
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/180089

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/180089
mailto:wrap@warwick.ac.uk

High-Level FPGA Accelerator Design for

Structured-Mesh-Based Numerical Solvers

by

Kamalavasan Kamalakkannan

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

April 2023

Contents

Contents iii

Acknowledgement iv

Declarations v

Abstract vii

Abbreviations viii

Symbols x

List of Algorithms xii

List of Figures xiii

List of Tables xv

Chapter 1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Overview . 4

Chapter 2 Background 6

2.1 FPGA Accelerator Device and Eco-System 6

2.1.1 FPGA Accelerator Device Overview 6

2.1.2 FPGA Programming . 8

2.1.3 Loop Latency Estimation . 11

2.2 Structured Mesh-Based Numerical Schemes 12

2.2.1 Explicit Schemes - Stencil Solvers 13

2.2.2 Explicit Schemes - Related Work on FPGAs 14

2.2.3 Implicit Schemes . 17

2.2.3.1 Alternating Direction Implicit method 18

2.2.3.2 Tridiagonal solver algorithms 19

2.2.4 Implicit Scheme - Related work on FPGAs 21

i

Chapter 3 Explicit Solvers on FPGAs 23

3.1 Accelerator Design for Stencil Computation 24

3.1.1 Stencil Loop Transformation . 25

3.1.2 Vectorization and Unrolling the Iterative Loop 26

3.1.3 Decoupled Kernel Pipeline . 28

3.1.4 Data Layout for Vector Elements 28

3.2 Model for Baseline Design . 29

3.3 Optimizations . 32

3.3.1 Spatial and Temporal Blocking . 32

3.3.2 Spatially Blocked Design using Multiple HBM Ports 34

3.3.3 Batching . 35

3.4 Performance . 37

3.4.1 Poisson-5pt-2D . 38

3.4.2 Jacobi-7pt-3D . 40

3.4.3 Reverse Time Migration (RTM) - Forward Pass 41

3.5 Concluding Remarks and Discussion . 44

Chapter 4 Implicit Schemes on FPGAs 45

4.1 FPGA Design . 46

4.1.1 Small and Medium System Solvers 46

4.1.2 Larger System Solvers . 49

4.2 Performance . 51

4.2.1 ADI Heat Diffusion Application . 53

4.2.2 Stochastic Local Volatility . 60

4.3 Discussion . 63

4.4 Concluding Remarks . 64

Chapter 5 FPGA Designs with SYCL 65

5.1 Intel FPGAs and SYCL . 65

5.2 Stencil Solvers . 68

5.2.1 Performance Model . 72

5.3 Multi-Dimensional Tridiagonal Solvers . 73

5.4 Performance . 75

5.4.1 Reverse Time Migration (RTM) Forward-Pass 76

5.4.2 ADI 2D Heat Diffusion Application 77

5.5 Concluding Remarks . 80

Chapter 6 Towards Automating FPGA Designs 82

6.1 OPS Framework for Structured Mesh Applications 84

6.1.1 OPS API . 85

6.1.2 Application Development Using OPS 86

6.2 OPS to FPGA Target transformation . 88

ii

6.2.1 ops par loop nodes: Skeleton For Baseline Design 92

6.2.2 ops par loop nodes: Vectorization 99

6.2.3 ops par loop nodes: Batched Computation 101

6.2.4 ops par loop nodes: Spatially Blocked Computation 101

6.2.5 Global Memory Access Nodes . 103

6.2.6 Delay Buffers Nodes . 106

6.2.7 ops tridMultiDimBatch: Tridiagonal Solver Nodes 107

6.2.8 Building Dataflow Graph . 109

6.3 Optimal Design Parameter Identification 109

6.4 Discussion and Concluding Remarks . 112

Chapter 7 Conclusions and Future Work 114

7.1 Contributions and Conclusions . 115

7.2 Future Work . 116

7.2.1 Support for Larger Meshes . 116

7.2.2 Support for Larger Number of Kernels 117

7.2.3 DSL based Automatic Translator 117

Appendix A 2D Heat diffusion using FDM 130

A.1 FTCS - Explicit Numerical Scheme . 130

A.2 BTCS Numerical Scheme . 131

A.3 ADI Scheme . 131

Appendix B Performance of Implicit Applications on U50 133

B.1 2D ADI Heat Diffusion Application . 133

B.2 3D ADI Heat Diffusion Application . 134

B.3 2D ADI Heat Diffusion Application on Larger Meshes 134

B.4 SLV Application . 135

Appendix C Runtimes of Benchmarked Applications 136

C.1 Chapter 3 Runtimes . 136

C.2 Chapter 4 Runtimes . 139

C.3 Chapter 5 Runtimes . 142

iii

Acknowledgement

On this page, I want to convey my appreciation to the individuals and organizations

who have provided assistance and inspiration in various ways during the course of this

work. Their contributions have been invaluable, and without their help, this work would

not have been possible. I am deeply grateful to them for the knowledge, exposure, and

experience I have gained during my PhD.

