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A B S T R A C T   

Order picking is a key process in supply chains and a determinant of business success in many industries. Order 
picking is still performed manually by human operators in most companies; however, there are also increasingly 
more technologies available to automate order picking processes or to support human order pickers. 

One concept that has not attracted much research attention so far is hybrid order picking where autonomous 
robots and human order pickers work together in warehouses within a shared workspace for a joint target. This 
study presents a simulation model that considers various system characteristics and parameters of hybrid order 
picking systems, such as picker blocking, to evaluate the performance of such systems. Our results show that 
hybrid order picking is generally capable of improving pure manual or automated order picking operations in 
terms of throughput and total costs. Based on the simulation results, promising future research potentials are 
discussed.   

1. Introduction 

During recent decades, warehouses have undergone significant 
changes with respect to the operating policies and technologies used. 
Warehousing systems are challenged by rising demands in terms of the 
variety and volume of products to be stored, for example, because of a 
continuing trend toward e-commerce and customer requests for short 
delivery times and high service quality (Boysen et al., 2019; Winkelhaus 
& Grosse, 2020). These developments have pushed managers to ensure 
high process efficiency and space utilization in warehouses. 

Order picking is a warehousing process in which products are 
retrieved from storage facilities to satisfy customer orders (van Gils 
et al., 2018), and it has frequently been the subject of research as it is 
considered a key determinant of warehouse performance. Traditionally, 
order picking has been performed manually with operators traveling 
along the aisles of the warehouse, which is still the most prevalent 
method in practice (these systems are usually referred to as person-to- 
goods systems; see de Koster et al. (2007); Grosse et al. (2017)). Order 
picking is therefore characterized by considerable manual labor, making 
it a very cost-intensive process step in warehousing (Grosse et al., 2017). 

To ensure efficient order picking operations, different decision 

problems have to be solved, with zoning, batching, routing, and storage 
assignment among the most important ones (Masae et al., 2020a). So-
lution methods for these decision problems usually aim on reducing 
unproductive times, such as the time spent on traveling that often ac-
counts for up to 50% of the total order picking time (Tompkins et al., 
2010). Unproductive traveling and searching tasks of humans can also 
be reduced by IT and automation technologies that increase the pick 
performance of order pickers. Some of these technical solutions trans-
form person-to-goods systems into goods-to-person systems. In goods-to- 
person systems, a certain quantity of the requested products is brought 
to the order picker’s location using a technical system (Boysen et al., 
2019). The order picker then only physically retrieves the correct 
quantity and confirms the pick. 

Different types of goods-to-person systems have recently gained 
attention, such as shuttle-based and grid-based automated storage and 
retrieval systems (AS/RSs) (Azadeh et al., 2019). By reducing the scope 
of work for human operators to a necessary minimum, goods-to-person 
systems try to reduce unproductive times and increase the pick fre-
quency of order pickers, and in many cases, they establish separated 
workspaces with fixed pick stations. Additionally, these systems also 
impact space requirements or warehouse investment costs, among 
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others (Huang et al., 2015). The technology requirements of the ware-
house typically depend on the industry. For example, e-commerce 
warehouses that are often characterized by a varying workload, small 
orders, large product assortments and tight delivery schedules require 
special technological support to ensure that orders can be picked effi-
ciently (Azadeh et al., 2019; Boysen et al., 2019; Huang et al., 2015). 
Fig. 1 conceptually shows how various performance parameters of a 
warehouse can qualitatively be assessed depending on whether it is 
operated manually or with ordinary automation technology. For 
example, automation technologies can efficiently be used to design 
warehouses with a constant output; however, if there are relevant peak 
loads to be handled, automated systems could lead to unprofitable high 
investment costs and a large overcapacity for most of the time. Although 
human operators have a lower average performance than (partly) 
automated systems, peak loads can be handled by engaging temporary 
workers or using overtime. In addition, warehouses with, e.g., stacker 
cranes draw a large share of their output from just a few units, so the 
failure of one stacker crane causes a significant loss of output and parts 
of the assortment may no longer be accessible at all. Since manual 
warehouses offer often more flexibility and fail-safety, they show ad-
vantages over automated systems. 

Although most studies expect that logistics managers will continue to 
rely on human operators in the foreseeable future owing to their flexi-
bility to pick different goods (Correll et al., 2018), current developments 

in order picking technologies aim to overcome some of the limitations of 
goods-to-person systems (Winkelhaus et al., 2021). Given the different 
strengths and weaknesses of human operators and automated systems 
(Fig. 1), a collaborative order picking system that leverages the indi-
vidual strengths of both could increase the performance of the ware-
house. This paper follows the terminology established by Winkelhaus 
et al. (2021) and refers to hybrid order picking systems (HOPSs) where 
autonomous systems and human order pickers work together on one 
shop floor (Kauke et al., 2020) for a joint target, see Fig. 2 for an example 
(Winkelhaus et al., 2021). Alternative definitions can be found in Ibra-
him et al. (2020). Autonomous systems are highly capable automated 
systems (Endsley, 2017) that are an important component of HOPSs, as 
these differ from traditional goods-to-person systems with respect to 1) 
the extent of temporal interactions, 2) the extent of spatial interactions, 
3) the extent of adaption and interaction, and 4) the congruency of task 
goals and sub-goals (Onnasch et al., 2016) with human order pickers. 
According to the five levels of automation described by Winkelhaus et al. 
(2021), technologies applied in a HOPS need to be at least partly 
context-aware. These systems, for example autonomous mobile robots 
(see Fig. 2 for an example of such a HOPS) or automated guided vehicles, 
have at least, semi-autonomous capabilities, i.e. being intrinsically safe 
for example. Systems that only automate repetitive tasks are not 
considered as HOPS in this paper. 

With this approach, the boundaries of current AS/RSs are dissolved, 
enabling an order picking system that can handle a large range of diverse 
products and that can easily be adapted to changing warehousing re-
quirements. Autonomous mobile robots (AMRs) or advanced AGVs 
could be applied for transporting goods and people, and fully autono-
mous picking robots could support human operators by taking over 
certain tasks (Fragapane et al., 2021). Technical systems that work in a 
hybrid order picking application and that are also able to perform the 
actual picking of goods have already been introduced in practice (see, e. 
g., Fig. 2), but in-depth investigations of such warehouse technologies, 
particularly in a hybrid approach, are scarce. 

As HOPSs have not yet been investigated in detail (this is discussed 
further in Section 2), we address this research gap by studying a HOPS in 
which human operators and autonomous picking robots share the tasks. 
The research objective of this study is to investigate the potential of hybrid 
order picking systems to improve order picking performance for different 
warehouse operating policies and market characteristics. 

To reach this goal, we develop an agent-based simulation model. Our 
analysis shows that HOPSs are generally capable of improving manual 
and automated order picking operations in terms of system throughput 
and total costs per pick. The major determinants of HOPS performance 
are the total workload handled and the assigned item classes (and their 
demand frequency) as well as the occurrence of blocking. 

The remainder of this article is organized as follows: Section 2 re-
views related literature to highlight the research gap addressed in this 
paper. Section 3 describes the simulation methodology and outlines the 

Fig. 1. Simplified capabilities of human operators and ordinary automation 
technology (Boysen et al., 2019; Huang et al., 2015) to meet the operationalized 
requirements of the e-commerce warehouse, as formulated by Boysen 
et al. (2019). 

Fig. 2. Example of a HOPS at Zalando employing TORU robots by Magazino GmbH.  
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simulated HOPS in detail. The simulation results are presented in Sec-
tion 4 and comprehensively discussed in Section 5. In addition, future 
research possibilities are derived. Finally, Section 6 concludes the paper. 

2. Literature review 

Order picking, in general, can be performed manually, automatic, or 
hybrid, with a large variety of possible HOPS setups. We focus on a 
processual and organizational perspective, acknowledging that the 
resulting system relies on technologies in the work environment that are 
not investigated in depth in this article. These enabling technologies are, 
for example, identification and wireless sensor systems, the internet of 
things, or advanced data processing tools based on artificial intelligence. 
For an overview of these technologies, we refer to recent literature re-
views (see, e.g., Glock et al. (2021); Winkelhaus and Grosse (2020); 
Winkelhaus et al. (2021)). 

The literature that is relevant to the HOPS considered in this article 
deals with human–machine interaction in the main physical order 
picking process steps, i.e. traveling through the aisles to the pick loca-
tion, retrieving the required quantity of the item and transporting the 
selected items to the next location or the depot. Technologies employed 
in HOPSs are at least partly autonomous as described above (Endsley, 
2017; Winkelhaus et al., 2021) in contrast to, for example, industrial or 
forklift trucks. These technologies are operated by employees instead of 
automatically adopting to the work environment. 

