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Abstract

Despite the importance of single particle motion in biological systems, systematic

inference approaches to analyze particle trajectories and evaluate competing motion models

are lacking. An automated approach for robust evaluation of motion models that does

not require manual intervention is highly desirable to enable analysis of datasets from

high-throughput imaging technologies that contain hundreds or thousands of trajectories

of biological particles, such as membrane receptors, vesicles, chromosomes or kinetochores,

mRNA particles, or whole cells in developing embryos. Bayesian inference is a general

theoretical framework for performing such model comparisons that has proven successful in

handling noise and experimental limitations in other biological applications. The inherent

Bayesian penalty on model complexity, which avoids overfitting, is particularly important

for particle trajectory analysis given the highly stochastic nature of particle diffusion. This

thesis presents two complementary approaches for analyzing particle motion using Bayesian

inference. The first method, MSD-Bayes, discriminates a wide range of motion models—

including diffusion, directed motion, anomalous and confined diffusion—based on mean-

square displacement analysis of a set of particle trajectories, while the second method, HMM-

Bayes, identifies dynamic switching between diffusive and directed motion along individual

trajectories using hidden Markov models. These approaches are validated on biological

particle trajectory datasets from a wide range of experimental systems, demonstrating their

broad applicability to research in cell biology.
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Kálmán Somogyi for spending considerable time teaching me experimental techniques for

handling and imaging starfish oocytes, both in Heidelberg and during their summer visits

to the Marine Biological Laboratory (MBL) in Woods Hole, MA. This thesis would not

have been possible without all of the experimental datasets from starfish oocytes that were
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Chapter 1

Introduction

1.1 Importance of particle trajectories in biological research

Biological systems rely on spatially and temporally regulated molecular interactions;

however, the behavior of biological molecules has a highly stochastic component due to

thermal fluctuations that give rise to random Brownian movements of small particles [Berg,

1993]. Robust biological processes and responses to stimuli require that cellular systems

impose order and direction onto this naturally stochastic behavior of their constituent

particles. Detailed examination of the motion of biological particles can reveal when and

where this order is imposed and provide insights into the biological mechanisms by which

such regulation is achieved. To analyze biological motion in detail, the positions of particles

over time in biological systems must first be visualized using appropriate live-cell imaging

technologies and then quantified using robust image processing and particle tracking algo-

rithms (Section 1.2).

The resulting particle trajectories contain important information on the local en-

vironments with which the particles are interacting, on the spatial and temporal dynam-

ics of active transport mechanisms, and on collective behavior and coordination between

particles. Biological particle trajectories have provided insights into processes as varied

as membrane protein dynamics, vesicle trafficking, directed transport along cytoskeletal
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structures, chromosome segregation, and endocytosis [Saxton and Jacobson, 1997; Turner

et al., 2000; Cremer and Cremer, 2001; Platani et al., 2002; Ehrlich et al., 2004; Gardner et al.,

2005; Chuang et al., 2006; Brandenburg and Zhuang, 2007; Walter et al., 2009; Mori et al.,

2011; Jaqaman et al., 2011; Kitajima et al., 2011]. Particles in cells can become fully confined

due to physical corralling by cytoskeletal polymers [Saxton and Jacobson, 1997; Das et al.,

2009; Cairo et al., 2010] or can be otherwise limited in their diffusive motion (subdiffusion

or anomalous diffusion) due to a wide variety of underlying physical processes, such as

the presence of obstacles or transient binding events to less mobile structures [Brangwynne

et al., 2008; Weber et al., 2010; Wang et al., 2010; Rajani et al., 2011]. Particles in cells may

also move in a directed manner (flow or drift), for example due to the action of molecular

motors [Bormuth et al., 2009; Elting et al., 2011] or to cytoskeletal-driven cytoplasmic

flows [Mori et al., 2011].

Evidence for all of these complex behaviors can be found in particle trajectories given

appropriate methods and algorithms for analysis. Particle tracking and trajectory analysis

have a long history of application across a number of fields, including fluid mechanics [Adrian,

1991] and the study of animal movements [Viswanathan et al., 1996; Benhamou, 2006], and

have more recently become essential for tracking people and cars in automated analysis of

surveillance videos [Stauffer and Grimson, 2000; Haritaoglu et al., 2000; Hu et al., 2004].

1.2 Imaging and tracking biological particles in living systems

Live cell imaging using light microscopy is essential for obtaining information about

biological molecules, organelles, and cells in their native environments [Stephens and Al-

lan, 2003; Meijering et al., 2006]. In particular, obtaining dynamic information on par-

ticle motions requires temporal information from time-lapse imaging. Recent work has
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greatly expanded the available fluorescence tags for labeling and imaging biological particles

[Lippincott-Schwartz and Patterson, 2003; Vaughan and Zhuang, 2011] and improved the

spatial resolution of fluorescence microscopy past the diffraction limit [Klar et al., 2000;

Betzig et al., 2006; Rust et al., 2006]. These and other advances are increasingly enabling the

collection of detailed time-series data on the positions of biological particles over time within

living cells and tissues [Seisenberger et al., 2001; Yildiz et al., 2003; Fernández-González

et al., 2006; Westphal et al., 2008]. An important challenge in particle trajectory analysis

is developing automated analysis methods to handle the large volume of high-throughput

imaging data that is now being produced by these imaging technologies.

Before particle motion can be quantitatively characterized, the trajectories them-

selves (sequences of particle positions over time) must be extracted from the raw images

[Meijering et al., 2006; Saxton, 2008]. Manual identification and tracking of particles is

time-consuming and not scalable to high-throughput imaging datasets. Automating this

process involves two steps: first, accurately determining the particle positions in each image

(“segmentation”); and second, linking the particle positions over time into trajectories

[Meijering et al., 2006]. Segmentation can be performed across all time frames prior to

linking or can be alternated with the linking step; in the latter case, information from

trajectories in previous time frames can be used to inform the segmentation of future time

frames. Segmentation algorithms typically identify particle positions at sub-pixel resolution

by fitting a 2D Gaussian distribution to diffraction-limited objects or by calculating an

intensity-weighted centroid for non-Gaussian objects [Cheezum et al., 2001; Sergé et al.,

2008]. Alternatively, approaches based on wavelet transforms [Olivo-Marin, 2002] or neural

networks [Ouellette et al., 2006] have also been proposed.

Linking particle positions into trajectories can be more or less challenging depending

on the density of particles in the image and the average distance that the particles move
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from one frame to the next, which depends on the imaging rate [Meijering et al., 2006;

Saxton, 2008]. At one extreme, the imaging rate may be high enough that particles in

one frame always have some degree of overlap with their position in the previous frame

and do not overlap other particles’ positions. At the other extreme, particles may move

an average distance between frames that is equal to or greater than the average spacing

between particles. In the latter case, it is impossible to uniquely assign particle positions to

trajectories. For intermediate cases, a number of optimization algorithms have recently been

developed to obtain the most likely set of linked trajectories, using either the global optimum

or locally optimal sub-trajectories that are subsequently joined into longer trajectories [Sage

et al., 2005; Jaqaman et al., 2008; Jaensch et al., 2010]. These methods handle a variety

of challenging situations such as fluorophore blinking [Jaqaman et al., 2008]. Alternatively,

probabilistic tracking algorithms that output multiple possible trajectories and their asso-

ciated confidence levels [Orton and Fitzgerald, 2002; Smal et al., 2007; Smal et al., 2008]

or tracking algorithms that take into account information on particle modes of motion (for

example using Kalman filtering) [Veenman et al., 2001; Comaniciu et al., 2003] can also be

used.

1.3 Existing approaches for particle trajectory analysis

1.3.1 Overview

A particle trajectory consists of a sequence of N particle positions {ri}Ni=1 observed

at times {ti}Ni=1. Typically these time points will be separated by a constant time interval

∆t. Each particle position ri may have multiple components depending on the number of

independent dimensions that were imaged. For a one-dimensional particle trajectory, the

position is a scalar value ri = xi, while for two and three dimensions, the position is a

vector ri = [xi, yi] or ri = [xi, yi, zi], respectively. This sequence of particle positions can
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be easily converted to a sequence of particle displacements by taking the vector difference

between consecutive positions, {∆ri}N−1
i=1 = {ri+1−ri}N−1

i=1 . For a particle undergoing random

Brownian motion, consecutive displacements are statistically independent due to stochastic

interactions with surrounding molecules that randomly change the direction of motion [Berg,

1993; Saxton, 1997]. Analysis of these displacements forms the basis for most approaches to

particle trajectory analysis.

The goal of particle trajectory analysis is to infer the type of motion that a particle

is undergoing and to determine the associated parameters of motion. Because diffusion is

a stochastic process, a single measured particle displacement is not sufficient to perform

such inference. One must observe multiple displacements of the particle to assemble a more

informative picture of its behavior. In any experimental system, such observations are always

limited, both by available imaging technology and by the finite duration and number of

particles involved in biological processes of interest. Therefore, analysis methods that enable

inference even with limited sampling rate, acquisition time, and number of trajectories are

particularly valuable [Jaqaman and Danuser, 2006]. One way to capture information from

multiple displacements is to use ensemble average distribution functions; for example through

moment analysis [Coscoy et al., 2007]. Because of the availability of closed-form analytical

solutions for the dependence of the mean-square displacement (MSD) on time lag [Qian

et al., 1991; Kusumi et al., 1993; Saxton and Jacobson, 1997], MSD is one of the most

commonly-used metrics for characterizing particle motion.
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1.3.2 Mean-square displacement analysis

The mean-square displacement along a given particle trajectory is computed for time

lags τ according to,

MSD(τ) ≡ 〈∆r(τ)2〉 =
1

N − τ

N−τ∑
i=1

|ri+τ − ri|2 . (1.1)

Note that for each τ there are only (N − τ) samples of ∆r(τ)2 that can be derived from

the trajectory. Thus the variance of this MSD estimate increases (the MSD curve gets

more noisy) at higher τ [Qian et al., 1991]. The form of the MSD curve can be used to

characterize the wide range of particle motions described in Section 1.1. The MSD is given

in three-dimensions by the following closed-form analytical solutions for free diffusion (for

which we use the abbreviation D), anomalous diffusion (DA), confined diffusion (DR), and

flow or directed motion (V),

MSDD(τ) = 6Dτ , (1.2)

MSDDA(τ) = 6Dτα , (1.3)

MSDDR(τ) = R2
c

(
1− exp(−6Dτ/R2

c)
)
, (1.4)

MSDV(τ) = v2τ 2 , (1.5)

where v is the magnitude of the particle velocity, D is its diffusion coefficient, α is the

anomalous exponent, and Rc is the radius within which the particle is confined [Saxton and

Jacobson, 1997]. The form of the MSD curve for each of these four basic motion types is

shown in Figure 1.1.
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Figure 1.1: Example MSD curves for four motion models: pure diffusion (D), anomalous diffusion
(DA), confined diffusion (DR), and pure directed motion (V). Curves are plotted in arbitrary units
to show the form of the dependence on τ .

The three diffusive models in Equations 1.2-1.4 can also occur together with directed

motion, yielding more complex motion models described by linear combinations of the above

equations [Saxton and Jacobson, 1997], such as for free diffusion plus flow,

MSDDV(τ) = 6Dτ + v2τ 2 . (1.6)

Experimental particle position measurements typically contain a localization error charac-

terized by a positional uncertainty with standard deviation σe, which adds a constant term

of 6σ2
e to the MSD [Michalet, 2010; Voisinne et al., 2010]. In some physical situations, such

as confinement within a radius smaller than either the mean localization error or the mean

diffusive step size given the sampling rate, the particle may appear stationary because the

MSD curve is dominated by this constant term.
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MSD curves are most commonly used to find the diffusion coefficient and anomalous

exponent of a particle trajectory. The diffusion coefficient is typically obtained by linear

regression using only the first few MSD measurements at small time lags [Kusumi et al., 1993;

Huet et al., 2006]. The first points are used because they have the smallest variance [Qian

et al., 1991] and also have the smallest contribution from directed or anomalous behavior,

which are more pronounced at longer time lags. It has been shown that this estimator of the

diffusion coefficient is unbiased and efficient for a particle undergoing pure diffusion, but can

be biased if the true motion of the particle is more complex, such as confined diffusion [Masson

et al., 2009; Voisinne et al., 2010]. The bias is smallest for the shortest time lags, so fitting is

often performed by weighting the observed MSD values by the inverse of their variance [Huet

et al., 2006]. The number of points used in the linear regression varies between one and 20

points in different studies [Lang et al., 2000; Johns et al., 2001; Daumas et al., 2003; Ng et al.,

2003; Huet et al., 2006]. This method assumes that the sampling rate of the trajectory is

high enough that directed or anomalous effects do not significantly contribute to the slope

of the MSD curve at the earliest measured time lags. The diffusion coefficient value can

be obtained either from a mean MSD curve across many trajectories in a dataset, or can

be calculated independently for individual trajectories; in the latter case, variation within

a population can be revealed by the distribution of diffusion coefficients [Kusumi et al.,

1993; Cairo et al., 2006; Bomzon et al., 2006; Cairo et al., 2010].

Plotting the MSD curve versus time lag on a log-long scale is a common approach

for visualizing the anomalous exponent α, which is the slope of the log-log plot,

logMSD(τ) = log 6D + α log τ . (1.7)

The value of α varies with the magnitude of confined or directed motion present in a trajec-

tory and has been used as a basis for model inference, as discussed below in Section 1.3.3.
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Linear regression is typically performed to fit the anomalous exponent using Equation 1.7. An

important caveat to this method of obtaining α, however, is that it is significantly affected by

the presence of localization error in the particle position measurements. As mentioned above,

localization error adds a constant offset to the MSD values. This constant is straightforward

to take into account when fitting motion models using Equations 1.2-1.6; however, with a

constant term the anomalous diffusion model no longer simplifies into a convenient log-log

form as in Equation 1.7. On a log-log scale, an MSD curve with localization error will have a

significantly reduced slope over the first few time lags [Martin et al., 2002]. If Equation 1.7 is

used to fit α as the slope of the log-log plot in the presence of localization error, its value will

be substantially underestimated and the motion will appear artificially subdiffusive [Martin

et al., 2002].

1.3.3 Model selection using mean-square displacement

An important challenge for performing motion model selection or classification of

particle trajectories is that purely random trajectories can appear to contain complex be-

haviors, such as confinement or directed motion, simply due to the stochastic nature of

diffusion [Simson et al., 1995; Qian et al., 1991; Saxton, 1997]. Therefore, it is essential to

rule out the null model of simple diffusion when classifying trajectories as arising from a more

complex motion type [Saxton, 1993]. Ruling out the simple diffusion model has typically

been done for particle trajectories by applying a proposed metric for model classification to a

large number of simulated trajectories of simple diffusion to obtain a probability distribution

for its value from these null trajectories. A threshold value of the metric is then chosen such

that only a small percentage, typically 1-5 percent, of the simulated diffusive trajectories

pass the threshold [Kusumi et al., 1993; Huet et al., 2006].
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MSD curves have often been used to infer the type of motion that a particle is

undergoing based on their deviation from linearity. Curves for directed motion generally have

upward curvature while curves for anomalous or confined diffusion have downward curvature,

and this curvature can be quantified based on the difference between the observed MSD curve

at long time lags and a projection of a linear fit to the first few MSD points at small time

lags [Kusumi et al., 1993; Huet et al., 2006]. As discussed above, the slope of these initial

MSD points is assumed to reflect the underlying diffusion coefficient of the particle without

significant contribution from directed or anomalous behavior. The linear fit is a projection

of what the MSD curve would look like if the motion were purely diffusive at all time scales.

Deviation from this projection is typically calculated as the ratio between the observed MSD

value and the projected value, measured either at a single time lag [Kusumi et al., 1993] or

averaged over a range of time lags [Huet et al., 2006]. Deviation ratios sufficiently greater

than 1 indicate that the particle experiences directed motion, while ratios sufficiently less

than 1 indicate that the particle experiences subdiffusion or confinement. The significance

threshold is chosen based on simulations of simple diffusion, as described above.

Another approach to inferring motion type from an MSD curve is to fit the curve with

the anomalous diffusion model using Equation 1.7 and classify the corresponding trajectory

as simple diffusion, directed, or subdiffusive based on the fit value of α [Arcizet et al.,

2008; Lawton et al., 2013]. Note that the MSD equations for pure diffusion and pure flow,

Equations 1.2 and 1.5, are proportional to τ and τ 2, respectively. Thus, the fit value of α

would theoretically be equal to 1 if the underlying motion were purely diffusive and equal

to 2 if the motion were purely directed. If the motion has both diffusive and directional

components, although the true MSD equation is given in Equation 1.6 above, fitting with the

anomalous diffusion model will yield an intermediate value 1 < α < 2, with α approaching 2

as the relative contribution of directional motion increases. Finally, for a subdiffusive process

such as confined or obstructed diffusion, the value of α will be less than 1. Therefore, the
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value of α can be used as a continuous measure of the degree of directed or obstructed motion

[Lawton et al., 2013] or used for classification by choosing threshold values of α [Arcizet et al.,

2008].

1.3.4 Non-MSD approaches for detecting directed motion

MSD-based methods have limited application to short particle trajectories, because

they require tens of points in the MSD curve to see a difference in curvature between

complex motions and simple diffusion [Huet et al., 2006]. A different approach that has

been proposed to detect directed motion in shorter trajectories is based on the asymmetry

of a point cloud of particle position measurements [Saxton, 1993; Huet et al., 2006]. A

point cloud can be described by a radius of gyration tensor and its principle moments,

which are related to the spatial extent of the point cloud in different dimensions. Various

metrics to measure asymmetry have been proposed based on the relative magnitudes of

these principle radii of gyration, such as the ratio of the radii or the relative difference

between them [Saxton, 1993; Huet et al., 2006]. However, it is important to note that

trajectories of particles undergoing simple diffusion are also typically asymmetric due to the

stochastic nature of diffusion [Saxton, 1993; Rudnick and Gaspari, 1987]. Therefore, it is

not straightforward to distinguish directed motion from pure diffusion using an asymmetry

metric without first examining the probability of observing particular values of asymmetry

in simulations of random walks. A threshold for significance can then be set based on this

probability distribution, as described in Section 1.3.3 above. Previous studies found that

this asymmetry metric is applicable to trajectories with at least 10 points [Huet et al., 2006],

shorter than what is needed for a reliable MSD-based analysis.
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Another class of methods for distinguishing directed motion from random diffusion

relies on correlations in the direction of motion of a particle at consecutive time points. For

a purely random walk, consecutive directions are uncorrelated, whereas for pure directed

motion they would be perfectly correlated. The degree of correlation can be measured

by calculating the dot product between consecutive velocity vectors along the trajectory

[Bouzigues and Dahan, 2007; Weber et al., 2012]. As with the displacement measurements

used for MSD curves above, this correlation measurement can be calculated for velocity

vectors over different time lags τ . For a flowing particle that also has a diffusive component

or that has noisy position measurements, the observed correlation will be greater for longer

time lags, due to the greater relative contribution of directed motion to the displacement

vector. Velocity correlations can be analyzed for a single time lag or averaged over a range of

time lags [Bouzigues and Dahan, 2007] or plotted versus time lag in an analogous manner to

MSD curves [Weber et al., 2012]. For determining whether the observed correlation values

are significant enough to classify a particle as having directed motion, again a threshold value

can be chosen based on the distribution of correlation values obtained from simulations of a

large number of purely diffusing trajectories [Bouzigues and Dahan, 2007].

1.3.5 Non-MSD approaches for detecting confinement

A natural approach to detect confinement within a trajectory is based on the fact

that confinement, whether full or partial, reduces the distance that a particle travels over

time in comparison to free diffusion. Therefore, the time that a particle stays within a circle

or volume of a given radius centered at its initial position will be longer for confined particles

than for freely diffusing particles with the same underlying diffusion coefficient [Condamin

et al., 2008; Rajani et al., 2011]. This time is called the first-passage time (FPT) and has

been used to study animal movements [McKenzie et al., 2009] and in the field of chemical

kinetics [Condamin et al., 2007], and is also similar to the recently-proposed mean maximal
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excursion method for trajectory analysis [Tejedor et al., 2010]. The probability that a free

particle with diffusion coefficient D stays within a radius R for a time t can be derived

analytically as a function of these three parameters [Saxton, 1993]. One implementation of

FPT analysis [Simson et al., 1995] is to compare the observed first-passage time for some

R with the expected first-passage time for a freely diffusing particle with a value of D

estimated from the initial slope of the MSD curve, as described above. Alternatively, an

appropriate radius for FPT analysis can be selected by measuring the variance in FPTs

measured along a trajectory for different values of R. This variance is greatest when the

tested radius is close to the size of the confinement zones within the trajectory [Rajani et al.,

2011]. A potential complication is that a smaller peak in FPT variance is also present at

a radius corresponding roughly to the mean single-step length of the trajectory, whether or

not the particle is confined. Therefore, it is recommended that the results of FPT analysis

on experimental trajectories be compared directly to results on simulated trajectories with

the same diffusion coefficient [Rajani et al., 2011].

1.3.6 Detecting transient behavior along a trajectory

Since interpreting particle trajectories requires multiple observations of the particle

positions and displacements, as discussed in Section 1.3.1, typically observations are pooled

over an entire trajectory or set of trajectories assumed to undergo the same type of motion.

However, particles in biological systems may experience different phases of motion even

within a single observed trajectory, due to spatial or temporal regulation of the particle’s

environment or interactions with other molecules. For example, membrane proteins may pass

through different compartments in the cell membrane that affect their behavior [Kusumi

et al., 1993], and proteins that form complexes with other particles will show transient

switching between diffusion coefficients governed by the on- and off-rates of binding [Das

et al., 2009]. To test whether a trajectory contains multiple types of motion, the following
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bootstrapping method has been proposed. A set of artificial trajectories is generated by

sampling from the empirical step length distribution and the distribution of angles between

consecutive displacements observed in the original trajectory [Rajani et al., 2011]. This set of

bootstrapped trajectories represents the range of particle behaviors that would be expected

assuming that the length and angle distributions are time-invariant. If the properties of the

original trajectory, for example its MSD curve, fall outside the range of the bootstrapped

trajectories, then the original trajectory is not well explained by time-invariant step and

angle distributions and is likely to consist of multiple phases of motion [Rajani et al., 2011].