First of all, I would like to thank my supervisors Dr. Gihan Mudalige and Dr. Suhaib

Fahmy. Dr. Gihan offered me this fantastic PhD opportunity, being optimistic and flexible

to my interests in research. I am thankful to Dr. Gihan not only for his academic guidance

but also for being my go-to person for any kind of assistance, from visa applications to

submitting my thesis. I appreciate the time and efforts Dr. Gihan dedicated to helping me

develop various skills. Supervisor Dr. Suhaib helped me to dive into HLS-based FPGA

acceleration and provided the Hardware and software resources necessary to undertake

this research work. I express my gratitude to collaborator, Dr. Istvan Reguly, for providing

valuable guidance on how to optimally implement applications on GPUs. I like to extend

my thanks to my advisors Dr. Ligang He and Dr. Victor Sanchez for their valuable

feedback on my progress during the PhD.

I would like to thank the department of computer science, university of Warwick for

offering the funding for PhD and the Department of Engineering, Xilinx and Intel for

offering the accelerator devices and software. I would like to thank Jacques Du Toit and

Tim Schmielau at NAG UK Ltd for providing the C SLV application. I am thankful to

John Shanly, Bogdan Pasca, Yohann Yugen for their support and flexibility during my

internship at Intel UK.

It is a pleasure to acknowledge the support and friendship of many lab mates and col-

leagues including, Dr. Gabriele pergola, Dr. Ali Mohammadi Shanghooshabad, Dr. Arun

prabhakar, Dr. Viswash Batra, Suneth Ekanayaka, Zaman Lantra, Archi Powell and Zhi-

hao and Megdad kurmanji. I would like to mention friends, Natheesan, Gowtham Maran,

Piradeef and Kokulraj for the valuable discussions, inspiration and support given during

this work.

Finally, I am grateful to my parents and siblings for their unwavering support, encour-

agement and guidance throughout my life. My sister Kalaivarny sparked my interest in

science through inspiring and motivational conversations. I want to convey my apprecia-

tion to my wife Arsitha for being a supportive and encouraging force in my personal and

professional growth.

iv

Declarations

This thesis is submitted to the University of Warwick in support of my application for the

degree of Doctor of Philosophy in Computer Science. I, Kamalavasan Kamalakkannan,

declare that this thesis titled, ‘High-Level FPGA Accelarator Design for Structured-Mesh-

Based Numerical Solvers’ has been composed by myself and has not been submitted in

any previous application for any degree. I confirm that:

• This work was done wholly or mainly while in candidature for the research degree

at this University.

• The work presented (including data generated and data analysis) was carried out

by the author.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

Portions of this work have appeared in the following publications :

• Parts of Chapter 3 in[33]:

Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib

A. Fahmy. 2021. High-Level FPGA Accelerator Design for Structured-Mesh-Based

Explicit Numerical Solvers, 2021 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS), Portland, OR, USA, 2021, pp. 1087-1096.

• Parts of Chapter 4 in[35]:

Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A.

Fahmy. 2022. High throughput multidimensional tridiagonal system solvers on FP-

GAs. In Proceedings of the 36th ACM International Conference on Supercomputing

(ICS ’22). Association for Computing Machinery, New York, NY, USA, Article 19,

1–12.

• Parts of Chapter 5 in[34]:

Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib

A. Fahmy. 2022. FPGA Acceleration of Structured-Mesh-Based Explicit and

Implicit Numerical Solvers using SYCL. In International Workshop on OpenCL

(IWOCL’22). Association for Computing Machinery, New York, NY, USA, Article

19, 1–11.

v

The tridiagonal solver library and applications developed in this work are available as

open-source software :

Git Repositories:

• StencilsOnFPGA[37] - https://github.com/OP-DSL/StencilsOnFPGA

Explicit stencil solver-based applications used for benchmarking Xilinx and Intel

FPGAs with Nvidia V100 in Chapters 3 and 5

• Tridsolver-FPGA[36] - https://github.com/OP-DSL/Tridsolver-FPGA

Batched Trisolver library for Xilinx and Intel FPGAs along with 2D and 3D ADI

applications used for benchmarking FPGAs with Nvidia-V100 GPU in Chapters 4

and 5

vi

https://github.com/OP-DSL/StencilsOnFPGA
https://github.com/OP-DSL/Tridsolver-FPGA

Abstract

Field Programmable Gate Arrays (FPGAs) have become highly attractive as accelerators

due to their low power consumption and re-programmability. However, a key limitation

is the time and know-how required to program them. Even with high-level synthesis

tools, they still require significant hand-tuned/low-level customizations and design space

exploration to gain good performance. The need to program FPGAs using the data-

flow programming model, much less well known and practised by the high-performance

computing (HPC) community, is a major barrier for adoption for HPC.

The underlying motivation of this work is to bridge this gap - attaining near-optimal

performance vs the ease of programming. To this end, we target the important class

of applications based on structured meshes, focusing on numerical algorithms based on

explicit and implicit techniques. We leverage the main characteristics of the application

class, its computation-communication pattern and the hardware features. For explicit

schemes, characterized by stencil computations, we unify the state-of-the-art techniques

such as vectorization and unrolling with a number of new high-gain optimizations such

as creating perfect data reuse data-paths, batching and tiling. A key new feature is their

applicability to multiple stencil loops enabling the development of real-world workloads.

For implicit schemes, we re-evaluate the characteristics of the tridiagonal system solver

algorithms for FPGAs and develop a new high throughput batched multi-dimensional

tridiagonal system solver library with orders of magnitude better performance than the

state-of-the-art.

New analytic models are developed to support the solvers, elucidating and modelling

the critical path of execution and parameterizing the design. This together with the

optimal designs and new library lead to a unified design work-flow for synthesis on FPGAs.

