SNR = 1, while for the virus scenario it is vice versa. However, the performance
values of our method compared to the best method in these cases are partially
relatively similar. On the other hand, the results for the vesicle and virus data are
not directly comparable since the data characteristics are very different (wide-field
vs. confocal microscopy, Brownian vs. switching Brownian/directed motion, 2D vs.
3D data). It seems that there is no systematic dependency of the results of DPPT
on the SNR level compared to previous methods. Sample trajectories obtained by
DPPT are shown in Fig. 5.9 for an image section (215 × 215 pixels) of the vesicle
scenario with medium density and SNR = 2. Fig. 5.10 shows sample tracking
results of DPPT for the virus scenario with medium density and SNR = 2. In both
cases the computed trajectories match well the ground truth despite the relatively
low SNR level.
To demonstrate that DPPT copes well with image data that has somewhat

different characteristics than the training data, we have applied our approach to

99



Chapter 5 Deep Probabilistic Tracking of Particles

(a) Ground truth, virus scenario (b) DPPT, virus scenario

Figure 5.10 Ground truth and tracking results of DPPT for the virus scenario
with medium density and SNR = 2. A z-slice (I = 5) of the original 3D data is
shown. The current positions of the individual particles are indicated by cubes,
intermediate positions are represented by small spheres along the trajectories. The
image contrast was enhanced for better visibility.

data of the vesicle scenario with SNR = 2 and medium object density while it
was trained with SNR = 4 and high object density. The obtained performance
values ( = 0.547, � = 0.474, �(� = 0.557, �(�� = 0.683, RMSE = 1.083) differ
only slightly from the results in Table 5.1 ( = 0.562, � = 0.485, �(� = 0.564,
�(�� = 0.700, RMSE = 1.014). Thus, DPPT can cope well with somewhat different
characteristics of the image data.

Impact of Object Dynamics

In addition, we studied how changes of the object dynamics affect the tracking
performance ofDPPT.We simulated image data of the vesicle scenario using the par-
ticle tracking benchmark generator of ICY [65, 212]. We usedmedium object density,
SNR = 2, and different diffusion coefficients (�diff = 0, 0.5, 2, 4, 6, 8 pixel2/frame)
yielding six image sequences with 100 time points each. We trained DPPT only
once with training data from our generator, where �diff of individual particles
was drawn from a uniform distribution in the interval [1, 6] (as in Sec. 5.2.5), and
applied it to all six image sequences. In Fig. 5.11 it can be seen that our network
is relatively robust and the performance for different metrics is relatively good
(e.g., compare with the results of other methods in Table 5.1 for which there is
�diff = 1.992 pixel2/frame). Also outside the training interval [1, 6] reasonable
results are obtained. For RMSE the performance is relatively constant. For the
other metrics (, �, �(�, �(��) the performance decreases with increasing �diff.
This is expected since the ambiguity and clutter increase with increasing object
dynamics (motion strength).
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Figure 5.11 Tracking performance of DPPT as a function of the diffusion coefficient
�diff.

Table 5.3 Ablation study of our DPPT approach for the vesicle scenario with
medium object density and SNR = 2. The best performance values are highlighted
bold and underlined.

Experiment 1 2 3 4 5 6 7
Prediction block X X X X
Update block X X X X
Corresp. finding block X X X X
 0.529 0.517 0.541 0.531 0.561 0.545 0.562
� 0.455 0.446 0.465 0.457 0.482 0.471 0.485
�(� 0.536 0.521 0.538 0.538 0.562 0.544 0.564
�(�� 0.686 0.696 0.704 0.685 0.702 0.709 0.700
RMSE 1.027 0.856 0.858 1.025 1.014 0.845 1.014

Ablation Study

We also conducted an ablation study to investigate the impact of the different
components of DPPT on the tracking performance. Therefore, we disabled different
components (prediction block, update block, correspondence finding block) and
evaluated the performance for the vesicle scenario with medium object density
and SNR = 2. In the case of disabling the prediction block, no state prediction
was performed and the update step was determined based only on the assigned
detections. With the update block disabled, no update step was performed. In this
case, the particle states were determined based only on the assigned detections or
the predictions (no detection was assigned). When the correspondence finding
block was disabled, assignment probabilities as well as probabilities of missing
detections were not computed. Table 5.3 shows the results. It can be seen that each
component of DPPT generally improves the tracking result, and the combination
yields a further improvement. The main drivers of performance are the prediction
and the correspondence finding blocks. In terms of , �, and �(�, the best results are
obtainedwhen all components of the approach are enabled. For �(�� similar values
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are obtained for different constellations. When the prediction block is enabled,
RMSE increases. This is expected, since with a prediction block enabled and using
Brownian motion, track points are included which are based only on the prediction
in the absence of an assigned detection, and because the RMSE of particle detection
is generally much smaller than that of the prediction. We also compared our
network with and without uncertainty (aleatoric and epistemic uncertainty). Using
uncertainty yielded a slight improvement of the tracking performance ( = 0.562,
� = 0.485, �(� = 0.564, �(�� = 0.700, RMSE = 1.014) compared to not using
uncertainty ( = 0.560, � = 0.482, �(� = 0.562, �(�� = 0.705, RMSE = 1.016). A
main advantage of the computed uncertainty is that the suitability of the training
data can be assessed to select the data set with the best-suited motion model. If
uncertainty is not exploited and awrongmotionmodel is selected then the tracking
performance decreases (Sec. 5.3.1). For example, if training data with directed
motion is used instead of Brownian motion for test data with this type of motion
then the tracking performance decreases from � = 0.529 to � = 0.126 (see Fig. 5.8
b). Moreover, the computed uncertainty can be used to exclude low quality tracks
to improve the accuracy of subsequent motion analysis (Sec. 5.3.2, Sec. 5.3.3). In
addition, we compared GRU with LSTM in our network. GRU yielded a slightly
better tracking performance ( = 0.562, � = 0.485, �(� = 0.564, �(�� = 0.700,
RMSE = 1.014) compared toLSTM( = 0.560,� = 0.481, �(� = 0.561, �(�� = 0.700,
RMSE = 1.015) and the computation time was about 10% lower (due to the lower
complexity of GRU compared to LSTM, see Sec. 5.2.3).

Exploiting Uncertainty Information for Motion Analysis

In addition, we studied the impact of exploiting the computed uncertainty in-
formation of DPPT for subsequent motion analysis. We considered the vesicle
scenario with medium and high object density, and SNR = 1, and determined the
diffusion coefficient �diff of the particles. �diff was computed by a mean-squared
displacement analysis [212]. From the computed trajectories we excluded uncertain
track points for which the epistemic uncertainty is high (we used a threshold
of 1.0 pixel for the standard deviation). The ground truth for the data with high
object density is �diff = 1.979 pixel2/frame, and for medium density we have
�diff = 2.011 pixel2/frame [65]. When considering all track points, the computed
diffusion coefficients are �diff = 1.571 pixel2/frame with a relative error of 20.6%
for the high density data, and �diff = 2.176 pixel2/frame with a relative error of
8.2% for the medium density data. Instead, when excluding uncertain track points,
we obtain �diff = 1.874 pixel2/frame and �diff = 1.999 pixel2/frame with much
lower relative errors of 5.3% and 0.6%, respectively. This demonstrates that the
computed uncertainty information of our network can be exploited to improve
the accuracy of subsequent motion analysis. Fig. 5.12 shows example tracking
results of DPPT and computed uncertainty (aleatoric and epistemic uncertainty,
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(a) Low uncertainty (b) High uncertainty

Figure 5.12 Tracking results of DPPT and computed uncertainty (aleatoric and
epistemic uncertainty, probability density of state update, yellow: high probability
values, red: low probability values) for two different trajectories (image sections
of 19 × 19 pixels) of the vesicle scenario with medium density and SNR = 2. The
current position is indicated by a cross. The original images were upscaled using
interpolation by a factor 7 and the image contrast was enhanced for better visibility.

probability density of state update) for two different trajectories (image sections
of 19 × 19 pixels). One trajectory has a low uncertainty (high probability density
values) while the other trajectory has a high uncertainty (low probability den-
sity values). Fig. 5.13 shows tracking results of DPPT and computed uncertainty
(aleatoric and epistemic uncertainty, probability density of state update) for a larger
image section (36 × 36 pixels). It can be seen that the uncertainty varies between
individual trajectories and track points.