Two review articles discussed the context of HOPSs: Winkelhaus 
et al. (2021) reviewed the literature related to Order Picking 4.0 and 
considered three relevant order picking systems, among these also 
HOPSs. The authors found that HOPSs are underresearched and only a 
few articles were identified dealing with these systems. Focusing on 
AMRs, Fragapane et al. (2021) surveyed the opportunities of AMRs as 
decentralized robotic applications for material handling, collaboration, 
and full-service provision in intralogistics. Focusing on decision prob-
lems such as zoning and scheduling as well as the number and type of 
vehicles, the authors identified several warehousing applications in 
which AMRs can support and improve work systems. However, the au-
thors concluded that further studies are needed to explore the benefits of 
AMRs and that agent-based simulation is promising for gaining knowl-
edge in this area. 

In the following sub-sections, we take a closer look at two tasks that 
play an important role in order picking: traveling and the transportation 
of goods as well as the retrieval of goods. Both tasks can be supported by 
automated technologies. 

2.1. Support of traveling and transportation 

The first research stream investigates order picking systems in which 
operators interact and collaborate with an AGV. AGVs have recently 
been investigated in an order picking context as robotic mobile fulfill-
ment systems (RMFSs). RMFSs, such as the so-called KIVA system (Li 
et al., 2020), use AGVs to realize a new form of goods-to-person system, 
in which racks are lifted and brought to the operator by AGVs (Boysen 
et al., 2019). RMFSs do not share the workspace with operators and 
perform tasks without human interaction, and they are thus not seen as 
HOPSs in a narrow sense. However, AGVs can also be applied on higher 
levels of automation, which can be considered relevant, owing to a 
deeper interaction between technology and human operators, be it 
spatially, timely, or interactively. 

An alternative, more adaptive type of co-working is based on a 
concept in which the operator follows an AGV to the pick location, picks 
the item, and places it on the AGV. Once the capacity of the AGV has 
been reached, it autonomously travels to the depot and a new AGV re-
places it (Boysen et al., 2019; Löffler et al., 2021). There is an adaptive 
form of direct human-robot interaction within an OP process step. Even 
though picks are still performed manually, the unproductive time of a 
human operator is reduced because of a higher pick density and fewer 

returns to the depot. To ensure that AGV-supported order picking works 
as efficiently as possible, some authors, such as Masae et al. (2020b) and 
Wang et al. (2019), developed routing algorithms that minimize the 
order picker’s travel distance by sequencing picks and defining locations 
where order pickers and new AGVs meet. In addition, Ono and Ishigami 
(2019) developed a routing algorithm for collaborative picking in 
warehouses between operators and AGVs considering different param-
eters, such as the travel speeds of operators and AGVs. The robots carry 
items picked by operators and deliver them to a dispatch area. Related to 
this approach, Yokota (2019) developed a scheduling algorithm in 
which items are picked and placed on an AGV that collects the items 
assigned to a certain batch. 

In addition to these works, Rey et al. (2019) studied AGV-supported 
order picking in an experiment where the AGV also weighs the selected 
items for verification. Finally, Zou et al. (2019) developed a heuristic for 
AGV-supported order picking by considering a zone-picking approach 
that aims at minimizing the total time for picking the items of the 
assigned orders. The investigated system utilizes AGVs to transport 
items between different zones in which operators perform picking tasks 
to complete a customer order. 

As can be seen, most of the cited studies are first attempts to inves-
tigate some types of HOPSs and leave many interactions and scenarios 
unaddressed, leading to the need for further research. 

2.2. Support of retrieving and handling items 

The second research stream includes technologies that support the 
actual retrieval of items; among these systems, cobots are frequently 
discussed. We found few works that addressed the autonomous picking 
of items in related applications, and briefly discuss these works in the 
following. 

Kaipa et al. (2014) developed a framework for bin-picking tasks prior 
to assembly where humans and robots collaborate. In the investigated 
system, items are retrieved by robots, and humans assist them in solving 
problems that are detected during this task, such as grasping failures, or 
humans perform tasks that are too difficult for the robots. Fager et al. 
(2019) and Fager et al. (2020) investigated cobot-supported picking and 
kitting tasks. In such systems, the human retrieves the items, and the 
cobot sorts them. Laboratory experiments indicated that this system 
setup may lead to a lower cycle time variability. The authors also found 
that mounting the cobot on an AGV to sort items while the human re-
trieves items leads to a significant cost reduction when extensive sorting 
is performed. Boudella et al. (2018) also considered kit preparation and 
investigated a hybrid human-robot system. The authors studied a kitting 
system combining both robotic and human picking sections that work in 
series but that are decoupled from each other. The objective of the au-
thors was to reduce the cycle time by assigning items to the robot and 
operator. Coelho et al. (2018) provided a simulation tool for a hybrid kit 
preparation in a manufacturing supermarket. An arriving order is 
assigned to either a human or a cobot in a shared workspace. The results 
suggest that humans perform faster but cobots are more flexible, leading 
to lower variations in the number of kits prepared per minute under 
uncertainty. 

In their simulation study, Kauke et al. (2020) investigated a HOPS in 
a small warehouse with only four aisles and concluded that spatial in-
teractions between humans and robots while performing their tasks 
increase with larger numbers of humans and robots, which has a nega-
tive impact on the number of orders picked per agent. Relying more on 
robot picking, Verbeet et al. (2019) investigated a HOPS in which robots 
perform all order picking tasks but can call for humans in case of picking 
failures. Based on the resulting human intervention, information in a 
database used by the robots to learn how to grasp different items and to 
improve process stability was expanded. 
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2.3. Summary 

Our review shows that studies explicitly addressing the intersection 
of supported manual tasks and adaptive automation technology in a 
shared workspace are scarce. Robotic order picking systems such as 
TORU of Magazino (Magazino GmbH, 2020) were mentioned, for 
example, in the review by Azadeh et al. (2019); however, no research 
explicitly dealing with such systems has been identified despite the 
growing market penetration of these systems (see, e.g., Boston Dynamics 
(2021)). Most HOPS variants that may lead to benefits for certain 
warehouse applications have not yet been discussed, which was also 
highlighted in the review of Winkelhaus et al. (2021). From this, four 
research gaps emerge. First, the identified systems only provide limited 
insights into the various applications that may be considered as HOPSs. 
The operation of autonomous order picking robots together with human 
operators was less frequently studied than the use of semi-autonomous 
AGVs and many interaction scenarios have not been studied at all. 
Second, most of the research on this topic adopts a techno-centric 
perspective and does not study the operator in depth. Hence, the 
possible impacts of human factors, such as picking outside the optimal 
range of the operator, remain unaddressed. Third, the organizational 
and procedural aspects of the proposed systems are rarely considered, 
leading to a research gap concerning the circumstances and actual use 
cases in which the hybrid system has advantages over completely 
manual or completely automated systems. For example, the application 
of such systems in night shifts or for picking preparation to make order 
peaks easier to handle is not discussed, leading to an underestimation of 
possible system benefits. Fourth, the studies we identified discuss only a 
selection of the performance indicators that are relevant in a ware-
housing context, such as the reduction of human errors (Fager et al., 
2020), reduction of cycle time (Boudella et al., 2018), and system 
throughput (Fager et al., 2020; Wang et al., 2019); other important 
parameters, especially cost efficiency, were not addressed in most cases. 

In the following, we address these research gaps and develop a 
simulation model to investigate a collaborative HOPS for which we as-
sume that human operators and autonomous robots work together in a 
business-to-consumer (B2C) e-commerce warehouse. 

3. Simulation model 

3.1. Description of the investigated scenario 

The investigated warehouse has to handle a large product assortment 
with small orders and tight delivery schedules (Boysen et al., 2019). The 
investigated HOPS combines a traditional manual order picking system 
with one in which autonomous robots pick the requested items. The 
functionality of the robots is comparable to that of TORU of Magazino 
(see Fig. 2), which is a market-ready autonomous robot for order 
fulfillment in a manual warehouse. Our literature review indicated a 
research gap with respect to such systems. In the considered HOPS, ro-
bots and operators travel through the aisles of the warehouse and pick 
items from the shelves. The two teams (humans and robots) have the 
following characteristics: 

Human team: The work of human operators in the HOPS is compa-
rable to the traditional manual processes described above. The perfor-
mance of the operators is not restricted by the externally given 
performance of the automated system, as would be the case if an AS/RS 
was used. Therefore, the HOPS can benefit from human flexibility and 
adaptability and can also manage peak loads through the flexible 
deployment of operators (which is common in e-commerce warehouses, 
for example), while humans can benefit from actions the robots perform 
that lower their workload. 