The new workflow is used to implement a range of applications, from simple single

stencil designs, multiple stencil loops to solvers with real-world utility. They are syn-

thesized on the currently dominant Xilinx and Intel FPGAs. Benchmarking indicate the

FPGAs matching or outperforming the best GPU implementations, the current best tra-

ditional architecture device solution. Over 30% energy saving can also be observed. The

performance model demonstrates over 85% accuracy.

The thesis discusses the determinants for these applications to be amenable for FPGA

implementation, providing insights into the feasibility and profitability of a design. Finally

we propose initial steps in automating the workflow to be used through a DSL.

vii

Abbreviations

ADI Alternating Direction Implicit . 18

ALM Adaptive Logic Modules . 65

ALU Arithmetic Logic Unit . 7

AoS Array of Structure . 29

API Application Programming Interface . 86

ASIC Application Specific Integrated Circuit . 1

AXI Advanced eXtensible Interface . 28

BRAM Block Random Access Memory . 7

BTCS Backward Time Centered Space . 131

CFD Computational Fluid Dynamics . 2

CGRA Coarse Grained Reconfigurable Arrays . 9

CPU Central Processing Unit . 6

CUDA Compute Unified Device Architecture . 66

DDR4 Double Data Rate 4 . 7

DSL Domain Specific Language . 2

DSP Digital Signal Processing . 65

FDM Finite Difference Method . 12

FEM Finite Element Method . 12

FIFO First Input First Output . 24

FPGA Field Programmable Gate Array . vii

FTCS Forward Time Centered Space . 130

FVM Finite Volume Method . 12

GPU Graphical Processing Unit . 6

viii

HBM High Bandwidth Memory . 34

HDL Hardware Description Language . 1

HLS High Level Synthesis . 1

HPC High Performance Computing . 1

ISL Iterative Stencil Loop . 5

LUT Look Up Table . xiii

MISD Multiple Instruction Multiple Data . 67

MLAB Memory Logic Array Block . 7

OPS Oxford Parallel library for Structured mesh solvers 5

PCIe Peripheral Component Interconnect Express 10

PCR Parallel Cyclic Reduction . 20

PDE Partial Differential Equation . 6

QoR Quality of Results . 83

RTM Reverse Time Migration . 41

SIMD Single Instruction Multiple Data . 26

SIMT Single Instruction Multi Thread . 26

SLR Super Logic Region . 7

SLV Stochastic-Local Volatility . 60

SM Streaming Multi-Processor . 67

SoA Structure of Arrays . 28

URAM Ultra Random Access Memory . 7

USM Unified Shared Memory . 75

ix

Symbols

B Batch size

Blockvalid Valid mesh point update in s spatial block

BWchannel Off-chip memory channel Bandwidth

Clks2D Clock Cycles for 2D stencil computation

Clks3D Clock Cycles for 3D stencil computation

D Stencil Order

delay2D Total delay in number of clock cycles for 2D applica-

tion from input to output for single iteration

delay3D Total delay in number of clock cycles for 3D applica-

tion from input to output for single iteration

FPGAdsp Number of DSP units in FPGA

FPGAmem Available on-chip memory on FPGA

f Operating frequency of design implemented on FPGA

fu PCR inner loop unroll factor

g Number of Tri-diagonal systems interleaved for

thomas solver

Gdsp Number of DSP units required to update single mesh

point

lf , lb Arithmetic pipeline latency for forward and backward

loops

lil PCR inner loop pipeline latency

m,n, l Mesh Dimensions

N Tri-diagonal system size

Nb Number of blocks in spike solver

NCU Number of Compute modules

niter Number of Iterations

p Iterative loop unroll factor

pdsp Possible iterative loop unroll factor under DSP con-

straint

pmem Possible iterative loop unroll factor under onchip

memory constraint

x

t Tile size in Tiled Thomas solver

V Vectorization Factor

x, y, z system sizes in each dimensions, similar to m,n, l

xi

List of Algorithms

1 Thomas algorithm, see the tridiagonal system in equation 2.17 for a, b, c, d, u.

Subscript denotes the particular row/equation in the tridiagonal system.

d∗i , c
∗
i , are intermediate values during the computation. 20

2 PCR algorithm, a, b, c, d, u in the tridiagonal system in equation 2.17 corre-

sponds to a0, b0, c0, d0, u in this algorithm. 21

3 RTM - Forward Pass . 42

4 3D ADI Heat Application . 53

5 2D Heston SLV Backward . 61

6 2D ADI Heat Diffusion Application . 77

7 2D ADI Heat Diffusion Application . 89

8 Baseline approach . 111

9 Spatial blocking approach . 112

xii

List of Figures

2.1 Xilinx Alveo U280 FPGA accelerator device. Multiple Super Logic Regions

(SLRs) are vertically connected through interposer technology. Each SLR

consists of circuit elements such as Look Up Tables (LUTs) and registers

in Configurable Logic Blocks (CLBs). High Bandwidth Memory (HBM)