Detection of such transient phases of motion along a particle trajectory precludes the

use of metrics that are averaged over the entire trajectory. However, the analysis methods

described in the sections above can be adapted to detect transient motion by applying an

analysis repeatedly to sub-trajectories of the original trajectory, typically using a sliding time

window. Most published approaches for detecting transient motion in particle trajectories

have relied on this type of sliding window approach [Simson et al., 1995; Huet et al.,

2006; Arcizet et al., 2008; Rajani et al., 2011]. An important consideration is the width

of the window, since there is a tradeoff between temporal resolution and obtaining sufficient

samples for robust inference [Huet et al., 2006; Arcizet et al., 2008]. The window size is

often selected based on prior knowledge of the typical timescales and motion parameters of

the biological processes being investigated [Arcizet et al., 2008]. An alternative approach

is to test a range of window widths at each position along a trajectory and select the

width that gives the greatest difference from purely diffusive behavior [Huet et al., 2006].

Because stochastic fluctuations in diffusive motion may also produce occasional false-positive

signals, these window-based methods typically enforce a minimum number of consecutive

windows over which complex behaviors must persist in order to be deemed significant

[Simson et al., 1995]. The MSD anomalous exponent α-based method for classification of

directed motion, discussed in Section 1.3.3, has been applied in a sliding window approach
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to characterize transport of endosomes and distinguish free diffusion from periods of active

transport along microtubules [Arcizet et al., 2008]. The MSD-based deviation from linearly

metric (Section 1.3.3) and the point-cloud asymmetry metric (Section 1.3.4) have been

applied within sliding analysis windows along secretory vesicle trajectories to detect periods

of constrained motion and directed motion, respectively [Huet et al., 2006]. This sliding-

window approach is convenient in that it is very general and can be used in conjunction with

most particle trajectory analysis metrics. However, it is limited in temporal resolution to

the width of the time windows within which the metrics are applied, which must typically be

tens of steps long to detect behavior that is significantly different from simple diffusion [Huet

et al., 2006]. Thus, the maximum achievable temporal resolution of transient behavior

using a window-based method does not approach the temporal resolution of the underlying

trajectory.

An alternative approach that makes it possible to achieve single-step temporal res-

olution of motion switching along particle trajectories has recently been proposed [Das

et al., 2009; Cairo et al., 2010; Chung et al., 2010; Persson et al., 2013]. The approach

extends a maximum likelihood change-point detection approach for identifying switches

in diffusion coefficient [Montiel et al., 2006] by using a hidden Markov model (HMM)

to model multiple states of diffusion along a trajectory. HMMs are designed to analyze

timeseries data and assume that the observation made at each time point—such as the

observation of a particle’s position or displacement from its previous position—derives from

some unobserved (hidden) state of the system. As long as the relationship between the

hidden states and the observations can be defined in terms of a probability distribution,

then the series of observations can be used to infer the sequence of hidden states and

assign a most likely state to each time point. HMMs have been applied successfully in

other areas of biophysics [Venkataramanan and Sigworth, 2002; Bronson et al., 2009; Letinic

et al., 2010]. For particle trajectories, the observations have been defined as either the
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particle displacements [Das et al., 2009; Cairo et al., 2010; Persson et al., 2013] or squared

displacements [Chung et al., 2010], and the hidden states have been defined as different values

of the diffusion coefficient. While the majority of these studies made an a priori assumption

that there were two diffusive states and used the HMM approach to fit the values of the

two diffusion coefficients and find the sequence of diffusive states [Das et al., 2009; Cairo

et al., 2010; Chung et al., 2010], the most recent study uses a Bayesian procedure to infer

the number of diffusive states as well [Persson et al., 2013]. Their method is based on the

principles of Bayesian inference described below.

1.4 Principles of model selection and Bayesian inference

A common theme in the sections above and in the field of particle trajectory analysis

is the use of a simple model—typically pure diffusion—as a null hypothesis for detecting

more complex forms of motion. Comparison to a null model is part of the more general

problem of model inference and model selection when the models being compared have

different complexity, or different numbers of parameters. It is important to avoid over-fitting

or over-interpreting an observed dataset by inferring complexity that is not statistically

justified. Inference of particle motion models is a particularly clear example of this problem,

since the stochastic nature of simple diffusion leads to relatively high likelihoods of seeing

behaviors in diffusive trajectories that may appear to be caused by more complex motion

models [Kusumi et al., 1993; Michalet, 2010; Saxton, 1997]. As discussed in the context of

thresholding-based motion model selection methods in Section 1.3, it is important to know

the chance or likelihood that a particular level of apparent complexity can be generated from

simple diffusion. This likelihood can be determined either analytically or through repeated

simulations of diffusive trajectories, as described in Section 1.3.
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A more general method of model selection is to compare the likelihoods of seeing

a set of observations—such as a sequence of particle positions or values of a trajectory-

derived metric—between different models. Typically the models will be parameterized by

one or more parameters β, and the likelihood of the observations can be computed at specific

values of β. For any given model Mk from a set of possible models (M1, ...,MK), we can

write the likelihood of seeing a set of observations y at a given value of the parameters βk

of that model as,

P (y|βk,Mk) . (1.8)

A maximum likelihood (ML) approach to model selection finds the parameters β̂k,MLE (the

maximum likelihood estimator, MLE) that maximize this likelihood for each model Mk

[Casella and Berger, 2001],

β̂k,MLE = arg max
βk

P (y|βk,Mk) , (1.9)

and then chooses the model with the maximum value of this maximum likelihood,

M̂ = arg max
Mk

P (y|β̂k,MLE,Mk) . (1.10)

However, the maximum value of the likelihood will generally be larger for models with more

parameters, due to the fact that more complex models have more degrees of freedom with

which to fit the data [Casella and Berger, 2001; Sivia and Skilling, 2006]. The ML approach

on its own does not penalize complex models for these extra parameters.

An alternative approach is to treat the parameters βk not as fixed quantities but

as random variables with their own probability distributions, following Bayesian statistics

[Casella and Berger, 2001; Sivia and Skilling, 2006]. Model selection using Bayesian inference
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considers the likelihood of the observations not at a single ML estimate of the parameters,

but integrated over all possible parameter values, as follows,

P (y|Mk) =

∫
P (y|βk,Mk)P (βk|Mk)dβk . (1.11)

The total probability of the data given a model, P (y|Mk), is called the marginal likelihood

or evidence [Bronson et al., 2009]. Note the presence of the term P (βk|Mk) in Equation 1.11,

which is a prior probability distribution over the values of the parameters. Prior probabilities

on the models themselves can also be introduced using Bayes’ theorem,

P (Mk|y) =
P (y|Mk)P (Mk)

P (y)
, (1.12)

where P (Mk|y) is the posterior probability of each tested model and the denominator P (y)

is a normalizing factor P (y) =
∑

k P (y|Mk)P (Mk) such that the model probabilities sum

to 1. If the prior model probabilities P (Mk) are assumed equal for all k, which is suitable

when no information is available to prefer one model over another, then the final model

probabilities P (Mk|y) are simply proportional to the marginal likelihoods P (y|Mk).

An important feature of the marginalization process in Equation 1.11 is that it

introduces a inherent penalty on model complexity due to the fact that the prior probability

of the parameters P (βk|Mk) is spread over a higher-dimensional parameter space as the

number of parameters in the model increases. Thus the value of the prior at the MLE

parameters is significantly smaller for models with more parameters. In the words of Sivia

and Skilling,

Any likelihood gain from a better agreement with the data, allowed by the greater
flexibility of a more complicated model, has to be weighed against the additional
cost of averaging it over a larger parameter space. [Sivia and Skilling, 2006]
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Thus the Bayesian approach to model selection automatically penalizes model complexity

and identifies the simplest model consistent with the observed data [Sivia and Skilling, 2006;

Raftery, 1995; Posada and Buckley, 2004; Carlin and Louis, 2009]. This approach is general in

that it computes relative probabilities of an arbitrary set of competing motion models without

any requirement on model form or nesting [Raftery, 1995]. Although Bayesian inference

requires a choice of prior probabilities associated with each model and its parameters,

this requirement objectifies the scientific process by formalizing and reporting these biases

concisely in the mathematical form of a prior distribution [Raftery, 1995; Posada and Buckley,

2004]. Given a set of priors, Bayesian inference can be applied automatically, without user

intervention.
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Chapter 2

Bayesian inference for mean-square displacement analysis

Much of this chapter has been previously published in:

Monnier N, Guo SM, Mori M, He J, Lénárt P, Bathe M. Bayesian approach to MSD-
based analysis of particle motion in live cells. Biophysical Journal 103(3):616-626 (2012)

2.1 Overview

Quantitative tracking of particle motion using live-cell imaging is a powerful approach

to understanding the mechanism of transport of biological molecules, organelles, and cells. In

most biological applications, the underlying mode of particle motion is unknown a priori and

must be inferred using mathematical models. However, inferring complex stochastic motion

models from single-particle trajectories in an objective manner is nontrivial due to noise

from sampling limitations and biological heterogeneity. This chapter presents a systematic

Bayesian approach to multiple-hypothesis testing of a general set of competing motion models

based on particle mean-square displacements (MSDs) that automatically classifies particle

motion, properly accounting for sampling limitations and correlated noise while appropriately

penalizing model complexity to avoid over-fitting. We test the procedure rigorously using

simulated trajectories for which the underlying physical process is known, demonstrating that

it chooses the simplest physical model that explains the observed data. Further, we show

that computed model probabilities provide a reliability test for the downstream biological
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interpretation of associated parameter values. We subsequently illustrate the broad utility of

the approach by applying it to disparate biological systems including experimental particle

trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety

of complex motions. This automated and objective Bayesian framework easily scales to large

numbers of particle trajectories, making it ideal for classifying the complex motion of large

numbers of single molecules and cells from high-throughput screens, as well as single-cell-,

tissue-, and organism-level studies.

2.2 Correlated error in MSD curves

As discussed in Chapter 1, the stochastic nature of diffusion complicates the analysis

of particle trajectories because particles undergoing simple diffusion can have trajectories

that appear by eye to contain more complex behaviors, including periods of confinement

or directed motion [Qian et al., 1991; Kusumi et al., 1993; Michalet, 2010; Saxton, 1997].

This complication exists not just for the particle trajectories themselves, but also for derived

metrics such as mean-square displacement. Figure 2.1 shows multiple MSD curves derived

from individual simulated trajectories of particles undergoing simple Brownian motion.

Despite the fact that the analytical form of the MSD curve for this type of simple motion

is linear in τ (Equation 1.2), the observed MSD curves are highly variable. Many of the

curves have upward or downward curvatures, which are characteristic of directed motion

and confined or subdiffusive motion, respectively; thus these MSD curves appear to suggest

more complex particle motions than are actually present.

Note that the deviation of each MSD curve from its analytical form is highly cor-

related over the different time lags τ (Figure 2.1). When MSD curves are calculated from

particle trajectories according to Equation 1.1, the same set of steps—grouped into different
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Figure 2.1: Example MSD curves (dashed lines) calculated from individual simulated particle
trajectories undergoing simple diffusion with D = 0.001 µm2/s, ∆t = 1 s, and total time T = 200 s.
The analytical form of the MSD curve for simple diffusion in three dimensions, 6Dτ , is also shown
(blue line). Figure previously published in [Monnier et al., 2012].

sized windows—is used to calculate the MSD value at each time lag τ . In other words, the

same stochastic observations are reused for each calculation. This process leads to strong

correlations in the difference between the calculated MSD values and their expected values

over τ . The analytical form of the MSD is asymptotically correct only in the limit of infinite

trajectory length. Averaging MSD curves from different trajectories improves the estimate

of the mean MSD value at each time lag, but does not eliminate the correlations between

time lags.

For a freely diffusing particle in the absence of localization error, an analytical

solution for the covariance of these deviations from the analytical MSD curve has been

derived [Qian et al., 1991; Michalet, 2010] and is shown in Figure 2.2. Note that the

magnitude of the covariance increases significantly at larger values of τ , as discussed in

Chapter 1. The presence of these correlated errors in MSD curves can result in fitting

erroneous, overly-complex models [Qian et al., 1991; Kusumi et al., 1993; Michalet, 2010;

Saxton, 1997]. To avoid this over-fitting problem, here we account for the correlations using

22



Figure 2.2: Analytical forms of the MSD error covariance and correlation matrices (from [Qian
et al., 1991; Michalet, 2010]) for MSD curves from simple diffusion with parameters as in Figure 2.1.
Figure previously published in [Monnier et al., 2012].

multiple independent MSD curves from independent particle trajectories or sub-trajectories

to compute both a mean MSD curve and its associated error covariance matrix, as described

below.

2.3 Application of Bayesian inference to MSD analysis

2.3.1 Classical regression and generalized least squares

Classical regression fits an observed series of data y = [y1, y2, ..., yn] (in this case, the

MSD values) with a model function f(x,β) (in this case, the motion model equations given

in Chapter 1) according to yi = f(xi,β) + εi, where x = [x1, x2, ..., xn] are the sample points

(in this case, the time lags τ), β = [β1, β2, ..., βp] are the model parameters (including some

combination of diffusion coefficient D, velocity v, anomalous exponent α, and/or confinement

radius Rc), and εi are errors associated with the yi measurements. In the case of particle

trajectories, the errors arise primarily from finite sampling of the stochastic motion of the

particle, as discussed above. The classical weighted least squares approach minimizes the
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sum of the squared residuals, χ2 =
∑

i(yi − f(xi,β))2/σ2
i , where the error terms εi are

assumed to be uncorrelated and each is normally distributed with zero mean and standard

deviation σi [Casella and Berger, 2001; Seber and Wild, 2003]. The chi-squared value χ2 can

then be used to test the goodness-of-fit of models conditioned on a null hypothesis.

Minimizing χ2 is equivalent to maximizing the likelihood of observing the data points

y, where each yi is normally distributed around its analytical value f(xi,β) with standard

deviation σi. The likelihood is a product over the probability of observing each yi,

P (y) =
n∏
i=1

[
1

σi
√

2π
exp

(
−(yi − f(xi,β))2

2σ2
i

)]

=
1

(2π)n/2
∏n

i=1 σi
exp

(
−1

2

n∑
i=1

(yi − f(xi,β))2

σ2
i

)
.

(2.1)

The χ2 value above is equal to the summation in the exponential term. For MSD curves,

however, the yi values are not distributed around the analytical f(xi,β) values according

to independent normal distributions. As discussed in Section 2.2, the MSD errors εi for

different time lags are highly correlated, making Equation 2.1 invalid. If the correlation

matrix C of the MSD errors εi is known, then the likelihood can be rewritten in terms of

the full multivariate normal distribution of the error vector ε = y− f(x,β) as follows [Seber

and Wild, 2003],

P (y) =
1

(2π)n/2|C|1/2
exp

(
−1

2

(
y − f(x,β)

)T
C−1

(
y − f(x,β)

))
. (2.2)

This approach is called generalized least squares and can be implemented by transforming

the fitting equation y = f(x,β) + ε with a matrix A equal to the inverse of the Cholesky

decomposition of C, such that the resulting equation Ay = Af(x,β) + Aε has uncorrelated

errors Aε [Seber and Wild, 2003]. In this transformed coordinate system, the ordinary least

squares approach that minimizes the sum of squared residuals can then be used to obtain
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the maximum likelihood estimate β̂MLE for the parameters. Here we use the ordinary least

squares algorithm in the “lsqcurvefit” function in MATLAB (The MathWorks, Inc., Natick,

MA) to find the maximum likelihood estimate β̂MLE and the associated covariance matrix

Σ̂MLE of the fit parameters.

2.3.2 Bayesian approach to regression

We apply the Bayesian inference framework introduced in Chapter 1 to test multiple

competing models for MSD curves. For K possible models (M1, ...,MK), such as the motion

models shown in Figure 2.3, the probability of each model given the observed data y can

be expanded by Bayes rule as in Equation 1.12. We assume that the models all have equal

prior probabilities P (Mk), so the posterior model probabilities are simply proportional to

the marginal data likelihood,

P (Mk|y) ∝ P (y|Mk) . (2.3)

P (y|Mk) is calculated for each model by marginalizing the likelihood P (y|βk,Mk) over the

model parameters βk as in Equation 1.11,

P (y|Mk) =

∫
P (y|βk,Mk)P (βk|Mk)dβk . (2.4)

In the case of the observed MSD values, the probability of observing the data y for any

given realization of the parameters βk of model Mk with model function fk(x,βk) is given

by the general multivariate normal function in Equation 2.2 above, which includes C, the

covariance matrix of the errors εi, so Equation 2.4 becomes,

P (y|Mk) =
1

(2π)n/2|C|1/2

∫
exp

(
−1

2

(
y − fk(x,βk)

)T
C−1

(
y − fk(x,βk)

))
P (βk|Mk)dβk .

(2.5)
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Figure 2.3: Models of particle motion. The simplest (single-parameter) models are shown in the
top row, followed by the intermediate-complexity (2-parameter) models in the middle row and the
most complex (3-parameter) models in the bottom row. Model abbreviations specify the parameters
of each model; for example, the diffusion plus flow model (DV) has both a diffusion coefficient D and
a velocity magnitude v as parameters. Lines connecting the models indicate nesting relationships;
for example, both DR and DV are nested in DRV, but DAV and DRV are not nested one in the
other. Figure previously published in [Monnier et al., 2012].

Implementation of the Bayesian approach thus requires the following steps to evaluate

P (y|Mk). First, the error covariance matrix C is empirically estimated from the data (as

described in Sections 2.3.3 and 2.3.4). Second, the integration in Equation 2.5 is performed

for each model using the Laplace approximation (Section 2.3.5) and uniform parameter

priors P (βk|Mk) (Section 2.3.6) to obtain the final values of P (y|Mk) and the corresponding

model probabilities. The overall procedure for applying Bayesian inference to MSD curves

is summarized in Figure 2.4. Because this Bayesian framework inherently penalizes models

with higher numbers of parameters, as discussed in Chapter 1, the set of competing models
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Figure 2.4: Sequence of steps for applying Bayesian inference to MSD-based analysis of particle
trajectories. Starting from a set of particle trajectories, an MSD curve is calculated from each
trajectory and then the set of MSD curves is used to calculate a mean MSD curve and its noise
covariance matrix, which serve as inputs to the Bayesian inference procedure described in the text.
The output model probabilities and parameters can be interpreted in the context of the biological
system, and, if necessary to improve resolution of complex models, additional trajectories can be
collected or existing trajectories can be classified into less heterogeneous subgroups (see Figure 2.11).
Figure previously published in [Monnier et al., 2012].

evaluated by this method (Figure 2.3) can vary in complexity and can include nesting

relationships that are difficult to treat using standard frequentist tests.

2.3.3 Empirical estimation of MSD correlated errors

As mentioned above, proper accounting for correlated errors is essential to the

interpretation of MSD curves because correlated fluctuations around the analytical MSD

values frequently leads to over-fitting of complex models. For example, the confined diffusion
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model can fit correlated errors in pure diffusion MSD curves that causes the curve to trend

downward at large time lags, and the diffusion plus flow model can fit correlated errors in pure

diffusion MSD curves that causes the curve to trend upward at large time lags (examples

of both of these cases can be observed in the diffusive MSD curves in Figure 2.1). We

illustrate this point by fitting MSD derived from simulated trajectories undergoing simple

diffusion with the motion models in Figure 2.3 using the weighted least squares form for the

likelihood in Equation 2.1, which ignores correlations, versus the generalized least squares

form in Equation 2.2. Significant overfitting is observed in the former but not the latter case

(Figure 2.5). These results demonstrate that accounting for the effect of correlated errors

is essential for properly analyzing and interpreting MSD curves, particularly when the true

particle motion is a simple model such as pure diffusion. The degree to which correlated

errors impact model selection varies depending on the true form of motion and the set of

models included in the model selection process.

Although the analytical form of the MSD error covariance matrix has been derived for

particles undergoing simple diffusion [Qian et al., 1991], the covariance matrix differs between

motion models and its form has not been derived for the more complex models [Kusumi

et al., 1993]. To avoid assuming any particular model of motion a priori, we use an empirical

approach to estimate the error covariance matrix from multiple observations of the data

y, or multiple independent MSD curves, following recent work on fluorescence correlation

spectroscopy (FCS) data [He et al., 2012; Guo et al., 2012]. The empirically estimated matrix

is called the sample covariance matrix S. The multiple MSD curves used to calculate S must

be derived from independent, non-overlapping particle trajectories. Given J independent

observations {y(j)}Jj=1 of MSD values over the same set of time lags, whether from multiple

or single trajectories, the residuals between each individual MSD curve and the mean MSD

curve are used to estimate the variance and the covariance of the noise in the MSD estimates.
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Figure 2.5: (a) Model probabilities obtained using weighted least squares fitting (ignoring noise
covariance). Mean MSD curves with 100 points were calculated by averaging a variable number
(shown on the x-axis) of independently simulated trajectories undergoing pure diffusion with the
same parameters as in Figure 2.1. The resulting model probabilities are shown as means and
standard deviations over 40 repetitions of the simulations and inference procedure. (b) Model
probabilities obtained using generalized least squares (GLS) fitting (accounting for noise covariance)
of the simulated trajectories undergoing pure diffusion as in (a), using the analytical form of the
noise covariance [Qian et al., 1991; Michalet, 2010] (as shown in Figure 2.2) as the covariance matrix
C. Light blue shading indicates the range over which the true model (pure diffusion, D) can be
resolved. (c) Model probabilities obtained using GLS fitting as in (b), but using the regularized
sample noise covariance matrix (see Sections 2.3.3 and 2.3.4) as the covariance matrix C. Figure
previously published in [Monnier et al., 2012].
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For each MSD curve j, the residual at each time lag τj is given by,

ε
(j)
i = y

(j)
i − ȳi , (2.6)

where ȳi =
∑

j y
(j)
i /J . The entries in the sample covariance matrix S for the mean MSD

curve are then equal to,

Sii′ =
1

J(J − 1)

J∑
j=1

ε
(j)
i ε

(j)
i′ . (2.7)

The multiple observations of the MSD values are also used to calculate a mean MSD curve

for the model fitting and model selection procedure.