Autonomous robot team: Autonomous picking robots work as co- 
pickers and can be assigned to tasks that are not performed by 
humans. The robots are intrinsically safe and thus can perform their 
tasks together with operators without security fences or similar 

equipment. The robots receive pick locations, travel to the right loca-
tion, identify it, pick the items, confirm the pick, transport the items, and 
deliver the completed batches to the depot, where the items are merged 
by operators. Although the variety of goods that can be picked by 
market-ready robots is still limited, a certain level of standardization of 
goods can be assumed because of pre-packaged or similarly shaped 
goods such as books or shoe boxes (Magazino GmbH, 2019b). Today, 
autonomous picking robots are slower in retrieving goods from shelves 
than humans; however, they are able to work continuously without the 
need for rest breaks, except for charging. Nevertheless, they require an 
initial investment and operating costs (Magazino GmbH, 2019a). 

Owing to the combination of human operators and decentral- 
autonomous picking robots, a fail-safe operation of the HOPS is guar-
anteed. In addition, the HOPS under study also considers a human- 
centered work design, which matches the definition of Order Picking 
4.0 as a sociotechnical system (Winkelhaus et al., 2021). 

3.2. Agent-based simulation 

We aim to analyze the performance of the HOPS under different 
operating policies and market characteristics. As real implementations 
of HOPSs are still scarce and analytical methods usually lose accuracy 
and efficiency when dealing with highly dynamic and complex systems 
(Borshchev & Filippov, 2004), simulation is considered to be a more 
suitable approach for this study. Therefore, an agent-based simulation 
(ABS) model was developed using Tecnomatix Plant Simulation 15. An 
ABS usually consists of three components (Borshchev & Filippov, 2004): 
1) agents with individual behavior rules, 2) direct or indirect in-
teractions, and 3) environmental models. These unique features makes 
ABS well-suited for this study. The three components are briefly 
addressed as follows: 

1) Agents and individual behavior rules: The HOPS consists of two 
teams, human operators and autonomous picking robots, which have 
different characteristics. This leads to insufficient knowledge about the 
behavior of the system. By modeling operators and robots as agents, a 
natural representation of both can be provided, which generates the 
system behavior from a “bottom-up” perspective. 

2) Interactions: With several agents working in the same area, in-
teractions between them are inevitable. For example, one agent may 
block another in a picking aisle. The occurrence of such interactions is 
difficult to predict. Hence, for each agent, behavior rules should be 
defined, based on which they can make individual decisions when 
different interactions occur. ABS, as a decentralized approach, is a 
suitable tool for measuring the impact of such interactions on the sys-
tem’s performance. 

3) Environmental models: To create a working environment for the 
agents, certain process flows need to be represented as a discrete-event 
simulation (DES) model. In our case, for example, creating orders is 
actually an external process and thus simulated in a top-down manner 
that cannot be affected by the behavior rules of each agent. ABS can 
easily incorporate DES mechanisms and provide a realistic simulation 
model. 

ABS, a fairly novel approach, has recently been introduced in studies 
of warehouse operations. In an order picking context, ABS has mainly 
been used to study goods-to-person systems, such as AGV-based (Ribino 
et al., 2018), multi-shuttle (Güller & Hegmanns, 2014), and cellular 
transport systems (Güller et al., 2018). Analogously, ABS has also been 
applied to investigate more traditional person-to-goods systems (e.g. 
Shqair et al., 2014). Furthermore, efforts have been made to also 
consider human factors in order picking. Incorporating human route 
deviations (Elbert et al., 2017), picker blocking (Franzke et al., 2017; 
Heath et al., 2013), and carrying capacities of pickers (Elbert & Müller, 
2017) led to more realistic simulation models. Nevertheless, the differ-
ence between ABS and DES is vague (Siebers et al., 2010). ABS, as rec-
ommended by Fragapane et al. (2021), is suitable for studying systems 
with autonomous mobile robots, due to its nature of decentralized 
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decision making which enables the model to mimic the behaviors of self- 
regulating and self-governing resource units and their interactions. 

3.3. Conceptual model 

The simulation model is organized in three functional blocks (a, b, 
and c), as summarized in Fig. 3. Block a) prepares the order picking 
process on the system’s side, which mainly includes setting the 

parameters for the simulation experiment and creating the warehouse 
environment. The assumed warehouse applies class-based storage with 
three item classes (A, B, and C) defined by their sales volume. Each item 
has the same stock quantity. The simulation model stores the items on a 
storage list and customer orders on an order list. Two basic rules are 
applied during the creation of orders. First, orders with out-of-stock 
items will be ignored in the current working shift because the ware-
house is unable to meet all their requirements, which corresponds with 

Fig. 3. Conceptualization of the simulation model.  
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the real-world situation in which such orders can only be fulfilled after a 
replenishment process. Second, a turnover rate is assumed so that 
different sales volumes of the three item classes are guaranteed. The 
order creation process terminates when the first item class runs out of 
stock completely. This enables us to create a large number of consistent 
orders from the stock that is assumed not to be refilled within the 
simulated period of time (working shift of 8 h) and to fully measure the 
performance of the HOPS in one working shift without any idle time. For 
a detailed description of the relevant parameters and assumptions, we 
refer to Section 3.4. 

Based on the two rules stated above, the order generation process is 
defined as follows: 

1) Generate the order size randomly according to the triangular distri-
bution (1,2,6). Order line(s) are generated accordingly; 

2) For each order line, define the item class (A, B, or C) randomly ac-
cording to the predefined turnover rate for the three classes;  

3) Define the needed item within the remaining stock of the item class 
randomly according to a uniform distribution;  

4) Mark the item defined in Step 3 as “assigned to orders” and update its 
stock quantity. When the stock quantity of one item turns to 0, it will 
be marked as out-of-stock, so that it does not appear on new orders 
afterwards;  

5) Repeat Steps 1 to 4 until any item class runs completely out-of-stock. 

Block b) starts with a working shift and is driven by the agents’ 

actions. The system first assigns pick lists to the agents. Accordingly, the 
agents plan their pick tours by translating their pick lists into a combi-
nation of the eight basic actions 1) “Start”, 2) “End”, 3) “Pick”, 4) “Move 
on aisle”, 5) “Switch lane”, 6) “Enter aisle”, 7) “Exit aisle”, and 8) “Move 
on cross aisle” (see Fig. 4). 

The result is an individual action list that serves as a guide for the 
agent to finish the current pick tour. Each tour starts with the agent 
leaving the depot. Possible congestion could occur when multiple agents 
try to start their tours at the same time (Chen et al., 2016). In our case, 
we avoid such congestion by releasing agents successively from the 
depot. The time interval between each agent leaving the depot is 3 s, 
which corresponds to the time a human operator would need to move to 
the first picking aisle (Franzke et al., 2017). The agents move through 
the aisles and collect all requested items. Then, they return to the depot, 
sort the items, and deliver the necessary data to the system. Subse-
quently, the agents receive new orders and repeat this procedure until 
the end of the working shift has been reached. In addition to this stan-
dard cycle, blocking is a relevant parameter for the system efficiency. In 
many practical cases, operators have to manage picker-blocking situa-
tions in which the process is disturbed by the congestion caused by 
multiple operators in a storage area (e.g. Chen et al., 2016). Earlier 
research has focused on two main types of picker blocking: 1) blocking 
within wide aisles, in which operators are always able to pass each other 
in the picking aisles (e.g. Parikh & Meller, 2009), and 2) blocking within 
narrow aisles, in which passing is not possible (e.g. Gue et al., 2006). In 
our study, passing in picking aisles has certain limitations and conse-
quences, meaning that passing causes lane switching and extra travel 
distance (see e.g. Heath et al., 2013). Adopting the classification of 
picker-blocking situations from Klodawski et al. (2018), three types of 
blocking events are differentiated in our model. Fig. 5 illustrates the 
different blocking configurations. The events “Pick Column Blocking” 
and “Total Aisle Blocking” are independent of the actual agent type 
(human or robot), while the event “Within-Aisle Blocking” depends on 
the involved agent types (humans and robots) that are described in 
detail in Table 1. 

In addition to blocking, overtaking was also considered. Humans are 
able to overtake robots within the picking aisles because of their higher 
travel speed; however, this also requires extra “switch lane” action(s). 

The model only considers blocking within the picking aisles, which 
means that blocking in cross aisles and the associated negotiation pro-
cess is not considered (see, e.g., Franzke et al., 2017). The blocking 
situations are detected by humans when another agent stands directly in 
front of them. The process of determining the priority is immediately 

Fig. 4. Eight basic actions in the order picking process.  

Fig. 5. Classification of picker-blocking events.  
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activated to solve the blocking problem. The equivalent process for ro-
bots starts when they detect another agent via their sensor within 1.5 m. 
To simulate the braking process, the robots then move at half-speed in 
this warning zone and stop when coming too close before the resolution 
of the blocking starts. Otherwise, if the other agent switches lanes during 
the half-speed period, the robots will directly switch back to the full- 
speed mode. 