and DDR4 serve as near and off-chip memory resources. 6

2.2 Five-point stencil for 2D-Poisson equation. 14

2.3 Poisson stencil loop updates. 15

2.4 Required mesh points for xsolve in step N and N + 1
2 19

2.5 After one iteration of PCR outer loop. 21

3.1 Perfect data reuse using window buffers. The design takes new mesh points

at each clock and buffers the required number of mesh points for stencil

computation. Mesh points specified by the stencil will appear in the regis-

ters denoted by Reg. 24

3.2 Vectorization - two mesh points are updated in parallel. R1 − R9 are

registers and CU1-CU2 are arithmetic units for stencil computations. . . . 26

3.3 Unrolling the iterative loop. The output of a compute module is fed to

another compute module, essentially doing two steps/iterations in parallel 28

3.4 Kernel placement without SLR constraint. 28

3.5 SLR constrained kernel placement. 29

3.6 Pipeline Latency between compute modules 30

3.7 Overlapped spatial blocks. 33

3.8 Individual Vs Batched computation. 35

3.9 Poisson-5pt-2D performance (Baseline - 60k iterations), here FPGA-Pred

represents the performance predicted using the models. 38

3.10 Poisson-5pt-2D performance, here FPGA-Pred represents the performance

predicted using the models. 39

3.11 Jacobi-7pt-3D performance (Baseline - 29k iterations), here FPGA-Pred rep-

resents the performance predicted using the models. 41

3.12 Jacobi-7pt-3D performance, here FPGA-Pred represents the performance

predicted using the models. 41

xiii

3.13 RTM performance, here FPGA-Pred represents the performance predicted

using the models. 43

4.1 Datapath for 4× (vectorized) x- and y-dim solves. 49

4.2 Reduced system formation . 50

4.3 Proposed tridsolvlib vs xilinxlib (FP32) performance for system sizes

of 128 and 1024. 52

4.4 2D ADI application datapath constructed from solver components. . . . 55

4.5 2D ADI, 120 iterations, here FPGA-Pred represents the performance pre-

dicted using the models. 57

4.6 3D ADI, 100 iterations, here FPGA-Pred represents the performance pre-

dicted using the models. 58

4.7 2D ADI-Tiled, 100 iterations, here FPGA-Pred represents the performance

predicted using the models. 60

4.8 SLV application performance. 61

5.1 RTM forward-pass, FP32, p = 2, v = 3, 200 iterations, here FPGA-Pred

represents the performance predicted using the models. 76

5.2 ADI 2D, FP32, fU = 8, V = 8, 16k iterations, here FPGA-Pred represents

the performance predicted using the models. GPU opt est represents the

predicted performance if tridiagonal matrix coefficients are generated in-

ternally. 79

6.1 The workflow for developing an application with OPS (based on [51]) and

how the proposed new FPGA back-end will fit within the framework. . . 88

6.2 kernel execution overview, classical accelerators Vs FPGA 88

6.3 Skeleton based source to source translation for FPGA 91

6.4 Data path for vectored stencil computation 100

6.5 Circular dependency on branches. 107

6.6 High-level overview to estimate design parameters. 109

B.1 120 iterations. 133

B.2 100 iterations. 134

B.3 100 iterations. 134

B.4 SLV application . 135

xiv

List of Tables

2.1 Experimental systems specifications. 8

3.1 Experimental system’s specifications. 37

3.2 Model parameters for baseline and batched designs. 37

3.3 Spatial blocking model parameters. 39

3.4 Poisson-5pt (Baseline and Batched, 60k iterations) 40

3.5 Poisson-5pt (Spatial-blocking, 60k iters). 40

3.6 Jacobi-7pt-3D, Baseline (29k iterations) and Batching (2.9k iterations) . . 42

3.7 Jacobi-7pt-3D (Spatial-blocking, 120 iterations) 42

3.8 RTM - Baseline (1800 iterations) and Batching (180 iterations) 44

4.1 Experimental systems specifications. 53

4.2 2D ADI Heat Diffusion App (F - FPGA, G - GPU). Gx and Gy are achieved

bandwidth of Tridslv(x-dim) and Tridslv(y-dim) respectively. 56

4.3 3D ADI Heat Diffusion App (F - FPGA, G - GPU). Gx, Gy and Gz are

achieved bandwidth of Tridslv(x-dim), Tridslv(y-dim) and Tridslv(y-dim)

