13 research outputs found

    Comparative study between mechanical properties of silicone catalyzed by tin or platinum and the more effective section.

    Get PDF
    Nowadays, there is the need and the technical capability to constantly collect data from multiple daily situations to improve measurable activities. An example of this, is the incorporation of sensors over the human body to collect bodily data, whether it be in devices for general activities as running or for specific purposes such as monitoring certain pathologies like diabetes or registering variables in gait. These measurements are provided by sensors adapted to the controlled bodily zone, being able to adapt itself to the organic shape of the body. One of the materials that meets the requirements of strength and malleability is silicone, specifically the one intended for molds. This study questions the viability of the mechanical capabilities of different types of this material through tests of resistance and flexibility, as well as which type of structure is better for its use as a sensor. The collected results indicate which section is most favorable for using silicone in the form of threads and the optimal functions for each type of tested silicone.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Chaussette instrumentée pour la mesure de la pression et du frottement

    Get PDF
    L’objectif est d’étudier la capacité des fibres optique polymérique (POF) à être insérées dans un tricot pour mesurer la pression mais également le frottement. Des POF commerciales et en cours de développement ont été comparées en termes de propriétés mécaniques nécessaires pour l’intégration de ces POF dans un tricot selon un procédé industriel. Ensuite la fibre choisie a été insérée dans différents liages de tricot afin de déterminer la configuration donnant la sensibilité au frottement et à la compression la plus élevée. A partir de la structure tricotée ainsi choisie, une chaussette a été réalisée. Finalement, une étude de faisabilité a montré que la chaussette instrumentée d’une POF permet de suivre les différentes phases de la marche

    Polymer Optical Fiber Plantar Pressure Sensors: Design and Validation

    Get PDF
    The proper measurement of plantar pressure during gait is critical for the clinical diagnosis of foot problems. Force platforms and wearable devices have been developed to study gait patterns during walking or running. However, these devices are often expensive, cumbersome, or have boundary constraints that limit the participant’s motions. Recent advancements in the quality of plastic optical fiber (POF) have made it possible to manufacture a low-cost bend sensor with a novel design for use in plantar pressure monitoring. An intensity-based POF bend sensor is not only lightweight, non-invasive, and easy to construct, but it also produces a signal that requires almost no processing. In this work, we have designed, fabricated, and characterized a novel intensity POF sensor to detect the force applied by the human foot and measure the gait pattern. The sensors were put through a series of dynamic and static tests to determine their measurement range, sensitivity, and linearity, and their response was compared to that of two different commercial force sensors, including piezo resistive sensors and a clinical force platform. The results suggest that this novel POF bend sensor can be used in a wide range of applications, given its low cost and non-invasive nature. Feedback walking monitoring for ulcer prevention or sports performance could be just one of those applications.This research was partially funded by Research and Innovation Programme from Community of Madrid SINFOTON2-CM (S2018/NMT-4326), and by FSE/FEDER funds, Spanish Research Agency under grant RTI2018-094669-B-C32, Spanish Ministry of Innovation and Universities under grant FJCI-2017-31677

    E-Knitted Textile with Polymer Optical Fibers for Friction and Pressure Monitoring in Socks

    Get PDF
    The objective of this paper is to study the ability of polymer optical fiber (POF) to be inserted in a knitted fabric and to measure both pressure and friction when walking. Firstly, POF, marketed and in development, have been compared in terms of the required mechanical properties for the insertion of the fiber directly into a knitted fabric on an industrial scale, i.e. elongation, bending rigidity, and minimum bending radius before plastic deformation. Secondly, the chosen optical fiber was inserted inside several types of knitted fabric and was shown to be sensitive to friction and compression. The knitted structure with the highest sensitivity has been chosen for sock prototype manufacturing. Finally, a feasibility study with an instrumented sock showed that it is possible to detect the different phases of walking in terms of compression and friction

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    An investigation into the fabrication parameters of screen-printed capacitive sensors on e-textiles

