
Automatic parallel implementations of adjoint codes for structured mesh
applications

Gábor Dániel Balogh
3in Research Group,

Faculty of Information Technology and Bionics
Pazmany Peter Catholic University

Esztergom, Hungary
Email: balogh.gabor.daniel@itk.ppke.hu

István Z. Reguly
Faculty of Information Technology and Bionics

Pazmany Peter Catholic University
Budapest, Hungary

Email: reguly.istvan@itk.ppke.hu

Abstract—Algorithmic Differentiation (AD) shown to be an
essential tool to get sensitivity information in multiple areas
of science such as Computational Fluid Dynamics (CFD)
applications or finance. Yet there is no sufficient tool to
ease the cost of providing performance portable AD codes,
especially for modern hardware like GPU clusters. This paper
sketches our plans and progress so far to extend the OPS
framework with an adjoint tape (storage for descriptors of
intermediate steps and intermediate states of variables) and
shows preliminary performance results on CPU nodes. The
OPS (Oxford Parallel library for Structured mesh solvers) has
shown good performance and scaling on a wide range of HPC
architectures. Our work aims to exploit the benefits of OPS
to provide performance portable adjoint implementations for
future structured mesh stencil applications using OPS with
minimal modifications.

Keywords-automatic differentiation; domain specific lan-
guage; adjoint methods;

I. INTRODUCTION

Algorithmic Differentiation is used to evaluate derivatives
of the function which defined by a computer program.

Sensitivity or derivative information have a wide range of
use such as design optimisation for CFD applications[1] or
real time risk management[2]. Algorithmic Differentiation
(AD) has shown to be an essential tool to get sensitivity in-
formation in such applications due to the high computational
cost of calculating finite differences.

With AD we can get derivatives of a whole computer
program with respect to some input variables. These
derivatives than can be used for various optimisation
tasks. However writing an AD code for a reasonably big
application is a tiresome and error prone task which makes
it infeasible to hand write for real life problems, and
especially to maintain an efficient parallel implementation
and update it for fast-changing new hardware. It has
been known for a long time that AD is a powerful tool
to use with CFD applications[3], [4], [5], [6], and there
are multiple studies on their performance with automatic
transformations [7]. Over the years there have been a
number of tools developed to ease the cost of writing AD

codes using high level descriptions of the application[8]
or in case of C++ with templates and operator overloads
[9]. The latter gives the flexibility of C++, but may lead to
infeasible memory requirements due to huge “tapes”. These
overloading based methods lack the knowledge of the
structure of the application, therefore cannot recognise big
computational steps. However they can perform well with
heterogeneous systems [9], [10] as well. The key method
behind these tools is using the chain rule in a operation
level. Basically the idea is that computers perform simple
operations like addition and multiplication at the low
level, and for these operations we can easily calculate the
derivative. At the end, the overload based tools create a tape
recording of each operation performed on all data. However
the application itself have a coarse grained structure with
the computational steps of the numerical method used.
With a tool like OPS (Oxford Parallel library for Structured
mesh solvers) we define these computational steps as
parallel loops and OPS is responsible for generating
parallel implementation for the loops, from the generated
loops we can naturally build a directed acyclic graph of
computational steps for the application. This raises the idea
of a coarse grained tape. If one can provide the derivative
function for each loop body then we only need to traverse
this coarse grained DAG to perform the necessary steps
of the chain rule. Moreover OPS main goal is to ensure
performance portable and future proof implementations
with a code generation step on a range of hardware.

