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ABSTRACT 
 

Proteins at interfaces: 
Conformational behavior and wear 

 
 
 

Emmanuel Louis Pierre Dumont 
 
 
 

Proteins at interfaces play a major role in biomaterials
1,2

 and lab-on-a-chip devices.
3,4

 Protein 

interactions with the surface  change their conformations and therefore their ability to bind to 

their respective ligands. Another major area of interest surrounding biomaterials and lab-on-a-

chip devices is the prediction and prevention of wear.
5,6

 Wear is the progressive loss of material 

from an object caused by contact and relative movement of the contacting solid, liquid, or gas.
7-9

 

It is estimated that wear costs 1% of the gross domestic product (approximately $150 billion for 

the US).
7,10

 With the emergence of drug-releasing implants and lab-on-the-chip devices, wear has 

also become a major concern in bio- and nano- technology.
11

 In our laboratory, we use 

microtubules (filamentous proteins) gliding on kinesin motor proteins as transporters in 

biosensors.
12

 This system, known as the motility assay, is ideal for studying how the 

conformation of kinesins impacts the gliding of microtubules and therefore the performance of 

the biosensor. The proposed studies seek to show that kinesins’ geometry changes with their 

grafting density following De Gennes’ scaling laws
13

 for flexible polymers (Chapter2 , published in 

Langmuir as E.L.P. Dumont, H. Belmas, and H. Hess, Observing the mushroom-to-brush transition 

for kinesin proteins, 2013, 29 (49), 15142-15145) and that microtubules experience molecular 

wear due to their repeated interactions with kinesins (Chapter 3, under review for Nature 

Nanotechnology as E.L.P. Dumont and H. Hess, Molecular wear of microtubules propelled by 

surface-adhered kinesins). These two results permit the prediction of the lifetime of biosensors 

using kinesin-propelled microtubules (Chapter 4, to be submitted to Nano Letters as Y. Jeune-

Smith, E.L.P. Dumont and H. Hess, Wear and breakage combine to mechanically degrade kinesin-



 
 

powered molecular shuttles). I also discuss the importance of mechanical fatigue for molecular 

machine design (Chapter 5, published as H. Hess and E.L.P. Dumont, Fatigue Failure and 

Molecular Machine Design, Small, 7, 1619-1623, 2011). 

Finally, and it is unrelated to the previous chapters, I developed Monte Carlo simulations for 

protein adsorption on polymer-coated surfaces (Chapter 6, to be submitted as E.L.P Dumont, 

A.V. Guillaume, A. Gore, and H. Hess, Random Sequential Adsorption of proteins on polymer-

covered surfaces: A simulation-based approach) and I explored a molecular model to explain the 

fracture of materials at low stresses (Chapter 7). 

 

Chapter 1: Microtubules, kinesins, and their interactions. 

In Chapter 1, I introduce the microtubules and kinesins, found in all living cells, and how they 

interact. We also introduce how these proteins are used in the “motility assay”, where 

microtubules glide on a kinesin-coated surface. Finally, we present existing litterature of 

molecular nanotribology (friction and wear) of microtubules and kinesins. 

 

Chapter 2: Observing the mushroom-to-brush transition for kinesin proteins. 

The height of polymers grafted to a surface is predicted to be constant at low densities 

(“mushroom” regime) and increase with the third root of the polymer surface density at high 

densities (“brush” regime). This mushroom-to-brush transition is explored with kinesin-1 proteins 

adhered to a surface at controlled densities. The kinesin height is measured by attaching 

fluorescently labeled microtubules to the kinesins and determining their elevation using 

fluorescence interference contrast microscopy. Our measurements are consistent with a 

mushroom and a brush regime and a transition near the theoretically predicted density. The 



 
 

mushroom-to-brush transition may play a role in protein behavior in crowded cellular 

environments and be exploited as a signal in intracellular regulation and mechanotransduction.   

 

Chapter 3: Molecular wear of microtubules propelled by surface-adhered kinesins. 

Wear, the progressive loss of material from a body caused by contact and relative movement, is 

a major concern not only in engineering but also in biology.
8,10,14,15

 Advances in nanotechnology 

both enable the study of the origins of wear processes at the atomic and molecular scale and 

demand the prediction and control of wear in nanoscale systems.
11,16,17

 Here, we show that wear 

occurs in an in vitro system consisting of microtubules gliding across a surface coated with 

kinesin-1 motor proteins, and that energetic considerations suggest a molecule-by-molecule 

removal of tubulin proteins. The wear rates show a complex dependence on sliding velocity and 

kinesin density, which – in contrast to the friction behavior between microtubules and kinesin
18

 – 

cannot be explained by simple chemical reaction kinetics. 

 

Chapter 4: Wear and breakage combine to mechanically degrade kinesin-powered molecular 

shuttles. 

In this Chapter, I show how the combined wear of microtubules propelled by surface-adhered 

microtubules (Chapter 3) and their breaking (an already known phenomenon) permit the 

prediction of the failure of microtubule-based biosensors, similar to the failure of macroscopic 

machines. In macroscopic machines, failure as a result of activation is the result of breakage or 

wear. Breakage is a sudden and permanent phenomenon often caused by fatigue. Wear, the 

gradual removal of small amount of material, causes an increasing deviation of the part 



 
 

dimensions from the ideal. Unless breakage intervenes, any system will ultimately fail due to 

wear. Reducing breakage and wear is a major consideration in machine design.
19

  

 

Chapter 5: Fatigue Failure and Molecular Machine Design. 

Sophisticated molecular machines have evolved in nature, and the first synthetic molecular 

machines have been demonstrated. With our increasing understanding of individual operating 

cycles, the question of how operation can be sustained over many cycles comes to the forefront. 

In the design of macroscale machines, performance and lifetime are opposing goals. Similarly, 

the natural evolution of biological nanomachines, such as myosin motor proteins, is likely 

constrained by lifetime requirements. Rather than bond rupture at high forces, bond fatigue 

under repeated small stresses may limit the mechanical performance of molecular machines. 

Here we discuss the effect of cyclic stresses using single and double bonds as simple examples 

and demonstrate that an increase in lifetime requires a reduction in mechanical load and that 

molecular engineering design features such as polyvalent bonds capable of rebinding can extend 

the bond lifetime dramatically. A universal scaling law for the force output of motors is 

extrapolated to the molecular scale to estimate the design space for molecular machines. 

 

Chapter 6: Random Sequential Adsorption of proteins on polymer-covered surfaces: A 

simulation-based approach 

Non-fouling polymeric coatings enable the suppression of protein adsorption to surfaces, and 

their perfection is the objective of many recent experimental studies.
20-25

 Obtaining a theoretical 

understanding of the functioning of these coatings and the prediction of residual protein 

adsorption as a function of the coating properties has similarly attracted significant interest.
26-35

 



 
 

A recent study developed a basic Random Sequential Adsorption (RSA) model for protein 

adsorption to non-fouling coatings, which was analytically solvable and yielded encouraging 

agreement with published experimental data.
36

 The model assumed that polymer chains on the 

surface can be represented by hard spheres with a radius equal to their radius of gyration. These 

randomly distributed hard spheres obstruct the adsorption of proteins, again represented as 

hard spheres with a diameter equal to the diameter of the protein. The evolution of the protein 

density on the surface was calculated from the independent probabilities to penetrate the layer 

of adsorbed proteins and the layer of polymer chains. Here, we scrutinize this analytical model by 

conducting computer simulations of the adsorption process under the same assumptions. We 

find that the results of the computer simulations deviate significantly from the analytical 

solution, which indicates that the spatial distributions of proteins and polymers cannot be 

considered independently. 

 

Chapter 7: A molecular model to explain material fracture at low stresses. 

In this Chapter, I extend Zhurkov’s work on predicting the lifetime of materials with a simple 

molecular model.
37

 In 1965, Zhurkov introduced a model
37

 to predict the lifetime of materials 

under uniaxial tension. Zhurkov’s model connects the lifetime of the material and the uniaxial 

stress (macroscopic experimental values) to several microscopic constants such as the enthalpy 

of sublimation and the Boltzmann constant. I extend this model by introducing the possibility of 

rebinding. This new model enables the prediction of the lifetime of material at low stresses. 
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CHAPTER 1 

 

Microtubules, kinesins, and their interactions 

 

Be patient, for the world is broad and wide 

Friar Laurence in Romeo and Juliet (Shakespeare) 
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Microtubules are filamentous proteins and are part of the cell 

cytoskeleton. 

 
Eukaryotic cells have an ensemble of protein filaments – microfilaments, intermediate filaments, 

and microtubules – called the cytoskeleton. The cytoskeleton is used by cells to interact 

mechanically with their environment, for intra-cellular transport, and for mitosis.
38

 Microtubules, 

which we use in our laboratory, are long and hollow cylinders made of the dimeric tubulin 

proteins (Figure 1). Their outer diameter is 25 nm and their inner diameter is 12 nm.
38

 Like the 

other cytoskeletal filaments, microtubules are very dynamic, undergoing phases of growing and 

shrinking. 

 

Figure 1. The structure of a microtubule and its subunit. (A) The subunit of each protofilament is 

a tubulin heterodimer, formed from a very tightly linked pair of α- and β-tubulin monomers. (B) 

One tubulin subunit (αβ heterodimer) and one protofilament are shown schematically. Each 

protofilament consists of many adjacent subunits with the same orientation. (C) The microtubule 

is a stiff hollow tube formed from 8-19 protofilaments aligned. From Alberts et al.
38
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Microtubules consist of αβ heterodimers of tubulin. These heterodimers are very stable and can 

be dissociated only by harsh treatments. Microtubules are polar structures: the fast-growing end 

is called the plus end and the slow-growing end is called the minus end. Most microtubules have 

13 protofilaments, but microtubules can be formed with 8 to 19 protofilaments.
39

 

Kinesins are motor proteins that walk along microtubules. 

Motor proteins derive their name from their ability to generate forces, and are responsible for 

muscle contraction and the crawling and swimming of cells. They are also capable of intra-

cellular transport of vesicles and of chromosomes during mitosis.
38

 There are 3 major families of 

motor proteins: myosins, dyneins, and kinesins. Within each family, proteins share approximately 

50% of their amino acid sequence with each other. There are more than two dozen types of 

kinesin proteins. The first kinesin motor was discovered in 1985 by M. Sheetz,
40

 a professor of 

biology at Columbia University. Kinesins have the ability to bind to αβ heterodimers and, as a 

result, are able to walk on microtubules by hydrolyzing ATP molecules. Generally speaking, 

kinesins are processive motors, traveling for hundreds of steps along a microtubule before 

detaching.
38

 Among the different families of kinesins, kinesin-1 proteins, which we use in our 

laboratory, are transport proteins: their main role was identified to be transporters of vesicles 

within cells. In contrast, kinesin-8 proteins play a role in microtubule depolymerization, which 

kinesin-1 proteins do not have.
41

 

In August 2013, Gigant et al. revealed for the first time the details of the binding between 

kinesin-1 proteins and αβ heterodimers (Figure 2).
42

 The technical hurdle was to obtain protein 

crystals without tubulin polymerization. 
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Figure 2. Structure of the kinesin-1 motor domain in complex with αβ-tubulin. Side chains 

involved in binding contacts (within 4 Å) are shown. The observed 9° curvature of tubulin 

subunits with respect to a linear microtubule is indicated. Adapted from Cochran et al.
43

 

 

This high resolution of the binding mechanism between kinesin-1 and αβ heterodimer reveal a 9° 

curvature (Figure 2), as opposed to a straight conformation as found in the microtubule lattice, 

suggesting that the crystallization of the kinesin-heterodimer complex is not completely similar 

to what is found in cells. However, it is expected that this X-ray crystallography by Gigant and 

colleagues will lead to new insights about the mechanics of kinesin-1 proteins.  

 

Fifteen years ago, it was discovered that kinesin proteins take 8-nm steps on microtubules for 

each ATP molecule they hydrolyze.
44

 The way kinesins make their 8-nm steps, however, was a 

long standing controversy. Until 10 years ago, two models were still competing: the hand-over-

hand mechanism and the inchworm movement (Figure 3).
45

 In 2004, Yildiz and colleagues 

showed that kinesins walk hand over hand on microtubules.
46
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Figure 3. Examples of two alternative classes of mechanisms for processive movement by 

kinesin. The hand-over-hand model (left) predicts that a dye on the head of kinesin will move 

alternately 16.6 nm, 0 nm, 16.6 nm, whereas the inchworm mechanism (right) predicts uniform 

8.3-nm steps. Adapted from Yildiz et al.
46

 

Using kinesins and microtubules in a motility assay. 

In 1985, for the first time, kinesins and microtubules were used by Vale et al. in the reverse 

geometry where kinesins are adsorbed to a surface and propel microtubules (Figure 4).
47

 The 

kinesin conformational changes when adsorbing to the surface were not studied but Vale et al. 

noticed that kinesins kept their motor activity when adsorbed on a glass surface. 
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Figure 4. Sketch of a motility assay. (a) Kinesin-motored transport of vesicles along immobile 

microtubules. The kinesin molecules, attached to unidentified receptors on the vesicle surface, 

transport the vesicles from the (−) to the (+) end of a stationary microtubule. (b) Kinesin- 

catalyzed movement of microtubules. The kinesin molecules bound to the glass surface move 

toward the (+) end of the microtubule. Because the kinesin molecules are immobilized onto the 

coverslip, the sliding force is transmitted to the microtubule, which then moves in the direction 

of its (−) end. ATP is required for movement in both cases. Adapted from Lodish et al.
48

 

 

In our laboratory, microtubules are first polymerized and then stabilized in paclitaxel (taxol) to 

avoid depolymerization.
49,50

 When preparing the motility assay, the glass surface is first coated 

with casein proteins to avoid denaturing of kinesin-1 proteins when they land on the surface 

(Figure 5).
51
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Figure 5. Sketch and picture of a motility assay. (A) Caseins are adsorbed to the surface before 

kinesins. Microtubules are usually 0.5 – 15 µm long, are stabilized with taxol (not shown in the 

drawing), and are fluorescently-labeled with rhodamine (not shown in the drawing). On both 

extremities, there are two weakly bound dimers that play an important role in the wear process 

described in the research plan and results. (B) Picture of a motility assay with 100x magnification. 

Microtubules glide all over the surface, as shown by the two traces. 

 

Motility assays have been used to create biosensors in our laboratory.
12

 As a result, the 

degradation of microtubules, which act as transporters in the biosensor, is critical to the lifetime 

of the biosensor. It was already known that microtubules break when they glide on kinesins.
52

 

However, the high number of binding events between kinesins and microtubules may induce also 

wear (our hypothesis for the 2
nd

 specific aim). To measure wear, it is critical to measure the 

length of microtubules with the highest accuracy possible. However, using a magnification of 

100x, a pixel represents a distance of 80 nm. As a result, any measurement “by hand” of the 

length of a microtubule is made with an uncertainty of at least a few pixels (Figure 6) since it is 

difficult to locate the extremities of the microtubule. Such an uncertainty is equivalent to 

20 µm

(A) (B)
Microtubule, 0.5 – 15 μm

2
5

 n
m

Tubulin dimer

Kinesin

Weakest dimers

Casein
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approximately half a micrometer and complicates the measurement of the wear process 

significantly. Fortunately, in 2011, Ruhnow and colleagues developed a MATLAB code to measure 

the length of filaments with sub-pixel accuracy (Figure 6).
53

 We used Ruhnow’s code to measure 

the wear of microtubules (See Research plan and results). 

 

Figure 6. Measuring the length of microtubules. (A) Picture of a microtubule under 100x 

magnification. It is very difficult to distinguish the extremities of the microtubule. (B) Principles of 

the algorithm to determine the length of filaments with sub-pixel accuracy. (B) is adapted from 

Ruhnow et al.
53

 

Molecular crowding of kinesins on microtubules. 

Because they retain their motor activity, kinesins on a surface are the ideal testbed to study the 

impact of their crowding over their conformational behavior. Molecular crowding is an important 

phenomenon responsible for several age-related diseases such as Alzheimer’s and the 

Parkinson’s diseases.
54

  In cells, molecular crowding of kinesins can create a traffic jam of kinesins 

on microtubules, as shown by Leduc et al. (Figure 7).
55

 

 

1 µm 

(A) (B) 
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Figure 7. Molecular crowding on kinesins on a microtubule. Leduc et al. showed that molecular 

crowding of kinesins creates traffic jam. They never explored, however, the conformational 

change of kinesins when they are in a crowded environment. Adapted from Leduc et al.
55

 

Scaling laws for flexible polymers. 

More than 30 years ago, Alexander and De Gennes derived scaling laws which showed that the 

height of grafted flexible polymers is independent of grafting density at low densities 

(“mushroom” regime) and scales with the third root of the grafting density at high densities 

(“brush” regime).
13,56
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Figure 8. Sketch of the mushroom-to-brush transition for flexible polymers. On the left side of 

the drawing, polymers are in the mushroom regime and on the right side, they are in the brush 

regime. In the brush regime, the height of flexible polymers scales with the third root of the 

grafting density. Adapted from Brittain et al.
57

 

 

The transition between the mushroom and the brush regime occurs when polymer chains start 

to overlap.
13,56,58

 This scaling law was experimentally verified by Wu et al. who observed the 

mushroom-to-brush transition for grafted polymers using polyacrylamides (average molecular 

weight: 17 kDa; radius of gyration: 5.4 nm), as shown in the figure below reproduced from Wu’s 

paper.
59
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Figure 9. Mushroom-to-brush transition for a flexible polymer. Wu et al. were the first to 

observe the transition from the mushroom to the brush regime for flexible polymers. Adapted 

from Wu’s paper.
59

 

 

As predicted, the height of polymers in the mushroom regime (18 nm) was constant and the 

height increased with an exponent of roughly 1/3 (0.37 – 0.4) in the brush regime. The transition 

from the mushroom to the brush regime occurred when the available area per chain occurred at 

a reduced grafting density Σ = 6, where Σ = σπRg
2
, σ is the kinesin grafting density, and Rg is the 

kinesin radius of gyration. This is significantly higher than the transition at Σ = 1 one would expect 

if polymer chains occupied half-ellipsoids of radius Rg and height 2Rg.
60

 This “late” transition has 

been repeatedly observed, sometimes even at Σ > 10 .
57

 

Wear at the nanoscale. 

Besides conformational changes, wear and friction are also of interest for lab-on-the-chip 

devices. These two phenomena were discovered and, as a result, defined for the macroscale. 
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They are part of the field of tribology, founded in 1966 by Jost,
61

 which also encompasses the 

study of lubrication.
8
 

Wear is the progressive loss of material from a body caused by contact and relative movement of 

a contacting solid, liquid, or gas.
7-9

 Most of the time, wear results from the contact of asperities 

between two surfaces. Several empirical laws are used to describe wear. The most widely used 

equation is Archard’s law of adhesive wear
62

 where the material loss per time   depends linearly 

on the relative speed   and the normal force   : 

    

   

 
 

where   is the wear coefficient and   is the hardness of the material. There have been attempts 

to adapt this law to the nano- and micro- scales, but these laws remain empirical and do not 

account for all wear phenomena at the nano- and micro- scales.
63

 This year, Jacobs and Carpick 

reported an atom-per-atom wear of a silicon tip gliding on a diamond surface, showing that wear 

at the nanoscale is not necessarily a plastic phenomenon and does not result from fracture; 

rather it is the gradual removal of the most weakly bonded atoms.
17

 In that paper, they moved 

away from empirical models and used the Bell equation to explain their experiments: 

    exp ( 
  act

   
) 

Where    is the rate of atom loss due to wear,    is a pre-factor (an effective attempt frequency), 

      is the free energy of activation,    is  otzmann’s constant, and   is the absolute 

temperature. 
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Figure 10. Proposed mechanism of nanoscale wear by stress-assisted atom-by-atom removal. 