Block c) works as an interface between agent actions and simulation 
results. It is activated at the end of each tour and checks if the orders 
have been completed. When the working shift ends, the system termi-
nates all activities immediately and summarizes the data for the simu-
lation results. As the main performance measure, the number of items 
picked in completed orders per shift (throughput) is counted. Further-
more, behavioral data are measured, in particular, the average times for 
traveling and retrieving and the time to solve blocking situations for 

each pick tour. 

3.4. Simulation parameters and assumptions 

The warehouse under study is characterized by several assumptions 
that rely on relevant literature in this field (see, e.g., Elbert et al., 2017; 
Franzke et al., 2017) and observations from real-world cases to guar-
antee the comparability and transferability of results and the relevance 
for practice. These characteristics are summarized in Table 2. 

Customer orders are randomly generated with a size drawn from a 
triangular distribution (1,2,6), which gives the representative order 
sizes for B2C e-commerce warehouses (Moons et al., 2019). The turn-
over rate of the three item classes, representing the probability of one 
item from classes A/B/C being needed, is either 80%/15%/5% or 50%/ 
30%/20% (see, e.g., Dijkstra & Roodbergen, 2017). The storage capacity 
for these item classes is predetermined according to the storage areas A, 

Fig. 6. Warehouse layout, shelving unit, and stored item.  

Table 1 
Classification of picker blocking and negotiation rules.  

Blocking event Negotiation 

Pick Column 
Blocking 

Definition: Agent’s next pick position is occupied. 
1. The performing agent has higher priority; the blocked agent 
stops and waits until the pick position is free. 

Within-aisle 
blocking 

Definition: Agent is blocked while moving to the next pick position. 
1. The agent executing “Pick” & “Switch lane” has the highest 
priority and cannot be interrupted. 
2. When a human and a robot move against each other in the 
same lane, humans have priority over robots, and robots switch 
lanes for humans (I). 
3. When two robots move against each other in the same lane, 
one randomly selected robot changes lanes. 
4. When two humans move against each other in the same lane, 
their priority is defined according to the next action on their 
original action list: 

4.1. The ones with the next action “Pick” (II), “Exit aisle” (III), 
and “Switch lane” (IV) have high, medium, and low priority, 
respectively, in accordance with the number of resulting extra 
“Switch lane” if the agent changes the picking route: II would 
cause two extra lane switches, III one extra lane switch, and IV 
no extra lane switch). 

4.2. If two humans have the same next action to perform, the 
one closer to the destination has higher priority. 
5. The agent with lower priority adjusts the route on the action 
list and executes the new picking route. 

Total aisle 
blocking 

Definition: Agent is blocked at the entrance of the aisle. 
1. Each aisle only allows up to two agents in it at the same time. 
2. When an aisle is full, the agents coming next queue at the 
aisle’s entrance. 
3. The agent next in the queue can enter the aisle as soon as the 
aisle has free capacity again.  

Table 2 
Features of the warehouse.  

Characteristic Configuration Reference 

Warehouse shape Rectangular, ten equidistant picking 
aisles, and three cross aisles, as 
shown in Fig. 6 

Elbert et al., 2017; 
Franzke et al., 2017 

Aisle shape and 
capacity 

3 m width; two lanes allowing no 
more than two agents at the same 
time in each picking aisle, no 
restriction on cross aisles 

Assumption for the 
simulation based on 
observations in practice 

Storage zones Two zones, one with class A items 
near the depot, the other with class B 
items in the back of the warehouse 

Assumption for the 
simulation based on 
observations in practice 

Storage 
assignment 

A&B items: in the respective zones 
inside the golden zone of picking (on 
3rd–5th shelf layers) 
C items: on each shelving unit in both 
zones outside the golden zone of 
picking (on 1st, 2nd, & 6th shelf 
layers) 

Based on the golden zone 
concept (Petersen et al., 
2005) 

Depot One central depot in the middle of 
the front cross aisle 

Elbert et al., 2017; 
Franzke et al., 2017 

Shelf size Width: 1.5 m, depth: 0.4 m, height: 
2.1 m 

Based on observations in 
practice 

Shelf capacity 126 items on 6 layers (21 × 6) Result of the assumptions 
on shelf size and item 
shapes 

Items per shelf 
level 

21 identical items Assumption for the 
simulation 

Item shape Cubes 200 × 100 × 300 mm (based 
on typical shoe boxes) 

Based on observations in 
practice 

Storage space per 
item class 

Class A: 20%, class B: 30%, and 
class C: 50% 

See prior assumptions  
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B, and C. All orders have the same priority and will be processed in 
accordance with the “first come, first served” principle. 

The warehouse operates one eight-hour working shift every day. All 
customer orders are assumed to be known at the beginning of each 
working shift, such that no idle time is required to update orders. The 
investigated main scenario is based on the concept of a HOPS. Specif-
ically, a human and a robot team are formed. The order assignment 
follows each team’s pre-assigned workload according to the item classes 
and respective turnover rates. Thus, each item in stock is pre-assigned to 
a team based on its item class (A, B, or C). If the item appears on an 
order, a member of the team responsible for that item picks it. As a 
result, some orders are split into two parts, with one part being pro-
cessed by a human and the other part by a robot that collaborates for 
order fulfillment. 

The agents have the characteristics outlined in Table 3. We assume 
that the retrieval time of humans is variable. According to the golden 
zone concept, items stored between the height of the human waist and 

shoulders are easier for them to retrieve (in our model, we assign A and B 
items to this zone). For C items that are stored outside the golden zone, 
the retrieval time increases accordingly (+4 s to 16 s or +8 s to 20 s per 
retrieval). 

We made the following assumptions based on market information to 
assess the investment and operating costs of the system. The monthly 
costs for one human operator are 3200 EUR. For the robots, the total 
costs are the sum of the depreciation costs (based on the investment 
costs of 55,000 EUR for each robot with a service life of six years), 
service costs (0.06 EUR for each selected item) (Magazino GmbH, 
2019a), and additional operating costs including maintenance and en-
ergy costs (estimated 1000 EUR for each robot yearly). 

Table 4 shows that our simulation studies 50 different parameter 
combinations (see column 2), the results of which are presented in 
Sections 4 and 5. The simulation study consists of the following exper-
iments: First, as a benchmark, basic scenarios in which only human op-
erators or only robots work in the warehouse are considered and 
throughput and costs are investigated for these systems (experiment 1 in 
Table 4). The impact of different routing policies (experiment 2 in 
Table 4), turnover rates (experiment 3 in Table 4) and of the golden zone 
concept (experiment 4 in Table 4) on warehouse performance are 
investigated for this basic constellation as well. Routing policies influ-
ence the operators’ traveling time and are therefore regarded as one of 
the most important decision problems in order picking (Masae et al., 
2020a). Second, different collaboration scenarios are investigated based 
on the HOPS concept, in which the robots and humans share customer 
orders based on a pre-assignment of item classes to the two teams (ex-
periments 5 and 6 in Table 4). Again, the impact of different routing 
policies is investigated (experiment 7 in Table 4). Finally, in Section 5, 
we study the impact of some limiting assumptions we made in the 
previous experiments to further discuss the potential economic benefits 
of the investigated HOPS (experiments 8 and 9 in Table 4). 

Note that all the experiments are described in a short form with the 
following logic: turnover rate of the three item classes (80%/15%/5% or 
50%/30%/20%) – assignment rules (independent for human agents and 
robot agents) – routing policy for humans (H) and robots (R) (S: S-shape, 
LG: Largest gap, Re: Return) – golden zone retrieval (GZ 16 s or 20 s, only 
if relevant). The resulting description is then, for example, 80/15/5-A/ 
BC-H(LG)R(Re)-(GZ16), which means that in this case we study an 80/ 
15/5 turnover rate, operators are responsible for A items, and robots are 
responsible for B and C items. The routing policies implemented here are 

Table 3 
Characteristics of the agents.   

Characteristic Configuration Source 

Human Base area (L × W) 1500 mm × 500 
mm 

Based on one person equipped 
with a picking cart  

Batching capacity 8 orders (max. 60 
items) 

Gong and de Koster (2008)  

Velocity 1 m/s Giannikas et al. (2017)  
Time for 
retrieving one 
item 

12 s (for A & B 
items) 

Le-Duc and de Koster (2007)   

16 s or 20 s (for C 
items) 

Based on the golden zone 
concept (Petersen et al., 2005; 
Battini et al., 2016)  

Time for sorting 12 s/order Estimated based on Marchet 
et al. (2011) 

Robot Base area (L × W) 1500 mm × 685 
mm 

Based on TORU data sheet ( 
Magazino GmbH, 2019b)  

Batching capacity max. 16 items   
Speed 0.8 m/s Based on observations in 

practice  
Time for 
retrieving one 
item 

20 s/item   

Time for sorting 20 s/item   
Range of sensor 1.5 m   

Table 4 
Parameter configurations of the simulation experiments.  

