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ABSTRACT 

Text-independent Speaker Recognition 

Smitha Gangisetty 

This research presents new text-independent speaker recognition system with 

multivariate tools such as Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA) embedded into the recognition system after the feature 

extraction step. The proposed approach evaluates the performance of such a recognition 

system when trained and used in clean and noisy environments. Additive white Gaussian 

noise and convolutive noise are added. Experiments were carried out to investigate the 

robust ability of PCA and ICA using the designed approach. The application of ICA 

improved the performance of the speaker recognition model when compared to PCA. 

Experimental results show that use of ICA enabled extraction of higher order statistics 

thereby capturing speaker dependent statistical cues in a text-independent recognition 

system. The results show that ICA has a better de-correlation and dimension reduction 

property than PCA. To simulate a multi environment system, we trained our model such 

that every time a new speech signal was read, it was contaminated with different types of 

noises and stored in the database. Results also show that ICA outperforms PCA under 

adverse environments. This is verified by computing recognition accuracy rates obtained 

when the designed system was tested for different train and test SNR conditions with 

additive white Gaussian noise and test delay conditions with echo effect.  
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CHAPTER 1. INTRODUCTION 

Speaker recognition is the process of automatically recognizing a person on the 

basis of individual information included in speech signals. Campbell defines it more 

precisely as the use of a machine to recognize a person from a spoken phrase [Campbell, 

1997]. It is a known fact that speech is a speaker dependent feature that enables us to 

recognize friends over the phone. 

During the years ahead, it is hoped that speaker recognition will make it possible 

to verify the identity of persons accessing systems; allow automated control of services 

by voice, such as banking transactions; and also control the flow of private and 

confidential data [Furui, 1994].  

Biometric based authentication measures individuals’ unique physical or 

behavioral characteristics. While fingerprints and retinal scans are more reliable means of 

identification, speech can be seen as a non-evasive biometric data that can be collected 

with or without the person’s knowledge or even transmitted over long distances via 

telephone. Biometric authentication has some key advantages over knowledge and token 

based authentication techniques. Unlike other forms of identification, such as passwords 

or keys, a person's voice cannot be stolen, forgotten or lost. Speaker recognition with 

proper statistical, analytical and data processing techniques thus allow for a secure 

method of authenticating speakers. 
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1.1    Motivation 

1. Build a better text-independent speaker recognition model that would allow 

capturing speaker discriminating properties and therefore make the system 

robust against noise.  

2. Avoid the shortcomings of present text-independent speaker recognition 

approaches using lower order statistics like Principal Component Analysis, 

particularly due to their poor de-correlation property thereby failing to extract 

additional useful speaker dependent information.  

3. Explore the potential for increased robustness of text-independent speaker 

recognition systems using higher order statistical techniques such as 

Independent Component Analysis.  

1.2    Research Objectives 

 The objectives of this research are: 

1. Develop a new text-independent speaker recognition framework with 

multivariate dimensional reduction tools such as Principal Component 

Analysis (PCA) and Independent Component Analysis (ICA) embedded into 

the recognition system after the feature extraction step. 

2. Dynamically train the speaker recognition system with clean and noisy 

(additive and convolutive) speech signals. Each time a new speech signal is 

input to the system, additive white Gaussian noise at different values of SNR 

and echo with varying values of delay are added to the clean speech signals. 



 

 

3 

3. Investigate the performance of the proposed text-independent speaker 

recognition system under noisy environments. 

4. Compute the accuracy rates of identifying the test speaker in clean and noisy 

environments using the designed speaker recognition model. 

5. Evaluate the robust ability of Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) transforms for speaker identification 

using the proposed approach under clean and noisy conditions. 

1.3    Outline of thesis 

A brief overview on the topics covered in each of the chapters is presented below.  

Chapter 2 discusses the background of various concepts used in speaker 

recognition.  

Chapter 3 summarizes a thorough literature review of text-independent speaker 

recognition system based on the current state of the speaker recognition technology. It 

introduces the basic model of text-independent speaker recognition system and its 

components as a means of explaining the process being carried out in sequential steps. 

Simultaneously it gives a complete survey of techniques used, work done by other 

researchers, and the results obtained. 

Chapter 4 gives a complete description of the proposed text-independent speaker 

recognition system. It provides an in depth look at various technical details used in 

evaluating the proposed model and compares the experimental results with existing work. 

Chapter 5 concludes the research with a summary and possible future work in the 

field of text-independent speaker recognition model. 
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CHAPTER 2. BACKGROUND 

This chapter presents the basic concepts of speaker recognition. It identifies 

certain classifications, introduces theory of speech signal, and the mechanism of how 

speech is produced and represented. 

2.1 Automatic Speaker Recognition System  

Speaker recognition is the process of automatically recognizing a person on the 

basis of individual information included in speech signals. An Automatic Speaker 

Recognition System deals with recognizing the speaker at the output.  

 

 

Fig. 2.1 [Douglas, 2000] Generic speaker recognition model 
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It is different from speech recognition and language recognition since these 

concepts deal with recognition of speech (i.e. the words that are spoken) and recognition 

of language (i.e. the language in which the words or sentences are spoken). 

2.1.1 Classification  

Speaker identification is a process of determining the identity of a person by 

machine [Gish, 1994]. The terms speaker identification and speaker recognition are used 

interchangeably [Gish, 1994]. Speaker recognition is of two types: 

Text-dependent 

Text spoken by a person is known to the speaker recognition model. In this 

process the speaker is asked to utter a prompted or a fixed phrase. Text-dependent 

recognition is employed in applications with strong control over user input. This type of 

recognition has an advantage of increasing the performance of the system because of the 

prior knowledge of the spoken text. 

Text-independent 

This type of mechanism is used for recognizing any type of conversational speech 

or user selected phrase. Text-independent recognition system has no prior knowledge of 

the text spoken by the person. This is generally used in applications with less control over 

user input.  

Speaker recognition can be further subdivided into two categories [Gish, 1994] as 

shown in Fig. 2.2  
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Fig. 2.2 Classification of speaker recognition system 

Closed set problem 

The closed set problem tries to determine the identity of a person most likely to 

have spoken the speech from among a set of known voices [Gish, 1994]. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Closed set problem 
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This is also referred to as closed identification since it is often assumed that the 

unknown voices must come from a known set. Closed set problem can be represented by 

Fig. 2.3. 

Open set problem 

This problem deals with deciding whether the speaker of the particular test 

utterance belongs to a group of known speakers [Gish, 1994]. It is called open set 

problem because the unknown voice could come from a large set of unknown speakers. A 

special case of open set problem is called speaker verification. It is the task of verifying 

whether a speaker is who the individual claims to be from a given speech [Reynolds, 

1995]. In this case, the speaker makes an identity claim. Open set problem can be 

represented in Fig. 2.4. 

 

 

 

 

 

 

 

 

Fig. 2.4 Open set problem 
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2.2.1 Speech signal 

Sound is defined as the longitudinal waves that propagate through a medium like 

solid, liquid or gas. A voice signal can be defined in terms of time domain and frequency 

domain. In time domain it gives the volume, pitch and tone and in frequency domain it 

gives spectral information contained in the voice signal that is unique to a particular 

speaker. Speech is the act of producing sound through vocal chords. The signal carrying 

the message information is also referred to as acoustic waveform. Information contained 

in the speech signal is of the discrete form and can be represented by a concatenation of 

elements from finite set of symbols called phonemes [Rabiner, 1978]. Speech signal can 

be transmitted, stored and processed in many ways and these are the three basic steps 

carried out in any communication system.  

2.2.2 Speech Production Technique 

In humans, pushing out air from the lungs through vocal chords and mouth 

produces speech. Lungs act as a source of producing sound and vocal tract acts as a filter. 

Articulators are soft palate, tongue, lips and jaw (Fig. 2.5). Speech is produced as a result 

of movements of different components of the vocal tract in different configurations 

producing voiced and unvoiced speech. As a result, pressure wave is generated in front of 

the lips. A speech signal is nothing but the sampled version of this pressure wave.  

Vocal tract consists of connection from esophagus to mouth (pharynx) or oral 

activity. The overall shape of the vocal tract varies over time with the movement of the 

articulators thus causing corresponding variations in resonance properties. Therefore if 

we could track the changes in resonances then we will probably be able to track the 
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articulator movements, and hence analyze the speech signal. Acoustically, this 

information can be obtained from the frequency spectrum of the speech signal at a 

particular instant [Campbell, 1997]. 

 

Fig. 2.5 [Flanagan, 1972] Human vocal system 

The bandwidth of a speech signal is wide around 10 kHz [Kent, 1992]. Generally 

below 3 kHz, we can find the information regarding the linguistic content of speech 

signals with the higher frequency components mainly carrying the information particular 

to the speaker. 

The frequencies at which the vocal tract resonates are called formants [Campbell, 

1997] and they are important for the analysis of the speech signal. For voiced speech, 

about 4-5 disjoint formants are found below 5 kHz and for unvoiced sounds, formants 

tend to be more suppressed resulting in flatter spectrum containing less total energy. A 
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speech signal is considered to be a random signal since humans probably cannot repeat 

the same cycle of articulator movements. The presence or absence of vocal chord 

vibration always tends to vary the distribution of the samples, therefore globally a speech 

signal is considered to be non-stationary. But due to the limitations imposed by human 

anatomy we have to assume that signal is locally stationary. For this purpose we have to 

fragment the signal into small isolated frames of approximate time durations of 10-20 ms. 

This assumption is extremely useful to avoid certain problems of deriving tractable 

speech production models. The property of irreproducibility by human beings can be 

used here. There can be many possible realizations of same utterance. Human speech 

perception system is capable of accepting all these realizations as conveying the same 

meaning. Now it becomes evident from the waveforms that, though speech signals may 

vary numerically or vary in duration, they may still carry the same linguistic content. 

Even the signals representing same utterance from the same individual vary considerably.  

2.2.3 Voiced, Unvoiced and Plosive speech 

Speech is the acoustic wave that is produced or radiated by sub-glottal system, by 

the air expelled from the lungs and is perturbed by some constraint at some moment, 

somewhere in the vocal tract.  

Vocal tract can be modeled as a linear time varying filter. Fig. 2.6 represents the 

appropriate model for speech production derived from the speech production mechanism. 