The independent MSD curves used above can be obtained either from multiple parti-

cle trajectories or from splitting a single particle trajectory into multiple non-overlapping and

independent sub-trajectories. In the latter case, the full trajectory of N−1 steps (N position

measurements) is divided into J non-overlapping sub-trajectories of b(N − 1)/Jc steps

each. There is then a tradeoff between accurate estimation of the covariance matrix (which

improves with the number of sub-trajectories J) and the time range spanned by the MSD

curve, which is limited by the number of steps in the sub-trajectories. We note that in the

case of anomalous diffusion as the true underlying motion model, the use of non-overlapping

sub-trajectories may not be sufficient to ensure independence, as consecutive displacements

along the trajectory may be correlated. In this case, the de-correlation time required to

obtain independent sub-trajectories can be estimated using block-transformation [Guo et al.,

2012; Flyvbjerg and Petersen, 1989] or a related approach.
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2.3.4 Regularization of the error covariance matrix

Because the number of available independent observations of the MSD values from

biological datasets is frequently less than the dimension of the covariance matrix, the sample

covariance matrix S may be singular and require regularization [Ledoit and Wolf, 2004;

Schäfer and Strimmer, 2005]. We tested multiple regularization methods and found that a

shrinkage approach to regularization [Schäfer and Strimmer, 2005] performs well when low

numbers of MSD curves are available. The shrinkage estimator of the covariance matrix, S∗

is a linear combination of the sample covariance matrix and a shrinkage target T,

S∗ = λT + (1− λ)S , (2.8)

where λ is the shrinkage weight, which is calculated from the uncertainty in S as described

in [Schäfer and Strimmer, 2005]. As the number of independent curves J increases, the

uncertainty in S decreases and the shrinkage weight also decreases so that S∗ is closer to

S. This shrinkage estimator S∗ is then used as the covariance matrix C in generalized least

squares fitting of the mean MSD curve.

We found that shrinkage to a target that is a diagonal matrix with the mean MSD

variance along the diagonal (“Target B” in [Schäfer and Strimmer, 2005]) performs best

when low numbers of observed MSD curves are available. This method performs nearly as

well as using the analytical covariance matrix in the case of normal diffusion (Figure 2.5c).

It gives model preferences that are nearly indistinguishable from those obtained using the

analytical covariance matrix when 10 or more MSD curves are used and on average continues

to prefer the true pure diffusion model down to 4 independent MSD curves (Figure 2.5c),

which we found was the minimum number of curves that could be used to reliably obtain a

non-singular covariance matrix.
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2.3.5 Laplace approximation for likelihood integration

While numerical integration is required to evaluate the integral in Equations 2.4

and 2.5 in general, the Laplace approximation [Kass and Raftery, 1995; He et al., 2012] can be

used to perform this integration analytically by assuming the integrand P (y|βk,Mk)P (βk|Mk)

is well approximated by a multivariate Gaussian distribution around the estimated parameter

values that maximize its value, β̂k,Bayes = arg maxβk
P (y|βk,Mk)P (βk|Mk). Because we use

a uniform prior parameter distribution P (βk|Mk) (see Section 2.3.6), β̂k,Bayes is equal to

the maximum likelihood point estimate β̂k,MLE = arg maxβk
P (y|βk,Mk) and the Gaussian

approximation applies to the likelihood P (y|βk,Mk). Following an earlier treatment of

fluorescence correlation spectroscopy datasets with Bayesian inference [He et al., 2012], we

take the mean and covariance of the Gaussian approximation to be β̂k,MLE and Σ̂k,MLE,

respectively, as found by generalized least squares fitting as described in Section 2.3.1. Thus

the form of the Laplace approximation is,

P (y|βk,Mk) ≈ P (y|β̂k,MLE,Mk) exp

(
−1

2

(
βk − β̂k,MLE

)T
Σ̂
−1

k,MLE

(
βk − β̂k,MLE

))
, (2.9)

and the integral in Equation 2.4 evaluates to,

P (y|Mk) = (2π)p/2|Σ̂k,MLE|1/2P (y|β̂k,MLE,Mk)P (βk|Mk) , (2.10)

where p is the number of parameters in the model. The Laplace approximation is asymptot-

ically exact in the limit of high amounts of data, which is not true of derived metrics such as

the Aikake Information Criterion [Raftery, 1995]. The Bayesian Information Criterion is an

alternative commonly-used special case of the Laplace approximation [Raftery, 1995; Kass

and Wasserman, 1995], but does not sufficiently penalize model complexity in the case of

small sample sizes [He et al., 2012].
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2.3.6 Parameter priors

The prior probability P (βk|Mk) of the parameters for each model is assumed to

be uniform over a range β
(min)
kl and β

(max)
kl for each parameter βkl in the set βk. Therefore

P (βk|Mk) is a constant, equal to the product of the uniform probabilities within each βkl

range,

P (βk|Mk) =
∏
l

1

β
(max)
kl − β(min)

kl

. (2.11)

We choose each range
[
β

(min)
kl , β

(max)
kl

]
to be centered at the maximum likelihood estimate

βkl,MLE of each parameter and to span 200 times the uncertainty (standard deviation) in

that parameter as obtained from the covariance matrix Σ̂k,MLE [He et al., 2012]. Thus,

parameters with higher uncertainties reduce the likelihood of a model more than parameters

with smaller uncertainties.

2.4 Performance of MSD-Bayes on simulated trajectories

To evaluate the performance of the Bayesian procedure for MSD analysis (MSD-

Bayes) in a controlled setting, we applied it to simulated trajectories of particles undergoing

Brownian motion with flow (Figures 2.6 and 2.7) or within a confined spherical corral (Figure

2.8). Mean MSD curves obtained from simulated or experimental trajectories were fit with

the models given in Equations 1.2-1.5 as well as additive combinations of Equation 1.5 with

Equations 1.2-1.4 (e.g. Equation 1.6) using the Bayesian approach described in Section 2.3

above.
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2.4.1 Implementation of particle trajectory simulations

Diffusive single-particle trajectories were simulated in three dimensions by drawing

random step lengths in each of the three Cartesian directions from a Gaussian distribution

with zero mean and standard deviation equal to
√

2D∆t, where D is the diffusion coefficient

and ∆t is the time interval for each step. Confinement of a diffusing particle was modeled as

a reflecting spherical boundary of radius Rc centered at the initial particle position. Directed

flow was modeled by adding a fixed displacement v∆t to the diffusive motion at each time

step, where v is the velocity vector. While we use default simulation parameters comparable

to the experimental conditions observed for starfish chromosomes in Chapter 4, namely D

= 0.005 µm2/s, ∆t = 2.5 s, T = 300 s, τmax= T/4, and n = 30 trajectories per dataset,

we emphasize that the illustrated properties of the proposed multiple hypothesis testing

procedure are general.

2.4.2 Effect of limited sampling of stochastic motion

An important source of error in MSD values is statistical sampling noise due to

experimental limitations on the number, length, and sampling rate of available single particle

trajectories (SPTs) [Saxton and Jacobson, 1997; Saxton, 1997]. Trajectories were simulated

with the above default parameters (Figure 2.6b), with lower noise (higher T and n; Fig-

ure 2.6a), or with higher noise (lower T and n; Figure 2.6c) while systematically varying

the value of a superimposed velocity v = [v, 0, 0]. The relative contributions of diffusive

and directed motion to the diffusion plus flow (DV) MSD equation (Equation 1.6) are of

similar magnitude when τ ∼ τDV ≡ 6D/v2. The Bayesian approach strongly prefers the

DV model for v values corresponding to a timescale τDV that is comparable to the time

lags covered by the MSD curve (Figure 2.6b). The simpler D and V models are preferred
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Figure 2.6: Model probabilities for simulated trajectories undergoing diffusion plus flow (DV)
with different levels of noise due to sampling limitations. For all conditions, D = 0.005 µm2/s, ∆t
= 2.5 s, and v varies as shown along the x-axis. The total time T of the trajectories varied from
600 s for the low noise condition (a) to 300 s for the intermediate noise condition (b) to 150 s for
the high noise condition (c). The number of independent observed trajectories n (corresponding
to one simulated dataset) varied from 60 (a) to 30 (b) to 5 (c). MSD curves with 30 points (up to
τmax = 75 s) were calculated for each of the n trajectories and used to calculate a mean MSD curve
and error covariance matrix as input to the Bayesian inference procedure. The resulting model
probabilities are shown as means and standard deviations over 50 repetitions of the simulations
and inference procedure. Light blue shading indicates the range of velocity values over which the
true model (diffusion plus flow, DV) can be resolved given the simulated experimental parameters.
(d) Estimated values of D and v obtained from fitting the true diffusion plus flow (DV) model for
the intermediate noise condition shown in (b) are plotted as medians and quartiles (blue lines) in
comparison with the true values of D and v used in the simulation (black lines). Figure previously
published in [Monnier et al., 2012].
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at low and high v, respectively, where the contribution of the v or D parameter to the

more complex DV model is not significant given the level of noise in the mean MSD curve.

The locations of these crossovers to simpler preferred models at low and high v depend

on the level of sampling noise (Figure 2.6). Examination of the fit parameter values for

the true DV model (Figure 2.6d) shows that when the DV model probability is high both

parameter values are well estimated, whereas their values become poorly estimated when

the model probability is low. Thus, the Bayesian multiple hypothesis testing framework not

only selects the appropriate model that is justified given the empirical level of noise, it also

provides a pre-screening filter for downstream physical or biological interpretation of model

parameter values, which are only reliable when the model to which they belong is strongly

preferred.

We next independently varied three contributing factors to the sampling noise—

trajectory number, trajectory length, and sampling rate—at fixed values of v (Figure 2.7).

Starting with the default simulation parameters above and a fixed value of v = 0.1 µm/s

near the right-hand crossover point in Figure 2.6b, decreasing the number of trajectories

used to calculate each mean MSD curve and associated error covariance matrix from 30 to

4 results in loss of the ability to resolve the DV model over the simpler V model due to the

increasing level of noise (Figure 2.7a). Decreasing T from 300 s to 40 s reduces the ability

to resolve the v component of the motion (Figure 2.7b), while increasing ∆t from 2.5 s to 15

s at a fixed T reduces the ability to resolve the D component of the motion (Figure 2.7c),

due to the difference in the relative contributions of diffusion and flow to the MSD curve at

high and low τ .

To test whether this Bayesian procedure applies generally to other motion models in

addition to diffusion and flow, we repeated the above tests on simulations of confined diffusion

(Figure 2.8). Here we also included the full set of competing models shown in Figure 2.3 to
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Figure 2.7: Model probabilities for trajectories simulated as shown in Figure 2.6b but at a fixed
velocity and systematically varying one of the sampling parameters. (a) Velocity is fixed at v =
0.1 µm/s and the number of trajectories per dataset n is varied from 30 down to 4. (b) Velocity is
fixed at v = 0.02 µm/s and the total trajectory time T is varied from 300 s down to 40 s (from 120
steps to 16 steps per trajectory). The number of points in the MSD curves is held constant at 1/4
of the number of steps in the trajectory. (c) Velocity is fixed at v = 0.1 µm/s and the sampling
interval ∆t is varied from 0.5 s up to 15 s with the total time of the trajectories held constant at
300 s. The number of points in the MSD curves is again held constant at 1/4 of the number of
steps in the trajectory. Figure previously published in [Monnier et al., 2012].
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test the robustness of the model selection procedure in the presence of both higher and lower

complexity competing models. Confinement makes a significant contribution to the confined

diffusion (DR) MSD equation (Equation 1.4) when the ratio 6Dτ/R2
c is on the order of 1,

or when τ ∼ τDR ≡ R2
c/6D. The Bayesian approach strongly prefers the DR model when

this ratio τDR is below the maximum τ in the MSD curve, whereas the simpler D model

is preferred for larger confinement radii (Figure 2.8a). As above, the exact crossover point

depends on the level of noise in the mean MSD curve. For a fixed value of Rc, increasing the

trajectory time sampling interval ∆t past the ratio τDR results in loss of the ability to resolve

the diffusive component of the motion, making the particle appear stationary (Figure 2.8b),

and decreasing n or T also reduces the ability to resolve the DR model (Figure 2.8c-d).

2.4.3 Effect of heterogeneity between particles

The above results demonstrate that the MSD-Bayes approach can be used to detect

both confinement and directed motion in a systematic manner that accounts appropriately

for the noise due to sampling limitations, avoiding over-fitting of complex models. However,

heterogeneity in motion type between the particle trajectories used to calculate the mean

MSD curve and the error covariance matrix may introduce additional noise and reduce the

ability to resolve the underlying physical process. We note that variation in motion type

within a single trajectory has a similar effect, and a Bayesian method to detect within-

trajectory heterogeneity is explored in Chapter 3.

For particles undergoing directed motion, the contribution of directed motion to the

MSD curve is MSDV(τ) = v2τ 2 (Equation 1.5). If there is heterogeneity in the value of v

for each particle, such that each particle j of J total particles has a velocity vj, then the
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Figure 2.8: (a) Model probabilities for simulated trajectories undergoing confined diffusion (DR)
inside a reflecting spherical boundary with D = 0.005 µm2/s, time sampling interval ∆t = 2.5 s,
total time T = 300 s, and varying confinement radius Rc as shown along the x-axis. Analysis is
performed as in Figure 2.6, but using the full set of motion models in Figure 2.3. (b) Trajectories
are simulated as in (a) but at a fixed confinement radius Rc = 0.4 µm. The sampling interval ∆t
is varied from 0.5 s up to 15 s as in Figure 2.7c. S represents a stationary-particle model including
only a constant term. (c) Rc is fixed at 1.5 µm, and the number of trajectories per dataset n is
varied from 30 down to 4, as in Figure 2.7a. (d) Rc is fixed at 1.5 µm, and the total trajectory time
T is varied from 300 s down to 40 s (from 120 steps to 16 steps per trajectory), as in Figure 2.7b.
The number of points in the MSD curves is held constant at 1/4 of the number of steps in the
trajectory. Figure previously published in [Monnier et al., 2012].
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mean MSD curve takes the form,

MSDV(τ) =
1

J

J∑
j=1

v2
j τ

2 =
τ 2

J

J∑
j=1

v2
j . (2.12)

This mean MSD curve has the same quadratic dependence on τ as the original MSD curve

for directed motion, with an effective velocity for the heterogeneous population given by,

veff =

√√√√ 1

J

J∑
j=1

v2
j . (2.13)

In this case, the directed motion model will still be a good fit to the heterogeneous MSD

curve, but the veff parameter is biased toward the larger magnitude velocities in the particle

population and will be greater than the mean velocity in the population (as is observed in

Figure 2.9a below).

For particles undergoing simple diffusion, the contribution of their diffusive motion

to the MSD curve is MSDD(τ) = 6Dτ (Equation 1.2). If there is heterogeneity in the value

of D for each particle, then the mean MSD curve takes the form,

MSDD(τ) =
1

J

J∑
j=1

6Djτ =
6τ

J

J∑
j=1

Dj . (2.14)

This mean MSD curve has the same linear dependence on τ as the original MSD curve for

pure diffusion, with an effective diffusion coefficient for the heterogeneous population given

by,

Deff =
1

J

J∑
j=1

Dj . (2.15)

In this case, the diffusion model will still be a good fit to the heterogeneous MSD curve, and

the Deff parameter is equal to the mean diffusion coefficient of the population.
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For particles undergoing confined diffusion, the contribution of their diffusive motion

to the MSD curve is MSDDR(τ) = R2
c(1 − exp(−6Dτ/R2

c)) (Equation 1.4). If there is

heterogeneity in the value of Rc for each particle, then the mean MSD curve takes the form,

MSDDR(τ) =
1

J

J∑
j=1

R2
cj

(
1− exp(−6Dτ/R2

cj
)
)
. (2.16)

Unlike the models above, this mean MSD curve does not have the same τ dependence as the

original MSD curve for confined diffusion and can no longer be described by the confined

diffusion model with a single effective confinement radius. At low heterogeneity in Rc, the

confined diffusion model may still describe this behavior better than the other tested models

if the plateau region of the MSD curve is still present at long time lags, in which case this

model may still be preferred by Bayesian inference (as in Figure 2.9b, discussed below), but

with larger variability in model probabilities due to the increased apparent noise in the mean

MSD.

To test these predicted effects of heterogeneity in a controlled setting, we simulated

trajectories as above but allowed a single parameter (v or Rc) to vary randomly between

particles according to a normal distribution. As a result, even perfectly-measured MSD

curves from infinite trajectories would still vary between the different particles, introducing

an apparent noise into the mean MSD curve estimate. As heterogeneity between particles

is increased by increasing the standard deviation of the distribution of v or Rc values, the

ability to resolve the true motion model diminishes in favor of simpler models due to this

increase in apparent noise (Figure 2.9). In addition, for particles undergoing diffusion plus

flow, the estimated value of v obtained from the DV model is systematically higher than

the true mean velocity as predicted above (Figure 2.9a). For particles undergoing confined

diffusion, heterogeneity in Rc changes the dependence of the mean MSD function on τ so

that none of the models describes the resulting mean MSD curve satisfactorily (Figure 2.9b).
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Figure 2.9: (a) Model probabilities for simulated trajectories as in Figure 2.6b but with the
velocity of each particle drawn from a normal distribution centered on v = 0.05 µm/s with standard
deviation (as a percentage of the mean) as shown on the x-axis. Estimated values of D and v
obtained from fitting the true diffusion plus flow (DV) model are plotted as in Figure 2.6b. (b)
Model probabilities for simulated trajectories as in Figure 2.8a but with the confinement radius of
each particle drawn from a normal distribution centered on Rc = 1.5 µm with standard deviation
(as a percentage of the mean) as shown on the x axis. Estimated values of D and Rc obtained from
fitting the true confined diffusion (DR) model are plotted as in (a). Figure previously published
in [Monnier et al., 2012].
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The apparent diffusion coefficient decreases with increasing heterogeneity in Rc because the

diffusion timescale is affected disproportionately by larger confinement radii.

2.5 Validation on experimental datasets

To test the performance of the MSD-Bayes procedure on experimental biological

datasets, we first applied it to the motion of chromosomes during meiosis I in starfish

oocytes. Chromosomes are transported towards the spindle at the animal pole (AP) of

the oocyte (Figure 2.10a) by homogeneous contraction of a large actin network that forms in

the nuclear region after nuclear envelope breakdown (NEBD) [Mori et al., 2011; Lénárt et al.,

2005]. Chromosomes from 4 oocytes were imaged and tracked at 2.6-second time resolution,

a more than 5-fold improvement in resolution over previous studies [Mori et al., 2011],

during the 6-minute actin-dependent transport phase (Figure 2.10a). We analyzed the mean

MSD curve over all 30 chromosome trajectories (Figure 2.10b) using the Bayesian inference

approach to test the full set of motion models shown in Figure 2.3. The DV model is strongly

preferred over the other models, consistent with the previously proposed hypothesis that

chromosomes diffuse within the actin network as they are transported in a directed manner

towards the spindle [Mori et al., 2011]. This result indicates that the chromosome trajectories

provide significant evidence for both the diffusive and directed components of their motion

but do not provide significant evidence for additional complexity such as confinement or

anomalous diffusion, which could potentially result from steric interactions with the actin

network structure [Mori et al., 2011] or the viscoelastic nature of the actin network [Wong

et al., 2004]. These more complex motions are not necessarily ruled out by the above result,

however, because the additional complexity of confined or anomalous diffusive models might

be masked by sampling noise or heterogeneity as shown in the simulations above.
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Figure 2.10: (a) Left : Cartoon of chromosome positions in the starfish oocyte at the start (top)
and end (bottom) of meiosis I. AP indicates the animal pole of the oocyte towards which the
chromosomes are congressing. Right : Maximum intensity Z-projection through a starfish oocyte
nuclear region showing chromosomes labeled with H2B-GFP at 4 min after NEBD. Chromosome
trajectories over the full actin transport phase are superimposed, colored from 2 min after NEBD
(red) to 8 min after NEBD (blue). (b) Mean MSD curve with standard errors (solid black
line) averaged over 30 chromosome trajectories from a total of 4 oocytes imaged at 2.6 sec time
resolution for the 6 min period from 2-8 min after NEBD. Four example MSD curves from individual
chromosome trajectories are shown (dashed black lines), as well as the standard deviation over all
30 of the individual-chromosome MSD curves (gray region). The preferred model by Bayesian
inference is diffusion plus flow (DV) for the mean MSD curve. (c) Model probabilities obtained
by fitting mean MSD curves over sub-groups of 15, 12 and 6 chromosomes (top to bottom), shown
from left to right in order of increasing initial distance from the AP. Only the D, V, and DV
model probabilities are shown (all other model probabilities were negligible). (d) Velocity and
diffusion coefficient estimates obtained from the DV model fit to individual-chromosome MSD
curves, showing the correlation of velocity with initial distance from the AP. Figure previously
published in [Monnier et al., 2012].
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Since the chromosomes were previously shown to have significant heterogeneity in

their velocities, which are correlated with initial distance from the AP [Mori et al., 2011], we

split the chromosome trajectories into equally-sized groups to reduce this heterogeneity and

reanalyzed their motions (Figure 2.10c). An initial split into two groups revealed that the DV

model is preferred for chromosomes closer to the AP, whereas the simpler V model is preferred

farther from the AP (Figure 2.10c, top panel), confirming that there is heterogeneity along

this biological coordinate. Splitting trajectories into less-heterogeneous sub-groups has a

tradeoff (Figure 2.11) in that it reduces the number of trajectories per group, which was

shown above to reduce the ability to resolve complex models. The effect of this tradeoff is

apparent in the overall trend towards simpler models upon further sub-classification of the

chromosome trajectories (Figure 2.10c). While the increase in sampling noise that results

Figure 2.11: Complex models are most likely to be resolved when there is low heterogeneity
between particles and low noise due to data collection limitations, such as the number, length,
and sampling rate of the trajectories. The tradeoff between reducing particle heterogeneity and
increasing sampling noise by splitting trajectories into smaller groups of fewer trajectories is
illustrated by the transition from B to B’. Figure previously published in [Monnier et al., 2012].
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from the reduction in number of SPTs per sub-group outweighs the reduction in heterogeneity

in this case, additional oocytes could in principle be added to the total pool of data in order to

again resolve the more complex DV model. Finally, the increasing probability of the simpler

V model for chromosomes far from the AP and the simpler D model for chromosomes close to

the AP is comparable to moving to the right and left, respectively, along the horizontal axes in

Figure 2.6 because of the difference in velocities between these chromosomes (Figure 2.10d).