II. ALGORITHMIC DIFFERENTIATION

Let’s assume we have an application with some input
variables x ∈ Rn which perform a series of steps than
compute the final result y ∈ R.

x
f1(x)−−−→ x1

f2(x1)−−−−→ x2 · · ·xm
fm+1(xm)−−−−−−→ y (1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/334425584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We want to get ∂y
∂x . Since y = fn(fm(· · · f1(x))) we can

apply the chain rule to get the formula:

∂y

∂x
=

∂x1

∂x

∂x2

∂x1
· · · ∂y

∂xm
(2)

There are two main modes of algorithmic differentiation
based on from which direction we start to evaluate 2. The
forward (tangent) mode requires more computation but does
not require to actually require to create a DAG. The reverse
(adjoint) mode on the other hand requires computation
proportional of computing f itself, but requires to traverse
the DAG in reverse order which significantly increase the
memory usage, since to perform the steps we need to restore
data to the correct state, so wee need to store the states
in a so called tape. The main challenge is to efficiently
save all intermediate state and the computational steps (and
their derivative functions) while computing the result of the
simulation and then managing the states of all data while
propagating the derivatives from ∂y

∂xm
to the desired ∂y

∂x . For
more detailed information about AD the reader is referred
to [11].

III. OPS

OPS is a domain specific language embedded in C++. It
is used to describe a stencil application with a high level
abstraction while delivering high performance for the appli-
cations. For the application developer it looks like simple
traditional library, but OPS uses code generation to create
parallel implementations for the applications. OPS supports
OpenMP, OpenCL and CUDA and their combination with
MPI.

There are four main parts of the abstraction behind OPS.
Blocks: a collection of structured grid blocks. These have a
dimensionality but no size. Datasets: data defined on blocks,
with explicit size. Halos: description of the interface between
datasets defined on different blocks. Computations: descrip-
tion of an elemental operation applied to grid points, access-
ing datasets on a given block. The principal assumption of
the OPS abstraction is that the order in which elemental
operations are applied to individual grid points during a
computation may not change the results, within machine
precision (OPS does not enforce bitwise reproducibility).
This assumption lets OPS to parallelise the computations
arbitrarily.

In OPS an algorithm is a sequence of computational
loops (kernels) which are operating on a specified range on
predefined grid while accessing datasets on the grid and grid
invariant scalar values. This means in OPS the developer can
define grids, global constants, datasets on a specified range
on the grid and computations on these data.

The access of the datasets on the grids happens through
stencils and for each loop the developer provides a descriptor
for each dataset that describes the access of the loop to that
dataset. This tells the backend which datasets will be written

OPS tape

Initilise OPS and
variables

ops_par_loop_1

ops_par_loop_2

ops_par_loop_N-1

ops_par_loop_3

ops_par_loop_N

Init
adjoints

ops_par_loop_N_a1s

ops_par_loop_N-1_a1s

ops_par_loop_1_a1s

Finish

ops_par_loop_2_a1s

ops_par_loop_3_a1s

ops_interpret_adjoints

Write
checkpoints

Load
checkpoints

Figure 1. OPS checkpoint stores and loads during execution. After
initialisation each ops loop registers itself to the DAG and during the kernel
execution it will write the checkpoints in OPS tape. During the reverse run
the kernels will load the checkpoints from the tape.

and which datasets are read only. Moreover from the stencils
we can tell for each grid point (or iteration in the loop) which
data from other grid points are accessed. This is an important
information for the adjoint computations since in the reverse
sweep the read data will be written which introduce race
conditions.

IV. ADJOINT TAPE FROM COMPUTATIONAL STEPS

Our first goal was to extend OPS with a directed acyclic
graph (DAG) of the application’s execution with all the
information about the computational loops required for
performing the reverse run at runtime. To achieve this we
used the kernel descriptors that are used to perform lazy
execution in OPS [12] with the difference that we need to
perform the adjoint version of the kernels. The scheme of
the whole process is shown in Figure 1, after a setup phase
each loop will automatically register itself to the DAG and
save all written data to checkpoints, then the developer can
initialise adjoints for the result and interpret adjoints, during
which the adjoint for each loop will be executed in reverse
order loading all the checkpoints stored during the forward
run.