This is an all-pole model capable of representing all sounds. Generally nasal and fricative 

sounds consider poles and zeros but once the order of the filter is very high it acts as an 

all pole model. This summarizes the fact that vocal tract response represents an all pole 

model.  
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Depending upon the mode of excitation, speech sounds can be classified into three 

categories: 

1. Voiced 

2. Unvoiced 

3. Plosive 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Model describing speech production 
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vibrate in a periodical pattern and generate series of air pulses called glottal pulses 

[Campbell, 1997], [Fant, 1973]. These glottal pulses or air pulses travel through rest of 

the vocal tract to mouth, where some frequencies resonate. Pitch of the sound is defined 

as the rate at which vocal chords vibrate. Generally in women and children, due to a 

faster rate of vibration of the vocal chords while producing voiced speech, pitch is 

believed to be higher than in men [Fant, 1973], [Kent, 1992]. Therefore pitch is also an 

important parameter to be included for analysis or synthesis of voiced sounds. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Voiced speech 
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prosody of utterance. With age, females tend to lower their pitch and male voices tend to 

rise in pitch. The acoustical counterpart of pitch is fundamental frequency. 

Stress 

Information about the meaning and also about the language can be revealed 

depending upon the way stress is applied to certain parts of an utterance. An acoustical 

counterpart of stress is the energy of speech signal. Energy of the signal can also be used 

to detect or track the salient periods preceding the burst release of glottal stops and is 

higher during voiced speech. 

Unvoiced speech 

Sounds produced due to unvoiced speech have a random behavior and are 

generated by forming a constriction at some point in the vocal tract towards the mouth 

and forcing the air through the constriction at a very high velocity to produce turbulence 

[Flanagan, 1972]. Thus noise is generated to excite the vocal tract.  

 

 

Fig. 2.8 Unvoiced speech 
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Unvoiced speech is also referred to as fricative speech. Consonants are classified 

as unvoiced sounds [Fant, 1973]. Unvoiced sounds have lower energy levels and high 

frequencies than voiced sounds (Fig. 2.8). Unvoiced sounds are produced when air is 

forced through the vocal tract with vocal chords open until the sound is produced in a 

turbulent flow. There is no vibration of vocal chords taking place here and therefore pitch 

does not come into picture. 

Plosive Sounds 

These sounds are generated due to complete closure towards the front of the vocal 

tract causing pressure to build up behind the closure and abruptly releasing it [Campbell, 

1997]. The resonant frequencies of the vocal tract are called formant frequencies and 

depend upon the shape and dimensions of the vocal tract. 
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CHAPTER 3. LITERATURE REVIEW 

This chapter introduces the basic concepts of text-independent speaker 

recognition system with a detailed sequence of steps that characterize the system. It also 

presents a complete literature review of text-independent speaker recognition system and 

sheds light on work done by other researchers in this field. 

3.1 Text-Independent Speaker Recognition System 

Text-independent speaker recognition is the task of identifying a speaker by 

machine [Campbell, 1997]. In this research, only text-independent speaker recognition is 

considered. This involves two phases: Training and Testing. 

Training 

This is a process of making the system know the speakers and deals with 

collecting data from the utterances of people to be identified. 

Testing 

It is the task of identifying an unknown utterance. This is accomplished by 

making some kind of comparison between the unidentified utterance and the training 

data. 

This technique should work irrespective of the text either in training or testing 

process. The system does not have any prior knowledge of the text spoken by the person. 

Practically, designing a text-independent recognition system is more difficult than 

designing a text-dependent system but has an advantage of being more flexible.  
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Applications [Gish, 1994]  

Text-independent speaker recognition system has many potential applications. 

They are: 

Security Control 

Speaker recognition systems can be used for law enforcement. They can help 

identify suspects. Some security applications employ sophisticated techniques to check 

whether a speaker is present where that particular speaker is supposed to be. 

Telephone Banking 

Access to bank accounts may be voice controlled. Such systems may want to 

verify whether the authorized person is trying to access the accounts, private and personal 

details. Intelligent machines may be programmed to adapt and respond to the user. 

Information retrieval systems 

Participants in conferences or meetings may be identified by special machine 

technology. Automatic transcriptions containing a record of who said what can be also 

obtained from large quantities of audio information if such machine technology is used in 

conjunction with continuous speech recognition systems. 

Speech and Gender recognition systems 

Speaker recognition systems can be usefully employed by speech recognition 

systems. Many speaker independent speech recognizers are already using gender 

recognition system for improving the performance. 

 Fig. 3.1 illustrates the schematic diagram of a typical text-independent speaker 

recognition system. Each block represents a unique component of the system. A text-

independent speaker recognition system comprises of two parts: front-end (feature 
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extraction) and back-end (actual recognition). These systems use processed form of 

speech signals instead of using raw speech signal as it is obtained. This is to reduce the 

time consumed in identifying the speaker and to make the process easy by reducing the 

data stream and exploiting its advantage of being redundant.  

 

Fig. 3.1 Block diagram of a text-independent speaker recognition system 

Computation of Cepstral coefficients using preprocessing and feature extraction 

phases play a major role in text-independent speaker recognition systems. Various studies 

[Zhu, 1994] and [Furui, 1981] have shown that computing Cepstral coefficients is the 

best among all the parameters for any type of speaker recognition. It was proved by Erell 

and Weintraub [Erell, 1993] that the performance of the speech recognizers can be 

improved using Cepstral representation of the signals for both clean speech and noisy 

environment. Most widely used techniques are the frequency representations of the 
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signals and they are Fourier Transforms, Linear Prediction Analysis and Mel-Frequency 

Filter Banks [Umesh, 2002]. One of the main advantages of using Cepstra is that they can 

be considerably modeled by multivariate Gaussian distribution functions [Gish, 1994]. 

This involves short term speech parameterization which is defined as an efficient method 

of representing spectral and temporal information contained in non-stationary speech 

signals. Speech parameterization includes: Mel-frequency Cepstral coefficients (MFCCs) 

[Reynolds, 1995] and Linear Prediction Coefficients (LPC) [Campbell, 1997]. Mel-

frequency Cepstral coefficients (MFCCs) are one of the most commonly used features in 

variety of applications [Gish, 1994], [Shannon, 2004]. Transforming the spectral 

coefficients into Cepstral domain using Discrete Cosine Transform (DCT) thereby 

removing the correlations between the adjacent coefficients generates these coefficients. 

Linear Prediction Coefficients (LPC) Cepstrum is another such feature that is often found 

in the literature [Campbell, 1997]. Furui [Furui, 1981] has shown that Cepstral 

coefficients work well even with Linear Prediction Models. The generation of a LPC 

Cepstrum involves autocorrelation sequence of a speech frame. Though LPC Cepstrum is 

less expensive, it is not as effective as MFCCs [Somervuo, 2003]. A traditional MFCC 

feature extractor was used in our research work and the description of basic components 

of this system is given below. 

3.1.1    Preprocessor 

Initially speech signal is processed with the help of a preprocessor (Fig. 3.2). The main 

purpose of preprocessing is to reduce the amount of data to be processed by the rest of 

the system. Preprocessing involves: A/D Conversion and Pre-emphasis filtering. 
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Fig. 3.2 Preprocessor 

3.1.1.1    A/D Conversion   

The digital speech signal )(ns  is captured by an analog-to-digital converter 

(ADC) at sampling frequency fs . It is applied to a pre-emphasis filter for further 

processing. 

3.1.1.2    Pre-emphasis filtering 

Pre-emphasis filtering is a process in which the frequency response of the filter 

has emphasis at a particular frequency range. The input speech signal is filtered with a 

first order high pass filter whose transfer function is given by 

11)( −+= zzH α   (3.1) 

where α  typically lies within the range of 0.1−  and 4.0−  and reflects the degree 

of pre-emphasis [Picone, 1993]. Pre-emphasis filtering is traditionally used to 

compensate for the -6dB/octave spectral slope of the speech signal. 
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Frame Blocking 

This is a process of dividing or splitting the pre-emphasized signal into equal 

frames of finite length .N  Each frame begins at the offset of the previous frame by L 

samples as shown in Fig. 3.3. The second frame begins at 1+L  and the third frame 

begins at 12 +L  and so on. If NL ≤ , the adjoining frames overlap. The transitions from 

frame to frame can be smoothed out by introducing the overlap. In a system where the 

sampling frequency is 8 kHz, typical values of L and N are 80 and 160 respectively, 

related to a frame length of 20 ms with an overlap of 10 ms [Gish, 1994].  

If ix  is the th
i segment of the sampled speech ŝ , and I is the required number of 

frames, then frame blocking can be described as 

                                                       ( )nLisnx
i

+= ˆ)(    (3.2) 

             for 1,....,1,0 −= Nn  and 1,....,1,0 −= Ii   

Thus by dividing the apparently stochastic acoustic data into frames, it is now possible to 

calculate some of the useful features on each frame. 

 

Fig. 3.3 Parameters in frame blocker 
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3.1.2    Recognition Module (Feature Extraction) 

This is the core or heart of any text-independent speaker recognition system. The 

main purpose of this module lies in obtaining reliable and efficient smoothing of the 

frequency response of a human vocal tract. Calculating the Cepstral coefficients for a 

speech signal involves the following steps: windowing, followed by Fourier 

transformation, Mel-spectrum generation and discrete cosine transformation (DCT) for 

each time-frame [Picone, 1993]. Fig. 3.4 represents the block diagram for generating the 

Cepstrum. 

 

Fig. 3.4 Feature extraction process 

3.1.2.1    Windowing 

It is a process in which each pre-emphasized frame is multiplied by a time 

window of given shape to emphasize pre-defined characteristics of the signal. Use of 

windowing ensures that all parts of the signal are recovered and the possible gaps 

between the frames are eliminated. Hamming window is one of the most commonly used 

windowing techniques [Picone, 1993]. This is done to enhance the harmonics, smooth the 
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edges and to reduce the edge effect while taking the FFT on the signal.  The output 

windowed segment can be defined as [Picone, 1993]: 

( ) ( )nwnxnx
i

=)( , 1,....,1,0 −= Nn   (3.3) 

and )(nw is the Hamming window defined as: 

( ) 







−

−=
1

2
cos46.054.0

N

n
nw

π   (3.4) 

3.1.2.2    FFT Spectrum 

FFT is the Fourier transformation. Short-term power spectrum is computed by 

applying Fourier Transform (FFT) to each windowed signal, directly taking the 

magnitudes of Fourier coefficients raised to the power of two and is represented as ( )ks . 

The schematic diagram given below describes the sequence of generating power 

spectrum for each windowed frame obtained from the previous section. 