respectively. 59

4.4 ADI Heat Diffusion App (2D FP32) – Large meshes, Thomas-PCR, 100

iterations, F - FPGA and G - GPU. Gx and Gy are achieved bandwidth of

Tridslv(x-dim) and Tridslv(y-dim) respectively. 60

4.5 SLV Application, GPU-x and GPU-y are achieved bandwidths of Tridslv(x-dim)

and Tridslv(y-dim) respectively. 62

5.1 Experimental systems specifications. 75

5.2 RTM - 200 iterations. 77

5.3 ADI Heat Diffusion Application. F - FPGA and G - GPU. Gx and Gy are

achieved bandwidth of Tridslv(x-dim) and Tridslv(y-dim) respectively. 80

6.1 Stencil kernel parameters. 92

6.2 Spatially Blocked Design parameters. 101

xv

List of Listings

1 Sequential execution of a for loop. 11

2 Pipelined loop body computation. 12

3 A 2D flattened stencil loop. 25

4 Transformed stencil loop. 27

5 NDRange based stencil computation. 66

6 single task based stencil computation. 67

7 Vectored stencil computation. 69

8 Stencil compute kernel skeleton. 70

9 Pipelining stencil compute kernels. 70

10 Global memory read-write loop. 71

11 OPS block and datasets. 85

12 A Stencil computation loop. 86

13 Example OPS application. 87

14 Skeleton for the baseline design. 93

15 #pragma to select on chip memory block. 95

16 Mesh point index computation. 96

17 Resource optimized mesh index computation. 96

18 Window buffer index computation. 97

19 Window buffer implementation. 97

20 Conditional FIFO pop. 98

21 Stencil computation using values in the register. 98

22 Conditional FIFO push . 99

23 Wider data types. 99

24 Vectored stencil computation. 101

25 Looping through spatial blocks. 102

26 Memory interface configuration. 104

27 Coalesced memory access. 105

28 Tiled memory access. 106

29 tridslv(x-dim) on FPGA. 108

30 tridslv(y-dim) on FPGA. 108

31 Dataflow optimization. 109

xvi

Chapter 1

Introduction

FPGAs have become highly attractive as accelerator architectures by virtue of their high

performance, low power consumption, low latency in processing and re-programmability

compared to Application Specific Integrated Circuit (ASIC) counterparts. As a result,

FPGAs have gained a foothold in a wider range of application domains such as cyber

security [13], databases [58], and deep learning [86]. In recent years, the integration of

FPGAs as first-class accelerator platforms has also attracted significant interest in the

High Performance Computing (HPC) and scientific computing communities, particularly

in the financial computing domain [5]. They have also emerged as a potential acceler-

ator platform for cloud computing [21]. However, a key limitation has been the design

effort needed to produce performant hardware architecture for FPGAs, traditionally im-

plemented through Hardware Description Language (HDL) such as Verilog and VHDL.

Implementation of FPGA accelerators using HDL requires expertise in digital system de-

sign and optimizations. Moreover, HDL implementations usually require longer design

and verification time.

Recent work [96, 59] and commercial FPGA vendors have attempted to address this

problem with High Level Synthesis (HLS) tools that can translate programs written in

standard high-level languages such as C/C++ or SYCL [74]/OpenCL [55] to a low-level

HDL implementation. While this approach has improved the programmability of FPGAs

considerably they still require low-level customization and hand-tuning to produce design

synthesis with optimum performance. Compared to programming traditional architec-

tures such as CPUs or GPUs, the user has to build the memory hierarchy and data path

using the supported high-level language constructs. Such data paths and algorithm trans-

formations must be carefully carried out in order to gain performance on FPGAs as it

comes with a fixed set of resources such as LUTs and registers and its operating frequency

is significantly lower compared to CPUs and GPUs. As such, getting good performance

on FPGAs remains a challenging endeavour.

One solution to this problem is a domain-specific approach, leveraging the key char-

acteristics of applications, their computation and communication patterns or motifs to

explore the design space on the target accelerator device. Once the best optimization

1

strategy for the target hardware is identified, it can be used to create templates for sim-

ilar problems. This technique can be used to create high performance libraries and/or

high-level Domain Specific Language (DSL) based frameworks that can generate highly

optimized target implementation. This strategy has become an important technique in

developing performance-portable massively parallel HPC applications given the increasing

diversity of processor architectures [63, 50, 80, 41].

In this thesis, we apply such an analysis to the domain of structured-mesh-based nu-

merical applications targeting FPGAs. These codes frequently appear as the core motif

in solvers for the partial differential equations (PDEs). As such, they are used in ap-

plications from a wide range of fields, including Computational Fluid Dynamics (CFD),

hydro-dynamics, financial computing, and oil/gas exploration simulations [67, 93]. We fo-

cus on numerical methods based on (1) explicit techniques, such as stencil solvers, and (2)

implicit techniques, the solution of order dependant algorithms, specifically tridiagonal

systems solvers. The key characteristic of the explicit solvers is looping over a “rectan-

gular” multi-dimensional set of mesh points using one or more “stencils” to access data.

On the other hand, implicit solver applications utilizing the tridiagonal solvers are char-

acterized by solving linear systems of the equation formed by a set of mesh points along

each dimension.

Explicit “Stencil” Solvers: Considerable previous research has developed a range of

strategies to synthesize optimized FPGA implementations for explicit stencil solvers [23,

85, 10, 98, 40]. Most recent works utilize the HLS tools, usually compiling OpenCL,

and targeting both 2D and 3D stencil applications. They develop a number of standard

techniques, ranging from basic methods such as cell-parallel/vectorization, unrolling the

iterative loop, to more complex transformations such as spatial/temporal blocking (tiling),

in order to best utilize FPGA resources for maximum performance. However, many of

the previous works target optimizations specific to an application in isolation without

developing a design strategy that can be applied to other stencil codes. While some [85,

84] attempt to generalize accelerator implementations for stencil codes, they only target

simpler stencil applications without exploiting higher-gain optimizations. A key gap in

the research is the lack of a unifying design strategy particularly focusing on

realistic applications.

Tridiagonal Solvers: Similarly, previous work on tridiagonal system solvers for

FPGAs utilized both low-level hardware description languages [54, 88, 95] as well as

high-level synthesis tools [89, 49, 47, 48, 83]. They demonstrated the implementation of

the standard tridiagonal system solver algorithms (Thomas, PCR, and Spike), evaluating

how to best utilize FPGA resources to maximize performance. However, many of these

previous works only develop single system solvers in isolation without a design strategy

that can be applied to multiple systems and multi-dimensions in general and do not utilize

higher-gain optimizations for real-world applications. There is a lack of systemic

approach to choose the best tridiagonal solver for a given application and how

best to implement it on modern FPGAs.