The DAG is built during the computation, each loop
creates its own descriptor with a pointer to the kernel
function and its own adjoint function and add it to the end



Grid Size Mem.
usage With checkpointing

iteration count all 10 100 500

256× 256 3.15 MB 256.9 MB 256.9 MB 771.5 MB
512× 512 12.23 MB 268.2 MB 780.3 MB 2.76 GB

1024× 1024 48.42 MB 304.4 MB 1.8 GB 8.8 GB

Table I
MEMORY USAGE OF THE POISSON APPLICATION. THE SECOND

COLUMN CONTAINS THE MEMORY REQUIREMENTS OF THE PRIMAL
COMPUTATIONS AND IN THE LAST THREE COLUMNS ARE SHOW THE

INCREASED PEAK MEMORY USAGE WITH CHECKPOINTING.

of the DAG. During the code generation phase OPS tries
to find an adjoint version of the loop body and generate
a parallel implementation for the adjoint kernel as well.
The big difference between the kernel generation and the
adjoint versions is that the access patterns are reversed.
This introduces race conditions that are not present in the
original loop. To avoid race conditions we compute the
maximum width of the stencils for the kernel and then
divide the iteration range along the highest dimension to
stripes in a way that stripes that are not adjacent to each
other are independent. Using these stripes we can perform
every second stripe parallel to each other and than have one
synchronisation point and than perform all other stripes in
a second run.

The other important aspect is that to perform these adjoint
kernels we need to have the data in the original state from
the forward run. There are two simple approaches; the first
is to recompute all of the loops leading to the current loop
restoring the state of all datasets or we can store copies
of the datasets before we overwrite them. In our work we
created checkpoint for each overwritten dataset which leads
to significant memory overhead, but much faster than recom-
puting all data. The repetitive allocation of small data chunks
has significant overhead, therefore we created a memory
pool to the checkpoints. This checkpointing system allocates
increasingly big chunks of memory when the current dataset
doesn’t fit in the previous pool.

V. RESULTS

We measured the memory requirements of the pools in
case of one of OPS’s own Poisson example application[13].
Since both the iteration count, the size of the grid and
the application itself is quite small, the results int Table I
illustrating the memory required to save all overwritten data,
but the trend holds for bigger applications as well. Note that
the measured memory overhead of checkpointing increasing
in big steps due to our current memory pooling strategy.

Regarding runtime performance we measured the perfor-
mance of a stochastic local volatility (SLV) model ported
to ops (see [14]). SLV constitute state-of-the-art models
to describe asset price processes, notably foreign exchange
rates. We performed measurements on a single system, both

Figure 2. Runtime of the SLV code for different grid sizes. The forward
run of the code noted with blue and the red parts stand for the backward
run with the adjoint computations.

features will be implemented in the future. Batching will
increase performance since the independent systems can be
trivially parallelised during the backward run as well. In Fig-
ure 2 the runtime of this SLV implementation with OpenMP
is shown. The overhead of the backward sweep is around 3-
4 times of the time spent on the forward computation. This
result means the the total cost of computing the derivatives
of this SLV code is five times bigger than computing only
the original function, which is a close to the state of the
art techniques. However the current implementation has a
significant memory overhead.

VI. CONCLUSION

The computation of derivative informations for CFD
applications in finance is a well studied area. The gained
sensitivity information has a wide range of use and the
fast and efficient computation is necessary for applications.
Although efficient tooling for supporting GPU clusters is
lacking. The OPS framework is designed to automatically
generate parallel implementations for different hardware for
an application from its’ high level code. Our aim is to use
this design goal and extend the OPS framework wit an API
and backend to support automatic differentiation for both
CPU and GPU clusters. In this early stage we showed that
OPS is flexible enough to support modifications that allow
the us to calculate derivative informations for structured grid
applications. We extended OPS with a method to create
the DAG of the applications and perform checkpointing
of overwritten data automatically. Compared to traditional
OPS applications need to change to support adjoints but
we found these modifications negligible compared to the
cost of implementing an adjoint version for an application.
We showed reasonable performance on a single node with
OpenMP parallelisation of adjoint computations. However
the current prototype suffers from high memory requirement
due to checkpointing all overwritten data. Hence now we
are looking into improve the checkpointing strategy in
OPS with recomputing the state of the datasets from fewer



checkpoints. Our experience with creating this prototype is
promising regarding the future MPI and CUDA extensions.