We next sought an alternate means of probing the starfish actin network that is not

complicated by the networks directed motion. We examined the diffusion of 0.2-µm beads

within the network by injecting them into the oocyte nucleus just prior to NEBD while

simultaneously overexpressing mEGFP-UtrCH to stabilize actin bundles to prevent network

contraction (Figure 2.12a). Bead trajectories have previously been used to characterize the

density of obstacles, sizes of pores, and viscoelastic properties of cytoskeletal networks [Wong

et al., 2004; Caspi et al., 2000]. We found that beads in the stabilized actin network

exhibit a range of behaviors (Figure 2.12a) and that the mean MSD curve over multiple

bead trajectories (Figure 2.12b) is best explained by the simple diffusion model, presumably

due to this high heterogeneity. However, when individual bead trajectories are analyzed

by splitting them into consecutive sub-trajectories (assumed to be independent) to estimate

the mean MSD and noise covariance matrix for each bead (Figure 2.12c), then a variety

of diffusive models are resolved, including the higher-complexity anomalous and confined

diffusion models (Figure 2.12d). This dataset therefore provides an example in which

heterogeneity between particles is high enough that moving from a mean MSD curve over

all particles to individual-particle MSD curves improves the ability to resolve complex

models despite the associated increase in sampling noise. A more detailed analysis of these

heterogeneous bead dynamics will be the subject of future work.
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Figure 2.12: (a) Left : Cartoon of a stabilized actin network in the post-NEBD nuclear region
of a starfish oocyte. Right : Time projection (red to blue) of the motions of 0.2 µm diameter
beads in a utrophin-GFP-stabilized actin network. Some beads appear transiently immobilized (red
arrowhead). (b) Mean and individual MSD curves as in Figure 2.10b from 12 bead trajectories in
a utrophin-stabilized actin network. The preferred model by Bayesian inference is pure diffusion
(D) for the mean MSD curve. (c) Four example MSD curves from individual beads in the actin
meshwork, shown on a log-log scale. (d) Model probabilities for the 7 tested models fit to each of
the four individual-bead MSD curves shown on the left, as well as to the mean MSD curve in (b).
Figure previously published in [Monnier et al., 2012].
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Figure 2.13: (a) Left : Image of the membrane receptor CD36 (blue) and microtubules (red) in
a macrophage. Image reprinted from [Jaqaman et al., 2011] with permission from Elsevier. Right :
Example trajectories classified as linear (top) and isotropic (bottom) by the asymmetry metric used
in [Jaqaman et al., 2011], colored over time from red to blue. (b) Mean MSD curve over all of the
CD36 trajectories that are at least 40 time steps in length (296 trajectories total). The preferred
model by Bayesian inference is anomalous diffusion (DA) for the mean MSD curve. (c) Model
probabilities for the mean MSD curve (top left). Frequency with which each of the 8 tested models
(including a constant stationary-particle model as in Figure 2.8) is selected as the most probable
model for all CD36 trajectories (bottom left), for the 84 linear CD36 trajectories (top right), and
for the 212 isotropic CD36 trajectories (bottom right). Figure previously published in [Monnier
et al., 2012].
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As another example of detecting confinement in a very different biological system, we

analyzed previously-published trajectories of the membrane receptor CD36 (Figure 2.13a),

which exhibits a range of behaviors including linear motion, confined diffusion, and uncon-

fined diffusion [Jaqaman et al., 2008; Jaqaman et al., 2011]. Testing the full set of motion

models from Figure 2.3 with the Bayesian procedure reveals that the mean MSD curve over

all CD36 trajectories (Figure 2.13b) is best fit by the anomalous diffusion model, but that

individual CD36 trajectories are best explained by either pure diffusion or by the stationary-

particle model described above (Figure 2.13c). The high probability of the stationary model

suggests that these receptors are confined within a radius smaller than the mean diffusive

step size of the trajectory, as in Figure 2.8b, or are attached to a stationary structure such as

a cytoskeletal matrix [Shin et al., 2004], consistent with the confined diffusion classification

in previous analysis of the trajectories [Jaqaman et al., 2011]. Pure diffusion is the preferred

model for nearly all of trajectories previously classified as linear (Figure 2.13c), confirming

that these motions are linear due to 1D diffusion (for example, along 1D tracks or within

linear-shaped confinement zones), whereas the stationary model is preferred for most of the

previously-classified isotropic trajectories (Figure 2.13c). Only a small fraction of receptors

exhibit isotropic unconfined diffusion.

The above examples illustrate that a single automated Bayesian approach can be

used to detect both directed motion and confinement or anomalous diffusion in a variety of

biological systems. We next sought to detect both types of motion within a single biological

dataset. Kinetochores in mouse oocytes (Figure 2.14a) were recently found to exhibit

distinct complex motions during discrete time phases during meiosis [Kitajima et al., 2011].

Analyzing the mean MSD curve over the entire period of meiosis (Figure 2.14b) with the

Bayesian procedure reveals that the highest-probability model for the mean behavior of the

kinetochores is confined diffusion. However, sequentially dividing the kinetochore trajectories

into time periods corresponding to the previously-described phases [Kitajima et al., 2011]
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Figure 2.14: (a) Top: Cartoon of kinetochore motions during the different time phases defined
in [Kitajima et al., 2011] leading up to the first meiotic division in mouse oocytes. Bottom left :
Mouse kinetochores (green) and chromosomes (red) in a maximum intensity Z-projection through
the spindle at the beginning of phase 2. Image reprinted from [Kitajima et al., 2011] with permission
from Elsevier. Bottom right : Example kinetochore trajectory showing the four phases of motion.
(b) Mean MSD curve over all 40 kinetochore trajectories from a single oocyte during the full 8.7-
hour period of meiosis. The preferred model by Bayesian inference is confined diffusion (DR) for
the mean MSD curve. (c) Model probabilities obtained by fitting mean MSD curves over all 40
kinetochore trajectories split into time phases as shown in (d). Only the D, DR, and DV model
probabilities are shown (all other model probabilities were negligible). (d) Mean MSD curves
over all 40 kinetochore trajectories for the individual time phases, corresponding to the model
probabilities shown in the bottom plot on the left. Figure previously published in [Monnier et al.,
2012].
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reveals that confinement is localized to phase 4, whereas diffusion plus flow is preferred for

phases 1 and 2 and pure diffusion is preferred for phase 3 (Figure 2.14c,d). Importantly, in

future studies or screens, this Bayesian procedure may be used in an automated manner to

discover the above phase boundaries a priori by systematic evaluation of boundary locations

and number of phases.

2.6 Conclusion

The MSD-Bayes approach presented here handles multiple competing models for

single-particle motion simultaneously, preferring simpler models when statistical noise and

heterogeneity preclude the resolution of more complex models that are not justified by the

data. Statistical noise due to sampling limitations and heterogeneity between particles limit

the ability to resolve complex motion models. Sampling noise may be reduced by collecting

more data, namely longer or more trajectories, in order to improve the statistical accuracy

of estimates of the mean MSD and its correlated error (Figure 2.11, Case A). However,

heterogeneity within a trajectory or across multiple trajectories may only be reduced by

appropriately segmenting trajectories into smaller subsets along a relevant biological axis

(Figure 2.11, Case B). Such segmentation typically comes at the cost of increasing sam-

pling noise because the number of particle trajectories within in each sub-group is reduced,

unless additional particle trajectories from the same system are acquired. Nevertheless,

the present approach enables the systematic and automated analysis of information-rich

particle trajectory datasets and can be applied to high-throughput screens involving cells,

embryos, and whole animals by incorporation into automated screening platforms, such as

Cell Profiler [Carpenter et al., 2006] and Cell Cognition [Held et al., 2010], or in-house

analysis programs via download from http://msd-bayes.org.
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Chapter 3

Hidden Markov model analysis of single particle trajectories

3.1 Overview

Many particle trajectory analysis methods, including the mean-square displacement

(MSD) approach described in Chapter 2, involve metrics that are time averaged along

an entire trajectory or a large portion of a trajectory. These approaches utilize multiple

observations of a metric such as squared displacement to increase statistical power and

improve estimation of its mean value; however, they sacrifice time resolution in order to

perform such averaging. Rapid motion changes and short-lived phases of motion within a

single trajectory are blurred or lost in the averaging process, as discussed in Section 1.3.6.

Achieving single-step time resolution of transient motion phases is an important challenge in

particle trajectory analysis. A promising recent approach has been the application of hidden

Markov models (HMMs) to particle trajectories [Das et al., 2009; Cairo et al., 2010; Chung

et al., 2010; Persson et al., 2013], in which different phases of motion can be modeled as

different hidden states of the system, and switching between those hidden states gives rise

to the time series of observed particle displacements. An important advantage of an HMM

approach is that it can detect switching at single-step time resolution while still utilizing

multiple observations of the displacement to perform inference within each motion state.
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The four recent studies that have applied HMMs to detect switching within particle

trajectories all assume that the motion model at each step of the trajectory is simple diffusion

and look for switching between different values of the diffusion coefficient D [Das et al.,

2009; Cairo et al., 2010; Chung et al., 2010; Persson et al., 2013]. Here we extend this HMM

framework for particle trajectory analysis to infer switching between modes of motion—

simple diffusion and diffusion plus directed motion—within a particle trajectory, in addition

to switching between different diffusion coefficient or velocity values. Our extended method,

HMM-Bayes, performs three levels of inference. First, the number of motion states—and,

for each state, whether or not it includes a directed motion parameter—is inferred from the

trajectory (Section 3.3), using Bayesian inference to penalize parameters and avoid overfitting

as in Chapter 2. Second, the values of the parameters D and, if directed motion is present,

v for each of the detected motion states are inferred using a Markov chain Monte Carlo

approach to sample parameter space (Section 3.3.3). Third, the most likely sequence of

hidden states along the trajectory is inferred using the Viterbi algorithm (Appendix A.2.1)

to determine the time(s) at which the particle experiences a change in motion.

3.2 Modeling a particle trajectory with an HMM

3.2.1 Particle displacements depend on hidden motion parameters

As described in Section 1.3, a one-dimensional particle trajectory consists of a

sequence of particle positions xt separated by a time interval ∆t. For a particle undergoing a

simple random walk, the particle displacements ∆xt = xt+1−xt are distributed according to

a normal distribution with zero mean and a standard deviation that depends on the diffusion
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coefficient D according to σ =
√

2D∆t [Saxton, 1993],

∆x ∼ N (0, σ2) =
1

σ
√

2π
exp

(
−∆x2

2σ2

)
=

1√
4πD∆t

exp

(
− ∆x2

4D∆t

)
. (3.1)

The sequence of particle displacements over time can be thought of as a noisy signal centered

at zero. If the particle undergoes a rapid change in diffusion coefficient, then the standard

deviation of the noisy signal will change accordingly (Figure 3.1). In a biological system,

such a change in diffusion coefficient could be caused by ligand binding or by a change in

viscosity of the surrounding medium. If the particle experiences directed motion (drift or

flow) in addition to random motion, the displacement distribution is still normal but now

has a non-zero mean that depends on the velocity vx according to µ = vx∆t,

∆x ∼ N (µ, σ2) =
1

σ
√

2π
exp

(
−(∆x− µ)2

2σ2

)
=

1√
4πD∆t

exp

(
−(∆x− vx∆t)2

4D∆t

)
. (3.2)

Figure 3.1: Simulated 1D displacements drawn from normal distributions with µ = 0 and σ = 2
(blue), µ = 0 and σ = 1 (green), and µ = 2 and σ = 1 (red).
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If the particle experiences a sudden onset of directed motion, the mean of the noisy dis-

placements will shift (Figure 3.1). In a biological system, such a change in velocity might be

caused by binding to cytoskeletal motor proteins or to an onset of cytoplasmic streaming.

Here we sought a method that would infer both the presence and timing of such

transitions in velocity or diffusion coefficient from a sequence of particle displacements at

single-step time resolution. Because we observe a time series of the displacement random

variable ∆xt and we know the probability distributions relating this random variable to the

motion parameters D and vx, this problem lends itself to modeling in the framework of a

hidden Markov model (HMM) in which the values of these two motion parameters are hidden

states of the system.

3.2.2 Formulation of the particle trajectory HMM in one dimension

The discussion below assumes a basic knowledge of the structure and terminology

of hidden Markov models, as described in Appendix A. Let the hidden states {Si}Ki=1 that

are explored by the particle each be described by both a diffusion coefficient value Di and a

velocity value vx,i,

Si = [Di, vx,i] . (3.3)

At every time point t, the particle is in one of these hidden states, but the specific state

is unknown. Thus the sequence of hidden states that the particle passes through over time

can be written as s = {st}Tt=1, where st ∈ {Si}Ki=1. The emissions e = {et}Tt=1 of the particle

trajectory HMM are the observed time series of particle displacements,

et = ∆xt = xt+1 − xt , (3.4)
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and each et is derived from the corresponding state of the particle st. A schematic of the

HMM structure is shown in Figure 3.2.

With these definitions, the emission distribution p(e) of the HMM is the normal

distribution defined in Equation 3.2 above, parameterized by βi = [Di, vx,i] for each state

Si,

pi(e) =
1√

4πDi∆t
exp

(
−(e− vx,i∆t)2

4Di∆t

)
. (3.5)

The starting probabilities πi for the K states and the transition probabilities φij between

all pairs of states are scalar probabilities defined as in a standard HMM (Appendix A).

Therefore, the full set of parameters θ for a one-dimensional particle trajectory HMM with

K states is,

θ =
[
{πi}Ki=1, {φij}Ki,j=1, {Di, vx,i}Ki=1

]
. (3.6)

Figure 3.2: (a) Representation of an HMM as a probabilistic graphical model or Bayesian network
in which circles indicate random variables and arrows indicate dependencies. Each emission et of
an HMM depends only on the current state st (more formally, it is conditionally independent of
all other variables given st), and each state st depends only on the previous state st−1. (b) State
transition diagram for a 2-state HMM with states S1 and S2. The transition probability of going
from state Si to state Sj at any given time t is φij .
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3.2.3 Extension to two and three dimensions

For a two-dimensional particle trajectory with particle positions rt = [xt, yt], the

emissions become vectors,

et = ∆rt = [xt+1 − xt, yt+1 − yt] . (3.7)

In addition, the velocity or drift of the particle is now a vector v = [vx, vy]. We assume

isotropic diffusion, such that the diffusion coefficient remains a single scalar value rather than

a full two-dimensional covariance matrix. Under these conditions, the emission distribution

of the particle trajectory HMM is the bivariate normal distribution,

pi(e) =
1

4πDi∆t
exp

(
−(ex − vx,i∆t)2 + (ey − vy,i∆t)2

4Di∆t

)
. (3.8)

Similarly, in three dimensions we have,

et = ∆rt = [xt+1 − xt, yt+1 − yt, zt+1 − zt] , (3.9)

and,

pi(e) =
1

(4πDi∆t)3/2
exp

(
−(ex − vx,i∆t)2 + (ey − vy,i∆t)2 + (ez − vz,i∆t)2

4Di∆t

)
. (3.10)

The full set of parameters for the two- and three-dimensional particle trajectory HMMs is,

θ =
[
{πi}Ki=1, {φij}Ki,j=1, {Di,vi}Ki=1

]
. (3.11)

Given knowledge of the number of states K and these parameters θ, it is straightforward

to solve for the most likely sequence of hidden states that explains a given series of particle

displacements using the Viterbi algorithm described in Appendix A.2.1.
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3.3 Application of Bayesian inference to particle trajectory HMMs

3.3.1 Competing models

When analyzing a particle trajectory, we do not know either the number of motion

states that the particle explores during the time it is observed or the motion parameters

associated with those states. Any individual motion state may or may not include directed

motion in addition to random diffusive motion. Therefore, there are two one-state models to

be tested, one with a single parameter D1 (model D) and one with both D1 and a non-zero

v1 parameter (model DV), where the number of independent components of v1 depends on

the number of dimensions of the trajectory. Similarly, there are three two-state models to

be tested, one in which both states have just Di parameters (model D-D), one in which both

states also have nonzero vi parameters (model DV-DV), and one in which only one of the

two states has a non-zero vi (model D-DV). There are always K+1 of these possible models

for each number of states K. Unlike in the case of MSD-Bayes in Chapter 2, here there is

significant variation in the number of parameters associated with the competing models, as

shown in Table 3.1. This variation has important consequences for model selection that will

be discussed in more detail below.

3.3.2 Bayesian HMM framework

As in Chapter 2, we use a Bayesian inference approach to evaluate the relative

probabilities of the competing models for the particle trajectory HMM, as shown in Table 3.1,

up to some specified maximum number of states Kmax. Since there are K + 1 models with

different numbers of nonzero vi parameters for each value of K from 1 to Kmax, the total

number of models to test is κ ≡ (K2
max + 3Kmax)/2. Call this set of models {Mk}κk=1.
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Given an observed sequence of emissions e, the likelihood of a model Mk can be

expanded according to Bayes’ rule as follows,

P (Mk|e) =
P (e|Mk)P (Mk)

P (e)
∝ P (e|Mk) , (3.12)

where the final proportionality holds if the prior probabilities of the models P (Mk) are all

equal. Thus, we only need to compute P (e|Mk), the likelihood of the data given a particular

Table 3.1: Comparison of the tested motion models with up to three states. Each state can either
have a zero or nonzero velocity (D and DV states, respectively). The total number of independent
parameters in each model is shown in the right-most column; note that the number of velocity
parameters depends on the number of dimensions in which the trajectory was observed, since
velocity is a vector quantity.
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model. As in Chapter 2, the total likelihood of the data is found by marginalizing over the

unknown parameter values θk for that model as follows,

P (e|Mk) =

∫
P (e|θk,Mk)P (θk|Mk)dθk , (3.13)

where P (θk|Mk) is the prior probability of a particular realization of the parameter values

for the model Mk.

In the case of a hidden Markov model, however, the model parameters θk are not the

only unknown variables of the system. The possible hidden states {Si}Ki=1 are defined by θk,

but the temporal sequence of explored hidden states s = {st}Tt=1 is unknown. The likelihood

of the observed emissions given the parameters, P (e|θk,Mk), must be marginalized over all

possible hidden state sequences sk for each model Mk,

P (e|θk,Mk) =
∑
sk

P (e|sk,θk,Mk)P (sk|θk,Mk) , (3.14)

so the marginal likelihood in Equation 3.13 becomes,

P (e|Mk) =

∫ [∑
sk

P (e|sk,θk,Mk)P (sk|θk,Mk)

]
P (θk|Mk)dθk . (3.15)

As shown in Equations A.7 and A.8 in Appendix A.2.1, the term P (e|sk,θk,Mk) depends

only on the emission probabilities pi(e), which are parameterized by the Di and vi values

for each of the states in model Mk, and the term P (sk|θk,Mk) depends only on the starting

and transition probabilities πi and φij. Plugging in these equations (Equations A.7 and A.8)

yields the full form of the marginal likelihood in terms of the model parameters,

P (e|Mk) =

∫ [∑
sk

(
πs1

T∏
t=2

φst−1,st

T∏
t=1

pst(et)

)]
P (θk|Mk)dθk , (3.16)
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where pst(et) is given in Equations 3.5, 3.8 and 3.10 above depending on the number of

dimensions of the observed particle trajectory. For a given model Mk and its associated pa-

rameters θk, the summation over hidden state sequences
∑

sk

(
πs1
∏T

t=2 φst−1,st

∏T
t=1 pst(et)

)
can be performed exactly using the forward algorithm [Ewens and Grant, 2005], which is

described in detail in Appendix A.2.2.

3.3.3 Markov Chain Monte Carlo (MCMC) to sample parameter space

Although the integration in Equation 3.16 is intractable in general, the fact that

the value of the integrand can be evaluated exactly at any given value of the variables of

integration θk lends itself to a Monte Carlo integration strategy, in which values of θk are

drawn at random from some sampling distribution q(θk) [Robert and Casella, 2004]. As

discussed in Appendix B.1, the best distribution q(θk) for integrating an integrand f(θk)

is a probability distribution that is proportional to f(θk) [Robert and Casella, 2004]. This

technique is called importance sampling, because such a q(θk) ensures that values of θk are

more likely to be sampled where the value of f(θk) is large, corresponding to ‘important’

regions of f(θk).

For the marginal likelihood integration in Equation 3.16, the integrand has two

terms: the summation over hidden state sequences sk and the parameter prior distribution

P (θk|Mk). As discussed in more detail in Section 3.3.5 below, we take the parameter

prior to be a uniform distribution, which means it can be taken outside the integration

in Equation 3.16. Therefore, we need only to evaluate the value of the integral,

I =

∫ [∑
sk

(
πs1

T∏
t=2

φst−1,st

T∏
t=1

pst(et)

)]
dθk . (3.17)
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Renaming the integrand as f(θk), such that,

f(θk) =
∑
sk

(
πs1

T∏
t=2

φst−1,st

T∏
t=1

pst(et)

)
, (3.18)

we seek a sampling distribution q(θk) that is proportional to this f(θk). Although we

cannot sample directly from such a q(θk), we can use a stochastic Markov chain Monte Carlo

(MCMC) sampling approach [Robert and Casella, 2004; Grimmett and Stirzaker, 2001] to

converge on a distribution of sampled θk values that approaches the desired q(θk).

Here we use the Metropolis MCMC algorithm [Gilks, 1995; Robert and Casella,

2004; Grimmett and Stirzaker, 2001] described in detail in Appendix B.2. Briefly, the

value of f(θk) is evaluated at a random starting point θ
(0)
k , then a new value θ

(1)
k is

proposed from a multivariate normal distribution in parameter space centered at θ
(0)
k , and the

new value θ
(1)
k is accepted with probability min

(
1, f(θ

(1)
k )/f(θ

(0)
k )
)

and rejected otherwise.

By iteratively repeating this process, it can be shown that the distribution of sampled

parameter values converges to a distribution q(θk) that is proportional to f(θk). See

Appendix B.2 for details. This Metropolis MCMC approach is particularly suited to sampling

from multidimensional distributions, as is the case for θk (see Table 3.1 for the number of

independent parameters in each model). The basic Metropolis MCMC algorithm described

in Appendix B.2 has a number of features that must be tailored to the specific context in

which it is applied, such as the generation of the initial guess θ
(0)
k in parameter space, the

width of the proposal distribution for generating new points in parameter space, and the

selection of which parameter(s) in θk will be updated at each step of the algorithm.