(a) A sharp silicon asperity in adhesive contact with a diamond substrate slides in quasi-static 

equilibrium relative to the substrate. (b) One of the low-coordinated atoms from the asperity 

surface forms a covalent bond (green) to one or more substrate atoms. This thermally activated 

bond formation is facilitated by the compressive stress in the contact. (c) The bonds to the tip are 

then broken as the asperity slides on, leaving a silicon atom on the substrate. Adapted from 

Jacobs et al.
17

 

 
The depolymerization of microtubules facilitated by kinesin-8, demonstrated by Varga et al.,

41
 is 

conceptually different from the gradual wear of the silicon. In this case, the kinesin-8 proteins act 

collectively to depolymerize the plus end of the microtubules, targeting the most weakly bonded 

tubulin dimer. However, this behavior is considered targeted disassembly, which is conceptually 

different from wear, which is an undesired result of stresses caused by the normal operation of a 

mechanical system leading to system failure. Instead of kinesin-8, our laboratory uses kinesin-1, 

which has not been shown to exhibit targeted disassembly, thus making it suitable for studies on 

wear and friction. 
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Figure 11. The two proposed mechanisms for the disassembly of microtubules by Kinesin-8 

proteins. (A) Tubulin removal before bump-off: After a kinesin-8 protein reaches a vacant end, it 

severs the interdimer bond, perhaps due to intramolecular strain developed when both motor 

domains are tightly bound (left). An incoming kinesin-8 protein then bumps off the end-bound 

one. This acceleration of kinesin-8 detachment from the plus end occurs due to competition for 

the kinesin-8 binding site on the penultimate tubulin dimer (middle). The binding of the second 

kinesin-8 protein to the end is then followed by another severing (right). (B) Tubulin removal 

during bump-off: A kinesin-8 protein binds stably to the terminal tubulin dimer at the 

microtubule’s plus end (left). An incoming kinesin-8 protein bumps into the paused molecule 

(middle) causing severing and dissociation of a kinesin-tubulin complex (right). Adapted from 

Varga et al.
41

 

Friction at the nanoscale. 

Friction is the resistance to motion during sliding or rolling that is experienced when one solid 

body moves tangentially over another with which it is in contact.
64

 The resistive tangential force, 

which acts in a direction directly opposite to the direction of motion, is called the friction force. 

There are two main types of friction that are commonly encountered: dry friction and fluid 

friction. As its name suggest, dry friction, also called "Coulomb" friction, describes the tangential 

component of the contact force that exists when two dry surfaces move or tend to move relative 

to one another. Fluid friction describes the tangential component of the contact force that exists 
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between adjacent layers in a fluid that are moving at different velocities relative to each other as 

in a liquid or gas between bearing surfaces. Similar to wear, a few friction models, such as the 

Tolimson model, were made but they describe incompletely and sometimes unsuccessfully 

phenomena of friction at the nano- and micro- scales.
63

  

 

In 2009, Bormuth and colleagues showed that when a kinesin-8 protein is dragged along a 

microtubule in absence of ATP, it exerts a dragging force, conceptually understood as “protein 

friction” (Figure 12).
18

 They showed that the friction force is proportional to the sliding velocity at 

velocities up to 1 µm s
-1

. They also showed that the energy barrier of this process is 13 ± 2 kBT.  

 

 

Figure 12. Schematic of the kinesin friction experiment. (A) Using a focused laser, a kinesin-8 

coated microsphere is trapped close to an immobilized microtubule (not drawn to scale). Moving 

the stage with constant velocity past the stationary laser drags the microtubule lattice 

underneath the kinesin-8 molecule, creating a friction force F = −Ftrap (neglecting the very small 

hydrodynamic drag arising from the viscosity of the aqueous solution). Positive stage velocity is 

(A) (B) 
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defined as the microtubule moving with its plus end leading; in this case, the laser and the motor 

are moving toward the minus end. (B) Absolute value of the friction force as a function of drag 

speed for the same Kinesin molecule and microtubule shown in (A). Drag direction toward the 

microtubule’s plus end ( ) and minus end (△) are indicated. (Schematic inset) Asymmetric 

potential landscape defining the periodicity δ, the asymmetry parameter Δ, the potential well 

depth U0, and the forward k+ and backward k− rates. The asymmetry in the schematic is 

exaggerated to illustrate the asymmetry parameter. Adapted from Bormuth et al.
18
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CHAPTER 2 

 

Observing the mushroom-to-brush transition 
for kinesins proteins 

 

Bring out the tiger in you 

Frosted Flakes 

 

 

 

 

 

 

This Chapter was published in Langmuir as E.L.P. Dumont, H. Belmas, and H. Hess, Observing the 
mushroom-to-brush transition for kinesin proteins, 2013, 29 (49), 15142-15145. 
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Objective and rationale 

More than 30 years ago, Alexander and De Gennes derived scaling laws which showed that the 

height of grafted polymers is independent of grafting density at low densities (“mushroom” 

regime) and scales with the third root of the grafting density at high densities (“brush” 

regime).
13,56

 The transition between the mushroom and the brush regime occurs when polymer 

chains start to overlap.
13,56,58,65

 While studies frequently examine the scaling behavior in the 

brush regime,
66

 few studies were able to observe the transition from mushroom to brush.
67,68

 Wu 

et al., for example, experimentally observed the mushroom-to-brush transition for grafted 

polymers using polyacrylamides (average molecular weight: 17 kDa; radius of gyration: 5.4 nm).
59

 

As predicted, the height of polymers in the mushroom regime (18 nm) was constant and the 

height increased with an exponent of roughly 1/3 (0.37 – 0.4) in the brush regime. The transition 

from the mushroom to the brush regime occurred when the available area per chain occurred at 

a reduced grafting density Σ = 6, where Σ = σπRg
2
, σ is the grafting density, and Rg is the radius of 

gyration of the polymer (Figure 13).  However, the transition to a brush is gradual, with 

simulations showing an onset at Σ = 1
60

 and a highly stretched brush regime reached in some 

cases at Σ > 10 due to polymer polydispersity and solvent effects.
57
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Figure 13. Schematic of the mushroom-to-brush transition. If the grafted polymer chains occupy 

approximately half-ellipsoids of radius Rg and height 2Rg, the mushroom-to-brush transition is 

expected near a reduced grafting density of Σ=1,
60

 while the height of polymers in the mushroom 

regime is predicted to be 2Rg.
13

 

 

The height of grafted polymer chains is not only of interest for synthetic coatings, but also in 

biological systems.
69,70

 For example, microtubule-associated proteins (MAPs) maintain the 

spacing between microtubules by forming a dense brush,
71

 which means that the height of the 

MAP brush plays a key physiological role in neural functioning. Here, we map out the mushroom-

to-brush transition using kinesin-1 motor proteins,
72

 which constitute a highly non-traditional 

polymer system. Kinesin-1 motor proteins are dimeric proteins which consist of a long tail which 

has evolved to attach to various intracellular cargos and a neck region connecting the two heads 

and the tail.
73

 The 57 nm long protein consists of 7 segments of varying length (8, 15, 10, 5, 6, 8, 

Σ = σπRg
2 Σ=1 Σ=4 

Brush H 

Σ=1/4 

Mushroom 

2Rg 

πRg
2 π(Rg/2)2 
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and 5 nm) which are connected by flexible regions.
74

 It has been shown that by pre-coating a 

surface with casein proteins, which bind in a 2 nm thick monolayer, and supplementing the 

solution with additional casein, kinesins can be adhered to the surface by their tails only.
51,75

 The 

casein layer effectively disrupts interactions between the kinesin head domains and the surface 

and prevents denaturation while maintaining motor activity. The height of surface-adhered 

kinesin-1 motors can be measured by letting fluorescently labeled microtubules (tubular 

assemblies of tubulin proteins with a diameter of 25 nm and a length of several micrometers) 

bind to the kinesins, and by measuring the elevation of the microtubules above the surface using 

fluorescence interference contrast (FLIC) microscopy.
74,76

 FLIC microscopy is an interferometric 

method which utilizes the height-dependent efficiency of fluorescence excitation and emission 

near a reflecting surface to obtain height measurements with nanometer accuracy.
77-80

 While the 

fluorescence intensity of an individual fluorophore above a reflecting surface is modulated in a 

non-linear fashion, the averaging over the fluorophores distributed over the cross-section of a 

microtubule results in a nearly linear relationship between microtubule brightness and height for 

heights between 15 and 60 nm above the surface in aqueous buffer (Figure 14).
74

 Using a 12.5 

nm silicon oxide layer as a spacer between the silicon and the solution, Kerssemakers et al.
74

 

showed that microtubules adhering to a layer of avidin proteins are positioned 3.5 ± 0.2 nm 

above the surface and that microtubules adhered to kinesins at a density of ~340 µm
-2

 are 

positioned 16.8 ± 1.9 nm above the silicon oxide surface. This height, measured for a reduced 

kinesin density of Σ ≈ 0.1, is not significantly different from twice the Flory radius of gyration of 

kinesin proteins (9.5 nm) given by:
81
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Where the ai are the lengths of the flexibly connected individual segments (8, 15, 10, 5, 6, 8, and 

5 nm). The match between the kinesin height measured by Kerssemakers et al.
74

 and twice the 

radius of gyration suggests that all the approximations and assumptions regarding the flexibility 

of the kinesin tail, the absence of kinesin-surface interactions, the presence of kinesin-

microtubule interactions, and the short number of segments roughly cancel each other out to 

yield the mushroom height predicted by Alexander and deGennes.
13,56

 

 

 

Figure 14. Experimental set-up. Interference between direct and reflected light leads to a 

modulation of the observed fluorescence intensity that is for fluorescently labeled microtubules 

linearly dependent on the distance to the surface between 20 and 60 nm.
74

 The microtubule 

fluorescence intensity per length is determined by subtracting the integrated counts from a 

circular region adjacent to a microtubule from the integrated counts of a circular region on a 

microtubule. Microtubules adsorbed directly to an avidin surface served as a reference, while 

microtubules attached to kinesin showed a higher brightness which was dependent on kinesin 

surface density.  
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Experimental section 

Kinesin brushes of varying density were prepared by adsorbing kinesins from solutions of 

different kinesin concentrations to a surface pre-coated with casein (See further sections). The 

kinesin stock solution concentration was determined from microtubule landing rate 

measurements with an error of 33% (see further sections).
82

 By replacing microtubules with 

nanospheres in these landing rate experiments, it has been shown that the kinesin surface 

density is proportional to the initial kinesin solution concentration for kinesin surface densities 

between 10 µm
-2

 and 4,000 µm
-2

 (See further sections).
83

 Microtubules were observed in a flow 

cell on the top surface of a silicon wafer coated with a silicon dioxide layer of 20 nm. The 20 nm 

silicon dioxide layer was used to place the microtubules at a distance from the reflecting silicon 

interface where the fluorescence intensity changes linearly with distance (Figure 14). The 

fluorescence intensity of microtubules on avidin was measured by flowing avidin proteins into 

the flow cell, washing with buffer to remove avidin proteins which did not adhere to the surface, 

flowing in microtubules, and flowing in an antifade solution to prevent photobleaching. When 

measuring the fluorescence intensity of microtubules on avidin, a high variance in the data was 

observed, corresponding to populations of microtubules aggregating with each other (as a result 

of positively charged avidin cross-linking negatively charged microtubules). A Bayesian clustering 

algorithm was used to separate these different populations and determine the average of 

fluorescence intensity of single microtubules (see further sections). This value was assumed to 

correspond to the previously determined height of 3.5±0.2 nm.
74

 The fluorescence intensity of 

microtubules on kinesins was measured by flowing casein proteins into the flow cell to create a 

layer of adsorbed caseins and prevent kinesin proteins from collapsing on the surface,
84

 flowing 

kinesin proteins into the flow cell at specific initial concentration, flowing microtubules into the 

flow cell, and finally flowing in an antifade solution to prevent photobleaching during imaging. 

The steps were 5 minutes separated in time, and Adenylyl-imidodiphosphate (AMP-PNP) was 
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used to inhibit kinesin activity and render bound microtubules stationary.
47

 Two separately 

prepared batches of full-length kinesin-1 heavy chains were used, whose stock concentration 

was determined by landing rate experiments to be 23,800 ± 7,800 and 24,700 ± 8,000 µm
-2

, 

respectively (See further sections). From each kinesin batch, six precise dilutions were added to 

individual flow cells. For each flow cell, 150 and 600 measurements of the fluorescence intensity 

of microtubules distributed over about ten fields of view using a 100x oil objective, a cooled CCD 

camera and an exposure time of 40 s, were taken. The standard deviation of the individual 

microtubule intensities for a given kinesin density was on the order of 10 % of the mean. Since 

the ratio of standard deviation to the mean of microtubule intensities on a glass surface (where a 

height dependent intensity modulation is absent) was similar (10%), this variation was mainly 

due to the distribution in the number of protofilaments in each microtubule (13, 14, 15 or 16).
85

 

Each data point in Figure 15 represents the average of these measurements and the error bars a 

95% confidence interval for the average. A detailed description of the methods can be found in 

the further sections. 

Result and discussion 

The interpretation of the kinesin-density dependent microtubule fluorescence is complicated by 

the fact that while the relative kinesin surface densities are well defined for each set of 

experiments, the uncertainty in the concentration of each stock solution is high (33% for both 

batches) and creates a proportional uncertainty in the absolute kinesin surface concentration. 

Therefore, the results for each batch are shown in separate graphs (Figure 15a and Figure 15b).  

In each graph, the fluorescence intensity measured for kinesin densities between 200 µm
-2

 and 

1,500 µm
-2

 (the plateau characteristic for the mushroom regime) was averaged and identified 

with the height of 16.8 ± 1.9 nm measured by Kerssemakers et al. who utilized the identical 

protein, surface, and solution conditions.
74

 The measurement of microtubule fluorescence 



24 

intensity on (1) avidin and (2) kinesin in the mushroom regime together with the known linear 

relationship between intensity and height enables the calibration of the microtubule intensity 

with respect to kinesin height (Figure 15). 

 
 
Figure 15. Mushroom-to-brush transition for kinesins. Fluorescence intensity of microtubules 

and kinesin height as a function of kinesin density for (a) batch A and (b) batch B of kinesin. The 

error bars on the data points represent a 95% confidence interval. The height in the brush regime 

is fit with y = c*x
1/3

. The microtubule intensity on an avidin layer is indicated by the triangle. The 

absolute fluorescence intensity changes from Batch A to B are due to differences in the 

excitation intensity for the two experiments. 

 

Taking Kerssemaker et al.’s experimental value of the mushroom height (H=16.8 nm) as 

corresponding to twice the radius of gyration, we would expect the mushroom-to-brush 

transition at roughly 4/(πH
2
) = 4,500 µm

-2
 (equivalent to Σ = σπRg

2 
= 1; Figure 13). We found a 

reduced density of Σ = 0.34 ± 0.11 and Σ = 0.43 ± 0.14 for Batches A and B respectively. Data 

points at kinesin densities of 1877, 2501, and 3752 µm
-2

 for Batch A and 2465 and 3698 µm
-2

 for 

Batch B show a marked increase in intensity, and the increase is consistent with a power law 

a 

Mushroom Brush 

b 

Mushroom Brush 
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scaling with the third root of the grafting density. The data point for Batch B at 123 µm
-2

 is an 

outlier compared to the data points at 247, 616 and 1,233 µm
-2 

which define the mushroom 

regime, which may reflect that at very low kinesin densities the microtubule begins to approach 

the surface due to the wide spacing of kinesins. 

Compared with previous experimental observations of a mushroom-to-brush transition at 

reduced densities of Σ = σπRg
2 

= 1 or higher,
57,59

 here the mushroom-to-brush transition seems to 

occur relatively early (Σ ≈ 0.4). The early onset may reflect the peculiarities of the grafted 

monodisperse kinesin protein, where two motor domains are tethered to a long stalk and 

repulsive surface–polymer interactions are minimized by the casein layer, or it may result from 

an underestimation of the kinesin footprint by modeling this semiflexible polymer with only 

seven segments as a long freely jointed chain unperturbed by interactions with the surface. 

Unfortunately, the relevant radius of gyration of kinesin in solution cannot be determined, 

because in the absence of another surface the tail binds to the motor domains and inhibits the 

motor activity.
73

 While the biological purpose is presumably to conserve ATP if the motor is not 

attached to cargo by its tail, it also means that the radius of gyration of full-length kinesin which 

could be measured in solution is not representative of the space occupied by kinesin on the 

surface. Similarly, the measurement of the kinesin brush height with a second method is not 

straightforward. The tendency of proteins to non-specifically adsorb to surfaces would make 

atomic force microscopy measurements similar to those conducted by Yamamoto et al. 
66

 very 

challenging, and the measurement of the dried film thickness to calculate the brush height as 

conducted by Wu et al.
59

 is impractical because the buffer solution contains salts and acids which 

precipitate during drying and contribute to the film height. Nevertheless, the change in the 

height of kinesin-1 brushes as a function of their surface density observed here is consistent with 

the theoretical framework of Alexander and De Gennes and is one of the few direct experimental 

observations of a mushroom-to-brush transition in the height of a grafted polymer brush. 
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Outlook 

Kinesin-1 motors are also widely used in nanobiotechnology as components of molecular shuttle 

systems, where the end of the kinesin tail is non-specifically adsorbed to a glass or silicon surface 

coated with casein and the heads propel microtubules which serve as the motile, cargo-carrying 

elements.
86-88

 In this context, the height of the surface-grafted kinesin-1 motors as a function of 

the grafting density is of great interest, because a changing conformation may have wide-ranging 

implications for cargo attachment, force generation and kinesin-microtubule interactions.
76

 

Finally, the mushroom-to-brush transition may affect the behavior of proteins with long, flexible 

domains in crowded cellular environments, for example when kinesin traffic along a microtubule 

becomes congested.
55

 In this situation, the increasingly repulsive interactions between the tails 

may enhance the dissociation rate and prevent a traffic jam. Proteins with long coiled-coil 

regions separated by flexible hinges are also found on the Golgi and on endosomes where they 

collectively mediate vesicle fusion.
89

 In these situations, the mushroom-to-brush transition may 

provide a physical switch which is exploited for intracellular decision making. 