Choice of Hyperparameters

We also studied the dependency of the results of DPPT on the hyperparameters.
We used image data of the vesicle scenario from the Particle Tracking Challenge
with medium object density and SNR = 2. Fig. 5.14 shows diagrams for the most
relevant hyperparameters and for the performance metric �, which is the most
comprehensive metric covering all error types (detection, localization, linking).
The best parameter settings are marked by red circles, which are the values we
used when applying DPPT (both for the Particle Tracking Challenge images and
for the real live cell microscopy images). It can be seen that the performance
of DPPT is relatively robust within certain ranges of the hyperparameters. The
performance decreases strongly when the network gets too complex (e.g., ! > 3,
' > 70). Since for some hyperparameters the performance is similar for reduced
values, we also tested our network with reduced complexity (less layers and units,
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(a) Original image (b) Tracking results and uncertainty

Figure 5.13 Tracking results of DPPT and computed uncertainty (aleatoric and
epistemic uncertainty, probability density of state update, yellow: high probability
values, red: lowprobability values) for an image section (36×36 pixels) of the vesicle
scenario with medium density and SNR = 2. The current position is indicated by a
cross. The original images were upscaled using interpolation by a factor 7 and the
image contrast was enhanced for better visibility.

1 2 3 4
Number of GRU layers L

0.0

0.2

0.4

0.6

β

25 50 75 100 125
Number of units K

0.0

0.2

0.4

0.6

β

1 2 3 4
Number of Bayesian layers in the network heads

0.0

0.2

0.4

0.6

β

0.02 0.04 0.06 0.08 0.10
initial learning rate linit (Bayesian network)

0.0

0.2

0.4

0.6

β

0 100 200 300 400 500
Number of units R

0.4

0.5

0.6

β

0.0 0.2 0.4 0.6 0.8
Dropout rate

0.4

0.5

0.6

β

0 1 2 3 4
γ (focal loss)

0.4

0.5

0.6

β

10−5 10−4 10−3 10−2 10−1

initial learning rate linit (Correspondence finding network)
0.0

0.2

0.4

0.6

β

1 2 3 4 5 6
Number of layers (Correspondence finding network)

0.4

0.5

0.6

β

Figure 5.14 Tracking performance of DPPT as a function of hyperparameters. Red
circles indicate the best performance.
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Table 5.4 Overview of the real fluorescence microscopy sequences.
Sequence Image dimension Object type No. of trajectories
Seq. 1 2D HCV NS5A protein 75
Seq. 2 2D HCV NS5A protein 55
Seq. 3 2D HCV associated ApoE protein 90
Seq. 4 3D Chromatin structures 66
Seq. 5 3D Chromatin structures 71
Seq. 6 3D Chromatin structures 35
Seq. 7 3D Chromatin structures 60

e.g., ! = 1,  = 10, Bayesian layers=1, ' = 10). However, then the performance was
reduced, and more importantly, the epistemic uncertainty was too small and not
well represented so that motion model selection for the training data did not work
well.

5.3.3 Real Live Cell Fluorescence Microscopy Images

Tracking Performance

We also performed a quantitative evaluation of DPPT based on real live cell
fluorescence microscopy image data of the hepatitis C virus (HCV) nonstructural
protein 5A (NS5A), the HCV associated cellular Apolipoprotein E (ApoE), and
chromatin structures (labeled during DNA replication). We considered three 2D
image sequences (30 time points, 512× 512 pixels, pixel size 0.22× 0.22 �<2, 16-bit)
of proteins in HCV proteins expressing Huh7/LunetCD81H cells denoted by
Seq. 1 to Seq. 3. Seq. 1 and Seq. 2 display the HCV protein NS5A and Seq. 3
shows the ApoE protein. The images were acquired using a confocal spinning
disk microscope and an EMCCD camera [246]. This data set is challenging due to
clustering of particles, clutter, out of focus movement, and relatively low SNR. We
also used four 3D image sequences (11 time points, 512 × 512 × 5 voxels, voxel size
0.0410 × 0.0410 × 0.125 �<3, 16-bit) of chromatin structures (labeled by nucleotide
incorporation during DNA replication) in HeLa Kyoto cells denoted by Seq. 4
to Seq. 7. The data was acquired by super-resolution 3D structured illumination
microscopy (3D-SIM) using a sCMOS camera [247]. Main challenges of this data
set are clustering of objects and decreasing SNR over time due to photobleaching.
Between 35 and 90 ground truth trajectories for difficult regions were manually
annotated in each of the seven image sequences using the ImageJ plugin MTrackJ
[222]. Table 5.4 gives an overview of the seven image sequences. Example image
sections (200 × 200 pixels) for Seq. 2 and for a z-slice (I = 3) of Seq. 5 are shown in
Fig. 5.15.

We compared the performance of DPPT with the ParticleTracker (PT) [187], the
Kalman filter based approach (KF) implemented in the ImageJ plugin TrackMate
[189], and the multiple hypothesis tracking (MHT) approach [193] implemented in
Icy [212]. The methods are described in Sec. 3.2. For PT, KF, and MHT, we tested
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(a) Seq. 2 (2D, HCV NS5A) (b) Seq. 5 (3D, chromatin struc-
tures, z-slice I = 3)

Figure 5.15 Example image sections (200 × 200 pixels) of real live cell fluorescence
microscopy data. The image contrast was enhanced for better visibility.

several parameter settings and used the settings yielding the best tracking results.
We also compared DPPT with our previous deep learning approaches DPT (for 2D
images, Sec. 4.1) and DPHT (for 2D and 3D images, Sec. 4.2). Note that DPPT, DPT,
and DPHT were trained based on synthetic data only and then applied to real data.
This means that tedious manual annotation of the real data was not required for
network training.

Tracking results for all approaches for the 2D and 3D image data are presented
in Tables 5.5 and 5.6, respectively. It can be seen that DPPT performs best for most
image sequences. For �, DPPT outperforms the other approaches in five out of
seven cases, and is second best in the remaining two cases. In terms of  and �(�,
DPPT yields the best result in five out of seven cases, and the second best result in
one case. In terms of �(��, DPPT performs best in three cases and second best in
four cases. For RMSE, DPPT yields the second best result in three cases. Fig. 5.16
shows ground truth and tracking results for a trajectory of image sequence Seq. 1
(HCV) with complexmotion (19×19 pixels section). It can be seen that the previous
approaches (PT, KF, MHT, DPHT) yield broken trajectories, whereas DPPT yields
a trajectory without gaps which agrees well with the ground truth.

Exploiting Uncertainty Information for Motion Analysis

In addition, we studied the impact of exploiting the computed uncertainty of DPPT
for subsequent motion analysis in real live cell microscopy images. For Seq. 1 and
Seq. 2, we excluded uncertain track points for which the epistemic uncertainty is
high (we used a threshold of 0.5 pixel for the standard deviation) and determined
the diffusion coefficient�diff of the particles (as in Sec. 5.3.2 for the Particle Tracking
Challenge data). The ground truth for Seq. 1 and Seq. 2 is�diff = 0.199 pixel2/frame
and �diff = 0.769 pixel2/frame, respectively. When considering all track points,
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Table 5.5 Performance values of different tracking approaches for 2D real fluores-
cence microscopy image sequences Seq. 1 to 3 displaying HCV NS5A and HCV
associated ApoE proteins. The best performance values are highlighted bold and
underlined, and the second best performance values are bold. The mean values for
all approaches are also shown.