The full set of parameters to be sampled for a particle trajectory HMM is θ =[
{πi}Ki=1, {φij}Ki,j=1, {Di,vi}Ki=1

]
, as given in Equation 3.11, for a total number of states K

assuming that all states have nonzero velocities. Since we also consider models with states
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that have zero velocity, as described above in Section 3.3.1 and shown in Table 3.1, let K

be the total number of states and KV be the number of states with nonzero velocity for any

given tested model Mk. Then the full set of parameters for the model Mk is,

θ =
[
{πi}Ki=1, {φij}Ki,j=1, {Di}Ki=1, {vi′}

KV

i′=1

]
. (3.19)

At each step in the MCMC iteration, one or more parameter(s) in this set could be selected for

updating. We compared three selection methods—updating all parameters at once, updating

only a single randomly-selected parameter, or updating a randomly-selected block of related

parameters at each MCMC iteration—and found that the block method [Gilks, 1995] had

the fastest and most robust convergence. The motivation for the block method is that

parameters with correlated effects on the likelihood function f(θk) should be updated at the

same time to increase the chance of escaping from local maxima in the likelihood landscape

[Gilks, 1995]. Specifically, we split the parameters into 3 blocks: the probability parameters{
{πi}Ki=1, {φij}Ki,j=1

}
, the diffusion coefficients {Di}Ki=1, and the velocities {vi′}KV

i′=1. At every

iteration, one of these 3 blocks is selected randomly with equal probability, and updates are

proposed for all of the parameters within that block. The new value of f(θk) at the updated

parameter values is computed using the forward algorithm, and if the update is accepted

according to the Metropolis criterion, then the updates for all of the parameters within the

block are retained and become the new starting point for the next MCMC iteration.

The velocity parameters {vi′}KV

i′=1 = {vx,i′ , vy,i′ , vz,i′}KV

i′=1 are theoretically uncon-

strained, but in practice the most likely values of vx,i′ , vy,i′ , or vy,i′ for any state i′ will

not be greater than the maximum single-step velocity or less than the minimum single-step

velocity observed in each of these dimensions over the full trajectory. Therefore, the initial

guesses for the velocity parameters vx,i′ , vy,i′ , and vy,i′ for each state i′ are drawn from uniform

distributions on this range. For example, an initial guess for the parameter vx,i′ is drawn
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from,

v
(0)
x,i′ ∼ unif

(
min
t

(ex,t
∆t

)
,max

t

(ex,t
∆t

))
. (3.20)

Since the velocities are related to the means of the emission probability distributions pi′(e)

by µx,i′ = vx,i′∆t as described in Section 3.2.1, this condition on the initial values of the

velocities can be written as an equivalent condition on the means,

µ
(0)
x,i′ ∼ unif

(
min
t

(ex,t),max
t

(ex,t)
)
. (3.21)

Figure 3.3 illustrates an example of this range for a simple dataset of one-dimensional particle

displacements. At every MCMC iteration for which the velocity parameter block is selected,

new values for each µx,i′ , µy,i′ , and µy,i′ are proposed from normal distributions centered

at the previous values of these parameters and with standard deviation δµ. The values of

these parameters are not constrained during the MCMC iterations and are thus able to move

outside of the range imposed on the initial guesses above. The same δµ is used for each of

these parameters, and its value is initialized and updated as described below.

The diffusion coefficients {Di}Ki=1 are theoretically constrained only to be greater

than 0, but in practice the most likely values of the standard deviations σi of the emission

probability distributions pi(e) will not be greater than the maximum width of the observed

single-step emission distribution in each dimension, as illustrated for a single dimension in

Figure 3.3. Since the diffusion coefficients are related to the emission standard deviations

by σi =
√

2Di∆t as in Section 3.2.1, we can draw initial guesses for the parameters σi from

the uniform distribution,

σ
(0)
i ∼ unif

(
0,max

ξ

(
max
t

(eξ,t)−min
t

(eξ,t)
))

, (3.22)
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Figure 3.3: Initial guesses for the mean and sigma parameters at the start of each MCMC iteration
are drawn from uniform distributions, whose ranges are set empirically based on the observed
displacements (steps) in the particle trajectory. The initial mean in each dimension is no larger
or smaller than the largest or smallest observed displacement in that dimension, respectively, and
the initial sigma is no larger than the largest difference between the largest and smallest observed
displacements observed in each dimension.

where ξ parameterizes the spatial dimensions of the particle trajectory; e.g., ξ ∈ x, y, z for

a three-dimensional trajectory. At every MCMC iteration for which the diffusion coefficient

parameter block is selected, new values for each σi are proposed from normal distributions

centered at the previous values of these parameters and with standard deviation δσ. If

the proposed new value for any of the σi falls below 0, then the parameter update at this

MCMC iteration is automatically rejected. However, the σi parameters are not otherwise

constrained during the MCMC iterations and are thus able to grow larger than the maximum

value imposed on the initial guesses above. The same δσ is used for each σi parameter, and

its value is initialized and updated as described below.
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The probability parameters
{
{πi}Ki=1, {φij}Ki,j=1

}
are all constrained to fall in the

range [0, 1], and must also satisfy the conditions
∑K

i=1 πi = 1 for the starting probabilities

and
∑K

j=1 φij = 1 for all i for the transition probabilities. Initial guesses for these probabilities

are all set to the same value 1/K, representing equal distributions over the number of states

K. Specifically, π
(0)
i = 1/K for all i and φ

(0)
ij = 1/K for all i and j. We found that

these parameters fully explore their [0, 1] range during the MCMC iterations even with these

fixed initial conditions, and thus that they do not need to be randomly initialized. At

every MCMC iteration for which the probability parameter block is selected, new values

for each πi and φij are proposed from normal distributions centered at the previous values

of these parameters and with standard deviations δπ and δφ, respectively. If the proposed

new value for any of these probabilities falls outside the range [0, 1], then the parameter

update at this MCMC iteration is automatically rejected. Once new values have been

proposed for all of the probabilities
{
{πi}Ki=1, {φij}Ki,j=1

}
, then the new vectors π and {φi}Ki=1

are individually normalized to ensure that their component probabilities satisfy the above

conditions
∑K

i=1 πi = 1 and
∑K

j=1 φij = 1.

To ensure that the space of possible parameter values is fully explored and to

minimize the chance that the MCMC chain becomes stuck in local maxima rather than the

global maximum, multiple re-starts of the algorithm are run with different initial guesses for

the velocity and diffusion coefficient parameters, randomly generated from the distributions

described above. Figure 3.4 shows the convergence of the likelihood f(θk) = P (e|θk,Mk) and

selected parameter values for 10 different initial guesses, where the observed emissions are

from a simulated two-dimensional trajectory that explores just a single state with nonzero

velocity (model DV in Table 3.1). Figure 3.5 shows similar convergence properties for a

2D trajectory that switches between two states (model D-DV in Table 3.1). Note that the

MCMC chains for the two-state trajectory are more likely to be caught in local maxima than

the one-state trajectory, due to the larger number of free parameters (7 vs. 3). However, the

66



Figure 3.4: Convergence of the log likelihood (a) and the three parameter values σ (b), µx (c),
and µy (d) of the one-state D model (see Table 3.1) for 10 re-starts of the MCMC iterations starting
from different randomly-initialized values of these parameters. The fit trajectory was simulated with
100 displacements drawn from a normal distribution with mean (1,0) and a sigma of 1. The red
lines indicate empirical values of the parameters over those 100 displacements. The MCMC runs
all rapidly converge to the empirically-observed parameter values.
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Figure 3.5: Convergence of the log likelihood (a) and three parameter values σ2 (b), µx,2 (c),
and µy,2 (d) of the DV state of a two-state D-DV model (see Table 3.1) for 10 re-starts of the
MCMC iterations starting from different randomly-initialized values of the parameters. The fit
trajectory was simulated with 200 displacements, switching from a normal distribution with mean
(0,0) and a sigma of 1 to a normal distribution with mean (1,0) and a sigma of 1 after the first 100
displacements. The red lines indicate empirical values of the parameters over the 100 displacements
generated from the second state. Note that some of the MCMC runs converge to the empirically-
observed parameter values, while others are trapped in local minima in which some parameters
have minimal effect on the likelihood and thus execute a random walk.
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10 initialization restarts are sufficient for some of the chains to find the global maximum. In

practice, we use 100 initialization restarts for models with more than a single state to ensure

that the global maximum is found.

During the multiple MCMC initialization runs, the parameters δµ, δσ, δπ, and δφ

governing the width of the proposal distributions for new values of the various parameters

in θk are initialized and updated to maintain a target acceptance rate for the proposed

parameter updates. The acceptance rate is defined separately for each block of parameters—

probabilities, diffusion coefficients, and velocities—and is equal to the fraction of proposed

updates that are accepted (according to the Metropolis criterion described above) relative

to the total number of updates that are proposed for that parameter block. Acceptance

rates that are too high indicate that the width of the proposal distribution is too small and

the full space of parameter values may not be adequately explored. One the other hand,

acceptance rates that are too low indicate that the width of the proposal distribution is too

large and most proposals are moving far from the region(s) of high likelihood. In general,

acceptance rates between 0.3 and 0.5 are considered the best compromise between these two

effects, allowing sufficient exploration of the likelihood landscape [Roberts et al., 1997]. Here

we initialize the values of δµ and δσ for the µ and σ parameters to 1/50 of the initial guess

ranges given in Equations 3.21 and 3.22 above, and then update δµ and δσ at the end of

each MCMC initialization run based on the acceptance rates calculated for that run. For

the probability parameters, because they are constrained between [0,1], the values of δπ and

δφ should shrink as the probabilities approach either of the boundaries at 0 or 1 in order

to maintain a consistent acceptance rate along the MCMC chain. Therefore, δπ and δφ are

updated at every MCMC iteration to be equal to 1/2 of the minimum distance of any of the

π or φ probabilities, respectively, from either of the boundaries 0 or 1.
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Following the MCMC initialization runs, a longer MCMC run—starting from the

maximum likelihood parameters found during the initialization runs—is performed. These

maximum likelihood parameters are assumed to have found the global maximum provided

that sufficient initialization restarts were performed. Therefore, this longer MCMC run

explores parameter values around the global maximum likelihood. Figure 3.6 shows the

longer MCMC run for the above two-state D-DV trajectory, starting from the maximum

likelihood parameters from the initialization runs in Figure 3.5.

3.3.4 Monte Carlo integration of the likelihood

The MCMC approach above results in a set of samples of θk from a target distribu-

tion q(θk) that is proportional to f(θk), as explained in Appendix B.2. The Monte Carlo

estimator Îk of our desired integral Ik =
∫
f(θk)dθk is equal to the mean value of the ratio

of f(θk) to q(θk) [Robert and Casella, 2004],

Îk =

〈
f(θk)

q(θk)

〉
q

, (3.23)

where the subscript q indicates that the mean is calculated over values of θk that are sampled

from the distribution q(θk), as discussed in Appendix B.1. However, although we have such

a sample of θk from the MCMC iterations and also know the value of f(θk) at each of those

samples, the value of the probability density q(θk) is unknown. Since q(θk) is a probability

distribution (which must integrate to 1) that is proportional to f(θk), direct calculation of

q(θk) from f(θk) would require knowledge of the normalization factor
∫
f(θk)dθk, which is

precisely the unknown integral that we are trying to evaluate. Therefore, it is necessary to

find a probability distribution that approximates q(θk) but has an analytical form that can

be evaluated exactly at each point θk.
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Figure 3.6: (a)-(d) Longer MCMC traces initialized from the maximum likelihood parameters
found in the MCMC initialization runs in Figure 3.5. (e) and (f) show histograms (light blue) of
the sampled values of σ2 and µx,2, respectively, from the traces in (b) and (c) and the Gaussian
approximations (dark blue) described in Section 3.3.4
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Here we approximate q(θk) by a distribution qN (θk) that is multivariate normal

over the emission mean and standard deviation parameters
{
{σi}Ki=1, {µi′}

KV

i′=1

}
. For each

parameter σi and µξ,i′ for ξ ∈ x, y, z, the mean and standard deviation of the normal

approximation qN along that parameter axis are set to the mean and standard deviation

of the sampled values of that parameter during the second half of the long MCMC run,

as shown in Figure 3.6e-f. The values of these parameters are sampled independently from

these normal distributions during the Monte Carlo integration process. The probability

parameters
{
{πi}Ki=1, {φij}Ki,j=1

}
, on the other hand, are not independent of each other due

to the conditions
∑K

i=1 πi = 1 and
∑K

j=1 φij = 1. The only valid samples for the vectors

π and {φi}Ki=1 fall on K-dimensional simplexes, assuming that K is the number of states

in the tested model. Here we sample these values uniformly from the simplexes, where

the constant probability distribution over the simplex is equal to the inverse of the simplex

length or area, given by
√
K/(K − 1)! . Thus the approximate distribution qN (θk) has a

multivariate normal marginal over the emission means and standard deviations and a uniform

marginal over the starting and transition probability simplexes.

With this definition of qN (θk), its value can be calculated analytically at any given

sampled point θk. Accordingly, numerical integration of the likelihood f(θk) = P (e|θk,Mk)

for each model Mk is carried out by drawing samples of θk from this analytical approximate

distribution qN (θk) and calculating the values of qN (θk) and f(θk) analytically and by the

forward algorithm, respectively. The formula for the Monte Carlo estimator Îk given above

is general for any sampling distribution; thus, an estimate of the integrated likelihood using

the samples from qN (θk) is calculated as,

Îk =

〈
f(θk)

qN (θk)

〉
q

. (3.24)
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Because qN (θk) is close to the ideal distribution q(θk), the variance of this estimator Îk is

close to its minimum value for any given number of samples of θk. As expected, the variance

decreases as the number of sampled points in parameter space increases (Figure 3.7a).

This integration approach results in an estimate of the value of
∫
P (e|θk,Mk)dθk

for each model Mk. The remaining term in Equation 3.16 is the prior probability P (θk|Mk),

which is assumed constant wherever its value is nonzero (as discussed below in Section 3.3.5).

Calling the value of this constant Ck for model Mk, the final estimate of the fully marginalized

data likelihood P (e|Mk) is given by,

P (e|Mk) = CkÎk . (3.25)

Figure 3.7: (a) Mean and variance of the estimator for the integrated log likelihood of the
D-DV model as a function of the number of Monte Carlo samples used to obtain the estimate.
(b) Integrated log likelihoods for the set of tested models with up to three states. Note that the
inclusion of at least one nonzero velocity parameter greatly increases the likelihood because the true
displacements have a nonzero mean in the second state. Inclusion of additional nonzero velocity
parameters reduces the likelihood due to the increased penalty on complexity. Similarly, the 3-state
models have lower likelihood than the corresponding 2-state models because they include additional
parameters over those required to describe the displacements, which come from two states.

73



Because the model probabilities P (Mk|e) are proportional to P (e|Mk) (Equation 3.12), the

final model probabilities are calculated by normalizing these likelihoods P (e|Mk) across the

set of tested models. The values of the likelihoods P (e|Mk) calculated using the full Bayesian

HMM approach described above for the two-state D-DV trajectory from Figures 3.5 and 3.6

for a full set of tested models up to K= 3 (corresponding to the models in Table 3.1) are

shown in Figure 3.7b. As expected, the true D-DV model used to simulate the trajectory is

found to have the highest likelihood.

3.3.5 Parameter priors

As in the case of MSD-Bayes (Section 2.3.6), a non-informative parameter prior is

imposed by setting P (θk|Mk) equal to a uniform value over a bounded region in parameter

space. For the probability parameters, which are inherently bounded on the simplexes

described above, the prior is uniform over each simplex. For the emission mean and standard

deviation parameters, the uniform range is centered on the mean of the sampled values of that

parameter during the MCMC run above, with a width equal to a multiple of the standard

deviation of those sampled values (the same mean and standard deviation that are used for

the qN (θk) distribution along that parameter in Section 3.3.4). The multiplication factor for

the standard deviation is set to a value of 200 [He et al., 2012], the same as for MSD-Bayes.

3.4 Extensions of the particle trajectory HMM

3.4.1 Pooling multiple trajectories

The discussion above describes the application of a Bayesian framework for hidden

Markov model analysis to a single particle trajectory. However, in many cell biological
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applications, a large number of short trajectories are obtained from particles that are assumed

to undergo the same dynamic processes and have the same motion parameters. If this

assumption is valid, pooling the trajectories and analyzing them together should increase the

inference power of the Bayesian HMM approach and improve its ability to resolve complex

models with many states and parameters. Including multiple independent trajectories in

the likelihood calculation is straightforward, as their individual likelihoods can be directly

multiplied. For J trajectories, each with a set of observed displacements (emissions) ej,

Bayes’ rule in Equation 3.12 is modified to become,

P
(
Mk|{ej}Jj=1

)
=
P
(
{ej}Jj=1|Mk

)
P (Mk)

P
(
{ej}Jj=1

) ∝ P
(
{ej}Jj=1|Mk

)
, (3.26)

and the total likelihood of observing all the trajectories given a common underlying model

Mk is,

P
(
{ej}Jj=1|Mk

)
=

J∏
j=1

P (ej|Mk) . (3.27)

The calculation of each individual P (ej|Mk) in Equation 3.26 still follows Equation 3.16

above. Note that the f(θk) discussed in Sections 3.3.3 and 3.3.4 now becomes the combined

likelihood function
∏

j P (ej|θk,Mk); thus, the parameters θk for each model Mk are explored

based on the full set of pooled trajectories rather than for each trajectory individually. The

hidden state sequences sj for each trajectory, on the other hand, are marginalized out during

the model fitting and likelihood integration process, and the most likely state sequence can

ultimately be obtained for each trajectory independently using the most likely parameters

of the most likely model. Therefore, pooling trajectories requires the assumption that the

trajectories all explore the same set of states with the same state parameters, but does not

require that the trajectories have the same state sequence over time. In other words, the

pooled trajectories can transition between the shared states at different times.
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3.4.2 Detection of speed vs. velocity

As mentioned above, pooling trajectories assumes that the explored hidden states

have the same parameter values for all trajectories. Recall that the states are parameterized

by both a diffusion coefficient and a velocity vector, Si = [Di,vi]. If any of the motion states

has a nonzero velocity, then in order for the components of the velocity vector to be the same

for all pooled trajectories, the trajectories must all be flowing in the same direction. While

this may be the case for some biological processes, such as large-scale cellular rearrangements

during tissue morphogenesis or chromosomes transport during cell division, there are other

processes in which particles may all have a directed component to their motion but be

directed in different directions.

To extend the particle trajectory HMM approach described above to the case of

pooled trajectories flowing in different directions, we developed a modified HMM in which the

emissions are not the vector displacements of the particle but rather the squared displacement

magnitudes. For a three-dimensional trajectory,

et = |∆rt|2 = (xt+1 − xt)2 + (yt+1 − yt)2 + (zt+1 − zt)2 . (3.28)

These emissions are now scalars instead of vectors, and their distribution is no longer a

normal distribution as in Equation 3.5 above. Instead, note that the random variable et is

the sum of squares of normally-distributed random variables ∆ξt = ξt+1−ξt for ξ ∈ {x, y, z},

each with mean µξ = vξ∆t and standard deviation σ =
√

2D∆t. Sums of squares of normal

random variables with nonzero means follow a noncentral chi-squared distribution, which

is defined as follows [Grimmett and Stirzaker, 2001]. When the variables have different

means µξ but the same standard deviation σ, then the quantity et =
∑

ξ ∆ξ2 is distributed
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according to,

et ∼
1

2σ2
exp

(
−et + ρ

2σ2

)(
et
ρ

)d/4−1/2

Id/2−1

(√
ρet

σ2

)
, (3.29)

ρ =
∑
ξ

µ2
ξ , (3.30)

where d is the total number of summed variables, or in our case the number of dimensions,

and Id/2−1 is a modified Bessel function of the first kind. The parameter ρ corresponds to

the squared magnitude of the mean vector across all the dimensions and can also be written

in terms of the velocity magnitude v =
√∑

ξ v
2
ξ as ρ = (v∆t)2.

The new χ2-HMM uses Equation 3.29 as the emission probability distribution, with

emissions defined as squared displacement magnitudes as in Equation 3.28. Note that the

emission probability distribution now depends on only two parameters, σ and ρ, that are

related to the particle diffusion coefficient and velocity magnitude (or speed), respectively.

Unlike for the original HMM above, the number of velocity parameters does not grow with the

number of dimensions in which the particle was observed. The advantages of this approach,

therefore, are that there is no dependence on d and that the pooled particle trajectories do

not need to have the same directional velocity but only the same speed for each DV state

that they explore.

3.4.3 Detection of convergent flow

The χ2-HMM presented above is capable of detecting the presence of nonzero velocity

states in a set of particle trajectories even when the direction of the velocity is completely

uncorrelated between the different trajectories. However, more samples—in this case, more

or longer trajectories—are required to resolve two noncentral chi-squared distributions than
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two normal distributions that are based on the same underlying mean parameters. Therefore,

it is preferable to take advantage of correlations in the individual-particle velocity directions

if such correlations exist. For example, if particles are indeed flowing all in the same direction,

then the original HMM would be preferable to the χ2-HMM for resolving the presence of

that directional flow.