Experiment No. of 
experiments 

Assignment rules 
(Human/Robot) 

Turnover rate 
for three item 
classes 

Collaboration Golden 
zone 

Routing (H(X)R 
(X)) 

Zoning Batching Storage 
assignment 

1 – Basic runs 2 ABC/- ; -/ABC 80/15/5 None Constant H(S)/R(S) Constant Constant Constant 
2 – Routing impact 4 ABC/- ; -/ABC 80/15/5 None Constant H(Re)/H(LG) 

/R(Re)/R(LG) 
Constant Constant Constant 

3 – Turnover rate impact 6 ABC/- ; -/ABC 50/30/20 None Constant H(S)/H(Re)/H 
(LG) /R(S)/R 
(Re)/R(LG) 

Constant Constant Constant 

4 – Golden zone impact 12 ABC/- 80/15/5; 50/ 
30/20 

None 16 s/20 s 
for C items 

H(S)/H(Re)/H 
(LG) 

Constant Constant Constant 

5 – Type of collaboration 4 AB/C ; A/BC 80/15/5; 50/ 
30/20 

Collaborative Constant H(S)R(S) Constant Constant Constant 

6 – Type of collaboration 
(Appendix A1) 

4 BC/A ; C/AB ; 
AC/B ; B/AC ; 

80/15/5 Collaborative Constant H(S)R(S) Constant Constant Constant 

7 – Routing impact in 
collaboration 

2 A/BC 50/30/20 Collaborative Constant H(LG)R(LG) H 
(S)R(LG) 

Constant Constant Constant 

8 – Impact of cost 
assumptions 
(Discussion, Appendix 
A2 & A3) 

8 A/BC 80/15/5; 50/ 
30/20 

Collaborative Constant H(S)R(S) Constant Constant Constant 

9 – Impact of storage 
assumptions 
(Discussion & 
Appendix A4) 

8 AI/BC ; I/ABC 80/15/5 Collaborative Constant H(S)R(S) Constant Constant Mixed 
storage  
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the largest gap policy for humans and the return policy for robots. GZ 
indicates golden zone retrieval, and 16 represents the time in seconds for 
humans to search the pick location, retrieve an item, and confirm the 
pick for items outside the golden zone. 

3.5. Validation 

Simulation models should be validated throughout the entire life-
cycle of a simulation study, hence, from the conceptual model to the 
computer model and the output data. However, there is no single 
framework or predefined order of activities that is proven to be suitable 
for every simulation study (Franzke et al., 2017). For this study, because 
HOPSs are still rarely used in practice, the conceptual model of the 
simulation was built based on related research and observations in 
practice and implemented gradually in the simulation software. First, a 
warehouse with only one picking aisle was built to test if the agents 
move, stop, and pick as planned. Then, all the other components of the 
warehouse were successively added to ensure that actions like “Enter/ 
Exit aisle” and “Move on cross aisle” were correctly simulated. By using 
the debugging and breakpoint functions provided by the software, 
programming errors could be avoided in the codes. Several check 
functions were added to ensure that the picking process ran as planned. 
For example, the accuracy of task execution was checked by the system 
each time the agents removed an item from the shelves or returned to the 
depot to ensure that the selected items corresponded to customer orders. 
The implementation of routing policies and picker blocking situations 
could be validated by observing the graphical animation of the ware-
house and agents during the simulation runs. Moreover, the target 
values of the agents’ predictable behavior (e.g., the travel time of each 
tour) were calculated and compared with the measured values to ensure 
that the results of the simulation are credible. Finally, we validated the 
output data using the confidence interval. For each system setting, a 
number of observations (100 in most cases) were made, such that the 
95% confidence intervals for the output data were smaller than 1% of 
their mean values. 

4. Results 

This section presents the results of the simulation experiments. The 
cost analysis was based on the costs per pick (on the y-axis) over the 
system throughput (on the x-axis, indicating the total number of items 
picked in completed orders per working shift). The experiments for the 
different scenarios started from the minimum required number of agents 
in the system, that is, one human or one robot for the benchmark cases 
(human or robot OPS) and one human and one robot for the HOPS. Each 
experiment generated one point (cost-throughput combination) in the 
coordinate system. By involving one additional agent (human or robot) 
in the system, additional points were recorded as simulation results. This 
was repeated until either team finishes all the orders within a daily shift 
(idle time occurred) or the HOPS no longer achieved cost advantages. In 
the first case, the cost advantages of the HOPS were only partially 
analyzed as the stock quantity counted as a restriction and the simula-
tion stopped within the eight-hour working shift when the stock was 
empty. Creating more orders was not possible because replenishment 
was necessary. Thus, these scenarios were not included in the results. 
Furthermore, as employing decimal units for the number of agents was 
not realistic, we transformed the cost-throughput combinations result-
ing from successively increasing the numbers of agents within each 
scenario into cost curves to estimate the costs per pick within two points. 
This estimation can be realized in practice, for example, as a temporary 
working staff in warehouses. 

4.1. Benchmark scenarios: Human and robot OPS 

In the first step, the case in which only one type of agent (human or 
robot) works in the warehouse is analyzed (Figs. 7 and 8). These sce-
narios serve as benchmarks for evaluating the HOPS’ performance. The 
figures show increasing costs per pick for all tested scenarios, as higher 
daily throughput requires more agents in the system, causing more 
blocking situations (particularly total aisle blocking), which lowers the 
overall picking speed and effectiveness of assigning additional agents. 

Fig. 7. Cost curves of human and robot OPS for different routing policies (turnover rate: 80/15/5).  

Fig. 8. Cost curves of human and robot OPS for different routing policies (turnover rate: 50/30/20).  
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As can be seen, robots have cost advantages at lower throughputs per 
working shift; however, they are outperformed by humans when higher 
throughputs are required. Because robots work slower than humans, 
they suffer more from blocking for two reasons: 1) Robots remain longer 
in the picking aisles and in front of pick locations, which may result in 
longer blocking times. 2) More robots than humans are needed for the 
same throughput because robots pick slower, leading to a higher 
blocking frequency. Thus, break-even points can be observed in Figs. 7 
and 8 that indicate the number of picks at which the system favorability 
changes. 

As expected, we found that the applied routing policy has a strong 
impact on the system performance. For both human OPS and robot OPS, 
the cost curves show the order LG < S < Re, meaning that the return 
policy causes the highest costs per pick. Note that within each item class, 
random storage is applied, and the middle cross aisle separates zone A 
and B. This indicates that in each zone, most of the pick locations (for A 
and B items) are randomly distributed. Previous studies have shown that 
LG is favored for such warehouse settings when the number of picks per 
aisle is approximately less than 3.8 (Hall, 1993) and Re generally leads 
to longer travel distance (Dijkstra and Roodbergen, 2017), which was 
also proven by further results of our validation tests. 

In contrast to the turnover rate of 80/15/5, the pick positions are 
distributed more homogenously when analyzing a 50/30/20 turnover 
rate. This leads to a longer average travel time per pick and higher costs 
for the same total number of picks. In contrast, the change in the turn-
over rate reduces congestion in the warehouse, which flattens the cost 
curves and enlarges the range of the robots’ cost advantages. We can 
observe this, for example, in the case of total aisle blocking. The agents 
are spread out more homogenously in the two zones and in different 
aisles, reducing the probability of being blocked in front of a fully 
occupied aisle. In the case of 30 human operators with an S-shape policy 
for example, the average travel time increases from 18.35 s/pick (80/ 
15/5) to 21.67 s/pick (50/30/20), while the total aisle blocking de-
creases from 4.80 s/pick (80/15/5) to 3.66 s/pick (50/30/20). For 30 
robots with an S-shape policy, the travel time is then 29.73 s/pick (80/ 
15/5) and 34.22 s/pick (50/30/20), and the total aisle blocking 6.65 s/ 

pick (80/15/5) and 4.90 s/pick (50/30/20). 
Considering different retrieval times for items stored outside the 

golden zone in the human OPS (see assumptions in Table 3), the average 
time needed for picking increases accordingly. Because there are more 
C-items (stored outside the golden zone) to be picked in case of a 50/30/ 
20 turnover rate compared to a 80/15/5 turnover rate, the effect of the 
golden zone assumptions can be observed more clearly. In particular, the 
golden zone assumptions counteracted the reduced blocking times for 
different turnover rates in this scenario. 