Sequence Method  � �(� �(�� RMSE

Seq. 1
(HCV NS5A)

PT 0.545 0.506 0.635 0.644 1.253
KF 0.528 0.505 0.586 0.659 0.979

MHT 0.560 0.527 0.648 0.693 1.210
DPT 0.606 0.559 0.649 0.644 0.904
DPHT 0.610 0.575 0.676 0.697 1.016
DPPT 0.648 0.611 0.713 0.711 0.975

Seq. 2
(HCV NS5A)

PT 0.590 0.496 0.629 0.557 1.064
KF 0.559 0.481 0.564 0.550 1.088

MHT 0.540 0.480 0.588 0.611 1.237
DPT 0.633 0.540 0.632 0.605 1.008
DPHT 0.619 0.556 0.652 0.622 1.117
DPPT 0.639 0.567 0.658 0.630 1.069

Seq. 3
(HCV associated ApoE)

PT 0.324 0.306 0.382 0.414 1.255
KF 0.525 0.432 0.499 0.529 1.137

MHT 0.436 0.422 0.507 0.588 1.299
DPT 0.614 0.499 0.586 0.527 1.068
DPHT 0.626 0.510 0.614 0.538 1.052
DPPT 0.640 0.516 0.619 0.543 1.192

Mean values

PT 0.487 0.436 0.549 0.538 1.191
KF 0.537 0.473 0.550 0.579 1.068

MHT 0.512 0.476 0.581 0.631 1.249
DPT 0.617 0.533 0.623 0.592 0.993
DPHT 0.618 0.547 0.647 0.619 1.062
DPPT 0.642 0.565 0.663 0.628 1.079
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Table 5.6 Performance values of different tracking approaches for 3D real fluores-
cence microscopy image sequences Seq. 4 to 7 displaying chromatin structures. The
best performance values are highlighted bold and underlined, and the second best
performance values are bold. The mean values for all approaches are also shown.

Sequence Method  � �(� �(�� RMSE

Seq. 4

PT 0.305 0.285 0.415 0.500 1.823
KF 0.336 0.282 0.408 0.489 2.048

MHT 0.398 0.292 0.420 0.462 2.014
DPHT 0.353 0.337 0.502 0.551 1.992
DPPT 0.331 0.315 0.444 0.500 1.944

Seq. 5

PT 0.334 0.255 0.493 0.523 2.454
KF 0.381 0.290 0.466 0.528 2.112

MHT 0.337 0.286 0.443 0.529 2.189
DPHT 0.365 0.302 0.436 0.565 1.902
DPPT 0.384 0.326 0.463 0.593 1.956

Seq. 6

PT 0.443 0.415 0.657 0.683 1.962
KF 0.540 0.446 0.587 0.673 1.582

MHT 0.407 0.390 0.572 0.590 2.044
DPHT 0.493 0.485 0.641 0.806 1.675
DPPT 0.590 0.510 0.701 0.714 1.696

Seq. 7

PT 0.439 0.400 0.587 0.649 1.930
KF 0.415 0.330 0.534 0.553 2.272

MHT 0.453 0.417 0.604 0.647 1.926
DPHT 0.424 0.403 0.574 0.708 1.904
DPPT 0.447 0.415 0.624 0.701 2.058

Mean values

PT 0.380 0.339 0.538 0.589 2.042
KF 0.418 0.337 0.499 0.561 2.004

MHT 0.399 0.346 0.510 0.557 2.043
DPHT 0.409 0.382 0.538 0.657 1.869
DPPT 0.438 0.391 0.558 0.627 1.913
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(a) Ground truth (b) PT (c) KF

(d) MHT (e) DPHT (f) DPPT

Figure 5.16 Ground truth and tracking results of different approaches for a 19 ×
19 pixels section of image sequence Seq. 1 (HCV NS5A). The image contrast was
enhanced for better visibility.

the computed diffusion coefficients are �diff = 0.189 pixel2/frame with a relative
error of 5.0% for Seq. 1, and �diff = 0.440 pixel2/frame with a relative error
of 42.8% for Seq. 2. Instead, when excluding uncertain track points, we obtain
�diff = 0.190 pixel2/frame for Seq. 1, and �diff = 0.816 pixel2/frame for Seq. 2 with
lower relative errors of 4.5% and 6.1%, respectively. This confirms the results for
the Particle Tracking Challenge data (Sec. 5.3.2), and demonstrates for real live cell
microscopy images that the computed uncertainty information of our network can
be exploited to improve the accuracy of subsequent motion analysis.

5.4 Conclusion

We have introduced a novel probabilistic deep learning approach for tracking
multiple particles in fluorescencemicroscopy image sequences. The proposedDeep
Probabilistic Particle Tracker (DPPT) is based on a recurrent neural network which
mimics classical Bayesian filtering. Compared to previous methods for particle
tracking, our approach takes into account uncertainty, both aleatoric (intrinsic
noise in the data) and epistemic uncertainty (uncertainty in network weights).
The network exploits short and long-term temporal dependencies in the object
dynamics to predict the state at the next time point, and uses assigned detections
to update the predicted state. For correspondence finding, we have introduced
a neural network that computes assignment probabilities jointly across multiple
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detections as well as determines probabilities for missing detections. Network
training requires only simulated data and therefore tedious manual annotation of
ground truth is not necessary. We proposed a novel scheme to generate synthetic
training data using automatically extracted information from the real images. This
enables simulating a large amount of training data that represent well the images
in an application.

We verified that both types of uncertainty (aleatoric and epistemic uncertainty)
are capturedby the proposedBayesian neural network and carriedout an evaluation
of uncertainty estimation. An advantage of our network is that information about
the reliability of the extracted trajectories is determined. We demonstrated that
the computed uncertainty can be exploited to increase the accuracy of subsequent
motion analysis by excluding unreliable track points. In addition, we demonstrated
that the uncertainty can be exploited to assess the suitability of the training data
and to select the training data set with the best-suited motion model so that the
training data better represents the real data in an application. The uncertainty
could also be used to calibrate a microscopy experiment by adjusting acquisition
parameters. We conducted a quantitative evaluation of the tracking performance
using 2D and 3D image data of the Particle Tracking Challenge as well as 2D and
3D real live cell fluorescence microscopy image sequences. A comparison with
previous methods showed that DPPT yields state-of-the-art or improved results.
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Chapter 6

Neural Network for Combined
Particle Tracking and Colocalization
Analysis

In this chapter, we introduce a novel deep learning method for combined particle
tracking and colocalization analysis. The work has been published in [62].

6.1 Introduction

Quantifying protein dynamics and protein-protein interactions frommulti-channel
fluorescence microscopy images is important to study biological processes. Thus,
automatic approaches for particle tracking and colocalization analysis are needed.
In previous work on fluorescent particle tracking, classical deterministic and

probabilistic methods were introduced. Probabilistic approaches have the advan-
tage that they take into account spatial and temporal uncertainties by Bayesian
filtering (e.g., [151, 193, 194]). Recently, deep learning methods for particle tracking
have been introduced (e.g., [22, 60]). These methods use recurrent neural networks
(RNNs) to represent information about object motion for correspondence finding.
However, colocalization information is not taken into account for tracking, and a
colocalization analysis is not performed.
In previous work on colocalization analysis in multi-channel microscopy data,

classical pixel-based, object-based, and track-based methods have been proposed.
Pixel-based approaches use intensity correlation (e.g., [248]), however, they are
relatively sensitive to noise. Object-based approaches incorporate spatial infor-
mation to improve the robustness to image noise (e.g., [249]). These methods do
not include temporal information, which can lead to false positives. Track-based
approaches exploit spatial as well as temporal information, and generally yield
better results (e.g., [250, 251]). A disadvantage of these classical colocalization
methods is that several parameters need to be tuned manually.

In this contribution,we introduce a novel deep learning approach for combinedpar-
ticle tracking and colocalization analysis in two-channel fluorescence microscopy
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images. Short- and long-term temporal dependencies of object motion as well as im-
age intensities from both channels of two-channel microscopy data are exploited by
a convolutional Long Short-TermMemory (ConvLSTM) network [252]. Assignment
probabilities are computed jointly across multiple detections and also probabilities
of missing detections are determined without requiring handcrafted features. In
addition, colocalization probabilities are computed and colocalization information
is used to improve tracking. To our best knowledgewe are the first to introduce such
a deep learning approach. Previous deep learningmethods for particle tracking use
only one image channel for tracking, do not perform colocalization analysis, and do
not use image intensities for correspondence finding (e.g., [22, 60]). The proposed
network is trained based on synthetic data and thus tedious manual labeling is
not required. We performed a quantitative evaluation using synthetic two-channel
image sequences as well as real two-channel fluorescence microscopy data of
hepatitis C virus (HCV) proteins. It turned out that our approach outperforms
previous methods.

6.2 Method

The proposed approach, denoted as Deep Particle Tracker and Colocalization Ana-
lyzer (DPTCA), is based on a convolutional LSTM neural network that determines
assignment and colocalization probabilities for combined particle tracking and
colocalization analysis. The Jonker-Volgenant shortest augmenting path algorithm
is employed to establish one-to-one correspondences using the computed assign-
ment probabilities as well as the probabilities of missing detections. Disappearing
objects are identified based on the number of subsequent frames with missing
detections, and appearing objects are identified based on unassigned detections.