Materials and methods 

Microtubules were polymerized by reconstituting a 20 µg aliquot of rhodamine-labeled, 

lyophilized tubulin (TL331M, Lot 357 from Cytoskeleton Inc, Denver, CO) with 6.25 µL 

polymerization buffer solution (BRB80 with 4 mM MgCl2, 1 mM GTP, 5% dimethyl sulfoxide), and 

placing it at 37 °C for 30 minutes. The microtubules are then stabilized by diluting them a 

thousand-fold into BRB80 buffer (80 mM piperazine-N,N′-bis(2-ethanesulfonic acid), 1 mM 

MgCl2, 1 mM Ethylene Glycol Tetraacetic Acid, pH 6.9 with KOH) with 10 µM paclitaxel (Sigma, St 

Louis, MO). A kinesin construct consisting of the wild-type, full-length Drosophila melanogaster 

kinesin heavy chain and a C-terminal His-tag was expressed in Escherichia coli and purified using 

a Ni-NTA column.
73

 Flow cells are constructed using one cover slip, one silicon wafer, and double-
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sided tape as spacer. We used silicon wafers with a 20 nm oxide layer (Siliconsense Inc., 3’’ 

diameter, <100>, SEMI std. flats, one side polished, prime grade, surface roughness < 2 Å, 

flatness < 9 µm). For microtubules adhering to avidin, a solution of 1 µM avidin (A2667, 

Invitrogen, City) in BRB80 buffer is flown into the flow cell. After 5 min, the solution is exchanged 

with BRB80 to wash out avidin which did not adsorb. After another five minutes, this solution is 

exchanged with microtubule solution containing an enzymatic antifade system
90

 (16 nM tubulin, 

10 µM Paclitaxel, 20 mM D-glucose, 20 µg mL
-1

 glucose oxidase, 8 µg mL
-1

 catalase, 10 mM 

dithiothreitol, and 1 mM Adenylyl Imidodiphosphate (AMP-PNP) in BRB80). AMP-PNP (Sigma, St 

Louis, MO) is an ATP analogue which arrests motor action.
47

 After another five minutes, the 

solution in the flow cell is exchanged with a solution containing the enzymatic antifade system 

only (10 µM Paclitaxel, 20 mM D-glucose, 20 µg mL
-1

 glucose oxidase, 8 µg mL
-1

 catalase, 10 mM 

dithiothreitol in BRB80). For microtubules adhering to kinesins, a solution of 0.5 mg mL
-1

 casein in 

BRB80 buffer is flown into each flow cell. After 5 min, the solution is exchanged with the kinesin 

motor solution (kinesin, 0.5 mg mL
-1 

casein, 1 mM AMP-PNP in BRB80). After another five 

minutes, this solution is exchanged with microtubule solution containing an enzymatic antifade 

system
90

 (16 nM tubulin, 0.5 mg mL
-1

 casein, 10 µM Paclitaxel, 20 mM D-glucose, 20 µg mL
-1

 

glucose oxidase, 8 µg mL
-1

 catalase, 10 mM dithiothreitol, and 1 mM AMP-PNP in BRB80). After 

another five minutes, the solution in the flow cell is exchanged with a solution containing the 

enzymatic antifade system only (0.5 mg mL
-1

 casein, 10 µM Paclitaxel, 20 mM D-glucose, 20 µg 

mL
-1

 glucose oxidase, 8 µg mL
-1

 catalase, 10 mM dithiothreitol in BRB80). The openings of the 

flow cells are then sealed with a small amount of vacuum grease to prevent evaporation of the 

solutions. All experiments were performed at 24 °C.  

Microtubules were imaged using a Nikon TE2000-U Epi-fluorescence microscope (Nikon, Melville, 

NY) equipped with an X-cite 120 lamp (EXFO, Ontario, Canada), an iXON DU885LC EMCCD camera 

(Andor, South Windsor, CT) and a 100x oil objective (NA 1.45).  
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For each flow cell, we took between 150 and 600 measurements of the fluorescence intensity of 

microtubules distributed over about ten fields of view using a 100x objective, a cooled CCD 

camera and an exposure time of 40 s. 

Determination of the width of a microtubule footprint for use in 

landing rate measurements. 

In previous landing rate measurements, the interaction area of the microtubule with the kinesin 

on the surface was assumed to be equal to the “footprint” of the microtubule given by the 

product of average microtubule length and width (25 nm).
82,91

 This was tested by comparing the 

product of kinesin density and interaction area obtained from landing rate measurements with 

the kinesin density determined from a measurement of total protein concentration (        

mg/mL – George Bachand, Center for Integrated Nanotechnology, Sandia National Laboratory, 

private communication) and a measurement of the relative kinesin content from gel 

densitometry (     , gel provided by George Bachand).  The implied width is given by:  

  
   

    
 

where       kDa is the molecular weight of kinesin-1 heavy chains (from the database 

www.uniprot.org #P17210),          µm is the height of a typical flow cell,        

      µm is the average length of microtubules used in the landing rate measurements, and 

            is the product of interaction area and kinesin density for the landing rate 

measurements shown in Figure 16 and Figure 17.  

Assuming a 5% uncertainty for the concentration  , we obtain            nm, which is the 

value used for the width of the microtubule “footprint” in this work.  
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Figure 16. The number of microtubules (MTs) attached to the surface as function of time for 

the casein-coated glass exposed to kinesin solutions diluted from the stock solution. The field 

of view (FOV) was 80 µm × 80 µm. Experiment performed by Ashutosh Agarwal. 

 

Figure 17. Landing rates R computed from the data shown in Figure 16 and plotted against the 

concentration of the kinesin solution for casein-coated glass surfaces. The equation   

 (       ) where A is the cross section area of a microtubule and σ is the kinesin grafting 

density corresponding to undiluted kinesin. We obtained            . Experiment 

performed by Ashutosh Agarwal. 
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Measurement of kinesin grafting density with landing rate 

measurement. 

To measure the kinesin grafting densities for batches A and B, we used a third batch C of kinesins 

to determine the average length of microtubules (          µm) and the diffusion limited 

landing rate  . To do so, we measured the number of microtubules per field of view at several 

dilutions for the batch C (Figure 18). To each curve, we fit the equation     (   
 

 (      )

  ) 

where  ,      and    are fit parameters. We then plot the landing rate   as a function of the 

dilution ε as shown in Figure 19. To this curve, we fit the equation    (       ) where 

     is the cross section area of a microtubule and   is the kinesin grafting density 

corresponding to undiluted kinesin. We used           µm and        nm (determined 

in section (2) of further sections). The fit yields             and             (80 

µm)
-2

s
-1

. We then ran a landing rate experiment for batch A and B at 1/1000 dilution (Figure 18).  

 

Figure 18. The number of microtubules (MTs) attached to the surface as function of time for 

the casein-coated glass exposed to kinesin solutions diluted from the batch C stock solution. 

The field of view (FOV) was 80 µm × 80 µm. Experiment performed by Ashutosh Agarwal. 
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Figure 19. Landing rates R computed from the data shown in Figure 18 and plotted against the 

concentration of the kinesin solution for casein-coated glass surfaces. Experiment performed by 

Ashutosh Agarwal. 

 

Figure 20. The number of microtubules (MTs) attached to the surface as function of time for 

the casein-coated glass exposed to kinesin solutions diluted from the batch A and B stock 
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solutions. The field of view (FOV) was 80 µm × 80 µm. Experiment performed by Ashutosh 

Agarwal. 

 

Since the same microtubules were used for Batch A, B, and C and since the cross section area of a 

microtubule A and the diffusion limited landing rate Z were previously determined with Batch C, 

the kinesin surface densities which would be obtained from undiluted stocks for Batch A and B 

can be determined by fitting     (   
 

 (      )

  ) to their landing rate measurements 

(Figure 20), finding the fit value for R, and using the following equation: 
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 The error on the kinesin densities is given by: 
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We found the kinesin density to be 23,761 ± 7,841 µm
-2

 for batch A and 24,651 ± 8,022 µm
-2

 for 

batch B as the kinesin densities which would be obtained from undiluted stock solution. 

The kinesin grafting density does not saturate up to 4,000 µm-2. 

Agarwal et al. showed that the kinesin grafting density is proportional to the kinesin 

concentration in solution if the adsorption time is 5 min (Supplementary Figure 4 of 

Agarwal2012).
83
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Figure 21. Relative attachment rate constants computed by dividing attachment rate constants 

kon with the diffusion limited maximal landing rate Z determined on a bare glass surface. The 

error bars are roughly the size of the data points and represent the standard error. Adapted from 

Agarwal et al.
83

  

Bayesian algorithm to separate normal distributions. 

The fluorescence measurements of microtubules adhering to avidin are represented by   

observations   (       ). We assume that microtubules are either singles or aggregate to 

each other in doublets, triplets, etc. We designed a Bayesian clustering algorithm to differentiate 

these different populations. We assume that they are   populations of microtubules and that 

the fluorescence intensity of each population “ ” follows a normal law of mean    and standard 

deviation   . We assume that a fluorescence measurement has the probability    to belong to 

the population “ ”. The probability density function   for the   observations    is given by: 

    ⟦   ⟧  (  | )  ∑      
(  |      

 )
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Where    
 is the probability density function of a normal distribution of mean    and standard 

deviation    and   (       
               

     ). We also have: 

    ⟦   ⟧                          ∑   

 

   

   

A common and convenient formulation introduces a latent unobserved random variable 

  (       ) such as:  

    ⟦   ⟧  (    )     

The random variable   plays the role of an “indicator variable” and we can re-write the random 

variable   that generates the observed data: 

    ∑        (     
 )

 

   

 

Using  ayes’ law, we obtain: 

 (    |  )   (  |    )   (  |  )   ( ) 

Where  (    |  ) is the distribution of posteriors,  (  |    ) is the likelihood function,  (  |  ) is 

the distribution of allocations conditional on knowing  , and  ( ) is the distribution of priors. We 

can re-write the distribution of posteriors as: 

 (    |  )    (∏ ∏ (
 

  
 )

  
 ⁄

       

   { 
 

 
∑

(     )
 

   
 

       

}

 

   

)  (∏  
  

 

   

)   ( ) 

Where        ({      }). We then introduce the “prior” distributions of  ( ), that is   , 

  , and  : 
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{
 
 

 
 
    ⟦   ⟧   (  |  

 )    (  ( )   ( )  
 )

    ⟦   ⟧   (  
 )      (  ( )   ( ))

 ( )    (  ( )     ( ))

 

Where   is a normal distribution,      is an inverse-gamma distribution, and   is a Dirichlet 

distribution and where   ( )    ( )    ( )    ( )    ( ) are the prior parameters for 

  ⟦   ⟧. The priors    and    are chosen to be dependent, a commonly used approach in 

 ayesian statistics because the “posterior” distributions  (     
  |  ) turn out to be in closed 

forms: 

{
 
 
 

 
 
 
    ⟦   ⟧   (   |   

     )    (  ( )   ( )  
 )

    ⟦   ⟧   (   
  |    )      (  ( )   ( ))

 (  |    )    (  ( )     ( ))

    ⟦   ⟧   (     |    )   (     |    )   
 

  
    {

(     )
 

   
 }   

 

And where the parameters   ( )    ( )    ( )    ( )    ( ) are the following: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
     ⟦   ⟧    ( )  

  ( )

    ( )   
(
  ( )

  ( )
    ̅( ))

    ⟦   ⟧    ( )  
  ( )

    ( )   

    ⟦   ⟧    ( )    ( )  
  

 

    ⟦   ⟧    ( )    ( )  
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 ( )  
    ( )⁄

     ( )
( ̅( )    ( ))

 
)

    ⟦   ⟧    ̅( )  
 

  

∑   

       

    ⟦   ⟧    
 ( )   

 

  

∑ (    ̅( ))
 

       

 

To draw the “posterior” distribution  (    |  ), we use Gibbs sampling, a Markov Chain Monte 

Carlo algorithm widely used in Bayesian inference.
92-94

 The only requirement of Gibbs sampling is 
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to be able to draw from the conditional distributions  (     
  |    ),  (  |    ), and  (  |    ) 

for   ⟦   ⟧ which we know. The Gibbs sampler we use is the following: 

Initialize: Start with an initial classification  ( ): 

for              

 Update the parameters (  ( ))
 
 (  ( ))

 
 (  ( ))

 
 (  ( ))

 
 (  ( ))

 
  using 

 (   ) 

 Draw  ( ) from  ( ( ) |  (   )  )   (  ( )     ( )) 

 for k = 1,…, K 

  Draw    
 ( )

 from  (   
 ( )

 |  (   )  )      (  ( )   ( )) 

  Draw   
( ) from  (  

( ) |   
 ( )

     (   )  )    (  ( )   ( )   
 ( )

) 

 End 

 Update the probabilities  ( ( )    |  ( )  ) 

 Draw a new classification  ( ) using  ( ( )    |  ( )  ) 

End 

Drop the    draws  

Result:   draws (   )(    )   (   )( ) 

 

We chose to iterate the algorithm five times to obtain stable results. In the first iteration, we use 

prior parameters drawn from data points: 
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{
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    ⟦   ⟧   ( )   

 

Each iteration leads to a set of posterior parameters and   drawings from the posterior 

distributions of  ̂    ̂ 
   ̂, and   ̂ . We use these drawings to update the priors of the next 

iteration such as: 

{
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∑  ̂ 
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    ⟦   ⟧    ( )     

    ⟦   ⟧   ( )     

    ⟦   ⟧   ( )  
 

 
∑  ̂ 

( )

 

   

    ⟦   ⟧    ( )   
 

 
∑  ̂ 

( )

 

   

 

This algorithm leads to the results shown in the next section. 
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Use of the algorithm to separate populations of microtubules 

adhering to avidin. 

Taking the algorithm described in the previous section with K = 5, we ran the algorithm five 

times. If the algorithm only finds 4 Gaussians, we would re-run five times the algorithm with K = 

4, etc. 

For batch A, the algorithm found 3 normal distributions (Figure 22). For the fluorescence of single 

microtubules adhering to avidin, the average of population 1 (blue squares) is 162.6 ± 4.0 

counts/nm. For batch B, the algorithm found 4 normal distributions as seen below (Figure 22). 

For the fluorescence of single microtubules adhering to avidin, the average of population 1 (blue 

squares) is 80.8 ± 1.5 counts/nm. 

 

Figure 22. Results of the Bayesian algorithm for microtubules adhering to avidin from Batch A. 

Blue squares are population 1, black squares are population 2, red squares are population 3. 
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Figure 23. Results of the Bayesian algorithm for microtubules adhering to avidin from Batch B. 

Blue squares are population 1, black squares are population 2, grey squares are population 3, red 

squares are population 4. 
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MATLAB code of the Bayesian algorithm 

 

Figure 24. Structure of the MATLAB code for the Bayesian algorithm. 

“main.m” 

%% Initialization 

  

clear all 

close all 

  

% Need a file called "data", a vector of all the data to be analyzed 

load('data_avidin.mat')  ; 

%data             =                data_avidin.d120808 ; 

data             =                data_avidin.d130128 ; 

  

%Parameters 

N                =                10000             ; % Draws 

K_true           =                3                 ; % Useless 

M                =                100               ; % Window size 

N_0              =                1000              ; % Burning period 

  

  

%% Priors 

  

K                =                4                 ; % Nb of Gaussians 

  

  

% Do not change "A", "b"                                 

A                =                ones(1,K)         ;                                 

b                =                4.*ones(1,K)      ;  

  

% Update "a" with mean(postMu) after running the algorithm 

a                =                [ 1.0 ...        % Gaussians means 

                                    1.0 ... 

                                    1.0 ... 

                                    1.0]            ;  

% Update "B" with mean(postSigma2) after running the algorithm 

B                =                [ 10  ... 

                                    10  ... 

main

drawPosteriors

HyperParameters

computeS

DistancesFromCenters

normInvGamRnd

ReferenceCenters

updateReferenceCenters
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                                    10  ... 

                                    10 ]            ;  

% Update "c" with mean(postS) after running the algorithm                                    

c                =                [ 0.25 ... 

                                    0.25 ... 

                                    0.25 ... 

                                    0.25]          ; %  proportions of Gaussians 

                                                     %  The sum must be 

                                                     %  equal to 1                   

  

%% Display data in the form of histograms 

figure(1); 

  

[n xout]         =                hist(data,100)    ; 

n                =                n./sum(n)         ; 

  

bar(xout,n); 

clear xout n; 

hold on 

  

%% Draws 

  

[postMu, postSigma2, postEta, postS, modesMeans, modesVariances] = ... 

     drawPosteriors(data,N,M,N_0,K,a,A,b,B,c,1); 

  

  

figure(3) 

plot(postMu); 

“drawPosteriors.m” 

function [ postMu, postSigma2, postEta, postS, modesMeans, modesVariances ... 

         ] = drawPosteriors( data, N, M, N_0, K, a, A, b, B, c, inLinePermutation ) 

  

  

%% Initialize parameters 

T                =                size(data,1)      ; 

postMu           =                zeros(N,K)        ; 

postSigma2       =                zeros(N,K)        ; 

postEta          =                zeros(N,K)        ; 

postS            =                zeros(T,K)        ; 

gammaDraw        =                zeros(1,K)        ; 

  

%% Temporary outputs from MCMC draws 

tempMu           =                zeros(1,K)        ; 

tempSigma2       =                zeros(1,K)        ; 

tempEta          =                zeros(1,K)        ; 

  

%Vector that store data about location/scale of each mode (one line per 

%estimated parameter 

modesMeans       =                zeros(2*K, factorial(K)) ; 

modesVariances   =                zeros(2*K, factorial(K)) ; 

  

cancelled        =                0                 ; 

isBurning        =                1                 ; 

  

%% Preliminary classification S_0 : draw from a uniform distribution 

S                =                randi(K,T,1)      ; 

  

%% Initialize the waitbar 

h                =                waitbar(0,'Burning period...', ... 

                                          'CreateCancelBtn', ... 

                                          'setappdata(gcbf,''canceling'',1)'); 

setappdata(h,'canceling',0) 

  

  

%% Burning period (1000 points) + sample of M points for reference centers   

for m = 1:(M + N_0) 

     

    % Check for Cancel button press 

    if getappdata(h,'canceling') 

        cancelled = 1; 

        break 

    end 

     

    if m > N_0 

        isBurning = 0; 

        if inLinePermutation == 1 

            waitbar( m / (M + N_0), h, 'Initial draws...'); 

        else 

            waitbar( m / (M + N_0), h, 'Drawing from posterior...'); 

        end 

    end 

     

    %Update hyperparameters 

    [ aT AT bT BT cT ] = HyperParameters( data, K, a, A, b, B, c, S  ); 
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    %Draw (mu_i, sigma2_i) 

    for k = 1:K 

        [ mu sigma2 ]  = normInvGamRnd(1, aT(k), AT(k), bT(k), BT(k)); 

         

        %Store draws in temp variables 

        tempMu(k)     = mu     ; 

        tempSigma2(k) = sigma2 ; 

         

    end 

     

    clear k mu sigma2 

     

    %Store values in final vectors only after burning period 

    if ~isBurning 

        postMu(m-N_0,:)     = tempMu     ; 

        postSigma2(m-N_0,:) = tempSigma2 ; 

    end 

     

    %Draw eta 

    for k = 1:K 

        gammaDraw(k)        = gamrnd(cT(k),1) ; 

    end 

     

    %Store in temp variable 

    tempEta                 = gammaDraw ./ sum(gammaDraw) ; 

     

    %Store values only after burning period 

    if ~isBurning 

        postEta(m-N_0,:)    = tempEta ; 

    end 

     

    %Update distribution of S 

    for k = 1:K 

        postS(:,k) = 1/(sqrt(2*pi*tempSigma2(k))) .* ... 

                     exp( - ((data - tempMu(k)).^2) ./ ... 