 

Fig. 3.5 Schematic diagram for generating FFT spectrum 
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3.1.2.3    Mel-Spectrum 

Mel-Spectrum is computed by passing the Fourier transformed signal through a 

set of band-pass filters known as Mel-Filterbank. The filters are designed such that their 

shapes correspond to the Hamming window. The magnitude of each filter is computed by 

multiplying each filter in the bank with the spectrum. This process involves simple matrix 

operations and makes the formants more clearly identifiable. 

  

Fig. 3.6 Schematic diagram for generating Mel-spectrum 

Mel-Scale Formulation 

Mel-scale was first proposed in 1937 by Stevens, Volkman and Newman [Umesh, 

2002]. Human ear tends to perceive the frequencies below 1000 Hz in a linear way and 

frequencies above 1000 Hz in a non-linear manner. A mel is a unit of measurement of 

percieved frequency (pitch) of the tone [Umesh, 2002]. Mel-scale formulation is given as 

              







+=

700
1log2595

10

f
fmel                                        (3.5) 

where fmel  is the frequency in Mel-scale corresponding to the actual 

frequency f  [Klabbers, 2001]. The mapping or transformation taking place in Mel-scale 

formulation is illustrated by Figures 3.7 and 3.8. Fig. 3.7 represents the mapping on an 

ordinary scale where as Fig. 3.8 represents the mapping on a logarithmic scale. 
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Fig. 3.7 Mel-scale formulation on linear scale (0-4 kHz) 

 

Fig. 3.8 Mel-scale formulation on log scale (0-10 kHz) 

Mel-Frequency Filterbank 

The Mel-filter bank is designed to simulate band pass filtering occurring in 

auditory system such that it is approximately linear up to 1 kHz and in actual frequency 

domain is logarithmic at higher frequencies [Picone, 1993]. Such a model allows a 

constant bandwidth and constant spacing on the Mel-frequency scale and exploits the fact 

that the speech signal is stationary for short periods of time. It is modeled by constructing 
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the required number of triangular band-pass filters with 50% overlap. Triangular band-

pass filters are generated with Mel-frequencies to be the centers of the triangles (Fig.3.9: 

Mel-Filterbank for 20 filters). 
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Fig. 3.9 Mel-filter bank 

3.1.2.4    Cepstral Coefficients 

Cepstrum ( )( )nc  in its simplest form is the discrete cosine transformation of the 

Mel-spectrum of a signal in logarithmic amplitudes and can be mathematically defined as 

[Rabiner, 1993] 

( ) ( )( )( )nsfftifftnc log=         (3.6) 

where ( )ns is the signal obtained from the convolution of an excitation signal ( )np , 

approximately a periodic impulse train and synonymous with frequency and ( )nh  

representing the transfer function of a filter practically the impulse response of all the 

things that get in the way of speech emanating from the lungs e.g. teeth, nasal cavity, lips 

etc [Picone, 1993] . 
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     ( ) ( ) ( )npnhns ⊗=            (3.7) 

The figure briefly describes the process involved in computing Cepstral 

coefficients: 

 

Fig. 3.10 Speech cepstrum parameterization 

 

The Mel-spectrum given by S
~

 is usually represented on a log scale because the 

shape of the log power spectrum is preserved independent of the input signal strength. 

The discrete cosine transformation applied to the transformed logarithmic-scaled energies 

produces a set of Cepstrum coefficients ( )c given as [Molau, 2001], [Picone, 1993] 
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2 π
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                                             1,....1,0 −= Ci               (3.8) 

where Nof is the number of filters and ( )ic  are the Cepstral coefficients and C  is 

the number of Mel-Cepstral coefficients. Cepstral analysis thus converts logarithmic-

scaled energies to generate a signal in the Cepstral domain with a que-frequency peak 

corresponding to the pitch and lot of formants. Mel-Cepstral coefficients [Davis, 1980] 

are highly useful parameters since they perceptually capture the most important 

characteristics of speech. Since most of the signal information is represented by the first 
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few Mel-Cepstral coefficients, the system is made robust by extracting only those 

coefficients [Gish, 1994]. 

3.1.3    Training the text-independent speaker recognition system 

Training the model includes ENROLL Phase which is one of important phases 

used in the text-independent speaker recognition employed after the feature extraction 

step.  

Each speaker model is trained with the extracted feature vectors and is stored in 

the trained database with corresponding speaker ID which is unique. There are two types 

of models that can be used for training the input data [Gish, 1994]. They are parametric 

and nonparametric models.  

Parametric Models 

These models have a particular structure characterized by a set of parameters. By 

defining the structure, the form of the model has been specified and limited to a specific 

requirement. This ensures that it makes an efficient use of the data in estimating the 

model parameters. Another major advantage in using parametric model is that the 

changes in the parameters can be easily determined by the changes in the data [Gish, 

1994]. Parametric models include Gaussian mixture models (GMM), Hidden Markov 

Models (HMM) and Neural Networks (NN). Literature shows that many researchers have 

implemented parametric models in the text-independent speaker recognition system 

[Poritz, 1982], [Tishby, 1991], [Gish, 1994], [Reynolds, 1995] and [Seddik, 2004]. The 

use of a five state HMM for text-independent speaker recognition is proposed by Poritz 

[Poritz, 1982] and expanded to 8 states in [Tishby, 1991] by Tishby. Seddik, Rahmouni 

and Sayadi in [Seddik, 2004] have proposed an implementation of neural networks in 
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text-independent speaker recognition system. Text-independent speaker recognition with 

Gaussian mixture model was proposed by Reynolds [Reynolds, 1995]. GMM is most 

commonly used parametric model for training purposes [Gish, 1994]. We therefore 

implemented GMM in our model to increase robustness and performance of the designed 

approach. 

Gaussian Mixture Models (GMM) 

GMM is a classic parametric method best used to model speaker identities due to 

the fact that Gaussian components have the capability of representing some general 

speaker dependent spectral shapes. Gaussian classifier has been successfully employed in 

several text-independent speaker identification applications since the approach used by 

this classifier is similar to that used by the long term average of spectral features for 

representing a speaker’s average vocal tract shape [Gish, 1986]. 

 

Fig. 3.11 [Reynolds, 1995] M component Gaussian mixture density 

In a GMM model, the probability distribution of the observed data takes the form 

given by the following equation [Reynolds, 1995] 
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                    ( ) ( )xbpxp
i

M

i i
∑

=
=

1
| λ     (3.9) 

where M  is the number of component densities, x  is a D  dimensional observed 

data (random vector), ( )xb
i

 are the component densities and ip are the mixture weights 

for Mi ,...,1= . 
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1
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)2(

1
   (3.10) 

Each component density ( )xb
i

 denotes a D - dimensional normal distribution 

with mean vector 
i

µ and covariance matrix∑i
. The mixture weights satisfy the 

condition ∑ =
=

M

i ip
1

1 and therefore represent positive scalar values. These parameters can 

be collectively represented as }{ ∑= iii
p ,, µλ  for Mi ,...,1= . Each speaker in a speaker 

identification system can be represented by a GMM and is referred to by the speaker’s 

respective model λ . Fig. 3.11 represents a Gaussian mixture density modeled as weighted 

sum of M component densities.  

The parameters of a GMM model can be estimated using maximum likelihood 

(ML) [McLachuo, 1998] estimation. The main objective of the ML estimation is to derive 

the optimum model parameters that can maximize the likelihood of GMM. Unfortunately 

direct maximization using ML estimation is not possible and therefore a special case of 

ML estimation known as Expectation-Maximization (EM) [Dempster, 1977] algorithm is 

used to extract the model parameters. 

The GMM likelihood for a sequence of T  training vectors }{
T

xxX ,.....,
1

=  can 

be given as [Reynolds, 1995] 
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               ( ) ( )∏=
=

T

t
t

xpXp
1

|| λλ    (3.11) 

The EM algorithm begins with an initial model λ  and tends to estimate a new 

model λ  such that ( ) ( )λλ || XpXp ≥  [Reynolds, 1995]. This is an iterative process 

where the new model is considered to be an initial model in the next iteration and the 

entire process is repeated until a certain convergence threshold is obtained. 

Hidden Markov Model (HMM) 

HMM is a simplified stochastic process model based upon the Markov chain 

[Rabiner, 1989]. The working principle of a Hidden Markov Model (HMM) is similar to 

that of a finite state automation system. Its main aim is to generate a model containing 

whole set of possible realizations of each word. 

 

 

Fig. 3.12 State diagram representing HMM 

Given the inputs, the probabilities of each of the HMMs in the system are 

calculated. This results in a possible pattern sequence. The input is then identified as one 

represented by the HMM having the highest of the probabilities. The parameters aij, bik, vi 

are determined by training the system such that the probabilities are maximized. Ideally 
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the training procedure employed in a HMM speaker recognizer should be optimized to 

minimize the training error rate. Also the system must be trained on a large speech 

database to achieve superior performance [Picone, 1993]. 

Neural Networks (NN) 

Neural networks attempt to simulate some or all of the characteristics of 

biological neurons that form the structural constituents of the brain. Similar to the 

HMM’s, Neural networks have to be trained to simulate the highly parallel and 

distributed way of information processing in the brain. Such systems can adapt 

themselves to the changes in the surrounding environments by modifying their synaptic 

weights. Neural networks also have the capability of handling imprecise, noisy, fuzzy and 

probabilistic information. [Seddik, 2004] has shown application of a neural network 

model to a text-independent speaker recognition system using MFCC. 

Nonparametric Models 

Nonparametric models differ from the parametric models like the way in which 

the space is dichotomized. Only the minimal assumptions regarding the probability 

density functions are made. Vector Quantization and Dynamic Time Warping (DTW) are 

examples for nonparametric models. Vector Quantization is used for text-independent 

speaker recognition where as Dynamic Time Warping (DTW) is used for text-dependent 

speaker recognition. Vector Quantization was first applied to speaker recognition by 

Soong et al. [Soong, 1985]. A description and a comparison of VQ model with HMM for 

text-independent speaker recognition system is given by Matsui and Furui [Matsui, 

1994].  
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Vector Quantization (VQ) 

Vector Quantization (VQ) based classifier is used for text-independent speaker 

recognition. VQ codebook has a small number of highly representative vectors that 

efficiently represent the speaker specific characteristics. This is a method used for 

reducing or compressing the number of training vectors required in a recognition system. 

Now a days these are being replaced by Gaussian mixture model based classifiers.  

Dynamic Time Warping (DTW) 

This is one of the classification techniques used earlier for speaker identification. 

