80 research outputs found

    Using simulation to analyze picker blocking in manual order picking systems

    Get PDF
    The rise of the e-commerce practice makes the warehouses be confronted with ever smaller orders that must be met ever faster, often within a 24-h period. This pressures the order picking process as the orders pickers' workload becomes higher and higher, leading subsequently to congestion in the warehouse and impacting its productivity. It is therefore crucial to determine which order batching and picking policies enhance the performance of order picking activities. This paper carries out an intensive simulation study to examine the performance of different order picking policies with batching in a wide-aisle warehouse with a low-level picker-to-parts system. The performance of the system is measured in terms of total travelled distance, number of collisions between operators (congestion) and order lead times. A full factorial design is set up and the simulation output is statistically analyzed. The results are reported and thoroughly discussed

    Analysis of Picker Blocking in Narrow-aisle Batch Picking

    Get PDF
    This study analyzes impacts by batch picking on picker blocking in narrow-aisle order picking, and determines appropriate batch formations for a better order picking throughput. We present multiple-pick analytical models to offer insights about picker blocking in batch picking. Several simulation studies over a variety of batching situations scrutinize order batching situations which give throughput benefits in narrow-aisle configurations by satisfying the analytical results. Our results highlight three findings for narrow-aisle batch picking processes: 1) variation of pick probability in batch picking is inevitable and is a primary driver of picker blocking; 2) a near-optimal distance-based batching algorithm can experience less picker blocking than expected, because it reduces both the number of aisles visited and the variation in the number of picks per aisle; and 3) the sorting strategy itself (i.e., pick-then-sort or sort-while-pick) causes varying amounts of congestion

    Throughput Analysis of Manual Order Picking Systems with Congestion Consideration

    Get PDF
    Throughput in manual order picking systems with narrow aisles suffers from congestion as pickers cannot pass each other. Only few models incorporate congestion but they have very strict assumptions. In this work, queueing theory is used to analyze systems with traversal routing as well as different storage policies. The models are able to estimate throughput for many alternative designs in a relatively short amount of time. New guidelines for narrow-­aisle order picking systems are introduced

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management

    Hybrid order picking : A simulation model of a joint manual and autonomous order picking system

    Get PDF
    Order picking is a key process in supply chains and a determinant of business success in many industries. Order picking is still performed manually by human operators in most companies; however, there are also increasingly more technologies available to automate order picking processes or to support human order pickers. One concept that has not attracted much research attention so far is hybrid order picking where autonomous robots and human order pickers work together in warehouses within a shared workspace for a joint target. This study presents a simulation model that considers various system characteristics and parameters of hybrid order picking systems, such as picker blocking, to evaluate the performance of such systems. Our results show that hybrid order picking is generally capable of improving pure manual or automated order picking operations in terms of throughput and total costs. Based on the simulation results, promising future research potentials are discussed

    Queueing Models for manual order picking systems with blocking

    Full text link

    Analysis and Control of Batch Order Picking Processes Considering Picker Blocking

    Get PDF
    Order picking operations play a critical role in the order fulfillment process of distribution centers (DCs). Picking a batch of orders is often favored when customers’ demands create a large number of small orders, since the traditional single-order picking process results in low utilization of order pickers and significant operational costs. Specifically, batch picking improves order picking performance by consolidating multiple orders in a "batch" to reduce the number of trips and total travel distance required to retrieve the items. As more pickers are added to meet increased demand, order picking performance is likely to decline due to significant picker blocking. However, in batch picking, the process of assigning orders to particular batches allows additional flexibility to reduce picker blocking. This dissertation aims to identify, analyze, and control, or mitigate, picker blocking while batch picking in picker-to-part systems. We first develop a large-scale proximity-batching procedure that can enhance the solution quality of traditional batching models to near-optimality as measured by travel distance. Through simulation studies, picker blocking is quantified. The results illustrate: a) a complex relationship between picker blocking and batch formation; and b) a significant productivity loss due to picker blocking. Based on our analysis, we develop additional analytical and simulation models to investigate the effects of picker blocking in batch picking and to identify the picking, batching, and sorting strategies that reduce congestion. A new batching model (called Indexed order Batching Model (IBM)) is proposed to consider both order proximity and picker blocking to optimize the total order picking time. We also apply the proposed approach to bucket brigade picking systems where hand-off delay as well as picker blocking must be considered. The research offers new insights about picker blocking in batch picking operations, develops batch picking models, and provides complete control procedures for large-scale, dynamic batch picking situations. The twin goals of added flexibility and reduced costs are highlighted throughout the analysis

    Progress in Material Handling Research: 2010

    Get PDF
    Table of Content
    • 

    corecore