6.2.1 Network Architecture

In our DPTCA approach we use a neural network consisting of ConvLSTM layers
[252], convolutional layers, and fully-connected (FC) layers. The network architec-
ture is sketched in Fig. 6.1 and described below.

Let x8
C−1 ∈ ℝ%×%× (�+1) represent a local patch with % × % pixels (we used % = 30)

of an image (� channels) at time point C − 1, and a binary mask representing the
position of object 8. The ConvLSTM3×3

32 layer (32 filters, 3 × 3 kernel size) takes as
input sequence the patches x8

C−) , . . . , x
8
C−1 at ) previous time points. A patch at

time point C and " binary masks indicating the positions of the detections within
the patch are represented by y8C ∈ ℝ%×%× (�+"), where " denotes the number
of detections (we used " = 4). If there are more than " detections, only the
" nearest detections are considered. y8C is passed through a convolutional layer
(Conv3×3

32 , 32 filters, 3×3 kernel size) and then concatenatedwith the ConvLSTM3×3
32

output. The resulting tensor is fed into a stack of four convolutional layers with 32,
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Figure 6.1 Network architecture of the proposed DPTCA.

32, 64, and 64 filters, respectively. We employ instance normalization after each
convolutional layer to prevent instance-specific mean and covariance shift and
improve network training. We use Parametric Rectified Linear Units (PReLU) to
cope with the dying ReLU problem and inconsistent predictions of LeakyReLU
for negative input values. Spatial pooling is carried out by average pooling (3 × 3,
stride of 2) and global average pooling. The resulting vector of dimension 64 is
fed into two separate output paths, each comprising one FC layer with 16 PReLUs
followed by a fully-connected output layer with softmax normalization. The output
vector a8C ∈ [0, 1]"+1 of the first output path represents assignment probabilities as
well as the probability of amissing detection for time point C, i.e.

∑"
9=0 0

8 , 9

C = 1,where
0
8 , 9

C is the assignment probability between object 8 and detection 9 (9 = 1, . . . , "),
and 0 8 ,0C the probability of a missing detection. The output vector p8C = (?

8 ,1
C , ?

8 ,2
C )

of the second output path represents normalized colocalization probabilities. ? 8 ,1C
denotes the probability that object 8 is colocalized, whereas ? 8 ,2C represents the
probability that object 8 is not colocalized. Note that in the first pass, y8C contains
only detections from the same channel in which object 8 is located. If ? 8 ,1C > ? 8 ,2C ,
then in a second pass, y8C contains detections from the other channel to determine
with which object in the other channel, object 8 is colocalized. If a colocalized
object 8 is not assigned to a detection from one channel, the detection from the
other channel is exploited for tracking.

Our neural network is trained by minimizing the loss function ℒ. For one time
point C of an object (particle) 8, the loss is defined by:

ℒ 8C = ℒ 8a,C + �ℒ 8p,C (6.1)

where the first term is a multi-class variant of the focal loss [93] measuring the
deviation between the computed assignment probabilities a8C and ground truth a8C :

ℒ 8a,C = −
"∑
9=0
(1 − 0 8 , 9C )

� · 0̃ 8 , 9C log(0 8 , 9C ) (6.2)
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with focusing parameter �. The second term is the multi-class focal loss for the
computed colocalization probabilities p8C using the ground truth p8C :

ℒ 8p,C = −
2∑
;=1
(1 − ? 8 ,;C )

� · ?̃ 8 ,;C log(? 8 ,;C ) (6.3)

We used � = 1 and � = 2 in our experiments.

6.2.2 Network Training

Since manual annotation of biological particles is tedious, we use synthetic data for
network training. Particle trajectorieswere simulatedusingmultiplemotionmodels
(e.g., Brownian, directed), and two-channel microscopy images were generated
using a Poisson noise model. Particles in the two channels randomly colocalize if
they are less than 5 pixels apart (which is in the order of the Rayleigh distance).
Appearance and disappearance of particles is defined by random processes. For
training, we employed the Adam optimizer with �1 = 0.9 and �2 = 0.999. The
initial learning rate was set to 0.001 and a mini-batch size of 12 was used. To avoid
overfitting, we applied early stopping. The generated data set comprises about
100,000 particle trajectories. The data is split into 75% for training and 25% for
validation.

6.3 Experimental Results

6.3.1 Experimental Setup

We used the five metrics , �, JSC, JSC�, and RMSE [65] described in Sec. 3.1 to
evaluate the tracking performance. We compared the performance of the proposed
method (DPTCA) with state-of-the-art particle tracking methods: Particle Tracker
(PT) [187], Kalman filter (KF) [189], multiple hypothesis tracking (MHT) [193], and
Deep Particle Hypotheses Tracker (DPHT) [60]. PT, KF, and MHT are described in
Sec. 3.2 and DPHT is introduced in Sec. 4.2. For DPTCA and DPHT, we used SEF
and Gaussian fitting for particle detection.

6.3.2 Synthetic Image Sequences

We first evaluated DPTCA using three two-channel synthetic image sequences.
The images simulate real two-channel fluorescence microscopy images and include
about 500 particles per channel in each frame (512 × 512 pixels). The particles have
an isotropic Gaussian intensity profile and perform Brownian motion. Channel 2
has a high SNR level (SNR = 5),while channel 1 has a low SNR level (SNR = 1, 2, 3).
The sequences are denoted by Seq. 1 to Seq. 3. Colocalization of particles in the
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(a) Low SNR channel 1 (b) High SNR channel 2 (c) Overlay

Figure 6.2 Section of synthetic image sequence Seq. 1.

Table 6.1 Performance for the low SNR channel of the synthetic image sequences.
Sequence Method  � �(� �(�� RMSE

Seq. 1
(channel 1, SNR = 1)

PT 0.057 0.039 0.060 0.143 1.664
KF 0.079 0.055 0.078 0.181 1.590

MHT 0.106 0.104 0.157 0.302 2.182
DPHT 0.146 0.108 0.155 0.302 1.562
DPTCA 0.300 0.208 0.273 0.286 1.528

Seq. 2
(channel 1, SNR = 2)

PT 0.281 0.156 0.220 0.136 1.250
KF 0.287 0.199 0.244 0.342 1.050

MHT 0.397 0.312 0.375 0.458 1.342
DPHT 0.473 0.397 0.458 0.516 0.987
DPTCA 0.555 0.434 0.495 0.557 1.092

Seq. 3
(channel 1, SNR = 3)

PT 0.451 0.359 0.427 0.481 1.047
KF 0.526 0.427 0.466 0.563 0.809

MHT 0.453 0.361 0.411 0.478 1.175
DPHT 0.569 0.476 0.513 0.593 0.759
DPTCA 0.620 0.489 0.535 0.586 0.830

two channels is defined for a distance smaller than 5 pixels. The data includes
random appearance and disappearance of particles. An example image section
(150 × 150 pixels) for Seq. 1 is shown in Fig. 6.2. The data set is challenging due
to conflicting correspondences, complex motion, and low SNR. The quantitative
tracking results are provided in Table 6.1. Bold highlights the best performance. We
show results for the low SNR channel 1 since this channel is most challenging. It
can be seen that DPTCA outperforms the other methods. In terms of , �, and JSC,
DPTCA yields the best result for all three sequences. For JSC�, DPTCA performs
best for one sequence, and second best for the other two sequences. In terms of
RMSE, DPTCA outperforms the other methods for one sequence.
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Table 6.2 Performance for real microscopy image data (HCV).
Channel Method  � �(� �(�� RMSE

1 (NS5A)

PT 0.470 0.441 0.537 0.646 1.154
KF 0.585 0.428 0.509 0.411 1.206

MHT 0.536 0.521 0.613 0.723 1.230
DPHT 0.597 0.563 0.630 0.720 1.086
DPTCA 0.605 0.571 0.630 0.753 1.139

2 (E2)

PT 0.615 0.609 0.723 0.718 0.840
KF 0.725 0.619 0.731 0.552 0.811

MHT 0.814 0.689 0.777 0.660 0.729
DPHT 0.811 0.738 0.784 0.825 0.596
DPTCA 0.860 0.763 0.812 0.825 0.807

(a) Ground truth (b) DPTCA

Figure 6.3 Ground truth and tracking results of DPTCA for an image section of
the HCV data (overlay of both channels).