    Full text link
    [EN] The design and development of textile-based capacitive sensors requires the implementation of textile capacitors with a determined capacitance. One of the main techniques to obtain these sensors is the screen-printing of conductive and dielectric inks on textiles. This paper investigates the fabrication parameters that have the most influence when designing and implementing a screen-printed capacitive sensor. In this work, a textile has been used directly as the dielectric part, influencing sensitively the value of the permittivity and the thickness of the dielectric of the capacitor. These are two fundamental parameters for the estimation of its capacitance. The choice of the conductive ink, its viscosity and solid content, as well as printing parameters, such as printing direction, also impact on the manner for obtaining the electrodes of the capacitive sensor. Although the resulting electrodes do not represent an important parameter for the estimation of the capacitance, it determines the selection of fabrics that can be printed. As a result of the investigation, the paper provides a guideline to choose the materials, such as fabrics or inks, as well as the printing parameters, to implement e-textile applications based on projected capacitive technologies. The experiments carried out on different fabrics and inks have provided results with capacities of less than 60 pF, the limit where the sensors based on capacitive technologies are located.The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and cofounded by ERDF funding from the European Union (Application no. IMAMCI/2019/1). This work was also supported by the Spanish Government/FEDER funds (RTI2018-100910-B-C43) (MINECO/FEDER).Ferri, J.; Llinares Llopis, R.; Moreno, J.; Lidon-Roger, JV.; Garcia-Breijo, E. (2020). An investigation into the fabrication parameters of screen-printed capacitive sensors on e-textiles. Textile Research Journal. 90(15-16):1749-1769. https://doi.org/10.1177/0040517519901016S174917699015-16Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. (2018). Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions, 3(1), 14. doi:10.3390/inventions3010014Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., … Khademhosseini, A. (2018). Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 14(33), 1703509. doi:10.1002/smll.201703509Shi, H., Zhao, H., Liu, Y., Gao, W., & Dou, S.-C. (2019). Systematic Analysis of a Military Wearable Device Based on a Multi-Level Fusion Framework: Research Directions. Sensors, 19(12), 2651. doi:10.3390/s19122651Kim, K., Jung, M., Jeon, S., & Bae, J. (2019). Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Materials and Structures, 28(6), 065019. doi:10.1088/1361-665x/ab1adfFerri, J., Perez Fuster, C., Llinares Llopis, R., Moreno, J., & Garcia‑Breijo, E. (2018). Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Screen-Printing Technology on Textile Substrate. Sensors, 18(10), 3313. doi:10.3390/s18103313De Vos, M., Torah, R., Glanc-Gostkiewicz, M., & Tudor, J. (2016). A Complex Multilayer Screen-Printed Electroluminescent Watch Display on Fabric. Journal of Display Technology, 12(12), 1757-1763. doi:10.1109/jdt.2016.2613906Lin, X., & Seet, B.-C. (2017). Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 11(2), 464-473. doi:10.1109/tbcas.2016.2615603Ejupi, A., & Menon, C. (2018). Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors. Sensors, 18(8), 2474. doi:10.3390/s18082474Polanský, R., Soukup, R., Řeboun, J., Kalčík, J., Moravcová, D., Kupka, L., … Hamáček, A. (2017). A novel large-area embroidered temperature sensor based on an innovative hybrid resistive thread. Sensors and Actuators A: Physical, 265, 111-119. doi:10.1016/j.sna.2017.08.030Komazaki, Y., & Uemura, S. (2019). Stretchable, printable, and tunable PDMS-CaCl2 microcomposite for capacitive humidity sensors on textiles. Sensors and Actuators B: Chemical, 297, 126711. doi:10.1016/j.snb.2019.126711Ng, C. L., & Reaz, M. B. I. (2019). Evolution of a capacitive electromyography contactless biosensor: Design and modelling techniques. Measurement, 145, 460-471. doi:10.1016/j.measurement.2019.05.031Ferri, J., Lidón-Roger, J., Moreno, J., Martinez, G., & Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials, 10(12), 1450. doi:10.3390/ma10121450Atalay, O. (2018). Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials, 11(5), 768. doi:10.3390/ma11050768Yongsang Kim, Hyejung Kim, & Hoi-Jun Yoo. (2010). Electrical Characterization of Screen-Printed Circuits on the Fabric. IEEE Transactions on Advanced Packaging, 33(1), 196-205. doi:10.1109/tadvp.2009.2034536Lee, W. J., Park, J. Y., Nam, H. J., & Choa, S.-H. (2019). The development of a highly stretchable, durable, and printable textile electrode. Textile Research Journal, 89(19-20), 4104-4113. doi:10.1177/0040517519828992Chatterjee, K., Tabor, J., & Ghosh, T. K. (2019). Electrically Conductive Coatings for Fiber-Based E-Textiles. Fibers, 7(6), 51. doi:10.3390/fib7060051Gu, J. F., Gorgutsa, S., & Skorobogatiy, M. (2010). Soft capacitor fibers using conductive polymers for electronic textiles. Smart Materials and Structures, 19(11), 115006. doi:10.1088/0964-1726/19/11/115006Khan, S., Lorenzelli, L., & Dahiya, R. S. (2015). Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review. IEEE Sensors Journal, 15(6), 3164-3185. doi:10.1109/jsen.2014.2375203Zhang, Q., Wang, Y. L., Xia, Y., Zhang, P. F., Kirk, T. V., & Chen, X. D. (2019). Textile‐Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Advanced Materials Technologies, 4(10), 1900485. doi:10.1002/admt.201900485Mukherjee, P. K. (2018). Dielectric properties in textile materials: a theoretical study. The Journal of The Textile Institute, 110(2), 211-214. doi:10.1080/00405000.2018.1473710Sadi, M. S., Yang, M., Luo, L., Cheng, D., Cai, G., & Wang, X. (2019). Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose, 26(10), 6179-6188. doi:10.1007/s10570-019-02526-