2

1.1 Contributions

This thesis makes contributions to advance the state-of-the-art by addressing these open

questions and disparities on optimally implementing structured mesh-based numerical

applications on FPGAs. The main contributions of this work are as follows:

• Workflow/implementation template (Chapter 3-5): We propose an imple-

mentation template, and an accompanying step-wise optimization strategy for con-

version of structured-mesh, explicit, iterative stencil applications (Chapter 3) and

tridiagonal solver based implicit applications (Chapter 4) to FPGA accelerators.

Given hardware resource constraints, we focus on the features of the application

that are amenable for FPGA implementation and optimizations for gaining near-

optimal performance. A key method, novel in this work, is the batched execution

of multiple independent stencil problems on an FPGA.

• Tridiagonal solver library (Chapter 4): We examine the algorithmic trade-offs

in developing optimal FPGA designs of multiple multi-dimensional tridiagonal sys-

tem solves. We propose a design and optimization strategy that optimizes based

on problem size, dimensionality, number of systems solved, and data-flow paths re-

quired. A key contribution is a new tridiagonal solver library developed with our

design space exploration, which can be used in the solution of multi-dimensional

applications. The new library demonstrates an order of a magnitude speedup com-

pared to state of art Xilinx Library for larger batches of tridiagonal systems.

• Analytical models (Chapter 3-5): The design and analysis are supported through

the development of analytic models to predict the performance of designs. These

models estimate the key resource consumption and enable rapid exploration of the

design space to find the optimal design parameters. Resource models provide esti-

mates for determining the feasibility of implementing a given structured mesh-based

application on a given FPGA. The models show over 85% runtime prediction accu-

racy compared to actual benchmark results.

• Benchmarking (Chapter 3-5): Targeting current generation Xilinx FPGAs and

Intel FPGAs, we present the design and optimization of three contrasting, represen-

tative explicit stencil solvers, and two tridiagonal solver-based implicit applications,

comparing a range of alternatives based on resource and performance trade-offs.

These applications include both 2D and 3D stencil solvers and multiple stencil

loops operating on vector elements and multi-dimensional tridiagonal solvers using

FP32 and FP64 arithmetic. The use of High Bandwidth Memory (HBM) available

on modern FPGAs, to combine multiple dimension solves and explicit loops, along

with batched execution of multiple independent solves is novel for this application

class. The runtime, bandwidth, and power/energy performance of the FPGA imple-

mentations are compared with highly optimized implementations on a traditional

3

accelerator architecture, a modern Nvidia V100 GPU.

• Automatic code transformation (Chapter 6): Finally, we bring together the

above strands of work to propose an automatable workflow for FPGA implemen-

tation of this class of applications. This work utilizes the frontend of popular DSL

framework and presents the steps to identify the optimal design parameters and

transform DSL into a FPGA implementation. The key technique behind the trans-

formation steps is design templates, making the transformation simple as well as

robust.

1.2 Thesis Overview

This chapter provided the overview of the underlying objectives and motivations, identi-

fies the major gaps in the current state of the art, and highlights the specific contributions

made by the research presented in this thesis. The subsequent chapters are structured in

the following manner:

Chapter 2 presents background and context to this thesis with details on (1) FPGA

accelerator ecosystem and basics on programming FPGAs using high level languages (2)

solving partial differential equations using stencil solvers (3) state of the art on accel-

erating explicit stencil solvers on FPGAs (4) solving partial differential equations using

implicit numerical schemes and popular tridiagonal solver algorithms and their trade-offs

(5) state of the art on accelerating tridiagonal solvers on FPGAs.

Chapter 3 presents a unified and optimized workflow to synthesize structured mesh

based explicit numerical applications on FPGAs. High gain optimisations such as batch-

ing and tiling are also detailed along with theoretical performance models that indicate

the improvement of run-time on FPGAs. The workflow and models are validated using

three representative applications implemented on Xilinx U280 FPGA. Performance on

FPGA in terms of runtime, power and bandwidth, is benchmarked against the optimal

implementation of the same applications on Nvidia V100. Several parts of this chapter

are published in [33].

Chapter 4 presents optimal FPGA design for solving small and medium batched tridi-

agonal systems as well as optimisation for solving larger tridiagonal systems on FPGAs.

The best tridiagonal system algorithm for FPGAs for batched processing is determined

based on a theoretical comparison of latency and resource consumption using models.

Models and proposed FPGA design is validated on Xilinx U280 FPGA for two non-trivial

applications. Again the FPGA’s performance is benchmarked against the optimal imple-

mentation of the same applications on Nvidia V100. Experiments reveal over 30% energy

saving for a complex financial applications’ largest configuration compared to the same

4

application on Nvidia-V100. Several parts of this chapter are published in [35].

Chapter 5 applies the workflow developed in Chapter 3 and Chapter 4 through SYCL

programming model on intel FPGAs and compares SYCL language-based kernel designs

with C++ for Xilinx Vivado based kernel designs. SYCL-specific optimisation to reduce

the kernel call overhead for Iterative Stencil Loops (ISLs) is detailed. Two non-trivial ap-

plications were implemented on Intel PAC D5005 FPGA accelarator device using SYCL

and the performance of it was again benchmarked against the same applications’ perfor-

mance on Nvidia-V100. It was observed that performance matched with model predicted

run-time and optimisation applied on Xilinx FPGAs can equally be applied through SYCL

on Intel FPGAs. Several parts of this chapter are published in [34].