4.2. Collaborative HOPS with S-shape routing policy 

We now investigate the case in which humans and robots collaborate 
in a HOPS. In the first step, it is assumed that all agents use only S-shape 
routing, which is the most frequently applied policy in practice (Masae 
et al., 2020a). If we successively add agents to one team (either humans 
or robots) for a predefined order assignment rule, we obtain a U-shaped 
system cost curve, meaning that the costs per pick decline first and then 
increase from a certain turning point. In this section, we explain this U- 
shaped pattern, based on which a cost analysis is performed. 

4.2.1. U-shaped cost curves 
The shape of the cost curves depends on the extent to which the 

workload is balanced between collaborating teams. Balancing the 
workload between teams according to team size has a strong impact on 
the costs per pick for the overall system. For example, when one team 
processes tasks faster than the other team, which results from a larger 
team size, a processing backlog occurs on the order list because some 
orders are not completed. This will cause higher picking costs in the 
following manner: initially, the faster team continues to process its share 
of orders, and the slower team is not able to keep up with this speed. In 
practice, partially completed orders can often not be delivered to cus-
tomers and need to wait for completion. Additionally, because agents 
are not allowed to stay idle until the other team has caught up, the faster 
team always continues to process new orders, which further decreases 
the speed of the slower team due to additional blocking. In sum, an 

Fig. 9. Cost analysis of HOPS.  
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efficient constellation of robots and humans allocates agents in a 
balanced manner according to the tasks assigned to the respective team, 
so no resources are wasted and orders are processed in an equal pace. We 
call this new parameter of system design the team configuration. To 
illustrate the impact of team configuration on the system performance, 
we define the effective throughput as the number of items picked in 
completed orders per shift. Thus, the items that are picked but not 
delivered in one working shift due to the unbalanced workload between 
the teams are not included in the HOPS’s throughput and would directly 
cause higher costs per pick. 

4.2.2. Cost analysis 
Based on the previous descriptions, we investigate the collaborative 

HOPS scenarios “AB/C” and “A/BC,” in which items outside the golden 
zone (C items) and, respectively, the items distant from the depot (B 
items) are assigned to the robot team, as these two item classes cause 
higher human physical workload. To clearly show the balance of 
workload between two teams in HOPS (see 4.2.1), points with the same 
robot team size are combined into curves. The aim is to analyze the cost 
advantages of the HOPS in these scenarios for two different turnover 
rates (see Fig. 9). The parts of the cost curves that lead to higher costs per 
pick than in the human OPS are not shown. As can be seen in Fig. 9, by 
assigning only C items to robots (scenarios a and c: “AB/C”), the HOPS 
cost curves lie partially below the human OPS’s cost curves with golden 

zone picking consideration. However, cost advantages are not observed: 
HOPS is outperformed either by humans or by robot OPS. In contrast, if 
class B items are also assigned to the robot team (scenarios b and d: “A/ 
BC”), cost reductions comparing to the benchmark scenarios can be 
observed in HOPS (see red break-even points). 

To validate this result, we tested the HOPS with other work assign-
ment options, as shown in the Appendix (Fig. A1), including scenarios in 
which other duties are assigned to robots (such as picking A items). As 
can be seen, cost advantages mainly result from assigning B items to 
robots (scenarios AC/B or A/BC). In other cases, the HOPSs are out-
performed either by human OPS (ABC/-) or by robot OPS (-/ABC). For a 
discussion of these results and the possible benefits of the HOPS, we 
refer to Section 5. 

4.3. Collaborative HOPS with different routing policies 

As stated in Section 4.1, the applied routing policies affect the system 
throughput and costs per pick. In this section, in the light of the results 
from benchmark scenarios in Section 4.1, we investigate the effect of 
two new routing policy combinations on the HOPS performance: H(S)R 
(LG) and H(LG)R(LG). The S-shape policy (H(S)R(S)) serves as a 
benchmark. Fig. 10 presents two example cases, in which 15 robots 
(assignment rule: AB/C), 45 robots (assignment rule: A/BC), and a 
varying number of humans collaborate. As can be seen, LG again, 

Fig. 10. Exemplary cost curves of HOPS for different routing policy combinations for a varying number of humans and a given number of robots.  

Fig. 11. Logic of creating a representative cost curve for each routing policy combination.  
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appears to be a better policy for both teams. It generally leads to lower 
costs per pick than S, similar to the results in benchmark cases. This 
finding also holds in other cases (other robot team sizes) investigated in 
this simulation experiment. 

To quantify the cost advantages of the HOPS for different team 
configurations, we plotted curves representing each routing policy 
combination assuming that it is not realistic to employ decimal units for 
the number of agents (see Fig. 11). The results (cost-throughput com-
binations) were obtained by varying the size of either collaborating team 
by one agent each time, as one agent is the smallest unit when measuring 
different system performances. Among the two types of agents in the 
HOPS (humans and robots), robots have a lower speed of processing 
orders. Adding one robot to the system results in a comparatively 
smaller increase in system throughput. This entails that when we 
investigate the simulation results for a fixed robot team size, more sys-
tem throughputs and the corresponding costs per pick can be sampled to 
analyze the system performance of the current routing policy combi-
nation. Therefore, we start by defining the cost-optimized number of 
humans for each robot team size. The resulting team configurations 
point to the number of humans that minimize the system’s costs per pick 
for the current robot team size. These are denoted as “optimal points” in 
Fig. 11. Connecting all optimal points leads to a saw-toothed curve (blue 
curve). As mentioned above, robots work slower than humans. Hence, 
for different sizes of the robot team, the same number of humans could 
be cost optimal. However, the effectiveness of adding a further human 
depends on the current robot team’s capacity to support the additional 
picks performed by the additional human to complete orders, which 
leads to a better or worse workload balance. We then fix the human team 
size among the optimal points and define the cost-optimized robot team. 
Those achieving the lowest costs per pick for each human team size are 
selected again (“optimal + points”). Combining these points, we see a 
relatively smooth curve representing the costs of a particular routing 
policy combination. 

To quantify the cost advantages of a HOPS, the “50/30/20-A/BC” 
scenario is chosen for the subsequent analysis (see Fig. 12), as it is the 
only scenario that is not restricted by the inventory quantity we defined 
for the analysis. The cost curves derived using the above-mentioned 
method correspond to the previous findings: with the order of H(LG)R 
(LG) < H(S)R(LG) < H(S)R(S), LG is preferred in the current HOPS for 
both teams. We conclude that the HOPS can provide further cost ad-
vantages. With varied routing policy combinations, it can be observed 
that the HOPS always outperforms the two benchmark OPSs for a certain 
range of system throughput. 

5. Discussion 

Our results showed that the investigated collaborative HOPSs are 

generally capable of reducing the costs per pick compared to pure 
manual or pure robot order picking systems. However, we also found 
that HOPSs outperformed the benchmark systems only for a relatively 
small number of parameter configurations. In this section, we discuss 
some main assumptions made throughout the analyses to gain deeper 
insights into the possible benefits of HOPSs in real-world applications 
and to identify future research opportunities for HOPSs. 

5.1. Cost advantages 

We investigated an ideal situation in which the robots are able to 
pick all items without additional costs and without making mistakes. In 
a realistic situation, this would for example imply that goods have to be 
packaged (e.g. in standardized boxes) prior to storage to allow robot 
picking. In e-commerce, in which small batch sizes are usually retrieved 
(Yang et al., 2020), this might be a plausible solution. Nevertheless, this 
additional cost, together with the increased capital tied up in inventory, 
needs to be considered. Additionally, in real warehouse applications, 
errors may occur in which robots need the support of a human operator. 
The number of interventions would likely increase with the system 
throughput the robot team is responsible for, leading to additional costs 
for the robot team that are not yet included in the model. 

To simulate these additional costs, we assumed higher costs per pick 
for the robot team as shown in Figs. A2 and A3 in the Appendix. Because 
operators can pick all the items (not only standardized ones), no addi-
tional costs for the human team were considered. For the case of a 
turnover rate 80/15/5 A/BC, the number of items and picks the robot 
team was responsible for was smaller than those in the 50/30/20 case, 
leading to fewer additional costs for pre-packaging and interventions. 

From Figs. A2 and A3, we can conclude the following: The cost 
curves of the robot system shift upward, while the costs for the manual 
system remain unchanged. This increases the range of system through-
puts for which the collaborative HOPS outperforms the human and robot 
OPS. This is because the HOPS is less sensitive to increased robot costs 
than is the pure robot system. Increasing the number of items picked by 
the robots also increases the additional costs considered in this scenario. 
This leads to the case in which the collaborative HOPS is beneficial for 
nearly all system throughputs. As can be seen in Fig. A3, the effect is 
different in the case of a throughput of 50/30/20. Owing to break-even 
points that differ in this scenario, the range in which the HOPS is pref-
erable is smaller. 