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring

    No full text

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    Sensors for Foam Balance Pad

    Get PDF
    Diplomová práce se zabývá návrhem vlastního senzorického řešení pro detekci pohybů prováděných na pěnové balanční podložce AIREX® Elite. Součástí práce je teoretický popis balančních cvičebních pomůcek a jejich aplikace v oblasti fyzioterapie. Dále je zde uvedena rešerše současných technických řešení pro snímání pohybu na balanční pomůcce. Pro realizaci vlastního řešení byl vybrán princip kapacitního měření vzdálenosti s využitím vodivých textilií pro realizaci senzoru. Další část je věnována návrhu hardwarového řešení, je zde popsán návrh senzorické matice, velikost jednotlivých snímacích prvků a vzdálenost mezi nimi a sběrem dat pomocí mikrokontroléru STM32 a zpracováním těchto dat v prostředí LabVIEW. Součástí vlastní práce je návrh vlastního uživatelského rozhraní k vizualizaci pohybu na pěnové balanční podložce a testování vytvořeného řešení v reálných podmínkách při rehabilitaci v domácím prostředí.The thesis deals with the design of a custom sensor solution for the detection of movements performed on the AIREX® Elite foam balance pad. The thesis includes a theoretical description of balance exercise aids and their application in the field of physiotherapy. Furthermore, a survey of current technical solutions for motion sensing on balance aids is presented. For the implementation of the actual solution, the principle of capacitive distance measurement using conductive textiles was chosen for the sensor implementation. The next section is devoted to the design of the hardware solution, it describes the design of the sensor matrix, the size of the individual sensing elements and the distance between them and the data acquisition using the STM32 microcontroller and the processing of this data in the LabVIEW environment. The actual work includes the design of a custom user interface to visualize the motion on the foam balance pad and testing of the developed solution in real conditions during rehabilitation in a home environment.450 - Katedra kybernetiky a biomedicínského inženýrstvívýborn
    corecore