Chapter 6 develops the steps to automate the workflow developed in Chapter 3 and

Chapter 4. This Chapter leverages popular Domain Specific Language (DSL) for struc-

tured mesh-based applications, OPS, and devises the steps to transform applications

specified through DSL to FPGA target language. It introduces the Oxford Parallel li-

brary for Structured mesh solvers (OPS) framework and presents the parts of the OPS

application that are going to be executed on the target FPGA accelarator device. Later

sections develop transformation steps to get corresponding FPGA implementation with

specified parameters. Finally, it provides the algorithm to identify the optimal design

parameters for an FPGA implementation.

Chapter 7 summarizes this thesis and presents the concluding remarks. Subsequent

chapters identify potential avenues for future research that may build upon the findings

of this thesis.

5

Chapter 2

Background

This Chapter presents and establishes the background on which we build the contributions

of the thesis. We present a comprehensive account of the following: (1) terminology,

concepts, challenges and optimization techniques on FPGA-based acceleration (2) popular

numerical schemes for solving Partial Differential Equations (PDEs) and analysis of their

suitability for parallel architectures (3) state of the art on accelerating structured mesh

applications on FPGAs highlighting the key findings and research gaps.

2.1 FPGA Accelerator Device and Eco-System

2.1.1 FPGA Accelerator Device Overview

FPGAs differ from traditional Central Processing Units (CPUs) and Graphical Process-

ing Units (GPUs) as they do not present a fixed, general-purpose architecture to be

programmed using the software. A software program is made up of a sequence of instruc-

tions that are executed on a fixed CPU or GPU architecture that does not change. In

contrast, an FPGA must be configured with an architecture, a specific circuit, that imple-

ments the computation of a given task. In comparison with CPUs and GPUs, executing

HBM[0-15] HBM[16-31]

D
D

R
4

[1
]

D
D

R
4

[0
]

PCIe

SLR2

SLR1

SLR0
Host

Static RegionDynamic Region

XCU280
CLB
DSP
URAM
BRAM

Figure 2.1: Xilinx Alveo U280 FPGA accelerator device. Multiple Super Logic Regions
(SLRs) are vertically connected through interposer technology. Each SLR consists of
circuit elements such as LUTs and registers in Configurable Logic Blocks (CLBs). High
Bandwidth Memory (HBM) and DDR4 serve as near and off-chip memory resources.

6

the program on FPGAs entails the creation of a data-flow compute pipeline, passing data

through the fixed circuit. Such optimized architecture differs from a general CPU ar-

chitecture as it consists of application-specific caching schemes and multiple Arithmetic

Logic Units (ALUs) with dedicated buses and registers. CPUs and GPUs depend on

data movement through load and store memory units such as registers, cache and off-chip

memory. These operations are costly in terms of latency as well as energy. On the other

hand, dedicated data paths on FPGAs and internal data movement not only save the

clock cycles but also energy. Additionally, FPGAs operate at a lower clock frequency

leading to further energy-efficient execution. The reconfigurability of FPGAs offers a sig-

nificant advantage over the designing of Application Specific Integrated Circuits (ASICs)

which is much more time-consuming and costly and, leads to a fixed architecture that

cannot be modified once fabricated.

FPGAs comprise a variety of basic circuit elements to implement a hardware archi-

tecture. These circuit elements include ample look-up-tables (LUTs) and registers, large

numbers of digital signal processing (DSP) blocks on modern devices, block memories such

as Block Random Access Memorys (BRAMs)/Ultra Random Access Memorys (URAMs)

in Xilinx FPGAs and Memory Logic Array Blocks (MLABs)/M20K in Intel FPGAs, clock

modules, and a rich routing fabric to connect these elements into a large logical accelerator

architecture. While these resources are primarily suited for the implementation of fixed

point integer data paths, they can be used to implement floating point data paths too,

though these typically consume significantly more resources for the same computation.

Optimizing the datapaths to maximise the achievable frequency, and hence throughput,

approaching the limits of what DSP blocks are capable of, is essential in the design of

high-performance accelerators on FPGAs [66].

On-chip Random Access Memory (RAM) blocks on FPGAs provide fast and pre-

dictable access to data with a fixed latency. These RAM blocks have a combined capacity

of typically several tens of megabytes. HLS tools can typically combine multiple such

on-chip block memories to form a larger width memory or deeper depth memory. Recent

FPGA devices come with coupled High Bandwidth Memory (HBM) [81, 1] that provides

a few GBs of capacity and bandwidth in the order of a few hundred GB/s. An FPGA

board also includes much larger, but slower Double Data Rate 4 (DDR4) memory as

external memory. Managing the movement of data between these different types of mem-

ory is key to achieving high computational performance. The performance of an FPGA

architecture is hard to predict, as it is impacted by various design characteristics beyond

the level of the parallelization applied. As a design grows and begins to occupy a larger

portion of the FPGA, routing (i.e. connecting all the circuit elements together) becomes

more challenging, and routing congestion can reduce the achievable clock frequency and

hence overall performance. Careful consideration is required for FPGAs which are par-

titioned into multiple regions (typically in Xilinx FPGAs, partitioned into Super Logic

Regions (SLRs) [91]). This is because the communication links between these regions

tend to be slow and can exacerbate routing congestion as the size of the design increases.