5.2. Mixed storage warehouses 

As mentioned above, robots may not be able to grasp all the items 
stored in the warehouse. Instead of pre-packaging these items (e.g., 
putting them into cardboard boxes the robots can pick), they could 

Fig. 12. Comparison of representative cost curves for different routing policy combinations (scenario: 50/30/20-A/BC).  
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alternatively be assigned to operators. We simulated this situation in 
which a set of items can only be picked by humans. These robot- 
incompatible items (denoted as I) occur randomly in the three item 
classes and are stored together with other standard packed items. We 
varied the share of these incompatible items ranges between 10% and 
70% of the storage quantity and – besides the benchmark scenarios – 
assigned 1) only incompatible items (I/ABC) and 2) incompatible and A 
items (AI/BC) to the operators while robots are responsible for all other 
items (see Fig. A4 in the Appendix). The robot-benchmark scenario is 
presented in the appendix, but it is not applicable in this scenario as 
robots are not able to finish all orders owing to incompatible items. 

The following conclusions can be drawn from Fig. A4: In AI/BC, 
humans take over parts of the robots’ responsibilities in A/BC, as some 
items in classes B and C are incompatible with robots. With an increased 
percentage of incompatible items, the cost curve of the HOPS converges 
to the human OPS (ABC/-) cost curve. In contrast, I/ABC is comparable 
to -/ABC, if the share of incompatible items is low. As can be observed in 
scenario a), the lower bound of the cost curves is similar to the cost 
curves of the robot system (-/ABC), meaning that cost advantages of the 
HOPS over the manual system (ABC/-) can only be observed at lower 
system throughputs. By increasing the number of incompatible items, 
the workload of humans increases, causing an increase in deviations of 
the cost curve compared to that of the basic scenario -/ABC. 

In fact, in the scenario I/ABC, warehouse zones are not pre-assigned 
to one team, leading to more frequent blocking between humans and 
robots. Hence, the resulting system cannot benefit from the robots’ 
lower costs per pick at a lower throughput, and it also leads to longer 
blocking times in the human team caused by robots. For this reason, I/ 
ABC is, in the tested scenarios, always outperformed by either the 
manual system or the HOPS with the assignment rule AI/BC. This sug-
gests that, in mixed storage warehouses, our previous statements still 
hold. A HOPS with assignment rule AI/BC, modified from A/BC, still 
leads to cost advantages, especially compared with I/ABC, in which 
humans only perform picks of which robots are incapable. 

5.3. Further assumptions 

Warehouse assumptions: Further assumptions made throughout the 
analysis relate to the warehouse itself. One assumption limits the ver-
tical pick range to 2.1 m and six shelf levels. However, robots are 
generally capable of picking items from shelf levels that operators 
cannot reach. In warehouses without a second floor, it is common that 
there is free space between the top of a shelf and the ceiling that is not 
utilized, because humans can only grasp up to a certain height. HOPSs 
can utilize this space without the need to reconstruct warehouse 
buildings. Assuming that a robot can pick from shelf levels up to 2.8 m, 
two additional levels could be utilized, leading to an additional 33% of 
storage space compared to a six-level shelf. This can provide an 
advantage for a HOPS compared to a manual system. 

Working-hours assumptions: We assumed in our analyses that robots 
only work during shifts in which humans work as well. In practice, 
however, night shifts and extended working hours are common, and in 
our case, such extra shifts could be assigned to the robot team with 
minimal support from operators. With this configuration, for example, 
urgent orders can be handled and directly prepared for shipping during 
the night shift. Additionally, a continuous output around the clock could 
be handled by the robot system without employing humans for the 
entire time (and extra pay for night work). If this is complemented by 
high peak loads, fully automated systems would be oversized for most of 
the time and would be inefficient. In such scenarios, a HOPS can employ 
humans for peak hours and robots for a basic continuous output. 

Ergonomics assumptions: HOPSs can also contribute to human well- 
being and improve ergonomics. Several studies have investigated how 
economic profitability and improvements in operator well-being can be 
jointly obtained in an order picking context (see, for an overview, 
Sgarbossa et al., 2020). In HOPSs, interactions with robots have the 

potential to improve ergonomics, motivation, and job satisfaction, 
because HOPSs enlarge and enrich the work tasks of humans instead of 
trivializing them (Neumann et al., 2021; Winkelhaus et al., 2021). In 
addition, humans can become supervisors and trouble shooters for the 
robot team. Concerning physical ergonomics, humans could benefit 
from shorter travel distances, because long distances are outsourced to 
robots, and from better grasping conditions because of the consistent use 
of the golden zone concept for operators. Moreover, robots can also be 
used for tasks in user-unfriendly environments or periods, for example, 
for preparing orders during night shifts or in particular climate or spatial 
conditions. These impacts have the potential to improve physical, 
mental, and psychosocial ergonomics at work and thus also impact 
overall system performance, absenteeism and work quality positively, 
which has not yet been considered. 

Overall, HOPSs can lead to further benefits for companies beyond a 
reduction in costs and could be particularly useful for successfully 
managing the transition to fully autonomous order picking systems. For 
example, if enterprises are not willing or capable of investing in a fully 
autonomous system, it is possible to increase the number of picking 
robots over a longer period of time and apply a HOPS for the transition 
period. 

5.4. Limitations and future research 

This study has limitations that could be addressed in future research. 
First, the warehouse environment was assumed to be constant over all 
the experiments except for the sensitivity analysis. However, the order 
size, warehouse layout, and other aspects can impact the simulation and 
lead to different results. Second, limiting assumptions regarding the 
demand distribution within one item class approximates the reality and 
several assumptions for zoning, batching, storage assignment, and 
routing were necessary in our study. Some of these parameters have not 
been investigated and could be extended in future studies. Third, the 
interaction rules were chosen to be plausible, generalizable, and appli-
cable in the simulation. However, some rules might be questioned in 
future studies, such as the applied rule for full aisle blocking. Finally, the 
robot’s capabilities are assumed to be fixed. Varying the robot’s char-
acteristics, such as the batch size the robot is able to transport before 
returning to the depot, might lead to different results and varied HOPS 
benefits. 

Despite these limitations, our results highlight the potential of 
HOPSs. Owing to the real-world restrictions that autonomous robots still 
face, future research is necessary to investigate these systems in detail. 
We identified three clusters of future research needs on HOPSs according 
to the dimensions of the technology-organization-environment (TOE) 
framework. 

Technology: We studied the use of a specific technology, that is, an 
autonomous picking robot, whose characteristics were derived from 
relevant literature and market information. However, there are various 
HOPSs that can be applied to diverse technologies. For example, AGVs 
are frequently investigated in terms of RMFS, but HOPSs are not yet in 
the focus of research. Future research could thus focus on different robot 
characteristics, for example, in terms of speed, pick quality, or in light of 
the assumptions discussed in Sections 5.1 to 5.3. In addition, real-world 
systems should be investigated empirically to validate these results. 

Organization: We studied different routing policies and assignment 
strategies for both teams. However, these investigations only built the 
first set of impact factors. Relevant questions for future work could be, 
for example, how the system behavior changes if different zones, 
batching, or storage assignment strategies are used. In addition, we only 
discussed, but did not explicitly study, possible ergonomic benefits; 
whether HOPSs have the potential to improve ergonomics and increase 
job satisfaction in intralogistics 4.0 is an interesting starting point for 
future research, see for example (Winkelhaus et al., 2022). However, 
also negative side effects of human-robot interaction need to be 
analyzed in addition to that in future research (Neumann et al., 2021). 
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Additionally, refilling the warehouse has not yet been considered, which 
opens interesting possibilities for collaborative performance. Finally, 
HOPSs also have the potential to impact strategic decisions, for example, 
for change management within a continuous development towards fully 
autonomous warehouses. Regarding the organizational methodology, 
HOPS, especially its robot team, can be formed as a multi-agent system, 
so that numerous further approaches can be applied, e.g. different agent 
architectures, negotiation and bargaining among agents, and distributed 
optimization (Weiss, 2013). ABS, as a decentralized approach, could 
further on support these studies. 

Environment: The assumptions made for the warehouse were constant 
for all experiments in terms of size and shape within this study. How-
ever, the size and shape of a warehouse depend on the tasks to be ful-
filled and, thus, differ for large e-commerce retailers, small city hubs, or 
production facility warehouses. The results achieved so far could be 
extended for generalization purposes. Future research could for example 
investigate how the size and shape of the warehouse impacts the per-
formance of a HOPS. Future research could also investigate how the 
customer structure impacts HOPS performance. For example, we 
assumed that all orders are known at the beginning of the shift and work 
by following the first-come-first-served policy. Hence, it would be 
interesting to investigate how varying workloads, including peak loads 
and idle phases, as well as order sizes impact the achieved results. 