Another type of correlated directional motion that can be found in biological systems

is convergent flow towards a central point (or sink). Therefore, we developed a third variant of

the particle trajectory HMM that both fits the position of such a sink and considers velocity

towards or away from the sink by projecting each particle displacement onto a coordinate

system defined by the sink position. Specifically, for a two-dimensional trajectory, two

additional parameters [x0, y0] defining the sink location are introduced into the parameter

set for each model Mk. Only a velocity v0 in the direction of the sink is considered as a

nonzero parameter; velocities in the perpendicular direction are assumed to be zero. The

full set of parameters for a model Mk with K total states and KV states with nonzero velocity

is thus,

θ =
[
{πi}Ki=1, {φij}Ki,j=1, {Di}Ki=1, {v0,i′}KV

i′=1, {x0, y0}
]
. (3.31)

During the MCMC iterations, the sink position [x0, y0] is updated along with the

other parameters, representing its own MCMC block as discussed in Section 3.3.3. After

each update, the emissions are re-calculated from each particle trajectory using the trajectory

displacements and the new sink position. Each original displacement vector [∆xt,∆yt] =

[xt+1 − xt, yt+1 − yt] is projected into components [at, bt] towards and perpendicular to the
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sink, respectively. The unit vector [ux, uy] defining the direction to the sink is,

[ux, uy] =

[
x0 − xt√

(x0 − xt)2 + (y0 − yt)2
,

y0 − yt√
(x0 − xt)2 + (y0 − yt)2

]
. (3.32)

Then the component at towards the sink is equal to the dot product of the displacement

with this unit vector,

at = [∆xt,∆yt] · [ux, uy] , (3.33)

and the component bt perpendicular to the sink is equal to the dot product of the displace-

ment with the perpendicular unit vector,

bt = [∆xt,∆yt] · [−uy, ux] . (3.34)

All of the displacements from all of the particle trajectories are projected into these direc-

tions, and the projected displacements are the emissions of the new HMM. The emission

distribution in this new coordinate system is still multivariate normal, with nonzero velocity

v0 only along the first component in the direction of the sink. For a state Si with parameters

[Di, v0,i], the distribution of any individual observed emission et = [at, bt] is,

pi(et) =
1

4πDi∆t
exp

(
−(at − v0,i∆t)

2 + b2
t

4Di∆t

)
. (3.35)

With these changes, the remaining steps for model selection and parameter fitting are the

same as for the original HMM described in Section 3.3.
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3.5 Application to diffusive state switching

3.5.1 Performance on simulated trajectories

Trajectories were simulated by drawing displacements from normal distributions

with prescribed means and standard deviations. We first tested whether the HMM-Bayes

algorithm described above can correctly identify the presence of two different diffusive states

with different diffusion coefficients in a single particle trajectory. Figure 3.8 compares the

results of HMM-Bayes analysis on a simple trajectory with just a single diffusion coefficient

and a trajectory that contains a single switch from a high D1 to a low D2, where D1/D2 = 5.

HMM-Bayes correctly infers the number of states present in the trajectory and finds the

correct sequence of states (sequence of D values) along the trajectory. The reported sequence

of states is the maximum likelihood state sequence for the maximum likelihood parameter

values found during the MCMC iterations. The model selection procedure works equally well

for trajectories that switch back and forth between these states, either regularly (Figure 3.9a)

or stochastically (Figure 3.9b). The presence of shorter-lived states in these trajectories does

not have a significant impact on the model probabilities, but does increase the number of

incorrectly-assigned states in the inferred state sequence (Figure 3.9).

As in Chapter 2, the ability to resolve complex motion models depends on the number

of observations (in this case, the number of steps in the trajectory) and on the relative

parameter values. We tested the performance of HMM-Bayes on trajectories with variable

numbers of steps and with different D1/D2 ratios. As expected, as the number of steps

decreases, the ability to resolve the two-state D-D model over the simpler one-state D model is

reduced (Figure 3.10). The crossover between these two models occurs at a larger number of

steps for a smaller D1/D2 ratio, meaning that longer trajectories are needed to resolve smaller
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Figure 3.8: Results of HMM-Bayes on a trajectory with displacements drawn from a single state
with zero mean and σ = 1 (a) and a trajectory with displacements drawn from two states with zero
mean and σ1 = 1 and σ2 = 1/

√
5 (b). Top: Simulated trajectories with displacements colored by

state (blue = state 1, red = state 2). Middle: True state sequence (blue) and maximum likelihood
state sequence (red) obtained from the highest-probability model. Bottom: Model probabilities for
1- and 2-state models.
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Figure 3.9: Results of HMM-Bayes on a trajectory with displacements drawn from the same
two states as in Figure 3.8 with regular switching between states (a) and stochastic switching
with a probability 0.1 of switching states at any step (b). Top: Simulated trajectories with
displacements colored by state (blue = state 1, red = state 2). Middle: True state sequence
(blue) and maximum likelihood state sequence (red) obtained from the highest-probability model.
Bottom: Model probabilities for 1- and 2-state models.
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Figure 3.10: Model probabilities found by HMM-Bayes for trajectories simulated with two states
as in Figure 3.8 with two different D1/D2 ratios (3, left, and 5, right) and with variable trajectory
lengths as shown on the x-axis. Note that the ratio of the standard deviations σ1/σ2 used to
generate the displacements is equal to the square root of the D1/D2 ratio. The model probabilities
are shown as means and standard deviations over 40 repetitions of the simulations and inference
procedure.

differences between diffusion coefficients. These results are consistent with the behavior of

the MSD-Bayes method presented in Chapter 2.

The above results were all obtained using a single particle trajectory as the input

to the HMM-Bayes algorithm; however, as described in Section 3.4.1, it is also possible

to use information from multiple pooled trajectories to fit the particle trajectory HMM

by multiplying the individual likelihoods. In theory, pooling trajectories should increase the

number of available observations of the displacements such that the effective trajectory length

is the sum of the lengths of all the pooled trajectories. For a D1/D2 ratio equal to 5, note

that 100 steps in a single trajectory is sufficient to resolve the two different diffusive states,

but 10 steps is not sufficient (Figure 3.10). Therefore, we tested whether 10 trajectories

of 10 steps in length, each containing a single switch between the same two motion states,

could be used to resolve the presence of the two diffusion coefficients. Figure 3.11a shows the

control case of a single 10-step trajectory, for which the two motion states are not resolved,
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Figure 3.11: Results of running HMM-Bayes on a single trajectory (a) or 10 trajectories (b),
each with 10 displacements drawn from the same two states as in Figure 3.8b with a single switch
between states. Top: Simulated trajectories with displacements colored by state (blue = state 1,
red = state 2). Bottom: Model probabilities for 1- and 2-state models.

as expected. However, when 10 of these trajectories are pooled, the presence of the two

different diffusive states is detected (Figure 3.11b). This result has important implications

for the analysis of many types of cell biological particles for which only short trajectories are

available. Assuming the particles are undergoing the same physical or chemical processes

that define their available motion states, these short trajectories can be pooled to significantly

increase the power of the inference process.
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3.5.2 Validation on experimental datasets

To test the performance of the diffusive state detection capability of HMM-Bayes on

experimental trajectories, we analyzed two high-resolution datasets containing hundreds to

thousands of trajectories of two different membrane proteins. First, we analyzed trajectories

of HIV Gag proteins, which assemble into oligomeric buds at the plasma membrane [Manley

et al., 2008]. Figure 3.12a shows the cell surface distribution of HIV Gag trajectories that

are between 20 and 100 steps long that were pooled and analyzed by HMM-Bayes. The

algorithm detects the presence of three different diffusive states within these trajectories with

diffusion coefficients of roughly 0.04, 0.005, and 0.0015 µm2/s. Annotation of the individual

trajectories with their maximum likelihood state sequences (Figure 3.12b-e) reveals that most

of the Gag proteins switch once during the length of their trajectories, typically between the

two lowest diffusion coefficient states, and that the three different diffusive states are not

equally represented over the population, with the highest diffusion state being particularly

rare (Figure 3.12f).

Next we analyzed trajectories of the AMPA receptor (AMPAR) in the membrane of

hippocampal neurons. Previous analysis of these trajectories suggested that the receptors un-

dergo different motions in dendrites versus dendrite spines [Hoze et al., 2012]. Therefore, we

pooled trajectories in different regions of the cell, including the cell body, the dendrites, and

dendrite spines of two different shapes (Figure 3.13a) and analyzed these regions separately.

HMM-Bayes detects the presence of three different diffusive states in each of the analyzed

regions. Interestingly, the values of the diffusion coefficients in the different regions are

almost identical (Figure 3.13b), but the number of particles in each of the three states differs

somewhat between regions. In particular, the state with the smallest diffusion coefficient is

found least often in the cell body and most in the dendrite spines (Figure 3.13c-d), consistent

with a possible role for this state in neuronal signaling [Hoze et al., 2012].
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Figure 3.12: (a) Distribution of mEos-labeled HIV Gag protein trajectories on the surface of a
HeLa cell. (b)-(e) Selected individual HIV Gag trajectories that show state-switching behavior.
The trajectory steps are colored by their assigned state, corresponding to the diffusion coefficients
listed in (a). (f) Fraction of the total set of particle displacements across all trajectories that are
assigned to each of the three states.
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Figure 3.13: (a) AMPAR trajectories (randomly colored) superimposed on an image of the
corresponding hippocampal neuron. Square boxes indicate the regions analyzed in (b)-(d). (b)
Relative diffusion coefficients of the three detected states. (c) Fraction of particles that are
entirely assigned to one of the three states or that switch between states. (d) Fraction of particle
displacements assigned to each of the three states.

3.6 Application to directed motion

3.6.1 Single trajectories

The diffusive state detection results above demonstrate that the HMM-Bayes algo-

rithm performs similarly to the recently-published diffusion detection HMM in [Persson et al.,
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2013]. However, none of the published particle trajectory HMM methods have tested for the

presence of directed motion in addition to diffusion. Here we show that the HMM-Bayes

algorithm can correctly identify the presence of two different motion states, one diffusive

and one directed, in single and pooled particle trajectories. Figure 3.14 shows the results of

HMM-Bayes analysis on two simulated trajectories that switch between random and directed

motion at different switching rates. HMM-Bayes correctly infers the number of states present

in each trajectory and finds state sequences along the trajectories that are very similar to

the true state sequences (Figure 3.14b).

An important quantity affecting the ability to resolve directed motion in the presence

of stochastic diffusion is the ratio between the difference in displacement means and the sum

of the displacement standard deviations, |µ2 − µ1|/(σ1 + σ2). The simulations here are

performed with an initial state of mean zero (no velocity) and the same standard deviation

σ for each of the two states; thus, the relevant ratio of interest is µ2/σ. We tested the

performance of HMM-Bayes in inferring the presence of directed motion while varying the

value of this ratio (Figure 3.15). As expected, as this ratio is decreased for a constant number

of steps in the trajectory, the ability to resolve the two-state D-DV model over the simpler

one-state D model is reduced (Figure 3.15).

3.6.2 Aligned vs. randomly-oriented flow

As in the case of diffusive state switching above, particle trajectories can be pooled

to improve the resolution of directed motion. However, as discussed in Section 3.4.2, because

the fit velocity for each state is a vector quantity, resolution will only be improved if the

pooled trajectories have velocities in the same direction. To handle cases in which trajectories

all have the same speed but different directions of velocity, we developed a variant of the
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Figure 3.14: Results of HMM-Bayes on trajectories that switch between a state with displacement
distribution with zero mean (blue) and a state with µ = 1 (red) at two different switching intervals,
once in the trajectory (a) or every 10 steps (b). For both states, σ = 1. Top: Simulated trajectories
with displacements colored by state (blue = state 1, red = state 2). Middle: True state sequence
(blue) and maximum likelihood state sequence (red) obtained from the highest-probability model.
Bottom: Model probabilities for 1- and 2-state models.
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Figure 3.15: Model probabilities found by HMM-Bayes for trajectories simulated with two states
as in Figure 3.14 but with only 20 steps per trajectory. The ratio of the mean of the displacement
distribution in the second state to the sigma of the displacement distributions in both states is
varied along the x-axis. The model probabilities are shown as means and standard deviations over
40 repetitions of the simulations and inference procedure.

HMM-Bayes algorithm that fits displacement magnitudes using chi-squared distributions

instead of full displacements with normal distributions (Section 3.4.2). Here we compare the

performance of the original HMM-Bayes algorithm and the χ2-HMM-Bayes algorithm on

simulated trajectories with directed motion in the same or different directions (Figure 3.16).

When the particles are all flowing in the same direction, both algorithms correctly infer the

presence of nonzero velocity (Figure 3.16a). However, when the same particle trajectories

are rotated to random orientations, the original HMM no longer detects a nonzero mean for

the displacement distributions, as expected. The χ2-HMM, on the other hand, still detects

the presence of directed motion in these randomly-oriented trajectories (Figure 3.16b).

The χ2-HMM thus seems more generally applicable than the original HMM. However,

this greater inference power for randomly-oriented trajectories has a trade-off in power when

the trajectories do in fact have the same direction of velocity. The reason for this trade-off

is that χ2 distributions have more overlap than their normal distribution counterparts for
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Figure 3.16: (a) Top: 50 simulated trajectories with 2 steps each, drawn from normal distributions
with µ = 3 and σ = 1. Bottom: Model probabilities for the one-state models obtained by the original
HMM and the χ2-HMM. (b) Same as (a), except that each trajectory has been rotated through
an angle drawn at random from a uniform distribution on [0,2π].

the same underlying values of µ and σ in the different dimensions. In other words, a χ2

distribution has lost any directional information that was present in a corresponding normal

distribution; this loss of information is a benefit if the directional information is inconsistent

between trajectories, but reduces inference power in the case where the particles are all

aligned. To illustrate the decrease in performance for the case of consistent directional

information, we compared the original and χ2-HMM algorithms using individual trajectories

undergoing flow in a constant direction and varying the µ/σ ratio as in Figure 3.15. The
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χ2-HMM requires a significantly higher value of µ/σ to resolve directed motion than the

original HMM for a trajectory of the same length (Figure 3.17).

3.6.3 Convergent flow

Finally, we tested the third version of the HMM algorithm (Section 3.4.3) designed

to detect the presence of convergent flow (directed towards a point-sink) in a pool of

particle trajectories. This algorithm uses normal displacement distributions, not chi-squared

distributions, so it does not suffer from the reduced sensitivity shown in Figure 3.17. Instead,

it fits the position of a potential sink and considers velocity only along the direction towards

or away from the sink at every step along the trajectories. Figure 3.18 explores the conditions

under which such convergent flow can be detected. Reducing the magnitude of the convergent

velocity by reducing the µ/σ ratio eventually leads to loss of the ability to resolve the

Figure 3.17: DV model (true model) probabilities found by the original HMM and the χ2-HMM
algorithms for 100-step trajectories simulated with a single diffusion plus flow state with σ = 1 and
µ/σ ratio as shown along the x-axis. Note that the performance of the original Gaussian HMM
varies slightly with the number of dimensions in which the particle trajectory is observed, due to the
fact that the number of parameters in the fit velocity vector is equal to the number of dimensions.
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Figure 3.18: 10-step trajectories (randomly colored) simulated with σ = 1 and velocity only in
the direction of the origin. (a) 20 trajectories with µ = 1, (b) 20 trajectories with µ = 0.2, and
(c) 100 trajectories with µ = 0.2. Model probabilities for the 1-state models calculated using the
convergent flow HMM are shown in yellow.
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convergent motion (compare Figure 3.18a and b), but subsequently raising the number of

available trajectories restores the ability to resolve the convergent motion (Figure 3.18c).

This behavior is analogous to the behavior of the other Bayesian particle trajectory analysis

approaches presented above and in Chapter 2. The convergent flow variant of the HMM is

likely to be applicable in cell biological systems in which particles come together to form

complexes, to test whether they find each other stochastically or whether there is directed

motion towards the assembly point.

3.7 Conclusion

Here we present a powerful approach based on hidden Markov models to extract

transient motion states along single particle trajectories. Our approach builds on and extends

recent HMM-based approaches to infer switching between motion models in addition to

switching between parameter values, making it applicable to directed motion as well as

diffusive motion. The approach is highly versatile in that it can be applied to individual

particle trajectories or to pooled trajectories, depending on which is more appropriate to

a given biological dataset. Because of the implications of trajectory pooling for velocity

inference, we have developed three variants of the HMM-Bayes algorithm; one that is best

suited to detecting directed motion within a single trajectory or in pooled trajectories that

flow all in the same direction, a second that is best suited to detecting directed motion in

pooled trajectories that flow in random or uncorrelated directions, and a third that is best

suited to detecting convergent flow towards a common location. As all three of these cases

occur frequently in cell biology, the HMM-Bayes algorithm presented here is a particularly

promising approach for widespread and automated analysis of particle trajectories across

biological systems.
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Chapter 4

Analysis of chromosome transport mechanisms in cell division

Portions of this chapter has been previously published in:

Mori M*, Monnier N*, Daigle N, Bathe M, Ellenberg J, Lénárt P. Intracellular transport
by an anchored homogeneously contracting F-actin meshwork. Current Biology 21(7):606-
611 (2011)
*These authors contributed equally

and:

Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM, Mon-
nier N, Markus M, Oberer M, Milligan RA, Bathe M, Wagner G, Grishchuk EL, Cheeseman
IM. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to
curved protofilaments. Developmental Cell 23(5):968-980 (2012).

4.1 Overview

This chapter focuses in detail on two biological systems to highlight the importance of

quantitative particle trajectory analysis for elucidating mechanisms of intracellular transport;

in particular, transport of chromosomes during mitosis and meiosis. The two systems

described here—chromosome congression in starfish oocytes and chromosome segregation

in human cells—involve very different cellular mechanisms for capturing and transporting

chromosomes and rely on distinct sets of protein players. In the starfish oocyte system

(Section 4.3), quantitative analysis of trajectories of the transported chromosomes reveals
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novel design principles of the F-actin meshwork that drives their motion. In the case of

chromosome segregation in human cells (Section 4.4), analysis of in vitro trajectories of

one of the key components of the kinetochore, the Ska1 complex, reveals principles of its

interaction with microtubules, an essential interaction for maintaining robust attachment

between chromosomes and force-generating microtubules during chromosome transport. The

particle trajectories used for analysis in both of these systems were generated using a

novel tracking algorithm (Section 4.2) that handles both the amorphously-shaped starfish

chromosomes and the diffraction-limited Ska1 particles.

4.2 Particle tracking algorithm for amorphous objects

4.2.1 Motivation

Tracking particle motion requires two basic steps, segmenting individual frames of a

time-lapse image series and linking particle positions between frames. Segmentation refers

to the image processing procedure that identifies particles of interest within a noisy image.

As described in Section 1.2, segmentation is often aided by the fact that the particles of

interest are labeled with fluorescent markers that are smaller than the point-spread function

of the imaging system; as a result, the particles of interest all have the same shape, namely,

a Gaussian intensity profile. These point particles can be identified within an image using

methods that have been developed to detect Gaussian peaks [Sergé et al., 2008]. However,

in some biological applications the particles to be tracked are larger than the point-spread

function and are not reliably identified by these peak-detection methods. We found this to

be the case for the starfish chromosomes that are analyzed in Section 4.3. The chromosomes

are labeled using a fluorescently-tagged histone protein, H2B, which binds to locations all

along the length of each chromosome; thus, the full amorphous shapes of these chromosomes

are visible in the resulting images (Figure 4.1a). Therefore, we sought to develop a simple

96



but robust algorithm for segmentation and tracking that can identify amorphous structures

in addition to point particles.

4.2.2 Segmentation by maximizing mean feature size

The segmentation algorithm presented here is based on the assumption that the

particles of interest in an image are larger (in number of pixels or voxels) than background

intensity fluctuations arising from stochastic noise in the imaging process. This assumption

is generally valid, as background noise is typically on the single-pixel scale. Here we use

this property to automatically choose the most appropriate level at which to threshold each

image in a movie to identify particles of interest while excluding noise. Consider the effect of

thresholding a noisy image at a range of threshold levels, as illustrated in Figure 4.1. At very

high threshold levels, only the tips of the intensity peaks of the brightest particles will be

above the threshold, with the resulting detected features being only a few pixels (or voxels)

in size. Here we define a detected feature as a set of contiguous above-threshold pixels; each

connected white object in the thresholded images in Figure 4.1 is therefore one feature. As

the threshold is lowered, the number of pixels in each detected feature increases (compare

levels 0.6 and 0.8 in Figure 4.1). However, when the threshold is lowered to the level of

the background noise pixels, many single-pixel features start to be detected above threshold

(level 0.4 in Figure 4.1). These noise features each contain significantly fewer pixels than the

true particles. Finally, when the threshold level is reduced below the mean background noise

level, the above-threshold pixels form one or more very large connected regions covering a

substantial portion of the image (level 0.2 in Figure 4.1).

The behavior of the feature-detection process as a function of threshold allows us to

automatically identify the threshold level corresponding to background noise in the image
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Figure 4.1: (a) Left : Single z-section through the nuclear region (visible as gray background
fluorescence) of a starfish oocyte expressing H2B-mCherry. 27 z-sections were acquired to span
the nucleus. Partially-condensed chromosomes are visible as brighter white spots. The yellow line
indicates the location of the intensity profile in (b). Right : binary images obtained by thresholding
the raw image at four different threshold levels, relative to the maximum raw intensity value. (b)
Fluorescence intensity profile along the yellow line in (a). The threshold levels used in (a) are
indicated as red lines.

98



by plotting the mean feature size (number of pixels or voxels per feature) against a range of

tested threshold levels (Figure 4.2). Moving from right to left along this curve, the initial

increase corresponds to the expected increase in size of detected features at lower thresholds,

but the rapid drop occurs when the threshold reaches the highest level of background noise.

The peak in this curve, therefore, corresponds to the threshold level at which only true

particles are detected with almost no contamination from noise features. Once this threshold

level has been identified, the user has some control over the noise tolerance by setting a

multiplication factor for the threshold. This method for identifying the appropriate threshold

level is automatic and generally applicable to a variety of images with different levels of

noise or different overall intensity levels. The method is also independent of the shape of

the particles, so it is equally applicable to amorphously-shaped particles as it is to Gaussian

peaks.

Figure 4.2: Plot of the mean size (in 3D voxels) of contiguous features detected at each of the
threshold levels in a full z-stack through a starfish oocyte nucleus. The raw size measurements are
shown in blue and a 3-point smoothed curve is shown in red.
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In practice, there are a number of image processing steps that can enhance the raw

images and improve the signal-to-noise ratio of the features of interest. For example, using

a single-pixel Gaussian filter to reduce the intensity variations of the background noise and

using local mean background subtraction to even out the noise intensities across the entire

image can greatly enhance the signals from true particles (Figure 4.3). These initial image

processing steps generally need to be tailored to specific imaging datasets prior to applying

the maximum-mean-feature size segmentation procedure.

Figure 4.3: (a) Raw image and intensity profile from Figure 4.1. (b) Image and intensity profile
after applying a Gaussian intensity filter with a radius of 1 pixel and subtracting a background
image obtained by morphological opening on a scale larger than the size of the chromosomes.
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4.2.3 Constructing and updating the assignment matrix

Assuming a reliable segmentation of the particles of interest from each image in a

time series, the next step in tracking is to link particles between consecutive frames to form

trajectories. We sought a simple procedure that would be more computationally efficient than

a full optimization over possible tracking assignments but still take into account competition

between trajectories that have high likelihoods of assignment to the same feature(s). Here

we describe a method based on updating a track-feature assignment probability matrix

by pooling information across the matrix. The theory below is written assuming a two-

dimensional system, but the equations are analogous in three dimensions.