In a pattern matching process the time duration of two utterances i.e. the input speech 

vector and the stored pattern vector may not be same though they may represent same 

utterance. In simple words, length of the preprocessed input does not necessarily match 

the pattern vector. DWT is a dynamic programming used to align similar parts of two 

utterances at a time [Gish, 1994]. DTW algorithm also combines both the warping and 

distance measurement into one simple procedure. This type of recognition module 

technique ignores the inherent variability in speech. Though time distortions are 

overcome, they do not allow proper scaling. Therefore most of the modern ASR systems 

replace this technique by a stochastic approach such as HMM. 

3.1.4    Post Processor  

Post processing involves IDENTIFY Phase. This phase uses the identification 

process where the test feature vectors are identified belonging to one of the speakers in 

the train database. The goal of classification is to build a set of models that can correctly 

predict the class of the different objects. Input to these methods is a set of objects (i.e., 

training data), the classes which these objects belong to (i.e., dependent variables), and a 
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set of variables describing different characteristics of the objects (i.e., independent 

variables). Designing a pattern classifier depends on a number of different factors such as 

the distribution of the training data, and the assumptions made concerning the 

distribution. 

In ASR systems, during the classification phase, the sequence of feature vectors is 

compared with acoustic models generated for each of the speakers in the training 

database to produce a similarity measure that relates the test utterance with each speaker. 

The speaker identification system then recognizes the identity of the speaker using this 

measure. Calculating the matching score in this process is computationally the most 

expensive step in speaker identification. The pattern classifier is designed such that it 

yields an (in some sense) optimal response for a given pattern under the expected 

operating conditions or the test conditions. The design of a classifier can have a major 

impact on the systems effectiveness and efficiency. 

Various types of classifiers have been used for speaker identification. These can 

be grouped into either template or stochastic based classifiers [Gish, 1994]. Template 

matching methods were employed earlier before the development of stochastic or 

probabilistic models. They have proved to be sensitive to different variations in channel 

and background noise which could result in altering the feature properties [Gish, 1994]. 

Our research uses the probabilistic technique, the Bayes’ decision, for speaker 

identification. 

Stochastic Models 

This type of modeling deals with computing probability distributions rather than 

distances to average features as in template models. Domingos and Pazzani in 
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[Domingos, 1997] reported through an experiment that the naive Bayes’ classifier proved 

to be a good classification tool when compared to several other classical learning 

algorithms on large ensemble of data sets. 

Bayes’ Decision Rule 

If distributions for all the speakers are assumed to be known and if 
i

p  is assumed 

to be the continuous densities, then the likelihood that a feature vector x  is generated by 

the th
i  speaker is ( )xp

i
 [Gish, 1994]. Using the Bayes’ rule, the probability that the 

speaker is the th
i  speaker is [Gish, 1994] 

( )
( )

( )xp

Pxp
xip ii== |speaker       (3.12) 

where 
i

P  is defined as the  prior probability that the utterance came from the th
i  

speaker and the probability of  feature x  occurring from any speaker is given as ( )xp . 

( ) ( )∑=
=

I

i
ii

Pxpxp
1

, I  is the number of speakers               (3.13) 

The prior probabilities for each of the speakers are typically assumed to be equal. 

Therefore if the prior probabilities for all the speakers are assumed to be equal then the 

identified speaker will be the one with the highest probability distribution or likelihood. 

Probabilistic modeling was first applied by Schwartz et al. [Seddik, 2004] to the speaker 

identification task. This method is very useful in robust identification systems [Gish, 

1994].  

Template Models 

Classifiers based on template models are the simplest of all. Template models use 

distance measures to compare the test utterances to the training templates in speaker 

identification applications. Most commonly used template models are distance metrics.  
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Distance metrics 

The techniques used for template matching also vary based on the distance 

metrics used. There are several types of distance metrics [Gish, 1994] and Euclidean is 

one of the simplest and commonly used among them. 

Euclidean 

Euclidean distance 
E

D  is defined as the measure of dissimilarity and is given by 

the equation [Brummer, 1997] 

( )
2dim

1

∑ −=
=i

iiE
yxD                               (3.14) 

where 
i

x  and 
i

y  are the given vectors. Euclidean distance is also defined as Mean 

Square Error (MSE), a measure of the quality of the codebook generated from training. 

Mahalonobis 

Another distance metric available is Mahalonobis distance which is defined as 

[Gish, 1994] 

( ) ( )ii

T

i xxr µµ −−= ∑ −12        (3.15) 

where x  is the average of test feature vectors, µ  is the mean and ∑ is the 

covariance. 

3.2    Robust Speaker Identification 

Practically in any speaker recognition application the input speech signals may 

not always be clean and may be corrupted in many ways. Noise may contain 

uncharacteristic speech sounds, crosstalk or speech from multiple speakers. The 

identification performance degrades considerably due to the presence of noise. This was 
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observed by Lockwood and Boudy [Lockwood, 2001] and can create a major obstacle in 

the design of a commercial recognition system that is required to be used in normal day-

to-day environments. This causes a call for robust recognition systems that would be able 

to improve recognition rates even in the presence of noisy environments or during the 

changes in the speaker’s voice due to the external noise. In order to reduce the mismatch 

between test data in noisy environments and speech models trained under clean 

conditions, one solution is to add the noise experienced under test conditions to the 

training data. Furui [Furui, 1992] has been able to show that the use of such training data 

contamination gives good improvements in a number of recognition systems [Furui, 

1992]. Therefore we propose an approach wherein the available database is trained with 

clean and noisy speech signals generated under different noise environments. The use of 

data contamination can also be helpful for learning algorithms to perform better 

recognition. The robust approach of our research is based on computing speaker analysis 

on relatively short time frames of speech. This can be used with any class of recognizers 

used and we used Gaussian mixture model with Bayes’ classification rule for speaker 

identification. 

3.3    Related Work  

Prior researchers have applied several analytical approaches to the problem of 

text-independent speaker recognition [Reynolds, 1995], [Gish, 1994], [Seddik, 2004], 

[Tishby, 1991] and [Matsui, 1994]. Considerable work has been done by Douglas A. 

Reynolds [Reynolds, 1995] in the field of robust text-independent speaker recognition 

using Gaussian mixture models. The model implemented the use of traditional MFCC 

feature extraction as front end and Gaussian mixture models with Bayes’ decision rule as 
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a back end for speaker identification. Spectral analysis was carried out on 20 ms short 

time segments of speech and followed the sequence of steps involving preprocessing, 

FFT spectrum and Mel-spectrum to compute the Cepstral coefficients. The results were 

reported on the KING database with 16 speakers taken from a total set of 51 male 

speakers in the database [Reynolds, 1995]. Each speaker had 10 conversations of 

approximately 45 seconds of speech, each recorded during 10 separate sessions. Speaker 

identification performance with GMM was investigated with varying component 

densities of 8, 16 and 32. Bayesian classifier was used to determine the unknown speaker. 

A maximum speaker identification of 94.5 ± 1.8 % was obtained with 5 seconds of clean 

test speech utterances. It was observed that good identification results could be obtained 

by increasing the number of component densities used by GMM model and by increasing 

the population size of the data base.  

Principal Component Analysis (PCA) and Independent Component Analysis 

(ICA) have been widely used in image processing, especially in face recognition, 

identification and tracing. However, their application in the field of speech is relatively 

increasing these days. PCA tries to linearly transform the uncorrelated components of a 

high dimensional vector into a low dimensional space. Thus PCA uses only the second 

order cumulants for solving the recognition problem. ICA attempts to solve the problem 

by generalizing PCA to generate statistically independent components rather than simply 

transforming the uncorrelated components. Thus ICA tends to use higher order 

cumulants. Projecting the original feature set into smaller subspaces using PCA and ICA 

transforms not only reduces the dimensions of the original feature vectors but also the 

correlation among the elements of the signals. This consequently reduces the 
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computational overhead involved in the subsequent processing stages thereby retaining 

maximal variances. 

Literature shows that related work has been done on using PCA [Wanfeng, 2003], 

[Ding, 2001] and ICA [Ding, 2001] in speaker recognition systems. These multivariate 

dimensionality reduction techniques (PCA/ICA) can be sometimes applied to Mel-

spectral energies [Ding, 2001] or the Mel-Cepstral feature vectors [Wanfeng, 2003] after 

the feature extraction phase. The correlation present among the elements of speech 

feature vectors obtained through MFCCs makes the dimension reduction possible and 

more efficient [Wanfeng, 2003]. This is because the cepstrum vector characteristics agree 

with the assumptions made in these algorithms (PCA/ICA) [Somervuo, 2003]. 

In [Wanfeng, 2003] Zhang Wanfeng et al. implemented a new speaker 

identification framework with PCA embedded into the text-independent speaker 

recognition system after the feature extraction phase. Their model made use of traditional 

MFCC feature extraction as front end and Gaussian mixture models with Bayes’ decision 

rule as a back end for speaker identification. Spectral analysis was carried out on 16 ms 

short time segments of speech with an overlap of 10 ms and followed the sequence of 

steps involving preprocessing, FFT spectrum and Mel-spectrum to compute the Cepstral 

coefficients. The results were reported on the YOHO database [Campbell, 1995] with 50 

speakers taken from a total set of 138 speakers in the database. Speaker identification 

performance with GMM was investigated with varying component densities of 8, 16 and 

32 and 64. Bayesian classifier was used to determine the unknown speaker. A maximum 

speaker identification of 99.2 % was obtained with clean test speech utterances. Another 

database called PHONE [Wanfeng, 2003] was generated by them to check the 



 

 

39 

performance of the recognition system under noisy conditions. An accuracy of 86.3 % 

was reported using a 32 component density model. It was observed that good 

identification results could be obtained by embedding such multivariate algorithm like 

PCA after the feature extraction step.  