                     (2*tempSigma2(k)) ) .* tempEta(k); 

    end 

     

    for t = 1:T 

        postS(t,:) = postS(t,:) ./ sum(postS(t,:)) ; 

    end 

     

    %Draw S 

    S              = computeS(T, postS) ; 

     

    %Update waitbar 

    waitbar(m / (M + N_0) ,h); 

end 

  

%% Delete temporary varaibles 

clear tempMu tempSigma2 tempEta m isBurning; 

  

figure(2) 

subplot(2,1,1) 

plot(postMu((1:100),:)); 

subplot(2,1,2) 

plot(postSigma2((1:100),:)); 

  

%% Compute reference centers 

if inLinePermutation == 1 

    [modesMeans modesVariances permutations] = ReferenceCenters(K, ... 

                                               postMu(1:M,:), postSigma2(1:M,:) ); 

end 

  

  

%% Reset the waitbar 

waitbar(0,h,'Drawing from posterior...'); 

  

for n = M+N_0+1 : N_0+N 

     

    % Check for Cancel button press 

    if or(getappdata(h,'canceling'), cancelled) 

        break 

    end 

  

    %Update hyperparameters 

    [ aT AT bT BT cT ] = HyperParameters(data,K, a, A, b, B, c, S  ); 

     

    %Draw (mu_i, sigma2_i) 

    for k = 1:K 

        [ mu sigma2 ] = normInvGamRnd(1, aT(k), AT(k), bT(k), BT(k)); 

        postMu(n-N_0,k) = mu; 

        postSigma2(n-N_0,k) = sigma2; 

    end 

     

    clear k mu sigma2 

     

    if inLinePermutation == 1 

        %Compute closest reference center 

        indexMinDistance = DistancesFromCenters(K, postMu(n-N_0,:), ... 

                           postSigma2(n-N_0,:), modesMeans, modesVariances); 
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        %Relabel output so that the closest reference center is the first one 

        if indexMinDistance ~= 1 

  

            %Get permutation 

            [order invPerm] = sort(permutations(indexMinDistance,:)) ; 

            perm            = invPerm(permutations(1,:))             ; 

  

            %Permute draws 

            postMu(n-N_0,:) = postMu(n-N_0, perm); 

            postSigma2(n-N_0,:) = postSigma2(n-N_0, perm); 

  

            clear order invPerm perm 

        end 

  

        %Update modes 

        [modesMeans modesVariances] = updateReferenceCenters(n, N_0, K,... 

                                      modesMeans, modesVariances, ... 

                                      postMu(n-N_0,:), postSigma2(n-N_0,:), ... 

                                      permutations); 

    end 

     

    %Draw eta 

    for k = 1:K 

        gammaDraw(k) = gamrnd(cT(k),1); 

    end 

     

    postEta(n-N_0,:) = gammaDraw ./ sum(gammaDraw); 

     

    %Update distribution of S 

    for k = 1:K 

        postS(:,k) = 1/(sqrt(2*pi*postSigma2(n-N_0,k))) .* ... 

                     exp( - ((data - postMu(n-N_0,k)).^2) ./ ... 

                     (2*postSigma2(n-N_0,k)) ) .* postEta(n-N_0,k); 

    end 

     

    for t = 1:T 

        postS(t,:) = postS(t,:) ./ sum(postS(t,:)); 

    end 

     

    %Draw S 

    S = computeS(T, postS); 

     

    waitbar((n-M-N_0) / N,h); 

end 

  

clear n S gammaDraw  

  

delete(h) 

  

close(figure(1)); 

  

end 

  

“HyperParameters.m” 

function [ aT AT bT BT cT ] = HyperParameters( data, K, a, A, b, B, c, S  ) 

  

%Compute hyper parameters for a mixture of K gaussians: 

% y_t = p_1 * (mu1 + sigma1*n1_t) +...+ p_K * (muK + sigma2*nK_t) with: 

% nk ~ N(muk, sigma1^2) with (muk, sigmak^2) ~ NIG(akT, AkT, bkT, BkT) 

% S_t = ind(multnom(p)) with p ~ D(c_1,...,c_k) 

  

%Initialize parameters 

count         =   zeros(1,K)   ; 

aT            =   zeros(1,K)   ; 

AT            =   zeros(1,K)   ; 

bT            =   zeros(1,K)   ; 

BT            =   zeros(1,K)   ; 

cT = zeros(1,K); 

  

for k = 1:K 

    count(k)  =   sum(S==k)    ; 

     

    if count(k) > 0 

        cT(k) =   c(k) + count(k)  ; 

        bT(k) =   b(k) + count(k)  ; 

        BT(k) =   B(k) + count(k)*var(data(S==k)) + (count(k)/A(k)) / ... 

                  (count(k) + 1/A(k)) * ( (mean(data(S==k) - a(k))).^2 ); 

        AT(k) =   1/(count(k) + 1/A(k)); 

        aT(k) =   (1/A(k))/( count(k) + 1/A(k) ) * a(k) + count(k)/( ... 

                  count(k) + 1/A(k))*mean(data(S==k)); 

    else 

        cT(k) =   c(k); 

        bT(k) =   b(k); 

        BT(k) =   B(k); 
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        AT(k) =   A(k); 

        aT(k) =   a(k); 

    end 

     

end 

  

end 

  

“normInvGamRnd.m” 

function [ x1 x2 ] = normInvGamRnd( N, a, A, b, B ) 

%Draws N values from the normal inverse gamma distribution NIG(a,A,b,B) 

% x1 | x2 ~ N(a, A*x2) 

% x2 ~ IG( b/2, B/2) 

  

%% Draw x2 ~ IG(b/2, B/2) 

alpha    =       b/2                  ; 

beta     =       B/2                  ; 

y        =       gamrnd(alpha,1,N,1)  ; %y ~ Gamma(alpha, 1) 

x2       =       beta ./ y            ; %beta / y ~ IG(alpha, beta) 

  

  

%% Draw x1 | x2 ~ N(a, A*x2) 

mu       =       a                    ; 

sigma    =       sqrt(x2.*A)          ; 

x1       =       normrnd(mu, sigma)   ; 

  

end 

“computeS.m” 

function [ S ] = computeS( T, probs ) 

  

S = zeros(T,1); 

  

for t = 1:T 

    mnDraw = mnrnd(1, probs(t,:)); 

     

    indice = 0; 

     

    for i = 1:size(probs,1) 

        if mnDraw(i) == 1 

            indice = i; 

            break 

        end 

    end 

  

    S(t) = indice; 

end 

  

end 

“DistancesFromCenters.m” 

function [ indexMinDistance ] = DistancesFromCenters( K, currentMus, ... 

                                currentSigma2s, modesMeans, modesVariances ) 

  

currentCenter            =   zeros(2*K, 1)      ; 

  

for k = 1:K 

    currentCenter(2*k-1) =   currentMus(k)      ;  

    currentCenter(2*k)   =   currentSigma2s(k)  ; 

end 

    

distances                =   sum( ( ( modesMeans - repmat(currentCenter, 1, ... 

                             factorial(K)) ).^2 ) ./ modesVariances, 1 ); 

  

         

[minDistance indexMinDistance] = min(distances); 

  

clear minDistance distances; 

  

end 
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“ReferenceCenters.m” 

function [ modesMeans modesVariances permutations ] = ReferenceCenters( K, postMu, postSigma2 ) 

  

M                        =   size(postMu,1)           ; 

modesMeans               =   zeros(2*K, factorial(K)) ; 

modesVariances           =   zeros(2*K, factorial(K)) ; 

  

%Compute means 

initialParamsMeans       =   zeros(2,K)               ; 

initialParamsVariances   =   zeros(2,K)               ; 

  

%% Average the first M draws (after burning period) to get  

for k = 1:K 

    initialParamsMeans(:,k)     = [ mean(postMu((1:M),k)); ... 

                                    mean(postSigma2((1:M),k)); ]; 

    initialParamsVariances(:,k) = [ var((postMu((1:M),k)),1); ... 

                                    var((postSigma2((1:M),k)),1); ]; 

end 

  

%Generate all permutations for mu and sigma2 (both for means and variances 

%of estimates) 

permutations             =   perms( (1:K) )           ; 

[ orders invPerms ]      =   sort(permutations,2)     ; 

  

for p = 1:factorial(K) 

    permutations(p,:)    =   permutations(p,invPerms(1,:)) ; 

end 

  

%% Build matrices that contained all possible permuted values 

for k = 1:factorial(K) 

     

    mus                =   initialParamsMeans(1,:)      ; 

    sigma2s            =   initialParamsMeans(2,:)      ; 

    varMus             =   initialParamsVariances(1,:)  ; 

    varSigma2s         =   initialParamsVariances(2,:)  ; 

     

    muPerms            =   mus(permutations)            ; 

    varOfMuPerms       =   sigma2s(permutations)        ; 

  

    sigma2Perms        =   varMus(permutations)         ; 

    varOfSigma2Perms   =   varSigma2s(permutations)     ; 

     

end 

  

%Clear temp variables 

clear k mus sigma2s varMus varSigma2s orders; 

  

%% Store every mode 

for m = 1:factorial(K) 

     

    for k = 1:K 

         

        %Store location data and scale data in separated matrices 

        modesMeans(2*k-1,m)       =   muPerms(m,k)       ; %Mean of mu 

        modesVariances(2*k-1,m)   =   varOfMuPerms(m,k)  ; %Variance of mu 

        modesMeans(2*k,m)         =   sigma2Perms(m,k)     ; %Mean of sigma2 

        modesVariances(2*k,m)     =   varOfSigma2Perms(m,k); %Variance of sigma2 

    end 

end 

  

clear k initialParamsMeans initialParamsVariances muPerms sigma2Perms ... 

      varOfMuPerms varOfSigma2Perms; 

  

  

end 

  

“updateReferenceCenters.m” 

function [ modesMeans modesVariances ] = updateReferenceCenters( n, N_0,... 

          K, modesMeans, modesVariances, postMu, postSigma2, permutations ) 

  

  

%% Update first center 

meanOfMus        =                zeros(1,K)        ; 

meanOfSigma2s    =                zeros(1,K)        ; 

varOfMus         =                zeros(1,K)        ; 

varOfSigma2s     =                zeros(1,K)        ; 

  

for k = 1:K 

    %Save current modes' means 

    prevMeansOfFirstMode = modesMeans(:,1); 

  

    %Update modes means 
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    modesMeans(2*k-1,1) = (n-N_0-1)/(n-N_0)*modesMeans(2*k-1,1) + ... 

                           1/(n-N_0)*postMu(k); %Means of Mus 

    meanOfMus(k)        = modesMeans(2*k-1,1); 

  

    modesMeans(2*k,1)   = (n-N_0-1)/(n-N_0)*modesMeans(2*k,1) + ... 

                          1/(n-N_0)*postSigma2(k); %Means of sigma2s 

    meanOfSigma2s(k)    = modesMeans(2*k,1); 

  

    %Update modes variances 

    modesVariances(2*k-1,1) = (n-N_0-1)/(n-N_0)*modesVariances(2*k-1,1) ... 

                              + (n-N_0-1)/(n-N_0)*( ... 

                              (prevMeansOfFirstMode(2*k-1) - ... 

                              modesMeans(2*k-1,1)).^2 ) + 1/(n-N_0)*( ... 

                              (postMu(k) - modesMeans(2*k-1,1)).^2 ); %Variances of mus 

    varOfMus(k)             =  modesVariances(2*k-1,1); 

  

    modesVariances(2*k,1)   = (n-N_0-1)/(n-N_0)*modesVariances(2*k,1) + ... 

                              (n-N_0-1)/(n-N_0)*( ... 

                              (prevMeansOfFirstMode(2*k) - ... 

                              modesMeans(2*k,1)).^2 ) + 1/(n-N_0)*( ... 

                              (postSigma2(k) - modesMeans(2*k,1)).^2 ); %Variances of sigma2s 

        varOfSigma2s(k)     = modesVariances(2*k,1); 

end 

  

clear prevMeansOfFirstMode k 

  

%% Obtains other centers by permutation 

  

[order invFirstPerm] =            sort(permutations(1,:))     ; 

meanOfMus            =            meanOfMus(invFirstPerm)     ; 

meanOfSigma2s        =            meanOfSigma2s(invFirstPerm) ; 

varOfMus             =            varOfMus(invFirstPerm)      ; 

varOfSigma2s         =            varOfSigma2s(invFirstPerm)  ; 

  

clear order 

  

for m = 2:factorial(K) 

  

    %Permute parameters individually 

    permutedMus      =            meanOfMus(permutations(m,:))     ; 

    permutedSigma2s  =            meanOfSigma2s(permutations(m,:)) ; 

    permutedVarOfMus =            varOfMus(permutations(m,:))      ; 

    permutedVarOfSigma2s =        varOfSigma2s(permutations(m,:))  ; 

  

    %Store them into modes' matrix 

    for k = 1:K 

        modesMeans(2*k-1,m)     = permutedMus(k)          ; 

        modesMeans(2*k,m)       = permutedSigma2s(k)      ; 

        modesVariances(2*k-1,m) = permutedVarOfMus(k)     ; 

        modesVariances(2*k,m)   = permutedVarOfSigma2s(k) ; 

    end 

end 

  

%% Clear temp variables 

clear m k permutedMus permutedSigma2s permutedVarOfMus ... 

      permutedVarOfSigma2s meanOfMus meanOfSigma2s varOfMus varOfSigma2s 

  

end 
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CHAPTER 3 

 

Molecular wear of microtubules propelled by 
surface-adhered kinesins 

 

A morning of awkwardness is far better than a night of loneliness 

Hank Moody in Californication 

 

 

 

 

 

This Chapter is currently under review by Nature Nanotechnology as E.L.P. Dumont and H. Hess, 
Molecular wear of microtubules propelled by surface-adhered kinesins.  
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Objective and rationale 

Wear, the progressive loss of material from a body caused by contact and relative movement, is 

a major concern not only in engineering but also in biology.
8,10,14,15

 Advances in nanotechnology 

both enable the study of the origins of wear processes at the atomic and molecular scale and 

demand the prediction and control of wear in nanoscale systems.
11,16,17

 Here, we show that wear 

occurs in an in vitro system consisting of microtubules gliding across a surface coated with 

kinesin-1 motor proteins, and that energetic considerations suggest a molecule-by-molecule 

removal of tubulin proteins. The wear rates show a complex dependence on sliding velocity and 

kinesin density, which – in contrast to the friction behavior between microtubules and kinesin
18

 – 

cannot be explained by simple chemical reaction kinetics.   

Biomolecular systems distinguish themselves by the abundance of active movement on the 

nanoscale, which is enabled by the transduction of chemical energy into mechanical work by 

polymerization processes and motor proteins.
39

 The active movement is accompanied by 

dissipative processes which can be conceptually understood as “protein friction”.
18,95

 Here, we 

explore if active movement of microtubules gliding on kinesins also leads to “protein wear”. 

Wear is a fundamentally distinct process from breaking or targeted disassembly. Targeted 

disassembly of microtubules, for example, is performed by specialized motor proteins in order to 

regulate the size of the mitotic spindle.
41

 During disassembly, mechanical stresses are generated 

for the very purpose of removing material. In contrast, wear is  an undesired result of stresses 

caused by the normal operation of a mechanical system leading ultimately to failure of the 

system.
14

 Within living systems, the effects of wear are often mitigated and obscured by the 

constant turnover of building blocks. Here, an in vitro system is employed where nanoscale 

movement and its consequences can be studied in the absence of restorative mechanisms.  
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Experimental design 

In our experimental system known as the gliding motility assay (Figure 25a),
39

 kinesin-1 proteins 

are non-specifically adhered to a surface at a defined density and propel microtubules across the 

surface at velocities up to 1 m s
-1

 controlled by the ATP concentration. Microtubules, 

cytoskeletal filaments with a diameter of 25 nm, are polymerized from dimers of rhodamine-

labeled tubulin protein into tubular filaments with a length of a few micrometers and stabilized 

against depolymerization by the addition of paclitaxel (taxol).
49,50

 At the kinesin densities 

employed here, kinesins bind to a microtubule with an average spacing of as little as 10 nm and 

perform about a hundred 8 nm steps along one of its 12-16 protofilaments before they unbind.
39

 

As a result, a gliding microtubule experiences the stresses associated with up to 1 million 

individual kinesin steps per minute.   

Microtubules – imaged by fluorescence microscopy – glide smoothly in a persistent random walk 

across the surface (Figure 25b,c) unless they encounter a defective kinesin.
96

 Except for rare 

events where an entire segment of a microtubule breaks off, microtubules do not exhibit visible 

signs of degradation during smooth gliding on a timescale of minutes.
52

 Here, if a microtubule 

experiences a breaking event (which occur at a rate below 10
-3

 s
-1

) it is not included in the 

analysis. However, measurements of the length of smoothly gliding microtubules with subpixel 

accuracy, enabled by the FIESTA filament tracking software,
53

 reveal a shortening of each 

microtubule at rates between 0 and 1 nm s
-1

 (Figure 25d and Figure 26a). For these 

measurements, images are acquired every 5 s with an exposure time of 200 ms. 
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Figure 25. Length measurements of gliding microtubules. (a) Kinesin proteins spaced between 

10 and 100 nm apart propel microtubules with 8 nm steps at ATP-dependent velocities up to 1 

µm s
-1

. (b) Traces of two microtubules identified by the filament tracking software. (c) 

Diffraction-limited fluorescence microscopy image of a rhodamine-labeled microtubule. (d) 

Length of the microtubule shown in (c) over time calculated by the filament tracking software 

over time. A linear fit determines a shrinking rate with an error of less than 0.7 nm s
-1

. 

Results 

When microtubules are not gliding, which is obtained by replacing the ATP with the non-

hydrolyzable ATP analogue AMP-PNP,
47

 the shrinking rates of individual microtubules vary 

between -0.4 nm s
-1

 and 0.6 nm s
-1

 independent of kinesin density (Figure 26a). This distribution 

originates primarily from the length measurement error (See further sections). The average 
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shrinking rate of stationary microtubules is 0.068 ± 0.005 nm s
-1

 which reflects that microtubules 

tethered by kinesins to a surface depolymerize despite taxol-stabilization (Figure 26a) and is in 

quantitative agreement with previous measurements.
97

 At a kinesin density of 2,500 ± 800 µm
-2

 

and a gliding velocity of 199 ± 3 nm s
-1

, the average shrinking rate is increased significantly to 

0.36 ± 0.04 nm s
-1

. Therefore, microtubule gliding causes wear (p<10
-11

). 

 

Figure 26. Microtubule shrinking rates. (a) Histograms of shrinking rates for stationary (red) and 

moving (blue, v=199 ± 3 nm s
-1

) microtubules at a kinesin density is 2,500 ± 800 µm
-2

. (b) A 

polarity-marked microtubule with a non-fluorescent center segment allows the simultaneous 

measurement of shrinking rates at the leading and trailing end. (c) Average shrinking rates as a 

function of the kinesin density (v=199 ± 3 nm s
-1

) (d) Average shrinking rates as a function of the 

velocity of microtubules at a kinesin density of 2,500 ± 800 µm
-2

 (circle) and 1,900 ± 600 µm
-2

 

(square). The red triangle represents the shrinking rate of stationary microtubules. 

a 
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b 
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The wear process occurs at both ends of the microtubule but not in the center. Measuring the 

shrinking rate of polarity-marked microtubules (microtubules polymerized with a non-fluorescent 

center segment, Figure 26b)
98

 with another batch of kinesins (See further sections) at a density 

of 2,500 ± 800 µm
-2

 and a gliding velocity of 351 ± 18 nm s
-1

 revealed that microtubules (n=30) 

shrink from both ends, with the leading end shrinking in average faster than the trailing end (0.88 

± 0.26 nm s
-1

 vs. 0.28 ± 0.10 nm s
-1

). While the fluorescence intensity in the body region of 

microtubules decreases by 10-20% during the observation time due to photobleaching and focus 

drift (see further sections), the rate of decrease is not affected by the presence or absence of 

gliding (0.74 ± 0.20 10
-3

s
-1

 at a density of 2,500 ± 800 µm
-2

 and a velocity of 351 ± 18 nm s
-1

 vs. 