6.3.3 Real Two-Channel Fluorescence Microscopy Images

We also evaluated DPTCA based on real two-channel fluorescence microscopy
images displaying the nonstructural protein 5A (NS5A,channel 1) and the structural
protein E2 (channel 2) of hepatitis C virus (HCV). Colocalization of the two proteins
is essential for virus particle assembly. We considered a temporal image sequence
acquired with a confocal microscope (30 time points, 512 × 512 pixels, pixel size
0.22 × 0.22 �m2). The data is challenging due to relatively low SNR, high object
density, and clustering particles. To quantify the performance, 126 ground truth
trajectories (91 for channel 1, 35 for channel 2) were manually annotated for a
difficult image region. The result is shown in Table 6.2. Bold highlights the best
performance. It can be seen thatDPTCAyields better results than previousmethods.
For , �, JSC, and JSC�, DPTCA performs best for both channels. Example tracking
results of DPTCA for an image section of the HCV data are displayed in Fig. 6.3. It
can be seen that the computed trajectories agree well with the ground truth.
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6.4 Conclusion

We presented a novel deep learning approach for combined particle tracking
and colocalization analysis in two-channel fluorescence microscopy images. The
approach is based on a ConvLSTM network and exploits colocalization information
to improve tracking. Manual annotation is not required for network training.
We evaluated the performance of DPTCA using synthetic image data and real
two-channel fluorescence microscopy images. It turned out that our approach
outperforms previous methods.
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Chapter 7

Deep Learning for Particle Detection
and Tracking

In this chapter, we propose a method for particle detection based on a convolu-
tional neural network that performs density map regression. In addition, a deep
learningmethod for probabilistic detection and tracking of particles in fluorescence
microscopy images is introduced.

7.1 Convolutional Neural Network for 3D Particle Detection

In this section, we present a convolutional neural network for 3D particle detection
in 3D fluorescence microscopy images via density map regression. The work has
been published in [63].

7.1.1 Introduction

In previous work on fluorescent particle detection, classical methods were intro-
duced (e.g., [56]) such as a wavelet-based detector [143], the spot-enhancing filter
(SEF, [147]), a HDome transform-based detector [201], and adaptive thresholding
with autoselected scale [148]. However, these methods are generally based on a pre-
defined, relatively simple appearance model (e.g., Gaussian function), which does
not necessarily hold. Recently, convolutional neural networks (CNNs) for particle
detection have been introduced which can cope with more general appearance
structures and show promising results (e.g., [153, 155, 156, 158]). In [153, 155, 156],
image-to-image mapping is performed based on pixel-wise binary classification,
where each particle is represented by one or a few pixels in the binary ground
truth mask. However, detections close to a particle but outside the particle region
in the binary ground truth mask are not rewarded during network training. This
decreases the stability of network training and makes training more difficult. In
addition, [153] use a network with a relatively large number of parameters, and
[155] employ a sliding window scheme which increases the computational cost.
[158] use a CNN to directly regress offsets of bounding boxes, which, however,
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involves a highly nonlinear mapping from input images to point coordinates. None
of the previous deep learningmethods employs density map regression for particle
detection, which is often used for key point detection in videos of natural scenes
(e.g., faces, persons) yielding state-of-the-art performance (e.g., [253, 254]). In [255],
density map regression is employed for cell counting in 2D images. A mean square
error loss is used, which is not sensitive to small errors and not adaptive. Moreover,
all deep learning methods above perform 2D detection using 2D CNNs, thus
valuable volumetric information of 3D microscopy images is not exploited.

In this contribution, we introduce a novel deep learning approach for 3D particle
detection in 3D fluorescence microscopy images. Instead of pixel-wise binary
classification [153, 155, 156] or direct coordinate regression [158], we perform
image-to-image mapping based on regressing a density map. The density map
encodes the probability that a particle is located at a certain position. Thus,
highly nonlinear direct prediction of point coordinates is avoided, and detections
close to particles are rewarded in the network training. In addition, compared to
[153, 155, 156, 158],we exploit uncertainties in themanually annotatedground truth
positions of particles for network training. To focus on particles in comparison
to background image points, we suggest using the adaptive wing loss which
was previously used for face recognition [253]. To cope with the very strong
imbalance between particle and background image points for 3D images, we
use a weighted loss map, which assigns high weights to particles and difficult
background image points close to particles. Compared to [253], where separate
density maps are computed for each key point, in our approach all particles of
an image are represented by only one density map. Different to [155], a sliding
window scheme is not required, and all particles within an image are detected
at once by sharing full-image convolutional features. Our method is the first
that performs image-to-image mapping via density map regression for particle
detection in microscopy images. In contrast to [153, 155, 156, 158, 253, 254, 255],
the full 3D image information is exploited. The proposed 3D particle detection
approach has been evaluated using 3D data of the Particle Tracking Challenge (PTC,
[65]) as well as real 3D fluorescence microscopy images of chromatin structures
and interneurons. It turned out that our approach outperforms previous methods.

7.1.2 Method

Our proposed deep learning approach for 3D particle detection, denoted as Density
Map DetNet 3D (DM-DetNet3D), performs image-to-image mapping via density
map regression. An overview of the network architecture is given in Fig. 7.1. The
network is based on the slim hourglass architecture of DetNet [156], which was
used for 2D images. The network is composed of a contracting and expanding path,
can handle objects at different scales, anddoes not require a slidingwindow scheme.
To detect all particles within an image at once, full-image convolution features are
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Figure 7.1 Architecture of the proposed DM-DetNet3D network.

shared. Since detailed boundary information is not needed to detect sub-resolution
particles and to reduce the number of parameters, long range skipping connections
are not employed. To cope with the vanishing gradient problem, residual blocks [?
] are used. Since batch normalization requires a representative data set to compute
meaningful statistics, which is difficult to achieve when using only a few training
samples, instance normalization is utilized. Compared to [156], we exploit the full
3D information by 3D convolution operations instead of 2D convolution operations
in the residual blocks.

In contrast to pixel-wise binary classification [153, 155, 156] and direct coordinate
regression [158], DM-DetNet3D performs image-to-image mapping based on
regressing a density map which encodes the probability that a particle is located at
a certain position. Thus, particle detections close to the correct position are taken
into account in the network training, and highly nonlinear direct prediction of point
coordinates is avoided. In our method, ground truth points in the training data are
treated as Gaussian distributions centered around the annotated positions rather
than using discrete image points as in [156]. This reflects that manual annotation
of noisy, sub-resolution particles is generally uncertain, particularly for 3D images.
The level of uncertainty is represented by the standard deviations �G,H and �I of
the Gaussian distribution. To exploit the full range of the sigmoid function in the
output layer of the network, we normalize the values of the ground truth density
maps to the range [0, 1]. During inference, the network predicts a density map
from which particle positions are obtained by determining local maxima. Fig. 7.2
illustrates the type of ground truth for particle detection by density map regression
compared to pixel-wise binary classification.
For accurate particle detection and localization via density map regression,

the prediction accuracy of the network for image points representing particles
is very important, since even small errors have a large effect. In comparison, for
background image points the prediction accuracy is less important, since small
errors usually have a small effect. Thus, the network should focus on particle
image points during training (increased sensitivity). This can be achieved by using
the adaptive wing loss (AWing, [253]), which adapts to different values in the
ground truth mask to increase the sensitivity to errors for particles compared to
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(a) Original image (b) Pixel-wise binary classifi-
cation

(c) Density map regression

Figure 7.2 Original image and different types of ground truth. For visualization,
all z-slices are max-pooled into one slice.

background image points. This is an advantage over the standard mean square
error (MSE) loss, which is insensitive to small errors and not adaptive causing
blurred and dilated density maps. AWing is an extension of the wing loss for
density map regression and is differentiable around zero. For a 3D image with
width F, height ℎ, and depth 3, the AWing loss for the position G8 in the predicted
density map ^ ∈ [0, 1]ℎ×F×3 is defined by:

AWing(G8 , H8) =
{
$ ln(1 + | H8−G8& |−H8 ) if |H8 − G8 | < �

�|H8 − G8 | − � otherwise
(7.1)

where H8 is the position in the ground truth density map _ ∈ [0, 1]ℎ×F×3. The
parameters � = $(1/(1 + (�/&)(−H8)))( − H8)((�/&)(−H8−1))(1/&) and � = (�� −
$ ln(1 + (�/&)(−H8))) ensure that the loss is continuous and smooth at |H8 − G8 | = �.
� ∈ [0, 1] is a threshold for switching between the linear and nonlinear part,  − H8
is used to adapt the curvature of the loss function to H8 ( has to be slightly larger
than two). & ∈ ℝ>0 limits the curvature of the nonlinear part and should not be
set to a very small value since this would cause unstable training and exploding
gradients for very small errors. In our experiments, we used  = 2.1, $ = 14, & = 1,
and � = 0.5. Computing AWing(G8 , H8) for all positions in the predicted density
map defines the AWing loss map ℒ(^ ,_ ). In contrast to [253], we employ AWing to
predict Gaussian distributions for all particles in an image using a single density
map, whereas there for each key point a separate density map was used. Also,
there a different application (face recognition) and 2D images were considered.
We also tested our network using an MSE loss, which did not yield good results.