We propose a new approach where Independent Component Analysis (ICA), a 

more robust dimensionality reduction method when compared to Principal Component 

Analysis (PCA) is embedded into the text-independent speaker recognition system. We 

compare the performance results of embedding Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) in a text-independent speaker recognition 

system.  
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CHAPTER 4. SYSTEM DESCRIPTION AND RESULTS 

This chapter outlines the text-independent speaker recognition system designed in 

this research, including the training and testing conditions implemented by the system for 

identifying speakers. This also includes description of the key operating parameters used 

by different components of our speaker recognition model. We propose a new framework 

of text-independent speaker recognition system with dimensionality reduction tools such 

as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

embedded into the traditional speaker recognition system of Fig. 3.1. We evaluated the 

robustness of our new text-independent speaker recognition system by contaminating 

input speech signal with various kinds of noise occurring in real world scenario. In our 

model each time an input speech signal is read, different kinds of noisy signals are 

generated. We have conducted several test runs to evaluate the performance and measure 

the robustness of the speaker recognizer using PCA and ICA under different experimental 

conditions (Table 4.1). Initially, speech is transformed into frame-based acoustic features 

by means of signal processing methods. Further processing incorporated the use of an 

appropriate model for extracting Mel-frequency Cepstral features using frame based 

Cepstral analysis. Dimensionality reduction algorithms such as PCA and ICA are applied 

to the MFCC coefficients to obtain the linear transformations of the data. Dimensionally 

reduced data is fed to a Gaussian Mixture Model to train the model. Probability 

Distribution Functions (PDFs) are computed using Bayes’ decision rule and the unknown 

speaker is identified as one with the largest PDF.  
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4.1    Speaker Recognition Model using Principal Component Analysis 

(PCA) and Independent Component Analysis (ICA)  

Fig. 4.1 represents the block diagram of the proposed text-independent speaker 

recognition framework with PCA and ICA embedded in the system after feature 

extraction.  

 
 

 

Fig. 4.1 Proposed text-independent speaker recognition system 

In this block diagram F represents feature vectors, NF represents new feature 

vectors after application of PCA and ICA transforms, W is the transformation matrix and 
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M represents the trained model. The dotted lines in Fig. 4.1 represent the ENROLL 

phase. The solid line after ENROLL phase is the IDENTIFY phase. 

Preprocessing and feature extraction constitute front end processing of our text-

independent speaker recognition model. This part of the model is responsible for “signal 

processing” that involves converting raw speech into digitized form, filtering it and 

dividing it into frames through preprocessing and converting it into feature vectors using 

feature extraction. Most commonly extracted features are the Cepstral coefficients [Gish, 

1994]. The proposed model computes Cepstral coefficients because it is believed to be 

the best choice for representing short term spectrum [Gish, 1994], [Zhu, 1994].  

4.1.1    Preprocessing 

A/D conversion 

In real time scenario speech signals may come from sources like telephone or 

microphone. Analog to digital converter is used to produce digitized speech signal )(ns  

from a sound pressure wave. Practically we implemented our model using speech signals 

from YOHO database which is considered to be noise free, collected by ITT Defense 

Communication Division [Campbell, 1995].  

Corpus 

YOHO corpus has a total of 138 speakers (106 males and 32 females) [Campbell, 

1995]. There were four ENROLL sessions and ten VERIFY sessions. For each speaker 

there were 24 phrases in each ENROLL session with a total of 96 phrases and 4 phrases 

in each VERIFY session with a total of 40 phrases. The corpus was composed of 

combination lock phrases with each phrase being a combination of three doublets e.g. 

“twenty-six”, “eighty-one”, “fifty-seven”. All the sessions were recorded using a high 
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quality telephone handset in a noise free office environment and were sampled at 8 kHz. 

We used first 10 speakers from the YOHO corpus with all the ENROLL sessions being 

used for training the speaker models and all the VERIFY sessions for identifying the 

speakers. YOHO corpus on CD ROM is available from the Linguistic Data Consortium 

[Reynolds, 1995] for research and development purposes.  

Setting up Train and Test Conditions   

Speaker recognition systems of today yield high accuracy rate in clean 

environments when noise strength is considerably low or can be neglected. But when the 

speech signal is distorted by acoustic environmental influences such as noise or 

background speech, the results deteriorate significantly [Lockwood, 2001]. There are 

certain regions in speech signals that contain relatively high information content whose 

emphasis leads to increase in perceived intelligibility. Addition of background noise or 

effects such as echo or reverberations, when a person speaks, results in various changes 

of vocal tract characteristics. This affects many factors such as amplitude of the speech 

signals, pitch, formant frequencies, intelligibility, high frequency to low frequency 

energy ratios, and the duration of the speech signal. As a result, these variations in 

speaker’s voice modify the articulations and degrade the auditory feedback by excess 

levels of noise. This phenomenon is known as Lombard Effect [Junqua, 1993]. A speaker 

recognition system can be called a noise robust system if its performance is independent 

of environmental disturbances. To make our model robust to different environmental 

conditions, we generated noisy signals by adding various types of noises to the input 

speech signals. The research by [Wanfeng, 2003] also gives an implementation of similar 

speaker recognition model with just PCA embedded into their system under noisy 
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conditions. We therefore trained the database with clean and noisy signals. Three sets of 

experiments were conducted.  

Training with Clean Signals 

The first set of experiment uses only clean test signals. A sufficiently clean signal 

has a value of signal to noise ratio (SNR) at which the features of the speech signal are 

not masked by the presence of noise. 

Training with Noisy Signals 

Noises are of different types [Liria, 2003], [Kleinschmidt, 2002] and [Zhao, 

2000]. 

Additive noise 

Additive noise comes from sources surrounding the speaker of interest, going 

about their every day activities. Such types of noises are unpredictable, uncontrollable 

and changing constantly. Many sophisticated techniques have been designed to model 

such noises. 

Convolutive 

A second type of noise is multiplicative in nature and is called convolutive noise. 

This results from analog transmission channels through which the acoustic signals travel 

[Liria, 2003]. Convolutive noises may also occur due to the modification of the signal 

characteristics by the acoustics of physical structures surrounding the speaker thereby 

reflecting it with distortion and delay such as echoes.  

The second and third set of experiments deal with noisy test signals with additive 

white Gaussian noise and echo added to the clean signals. 
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Additive White Gaussian Noise 

Additive White Gaussian Noise (AWGN) [Jacobsen, 2003] is a stationary random 

process with a frequency spectrum that is continuous and uniform over a specified 

frequency band. AWGN is described as a process which has a Gaussian probability 

density function and a white power spectral density for all the frequency values and can 

be added linearly to whatever signal is being analyzed. Signal to noise ratio is defined as 

the ratio of the amplitude of desired signal to the amplitude of noise signal at a particular 

point of time. Additive White Gaussian Noise (AWGN) is added to the clean signal at 

SNR of 35 dB during the training process to evaluate the robustness of the ASR system in 

noisy environment. Figures 4.2 and 4.3 represent clean speech signal and signal with 

AWGN respectively. 
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Fig. 4.2 Clean speech signal (of the first speaker from YOHO corpus) 
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Fig. 4.3 Speech signal (of the first speaker from YOHO corpus) with AWGN 

 

During the testing process, noisy test signals were generated by adding AWGN at 

four different SNRs: 30dB, 20dB, 10dB, and 0dB trying to practically simulate different 

kinds of background noise present in the environment.  

Echo 

Echo effect is created when a speech signal is bounced off by some surrounding 

objects. As a result, the signal arrives few milliseconds later. It is a type of multiplicative 

or convolutive noise that can degrade the quality of the speech signals. 

Echo effect is a simple digital audio processing effect that can be simulated using 

a simple echo filter that has the following difference equation [Caputi, 1998]: 

                                                    )()()( Dnaxnxny −+=                           (4.1)  

 The transfer function ( )zH  and the impulse response ( )nh  of this filter are given 

as [Caputi, 1998] 
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                                                           D
azzH

−+=1)(                    (4.2) 

                                                    )()()( Dnannh −+= δδ                    (4.3)  

D  is delay in seconds and a the coefficient of the filter is taken to be 0.5 since it 

is the measure of the reflection losses such that 1|| ≤a  [Caputi, 1998]. Fig. 4.4 represents 

an echo affected speech signal with a delay of 0.2 ms. 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Speech Signal With Echo Effect (Delay = 0.2ms)

No of samples in the speech signal

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y
 (

H
z
)

 

Fig. 4.4 Speech Signal (of the first speaker from YOHO corpus) with Echo 

 

Echo can cause undesirable detection effects. The signal quality suffers or 

diminishes as the delay increases with increasing echo effect. Speakers with their speech 

uttered from an outgoing prompt affected with echo, for example, may be incorrectly 

recognized as imposters. Echo effect can be greatly reduced by integrating echo 

cancellation and noise reduction techniques into the devices. This would prevent spoken 

utterances from being echoed and would increase the efficiency of Automatic Speaker 

Recognition systems. In the third set, echo affected test signals were generated with 
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varying delays. Performance of the speaker recognition system was tested at four 

different values of delay: 0.25 ms, 0.3 ms, 0.35 ms and 0.4 ms. Several test runs involved 

in the experiments are listed in Table 4.1. Table 4.2 represents different noises used in 

this research. Table 4.3 gives a representation of the input speech signals. 

Table 4.1 Experimental conditions used for evaluating the 

 performance of the proposed model 

 

Table 4.2 Representation of noise used 

Type of Noise Symbol 

Additive white Gaussian noise 
1N

 

Echo Effect 2N
 

 

Table 4.3 Representation of input signals 

Mathematical 

Representation 

Signal 

Representation 
Description 

11
x  

 

SIGNAL 1 Clean speech signal of Speaker 1 

11112 Nxx += ,  

AWGN :1
 

SIGNAL 2 
Signal obtained by adding AWGN to the clean speech signal 

of Speaker 1 

21113 Nxx += , 

ECHON :2
 

SIGNAL 3 
Signal obtained by adding echo effect to the clean speech 

signal of Speaker 1 
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Conditions 
Experiments 
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Pre-emphasis Filtering 

Pre-emphasis filtering is a process of emphasizing most important frequency 

components of a speech signal. This can be implemented by a simple high order finite 

response filter (FIR) with a difference equation given below [Picone, 1993]. 

1

1)(
−+= zzH α          (4.1) 

Each input signal is pre-emphasized using this equation. α  is the pre-emphasis 

coefficient and its optimal value is taken close to 0.1−  about 95.0−  since this allows an 

efficient implementation in fixed point hardware systems [Picone, 1993]. This results in 

boosting up of the signal spectrum towards higher frequencies and reducing its 

susceptibility to finite precision effects at a later stage [Picone, 1993] 

Frame Blocking 

The short-time representation of signals was computed on frames. The input 

speech signal was divided into frames by the frame blocker to carry out frame based 

Cepstral analysis. ( )
ss

tfN ∗=  the length of each frame is also the number of samples 

contained in each frame (where sf  is the sampling frequency and st  is the sampling rate) 

and M is the overlap or offset between the adjacent frames are the two important 

parameters in this phase. With the sampling frequency of 8 kHz we extracted frames of 

length 18.60 ms which overlap by 10 ms, which corresponds to: N  (48) samples and M 

(80) samples. We have chosen these values because the most important spectral 

information unique to a person is contained in short time spectrum of the speech signal 

[Gish, 1994]. 
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4.1.2    Feature Extraction and Parameter Estimation 

Speech is intrinsically a highly non-stationary signal. Therefore, speech analysis 

must always be carried out on short segments across which the speech signal is assumed 

to be stationary. Typically, feature extraction is performed on 18.6 ms windows with 10 

ms shift between two consecutive windows as given above. The experimental / analytical 

values selected in this work can be justified by the fact that practically only the first 20-

30 milliseconds and the last 10-20 milliseconds of sound contains vital information 

[Currie, 2003]. This is due to the non stationary nature of the speech signal due to which 

it is assumed to be stationary for only a small frame of time period [Gish, 1994]. 