0.65 ± 0.04 10
-3 

s
-1

 at the same kinesin density and zero velocity).  

While events where entire segments with lengths above 150 nm break off the microtubule are 

not included in the analysis, the length measurements over time do not reveal stepwise changes 

in length. The distribution of length changes from frame to frame is Gaussian with a standard 

deviation of 30-40 nm, reflecting the noise in the length measurements.  Given the frequency 

and magnitude of steps implied by our shrinking rates of about 0.5 nm s
-1

, state-of-the-art 

algorithms for the detection of steps in such time series can reliably find only step sizes above 30 

nm,
99

 making it impossible to detect the removal of single or multiple tubulin dimers (See further 

sections for detailed discussion).  

Varying the kinesin density while maintaining the gliding velocity constant at 200 nm s
-1

 reveals a 

surprising biphasic behavior (Figure 26c): At kinesin densities up to 2,000 ± 600  µm
-2

, the 

shrinking rate increases only slightly above the shrinking rate of stationary microtubules, while 

the shrinking rate is five-fold higher at higher kinesin densities. Varying the velocity at kinesin 
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densities above and below 2,000 ± 600  µm
-2

, the shrinking rate first increases roughly linearly 

and then drops after a maximum at 200 nm s
-1

 and 400 nm s
-1

, respectively (Figure 26d).   

The pronounced change in the shrinking rate at a density of 2,000 ± 600 µm
-2

 for a velocity of 200 

nm s
-1

 (Figure 26c) coincides with the experimentally observed mushroom-to-brush transition in 

the layer of adsorbed kinesins occurring at 1,700 ± 400 µm
-2

, where the spacing of the kinesins 

becomes so small that the kinesins begin to constrain and force each other into a stretched brush 

conformation.
100

 This emphasizes that the conformational geometry of the kinesin and the 

interactions between adjacent kinesins have a significant effect on the wear rate. The shift in the 

maximal wear rate as a function of the velocity (Figure 26d) depends also on the kinesin density, 

suggesting a complex interdependence between the kinesin density and the microtubule velocity 

in the wear process. While the initial increase in the wear rate with increasing velocity (Figure 

26d) is unsurprising, since an increased velocity leads to a proportional increase in microtubule-

kinesin contacts per time, the subsequent decrease in wear rates implies that the probability of 

removing a tubulin dimer decreases rapidly as less time becomes available for each microtubule-

kinesin interaction.  

A wear process in which individual tubulin dimers are removed from a microtubule (causing 

undetectable length changes of less than 1 nm) is supported by energetic considerations. Tubulin 

dimers in the body of the microtubule are stabilized by all available axial and lateral interactions. 

Tubulin dimers at both ends of the microtubule are missing at least one axial interaction. At least 

one tubulin dimer at both ends of the microtubule is missing one axial and one lateral 

interaction, reducing its binding energy by several kBT and making it exponentially more likely 

that it will be removed by a force acting on it. At a kinesin density of 3,800 ± 1,200  µm
-2

 and a 

gliding velocity of 200 nm s
-1

 (where the shrinking rate is maximal) about 20 kinesins per second 

attach to the leading end and 20 kinesins per second detach from the trailing end while in 
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average only 0.7 tubulin dimers per second are removed. Thus it is likely that the wear process is 

focused solely on the tubulin dimers with the weakest attachment.  

Kinesin motors exert forces as they interact with the microtubule, both internally when the two 

motor domains coordinate their actions via mechanical communication,
101

 and externally via the 

attachment to the surface through their tails. Since the kinesin-tubulin interaction of 10-15 kBT
18

  

is close in strength to the combined strength of lateral (3-6 kBT) and longitudinal (7-9 kBT) 

tubulin-tubulin interactions
102

 of the tubulin dimer having only one lateral and one longitudinal 

attachment, it is reasonable to observe a non-zero removal probability. The velocity-dependent 

decrease in detachment rates has been seen previously in competitive unbinding situations and 

has been identified as a consequence of differences in the shape of the binding energy surface of 

the competing bonds.
103,104

 However, the strongly non-linear dependence of the shrinking rates 

on kinesin density also demonstrates that the kinesin attachment geometry is critically 

important. This renders a simple energy barrier crossing model, as employed to explain the 

atom-by-atom wear observed in sliding studies with atomic force microscopes
17,105-107

 

insufficient.  

In summary, we have shown that the mechanical activity of biomolecular motors can trigger 

wear at the molecular scale, which in the context of biological nanosystems requires enhanced 

self-repair mechanisms. Excessive stress or impaired repair may be the cause of medical 

pathologies originating from wear at the molecular and subcellular level. 

Materials and methods 

Microtubules were polymerized by reconstituting a 20 µg aliquot of rhodamine-labeled, 

lyophilized tubulin (TL331M, Lot 357 from Cytoskeleton Inc, Denver, CO) with 6.25 µL 

polymerization buffer (BRB80 and 4 mM MgCl2, 1 mM GTP, 5% dimethyl sulfoxide), and 
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incubating it at 37 °C for 30 minutes. The microtubules were then stabilized by diluting them a 

thousand-fold into BRB80 buffer (80 mM piperazine-N,N′-bis(2-ethanesulfonic acid), 1 mM 

MgCl2, 1 mM Ethylene Glycol Tetraacetic Acid, pH 6.9 with KOH) with 10 µM paclitaxel (Sigma, St 

Louis, MO). A kinesin construct consisting of the wild-type, full-length Drosophila melanogaster 

kinesin heavy chain and a C-terminal His-tag was expressed in Escherichia coli and purified using 

a Ni-NTA column.
73

 Flow cells were constructed using two cover slips and double-sided tape as 

spacer.
108

 For each flow cell, a solution of 0.5 mg mL
-1

 casein in BRB80 buffer was first flown in. 

After 5 min, the solution was exchanged with the kinesin motor solution (kinesin, 0.5 mg ml
-1

 

casein, 1 mM Adenylyl Imidodiphosphate AMP-PNP in BRB80). AMP-PNP (Sigma, St Louis, MO) is 

an ATP analogue which arrests kinesin action.
47

 After another five minutes, this solution was 

exchanged with microtubule solution containing an enzymatic antifade system
90

 (16 nM tubulin, 

0.5 mg mL
-1

 casein, 10 µM Paclitaxel, 20 mM D-glucose, 20 µg mL
-1

 glucose oxidase, 8 µg mL
-1

 

catalase, 10 mM dithiothreitol, and 1 mM AMP-PNP in BRB80). After another five minutes, the 

solution of flow cells where microtubules glided  was exchanged with a solution containing ATP, 

an ATP-regenerative system, and an enzymatic antifade system
90

 (0.5 mg mL
-1

 casein, 10 µM 

Paclitaxel, 20 mM D-glucose, 20 µg mL
-1

 glucose oxidase, 8 µg mL
-1

 catalase, 10 mM dithiothreitol 

in BRB80, 2 mM creatine phosphate, 2 units L
-1

 creatine phosphokinase, ATP, in BRB80). In the 

case where microtubules were immobilized, the microtubule solution of flow cells was 

exchanged with AMP-PNP and an enzymatic antifade system (0.5 mg mL
-1

 casein, 100 nM 

Paclitaxel, 20 mM D-glucose, 20 µg mL
-1

 glucose oxidase, 8 µg mL
-1

 catalase, 10 mM 

dithiothreitol, 1mM AMP-PNP in BRB80). The openings of the flow cells were then sealed with a 

small amount of vacuum grease to prevent evaporation of the solutions. All experiments were 

performed at room temperature.  
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Microtubules were imaged using a Nikon TE2000-U Epi-fluorescence microscope (Nikon, Melville, 

NY) equipped with an X-cite 120 lamp (EXFO, Ontario, Canada), an iXON DU885LC EMCCD camera 

(Andor, South Windsor, CT) and a 100x oil objective (NA 1.45).  

For each flow cell, several fields of view were randomly selected and 100 images of each one 

were taken every 5s with an exposure time of 0.2 s. The FIESTA filament tracking software was 

then used to measure the length of microtubules over time for each series of images. 

Microtubule traces were selected to calculate their shrinking rate. The shrinking rates were 

averaged and the standard error of the mean were calculated and reported on the graphs in 

Figure 26. Each average was calculated from 30 to 100 traces.  

To establish that microtubules shrink from both ends, a 20 µg aliquot of HiLyte-labeled 

microtubules (Cat TL670M, Lot 015 from Cytoskeleton Inc, Denver, CO) was reconstituted with 

6.25 µL polymerization buffer, and incubated at 37 °C for 15 minutes. The polymerized HiLyte 

microtubules were added to a solution where a 20 µg aliquot of rhodamine tubulin (TL331M, Lot 

357 from Cytoskeleton Inc, Denver, CO) was suspended in 6.25 µL buffer (BRB80 and 4 mM 

MgCl2, 1 mM GTP). The solution was then incubated at 37 °C for 8 minutes.  The microtubules 

were then diluted in paclitaxel, imaged, and analyzed as described previously. Kinesins from 

batch B were used for this experiment (See further sections). 

The shrinking rate is measured with a precision below 0.3 nm s-1. 

In these experiments, we used kinesin proteins from batch A. We plot the shrinking rates 

associated with the 40 microtubules tracked by the FIESTA software for a kinesin density of 2,500 

± 785 µm
-2

 and a velocity of 199 ± 3 nm s
-1

 (Figure 27). For each microtubule trace, the shrinking 

rate of the microtubule was calculated by linear regression. The standard deviation of the 
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Gaussian fit to the histogram of shrinking rates is less than 0.3 nm s
-1

 for both moving 

microtubules (Figure 27) and immobilized microtubules (Figure 28). 

 

Figure 27. Histogram of 40 shrinking rates calculated from the traces of microtubules using a 

kinesin density of 2,500 ± 785 µm
-2

 and at a velocity of 199 ± 3 nm s
-1

. The standard deviation is 

0.28 ± 0.05 nm s
-1

 and the center of the peak is at 0.32 ± 0.04 nm s
-1

. 

 

Figure 28 shows the shrinking rates for the same kinesin density but when microtubules are 

immobilized on kinesins using AMP-PNP.  
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Figure 28. Histogram of 51 shrinking rates calculated from the traces of immobilized 

microtubules using a kinesin density of 2,500 ± 785 µm
-2

. The standard deviation is 0.152 ± 0.006 

nm s
-1

 and the center of the peak is at 0.027 ± 0.005 nm s
-1

. 

The shrinking rate of immobilized microtubules does not depend 

on kinesin density. 

Using experiments with kinesin batch A, the average shrinking rates of immobilized microtubules 

was calculated at several kinesin densities (Figure 29). When fitting a straight line to the data of 

Figure 29, a Pearson’s χ
2
 of 0.03467 << 1 is obtained thereby proving that the assumption that 

the shrinking rate of immobilized microtubules does not depend on kinesin density is consistent 

with the data of Figure 29. 
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Figure 29. Average shrinking rates at several kinesin densities for immobilized microtubules. 

 

Averaging the 462 data points used to calculate the above average shrinking rates, we find an 

average shrinking rate of 0.068 ± 0.005 nm s
-1

 for microtubules immobilized on kinesins.  

The accuracy of the microtubule length measurement is not 

affected by movement and there are no discernible “wear” steps. 

The frame-to-frame variations in microtubule length for a set of immobilized microtubules 

(kinesin batch A, kinesin density: 2,500 ± 785 µm
-2

) are displayed in a histogram in Figure 30 

(1,448 individual steps, 5 nm bins, time between frames 5 s). The frame-to-frame variations in 

microtubule length follow a Gaussian distribution with a standard deviation of 43 ± 0.8 nm 

centered at -0.43 ± 0.67 nm (implying an average shrinking rate of 0.09 ± 0.01 nm s
-1

). The 

Gaussian distribution reflects the sub-pixel statistical error of the automated length 

measurement using the FIESTA software package. 
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Figure 30. Histogram of 1,448 frame-to-frame length changes (5 s between frames) for a 

kinesin density 2,500 ± 785 µm
-2

 of and a velocity of 0 nm s
-1

. The standard deviation is 43 ± 0.8 

nm and the center of the peak is at -0.43 ± 0.67 nm. 

 

The frame-to-frame variations in length of moving microtubules (kinesin batch A, kinesin density: 

2,500 ± 785 µm
-2

, velocity: 199 ± 3 nm s
-1

) are displayed in a histogram in Figure 31 (1,664 

individual steps, 5 nm bins, time between frames 5 s). Again, the frame-to-frame variations in 

microtubule length follow a Gaussian distribution with a standard deviation of 33 ± 0.5 nm 

centered at -3.45 ± 0.46 nm (implying an average shrinking rate of 0.7 ± 0.1 nm s
-1

). Since the 

movement (and the resulting increased shrinking) did not increase the width of the Gaussian, we 

conclude that the width again reflects the measurement error. 
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Figure 31. Histogram of 1,664 frame-to-frame length changes (5 s between frames) for a 

kinesin density 2,500 ± 785 µm
-2

 and a velocity of 199 ± 3 nm s
-1

. The standard deviation is 33 ± 

0.5 nm and the center of the peak is at -3.45 ± 0.46 nm. 

 

The goodness of the fits (Adjusted R
2
 are 0.97 and 0.98 for Figure 30 and Figure 31 respectively) 

implies that there are no observable “wear steps”. To confirm that, a clustering  ayesian 

algorithm (described in 
100

) was employed which assumed the presence of two Gaussian curves 

in the histogram with the same standard deviation. However, the algorithm was unable to 

identify a second Gaussian. To draw the posterior distribution, we used Gibbs sampling, a 

Markov Chain Monte Carlo algorithm widely used in Bayesian inference.
100

 

Breaking events where entire tubular microtubule segments are broken off should also be 

exceedingly rare: If the probability that a segment is broken off is independent of its length, the 

observed frequency of breaking events of segments with a length of more than 150 nm (below 

10
-3

 s
-1

)  accounts already for more than 90% of all breaking events (given an average 

microtubule length of more than 2,000 nm) and therefore limits the frequency of breaking off of 

short segments to less than 10
-4

 s
-1

. This translates into less than one event in the 1,664 frame-
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to-frame length changes fitted here and cannot account for more than 10% of the observed 

shrinking rate.  

Aggarwal et al. discussed the performance of state-of-the-art step detection algorithms and 

concluded that the number of samples between steps has to be larger than 36 times the square 

of the ratio of the measurement noise and the step size in order to allow reliable detection of 

steps.
99

 For the present shrinking rate, length measurement noise and frame rate this implies 

that shrinking events would have to be at least 30 nm in size to be reliably detectable. Since 

there is no reason to expect steps of this size in our data, the utilization of step detection 

algorithms would not improve our data analysis. Conversely, to detect the removal of individual 

tubulin dimers (causing a length change of 8/14 nm), the sampling rate would have to increase to 

more than 100 kHz, which is infeasible.  

At the same time, it is not feasible to visualize the removed tubulin dimer aggregate, because in 

the 0.3 s it binds to a kinesin,
41

 the microtubule would be propelled only 200 nm s
-1

*0.3 s = 70 

nm. Due to the overlap of the microtubule fluorescence signal with the fluorescence from the 

removed aggregate, it would be impossible to resolve the presence of the aggregate.  

In summary, the frame-to-frame length changes are dominated by measurement noise, the 

probability to remove short tubular segments (breaking events of segments <100 nm) is 

exceedingly small, and it is practically impossible to detect the individual wear steps.   

The fluorescence intensity of microtubules is not impacted by 

gliding on kinesins. 

In these experiments, we used kinesin proteins from Batch B. At a kinesin density of 2,500 ± 825 

µm
-2

 and a velocity of 351 ± 18 nm.s
-1

 and 0 nm.s
-1

, we measured the fluorescence intensity of 21 

microtubules in their center regions. The microtubule fluorescence intensity per length is 
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determined by subtracting the integrated counts from a circular region (diameter: 27 pixels) 

adjacent to a microtubule from the integrated counts of a circular region (diameter: 27 pixels) on 

a microtubule. We then normalized the fluorescence intensity measured in every frame by the 

fluorescence intensity measured in the first frame. We show below two typical traces for moving 

and immobilized microtubules.  

 

Figure 32. Normalized fluorescence intensity measured in the center of one immobilized 

microtubule (out of 21) and one moving microtubule (out of 21). 

 

From these 21 traces of moving microtubules and 21 traces of immobilized microtubules, we 

calculated the rate of decrease in normalized intensity over time for each trace, calculated the 

weighted average of the 21 rates of decrease in normalized intensity (for both moving and 

immobilized microtubules), and found that the normalized intensity of both immobilized and 

moving microtubules decrease at not significantly different rates (0.65 ± 0.04 10
-3 

s
-1

 and 0.74 ± 

0.20 10
-3 

s
-1

 respectively), thereby proving that gliding on kinesins does not affect the 

fluorescence intensity of microtubules.                                                       .                                     
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Wear and breakage combine to mechanically 
degrade kinesin-powered molecular shuttles 
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This Chapter will be submitted to Nanoletters as Y. Jeune-Smith, E.L.P. Dumont, and H. Hess, 
Wear and breakage combine to mechanically degrade kinesin-powered molecular shuttles. 
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Microtubule-based biosensors 

In 2009, Fisher et al. showed the proof-of-concept of a “smart dust biosensor” that utilizes 

microtubules gliding on kinesins,
12

 as shown in the figure below. 

 

Figure 33. Concept of a smart-dust biosensor utilizing microtubules gliding on kinesins. (a) The 

capture–wash–tag–wash–detect sequence of a traditional double-antibody sandwich assay. (b) 

The capture–transport–tag–transport–detect sequence of the smart dust device, in which 

antibodies on microtubules capture antigens from solution. Kinesin motors are activated, and 

collisions of antigen-loaded, gliding microtubules with fluorescent particles functionalized with a 

second antibody lead to pick-up and transfer of the fluorescent tags to the detection zone, 

indicating the presence of antigen. A basic device layout comprises a circular well created in 

photoresist on a coverslip. Analyte harvesting, tagging and detection are performed in different 

radial zones. Adapted from Fisher et al.
12
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If such microtubule-based sensors are to be used for industrial applications, it is important to be 

able to predict and optimize their lifetime. The wear of microtubules explained in the previous 

chapter combined with the breaking of microtubules, a phenomenon already known, are enough 

to predict the lifetime of such microtubule-based biosensors. 

Wear and breakage combine to mechanically degrade kinesin-

powered molecular shuttles 

In macroscopic machines, failure as a result of activation is the result of breakage or wear. 