6. Conclusion 

In this work, a simulation model of a hybrid order picking system 
(HOPS) was developed. We assumed that autonomous picking robots 
work together with human operators in a shared warehouse workspace. 
To investigate whether a HOPS can lower the cost of order picking, the 
simulation model considered different HOPS scenarios with different 
demand frequencies, routing policies, and collaboration strategies. 
Although only a representative entity of a HOPS could be investigated, 
the results showed that HOPSs offer benefits in order picking in diverse 
ways depending on the exact system characteristics. In our study, HOPSs 
performed well in cases in which B and C items were assigned to the 
robot team. The main aspects responsible for this result are the effects of 
zoning and blocking. Additionally, the team configuration has a major 
impact on the quality of collaboration, meaning that both teams, 
humans and robots, must be able to process their part of the collabo-
rative order picking task to not generate a backlog for the other team and 
minimize the overall costs. 

Our sensitivity analyses showed that two model assumptions are 
especially critical for the relative performance of HOPSs. For example, 
we have shown that a small increase in costs for the robot team results in 
the HOPS outperforming the pure robotic and manual system in terms of 
cost for almost all system throughputs. Hence, this study makes an 

Fig. A1. Cost analysis of HOPS with other work assignment options.  
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important managerial contribution: for practitioners, this study shows, 
using 50 parameter configurations, how a HOPS generally performs in 
contrast to completely manual and automated systems by applying 
autonomous picking robots, and which interactions seem to be impor-
tant. With the sensitivity analysis, additional information about real- 
world applications is obtained and can be used for the initial 

evaluation of a HOPS within a company. While considering a HOPS for 
future applications, simulations can be performed for the specific case of 
a company and based on the results achieved in this study. 

With the results obtained, the first study that allows the evaluation of 
a possible benefit of HOPSs to certain warehouse types is available to 
practitioners and researchers. With the diversity of parameter 

Fig. A2. Cost analysis of HOPS with additional costs per pick for the robot team (scenario: 80/15/5-A/BC).  

Fig. A3. Cost analysis of HOPS with additional costs per pick for the robot team (scenario: 50/30/20-A/BC).  
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configurations considered, a broad investigation was provided, which is 
among the first to investigate HOPSs from an economic and processual 
perspective. 
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Coelho, F., Relvas, S. & Barbosa-Póvoa, A.P.F. (2018). Simulation of an order picking 
system in a manufacturing supermarket using collaborative robots. In 32nd European 
Conference on Modelling and Simulation (ECMS), 2018 (pp. 83–88). Wilhelmshaven, 
Germany. 

Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., … Wurman, P. R. 
(2018). Analysis and observations from the first Amazon picking challenge. IEEE 
Transactions on Automation Science and Engineering, 15(1), 172–188. 

de Koster, R., Le Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse 
order picking: A literature review. European Journal of Operational Research, 182, 
481–501. 

Dijkstra, A. S., & Roodbergen, K. J. (2017). Exact route-length formulas and a storage 
location assignment heuristic for picker-to-parts warehouses. Transportation Research 
Part E: Logistics and Transportation Review, 102, 38–59. 

Elbert, R., & Müller, J. P. (2017). The impact of item weight on travel times in picker-to- 
parts order picking: An agent-based simulation approach. In W. K. V. Chan, 
A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, & E. Page (Eds.), Winter 
Simulation Conference (WSC), 2017 (pp. 3162–3173). Las Vegas, NV, USA: IEEE.  

Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human 
behavior on the efficiency of routing policies in order picking: The case of route 
deviations. Computers & Industrial Engineering, 111, 537–551. 

Endsley, M. R. (2017). From here to autonomy: Lessons learned from human-automation 
research. Human Factors, 59(1), 5–27. 

Fager, P., Calzavara, M., & Sgarbossa, F. (2019). Kit Preparation with Cobot-supported 
Sorting in Mixed Model Assembly. IFAC-PapersOnLine, 52(13), 1878–1883. 

Fager, P., Calzavara, M., & Sgarbossa, F. (2020). Modelling time efficiency of cobot- 
supported kit preparation. International Journal of Advanced Manufacturing 
Technology, 106(5–6), 2227–2241. 

Fragapane, G., de Koster, R., Sgarbossa, F., & Strandhagen, J. O. (2021). Planning and 
control of autonomous mobile robots for intralogistics: Literature review and 
research agenda. European Journal of Operational Research, 294(2), 405–426. 

Fig. A4. Cost analysis of HOPS in a mixed storage warehouse with turnover rate 80/15/5 and S-shape routing policy (costs per pick over system throughput).  

S. Winkelhaus et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0360-8352(22)00051-1/h0005
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0005
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0010
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0010
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0010
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0025
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0025
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0025
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0030
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0030
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0035
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0035
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0035
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0045
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0045
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0045
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0050
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0050
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0050
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0055
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0055
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0055
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0060
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0060
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0060
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0060
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0065
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0065
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0065
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0070
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0070
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0075
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0075
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0080
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0080
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0080
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0085
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0085
http://refhub.elsevier.com/S0360-8352(22)00051-1/h0085


Computers & Industrial Engineering 167 (2022) 107981

17

Franzke, T., Grosse, E. H., Glock, C. H., & Elbert, R. (2017). An investigation of the effects 
of storage assignment and picker routing on the occurrence of picker blocking in 
manual picker-to-parts warehouses. The International Journal of Logistics Management, 
28(3), 841–863. 

Giannikas, V., Lu, W., Robertson, B., & McFarlane, D. (2017). An interventionist strategy 
for warehouse order picking: Evidence from two case studies. International Journal of 
Production Economics, 189, 63–76. 

Glock, C. H., Grosse, E. H., Neumann, W. P., & Feldman, A. (2021). Assistive devices for 
manual materials handling in warehouses: A systematic literature review. 
International Journal of Production Research, 59(11), 3446–3469. 

Gong, Y., & de Koster, R. (2008). A polling-based dynamic order picking system for 
online retailers. IIE Transactions, 40(11), 1070–1082. 

Grosse, E. H., Glock, C. H., & Neumann, P. W. (2017). Human factors in order picking: A 
content analysis of the literature. International Journal of Production Research, 55(5), 
1260–1276. 

Gue, K. R., Meller, R. D., & Skufca, J. D. (2006). The effects of pick density on order 
picking areas with narrow aisles. IIE Transactions, 38(10), 859–868. 

Güller, M., & Hegmanns, T. (2014). Simulation-based performance analysis of a miniload 
multishuttle order picking system. Procedia CIRP, 17, 475–480. 

Güller, M., Karakaya, E., Uygun, Y., & Hegmanns, T. (2018). Simulation-based 
performance evaluation of the cellular transport system. Journal of Simulation, 12(3), 
225–237. 

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. 
IIE Transactions, 25(4), 76–87. 

Heath, B. L., Ciarallo, F. W., & Hill, R. R. (2013). An agent-based modeling approach to 
analyze the impact of warehouse congestion on cost and performance. The 
International Journal of Advanced Manufacturing Technology, 67(1–4), 563–574. 

Huang, G. Q., Chen, M. Z. Q., & Pan, J. (2015). Robotics in ecommerce logistics. HKIE 
Transactions Hong Kong Institution of Engineers, 22(2), 68–77. 

Ibrahim, Z., ONeill, M., Hassani, V., & Mehrabi, H. (2020). Comparing the Efficiency of 
Intelligent Hybrid Operator Assistance Software with Intuitive Set-up (OASIS) for 
Assembly Production Line. In Journal of Physics: Conference Series (Vol. 1529, p. 
042106). IOP Publishing.  

Kaipa, K. N., Morato, C., Liu, J., & Gupta, S. K. (2014). Human-robot collaboration for 
bin-picking tasks to support low-volume assemblies. Robotics: Science and Systems 
Conference (RSS), 2014. Rome, Italy. 

Kauke, D., Sailer, F., & Fottner, J. (2020). Mobile Picking Robots: A first study of the 
effects of human-robot-interactions in conventional order picking systems. 5th EAI 
International Conference on Management of Manufacturing Systems (EAI MMS), 2020. 
Opatija, Croatia. 

Klodawski, M., Jachimowski, R., Jacyna-Golda, I., & Izdebski, M. (2018). Simulation 
analysis of order picking efficiency with congestion situations. International Journal 
of Simulation Modelling, 17(3), 431–443. 

Le-Duc, T., & de Koster, R. (2007). Travel time estimation and order batching in a 2-block 
warehouse. European Journal of Operational Research, 176(1), 374–388. 

Li, X., Hua, G., Huang, A., Sheu, J. B., Cheng, T. C. E., & Huang, F. (2020). Storage 
assignment policy with awareness of energy consumption in the Kiva mobile 
fulfilment system. Transportation Research Part E: Logistics and Transportation Review, 
144. 
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