Speech parameterization can be obtained by computing Cepstral coefficients from 

either Mel-frequency filterbank (MFCC) or Linear Prediction models. In this thesis, we 

investigate the use of MFCC feature set for speaker identification since these features 

have proven to be more robust for speech recognition [Reynolds, 1995]. 

Specifications 

This section gives a brief overview of extracting the required features from all 

frames of speech obtained from preprocessing step together with the specifications of the 

parameters used to model our text-independent speaker recognition system. Feature 

extraction involves the following steps. 

Windowing 

A windowing function ( )nw  is used to taper the start and end of each frame or 

segment. This is done to reduce the spectral leakage caused by the discontinuities present 

at the ends of each framed speech. The best solution is to consider a hamming window 

defined as [Picone, 1993] 



 

51 

           ( ) 







−

−=
1

2
cos46.054.0

N

n
nw

π            (4.2) 

The window is applied to each speech segment through  

)()()( nwnxnx i⇒ , 1,....,1,0 −= Nn   (4.3) 

Application of hamming window also aims at improving the accuracy of the 

spectral estimate of the input signal [Picone, 1993]. 

FFT Spectrum 

Each windowed frame is converted into power spectrum )(ks  by applying Fast 

Fourier Transform. We implemented 256-point FFT for computing the spectrum of signal 

[Davis, 1980]. The number of points used in FFT is taken as the power of 2 and must be 

greater than the frame size. The number of points in FFT also depends on the FFT length. 

The power spectrum of half the number of coefficients is preserved. 

Mel-Spectrum 

The resulting power spectrum is windowed by a set of 20 triangular filters equally 

spaced filterbank generated prior to pre-emphasis to obtain Mel-Spectrum ( )S
~

. This is 

done to further simplify the spectrum without any significant loss of data. Experimental 

results obtained on human hearing determine the bandwidths and center frequencies of a 

Mel-Filterbank. 

Mel-scale Formulation 

Mel-scale formulation given below is implemented to convert the normal 

frequencies into Mel-frequencies [Klabbers, 2001].  


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

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f
fmel                   (4.4) 
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where fmel is the frequency in Mel-scale associated with actual frequency f .  

Mel-scale frequency representation of speech signal is the most popular way of 

extracting the feature vectors from the speech signal because it attempts to mimic the 

human ear with respect to how it perceives the frequencies of incoming sound and how 

they are resolved [Umesh, 2002]. 

Mel-Filter bank 

A filtering analysis of speech determines the amount of energy in specific 

frequency regions, therefore resulting in some kind of spectral analysis [Kent, 1992]. 

Filter bank based on Mel-scale frequency representation of speech signal gives good 

estimates of its spectral envelop. This tends to separate the frequency bandwidth of the 

signal into number of frequency bands, where the energy of the signal can be measured. 

Thus a Mel-Filterbank with 20 triangular band-pass filters [Davis, 1980] equally spaced 

is constructed with 50% overlap. It also smoothes out the noise and pitch harmonics 

present in the speech signal. 

Cepstral Coefficients 

Since the vocal tract is smooth, the energy levels in adjacent bands tend to be 

correlated. The discrete cosine transformation applied to the transformed Mel-frequency 

coefficients produces a set of Cepstrum coefficients ( )ic . Prior to computing Cepstral 

coefficients the Mel-spectrum S
~

 is usually represented on a log scale. The shape of the 

log power spectrum is preserved independent of the input signal strength due to the 

property of log function. Thus Cepstral based analysis converts logarithmic-scaled 

energies, largely un-correlated in the energy levels, tend to be correlated in the adjacent 

bands [Picone, 1993].  
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where Nof is the number of filters, ( )S
~

 is the Mel-spectrum and ( )ic  are the 

Cepstral coefficients and C  is the number of Mel-Cepstral coefficients. 

This results in a signal in the Cepstral domain with a que-frequency peak 

corresponding to the pitch of the signal and a number of formants representing low que-

frequency peaks. Since most of the signal information is represented by the first few 

MFCC coefficients, the system can be made robust by extracting only those coefficients 

ignoring or truncating higher order DCT components. Traditional MFCC systems use 

only 8 to 13 Cepstral coefficients [Wang, 2000]. To increase the performance of our 

system we extracted 34 MFCC coefficients. 

4.1.3    Training 

The feature extraction and parameter estimation is thus carried out for all the 

signals in the ENROLL and VERIFY sessions. At this point of design we introduce a 

new approach of embedding dimensionality reduction algorithms like Principal 

Component Analysis (PCA) and Independent Component analysis (ICA). Therefore 

training (ENROLL) and identification (IDENTIFY) phases in the proposed model differ 

from that of the traditional model shown in Fig. 3.1. A similar implementation of a text-

independent speaker recognition model was introduced in [Wanfeng, 2003] with only 

PCA embedded into the model. In the literature PCA and ICA have also been applied to 

the Mel-spectral energies [Ding, 2001]. We applied PCA and ICA to the extracted 

Cepstral coefficients because the dimension reduction is more efficient due to the 
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correlation present among the elements of speech feature vectors obtained using MFCCs 

[Wanfeng, 2003].  In this research we investigate the robustness of embedding PCA and 

ICA into speaker text-independent speaker recognition system under clean and noisy 

conditions. This section presents a brief overview of Principal Component Analysis and 

Independent Component analysis and further continues with the implementation of 

ENROLL phase. 

4.1.3.1   Principal Component Analysis (PCA), Independent Component 

Analysis (ICA) and Projection Pursuit 

Automatic Speaker Recognition system is a highly complex model associated 

with a huge number of free parameters. Analysis of such a model is a challenging 

problem. Under such circumstances dimensional reduction of the data becomes a major 

requirement for obtaining good identification results. Principal Component Analysis 

(PCA) [Hotellings, 1933], [Shlens, 2003] and Independent Component Analysis (ICA) 

[Hyvarinen, 2001] are the two most powerful tools available for high dimensional 

multivariate analysis. Application of these tools to speech synthesis results in 

computational and conceptual simplicity. 

PCA and ICA are both linear and unsupervised dimensional reduction techniques. 

These algorithms therefore can be implemented by simple matrix multiplications [Furui, 

1992]. PCA extracts orthogonal principal components of variations by de-correlating the 

second order moments corresponding to low frequency property. ICA is not necessarily 

orthogonal but tends to make unknown linear mixtures of multi-dimensional random 

variables as statistically independent as possible. It also allows reduction of higher-order 

statistical dependencies which makes ICA perform better than PCA [Somervuo, 2003]. 
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Another important difference between PCA and ICA is that: PCA extracts components 

with largest magnitudes where as ICA extracts independent components even with 

smaller magnitudes. This section gives a brief description and analysis of Principal 

Component Analysis and Independent Component Analysis algorithms. 

Principal Component Analysis (PCA) 

Principal Component Analysis is an approximation of Karhunen-Loeve 

Transform (KLT) algorithm used to extract few first eigenvectors which mostly retain the 

variations present in all the original variables. It is a mathematical method used to 

orthogonally project the features of high dimensional space into low dimensional 

subspace. 

Principal Component Analysis exhibits three important features: (1) It is optimal 

in terms of mean squared error, i.e. it is a linear scheme used for compressing a set of 

high dimensional vectors into low dimensional vectors and then reconstructing them. (2) 

The parameters of the model can be directly obtained from the data by diagonalizing the 

covariance matrix. (3) Using PCA, operations used to compute the model parameters 

require only matrix multiplications reducing complexity and time consumed. In spite of 

all these advantages, PCA however has some shortcomings. It is a naive method used to 

compute the principal component direction and ends up having trouble with large number 

of data points and high dimensional data [Somervuo, 2003]. 

Principal components of the data set can be obtained by computing the covariance 

matrix of the data set and then finding the eigenvectors corresponding to the largest 

eigenvalues. Suppose there are N feature vectors given as },........,,{ 21 Nxxx . The 

mean of the feature vectors is represented by x  and is calculated as [Smith, 2002] 
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The covariance matrixC  is a square and symmetric matrix of order NN *  and can 

be computed as [Smith, 2002], [Shlens, 2003] 

∑
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N

C
1
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,  (4.7) 

where 

     xxx ii −=~   (4.8) 

Covariance matrix C  is also observed to exhibit correlation and data dispersion. 

Eigenvalue decomposition of the covariance matrix results in eigenvalues and 

eigenvectors [Rabiner, 1993]. Eigenvectors can be computed from the following equation 

[Smith, 2002], [Shlens, 2003]  

                                                  
kkk VCV λ= , 1,...,1,0 −= Nk   (4.9) 

where 
kV  is the th

k  eigenvector and 
kλ is the corresponding eigenvalue. 

Eigenvectors corresponding to M ( )1−< NM  largest eigenvalues are selected to reduce 

the dimensions of the data set. The transformation or projection matrix is defined as the 

transpose of thus obtained eigenvector matrix and is given as [Smith, 2002], [Shlens, 

2003] 

T

PCA
VW = ,                                           (4.10) 

where 

110 ,....,, −= M

T
VVVV                                          (4.11) 

The final step is to derive the new data set, the projection of the feature vectors on 

to the space formed by PCA. This is simply established by multiplying the projection 
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matrix with the original dataset (mean adjusted data). This can be represented as [Smith, 

2002] 

DataedOriginalMeanAdjustWNewDataSet PCA *=                   (4.12) 

Independent Component Analysis (ICA) 

Independent component analysis, a recently developed technique, aims at finding 

out linear representation of non-Gaussian data so that the components are statistically 

independent. ICA helps in capturing some of the essential features of data in many 

applications including Automatic Speaker Recognition Systems [Hyvarinen, 2001].  