To address the very strong imbalance between particle and background image
points for 3D images, we also use a weight map ] , which assigns high weights
to particles and difficult background image points close to particles compared to
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other background image points:

] =

{
� + 1 for _ 3 ≥ )
1 otherwise

(7.2)

where _ 3 ∈ [0, 1]ℎ×F×3 is obtained by a 3 × 3 dilation of _ [253], � defines the
strength of the weighting (we used � = 10), and ) ∈ [0, 1] is a threshold. In ] ,
� + 1 is assigned to particle image points and background image points close to
particles, and 1 to all other image points. The weighted loss map ℒw(^ ,_ ) between
^ and _ combines the weight map ] and the AWing loss map ℒ(^ ,_ ) and is
defined by:

ℒw(^ ,_ ) = ℒ(^ ,_ ) ⊗] (7.3)

where ⊗ denotes the Hadamard product.
During network training, the mean value of ℒw(^ ,_ ) is minimized using the

AMSGrad optimizer with �1 = 0.9 and �2 = 0.999. The initial learning rate was
set to 0.001 and a mini-batch size of 4 was used. Data augmentation involved
random cropping as well as horizontal and vertical flipping. To avoid overfitting,
we applied early stopping after convergence is reached. The data set was randomly
split into 50% for training, 25% for validation, and 25% for testing.

7.1.3 Experimental Results

Particle Tracking Challenge Data

We evaluated DM-DetNet3D using 3D images of the PTC [65] and performed a
comparisonwith the 3Dversions of SEF [147] (SEF3D) andDetNet [156] (DetNet3D).
SEF3D is based on the Laplacian-of-Gaussian, and DetNet3D performs image-to-
image mapping by voxel-wise binary classification (see Sec. 3.2).

We used all 3D images of the virus scenario from the PTC comprising different
object densities (low, medium, high) and SNR levels (SNR = 1, 2, 4, 7). In total, we
considered 1200 images (512 × 512 × 10 voxels) and studied the results for each
SNR level (300 images per SNR level). To measure the detection performance, we
computed the F1 score ∈ [0, 1] using a gate of 5 voxels. The localization accuracy of
correct particle detections is measured by the root mean square error (RMSE). For
each SNR level, we averaged the F1 score and the RMSE over the respective images.
The results for all SNR levels as well as the average values over the SNR levels
and corresponding standard deviations are provided in Table 7.1. For the F1 score,
DM-DetNet3D outperforms the other methods for all SNR levels, especially for
low SNR levels. For RMSE, DM-DetNet3D yields the best result in three out of
four cases.
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Table 7.1Results for 3D images of the Particle TrackingChallenge (mean± standard
deviation).

SNR Method F1 RMSE

1
SEF3D 0.376 ± 0.141 2.491 ± 0.157

DetNet3D 0.544 ± 0.118 1.363 ± 0.132
DM-DetNet3D 0.623 ± 0.116 1.396 ± 0.119

2
SEF3D 0.891 ± 0.059 0.967 ± 0.046

DetNet3D 0.896 ± 0.059 0.686 ± 0.034
DM-DetNet3D 0.973 ± 0.013 0.612 ± 0.040

4
SEF3D 0.993 ± 0.005 0.655 ± 0.019

DetNet3D 0.970 ± 0.012 0.522 ± 0.027
DM-DetNet3D 0.994 ± 0.005 0.496 ± 0.016

7
SEF3D 0.994 ± 0.005 0.574 ± 0.011

DetNet3D 0.982 ± 0.007 0.508 ± 0.012
DM-DetNet3D 0.995 ± 0.004 0.505 ± 0.015

Table 7.2 Results for real 3D images of chromatin structures.
Method F1 RMSE
SEF3D 0.774 ± 0.078 1.934 ± 0.243

DetNet3D 0.711 ± 0.068 1.817 ± 0.193
DM-DetNet3D 0.820 ± 0.035 1.773 ± 0.214

Real Fluorescence Microscopy Data

We also evaluatedDM-DetNet3D based on real 3D live cell fluorescencemicroscopy
images of chromatin structures acquired with super-resolution 3D structured
illumination microscopy [247]. The data set comprises 60 3D images from five
different temporal image sequences (512 × 512 × 5 voxels). Ground truth was
determined manually for difficult image regions (2637 particle positions in total).
Main challenges of the data set are clustering particles and varying SNR levels
due to photobleaching over time. The performance values in Table 7.2 show that
DM-DetNet3D yields the best result. Example results in Fig. 7.3 demonstrate that
the result of DM-DetNet3D agrees well with the ground truth.
In addition, we used challenging real 3D confocal fluorescence microscopy

images of calretinin-immunostained interneurons in hippocampus sections of
mice. For this data set we used one image with 116 ground truth positions for
training and validation, and one image with 196 ground truth positions for testing.
DM-DetNet3D yields an F1 score of 0.747 and outperforms SEF3D and DetNet3D
with F1 scores of 0.686 and 0.543, respectively. For RMSE, DM-DetNet3D (2.943)
achieves similar results as SEF3D (2.871) and DetNet3D (2.835).

7.1.4 Conclusion

We presented a new deep learning approach for 3D particle detection in 3D flu-
orescence microscopy images that performs image-to-image mapping based on
regressing a density map. During network training, detections close to particles

124



Chapter 7 Deep Learning for Particle Detection and Tracking

Figure 7.3 Ground truth (left) and results of DM-DetNet3D (right) for a real
3D image of chromatin structures (section, maximum intensity projection).

are rewarded and uncertainties in the manually annotated ground truth positions
are exploited. To focus on particles in comparison to background image points, we
suggest using the adaptive wing loss. We also employ a weighted loss map to cope
with the very strong imbalance between particle and background image points for
3D images. Our experiments for 3D images of the PTC and real 3D microscopy
images show that our approach outperforms previous methods.

7.2 Deep Probabilistic Particle Detection and Tracking

In this section,wepresent a deep learningmethod forprobabilistic particle detection
and tracking in fluorescence microscopy images. The work has been submitted for
publication [64].

7.2.1 Introduction

Previous work on particle detection in fluorescence microscopy images has intro-
duced classical methods (e.g., [56, 143, 147, 148]) typically based on predefined
and simplified appearance models (e.g., Gaussian function). In recent years, deep
learning methods for particle detection have been presented that show promising
results (e.g., [63, 153, 155, 156, 158, 256]). In [153, 155, 156, 256], particle detection is
considered as a pixel-wise binary classification task. However, detections that are
close to, but not locatedwithin the particle regions of the binary ground truthmask,
are not rewarded during network training. This reduces the stability of the training
process. In [158], a CNNwas used to directly regress the offsets of bounding boxes.
However, direct mapping of input images to point coordinates is highly nonlinear.
For particle detection in 3D images, we performed image-to-image mapping via
density map regression [63] (described in Sec. 7.1). However, particle positions
are not localized with sub-pixel resolution. In addition, none of the previous
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particle detection methods exploits temporal information which can improve the
performance.

