20 research outputs found

    Batch solution of small PDEs with the OPS DSL

    Get PDF
    In this paper we discuss the challenges and optimisations opportunities when solving a large number of small, equally sized discretised PDEs on regular grids. We present an extension of the OPS (Oxford Parallel library for Structured meshes) embedded Domain Specific Language, and show how support can be added for solving multiple systems, and how OPS makes it easy to deploy a variety of transformations and optimisations. The new capabilities in OPS allow to automatically apply data structure transformations, as well as execution schedule transformations to deliver high performance on a variety of hardware platforms. We evaluate our work on an industrially representative finance simulation on Intel CPUs, as well as NVIDIA GPUs

    Automatic parallel implementations of adjoint codes for structured mesh applications

    Get PDF
    Algorithmic Differentiation (AD) shown to be an essential tool to get sensitivity information for va in multiple areas of science such as Computational Fluid Dynamics (CFD) applications or finance. Yet there is no sufficient tool to ease the cost of providing performance portable AD codes, especially for modern hardware like GPU clusters. This paper sketches our plans and progress so far to extend the OPS framework with an adjoint tape (storage for descriptors of intermediate steps and intermediate states of variables) and shows preliminary performance results on CPU nodes. The OPS (Oxford Parallel library for Structured mesh solvers) has shown good performance and scaling on a wide range of HPC architectures. Our work aims to exploit the benefits of OPS to provide performance portable adjoint implementations for future structured mesh stencil applications using OPS with minimal modifications

    Comparative Benchmarking of Multithreading Solutions for JVM Languages: the case of the Alchemist Simulator

    Get PDF
    Re-implementing sequential algorithms with parallelization support often leads to a tangible improvement in the time and throughput of the execution. Designing for multithreading is especially beneficial in the context of long and slow computations such as discrete event simulation, where even a relatively small increment in throughput may cut down simulation time by a significant cumulative margin. Discrete event simulation is a notoriously challenging domain to parallelize due to the complexity of the nature of the discrete events and the necessity to account for and resolve the causality conflicts. A truly deterministic solution is difficult and is not always possible for some of the more complex simulation models and domains. However, some compromises may be reached by relaxing the determinism constraints and adopting the so-called optimistic approach to conflict resolution, sacrificing some degree of predictability and determinism for performance. Furthermore, when considering the goodness of a solution, a simple naive approach is not sufficient. The programming languages running on the \ac{jvm} have certain quirks and properties that must be taken into consideration to produce valuable and insightful results. Hence adopting a thorough method of testing and benchmarking is necessary. The recent developments in the Java programming language have introduced novel solutions to structuring multithreaded code such as virtual threads that compete with a more mature analogous implementation found in the Kotlin programming language. This thesis project explores the optimistic parallelization of a general discrete event simulator "Alchemist", building a robust benchmarking harness and testbed and comparing the results of equivalent implementations of the algorithm in traditional Java threads, the new Java virtual threads, and the consolidated Kotlin co-routines

    High-level FPGA accelerator design for structured-mesh-based numerical solvers

    Get PDF
    Field Programmable Gate Arrays (FPGAs) have become highly attractive as accelerators due to their low power consumption and re-programmability. However, a key limitation is the time and know-how required to program them. Even with high-level synthesis tools, they still require significant hand-tuned/low-level customizations and design space exploration to gain good performance. The need to program FPGAs using the dataflow programming model, much less well known and practised by the high-performance computing (HPC) community, is a major barrier for adoption for HPC. The underlying motivation of this work is to bridge this gap - attaining near-optimal performance vs the ease of programming. To this end, we target the important class of applications based on structured meshes, focusing on numerical algorithms based on explicit and implicit techniques. We leverage the main characteristics of the application class, its computation-communication pattern and the hardware features. For explicit schemes, characterized by stencil computations, we unify the state-of-the-art techniques such as vectorization and unrolling with a number of new high-gain optimizations such as creating perfect data reuse data-paths, batching and tiling. A key new feature is their applicability to multiple stencil loops enabling the development of real-world workloads. For implicit schemes, we re-evaluate the characteristics of the tridiagonal system solver algorithms for FPGAs and develop a new high throughput batched multi-dimensional tridiagonal system solver library with orders of magnitude better performance than the state-of-the-art. New analytic models are developed to support the solvers, elucidating and modelling the critical path of execution and parameterizing the design. This together with the optimal designs and new library lead to a unified design work-flow for synthesis on FPGAs. The new workflow is used to implement a range of applications, from simple single stencil designs, multiple stencil loops to solvers with real-world utility. They are synthesized on the currently dominant Xilinx and Intel FPGAs. Benchmarking indicate the FPGAs matching or outperforming the best GPU implementations, the current best traditional architecture device solution. Over 30% energy saving can also be observed. The performance model demonstrates over 85% accuracy. The thesis discusses the determinants for these applications to be amenable for FPGA implementation, providing insights into the feasibility and profitability of a design. Finally we propose initial steps in automating the workflow to be used through a DSL