Initial values for the assignment probabilities are generated by comparing the position

of each existing track Ti in the previous time frame,
[
T

(t−1)
i,x , T

(t−1)
i,y

]
, to the position of

each detected feature Fj in the current time frame
[
F

(t)
j,x , F

(t)
j,y

]
. The previous position[

T
(t−1)
i,x , T

(t−1)
i,y

]
of a particle is the best predictor of its expected current position if the

particle is freely diffusing. However, if the particle also has a directed motion component,

then an expected current position can be calculated based on its velocity over the previous

time frames. Using the average velocity over the previous τ frames, the prediction
[
T̂

(t)
i,x , T̂

(t)
i,y

]
of the track’s current position is,

[
T̂

(t)
i,x , T̂

(t)
i,y

]
=
[
T

(t−1)
i,x , T

(t−1)
i,y

]
+

[
T

(t−1)
i,x , T

(t−1)
i,y

]
−
[
T

(t−1−τ)
i,x , T

(t−1−τ)
i,y

]
τ

. (4.1)

So as not to assume one motion model over the other, assignment probabilities are calculated

using both the previous position and the predicted position of a track. The distance between

a current feature position and a previous track position at t− 1 is,

dprevious

(
Ti, Fj

)
=

√(
F

(t)
j,x − T

(t−1)
i,x

)2

+
(
F

(t)
j,y − T

(t−1)
i,y

)2

. (4.2)
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Similarly, the distance between a current feature position and a predicted track position is,

dpredicted

(
Ti, Fj

)
=

√(
F

(t)
j,x − T̂

(t)
i,x

)2

+
(
F

(t)
j,y − T̂

(t)
i,y

)2

. (4.3)

Letting Aij ≡ A (Ti, Fj) be the relative probability of assignment between a track Ti and a

new feature Fj, we note that the dependence of Aij on the distances above can take different

functional forms, the most natural being a Gaussian function because the displacements of

diffusive particles are normally distributed, as discussed in Chapter 3. However, in practice

we find that a Gaussian form for Aij does not give sufficient weight to assignments between

overlapping features in consecutive time frames, and that an exponential form gives better

performance. Thus, we define Aij as,

Aij = exp
(
− λ
(
dprevious(Ti, Fj) + dpredicted(Ti, Fj)

))
, (4.4)

which factors into a product over the two distances above. With this exponential form for

Aij, we find that the value of the constant factor λ does not have a significant effect on the

tracking performance.

The relative assignment probabilities from Equation 4.4 are used to initially populate

a track-versus-feature assignment matrix as in Figure 4.4. Using these values of Aij alone,

one could assign each track Ti to the feature Fj that maximizes Aij; this maximization would

be performed over a single row in the matrix (Figure 4.4a). However, one would also like

to take into account information from the rest of the matrix. For example, if there are two

possible assignments for track Ti that have similar probabilities and if another track also has

a high probability of being assigned one of those features, then it is more likely that the first

track should be assigned to the other feature even if that assignment had a slightly lower

initial probability. Such a situation often arises in practice when one particle moves towards

the previous position of another particle. To take this type of competition for features into
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Figure 4.4: (a) Schematic of an assignment matrix containing relative assignment probabilities
between a set of existing tracks and the positions of newly-detected features in the current frame of
an image series. The simplest assignment for a track Ti would be to the feature with the maximum
value in the relevant row of the matrix (blue). (b) The proposed update scheme would update
each value in the original row based on the other values in the same column (red), which indicate
the level of competition for feature Fj from the other tracks. (c) The two-layer update scheme
first updates each value in the relevant column based on the other values in the same row (green),
which indicate the level of competition for this particular competing track from the other features.

account, we use the following procedure to update the entries of the matrix. For each value

Aij in the assignment matrix, we update its value by weighting it relative to the sum of all

probabilities in the same column of the matrix (Figure 4.4b), as follows,

A′ij ← Aij ·
Aij∑
kAkj

. (4.5)

The relative probability of assignment to a particular feature Fj is now higher for features

that have no other likely candidate tracks that could be assigned to them, and lower for

features that do have other competing tracks. The set of new values A′ij can then be

maximized for each track Ti to choose a final assignment.

However, the relative assignment probabilities will improve further if we repeat this

updating process by going a layer deeper into the matrix. Conceptually, if we consider two

tracks Ti and Ti′ that have competing probabilities of assignment to a new feature Fj, the
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degree to which each of these tracks competes for Fj should be reduced if the track has

another feature that it could be assigned to with a similarly high probability. Therefore,

before using the probabilities Akj in Equation 4.5, we can update them using a similar

procedure as above, weighting them relative to the sum of all probabilities in row k of the

matrix (Figure 4.4c),

A′kj ← Akj ·
Akj∑
lAkl

. (4.6)

The overall update to the initial probabilities Aij is thus,

A′ij ← Aij ·
Aij∑

k

(
A2

kj∑
lAkl

) . (4.7)

Note that this assignment probability updating scheme is nested and could be repeated

additional times to capture more information on the competing tracks and features in

the matrix. In practice, we find that the two-level update in Equation 4.7 is sufficient

to correctly assign features to tracks in a range of tested datasets, including multiple movies

of chromosomes and fluorescent beads in the starfish oocyte system (Section 4.3), in vitro

movies of the kinetochore Ska1 complex diffusing on microtubules (Section 4.4), and other

datasets including movies of kinetochore and spindle dynamics in live cells.

4.3 Analysis of a novel actin-based transport mechanism in starfish oocytes

4.3.1 Biological background

Actin-based contractility orchestrates changes in cell shape underlying cellular func-

tions ranging from division to migration and wound healing [Pollard and Cooper, 2009;

Pollard, 2010; Eggert et al., 2006; Insall and Machesky, 2009; Bement et al., 2007]. Actin

104



also functions in intracellular transport, with the prevailing view that filamentous actin

(F-actin) cables serve as tracks for motor-driven transport of cargo [Pollard and Cooper,

2009; Ross et al., 2008]. An alternate mode of intracellular transport was recently discovered

in starfish oocytes involving a contractile F-actin meshwork that mediates chromosome

congression [Lénárt et al., 2005]. Oocytes have an exceptionally large nucleus (the germinal

vesicle) that stores nuclear proteins for early embryonic divisions (Figure 4.5a) [Lénárt and

Ellenberg, 2003]. As a consequence, specialized transport mechanisms are required to deliver

chromosomes that are initially distributed throughout the nuclear space to the assembling

meiotic spindle. In starfish oocytes, an actin-dependent process transports chromosomes

that are initially scattered in the ∼80 mm diameter nucleus to within capture range of

centrosomal microtubule asters at the cell cortex (or animal pole, AP) (Figure 4.5b). This

process, which is essential to prevent chromosome loss and aneuploidy of the egg, involves

an extensive F-actin meshwork (Figure 4.6a) that forms in the nuclear space and decreases

in volume toward the AP during chromosome congression [Lénárt et al., 2005]. However, the

Figure 4.5: (a) Schematic of an immature starfish oocyte, showing the nucleus anchored at the
animal pole (AP) and chromosomes scattered throughout the nuclear volume. (b) Schematic of
the process of actin-driven chromosome congression that begins after nuclear envelope breakdown
(NEBD), and during which the nuclear space occupied by chromosomes shrinks to approximately
one-half of its original diameter. Dashed lines indicate the position of the nuclear envelope (NE)
prior to NEBD. Figure previously published in [Mori et al., 2011].

105



specific mechanism of action of this novel mode of actin-based transport remained unknown.

In particular, the organization and spatial distribution of contractile activity within the F-

actin meshwork, the origin of the directionality of transport, and the mechanism by which

this directed motion is transduced to chromosomal cargo remained important unanswered

questions.

4.3.2 Quantitative analysis of chromosome motion

To resolve the mechanism of chromosome transport by F-actin, we first characterized

chromosome trajectories during the actin-dependent phase of chromosome congression. High-

resolution movies of fluorescently labeled chromosomes were tracked using the algorithm

described in Section 4.2 (Figure 4.6b,c). Trajectories exhibited two previously identified

Figure 4.6: (a) Single confocal section through the nuclear region of an oocyte expressing
UtrCH- 3mEGFP (to label F-actin; gray) and injected with DiIC18 [Eggert et al., 2006] (to label
endomembranes; red). The F-actin meshwork forms in the nuclear space defined by the remnant NE
membranes. (b) Pseudo-colored time projection of all maximum intensity z-projections through
the nuclear region of an oocyte expressing H2B-mCherry. 27 z-sections were acquired every 15
s. H2B-mCherry also labels the nucleolus (n) that disassembles after NEBD. Time is relative to
NEBD, scale bar: 10 µm. (c) Trajectories of tracked chromosomes from the 3D dataset shown in
(b). Trajectories are colored during the actin-driven transport phase (the color of each trajectory
is consistent with Figure 4.7). Figure previously published in [Mori et al., 2011].
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phases of poleward motion: an initial slow, actin-driven phase that begins just after nuclear

envelope breakdown (NEBD) followed by a faster, microtubule-driven phase that begins ∼10

min after NEBD [Lénárt et al., 2005] (Figure 4.7a). Analysis of the actin-driven phase of

motion using MSD-Bayes confirmed that the overall motion of the chromosomes contains

both diffusive and direction components, as shown in Chapter 2. Therefore, the diffusion

plus flow model (Equation 1.6) was used to analyze the individual chromosome trajectories

independently to look for differences in motion parameters within the population. Fits of this

model to MSD curves from three example actin-phase chromosome trajectories are shown in

Figure 4.7b.

4.3.3 Chromosome velocities reveal homogenous meshwork contraction

Analysis of the chromosome velocity parameters revealed a novel and unexpected

property of this actin-driven transport process: the constant poleward speed of each chro-

mosome depends linearly on its initial distance from the AP (Figure 4.7c). This property

rules out a number of models that could have explained contraction of the F-actin meshwork,

including localized contractile activity at the AP, which would result in equal poleward speeds

for all chromosomes. Instead, poleward chromosome speeds that depend linearly on initial

distance from the AP imply that contractile activity is distributed homogeneously through-

out the F-actin meshwork. An important corollary prediction of homogeneous contraction

is that any two points in the meshwork (e.g., any pair of chromosomes) should exhibit a

constant relative speed of travel toward one another during the congression process and that

this speed should depend linearly on their initial separation distance. Analysis of pairwise

chromosome approach velocities confirmed this prediction (Figure 4.7d). Furthermore, the

fact that this is true for all pairs of chromosomes irrespective of their initial location in the

nuclear space implies that the contraction is isotropic; i.e., it does not have an intrinsic,

preferred directionality. A schematic of the homogeneous contraction model, illustrating
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Figure 4.7: (a) Trajectories in Figure 4.6c plotted as distance from the AP versus time. (1)
Start of slow actin-driven transport; (2) start of capture by microtubules. The shaded and colored
portions of the trajectories (from 28 min after NEBD) are used in subsequent analyses of the
actin-driven transport phase. (b) Mean-squared displacement curves from the trajectories of three
example chromosomes. Raw MSD values (gray) were fit with the diffusion plus flow model (colored
curves). (c) Dependence of pole-ward chromosome speeds on initial chromosome distance from the
AP. Ccorr: correlation coefficient. (d) Dependence of pair-wise chromosome approach speeds on
the initial distance between each pair of chromosomes. Figure previously published in [Mori et al.,
2011].
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how it gives rise to speeds that scale with initial distance from an anchor point, is shown in

Figure 4.8.

4.3.4 Actin dynamics support the homogenous contraction model

To test whether motion of the F-actin meshwork is consistent with the homogeneous

contraction model suggested by chromosome trajectories, we imaged F-actin at high res-

olution in live oocytes by using the utrophin calponin homology domain (UtrCH [Burkel

et al., 2007]). Kymograph analysis reveals that F-actin bundles form throughout the nuclear

space 0-2 min after NEBD and subsequently begin to flow in a directed manner toward the

AP (Figure 4.9a). As the meshwork flows toward the AP, it is continuously replenished

by bundles originating at the nuclear envelope (NE) remnants (Figure 4.9a, arrowheads).

Figure 4.8: Schematic of the homogeneous contraction model, illustrating the dependence of speed
towards a fixed point (anchor) on distance from the anchor. Homogeneously distributed contractile
activity is represented as contractile elements (lines between nodes). The regular arrangement of
the contractile elements in the 2D model is only for visualization purposes and is not a specific
feature of the model. Figure previously published in [Mori et al., 2011].
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Figure 4.9: (a) Kymograph along the animal-vegetal axis of an oocyte expressing the same
markers as in Figure 4.6a. Arrowheads mark some of the new actin structures produced at the
membrane boundary. (b) Image correlation spectroscopy (ICS) analysis using a one-minute time
interval during the middle of actin-driven transport (4-5 min after NEBD) and a sliding 50x50 pixel
(7.5x7.5 µm) template. Left: white arrows show measured flow velocities overlaid on a selected
frame from the time series. Right: pole-ward component of the measured velocities plotted as a
function of distance from the AP. The slope of the linear correlation is extrapolated to the start of
the actin-driven transport phase. Figure previously published in [Mori et al., 2011].
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Local F-actin velocities along an axis from the ventral to animal pole measured using image

correlation spectroscopy (ICS) confirm that the meshwork speed increases linearly with

distance from the AP (Figure 4.9b). These quantitative observations are fully consistent

with the homogeneous and isotropic meshwork contraction model. Furthermore, the slope of

the velocity-distance dependence measured for the F-actin meshwork (0.069 min−1) is within

the range of values obtained from chromosome trajectories in different oocytes (0.067 +/-

0.025 min−1), thus suggesting that this homogeneous meshwork contraction directly drives

chromosome transport.

4.3.5 Transport direction is determined by cortical anchoring

Next, we asked how homogeneous, isotropic contraction of the F-actin meshwork is

converted into the observed asymmetric, directional transport toward the AP. The center

of mass of a homogeneously contracting meshwork will move in a directional manner if one

side of the meshwork is attached to a fixed point (Figure 4.8). Thus, we hypothesized

that mechanical anchoring of the F-actin meshwork to cortical F-actin would be sufficient

to drive net meshwork transport toward the cortex. We tested this prediction by tracking

chromosome motions in oocytes that had been centrifuged in order to relocate the nucleus

away from the cortex [Matsuura and Chiba, 2004] and thereby remove any cortical anchoring

(Figure 4.10). In support of the cortical anchoring model, relocating the nucleus to the center

of the oocyte resulted in symmetric transport of chromosomes to the center of the nuclear

region (Figure 4.10b). Interestingly, centrifugation of the nucleus to within ∼5 mm of the

cortex opposite the AP restored directionality: chromosomes were transported toward the

nearest point on the cortex (Figure 4.10c). This result indicates that the AP, centrosomes,

and microtubules are not required for asymmetric transport, which is determined solely by

proximity of the nucleus to the cortex. A simple explanation is that the anchor consists of

actin filaments that physically connect the meshwork to cortical F-actin. Importantly, in
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Figure 4.10: Oocytes expressing H2B-GFP and injected with rhodamine-tubulin for identification
of the AP were centrifuged in order to relocate the nucleus either back towards the AP as a control
(a), to the center of the cell (b), or to the opposite cortex (c). From left: low magnification
images of rhodamine-tubulin before NEBD (the smaller dark circle in (b) is the negative image of
the oil drop used for injection); maximum intensity z-projections of the nuclear region, marked by a
dashed rectangle in the left-most columns, showing H2B-GFP labeled chromosomes at NEBD and
at the end of chromosome transport (dashed ellipses label the initial position of the NE); pseudo-
colored time projections of z-projections during chromosome transport; and pair-wise chromosome
approach velocities versus initial pair-wise separation distance, as in Figure 4.7d. Figure previously
published in [Mori et al., 2011].
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all of these centrifugation experiments, pairwise chromosome approach velocities obtained

from automated tracking of the chromosomes are still linearly dependent on their initial

separation distances and the slopes of this dependence are indistinguishable from control

oocytes. Taken together, these results support the proposed model in which mechanical

anchoring to the cell cortex converts homogeneous contraction of the F-actin meshwork into

asymmetric, directed transport.

4.3.6 Transport of inert particles is size-dependent

Finally, we sought to answer the question of how the contracting meshwork trans-

duces its motion to chromosomes in order to transport them to the AP. It was previously

observed that chromosomes develop dense F-actin structures in their vicinity that could

potentially serve to attach them to the meshwork via specific binding interactions [Lénárt

et al., 2005]. However, our new high-resolution data reveal that these dense structures are

specific to chromosomes located near the nuclear envelope, and many chromosomes scattered

in the nuclear space are transported in the absence of any visible, chromosome-specific F-

actin structures. This observation suggests that chromosomes may be transported without

binding to F-actin simply by steric trapping within the meshwork.

To directly test this hypothesis, we injected a dense polydisperse mixture of inert

fluorescent beads and bead aggregates into the oocyte nucleus and imaged them in 3D

during chromosome congression. We found that the effective volume occupied by these

inert particles decreased over time toward the AP (Figure 4.11a), indicating that they were

transported by the F-actin meshwork. Moreover, the degree of the volume decrease was

particle-size dependent: the effective radius of the space occupied by three different bead

size groups decreased linearly over time at a rate that increased with particle size (Fig-
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Figure 4.11: (a) Top: maximum intensity projections of 20 z-sections showing single and
aggregated 0.4-µm diameter PEG-coated fluorescent beads injected into the nucleus of an oocyte.
Time is given relative to NEBD. Bottom: particles identified and color-coded based on size
categories (defined based on their relative intensities) and the effective radius of the occupied
volume for each category (calculated as the radius of gyration of each set of particles). Scale bar:
20 µm. (b) Radius of the occupied volume of the set of particles in each size group plotted over time
(each point is an average over five time frames). The gray line shows the same analysis performed
on chromosomes that were labeled by H1-Alexa647 in the same experiment. Figure previously
published in [Mori et al., 2011].

ure 4.11b). Importantly, the space occupied by the largest particle group (with an estimated

average diameter of 0.7 µm) decreased with a rate approaching that of chromosomes (∼2

µm diameter) imaged in the same cell. To analyze the transport of these large particles,

we injected oocytes with large bead aggregates at sufficiently low density to track them

using the tracking algorithm described in Section 4.2 above (Figure 4.12a). The resulting

bead trajectories revealed a behavior strikingly similar to that of transported chromosomes

(Figure 4.12b). Bead aggregates synchronously initiate directed poleward transport shortly

after NEBD with poleward speeds that remain approximately constant during transport.

In addition, their poleward and relative pairwise approach speeds are linearly dependent

on their initial separation distance (Figure 4.12c) and have a slope that is indistinguishable
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Figure 4.12: (a) Pseudo-colored time projection of z-projections of an oocyte injected with
aggregates of 0.5 µm diameter PEG-coated fluorescent beads. Scale bar: 20 µm. (b) Distance from
the AP versus time for the trajectories obtained from the dataset shown in (a). The actin-driven
phase is highlighted; colors are consistent with (c). See Figure 4.7 for comparison with chromosomes.
(c) Pole-ward (colored filled circles) and pair-wise (+) velocities versus initial distance from the
AP and initial pair-wise distance, respectively. Figure previously published in [Mori et al., 2011].

from that of chromosomes within measurement error (0.077 min−1 compared to 0.067 +/-

0.025 min−1).

These results demonstrate that the F-actin meshwork can effectively transport cargo

without specific binding interactions. The fact that transport efficiency depends on cargo

size implies that the force of meshwork contraction is transmitted to cargo at least in part

by steric trapping within porous cages in the meshwork; smaller particles are more likely

than large particles to escape through meshwork pores. The bead experiments indicate

that efficient capture requires particles of roughly 1 µm diameter, defining an approximate

effective mesh-size that is in good agreement with the spacing between bundles visible in

high-resolution images of F-actin bundles that constitute the meshwork. Thus, these visible

bundles are likely the structures mediating particle trapping and transport.
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4.3.7 Conclusion

In this study we used live-cell imaging together with quantitative analysis of chro-

mosome trajectories and meshwork velocities to show that the 3D F-actin meshwork present

during meiosis in starfish oocytes contracts homogeneously and isotropically throughout the

nuclear space. Although the intrinsic meshwork contraction lacks any specific directionality,

centrifugation experiments revealed that anchoring of the meshwork to the cell cortex confers

directionality to its large-scale motion. By injecting inert particles of different sizes, we

showed that this directional transport activity is size-selective and transduced to chromoso-

mal cargo at least in part by steric entrapment of particles larger than the effective mesh-size

of the meshwork. Taken together, these results reveal mechanistic design principles of a

novel and potentially versatile intracellular transport machine that is fundamentally distinct

from previously observed mechanisms of F-actin-driven intracellular transport. In this

system, force is generated by isotropic contractile activity that is distributed homogeneously

throughout the F-actin meshwork, with a rate of contraction that is limited by physical

tethering and filament production at remnant nuclear envelope membranes.

In starfish oocytes, this actin-meshwork homogeneous contraction mechanism is

utilized for the essential function of transporting chromosomes to the AP. However, it

is tempting to speculate that similar design principles may be used in other intracellular

transport processes in various organisms and cell types. This transport system is inherently

flexible in that anchoring to cellular structures other than the cortex may direct contractile

motion to distinct subcellular locations, and tuning the effective mesh-size could allow

for selective transport based on size. Alternatively, specific binding interactions between

cargo and the meshwork could potentially enhance the rate and reliability of transport.

Notably, in contrast to chromosome transport by microtubules, where re-establishment of

severed microtubule-chromosome connections requires significant time and may result in
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chromosome loss [Civelekoglu-Scholey and Scholey, 2010], transport by a space-filling F-

actin meshwork may be considerably more robust because of physical entrapment within an

extended meshwork.