Breakage is a sudden and permanent phenomenon often caused by fatigue. Wear, the gradual 

removal of small amount of material, causes an increasing deviation of the part dimensions from 

the ideal. Unless breakage intervenes, any system will ultimately fail due to wear. Reducing 

breakage and wear is a major consideration in machine design.
19

  

In molecular and nanoscale machines, breakage and wear will occur as well since the processes 

have molecular origins.
11

 However, state-of-the-art active nanosystems are often operated for 

only a few cycles to prove their basic feasibility.
109,110

 Kinesin-powered molecular shuttles
86,87,111

 

are hybrid devices, which utilize microtubules and kinesin motor proteins
112

 as biological 

components in a synthetic environment and achieve sustained operation.
113

 As a result, they 

provide an outstanding testbed to observe degradation as a result of activation.  

 In our shuttle design, kinesin motor proteins are non-specifically adhered to a surface at 

a density of 2,100±400 µm
-2

 and supplied with their substrate ATP (10-1000 µM) as a source of 

chemical energy.
114

 Microtubules are polymerized from tubulin protein into tubular filaments 

with an average length of 5 µm and deposited on the kinesin-coated surface. The two “head” 

domains of the kinesin motors bind to and walk along the microtubules with 8 nm steps, 

propelling them forward with a velocity between 70 and 500 nm s
-1

 depending on the ATP 
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concentration.
115

 On the order of 250 motors are estimated to attach simultaneously to a 

microtubule, causing each microtubule to experience up to 30 million motor steps within 5 hours 

(Figure 34).  

 

Figure 34. Design of a kinesin-powered shuttle. The yellow stars represent the rhodamine 

fluorophores. 

 

By observing moving and resting molecular shuttles using fluorescence microscopy, we find that 

the length and number of microtubules propelled by kinesins on the surface decreases on a time-

scale of hours (Figure 35, Error! Reference source not found.) whereas stationary or free-floating 

microtubules degrade on a time-scale of days (Error! Reference source not found.). Since 

xidative reactions are known to lead to microtubule degradation, especially during illumination 

for fluorescence imaging 
116

, care has been taken to minimize light exposure and control for its 

effect. To study the effect of active movement, the microtubules are deposited on the surface in 

the presence of the AMP-PNP, an ATP analogue which arrests motor action 
117

. Replacement of 

the AMP-PNP solution with an ATP solution containing an ATP-regenerating system
118,119

 results 

in a concurrent and constant activation of microtubule gliding. Different ATP concentrations are 

chosen to achieve gliding velocities at roughly 25, 50, 75 and 100% of the maximum gliding speed 
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at room temperature. The length of each microtubule in a given area is manually measured for 

every velocity and time point to determine microtubule length distributions (Error! Reference 

ource not found.). However, the microtubule number per field-of-view and the average length 

are used as aggregate metrics of the degradation process and plotted as function of time (Figure 

36). 

 

Figure 35. Evidence of degradation (A, B) Rhodamine-labeled microtubules immobilized on 

surface-adhered kinesin motors by AMP-PNP show no degradation over hours. (C, D) Rhodamine-

labeled microtubules gliding on surface-adhered kinesin fueled by 25 µM ATP rapidly degrade in 

number and length. Scale bar is 20 µm. Experiment by Yoli Jeune-Smith. 

 

A B

C D

10 min 180 min

5 min 90 min
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Figure 36. Number and average length of microtubules at several velocities as a function of 

time. Experiment by Yoli Jeune-Smith. 

 

Examination of microtubule gliding shows that breaking is frequent (Error! Reference source not 

ound.). However, if breaking were the only degradation process, the microtubule number would 

increase much more significantly in the first ten minutes. Estimates of the microtubule gliding 

distance before spontaneous detachment due to a trajectory segment without kinesin motors 

rule out microtubule unbinding as a process responsible for the reduction in microtubule 

number. Therefore, shrinking is the degradation process responsible for the reduction in 

microtubule number, because shrinking reduces microtubule lengths to below the 0.5 µm cut-off 

length for microtubule measurement.  

We used a Monte-Carlo simulation which models the degradation of the original distribution of 

microtubules used for the experiments by both breaking and shrinking the microtubules, and 

which takes into account the cut-off length (0.5 µm). In the simulation, every microtubule has the 

same breaking rate and the same shrinking rate per second. Each simulation is run until all 

microtubules are shorter than the cut-off length, and the results of 500 runs were averaged. 

0 nm s-1 74  7 nm s-1 193  7 nm s-1 352  7 nm s-1 468  8 nm s-1
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Experimental data for all velocities can be fit with a single breaking rate and a single shrinkage 

rate, as shown in Figure 38. For every velocity, the simulation started from the same population 

of microtubules. This population of microtubules is composed of 186 microtubules and the 

average length of the population is 4.79 µm. The initial population of microtubules was 

calculated by building an average of all histograms of the microtubules populations at zero 

velocity (width of the histograms is 0.5 µm). The histogram of the initial population of 

microtubules used in the simulation is shown in Figure 37. 

 

Figure 37. Histogram of the initial populations of microtubules used in the simulations. This 

population was generated by averaging all populations in the experiment where microtubules 

were immobilized on the kinesin-coated surface. 

 

In the simulation, each time step represents        in the experiments (but this parameter   

can be changed) in order to save computation time. As a result, the shrinking rate in the 

simulation    is related to the shrinking rate in the experiments    by: 
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Since       , the breaking rate in the simulation    is equal to the breaking rate per minute in 

the experiments    by: 

      

For each velocity, I chose the combination of shrinking rate and breaking probability that 

minimizes the average of the 1,000 sums of the errors corresponding to the curve of the number 

of microtubules and the curve of their average length. This error is defined for each velocity   by 

the following formula:  

  ∑ (
         

    

)

 

 

  

   

∑ (
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Where    and    are respectively the simulated and experimental arrays of the number of 

microtubules for a given velocity. The number of data points in these arrays is         and    are 

respectively the simulated and experimental arrays of the average of microtubules for a given 

velocity    

 

Figure 38. Monte Carlo simulations on the number and average length of microtubules at 

several velocities as a function of time. Experiments by Yoli Jeune-Smith. 

0 nm s-1 74   7 nm s-1 193   7 nm s-1 352   7 nm s-1 468   8 nm s-1 
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We then plotted the shrinking rate and the breaking probabilities as a function of the velocity, as 

shown in the figure below. 

 

Figure 39. Shrinking rate and breaking probability found by the Monte Carlo simulations as a 

function of velocities. 

 

The frequency of breaking matches the expected frequency of encountering a defective kinesin 

motor (~1 out of 2,000 
96

). These encounters result in temporary binding along the microtubule, 

build-up of strain as the functional motors attached to the microtubule continue to propel the 

microtubule, and eventually breaking (Error! Reference source not found.). We have not found 

vidence that fatigue causes breakage despite the high number of motor steps that a microtubule 

experiences. Instead, the defective motors act almost like “potholes” on the microtubule path, 

and a method to remove defective motors would reduce the frequency of binding events.  

Subcellular systems, such as the cytoskeleton, are prototypical active nanosystems and motor-

induced disassembly of the cytoskeleton has recently been observed.
120

 Evolution must have 

developed successful strategies to minimize and also to counteract molecular wear, for example 

by constant replacement of supramolecular structures.  
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Finally, probing the relation between force, lifetime and chemistry in single molecular bonds
121

 

has been an extremely fruitful pursuit in nanoscience. The emerging challenge is to transfer our 

insights to assemblies of molecules experiencing complex force spectra, in order to build a 

molecular theory of tribology.  

Materials and Methods 

The experiments were done by Yoli Jeune-Smith and are explained in her PhD thesis. 

MATLAB code to predict the degradation of microtubules gliding 

on kinesins. 

The structure of the MATLAB code is given below. 
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 Figure 40. Structure of the MATLAB code to predict the wear of microtubules gliding on 

kinesins as a function of a shrinking rate in nm s
-1

 and a breaking probability per second. 

 

Each “box” in Figure 40 represents a different file. To launch the program, the user has to launch 

the file “main”. In this file, the user choses the shrinking rates and breaking probabilities to be 

used in the simulations. The file “Calculate Error” calculates the error of the simulated wear 

compared to the experimental data points for all velocities. These errors are stored in the MAT 

file “simulation.mat”. “Continuous wear” generates the average number and the average length 

of the initial set of microtubules every time interval that was chosen in the file “main” (variable 

‘time_step’). “Discrete wear” extracts from the wear generated by “Continuous wear” the 

average length and the average number of microtubules corresponding to the different time 

Main

Discrete wear

Continuous wear

Shrink several 
MTs

Break several 
MTs

Stuck several 
MTs

Break single MT

Remove short 
MTs

Calculate error
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points at which measurements were made during the experiments. The modules “Shrink”, 

“ reak”, “Remove”, and “Stuck” are self-explanatory: they respectively shrink, break, remove 

and stop microtubules in the given population. 

 “main.m” 

%% CHOSE EXPERIMENTAL DATA 

  

clear all; 

close all; 

  

load('simulation.mat'); 

eval( strcat('simu = simulation')); 

  

%% 

  

% In the simu.parameters file 

% Column 1 = Shrinking rate (nm/s) 

% Column 2 = Breaking probability (per min) 

% Column 3 = Length cut off for a MT under which MTs are ignored in 

% simulation 

% Column 4 = Time step in simulation (>1s) 

% Column 5 = Number of loops over which simulations are run 

% Column 6 = Error of the simulation when compared to 10 uM data points. 

% Column 7 = Error of the simulation when compared to 25 uM data points. 

% Column 8 = Error of the simulation when compared to 80 uM data points. 

% Column 9 = Error of the simulation when compared to 1000 uM data points. 

  

  

% In the simu.continuous file: 

% Column 1: time in min 

% Column 2: nb of MTs 

% Column 3: av length of MTs 

  

%% SIMULATION parameters 

  

global                    nb_of_loops          ; % number of loops in the MC simulation 

global                    max_time             ; % maximum time over which the simulation is ran 

global                    stuck_cut_off        ; %Cut-off length for a mt to have a chance to get stuck 

global                    time_step            ; 

global                    record_continuous_wear ; 

global                    plot_wear_graphs     ; 

global                    length_cut_off       ; 

global                    generate_wear_anyway ; 

global                    combination_already_exists ; 

global                    continuous_wear_to_record ; 

  

nb_of_loops               =    500              ; 

  

max_time                  =    400*60          ; % in seconds 

  

stuck_cut_off             =    1               ; % in um 

  

time_step                 =    60              ; % in s. Must be > 1. 

  

record_continuous_wear    =    true           ; % requires a lot of space 

  

plot_wear_graphs          =    false           ; 

  

generate_wear_anyway      =    false           ; % To test reproducibility of the runs 

  

length_cut_off            =    0.5             ; % Minimal size of MTs to be considered (in um) 

  

  

%% DEFINITION OF THE SHRINKING RATE AND BREAKING RATE  

  

global                    shrinking_rate       ; % shrinking rate of MTs in nm/s 

global                    breaking_proba       ; % proba that MTs break per s 

global                    stuck_proba          ; % proba that MTs get stuck per s 

  

stuck_proba               =    0               ;  

  

nb_iterations_shrinking   =    0               ; % 0 if only one shinrking rate is wanted 

nb_iterations_breaking    =    0               ; % 0 is only one breaking rate is wanted 

  

lowest_shrinking_rate     =    1.95               ;  % nm/s 

highest_shrinking_rate    =    1.6                 ;  % nm/s 

  

lowest_breaking_proba     =    0.139453661         ;  % probability per minute (time_step need to be 60s) 

highest_breaking_proba    =    0.18                ;  % probability per minute (time_step need to be 60s) 



76 

  

step_shrinking            =    (highest_shrinking_rate - ... 

                               lowest_shrinking_rate)/nb_iterations_shrinking; 

                            

step_breaking             =    (highest_breaking_proba - ... 

                               lowest_breaking_proba)/nb_iterations_breaking; 

                            

shrinking_rate            =    lowest_shrinking_rate ; 

breaking_proba            =    lowest_breaking_proba ; 

     

%% LOOP OVER ALL COMBINATIONS OF SHRINKING RATE AND BREAKING RATE 

  

best_shrinking_rate       =    lowest_shrinking_rate ; 

best_breaking_proba       =    lowest_breaking_proba ; 

best_error                =    1e12             ; 

  

for i=0:nb_iterations_shrinking  

    for j=0:nb_iterations_breaking 

         

        disp(['Shrinking ',num2str(i),'/',num2str(nb_iterations_shrinking)]); 

        disp(['Breaking ', num2str(j),'/',num2str(nb_iterations_breaking)]); 

        disp(['Shrinking rate is ',num2str(shrinking_rate)]); 

        disp(['Breaking rate is ',num2str(breaking_proba)]); 

        disp('--------------'); 

         

        % Find if the combination of simu.parameters already exists 

        combination_already_exists = false ; 

        indice_if_already_exists   = 1     ; 

  

        for k=1:simu.indice-1 

          if simu.parameters(k,1) == shrinking_rate && ... 

             simu.parameters(k,2) == breaking_proba && ... 

             simu.parameters(k,3) == length_cut_off && ... 

             simu.parameters(k,4) == time_step      && ... 

             simu.parameters(k,5) == nb_of_loops 

                combination_already_exists   =  true ; 

                indice_if_already_exists     =  k    ; 

          end     

        end 

               

         

        if combination_already_exists == false || generate_wear_anyway == true 

             

            

            sse = Calculate_Error() ; 

             

            % Writes the simu.parameters and the error in the spreadsheet: 

            simu.parameters(simu.indice,:) = [shrinking_rate, breaking_proba,... 

                                               length_cut_off,time_step,... 

                                               nb_of_loops,sse] ; 

  

            % Save the simulations in case the algorithm crashes 

            if record_continuous_wear == true 

                eval( strcat('simu.continuous.s',num2str(simu.indice),... 

                             '=continuous_wear_to_record')) ; 

            end 

             

            % Increment the row available for simu.parameters: 

            simu.indice    =   simu.indice + 1 ; 

             

        end 

                 

        breaking_proba = breaking_proba + step_breaking; 

     

        % Save simulation 

        eval( strcat('simulation','= simu')); 

        eval( strcat ('save simulation.mat simulation')); 

                   

     

    end 

            

    breaking_proba = lowest_breaking_proba ; 

    shrinking_rate = shrinking_rate + step_shrinking; 

end 

  

clear all; 

  

  

  

 

“Calculate_Error.m” 

function [sse] = Calculate_Error() 

  

load('yoli_data.mat'); 
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global                    generate_wear_anyway ; 

global                    combination_already_exists ; 

global                    time_array           ; % in s 

global                    nb_MTs               ; 

global                    error_nb_MTs         ; 

global                    av_length            ; % in um 

global                    error_av_length      ; 

  

sse                   =   zeros(1,4)           ; 

  

[nb_MTs_continuous,av_length_continuous] = Continuous_wear();  

  

for k=1:4 

    if k==1 

        data_name     =   'um10'      ; 

    elseif k==2 

        data_name     =   'um25'      ; 

    elseif k==3 

        data_name     =   'um80'      ; 

    elseif k==4 

        data_name     =   'um1000'    ; 

    end 

  

% Store the wanted data set in the array 'data' 

eval( strcat('data = yoli_data.',data_name,';')); 

  

% Extracts the different columns from the data 

time_array                =    data(:,1)       ;  

nb_MTs                    =    data(:,2)       ; 

error_nb_MTs              =    data(:,3)       ; 

av_length                 =    data(:,4)       ;  

error_av_length           =    data(:,5)       ; 

  

% Get the simulated wear at the specific times of the wear data points 

if combination_already_exists == false || generate_wear_anyway == true 

            [nb_MTs_simu,av_length_simu] = Discrete_wear(nb_MTs_continuous,av_length_continuous); 

         

            % Calculate the error on the number of MTs and their av. length 

            nb_MTs_error      =    sum(((nb_MTs_simu - nb_MTs)./nb_MTs).^2)    ; 

            av_length_error   =    sum(((av_length_simu - av_length)./av_length).^2) ; 

            sse(k)               =    nb_MTs_error + av_length_error ; 

  

  

end 

  

end 

 “Discrete_wear.m” 

function [nb_MTs_discrete,av_length_discrete] = Discrete_wear(nb_MTs_continuous,av_length_continuous) 

  

global                    time_array           ; 

global                    time_step            ; 

  

%% 

  

                            

nb_MTs_discrete           =    zeros(length(time_array),1) ; 

av_length_discrete        =    zeros(length(time_array),1) ; 

  

nb_MTs_discrete(1)        =    nb_MTs_continuous(1)     ;  

av_length_discrete(1)     =    av_length_continuous(1)  ;   

  

position_in_array         =    2                        ; 

current_time              =    time_step                ; 

  

for i=2:length(time_array) % i=1 was treated above (t=0) 

  

    while abs(current_time - time_array(i)) > time_step/2 

       current_time       =    current_time + time_step ; 

       position_in_array  =    position_in_array + 1    ; 

    end 

    if position_in_array <= length(nb_MTs_continuous) 

       nb_MTs_discrete(i) = nb_MTs_continuous(position_in_array) ; 

       av_length_discrete(i)  =    av_length_continuous(position_in_array); 

    end 

     

end 

  

end 
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“Continuous_wear.m” 

function [nb_MTs_simu_looped,av_length_simu_looped] = Continuous_wear() 

% Store the values of number of array_of_mts in an excel file 

  

load('initial_distribution.mat'); 

  

  

global                    max_time                           ; 

global                    time_step                          ; 

global                    time_array                         ; 

global                    shrinking_rate                     ;  

global                    breaking_proba                     ;      

global                    stuck_proba                        ; 

global                    nb_of_loops                        ; 

global                    nb_MTs                             ; 

global                    av_length                          ; 

global                    error_nb_MTs                       ; 

global                    error_av_length                    ; 

global                    record_continuous_wear             ; 

global                    plot_wear_graphs                   ; 

global                    continuous_wear_to_record          ; 

  

  

max_size_array            =    round(max_time/time_step)     ; 

array_of_loops            =    zeros(max_size_array,1)       ; 

  

nb_MTs_simu_looped        =    zeros(max_size_array,1)       ; 

av_length_simu_looped     =    zeros(max_size_array,1)       ; 

   

shrinking_rate_simulation =    1e-3*shrinking_rate*time_step  ; 

  

breaking_proba_simulation =    breaking_proba                ; 

   

stuck_proba_simulation    =    time_step*stuck_proba/(... 