    Code Generation for High Performance PDE Solvers on Modern Architectures

    Get PDF
    Numerical simulation with partial differential equations is an important discipline in high performance computing. Notable application areas include geosciences, fluid dynamics, solid mechanics and electromagnetics. Recent hardware developments have made it increasingly hard to achieve very good performance. This is both due to a lack of numerical algorithms suited for the hardware and efficient implementations of these algorithms not being available. Modern CPUs require a sufficiently high arithmetic intensity in order to unfold their full potential. In this thesis, we use a numerical scheme that is well-suited for this scenario: The Discontinuous Galerkin Finite Element Method on cuboid meshes can be implemented with optimal complexity exploiting the tensor product structure of basis functions and quadrature formulae using a technique called sum factorization. A matrix-free implementation of this scheme significantly lowers the memory footprint of the method and delivers a fully compute-bound algorithm. An efficient implementation of this scheme for a modern CPU requires maximum use of the processor’s SIMD units. General purpose compilers are not capable of autovectorizing traditional PDE simulation codes, requiring high performance implementations to explicitly spell out SIMD instructions. With the SIMD width increasing in the last years (reaching its current peak at 512 bits in the Intel Skylake architecture) and programming languages not providing tools to directly target SIMD units, such code suffers from a performance portability issue. This work proposes generative programming as a solution to this issue. To this end, we develop a toolchain that translates a PDE problem expressed in a domain specific language into a piece of machine-dependent, optimized C++ code. This toolchain is embedded into the existing user workflow of the DUNE project, an open source framework for the numerical solution of PDEs. Compared to other such toolchains, special emphasis is put on an intermediate representation that enables performance-oriented transformations. Furthermore, this thesis defines a new class of SIMD vectorization strategies that operate on batches of subkernels within one integration kernel. The space of these vectorization strategies is explored systematically from within the code generator in an autotuning procedure. We demonstrate the performance of our vectorization strategies and their implementation by providing measurements on the Intel Haswell and Intel Skylake architectures. We present numbers for the diffusion-reaction equation, the Stokes equations and Maxwell’s equations, achieving up to 40% of the machine’s theoretical floating point performance for an application of the DG operator

    Automatic Creation of High-Bandwidth Memory Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics

    Get PDF
    Numerical simulations can help solve complex problems. Most of these algorithms are massively parallel and thus good candidates for FPGA acceleration thanks to spatial parallelism. Modern FPGA devices can leverage high-bandwidth memory technologies, but when applications are memory-bound designers must craft advanced communication and memory architectures for efficient data movement and on-chip storage. This development process requires hardware design skills that are uncommon in domain-specific experts. In this paper, we propose an automated tool flow from a domain-specific language (DSL) for tensor expressions to generate massively-parallel accelerators on HBM-equipped FPGAs. Designers can use this flow to integrate and evaluate various compiler or hardware optimizations. We use computational fluid dynamics (CFD) as a paradigmatic example. Our flow starts from the high-level specification of tensor operations and combines an MLIR-based compiler with an in-house hardware generation flow to generate systems with parallel accelerators and a specialized memory architecture that moves data efficiently, aiming at fully exploiting the available CPU-FPGA bandwidth. We simulated applications with millions of elements, achieving up to 103 GFLOPS with one compute unit and custom precision when targeting a Xilinx Alveo U280. Our FPGA implementation is up to 25x more energy efficient than expert-crafted Intel CPU implementations