Elucidating the detailed molecular mechanisms underlying each of the functional

components that we have identified in this novel intracellular transport machine is an

important goal of future work. In particular, our finding that contractile activity is homo-

geneously distributed throughout the actin meshwork suggests that the meshwork may be

organized into quasi-independent contractile F-actin subunits, as recently also proposed for

the contractile ring of C. elegans embryos [Carvalho et al., 2009] and stress fibers in cultured

mammalian cells [Colombelli et al., 2009]. How the individual bundles forming the meshwork

are organized to generate contractile force and whether this force is generated by acto-myosin

contractility, depolymerization and/or bundling of actin filaments independent of motor

activity [Carvalho et al., 2009; Sun et al., 2010; Shlomovitz and Gov, 2008; Zumdieck et al.,

2007], or some combination of each remain open questions. It is an intriguing possibility

that contractile units similar in structure and composition to those that form flat networks

under the cell membrane to mediate cytokinesis or cell migration may alternatively organize

into 3D F-actin meshworks to drive intracellular transport.

4.4 Analysis of Ska1-complex dynamics on microtubules

4.4.1 Biological background

As described in Section 4.3, the function of the F-actin meshwork during meiosis in

starfish oocytes is to transport chromosomes through the large nuclear volume until they

are within capture distance of spindle microtubules, which are ultimately responsible for
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segregating the chromosomes into daughter cells. Transport of chromosomes by microtubules

is mediated by a specific force-generating connection between the microtubules and the

chromosomal DNA called the kinetochore complex, which involves more than 100 different

proteins in human cells and assembles upon centromeric DNA [Cheeseman and Desai, 2008].

The driving force for chromosome segregation comes primarily from microtubule depolymer-

ization, which releases potential energy stored in the polymerized tubulin subunits [McIntosh

et al., 2010; Desai and Mitchison, 1997; Wang and Nogales, 2005; Grishchuk et al., 2005].

However, it is unclear how kinetochores remain associated with the depolymerizing ends of

the spindle microtubules during this dynamic process.

To understand these kinetochore-microtubule interactions in detail, it is essential to

characterize the components of the kinetochore complex that mediate the interactions. A

central player is the conserved Ndc80 complex [Cheeseman et al., 2006]. Loss of Ndc80

function results in catastrophic defects in kinetochore-microtubule attachments [DeLuca

et al., 2002]. The Ndc80 complex has been shown to remain associated with polymerizing

and depolymerizing ends of microtubules when it has been artificially oligomerized on the

surface of a microsphere [Powers et al., 2009]; however, monomeric Ndc80 complex lacks this

activity. Therefore, the protein(s) responsible for maintaining the kinetochore-microtubule

attachment during depolymerization remains an open question. Another recently-identified

key mediator of kinetochore-microtubule interactions is the Ska1 complex [Daum et al.,

2009; Gaitanos et al., 2009; Hanisch et al., 2006; Raaijmakers et al., 2009; Theis et al.,

2009; Welburn et al., 2009]. The Ska1 protein contains a microtubule binding domain

that is required for the formation of robust kinetochore-microtubule attachments in human

cells [Schmidt et al., 2012], and depletion of the full Ska1 complex results in a checkpoint-

dependent mitotic arrest with misaligned chromosomes. Here we analyze in detail the in

vitro interactions of the Ska1 complex with microtubules.
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4.4.2 Diffusion of Ska1 complex along microtubules in vitro

We visualized both the human and C. elegans Ska1 complexes containing GFP-

Ska1 using total internal reflection fluorescence microscopy (TIR-FM). Both forms of the

GFP-Ska1 complex readily diffused on microtubules, similar to the Ndc80-GFP complex

(Figure 4.13). Note that the Ndc80 complex used here (Ndc80 “Broccoli”) consists of

well-behaved truncated versions of Ndc80 and Nuf2 and behaves identically to full-length

Ndc80 complex [Schmidt et al., 2012]. The Ska1 and Ndc80 complexes in these images were

identified and tracked using the tracking algorithm described in Section 4.2. Comparison

of the intensity distributions between the two human complexes indicates that hNdc80

“Broccoli”-GFP is mostly monomeric when bound to microtubules, consistent with previous

studies [Powers et al., 2009], while the GFP-hSka1 complex contains two distinct peaks in

Figure 4.13: (a) Representative kymographs with microtubule position along the horizontal
axis and time along the vertical axis showing one-dimensional diffusion of GFP-hSka1 complex
(left, 100 pM) and Ndc80 “Broccoli”-GFP (right, 50 pM) on taxol-stabilized microtubules labeled
with HiLyte 647. (b) Representative kymographs as in (a) showing one-dimensional diffusion of
sfGFP-ceSka1 complex (left, 4 nM) and ceNdc80 “Broccoli”-sfGFP (right, 1 nM) on taxol-stabilized
microtubules. Figure previously published in [Schmidt et al., 2012].
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its intensity distribution (Figure 4.14a). These peaks correspond to particles with a mean

brightness similar to the Ndc80-GFP complex and particles that have a 2-fold increased

intensity, suggesting that GFP-hSka1 complex can bind to microtubules as either a monomer

or dimer. The presence of bleaching steps with 2:1 intensity ratios in a number of GFP-hSka1

trajectories confirmed that these brighter complexes contain exactly two GFP-Ska1 molecules

(Figure 4.14b). This result is consistent with previous biochemical analysis [Welburn et al.,

Figure 4.14: (a) Intensity distribution of 100 pM GFP-hSka1 complex (red, n = 20676) and
50 pM Ndc80 “Broccoli”-GFP (blue, n = 13411) at each time frame, determined by fitting a
2D Gaussian function to each spot identified by the tracking algorithm, ignoring first and last
frames of tracks. (b) Photo-bleaching analysis of Ska1 complex particles. Left: kymograph and
corresponding fluorescent intensity for one photobleaching event. Right: comparison of the average
intensity before and after photobleaching events (n = 32). Figure previously published in [Schmidt
et al., 2012].
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2009] and recent structural work [Jeyaprakash et al., 2012] indicating that the hSka1 complex

can dimerize to form a complex with two microtubule-binding sites. MSD curves generated

from the GFP-hSka1 complex and Ndc80 “Broccoli”-GFP trajectories were found to be best

explained by a simple diffusion model using the MSD-Bayes approach described in Chapter

2. The diffusion coefficients were 0.09 µm2/s and 0.03 µm2/s, respectively (Figure 4.15a),

consistent with previous observations made for the Ndc80 complex [Powers et al., 2009].

Figure 4.15: (a) Mean-squared displacement (MSD, mean and SEM) plotted against time for
100 pM GFP-hSka1 complex (red, n = 187) and 50 pM Ndc80 “Broccoli”-GFP (blue, n = 258).
Diffusion coefficients were calculated from the slope of the linear fit of the MSD using the 1D pure
diffusion model. (b) Distribution of the residence times of GFP-hSka1 complex (100 pM, n = 502)
and hNdc80 “Broccoli”-GFP (50 pM, n = 359) trajectories on taxol stabilized microtubules. Figure
previously published in [Schmidt et al., 2012].
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The residence time distribution of the GFP-hSka1 complex trajectories on micro-

tubules displays biphasic dissociation kinetics (Figure 4.15b): a rapid phase with a rate

constant of kfast = 3.4 +/- 0.3 s−1 and a slow phase with a rate constant of kslow = 0.15 +/-

0.02 s−1. The presence of these two phases supports the above observation that hSka1 exists

in both monomer and dimer forms. The disassociation rate of the rapid phase is similar

to the behavior of monomeric GFP-hSka1/2 (koff = 4.9 +/- 0.4 s−1), suggesting that the

rapid phase represents hSka1 complex monomers. Indeed, analysis of short-lived (< 0.6 s)

hSka1 complex binding events indicated that these were primarily monomeric based on their

intensity distribution. Ndc80 Brocolli-GFP has a dissociation constant of koff = 0.53 +/- 0.03

s−1 (Figure 4.15b). All measured dissociation rate constants were faster than the bleaching

rate constant determined for immobilized Ndc80-GFP under identical imaging conditions

(kbleach = 0.11 +/- 0.01 s−1).

In contrast to the hSka1 complex, the C. elegans GFP-ceSKA1 complex was primarily

monomeric under the tested conditions. We note that sfGFP-ceSKA1 was used in these

assays at 40-fold higher concentrations (4 nM) relative to GFP-hSka1 complex (100 pM); yet

even at these concentrations, the ceSKA1 complex primarily contains one ceSKA1 subunit.

The human (D = 0.09 µm2/s) and C. elegans (D = 0.11 µm2/s) Ska1 complex both diffused

on microtubules with similar diffusion coefficients, whereas the C. elegans Ndc80 complex

(D = 0.08 µm2/s) diffuses more rapidly than its human counterpart (D = 0.03 µm2/s).

4.4.3 Conclusion

The analyses above demonstrate that the human Ska1 complex associates with

microtubules in vitro and suggest that a cooperative interaction between two Ska1-contaning

complexes is required for this association to persist. The Ska1 complexes found on micro-
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tubules consist of two populations, one with one copy of Ska1 and one with two copies of

Ska1, which correlate with the biphasic dissociation rates observed for the Ska1 complex

trajectories as they diffuse along microtubules. The long-lived associations of the Ska1

complex dimers with microtubules persist longer than the associations of the Ndc80 complex

with microtubules, suggesting that Ska1 complex in the kinetochore in vivo may be a more

robust mediator of kinetochore-microtubule interactions than Ndc80. In addition, we find

that the Ska1 complex diffuses along the microtubule with a higher diffusion coefficient than

the Ndc80 complex. These in vitro observations confirm the ability of the Ska1 complex to

form persistent interactions with microtubules and point to an essential role for this complex

in forming the robust kinetochore-microtubule interactions that are required for the force of

microtubule depolymerization to be conveyed to chromosomes during cell division.
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Appendix A

Theory of hidden Markov models

A.1 Formulation of a hidden Markov model

A hidden Markov model is a type of Bayesian network that consists of a Markov

chain of hidden variables, denoted by a vector s = [s1, ..., sT ] = {st}Tt=1, where each st can

take on one of a discrete set of values (or states),

st ∈ {Si}Ki=1 , (A.1)

where K is the number of available states [Ewens and Grant, 2005]. The Markov property

for the hidden states requires that the probability of being in a given state Sj at time t

depends only on the previous state at time t − 1; given knowledge of st−1, the probability

distribution for st is conditionally independent of the previous states prior to time t − 1.

This conditional probability distribution is defined as,

φij ≡ P (st = Sj|st−1 = Si) , (A.2)

and the probability of starting in state Si at time t = 1 is,

πi ≡ P (s1 = Si) . (A.3)

124



Since these state variables are hidden, we do not directly observe their values but instead

observe at each time t a secondary random variable et (emission) whose value depends only

on the state at time t [Ewens and Grant, 2005]. The sequence of observed emissions is

denoted by a vector e = [e1, ..., eT ] = {et}Tt=1. When the emissions are continuous random

variables, their distribution is given for each state as a continuous conditional probability

distribution function,

pi(et) ≡ P (et|st = Si) , (A.4)

parameterized by some set of parameters β that can take distinct values for the different

states Si. The full set of parameter values for an HMM, denoted θ, therefore includes the

K × K matrix of transition probabilities φij, the length-K vector of starting probabilities

πi, and the K×|β| matrix of parameters for the emission probability distributions pi, where

the emission parameters for state Si are denoted βi,

θ =
[
{πi}Ki=1, {φij}Ki,j=1, {βi}Ki=1

]
. (A.5)

A.2 Inference on hidden Markov models

A.2.1 Maximum likelihood hidden state sequence (Viterbi algorithm)

Given a sequence of observed emissions e, one would often like to infer the most

likely sequence of hidden states ŝ = arg maxs P (s|e,θ) that could have generated those

emissions [Ewens and Grant, 2005]. The likelihood P (s|e,θ) can be expanded using Bayes’

rule,

P (s|e,θ) =
P (e|s,θ)P (s|θ)

P (e|θ)
∝ P (e|s,θ)P (s|θ) . (A.6)
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The probabilities P (e|s,θ) and P (s|θ) can be calculated for a given set of parameter values

θ using the recursive structure of the HMM,

P (s|θ) = P (s1|θ)
T∏
t=2

P (st|st−1,θ) = πs1

T∏
t=2

φst−1st , (A.7)

P (e|s,θ) =
T∏
t=1

P (et|st,θ) =
T∏
t=1

pst(et) . (A.8)

The full equation for ŝ then becomes,

ŝ = arg max
s

P (s|e,θ) = arg max
s

P (e|s,θ)P (s|θ)

= arg max
s

(
πs1

T∏
t=2

φst−1st

T∏
t=1

pst(et)

)
.

(A.9)

This maximization can be performed exactly using the Viterbi algorithm. Although with

K states, there are KT possible sequences of hidden states s, the Viterbi algorithm takes

advantage of the tree-like structure of an HMM to perform this maximization recursively in

O(K2T ) time [Ewens and Grant, 2005].

The Viterbi algorithm defines a message Vt(i), calculated sequentially at each time

point, which is equal to the maximum likelihood (over the possible hidden state sequences

through time t− 1) of ending in state Si at time t and having observed all of the emissions

from times 1, ..., t [Ewens and Grant, 2005]. Specifically,

Vt(i) = max
[s1,...,st−1]

P (st = Si, [e1, ..., et]|[s1, ..., st−1],θ) . (A.10)

For the first time point there are no previous hidden states to maximize over, so V1(i)

corresponds to the probability of being in state Si and having observed e1. The equation
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above reduces to,

V1(i) = P (s1 = Si, e1|θ)

= P (e1|s1 = Si,θ)P (s1 = Si|θ)

= pi(e1)πi .

(A.11)

Evaluating Equation A.10 for additional time points leads to the following recursive rela-

tionship for any t [Ewens and Grant, 2005],

Vt(i) = pi(et) max
i′

(
φi′iVt−1(i′)

)
. (A.12)

This message Vt(i) can thus be computed recursively for each t ∈ {1, ..., T}.

At the end of the chain, the message VT (i) represents the probability of the most

likely state sequence that ends with sT = Si and that produced all of the observations

e = [e1, ..., eT ]. So a final maximization over the states Si for time T gives the probability of

the maximum likelihood state sequence ŝ,

P (ŝ|θ) = max
i
VT (i) . (A.13)

To recover the sequence itself, the information on which state Si was preferred in each of

the maximization steps above is saved and can be traced back from the final maximization

at time T to the first maximization at time 1 to construct the maximum likelihood state

sequence [Ewens and Grant, 2005].
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A.2.2 Maximum likelihood parameter values

The above calculation assumes that the parameter values θ are known; however, the

maximum likelihood parameter values θ̂ can also be inferred from the observed sequence e

using a similar application of Bayes’ rule,

P (θ|e) =
P (e|θ)P (θ)

P (e)
∝ P (e|θ)P (θ) . (A.14)

If the prior on parameters P (θ) is uniform, then we only need to maximize P (e|θ), the

likelihood of the data given a set of parameters. However, the likelihood of the data must

be marginalized over all possible state sequences, since the state sequence is unobserved, as

follows,

P (e|θ) =
∑
s

P (e|s,θ)P (s|θ) . (A.15)

The probabilities P (e|s,θ) and P (s|θ) are the same as given above in Equations A.7 and A.8.

So the full equation for θ̂ is,

θ̂ = arg max
θ

∑
s

P (e|s,θ)P (s|θ)

= arg max
θ

∑
s

(
πs1

T∏
t=2

φst−1st

T∏
t=1

pst(et)

)
.

(A.16)

Evaluating θ̂ involves two steps, summing the likelihood of observing the emissions over all

possible hidden state sequences, and maximizing this sum over possible parameter values.

The maximization over θ is typically intractable and must be solved using approximate or

numerical methods such as expectation-maximization (EM) or Monte Carlo (MC) sampling.

The summation over hidden state sequences s, however, can be performed exactly for a

given set of parameters θ using a variant of the Viterbi algorithm above called the forward
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algorithm, which replaces the maximization steps with summations to compute the total

marginal probability of observing the emissions e.

The forward algorithm defines a message Ft(i), calculated sequentially at each time

point, which is equal to the total likelihood of ending in state Si at time t and having observed

all of the emissions from times 1, ..., t [Ewens and Grant, 2005]. Specifically,

Ft(i) = P (st = Si, [e1, ..., et]|θ) . (A.17)

At the first time point, F1(i) is simply the probability that s1 = Si and that e1 was observed,

and the equation above reduces to,

F1(i) = P (s1 = Si, e1|θ)

= P (e1|s1 = Si,θ)P (s1 = Si|θ)

= pi(e1)πi .

(A.18)

As in the case of the Viterbi algorithm, the forward message follows a recursive relationship

for any t [Ewens and Grant, 2005],

Ft(i) = pi(et)
∑
i′

φi′iFt−1(i′) . (A.19)

This looks the same as the Viterbi recursion in Equation A.12, except that the maximization

is replaced by a summation over states. This message Ft(i) can thus be computed recursively

for each t ∈ {1, ..., T}. At the end of the chain, the message FT (i) represents the probability

that sT = Si and that all of the emissions e = [e1, ..., eT ] have been observed. So a final
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summation over the states Si for time T ,

P (e|θ) =
∑
i

FT (i) , (A.20)

gives the full probability of observing the emissions e marginalized over the hidden states s.

This method is used to evaluate the likelihood P (e|θ) at any given value of the parameters

θ.
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Appendix B

Monte Carlo methods

B.1 Principles of Monte Carlo integration

Monte Carlo integration involves sampling the value of an integrand f(θ) at many

different θ values, which are distributed according to some sampling distribution q(θ). This

sampling distribution can be uniform (the quadrature method) or non-uniform with higher

density in regions where f(θ) is large (importance sampling). When θ is sampled over any

arbitrary distribution q(θ), the integral
∫
f(θ)dθ is equal to [Robert and Casella, 2004],

I ≡
∫
f(θ)dθ =

∫
f(θ)

q(θ)
q(θ)dθ = Eq

[
f(θ)

q(θ)

]
, (B.1)

where the final equality is simply the definition of the expectation taken over the sampling

distribution q(θ). Therefore our estimator for the integral I is simply the mean of the ratio

f(θ)/q(θ) calculated over a set of N sampled points in parameter space, where the sampled

points are distributed according to q(θ),

Î =

〈
f(θ)

q(θ)

〉
q

=
1

N

N∑
n=1

f(θ(n))

q(θ(n))
. (B.2)

It can be shown that the variance in the estimator Î is minimized when the sampling

distribution q(θ) is proportional to f(θ) [Robert and Casella, 2004].
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B.2 Markov Chain Monte Carlo (MCMC) to sample a target distribution

An efficient method for generating θ values from a distribution q(θ) proportional to

f(θ) is to use a Markov chain with q(θ) as its stationary distribution [Robert and Casella,

2004; Grimmett and Stirzaker, 2001]. This approach requires generating sequential values

of θ with a transition probability A(θ → θ′) of going from an old parameter set θ to

a new parameter set θ′ that is consistent with the target stationary distribution q(θ). At

equilibrium, the detailed balance condition for Markov chains states that the average number

of transitions from state θ to state θ′ should be equal to the average number of transitions

from state θ′ to state θ [Grimmett and Stirzaker, 2001]. This condition is equivalent to,

q(θ)A(θ→ θ′) = q(θ′)A(θ′ → θ) . (B.3)

Since the target stationary distribution q(θ) is proportional to f(θ), we can re-write this

condition as,

f(θ)A(θ→ θ′) = f(θ′)A(θ′ → θ) . (B.4)

The transition probability A can be split into two components [Robert and Casella, 2004;

Grimmett and Stirzaker, 2001], a proposal (or trial) function T (θ → θ′), which is the

probability of proposing a trial move to θ′ from a current state θ, and an acceptance function

α(θ→ θ′), which is the probability of accepting a proposed move from θ to θ′,

A(θ→ θ′) = α(θ→ θ′)T (θ→ θ′) . (B.5)

If we choose T to be symmetric, such that,

T (θ→ θ′) = T (θ′ → θ) , (B.6)
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then the detailed balance condition becomes,

α(θ→ θ′)f(θ) = α(θ′ → θ)f(θ′) , (B.7)

which implies,

α(θ→ θ′)

α(θ′ → θ)
=
f(θ′)

f(θ)
. (B.8)

There are multiple options for T (θ→ θ′) and α(θ→ θ′) that satisfy the above conditions.

A common choice for these distributions is the random walk Metropolis approach [Grimmett

and Stirzaker, 2001], in which the proposal function T defines a random walk along each

parameter axis θi in parameter space. The random walk proposal function T can be either

a uniform distribution,

θ′i ∼ unif
(
θi − δ, θi + δ

)
, (B.9)

or a normal distribution,

θ′i ∼ N
(
θi, δ

2
)
. (B.10)

Either distribution is parameterized by some δ, which controls the magnitude by which a

parameter θi can change at each step in the Markov chain. The Metropolis approach then

chooses the acceptance probability α to satisfy the detailed balance condition above by

setting it equal to [Gilks, 1995; Robert and Casella, 2004; Grimmett and Stirzaker, 2001],

α(θ→ θ′) =


1, f(θ′) ≥ f(θ)

f(θ′)

f(θ)
, f(θ′) < f(θ)

= min

(
1,
f(θ′)

f(θ)

)
.

(B.11)
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This form for α means that all moves that increase f(θ) are accepted, while moves that

decrease f(θ) are accepted with probability f(θ′)/f(θ). The parameter δ in the proposal

function above is typically chosen to give an overall acceptance rate T (θ → θ′)α(θ → θ′)

of 30-50 percent [Roberts et al., 1997].

The steps of the Markov chain Monte Carlo (MCMC) integration approach can be

summarized as follows:

1. Start with an initial guess of the parameters, θ(0).

2. Choose a parameter or parameters to move at each MCMC iteration. For example, all

parameters can be moved at once, a single randomly-selected parameter can be moved

as in the original Metropolis algorithm, or a subset (block) of parameters can be moved

together [Gilks, 1995].

3. Propose a move for the selected parameter(s). For each selected parameter θi, choose

the proposed new value θ′i from either a uniform distribution (Equation B.9) or a

normal distribution (Equation B.10). Choose δ such that the acceptance rate in step

4 is between 0.3 and 0.5 [Roberts et al., 1997].

4. Choose whether to accept or reject the proposed move by evaluating the function

f(θ) at the old and new parameter values and accepting the move with probability,

α = min
(

1, f(θ′)
f(θ)

)
. Note that any proposed move that takes a bounded parameter

outside of its bounds is automatically rejected.

5. Repeat steps 2-4 until the distribution of sampled parameter values reaches equilibrium.

This equilibrium distribution should approach the target distribution q(θ).
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