                               time_step*stuck_proba+1-stuck_proba);       

  

%% Simulate the continuous wear over nb_of_loops times                            

    

                         

for i=1:nb_of_loops 

   

  %disp('------------------------------'); 

  disp(['loop ',num2str(i)]); 

   

  % Definition of variables 

  nb_MTs_simu        =   zeros(max_size_array,1)  ; 

  av_length_simu     =   zeros(max_size_array,1)  ; 

   

  % initial conditions 

  array_of_mts       =   initial_distribution     ; 

  nb_MTs_simu(1)     =   length(array_of_mts)     ; 

  av_length_simu(1)  =   mean(array_of_mts)       ; 

  current_time       =   time_step                ; 

  indice_in_array    =   2                        ; 

   

  while isempty(array_of_mts)==0 && current_time<max_time  

     

    %disp(['Current time is ',num2str(current_time)]); 

       

    % Shrink MTs 

    array_of_mts    =   Shrink_several_MTs(array_of_mts,shrinking_rate_simulation); 

    %disp('MTs were shrunk'); 

     

    % Stuck MTs 

    array_of_mts    =   Stuck_several_MTs(array_of_mts,stuck_proba_simulation); 

    %disp('MTs were stuck'); 

     

    % Break MTs 

    array_of_mts    =   Break_several_MTs(array_of_mts,breaking_proba_simulation); 

    %disp('MTs were broken'); 

     

    if isempty(array_of_mts) == 0 % if there are still MTs in the array 

    nb_MTs_simu(indice_in_array)     =   length(array_of_mts)      ;      

    av_length_simu(indice_in_array)  =   mean(array_of_mts)        ; 

    end 

    current_time    =   current_time + time_step                   ; 

    indice_in_array =   indice_in_array + 1                        ;   

  end 

   

  %disp('Got out of the while loop'); 

   

  % Add the simulated wear in the final array that will be averaged later. 

  for j=1:min(length(nb_MTs_simu),max_size_array) 

      nb_MTs_simu_looped(j) = nb_MTs_simu_looped(j)+nb_MTs_simu(j); 

      av_length_simu_looped(j) = av_length_simu_looped(j)+av_length_simu(j); 

      array_of_loops(j) = array_of_loops(j)+1; 

  end 
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  %disp('stored the fresh data'); 

   

end 

  

% Average all the loops 

for i=1:max_size_array 

    nb_MTs_simu_looped(i) = nb_MTs_simu_looped(i)/array_of_loops(i); 

    av_length_simu_looped(i) = av_length_simu_looped(i)/array_of_loops(i); 

end 

  

% Delete the zeros and the NaN 

nb_MTs_simu_looped(nb_MTs_simu_looped==0) = [] ; 

av_length_simu_looped(av_length_simu_looped==0) = [] ; 

nb_MTs_simu_looped(isnan(nb_MTs_simu_looped)) = []; 

av_length_simu_looped(isnan(av_length_simu_looped)) = []; 

  

  

timeframe =  0:time_step:length(nb_MTs_simu_looped)*time_step-1; 

timeframe = timeframe'; 

  

%% Record the simulated wear 

  

if record_continuous_wear == true 

    timeframe_in_min = timeframe./60; 

    continuous_wear_to_record = [timeframe_in_min,nb_MTs_simu_looped,av_length_simu_looped]; 

end 

  

  

  

%% Plot graphs 

  

if plot_wear_graphs == true 

     

    linewidth                 =  2        ; 

  

    subplot(121) 

    plot(timeframe,nb_MTs_simu_looped,'color','red','linewidth',linewidth); 

    hold on; 

    errorbar(time_array,nb_MTs,error_nb_MTs,'x'); 

    axis([0 1.1*max(time_array) 0 300]); 

    xlabel('Time (s)','fontsize',14); 

    ylabel('Number of MTs','fontsize',14); 

    title('NUMBER OF MICROTUBULES','fontweight','b','fontsize',16) 

   

    subplot(122) 

    plot(timeframe,av_length_simu_looped,'color','red','linewidth',linewidth); 

    hold on; 

    errorbar(time_array,av_length,error_av_length,'x'); 

    axis([0 1.1*max(time_array) 0 6]); 

    xlabel('Time (s)','fontsize',14); 

    ylabel('Average Length of MTs in um','fontsize',14); 

    title('AVERAGE LENGTH','fontsize',16,'fontweight','b') 

   

end 

  

  

   

end 

 

“Shrink_several_MTs.m” 

function [microtubules] = Shrink_several_MTs(mts,amount_to_be_shrunk) 

  

  microtubules = mts - amount_to_be_shrunk ; 

   

  microtubules = Remove_short_mts(microtubules) ; 

   

end 

“Break_several_MTs.m” 

function [mts_broken] = Break_several_MTs(mts,proba_break) 

  % Breaks an array of MTS 

  

mts_broken = []; 

   

for i=1:length(mts) 

    mts_broken = [mts_broken;... 

                  Break_single_mt(mts(i),proba_break)]; 

end 
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end 

“Break_single_MT.m” 

function [final_lengths] = Break_single_mt(length_MT, proba_break) 

% Breaks one MT 

   

  random_number = rand(); 

      

 if(random_number<=proba_break)  

     random_number_mt =  rand()                         ; 

     broken_piece_1   =  random_number_mt*length_MT     ; 

     broken_piece_2   =  length_MT-broken_piece_1       ; 

     final_lengths    =  Remove_short_mts([broken_piece_1,broken_piece_2]); 

 else 

     final_lengths    =  [length_MT]                    ; 

 end; 

“Stuck_several_MTs.m” 

function [mts_not_stuck] = Stuck_several_MTs(mts,stuck_probability_simulation) 

  

global stuck_cut_off ; 

  

mts_not_stuck = []; 

     

for i=1:length(mts) 

    if mts(i)<=stuck_cut_off 

         random_probability = rand(); 

         if random_probability > stuck_probability_simulation 

            mts_not_stuck = [mts_not_stuck;mts(i)]; 

         end 

    else  

         mts_not_stuck = [mts_not_stuck;mts(i)]; 

    end 

end 

  

  

end 

“Remove_short_mts.m” 

function microtubules = Remove_short_mts(mts) 

  %Clean array of MTs if MTs have a length inferior to 0.5 um 

   

  global length_cut_off                         ; 

  indice            =   1                        ; 

  microtubules      =   zeros(length(mts),1)     ; 

   

  for i=1:length(mts) 

    if mts(i)>=length_cut_off 

        microtubules(indice) = mts(i);  

        indice = indice+1;  

    end; 

  end 

   

   

  microtubules(microtubules==0) = [] ; 
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CHAPTER 5 

 

Fatigue failure and molecular machine design 

 

The world is a dynamic mess of jiggling things, if you look at it right 

Richard Feynman 

 

 

 

 

 

 
This Chapter was published as H. Hess and E.L.P. Dumont, Fatigue Failure and Molecular Machine 
Design, Small, 2011, 7, 1619-1623. 
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Introduction 

In nature, molecular machines have evolved to perform a wide range of tasks within the cellular 

factory, including assembly, transport, and actuation.
122

 Advances in single molecule studies over 

the past two decades have enabled the deduction of the mechanisms of operation, revealing for 

example the head-over-head movement of kinesin motor proteins,
123

 the stepwise growth of 

microtubules,
124

 and the reversible movement of RNA-processing machinery
125

. Careful attention 

has been paid to the coupling of mechanical and chemical cycles .
126

 Applying these insights, 

synthetic molecular machines, including rotaxanes
127

 and DNA motors
128

, have been designed to 

combine chemical and mechanical cycles to fulfill functions such as actuation.
129

 

However, machine design in engineering is a process in which the mechanism of operation is only 

the starting point.
19

 In the design process, the static and dynamic loads on all machine parts are 

determined, and the dimensions and materials of these parts are specified to sustain these loads 

within the framework of theories of static failure, surface failure, and fatigue failure.  

A car engine is an excellent illustration of the need to consider not only static failure (“Will it 

break when turned on the first time?”) but of surface failure (“When will the piston wear out?”) 

and fatigue failure (“When will the crankshaft break?”). An unused engine will of course 

eventually fail due to oxidation (“rusting”), but materials selection and external measures, such 

as encapsulation, have reduced oxidation to an acceptable level. 

The challenge of fatigue failure at the molecular scale 

At the molecular scale, the presence of thermal forces complicates the assignment of a specific 

load to a molecular structure. In atomic force microscopy experiments, where single 

intermolecular bonds were subjected to loads increasing at varying rates,
130

 the rupture force 

was found to be dependent on the rate of loading. The relationship between loading rates and 
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rupture forces was explained using unimolecular reaction rate theory, which accounts for the 

thermal forces assisting the breaking of the bond.
121

 In brief, the external load deforms the 

potential energy landscape of the bond, and thereby lowers the activation energy for unbinding, 

accelerating the unbinding rate according to the Arrhenius equation. Interestingly, the effect of 

thermally driven breaking of bonds under stress has been observed at the macroscale more than 

forty years earlier, when Zhurkov measured the lifetime of macroscopic samples under load.
131

  

While Evans’ conceptual framework
121

 has been successfully applied to predict the failure of 

intra- and intermolecular bonds under static or linearly increasing loads, molecular machines 

operate over many cycles of time-varying loads. At the macroscale, fatigue failure can occur at a 

stress of little more than half of the ultimate stress when the part is subjected to stress over 

millions of cycles.
19

 The development of theories to predict fatigue failure has been a major 

advance in 20
th

 century engineering and has enabled a substantial refinement of macroscale 

machinery.  

To appreciate the number of cycles experienced by a molecular machine such as a myosin motor 

protein, consider a human heart muscle, which contracts more than 2 billion times over its 80-

year lifespan. This roughly equals the number of rotations of a modern piston engine over its 

lifetime (Figure 41).  
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Figure 41. Mechanical fatigue at different scales. While piston engines achieve lifetimes 

exceeding a billion revolutions, myosin II motor proteins are replaced after a million cycles
132

 

(Figure adapted from 
133

), and arrays of rotaxanes experience diminished force output after a few 

dozen cycles
134

 (Figure adapted from 
134

). 

 

However, individual myosin motor molecules are replaced within days,
132

 meaning they operate 

“only” for about a million cycles. Artificial muscles assembled from synthetic molecular motors 

lose their contractility after a few dozen cycles
134

. This raises questions: Which design constraints 

drove evolution towards molecular motors operating for millions of cycles while being replaced a 

thousand times rather than designing molecular motors capable of operating for billions of cycles 

in the first place, and what design changes have to be made to synthetic molecular motors to 

achieve sustained operation over large numbers of cycles? In essence, the mastery of machine 

N=106

N=109

N<102

Piston engine

Myosin

Rotaxane
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design at the molecular scale is a precondition for successful engineering applications of 

molecular machines, such as molecular motors.  

Macroscopic fatigue failure theories model parts as being continuous solids with pre-existing 

microscopic cracks where crack propagation is initiated, leading ultimately to mechanical failure 

(Figure 42). In low cycle fatigue design (LCF, N<1,000), fracture mechanics is employed to predict 

and limit crack propagation. The objective in high cycle fatigue design (HCF, N>1,000) is typically 

to lower the stress below the endurance limit of the material. The stochastic nature of failure is 

captured by reliability factors which reduce the fatigue strength (e.g. for steel: Creliab(99.999%) = 

0.659).
19

. These concepts are difficult to apply at the molecular scale, where the parts cannot be 

approximated as continuous solids and where thermal activation plays a major role.  

 

Figure 42. S-N diagrams are generated by exposing parts to cycles of defined load until failure. 

The number of cycles varies from part to part, and the failure line indicates the number of cycles 

after which 50% of the samples have failed for a given load. Some materials (e.g. steel) exhibit an 

endurance limit Se below which fatigue failure is not observed. Other materials experience 

fatigue failure eventually under any load. To increase the reliability of the part (e.g. to 90%), the 

stress has to be reduced by a reliability factor Creliab relative to the fatigue strength S(N). 
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Mechanical fatigue of a molecular bond 

Approaching fatigue from the other extreme, the response of an individual bond to cyclic stress 

can be evaluated. Over the course of a force application cycle, the unbinding rate varies 

according to:  

 ( )        ( 
    ( )  ( )

   
)             ( ) 

This generalized Kramers relation assumes that the frequency of force application is much 

smaller than the bond frequency   , which usually applies.
121,135

  

For a bond subjected to a force alternating between two constant values of tension and 

compression (See Figure 42), the compression cycle cannot unbind, and the average rate 

becomes simply:  

〈 〉  
  

 
    ( 

      

   
)             ( ) 

Figure 43 illustrates this for a bond described by a Lennard-Jones Potential with           

and rm = 0.5 nm. The time at which in average half of the bonds still survive is given by 

    ( ) 〈 〉.   
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Figure 43. Cyclic tension and compression will deform the potential energy surface of a bond 

and facilitate the rupture of the bond during the tension phase of the cycle. 

 

Therefore, each 10-fold increase in average lifetime requires a reduction of 2.3        in the 

applied force (Figure 44). The number of force cycles is not a factor here, in contrast to 

macroscopic systems where the number and magnitude of stress cycles rather than the time-

integrated stress is seen as the primary factor in determining failure.  
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Figure 44. The deformation of a hypothetical Lennard-Jones potential (E = 40 kT, rm = 0.5 nm) 

by a constant force. As the force is increased from 100 pN to 200 pN, according to eq. (1) the 

probability for the hypothetical bond to remain intact after 1 ms falls from 99.999% to 99%. 

 

Similar to the use of reliability factors in macroscale fatigue calculations, the applied force has to 

be reduced to ensure that a larger fraction of bonds reaches the specified lifetime. If a bond is 

designed to reach a certain lifetime for an applied force of F90 with 90% probability, the force has 

to be reduced by 2.3        for a ten-fold increase in reliability (99%). Given that forced 

unfolding single molecule experiments have revealed distances to the transition state    of as 

little as 0.1 nm in proteins,
136

 a ten-fold increase in reliability implies a reduction in applied force 

of as much as 90 pN, which is not insignificant relative to unfolding forces of 300-500 pN 

observed in AFM experiments with loading rates of hundreds of nm s
-1

.  

  In the case of myosin, which executes a single powerstroke in 1 ms, eq. (2) suggests that 

the barrier to unfolding needs to be only about 17     to survive a single powerstroke (k0 
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assumed to be 10
-10

 s
-1

). However to achieve operation for a million cycles, the barrier to 

unfolding in the presence of load has to be close to 30    . This is a significant challenge for the 

molecular design since a hydrogen bond has a bond energy of only 10    .
137

  

 An interesting corollary of eq. (1) is that the product of a constant sustained force and 

the force-dependent lifetime is maximized for an applied force equal to       , independent of 

the bond strength. At this force, the lifetime is reduced only by a factor of e relative to the 

lifetime of the unloaded bond, which can make it difficult to discern the reduction in lifetime due 

to the applied force. As a result, the lifetime of a bond or an entire molecular machine may 

appear to be limited by thermally-driven unbinding or disintegration, when in fact the design is 

optimized to maximize sustained force and lifetime simultaneously.   

Increasing the lifetime of molecular bonds   

 The longevity of molecular structures may be significantly extended by rebinding, in 

contrast to macroscopic cracks, which do not close under compression. Without rebinding, two 

parallel bonds break sequentially providing the structure a lifetime of  

〈 〉  
 

  

 
 

  

  
 

  

           ( ) 

where    and    are the unbinding rates for the first and second bond, respectively. Since the 

second bond experiences the full load after the first bond broke,    >>   . With rebinding, the 

first broken bond can return to a bound state, prior to the unbinding of the second bond, 

providing a lifetime of  

〈 〉  
         

    

  
 

  

(  
   

  

)           ( ) 
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Since there is no barrier to rebinding (Figure 42) and since cyclic loading brings the binding 

partners in close vicinity during the compression phase, the rebinding rate     will exceed the 

unbinding rates of the first bond    (experiencing a force F/2) and the second bond    

(experiencing the full force F) by orders of magnitude, providing a highly effective mechanism to 

extend the lifetime (Figure 45).  

 

Figure 45. The effect of rebinding on the average time to break two parallel bonds. The lifetime 

of the double-bond increases rapidly as the rebinding rate exceeds the unbinding rate of the 

second bond under full load. Since rebinding is facilitated by compression or at least absence of 

tension, the frequency of the force cycle becomes an important parameter. 

 

This line of reasoning can be applied to polyvalent interactions in general.
138

  Bonds with multiple 

energy minima along their reaction coordinate, such as the biotin-streptavidin bond, can similarly 

transition back to their most stable configuration after partial unbinding.
103,139

 Due to facilitated 

rebinding, cyclic loading of parallel bonds should lead to drastically different behavior from static 
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loading of equal duration. Of course, the general increase in lifetime is also obtained via other 

mechanisms to reverse partial failure, such as refolding of a partially unfolded protein. 

A second mechanism to extend the lifetime of supramolecular structures is continuous turnover. 

For cytoskeletal filaments, a dynamic equilibrium between assembly and disassembly enables 

complex functions, such as the search for, capture and transport of chromosomes by 

microtubules during mitosis.
140

 At the same time, turnover may eliminate growing defects and 

maintain these nanoscale mechanical structures in pristine condition. “Treadmilling” of 

microtubules (simultaneous polymerization at one end and depolymerization at the other) is 

observed in vivo and in vitro at rates of ~1 m/hr.
141

 Similarly, the replisome (the DNA replication 

machine composed of multiple proteins) continuously replaces the polymerase component to 

maintain its performance.
142,143

 It is an interesting challenge to implement such an approach to 

self-healing in an engineered nanoscale structure.  

In addition to fatigue, the lifetime of molecular machines can be limited by wear and oxidative 

damage. Unique mechanisms of lubrication may be exploited in molecular machines
144

, not only 

to reduce friction
18

, but possibly also to counteract wear. Reactions with reactive oxygen species 

are of course a major cause of protein degradation, and mechanical activation of bonds may 

further accelerate it. At the macroscale, the interaction of corrosion and stress leads to the well-

known phenomenon of stress corrosion cracking. 

Performance of molecular motors 

A prediction regarding the achievable performance of molecular motors can be based on 

recently discovered universal scaling laws for force generation by linear and rotary motors.
145

 

The force output of linear motors was found to increase with mass to the 2/3, with an excellent 

correlation over more than 25 orders of magnitude in mass (Figure 46). The force output of 
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individual motors deviates from the trendline by less than an order of magnitude in either 

direction. This fact is not entirely surprising considering that strength vs. density diagrams of 

materials reveal a similarly narrow distribution around the average,
146

 meaning that limited 

material choices result in limited variations in optimized performance. Extrapolation of the 

trendline to the molecular scale however reveals that rotaxane motors utilized for artificial 

muscles
134

 have a force output which exceeds the expected output  by nearly a hundredfold. It 

seems likely that increasing the lifetime of these synthetic molecular motors will either require a 

significant increase in their bulk or a reduction in force. Reducing the force output is not 

straightforward, since it will be detrimental to efficiency or require the use of a less energetic 

quantum of input energy (a photon or a fuel molecule). Biomolecular motors use ATP molecules 

as low-energy fuel and thereby optimize concurrently efficiency
147

, size and force.  

 

Figure 46. Empirical relation between maximum force of motors as function of their mass as 

discovered by Marden and Allen (Figure adapted from 
145

). The inset extrapolates the trend to 

the molecular scale. The rotaxane employed for artificial muscles is significantly stronger than 

RNA-P

Kinesin
Myosin
Dynein

10
3

10
4

10
5

10
6

10
7

0.1

1

10

 

 

M
a
x
im

u
m

 f
o

rc
e
 o

u
tp

u
t 

/ 
p

N

Motor mass / Da

Rotaxane



93 

what would be expected from this universal scaling law, which potentially accounts for its small 

lifetime.
134

 

Conclusion 

Clearly, the basic considerations presented here raise questions rather than provide answers. 

However, the addition of an engineering perspective to the prevailing chemical and biophysical 

viewpoints seems timely and potentially illuminating. Studies of the mechanical fatigue of 

repetitively stretched titin molecules
148

, and the mechanical response of virus shells to repeated 

deformation
149

 provide first insights into the complexity of the response of molecular structures 

to repeated mechanical stresses.  

Proof of equations (3). 

 

Figure 47. A system with two molecular bonds without rebinding. 