ACKNOWLEDGMENT

This research has been carried out partly in the project
Thematic Research Cooperation Establishing Innovative In-
formatic and Info-communication Solutions, which has been
supported by the European Union and co-financed by the
European Social Fund under grant number EFOP-3.6.2-16-
2017-00013.
Project no. PD 124905 has been implemented with the
support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the
PD 17 funding scheme. The research has been supported
by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental
Research Collaborations Grounding Innovation in Informat-
ics and Infocommunications).

REFERENCES

[1] C. Othmer, “A continuous adjoint formulation for the com-
putation of topological and surface sensitivities of ducted
flows,” International Journal for Numerical Methods in Flu-
ids, vol. 58, no. 8, pp. 861–877, 2008.

[2] L. Capriotti and J. Lee, “Case studies of real-time risk
management via adjoint algorithmic differentiation (aad),” in
High-Performance Computing in Finance. Chapman and
Hall/CRC, 2018, pp. 339–370.

[3] C. Bischof, G. Corliss, L. Green, A. Griewank, K. Haigler,
and P. Newman, “Automatic differentiation of advanced cfd
codes for multidisciplinary design,” Computing Systems in
Engineering, vol. 3, no. 6, pp. 625–637, 1992.

[4] A. Carle, G. LL, B. CH, and N. PA, “Applications of
automatic differentiation in cfd,” 1994.

[5] M. Giles, D. Ghate, and M. C. Duta, “Using automatic
differentiation for adjoint cfd code development,” 2005.

[6] R. Sanchez, T. Albring, R. Palacios, N. Gauger, T. Economon,
and J. Alonso, “Coupled adjoint-based sensitivities in large-
displacement fluid-structure interaction using algorithmic dif-
ferentiation,” International Journal for Numerical Methods in
Engineering, vol. 113, no. 7, pp. 1081–1107, 2018.

[7] J.-D. Müller and P. Cusdin, “On the performance of discrete
adjoint cfd codes using automatic differentiation,” Interna-
tional journal for numerical methods in fluids, vol. 47, no.
8-9, pp. 939–945, 2005.

[8] D. A. Fournier, H. J. Skaug, J. Ancheta, J. Ianelli, A. Mag-
nusson, M. N. Maunder, A. Nielsen, and J. Sibert, “Ad
model builder: using automatic differentiation for statistical
inference of highly parameterized complex nonlinear models,”
Optimization Methods and Software, vol. 27, no. 2, pp. 233–
249, 2012.

[9] U. Naumann and J. Toit, “Adjoint algorithmic differentiation
tool support for typical numerical patterns in computational
finance,” Journal of Computational Finance, vol. 21, no. 4,
2018.

[10] J. Du Toit, J. Lotz, and U. Naumann, “Adjoint algorithmic
differentiation of a gpu accelerated application,” 2013.

[11] U. Naumann, The art of differentiating computer programs:
an introduction to algorithmic differentiation. Siam, 2012,
vol. 24.

[12] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling
in large-scale stencil codes at run-time with ops,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29,
no. 4, pp. 873–886, 2017.

[13] “OPS github repository,” https://github.com/OP-DSL/OPS.

[14] I. Z. Reguly, B. Moore, T. Schmielau, J. du Toit, and G. R.
Mudalige, “Batch solution of small pdes with the ops dsl,” in
International Conference on High Performance Computing.
Springer, 2019, pp. 124–141.


