1,715 research outputs found

    Underpowered samples, false negatives, and unconscious learning

    Get PDF
    The scientific community has witnessed growing concern about the high rate of false positives and unreliable results within the psychological literature, but the harmful impact of false negatives has been largely ignored. False negatives are particularly concerning in research areas where demonstrating the absence of an effect is crucial, such as studies of unconscious or implicit processing. Research on implicit processes seeks evidence of above-chance performance on some implicit behavioral measure at the same time as chance-level performance (that is, a null result) on an explicit measure of awareness. A systematic review of 73 studies of contextual cuing, a popular implicit learning paradigm, involving 181 statistical analyses of awareness tests, reveals how underpowered studies can lead to failure to reject a false null hypothesis. Among the studies that reported sufficient information, the meta-analytic effect size across awareness tests was d z = 0.31 (95 % CI 0.24–0.37), showing that participants’ learning in these experiments was conscious. The unusually large number of positive results in this literature cannot be explained by selective publication. Instead, our analyses demonstrate that these tests are typically insensitive and underpowered to detect medium to small, but true, effects in awareness tests. These findings challenge a widespread and theoretically important claim about the extent of unconscious human cognition

    Attention and Conscious Perception in the Hypothesis Testing Brain

    Get PDF
    Conscious perception and attention are difficult to study, partly because their relation to each other is not fully understood. Rather than conceiving and studying them in isolation from each other it may be useful to locate them in an independently motivated, general framework, from which a principled account of how they relate can then emerge. Accordingly, these mental phenomena are here reviewed through the prism of the increasingly influential predictive coding framework. On this framework, conscious perception can be seen as the upshot of prediction error minimization and attention as the optimization of precision expectations during such perceptual inference. This approach maps on well to a range of standard characteristics of conscious perception and attention, and can be used to interpret a range of empirical findings on their relation to each other

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    New approach of entropy estimation for robust image segmentation

    Get PDF
    In this work we introduce a new approach for robust image segmentation. The idea is to combine two strategies within a Bayesian framework. The first one is to use a Márkov Random Field (MRF), which allows to introduce prior information with the purpose of preserve the edges in the image. The second strategy comes from the fact that the probability density function (pdf) of the likelihood function is non Gaussian or unknown, so it should be approximated by an estimated version, and for this, it is used the classical non-parametric or kernel density estimation. This two strategies together lead us to the definition of a new maximum a posteriori (MAP) estimator based on the minimization of the entropy of the estimated pdf of the likelihood function and the MRF at the same time, named MAP entropy estimator (MAPEE). Some experiments were made for different kind of images degraded with impulsive noise and the segmentation results are very satisfactory and promising

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Text-independent speaker recognition

    Get PDF
    This research presents new text-independent speaker recognition system with multivariate tools such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) embedded into the recognition system after the feature extraction step. The proposed approach evaluates the performance of such a recognition system when trained and used in clean and noisy environments. Additive white Gaussian noise and convolutive noise are added. Experiments were carried out to investigate the robust ability of PCA and ICA using the designed approach. The application of ICA improved the performance of the speaker recognition model when compared to PCA. Experimental results show that use of ICA enabled extraction of higher order statistics thereby capturing speaker dependent statistical cues in a text-independent recognition system. The results show that ICA has a better de-correlation and dimension reduction property than PCA. To simulate a multi environment system, we trained our model such that every time a new speech signal was read, it was contaminated with different types of noises and stored in the database. Results also show that ICA outperforms PCA under adverse environments. This is verified by computing recognition accuracy rates obtained when the designed system was tested for different train and test SNR conditions with additive white Gaussian noise and test delay conditions with echo effect
    corecore