Estimation of the Model by ICA 

Each person’s voice has distinguishing properties and features which makes them 

unique. Air stream pumped by the lungs modifies itself to generate desired sequence of 

sounds every time a person tries to speak. This implies that there exist some differences 

in the characteristics of speech depending on the changes in the shape of the vocal tract, 

vibration of the vocal chords and the nasal cavity. Vocal tract can then be considered as a 

set of filters that change or alter a set of excitation signals. 

ICA aims at extracting a set of statistically independent vectors from the matrix of 

training data, the Mel-frequency Cepstral feature vectors derived from the original signal. 

It tends to find directions of minimum mutual information. It aims at capturing certain 

correlations among the frequencies present in the spectral based representation of a 

speech signal. This is achieved by ICA in the form of linear combinations of basic filter 

functions specific to each person. Specific sounds are then generated by combining these 

functions in a statistically independent nature.  
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Consider a signal tx . A set of MFCC coefficients derived from the original signal 

with frames placed in the columns and observations in the rows. This signal is used since 

it is a proper Mel-Cepstral based representation of the original signal and the data can be 

observed as a set of multivariate time series resulting from a hidden linear mixing process 

A  of independent functions s  [Potamitis, 2000], [Hyvarinen, 2001]. Linear combination 

of such sources or functions can be summarized as [Cardoso, 1996] 

   Asx =                   (4.13) 

The problem of ICA is to determine both the excitation signal s  and the scalars 

A  and the only known component is the matrix of the MFCC coefficients of the input 

speech signal. s  can be computed as follows [Hyvarinen, 1997] 

xAs
1−=                                             (4.14) 

Computing A is a problem and a possible solution is to consider x  as a vector of 

observations where each observation is expressed as a linear combination of independent 

components. In order to estimate one of the independent components, a linear 

combination of ix  is chosen such that [Hyvarinen, 1997], [Michael, 2002] 

∑==
i

ii

T
xwxwy                                  (4.15) 

With respect to the condition stated in equation (4.13) and equation (4.14), the 

linear combination represented in equation (4.15) is a true combination of independent 

components if w  were one of the columns of the inverse of A . 

Nongaussianity 

According to the central limit theorem by Hyvarinen and Oja [Hyvarinen, 2001], 

the sum of the independent variables has a distribution that is closer to Gaussian than the 
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distribution of the original variables [Michael, 2002]. This concludes that the 

distributions of x  are more Gaussian than source or excitation signal since the signal x  

is the weighted sum of the components of the excitation signal (equation (4.13)). Thus 

nongaussianity of the excitation signal enables the application of ICA to this problem and 

the obvious solution for finding 1−= Aw  is to maximize the nongaussianity of )( ii sy ≈ . 

To exploit the property of nongaussianity in ICA estimation, we must have some 

means of quantitatively measuring this characteristic. Negentropy is one of the ways of 

measuring nongaussianity and its approximation can be given as [Hyvarinen, 1999] 

( )2
)}({)}({)( vGEyGEyJ −=                            (4.16) 

)}({ vGE  is a constant Gaussian variable with zero mean and unit variance. 

)}({ yGE  is a non-quadratic function. Some commonly used functions are Cosh, 

Gaussian and Kurtotis-based approximation. We have chosen the optimal representation, 

the Gaussian function since it results in minimum estimation error than other 

approximation functions [Hyvarinen, 1999]. 

Preprocessing 

In an automatic speaker recognition system environment, the columns of the input 

signal x  are the smoothed Mel-spectra of the frames of speech data. Speech excitation s  

is the cause of the speech and activates speech features represented by A  resulting in 

original speech frames X  and using ICA for speaker recognition. Statistically 

independent coefficients are generated by filtering the speech with filters W  known as 

de-mixing matrix.  

Before estimating w  (component of the matrix W ), the input signal is 

preprocessed for good and accurate detection results. Preprocessing involves centering of 
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the input speech signal. This is obtained by subtracting their mean value from the signal 

[Michael, 2002]. 

)(ˆ xExx −=                                             (4.17) 

Whitening 

The next step is to whiten the centered data. Whitening is done using eigenvalue 

decomposition of the covariance matrix }{ TxxE  very similar to the PCA technique 

[Hyvarinen, 2001]. As a result, eigenvectors and the diagonal matrix are computed from 

the covariance matrix. Whitening is done by multiplying the centered signal with a 

transformation or permutation matrix P  given by TEEIDinv *2
1






 −

, where EE  is the 

matrix containing eigenvectors and ID  is the diagonal matrix containing eigenvalues 

corresponding to eigenvectors in EE . Whitening is performed so that the signals are 

linearly transformed and hence the components of the signal become uncorrelated and 

possess unit variance [Hyvarinen, 2001]. Thus we obtain the following equation 

     xPx ˆ~ =                                                       (4.18) 

Similarly, the mixing matrix A  is multiplied with the transformation matrix P  

given as PAA =
~

  which is orthogonal and the covariance of the whitened data equals to 

identity matrix. Keeping in mind that W  is inverse of A  and from the orthogonal 

property of A
~

 i.e. 1~~ −= AAT  we can deduce W
~

 such that PWW
~

=  [Michael, 2002]. 

The final equation obtained after preprocessing and whitening is given as 

[Michael, 2002] 

PxWWxys
~

==≈                                 (4.19) 
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Fast ICA Algorithm 

Fast ICA algorithm [Hyvarinen, 1999] is used to estimate iw  which constitutes 

the rows of W
~

. Since the components are considered to be statistically independent, the 

variance between them is high. This adds an optimization clue for solving the above 

problem. Therefore, we need to estimate iw  that maximizes the non-Gaussianity 

)~( xwJ
T

i  under the constraint 1=iw  meaning norm equals to one. Assuming the 

gradient in equation (4.16) to be a Gaussian approximation, it is solved for non-

Gaussianity by applying the optimization constraint. Two maximas, iw  and iw−  with 

same non-Gaussianity are obtained for each component. 

Theory of optimization states that the extrema of )}({ yGE  can be determined at 

the point where the gradient of the Lagrange function is zero (Kuhn-Tucker condition 

[Luenberger, 1969]). The constraint 1=iw  can be written as 01 =−ww
T , and when 

applied to the Lagrange function, we obtain the following equation [Hyvarinen, 1999] 

    )1()}({),( −−= wwxwGEwL TT λλ    (4.20) 

The gradient of equation (4.20) can be obtained by differentiating it with respect 

to w  [Hyvarinen, 1999] 

       w wxwxgEwL
T

w λλ 2)}({),(
'

−=       (4.21) 

In Fast ICA algorithm, Newton’s method (first introduced in [Hyvarinen, 1997]) 

is iteratively used to solve the equation 0),(
'

=λwLw . Each component must have one 

solution, therefore the optimization has to be run for one component at a time. While 

performing different iterations, a de-correlation technique is performed to prevent same 

solution from being found more than once. Newton’s method is initialized by making a 
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guess for iw  and the order in which the components are determined depends on this 

initial guess. Stopping criteria is set, so that the algorithm continues until this criterion is 

satisfied. Convergence condition can be checked by comparing iw  obtained in iteration 

with that obtained in the previous iteration [Michael, 2002].  

The final step is to project the signals into the space created by ICA.                                                         

DataedOriginalMeanAdjustWNewDataSet ICA *=                  (4.22) 

where ICAW  is the transformation matrix obtained from Fast ICA algorithm.  

ENROLL Phase    

This deals with the training of the model. We implemented two ENROLL phases: 

ENROLL phase with PCA 

Two PCA components are added as shown in block diagram of Fig. 4.1. 

a) “PCA Old W” 

This function is used to acquire the transformation matrix 
PCA

W  of M  obtained 

after applying PCA to the extracted MFCC feature vectors of the speech signals from 

ENROLL session (YOHO database). By applying PCA we extracted 18 ( )M  

eigenvectors corresponding to 18 ( )M  largest eigenvalues and reduced the dimensions of 

MFCC from 34 ( )N  to 18 ( )M . The total number of eigenvectors that can be obtained 

are N  and M  is the number of first few eigenvectors that are used to build the 

eigenspace. We chose M  as 18 since the last eigenvectors ( )MN −  have relatively 

smaller values. The output of this function i.e. the transformation matrix 

)18*34(
PCA

W and the feature vectors F )34*(nof  are given as an input to the function 

“PCA Transform”. 
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b) “PCA Transform” 

This function is responsible for projecting the feature vectors F in to the 

eigenspace created by PCA using the equation   DataedOriginalMeanAdjustWNF
PCA

*= . 

NF  has a size of nof*18  where  nof  is the number of frames in the respective signal. 

The transformation matrix 
PCA

W  of each of the speaker from ENROLL session 

(YOHO database) are stored with a corresponding unique ID (Fig. 4.1) in the trained 

database and the projected new feature vectors NF  are input to the Gaussian mixture 

model component for training each speaker. 

ENROLL phase with ICA 

Two ICA components are added as shown in block diagram of Fig. 4.1. 

a) “ICA Old W” 

This function works similar to PCA but acquires the transformation matrix 

)34*18(
ICA

W  obtained after applying all the steps in ICA (Preprocessing, Whitening, Fast 

ICA) to the extracted MFCC feature vectors of the speech signals from ENROLL session 

(YOHO database). This process as a whole was implemented using the FastICA package 

version 2.3 (published on 27.7.2004) for MATLAB developed by Jarmo Hurri [Hurri, 

1998-2004].  

b) “ICA Transform” 

This function is responsible for projecting the feature vectors F into the space 

created by ICA using the equation   DataedOriginalMeanAdjustWNF
ICA

*= . NF  is a 

matrix of size nof*18  where  nof  is the number of frames in the respective signal. 
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The transformation matrix 
ICA

W  of each of the speaker from ENROLL session 

(YOHO database) are stored with a corresponding unique ID (Fig. 4.1) in the trained 

database and projected new feature vectors NF  are input to the Gaussian mixture model 

component for training each speaker and representing the speaker identities. 

4.1.3.2    Gaussian Mixture Models (GMM) 

Literature shows that probabilistic models like GMM for have yielded better 

performance results for training both text-dependent and text-independent speaker 

recognition applications [Reynolds, 1995]. Due to the probabilistic property of a GMM, it 

can also be applied to speaker recognition applications in the presence of different noises 

increasing the channel robustness [Reynolds, 1995] and therefore more suited to this 

research.  