The average time of the formation of the C state is given by: 

〈 〉  
∫  

  
  

  
 

 

∫
  
  

  
 

 

 

The equations governing the system are the following: 

1 2 

 

  

A B C 
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 (   )   

 (   )   

 

We then obtain: 

     
     

When deriving the second equation of the system and using the expression of  , we obtain: 

   

   
   

  

  
    

    
     

A particular solution of this equation is under the form     ⁄         and the homogenous 

solution under the form     ⁄        . Plugging the particular solution in the 2
nd

 order 

differential equation of     ⁄ , we obtain      
   (     )⁄ . Now all the solutions for 

    ⁄  are under the form            (     )⁄      . Using the initial condition 

    ⁄ (   )      , we obtain the expression for     ⁄ : 

  

  
 

    

     

(    
        

    ) 

By integrating and using the initial condition on  , we obtain: 

  

  
 

      

     

(           ) 
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By simply integrating this equation between zero and infinity, we obtain: 

∫
  

  
  

 

 

    

On the other hand, we have: 

∫  
  

  
   

 

 

      

     

( ∫         

 

 

 ∫         

 

 

) 

We integrate by parts both integrals and obtain: 

∫  
  

  
   

 

 

      

     

( ∫
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) 

Finishing the calculation, we obtain: 

∫  
  

  
   

 

 

     

    

   

To conclude, we obtain the average time: 

〈 〉  
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Proof of equation (4). 

 

Figure 48. A system with two molecular bonds with rebinding. 

 

The average time of the formation of the C state is given by: 

〈 〉  
∫  

  
  

  
 

 

∫
  
  

  
 

 

 

The equations governing the system are the following: 

{
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 (   )   

 (   )   

 

Re-writing the system with matrices, we have  ̇     where: 

1 2 

 

 

 

 

A B C 
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  [

       

   (      )  

    

] 

And: 

  [

 

 

 

] 

The rank of   is 2 and we are looking for its eigenvalues by solving    (    )    where   is 

real number and where   is the identity matrix in 3x3. 

   (    )    [   (         )      ] 

So we have 3 eigenvalues: 0,     and    where: 

      
 

 
(         )  

 

 
√  

Where: 

  (         )
          

Now we find the eigenvectors associated to the eigenvalues 0,     and   . For the eigenvalue 0: 

  [

 

 

 

]    [

 

 

 

] 

We find the vector    [
 
 
 
]. For the eigenvalues    and   : 
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]    [

 

 

 

] 
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Resolving the two systems, we find the eigenvector    
 for the eigenvalue   : 

    

[
 
 
 
 
 
     

     

  

  ]
 
 
 
 
 

 

And we find the eigenvector    
 for the eigenvalue   : 

    

[
 
 
 
 
 
     

     

  

  ]
 
 
 
 
 

 

We introduce the matrix   formed from the eigenvectors: 

  

[
 
 
 
 
  

     

     

     

     

     

     ]
 
 
 
 
 

 

By introducing the vector  : 

  [

  

  

  

] 

Such as     . Replacing      in  ̇    , we obtain: 

 ̇     

With: 

  [

   

    

    

] 
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Solving  ̇    , we obtain: 

{
 
 

 
 
     

      
   

      
   

 

Where               are real numbers. Using     , we obtain: 

       (   
       

   ) 

When solving for   and using the initial condition  (   )   , we obtain: 

    
  

  

   

We then have: 

∫
  

  
  

 

 

    (     ) 

And: 

∫  
  

  
  

 

 

 
    

  

 
    

  

 

By re-arranging and using           ⁄ , I obtain: 

〈 〉  
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CHAPTER 6 

 

Random Sequential Adsorption of proteins on 
polymer-covered surfaces: A simulation-based 

approach 

 

A thing of beauty is a joy forever 

John Keats 

 

 

 
 
 
 
 
 
In preparation as E.L.P. Dumont, A. Guillaume, A. Gore, and H. Hess, Random Sequential 
Adsorption of proteins on polymer-covered surfaces: A simulation-based approach.  
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Introduction 

Non-fouling polymeric coatings enable the suppression of protein adsorption to surfaces, and 

their perfection is the objective of many recent experimental studies.
20-25

 Obtaining a theoretical 

understanding of the functioning of these coatings and the prediction of residual protein 

adsorption as a function of the coating properties has similarly attracted significant interest.
26-35

 

Our recent study developed a basic Random Sequential Adsorption (RSA) model for protein 

adsorption to non-fouling coatings, which was analytically solvable and yielded encouraging 

agreement with published experimental data.
36

 The model assumed that polymer chains on the 

surface can be represented by hard spheres with a radius equal to their radius of gyration. These 

randomly distributed hard spheres obstruct the adsorption of proteins, again represented as 

hard spheres with a diameter equal to the diameter of the protein. The evolution of the protein 

density on the surface was calculated from the independent probabilities to penetrate the layer 

of adsorbed proteins and the layer of polymer chains.  

Simulations of random sequential adsorption 

Random sequential adsorption models are well suited to reflect two aspects of the protein 

adsorption process.
150,151

 Many experiments detect only tightly bound proteins, either because 

protein which are not absorbed are washed off or because the detection method is not sensitive 

to weakly bound proteins. As a result, bound proteins can be considered to be irreversibly 

adsorbed. Secondly, an already adsorbed protein blocks the adsorption of further proteins so 

that the protein adsorption problem is similar to a “parking problem”.  

Simulations facilitate the study of complex random sequential adsorption processes. These 

include, for example, adsorption of a binary mixture of disks,
152

 changes in particle dimensions 
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after adsorption,
153

 asymmetric particles adsorbing in different configurations,
154

 and particles 

adsorbing to a surface covered with obstacles as described here.
36

   

In our simulations, a square lattice with 4,000 x 4,000 lines represents a 100 nm x 100 nm surface 

area. The lattice spacing of 25 pm (1/10 of the diameter of an atom) is sufficiently small since it is 

smaller than the uncertainty on the location of the particles due to thermal fluctuations, It is also 

significantly smaller than polymer chains or proteins. Polymer chains are represented by 

spherical particles and are first placed on the surface in a random sequential adsorption process. 

For this first step, the particle radius, designed as       is calculated from the experimentally 

determined
32

 maximum grafting density    according to: 

        
        

Where the value 0.546 corresponds to the surface coverage by the polymers at the jamming limit 

(see the section “Results”). The calculation of       relies on the assumption that the polymer 

chains on a surface use the maximum surface available to them in a random placing. 

The polymer placement process is terminated when the coverage   defined as a fraction of the 

maximum grafting density is reached. The coverage   is defined by: 

   
     

   
 
   

 

Where       is the number of placed polymers and          is the side length of the 

simulated surface area. 

After the polymer chains have been distributed, the area available to protein adsorption is 

determined. Each polymer chain obstructs a circular area with radius      given by: 
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      √           

Where       is the effective radius of the polymer, defined as the radius of gyration, and       is 

the radius of the adsorbing protein, again assumed to be a spherical particle (Figure 49). The 

calculation of the radius of gyration for the polymers depends on the length of their chains. For 

    ,   being the degree of polymerization,       is given
 
by      

            ( )    and by 

     
          for smaller chains.

36
 The Kuhn length of the polymer    is here taken as 1 nm, 

the monomer length   is 0.278 nm, and the angle between the chain axis and the bond between 

monomers   is 37.5°. 

 A protein is placed into the available area, and the obstructed circular area with a radius of twice 

the protein radius is removed from the available area. This is repeated until no area remains 

available. The result of this procedure is the available area  (                   ) as a function of 

the number of proteins adsorbed and the maximum number of proteins which can be adsorbed 

to this particular distribution of polymer chain locations.  

The kinetics of the adsorption process can be obtained by considering that each placement of a 

protein into the available area has to be accompanied by a number of unsuccessful attempts 

which, in average, is proportional to the ratio between the unavailable area and the available 

area. Thus, the time necessary to adsorb   proteins is defined by:  

 ( )  ∑
 

   ( )

   

   

 

 Where   is the sticking probability for a protein-surface collision and   is the rate of collision 

between proteins and surface per unit of area. To compare our results with Katira et al.
36

,   is set 

to         .
155

 The collision rate   is given by: 
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       √
   

  

 

Where    is the protein concentration and    is the protein mass.
155,156

  

In contrast to Feder’s method where many attempts to place a protein have to be made as the 

surface coverage increases,
150

 our method is fast when a large number of polymer chains on the 

surface reduces the available area far below the area of the entire square, since there are no 

unsuccessful attempts. This situation applies by definition to non-fouling coatings.   

 

Figure 49. The two stage random sequential adsorption process is conducted on a lattice. First, 

particles representing polymer chains are placed on the surface (black). Secondly, particles 

representing proteins (red) are placed in the available spaces between the polymers. The mesh 

of 25 pm is visible in the inset. Here, protein Ribonuclease A is placed after a polymer coating of 

EG6OH at       is achieved.  

1 Å20 nm
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Results 

The simulation procedure is first validated for the adsorption of proteins to a bare surface 

(             for Ribonuclease A
157

), which corresponds to the previously studied random 

sequential adsorption of disks. The protein coverage   is defined as follows: 

   
           

 

  
 

Then the maximum coverage is: 

                

This result is in agreement with the literature. The error is the standard deviation obtained from 

five independent simulation runs. Secondly, as previously found by Feder,
150

 in the vicinity of the 

jamming limit the coverage saturation increases in proportion to       (Figure 50): 

       
 

√ 
 

 

Figure 50. Protein coverage as a function if time. Protein coverage on a bare surface (blue) 

increases in proportion to       in the vicinity of the jamming limit (0.546), as shown by the 
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dotted line. In the inset, the decrease of the area available to new proteins in function of time  . 

Preliminary results. Simulations by A. Guillaume. 

 

The simulation of protein adsorption (            ) to a surface covered with polymers 

(               for EG6OH chains according to Kuhn’s formula for    ) at 10% of the 

maximal polymer coverage (     ) reveals a maximum number of adsorbed proteins of 

355 which corresponds to a coverage of about 40%. We found that the available area 

depends on the surface density theta   in the following relationship: 

    (     ) 

Where   is the area in nm
-2

. Running simulations for other percentages of the maximal polymer 

coverage (            ,      ), and then for polymers of different size (               

for EGOH and               for EG17OCH3) showed that the coefficient   found is fairly equal 

to 0.36, when w varies with the polymer size and coverage (Figure 51). 
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Figure 51.   and   as a function of the grafting ratio for several polymer brushes. Simulations 

by A. Guillaume and A. Gore. 

 

We then plot the logarithm of the initial area available for protein placement as a function 

of the polymer grafting ratio. As expected, this initial available area decreases with higher 

grafting ratio of polymers (Figure 52). 



108 

 

Figure 52. The initial Available Area for proteins decreases when the polymer grafting ratio 

increases. Logically, it decreases faster when the coated polymer is big (EG17OCH3). Plotting the 

logarithm of this initial available area shows a linear trend for small grafting ratios. Preliminary 

simulations. Simulations by A. Guillaume. 

 

These simulations are currently being continued with the goal of developing a new analytical 

model for random sequential adsorption of proteins on a polymer-grafted surface. 
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CHAPTER 7 

 

A molecular model to explain material 
fracture at low stresses 

 

La science est obscure – peut-être parce que la vérité est sombre 

(Science is obscure – maybe because the truth is dark) 

Victor Hugo 
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Zhurkov’s molecular model to explain fractures of materials 

In 1965, Zhurkov introduced a model
37

 to predict the lifetime of materials under uniaxial tension. 

The model is very simple yet it connects   the lifetime of the material and   the uniaxial stress 

(macroscopic experimental values) to the following microscopic constants:    the inverse of the 

oscillation frequency of atoms in the solid,    the enthalpy of sublimation,    the Boltzmann 

constant,   the temperature, and   the parameter that measures the disorientation of the 

molecular structure. The equation proposed by Zhurkov is the following: 

       (
     

   
) 

This equation accounts very well for the lifetime of several materials as a function of stress. 

Below, a figure of the paper is reproduced. 

 

Figure 53. Prediction of the lifetime of silver chloride, aluminum, and Poly(methyl 

methacrylate) as a function of uniaxial stress at different temperatures. Reproduced from 
37

.  
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Model at low stresses 

Zhurkov’s model does not account for the behavior of fractures at low stresses and high 

temperatures. Zhurkov stipulates that the deviation comes from the reversibility of the bond 

ruptures in the solid. From that hypothesis, I built a simple molecular model that accounts for the 

reversibility of the molecular bond ruptures: 

 

Figure 54. Improvement of Zhurkov’s model to account for the behavior at low stresses. 

 

Like in chapter 5, the governing equations are: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  

  
          

  

  
     (      ) 

  

  
    

        

 (   )   

 (   )   

 

The average time to failure is (from Chapter 5): 

1 2
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∫  

  
  

  
 

 

∫
  
  

  
 

 

 
         

    

 

I set    and    to be: 

{
  
 

  
    

 

  

   ( 
     

    
)

    
 

  

   ( 
       

   
)

     

 

The atomic volume of a metal is approximately       m
3
 and the enthalpy of sublimation 

approximately       J. I reproduce below the curves from Figure 8 from Zhurkov’s paper with 

the rebinding model: 

 

Figure 55. Low stress model for silver chloride at 200 C. Data taken from 
37

. 
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Figure 56. Low stress model for aluminum at 400 C. Data taken from 
37

. 

 

Figure 57. Low stress model for PMMA at 70 C. Data taken from 
37

. 

 

It is not clear yet what the parameters     and    represent. 
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MATLAB code for the low stress model 

 

Figure 58. Structure of the MATLAB code for the low stress model. 

Main.m 

function [av_lifetimes,force_array] = Main() 

  

%% Chose data set (Fig 8.1, 8.2, or 8.3) 

  

[lifetime_data,force_data]        =       Fig8_2_zhurkov()       ; 

  

% CHANGE VALUES IN PARAMETERS.M WHEN CHANGE THE FIGURE NUMBER 

  

%% Number of bonds in the system 

  

global          n                               ; 

  

n               =               2               ; 

  

%% Parameter of simulations 

  

step            =               0.1             ; % in MPa 

inf_force       =               0               ; % in MPa 

sup_force       =               25              ; % in MPa 

% 12 MPa for Fig 8.1 -- 25 MPa for Fig 8.2 -- 70 MPa for Fig 8.3 

  

number_steps    =               round((sup_force-inf_force)/step); 

  

av_lifetimes    =               zeros(1,number_steps); 

force_array     =               zeros(1,number_steps); 

  

  

for i=1:number_steps+1 

     

    force_temp=inf_force+step*(i-1); 

    av_lifetimes(i) = Average_lifetime(force_temp*1e6); % From MPa to Pa! 

    force_array(i) = force_temp;  

     

end 

  

%% Plot simulation against data 

  

semilogx(av_lifetimes,force_array,'linewidth',2); 

hold on; 

Main

Differential Equations

Parameters

Parameters Find indice

Solve differential equations
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semilogx(lifetime_data,force_data,'square','color','red'); 

hold on; 

  

xlabel('Average time of failure (s)','fontsize',20); 

ylabel('Stress (MPa)','fontsize',20); 

  

% To copy/paste the values into ORIGIN 

force_array = force_array'; 

av_lifetimes = av_lifetimes'; 

     

     

     

     

end 

 

Average_lifetime.m 

function [average_time] = Average_lifetime(f) 

  

global force; 

force                  =    f                             ;  

  

global n; 

  

disp(['Force is ',num2str(force)]); 

  

[T,Y]                  =    Solve_differential_equations(); 

  

rate_product_formation =    diff(Y(:,n+1))./diff(T); 

  

  

T_resized = zeros(length(T)-1,1); 

for i=1:length(T)-1 

    T_resized(i) = T(i); 

end 

  

numerator_av_time = sum(T_resized.*rate_product_formation.*diff(T)); 

denominator_av_time = Y(length(T),n+1)-Y(1,n+1); 

  

average_time = numerator_av_time./denominator_av_time; 

  

end 

 

Solve_differential_equations.m 

function [T,Y] = Solve_differential_equations() 

  

global n; 

  

global max_time; 

max_time = 1e-50; 

  

  

initial_conditions = zeros(n+1,1); 

initial_conditions(1) = 1; 

  

% Maximum time over which the equations are solved. 

disp(['Maximum time is ',num2str(max_time)]); 

  

criteria = false; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%criteria = true; 

%[T,Y] = ode15s(@Differential_equations,[0 1e-1],initial_conditions); 

%plot(T,Y); 

%%plot(T,Y(:,n+1)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

while criteria == false 

    [T,Y] = ode15s(@Differential_equations,[0 max_time],initial_conditions);     

    indice = Find_indice(T); 

    if Y(indice,n+1)>0.5 

        criteria = true; 

    elseif Y(indice,n+1) < 0.5 

        max_time = 10*max_time; 

  

    else 
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        max_time = 0.5*max_time; 

end 

  

end 

  

disp(['Maximum time found is ',num2str(max_time)]); 

disp(T(indice)); 

  

%plot(T,Y); 

  

end 

 

Differential_equations.m 

function dy = Differential_equations(t,y) 

  

global n; 

global force; 

  

%force = 100e4; 

  

[T_0,U_0,x,T_q,U_q,x_q,T] = Parameters(); 

  

k = 1.38e-23; % Boltzman constant in J.K-1 

  

  

if n==1 

    A = zeros(2,2); 

    p_1 = 1./T_0.*exp(-U_0/(k*T)+x*force/(k*T)); 

    A(1,1) = -p_1; 

    A(2,1) = p_1; 

elseif n==2 

    A = zeros(3,3); 

    % 2nd model and 4th model 

    %p_1=1./T_0.*exp(-U_0/(k*T)+x*force/(2*k*T)); 

     

    % 3rd mdoel 

    p_1=1./T_0.*exp(-U_0/(k*T)+x*force/(k*T)); 

     

    p_2=1./T_0.*exp(-U_0/(k*T)+x*force/(k*T)); 

    q_1= 1/T_0*exp(-U_q/(k*T)-force*x_q./(k*T)); 

    A(1,1) = -p_1; 

    A(1,2) = q_1; 

    A(2,1) = p_1; 

    A(2,2) = -(q_1+p_2); 

    A(3,2) = p_2; 

elseif n>2 

    A = Matrix_of_coefficients(); 

end 

  

%disp('The matrix of coefficients'); 

%disp(A); 

  

dy = zeros(n+1,1); 

  

dy = A*y; 

  

  

end 

 

Find_indice.m 

function indice = Find_indice(T) 

  

threshold = 0.2*T(length(T)); 

  

condition = false; 

i=1; 

  

while condition == false 

    if T(i)<=threshold && T(i+1)>threshold  

        indice = i; 

        condition = true; 

    end 

if i==length(T)-1 
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    condition = true; 

    indice = i; 

end 

i = i+1; 

end 

         

  

end 

 

Parameters.m 

function [T_0,U_0,x,T_q,U_q,x_q,T] = Parameters() 

  

%% Zhurkov parameters 

  

T_0         =       1e-13           ; %Period for the bond to unbind 

U_0         =       3.85e-19        ; % in Joules; 

x           =       7.4e-27         ; % Volume in m3 

  

%% Unbinding parameters 

  

T_q         =       T_0             ; %60e0; % Period for the bond to rebind in s 

U_q         =       3.2e-19         ; % In Joule for the rebinding 

x_q         =       6e-27           ; % in m3 for the rebinding 

  

%% Tempearture in Kelvin 

  

T           =       400+273.15      ;  

  

end 
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