In previous work on fluorescent particle tracking, classical deterministic and
probabilistic methods were introduced. Compared to deterministic methods (e.g.,
[187]), probabilistic methods consider uncertainties by Bayesian filtering (e.g.,
[151, 157, 193, 194]). Recently, deep learning methods for particle tracking were
proposed (e.g., [22, 60, 257]). Typically, a recurrent neural network (RNN) is used to
exploit object motion for correspondence finding. In [61] (described in Chapter 5),
we introduced a probabilistic deep learningmethod that takes into account aleatoric
and epistemic uncertainty. However, a classical detection method was used and
uncertainty of individual particle detections was not considered. Also, the RNN
emulating Bayesian filtering is not fully probabilistic but includes non-Bayesian
layers.

In this contribution, we present a novel deep learning method for probabilistic
particle detection and tracking in fluorescence microscopy images. For particle
detection, a slim hourglass CNN is proposed that integrates temporal information
for regressing a density map, which represents the probability that a particle
is located at a certain position. Thus, detections close to particles are rewarded
during network training compared to pixel-wise binary classification [153, 155,
156, 256], and highly nonlinear regression of positions from image data [158]
is avoided. In contrast to all previous particle detection methods (e.g., [56, 63,
143, 147, 148, 153, 155, 156, 158, 256]), temporal image information is exploited
to improve the detection performance. Different to [63, 153, 155, 156, 158], sub-
pixel particle positions are determined. For particle tracking, we introduce a
Bayesian neural network that emulates Bayesian filtering. Short- and long-term
temporal dependencies of individual object dynamics are represented by gated
recurrent units (GRUs, [103]). Compared to [61] (see Chapter 5), the network
is fully Bayesian, deep learning is used for particle detection, and uncertainty
information of individual particle detections is considered. For correspondence
finding, we use a neural network that computes assignment probabilities jointly
across multiple detections as well as probabilities of missing detections. Manually
annotated data is not needed for training the Bayesian neural network and the
network for correspondence finding. We evaluated the proposed deep learning
method based on data of the Particle Tracking Challenge (PTC, [65]). It turned out
that our method outperforms previous methods. We also successfully applied the
method to fluorescence microscopy images displaying hepatitis C virus (HCV)
proteins.

7.2.2 Method

The proposed method combines a CNN for particle detection (Deep Particle
Detector,DPD)witha fullyBayesianRNNfor tracking (DeepBayesianTracker,DBT),

126



Chapter 7 Deep Learning for Particle Detection and Tracking

and is denoted DPD-DBT. To detect particles in fluorescence microscopy images,
the suggested DPD employs a slim CNN that integrates temporal information and
performs density map regression. The neural network is based on an hourglass-
shaped architecture with residual blocks [63, 156] (see Sec. 7.1) that processes
image objects at different scales and avoids the need for a sliding window scheme.
To reward detections close to particles during network training compared to pixel-
wise binary classification (e.g, [153, 155, 156, 256]), and to avoid highly nonlinear
regression of positions (e.g., [158]), DPD regresses a density map representing
the probability that a particle is located at a certain image position. For network
training, ground truth density maps are generated by using Gaussian distributions
centered at annotated particle positions. The values of the ground truth density
map are normalized to the range of the sigmoid activation function [0, 1] used in the
final output layer. Compared to [63, 153, 155, 156, 158], particles are localized with
sub-pixel resolution from the computed density map by Gaussian fitting. The value
in the density map at the determined position represents its uncertainty. In contrast
to previous particle detection methods [56, 63, 143, 147, 148, 153, 155, 156, 158, 256],
we integrate temporal information to improve the performance under challenging
conditions. For an image ℐC ∈ ℝF×ℎ of width F and height ℎ at time point C, DPD
takes as input the temporal image sequence ℐC−) , . . . ,ℐC+) concatenated along the
channel dimension, where ) denotes the number of previous and subsequent time
points. To focus on particles instead of background during network training, we
use the adaptive wing loss (AWing, [253] , described in Sec. 7.1.2). This loss adapts
to the values in the ground truth density map and penalizes errors for particles
more than for the background. Compared to previous methods for 3D particle
detection [63] (see Sec. 7.1) and face recognition [253], an additional loss weight
map is not required. We used the AMSGrad optimizer (�1 = 0.9, �2 = 0.999) with
an initial learning rate of 0.001 and a mini-batch size of 4 to minimize the mean
value over the AWing loss of all image points. For data augmentation, we applied
random cropping as well as horizontal and vertical flipping. For training, we used
the training sequences of the PTC.

For tracking, the proposed Deep Bayesian Tracker (DBT) emulates classical
Bayesian filtering. The network consists of a state prediction and update block
(see Fig. 7.4). To estimate the next state of an individual object based on both
short- and long-term temporal dependencies of its dynamics, the prediction block
employs gated recurrent units (GRUs, [103]). The update block uses the assigned
detection obtained by DPD to correct the predicted state. Compared to [61] (see
Chapter 5), we use a deep learning method for particle detection and include
uncertainty of individual particle detections. To capture epistemic uncertainty
(model uncertainty) arising from lack of knowledge due to limited or insufficient
training data, we employ Bayesian layers with reparametrization [119], where all
learnable parameters are represented by Gaussian distributions. During network
training, the mean and variance of the Gaussian distributions are learned instead
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Figure 7.4 Architecture of the fully Bayesian network.

of directly determining point estimates of the learnable parameters. The network
consists of a Bayesian GRU layer with 16 units, a Bayesian layer with 16 Parametric
Rectified Linear Units (PReLU), and a Bayesian layer with 2 PReLUs in each of the 4
network heads. Thus, the entire network is Bayesian in contrast to [61], where only
the network heads are Bayesian. This implies that all network layers are directly
included in the computation of the epistemic uncertainty. Aleatoric uncertainty
due to inherent noise in the data (e.g., object motion) is considered by learning to
estimate the mean values (-prior, -post) and standard deviations (2prior, 2post) of
two Gaussian distributions from which the predicted state and the updated state
are obtained, respectively. To improve subsequent motion analysis, the estimated
uncertainties provide important information about the reliability of the computed
trajectories (e.g., exclusion of unreliable tracks or track points), which has been
demonstrated in [61]. For our fully Bayesian network, the loss for one training
sample is computed as:

ℒ = − log%
(
x̃|-prior, 2prior)︸                     ︷︷                     ︸

predicted state

−� log%
(
x̃|-post, 2post)︸                      ︷︷                      ︸

updated state

(7.4)

where % denotes the probability and x̃ is the true next state. Note that the prediction
and update blocks are trained simultaneously as a unified network, but are applied
sequentially during tracking. Compared to [61], we employed RMSprop (� = 0.9)
instead of AMSGrad as optimizer, resulting in better convergence. We used an
initial learning rate of 0.002 and � = 2. For correspondence finding, a neural
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network is employed comprising four consecutive fully connected (FC) layers,
followed by a FC linear output layer with softmax normalization [61]. To avoid
overfitting, dropout with a rate of 0.4 is applied during training. The network
computes assignment probabilities jointly across multiple detections as well as
probabilities of missing detections based on the Euclidean distance between the
predicted states and particle detections. Training the fully Bayesian network and
the network for correspondence finding requires only synthetic data and was
performed as described in Sec. 5.2.5. To establish one-to-one correspondences
using the computed probabilities, the Jonker-Volgenant shortest augmenting path
algorithm is employed.

7.2.3 Experimental Results

For performance evaluation, we used image data from the Particle Tracking
Challenge (PTC, [65]) and benchmarked our DPD-DBT against the overall top-
three methods (Method 5, 1, 2) described in Sec. 3.2. We also compared the
performance with previous deep learning methods for particle tracking: Deep
Particle Hypotheses Tracker (DPHT, [60], Sec. 4.2) and Deep Probabilistic Particle
Tracker (DPPT, [61], Chapter 5). Both methods employ SEF and Gaussian fitting for
particle detection. In addition, we considered variants of DPD-DBT with SEF and
Gaussian fitting (SEF-DBT) and DM-DetNet [63] (DM-DetNet-DBT) for detection.
To examine the performance under challenging conditions due to cluttered

environments and strong image noise, we used data of the vesicle scenario from
the PTC with medium and high particle density (∼500 and ∼1000 particles/image)
and low SNR values (SNR = 1 and SNR = 2). Each image sequence consists of 100
images (512 × 512 pixels) with randomly appearing and disappearing particles
that perform Brownian motion. We used the tracking performance metrics , �,
JSC, JSC�, and RMSE described in Sec. 3.1. The higher the values, the better the
performance (except for RMSE).