    High throughput multidimensional tridiagonal system solvers on FPGAs

    Get PDF
    We present a high performance tridiagonal solver library for Xilinx FPGAs optimized for multiple multi-dimensional systems common in real-world applications. An analytical performance model is developed and used to explore the design space and obtain rapid performance estimates that are over 85% accurate. This library achieves an order of magnitude better performance when solving large batches of systems than previous FPGA work. A detailed comparison with a current state-of-the-art GPU library for multi-dimensional tridiagonal systems on an Nvidia V100 GPU shows the FPGA achieving competitive or better runtime and significant energy savings of over 30%. Through this design, we learn lessons about the types of applications where FPGAs can challenge the current dominance of GPUs

    Task-based Runtime Optimizations Towards High Performance Computing Applications

    Get PDF
    The last decades have witnessed a rapid improvement of computational capabilities in high-performance computing (HPC) platforms thanks to hardware technology scaling. HPC architectures benefit from mainstream advances on the hardware with many-core systems, deep hierarchical memory subsystem, non-uniform memory access, and an ever-increasing gap between computational power and memory bandwidth. This has necessitated continuous adaptations across the software stack to maintain high hardware utilization. In this HPC landscape of potentially million-way parallelism, task-based programming models associated with dynamic runtime systems are becoming more popular, which fosters developers’ productivity at extreme scale by abstracting the underlying hardware complexity. In this context, this dissertation highlights how a software bundle powered by a task-based programming model can address the heterogeneous workloads engendered by HPC applications., i.e., data redistribution, geospatial modeling and 3D unstructured mesh deformation here. Data redistribution aims to reshuffle data to optimize some objective for an algorithm, whose objective can be multi-dimensional, such as improving computational load balance or decreasing communication volume or cost, with the ultimate goal of increasing the efficiency and therefore reducing the time-to-solution for the algorithm. Geostatistical modeling, one of the prime motivating applications for exascale computing, is a technique for predicting desired quantities from geographically distributed data, based on statistical models and optimization of parameters. Meshing the deformable contour of moving 3D bodies is an expensive operation that can cause huge computational challenges in fluid-structure interaction (FSI) applications. Therefore, in this dissertation, Redistribute-PaRSEC, ExaGeoStat-PaRSEC and HiCMA-PaRSEC are proposed to efficiently tackle these HPC applications respectively at extreme scale, and they are evaluated on multiple HPC clusters, including AMD-based, Intel-based, Arm-based CPU systems and IBM-based multi-GPU system. This multidisciplinary work emphasizes the need for runtime systems to go beyond their primary responsibility of task scheduling on massively parallel hardware system for servicing the next-generation scientific applications

    FPGA acceleration of structured-mesh-based explicit and implicit numerical solvers using SYCL

    Get PDF
    We explore the design and development of structured-mesh based solvers on current Intel FPGA hardware using the SYCL programming model. Two classes of applications are targeted : (1) stencil applications based on explicit numerical methods and (2) multidimensional tridiagonal solvers based on implicit methods. Both classes of solvers appear as core modules in a wide-range of realworld applications ranging from CFD to financial computing. A general, unified workflow is formulated for synthesizing them on Intel FPGAs together with predictive analytic models to explore the design space to obtain near-optimal performance. Performance of synthesized designs, using the above techniques, for two non-trivial applications on an Intel PAC D5005 FPGA card is benchmarked. Results are compared to performance of optimized parallel implementations of the same applications on a Nvidia V100 GPU. Observed runtime results indicate the FPGA providing better or matching performance to the V100 GPU. However, more importantly the FPGA solutions provide 59%-76% less energy consumption for their largest configurations, making them highly attractive for solving workloads based on these applications in production settings. The performance model predicts the runtime of designs with high accuracy with less than 5% error for all cases tested, demonstrating their significant utility for design space explorations. With these tools and techniques, we discuss determinants for a given structuredmesh code to be amenable to FPGA implementation, providing insights into the feasibility and profitability of a design, how they can be codified using SYCL and the resulting performance
    corecore