Using a GMM model, for speaker identification, a group of S : S,.....,2,1  speakers 

can be represented by their unique model parameters Sλλλ ,.....,, 21 . Identity of each 

speaker λ  can be represented as a combination of three parameters: 
i

p  (mixture weights 

for Mi ,...,1=  where M  is the number of component densities), 
i

µ : (mean vector with 

D - dimensional normal distribution) and ∑i
 (covariance matrix). Collectively λ  is 

represented as }{ ∑= iii
p ,, µλ  for .,...,1 Mi =  We investigated the performance of the 

system by choosing the value of M to be 32. [Reynolds, 1995] and [Wanfeng, 2003] 

have implemented GMM for training text-independent speaker recognition systems with 

different values of M  and have found that good identification results are obtained with 

greater values of .M  
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Depending upon the choice of covariance matrix, GMM can take different forms. 

The covariance matrix can be classified into three different types; (1) Nodal Covariance: 

one covariance matrix per Gaussian component, (2) Grand Covariance: one covariance 

matrix for all Gaussian components in a speaker model or (3) Global Covariance: a single 

covariance matrix shared by all the speaker models. In addition, the covariance matrix 

can also be full or diagonal. In this thesis, nodal and diagonal covariance matrices are 

primarily used for speaker modeling. The parameters of a GMM model were estimated 

using Expectation-Maximization (EM) algorithm. 

4.1.4    Identification using Bayes’ decision rule 

The goal of a speaker recognition system is to identify the unknown speaker from 

a group of known speakers.  

IDENTIFY Phase    

Two IDENTIFY phases were implemented one with PCA and second one with 

ICA corresponding to two ENROLL phases PCA and ICA respectively. During the 

identification phase the feature extraction method similar to that used in ENROLL 

process was carried out with the all test signals (clean and noisy). 34 MFCC feature 

vectors were extracted from each of the test utterance.   

IDENTIFY Phase with PCA 

The extracted feature vectors from each test speaker were applied to the function 

“PCA Transform” (Fig. 4.1) and were projected into the eigenspace created by the 

associated speaker with unique speaker ID. This was done by calling the already stored 

projection matrix PCAW  associated with that particular ID from the trained speaker 
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models. The new feature vectors of the test utterances and the trained models were fed to 

a suitable decision rule and the corresponding test speaker was determined. 

IDENTIFY Phase with ICA 

A similar process was implemented in this phase using ICA. The extracted feature 

vectors from each test speaker were applied to the function “ICA Transform” (Fig. 4.1) 

and were projected into the space of ICA created by the associated speaker with unique 

speaker ID. This uses the stored ICA
W  from the trained speaker model. The new feature 

vectors of the test utterances and the trained models were fed to a suitable decision rule 

and the corresponding test speaker was determined. 

Bayes’ Decision rule 

 Bayesian classifier is stochastic based classifier that computes probability 

distribution functions rather than computing distances to average features as in template 

models. Bayes classifier is the best choice for identification applications which employ 

large group of data sets [Domingos, 1997]. 

( )λ,|
t

xip  is called a posteriori probability for an acoustic class i and is defined 

by the following equation 

            ( )
( )

( )∑
=

=

M

k tkk

tii

t
xbp

xbp
xip

1

,| λ    (4.23) 

For a given observation sequence the main goal is to find the speaker model that 

has the maximum a posteriori probability represented as [Reynolds, 1995] 

              ( )XS k
Sk

|Prmaxargˆ

1
λ

≤≤
=    (4.24) 

           
( ) ( )

( )Xp

X
S kk

Sk

λλ Pr|
maxargˆ

1 ≤≤
=      (4.25) 
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Equation 4.25 is obtained due to Bayes’ rule. The above classification rule can be 

further simplified by (i) assuming equally likely speakers (equivalent to ( )
Sk

1Pr =λ ) and 

(ii) observing that ( )Xp  is same for all the speaker models. Therefore equation 4.24 

reduces to 

                      ( )
k

Sk
XpS λ|maxargˆ

1 ≤≤
=    (4.26) 

The speaker identification system finally computes ( )∑=
=≤≤

T

t
kt

Sk
xpS

11
|logmaxargˆ λ  

using the logarithms and the independence between the observations. 

4.2 Experimental Results 

Three sets of experiments were carried out using experimental conditions listed in 

Table 4.1. The results are reported on a 10 speaker subset taken from YOHO database. 

Each speaker had 96 utterances in ENROLL session and 40 utterances in VERIFY 

session. We computed and tabulated the average percentages of recognizing the input 

VERIFY signals in these runs. 

Experiment – 1 

This experiment involves Clean Train and Clean Test signals. Results show that 

recognition rates obtained using ICA outperformed that of PCA. 

Table 4.4 Performance using PCA and ICA with Clean Test Signals               

(Average Percentages) 

 

 

M: Number of GMM components 

Accurate Recognition Rate ( % ) 

Feature PCA ICA 

M: 32 90.50% 94.12% 
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A similar framework was implemented by Zhang Wanfeng et al. [Wanfeng, 2003] 

using only PCA. The results were reported on the YOHO database with different number 

of speakers. It also involved implementation of speaker recognition model using PCA 

under adverse conditions. Noise came from several sources like people in the 

background, noise from the adjoining rooms, etc. Only one set of experiment was 

performed using 16 GMM components and the results were reported on a noisy database 

“PHONE” developed by them. They achieved a recognition rate of 77%.   

 We trained our speaker recognition model under different noisy conditions 

occurring in real world scenario. Additive white Gaussian noise (AWGN) and echo 

affected signals were generated. The model was trained dynamically. Each time a speech 

signal was read, AWGN at different values of SNR and echo with varying delays were 

added to the clean speech signals from YOHO database. Experiment 2 and 3 report the 

identification results with PCA and ICA for different train and test conditions. 

Experiment – 2 

This experiment involves only AWGN affected train signals at a particular SNR 

of 35 dB and AWGN affected test signals with varying SNR’s. From the table, we could 

find that as signal to noise ratio increases, the recognition rate also increases. The 

performance of speaker recognition is improved using ICA when compared to PCA even 

in noisy conditions. By this we show that ICA is more robust than PCA for text-

independent speaker recognition under adverse conditions. 
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Table 4.5 Performance of PCA and ICA with Variation in SNR of the test signals 

(Average Percentages) 

Train: 35dB, M: 32 Test values of SNR in dB 

Transformations 0 10 20 30 

PCA 40.33% 62.41% 76.70% 87.00% 

ICA 51.00% 70.00% 85.50% 89.60% 

 

M: Number of GMM components 
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Fig. 4.5 Performance of PCA and ICA with additive white Gaussian noise added to 

the test signals 

Experiment – 3 

This set of experiment includes echo affected train and test signals. Train signals 

are generated with a specific delay of 0.2 ms and test signals with varying delay. The 

trend we observe from Table 4.7 is that as the delay of the echo affected signal increases, 

there is a lot of variation in the speech signal, thereby reducing the recognition rate. 

Again, ICA was more robust than PCA. 
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Table 4.6 Performance of PCA and ICA with Variation in Echo length or Delay of 

the test signals (Average Percentages) 

Train: 0.2ms, M: 32 Test values of delay in ms 

Transformations 0.25 0.30 0.35 0.40 

PCA 88.00% 80.33% 75.45% 72.43% 

ICA 90.00% 85.00% 78.33% 75.00% 
 

M: Number of GMM components 
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Fig. 4.6 Performance of PCA and ICA with Echo added to the test signals 

 

 

The proposed model therefore evaluates the performance of a new text-independent 

speaker recognition model with PCA and ICA embedded into it after the feature 

extraction step and compares the robustness of PCA and ICA transforms under multi-

environment training scenario. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

In this research we propose an approach focusing on multi-environment training 

in concatenation with application of dimensionality reduction algorithms for improving 

the recognition rate of a text-independent speaker recognition system. To evaluate the 

robustness of our model, we developed a scenario where in different types of noise 

(additive and convolutive) occurring in real world were added to the clean speech signals. 

The text-independent speaker recognition system was designed based on Mel-Cepstral 

analysis. The proposed model uses a new framework where PCA and ICA were 

embedded after the Mel-Cepstral feature extraction process. Mel-Scaled FFT analysis 

described in this research work takes into account the behavior and psychoacoustic 

characteristics of human auditory system and is thus a robust technique. Experiments 

were performed on a subset of 10 speakers (including all the ENROLL and VERIFY 

sessions for each of the speaker) from YOHO corpus with Gaussian mixture model and 

Bayes’ classifier to evaluate the performance of the designed system. MATLAB code 

was written to implement the approach. We show that by embedding Independent 

Component Analysis, recognition rates of a text-independent speaker recognition system 

can be improved considerably. The recognition accuracy rate obtained using PCA was 

90% where as ICA was 94% for clean signals. Though PCA gains over conventional 

methods, this approach fails to achieve the lowest-possible dimensions because of the 

bases being generic and not able to un-correlate the data under consideration optimally 

[Potamitis, 2000]. For noisy signals the recognition accuracy rates ranged from 40.33 % 

to 87 % (PCA) and 51% to 89.6% (ICA) for increasing values of SNR and 72.43 % to 

88% (PCA) and 75 % to 90 % (ICA) were for decreasing values of delay. These values 
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are presented in Tables 4.4, 4.6 and 4.7. Thus the accuracy percentage rates of identifying 

the test speakers under adverse conditions using ICA were more than that obtained using 

PCA. It is observed that ICA outperformed PCA. This is because PCA is capable of 

removing only the 2
nd

 order dependencies between the feature vectors where as ICA also 

removes higher order dependencies [Somervuo, 2003]. Independent components 

extracted by ICA method contain most of the important data in the speech thus ICA 

tacitly enables the exploitation of the discriminating features of the speech data and hence 

very popular in many applications of speaker recognition systems. 

Results of identification using feature transformations can be improved by 

exploiting more detailed acoustic models. Future work is being concentrated on ways and 

methods of concatenating different algorithms such as Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis 

(ICA) aimed at increasing the accuracy rates of speaker recognition systems particularly 

text-independent speaker recognition systems. More class specific cues from the input 

signals can be detected by integrating all these feature transformations. Many researchers 

are also currently working on increasing the robustness of automatic speaker recognition 

systems in the presence of increased noise. Future trends may also include the 

enhancement of the recognition systems by taking into account all other parameters such 

as reverberations other than noise or echo affecting the system. Work may also focus on 

evaluating the performance of text-independent speaker recognition systems using 

different classifiers such as hidden markov models (HMM) and neural networks (NN) to 

improve the identification results. 
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