The quantitative results are presented in Table 7.3, with the best performance
highlighted in bold. It can be seen that DPD-DBT outperforms the other methods
in all cases for , �, JSC, and JSC�. Using DPD for particle detection substantially
improves the performance compared to SEF and DM-DetNet. In addition, DBT
leads to improved or similar results compared to previous methods.

We also appliedDPD-DBT to fluorescencemicroscopy images of hepatitis C virus
(HCV) nonstructural protein 5A. We considered one image sequence (30 frames,
512×512 pixels) acquired using a confocal microscope. The data is challenging due
to cluttered environments and low SNR. For a demanding image region, tracking
results of DPD-DBT and computed aleatoric and epistemic uncertainty are shown
in Fig. 7.5 (probability density of state update, yellow: high probability values, red:
low probability values).

129



Chapter 7 Deep Learning for Particle Detection and Tracking

Table 7.3 Tracking performance for data of the vesicle scenario from the Particle
Tracking Challenge. Bold indicates best performance.

Density SNR Method  � �(� �(�� '"(�

Medium

1

Method 5 0.162 0.142 0.225 0.458 2.172
Method 1 0.027 0.026 0.034 0.300 1.533
Method 2 0.198 0.111 0.192 0.335 2.386
DPHT 0.128 0.100 0.155 0.380 1.858
DPPT 0.172 0.139 0.223 0.407 2.164

SEF-DBT 0.180 0.139 0.225 0.406 2.208
DM-DetNet-DBT 0.177 0.143 0.236 0.461 2.274

DPD-DBT 0.295 0.241 0.374 0.535 1.997

2

Method 5 0.448 0.391 0.489 0.664 1.325
Method 1 0.398 0.298 0.340 0.411 0.840
Method 2 0.517 0.417 0.510 0.629 1.254
DPHT 0.520 0.448 0.526 0.680 0.874
DPPT 0.562 0.485 0.564 0.700 1.014

SEF-DBT 0.558 0.488 0.573 0.722 1.044
DM-DetNet-DBT 0.603 0.536 0.624 0.774 0.966

DPD-DBT 0.616 0.550 0.625 0.776 0.880

High

1

Method 5 0.136 0.120 0.198 0.460 2.296
Method 1 0.091 0.064 0.089 0.231 1.859
Method 2 0.163 0.080 0.147 0.324 2.531
DPHT 0.121 0.104 0.158 0.444 1.984
DPPT 0.158 0.123 0.189 0.391 2.055

SEF-DBT 0.141 0.116 0.183 0.434 2.183
DM-DetNet-DBT 0.185 0.148 0.233 0.462 2.182

DPD-DBT 0.206 0.157 0.274 0.462 2.377

2

Method 5 0.353 0.295 0.382 0.607 1.484
Method 1 0.294 0.217 0.256 0.379 1.088
Method 2 0.356 0.249 0.331 0.515 1.582
DPHT 0.383 0.311 0.376 0.580 1.044
DPPT 0.421 0.341 0.416 0.601 1.232

SEF-DBT 0.421 0.352 0.426 0.626 1.246
DM-DetNet-DBT 0.432 0.356 0.430 0.610 1.139

DPD-DBT 0.477 0.398 0.471 0.663 1.139
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(a) Original image (HCV) (b) DPD-DBT

Figure 7.5 Tracking results and computed uncertainty.

7.2.4 Conclusion

We introduced a deep learning method for probabilistic particle detection and
tracking in fluorescencemicroscopy images. For detection,we proposed aCNN that
integrates temporal information for regressing a density map fromwhich sub-pixel
positions aredetermined. For tracking,we suggesteda fullyBayesianneuralnetwork
that emulates Bayesian filtering and exploits uncertainty of individual detections.
Experiments based on data of the PTC show that ourmethod outperforms previous
methods.Wealso successfully applied themethod tomicroscopy images ofhepatitis
C virus proteins.
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Chapter 8

Summary and Outlook

In this thesis, novel deep learning methods for detection and tracking of multiple
particles in fluorescence microscopy images have been presented that address
various task-specific challenges (e.g., low SNR, lack of appearance characteristics,
complex motion behavior, high object density). Our experiments show that the
developed methods are applicable to various virus structures (e.g., virus proteins,
virus particles) and sub-cellular structures (e.g., cell surface receptors, chromatin
structures) imaged by different fluorescence microscopy techniques. Below, the
main contributions of the thesis are summarized, limitations are discussed, and
possible future work is described.

8.1 Summary

In this section, we summarize the main contributions of the thesis.

• Recurrent Neural Networks for Particle Tracking: Novel deep learning
methods for particle tracking in fluorescence microscopy images were devel-
oped that exploit temporal information by using recurrent neural networks.
First, a method was proposed that takes into account past information about
object dynamics for state prediction and correspondence finding. As an
extension, a method was presented that considers past and future informa-
tion for correspondence finding and track initiation as well as termination.
To resolve ambiguities by using information at later time points, several
track hypotheses are propagated into the future. A main advantage is that
assignment probabilities are computed jointly across multiple detections,
and probabilities for missing detections are also determined. In addition,
handcrafted similarity measures as well as assumptions about probability dis-
tributions are not required, and network training is based solely on synthetic
data.

• Deep Probabilistic Particle Tracker: We introduced the first probabilistic
deep learning method for particle tracking in fluorescence microscopy im-
age sequences. The method is based on a recurrent neural network that
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mimics classical Bayesian filtering by learning to predict the next state and
to update the predicted state based on an assigned detection. To capture
aleatoric uncertainty, the network determines Gaussian distributions from
which the predicted and updated states are obtained. Bayesian layers with
reparametrization are employed to incorporate epistemic uncertainty. Experi-
mental results demonstrate that the uncertainty information can be exploited
to increase the accuracy of subsequent motion analysis by excluding unreli-
able tracks or track points. It was also shown that the uncertainty provides
important information about the suitability of the training data and can be
used to select the generated training data set with the best-suited motion
model. To avoid tedious manual annotation of training data, a novel scheme
was presented to generate arbitrary amounts of synthetic images based on
automatically extracted information from the images of an application.

• Deep Particle Tracker and Colocalization Analyzer: The first deep learning
method for combined particle tracking and colocalization analysis in two-
channel fluorescence microscopy images was presented. A convolutional
Long Short-TermMemory network is used to exploit short and long-term tem-
poral dependencies of object motion as well as image intensities. In addition,
colocalization probabilities are calculated, and colocalization information is
used to improve tracking.

• Deep Learning for Particle Detection and Tracking: A novel deep learning
method for 3D particle detection in 3D fluorescence microscopy images was
introduced, which performs density map regression. Detections close to
particles are rewarded during network training, and highly nonlinear direct
prediction of point coordinates is avoided. To focus on particles compared
to background image points, the adaptive wing loss is used. A weight
map is applied to cope with the very strong imbalance between particle
and background image points in 3D images. As an extension, temporal
information is integratedand sub-pixel positions are determined. For tracking,
the proposed particle detection method is combined with a fully Bayesian
neural network that considers uncertainty information of individual particle
detections.

• Quantitative Performance Evaluation: Extensive performance evaluations
of the proposed particle detection and trackingmethods have been conducted
based on data from the Particle Tracking Challenge as well as fluorescence
microscopy images of various viral and sub-cellular structures. It turned out
that the proposed methods outperform previous methods.
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8.2 Outlook

In this section, we describe possible future work.

• Particle detection and tracking could be combined in a unified neural network
architecture. In addition, establishing one-to-one correspondences within a
neural network would eliminate the necessity of using a classical combinato-
rial optimization algorithm. These are two challenging but important steps
toward an end-to-end learning approach for fluorescent particle tracking.

• Since all methods presented in this thesis are based on supervised learning,
self-supervised or unsupervised methods for particle detection and tracking
could be developed in future work.

• Our method for combined particle tracking and colocalization analysis was
developed for two-channel image data. Thus, this method could be extended
for multi-channel data with more than two channels in future work. In
addition, a deep learning method could be used for particle detection instead
of a classical detection method.

• Deep learning methods for motion and behavior analysis of fluorescent
particles could be investigated and combined with the methods proposed in
this thesis.

• In future work, the fluorescent particle detection and tracking methods
presented in this thesis could be adapted and employed for microscopy
images of other applications.
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