7

Therefore, it is crucial to impose placement constraints that restrict the number of con-

nections crossing the partitioned regions.

Table 2.1: Experimental systems specifications.

FPGA Xilinx Alveo U280

DSP blocks 8490
BRAM/URAM 6.6MB (1487 blocks)/34.5MB (960 blocks)
HBM 8GB, 460GB/s, 32 channels
DDR4 32GB, 38.4GB/s, in 2 banks
PCIe 32 GB/s
Fabrication 16nm FinFet
Launch Price $8797
Host AMD Ryzen Threadripper PRO 3975WX (32 cores)

512GB RAM, Ubuntu 18.04.6 LTS
Design SW Xilinx Vivado HLS, Vitis 2019.2
Run-Time Xilinx XRT 202020.2.9.317

GPU Nvidia Tesla V100 PCIe

Global Mem. 16GB HBM2, 900GB/s
PCIe 32 GB/s
Fabrication 12nm FinFet
Launch Price $10664
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

In this work, we are going to use Xilinx Alveo U280 (Chapter 3-4) FPGA accelerator

device and Intel PAC D5005 (Chapter 5) for the evaluation of our methodology. The

detailed specification of Xilinx Alveo U280 is given in Table 2.1. We choose Nvidia-

V100 GPU as the best-performing traditional architecture competitor FPGAs based on

comparable off-chip memory bandwidth, fabrication technology, PCIe bandwidth and

launch price. A similar comparison between Intel PAC D5005 and Nvidia-V100 is provided

in Table 5.1 and here we note that FPGA’s off-chip memory bandwidth is over one

magnitude less than GPU’s off-chip bandwidth.

2.1.2 FPGA Programming

FPGA applications were traditionally developed using HDL like Verilog and VHDL, which

require a deep understanding of digital system design to translate algorithms or applica-

tions into a parallel digital circuit. This design process is time-consuming and requires

extensive functionality verification of the implemented circuit. Once the design passed

functionality simulations, the HDL implementation would be synthesized into primitive

circuit elements such as logic gates and registers, which were then mapped onto available

FPGA circuits elements like Look Up Tables (LUTs), registers, block memories, and DSP

units. This process was called technology mapping. Next, the technology-mapped ele-

8

ments will be placed in available locations (logic placement) on the FPGA and connected

to form the circuit through routing. Additional steps such as post-synthesis and post-

implementation simulation, and constraints-based guidance on synthesis, placement, and

routing might be necessary to achieve a high-performing circuit implementation. Once

routing is complete, a bit stream will be generated from the tool, which could configure

the actual FPGA to implement the target circuit. We note here that the time to reconfig-

ure the FPGAs would be in a few seconds while loading kernels in CPUs and GPUs will

be in the order of micro-seconds. This whole process (synthesis, placement and routing)

will take a longer time (a few hours for the FPGA Poisson application we later develop in

section 3.4.1) compared to compiling a software application (a few seconds for the GPU

Poisson application we later develop in section 3.4.1).

HDL code generator tools such as MATLAB DSP HDL Toolbox [19], Vision HDL

Toolbox [82] and Wireless HDL Toolbox [90] have been developed to ease programming

FPGAs by automatically generating HDL implementations while not sacrificing the per-

formance. In these tools, users utilize the optimized pre-built library implementation

such as various filter modules for signal processing, to build the required circuit for a

given application. Nevertheless, building applications using these tools is more hardware

development-oriented than software development. The main drawback is, these tools of-

fer support for specific domains where FPGAs are widely used. Developing applications

for new domains would be challenging due to the lack of support for optimized library

modules.

Research works have attempted to minimize the time for the application develop-

ment, FPGA compilation and time to configure the FPGAs through the overlays [73].

Essentially, overlays are configurable architectures that sit on top of the physical layer

of FPGAs. It could be Coarse Grained Reconfigurable Arrayss (CGRAs) [31, 7] such as

configurable Processing Elements (PEs) or fine-grained Virtual FPGA [2, 46, 8] that im-

plement basic circuit elements on top of the physical FPGA. Since the underlying physical

circuit won’t change when configuring the overlays, it drastically reduces the compilation

time to target an application on FPGAs. Configuring overlays is more software-oriented,

a custom tool can be used to translate complex applications to overlay configurations.

Reconfiguration time for CGRA overlays is much lesser in the order of microseconds

compared to actual physical FPGA reconfiguration times, but it comes at the cost of a

performance penalty. Implementing an application through virtual FPGA overlays would

require much more resources than implementing that application directly on physical FP-

GAs. CGRA overlays provide a trade-off between performance and the range of possible

configurations. As such, the utilization of overlays on real-world applications are limited.

Previously, the high development overhead of FPGA applications led users to focus on

a small set of applications that would provide a better return on the development cost,

typically those that could be used in multiple deployments. As a result, the use of FPGAs

was limited to certain classes of applications, including embedded, I/O-oriented, and

latency-critical applications. However, about a decade ago, major FPGA device vendors

9

such as Xilinx (now acquired by AMD) and Altera (now acquired by Intel) introduced

HLS tools. These tools enable users to implement applications using high-level languages

such as C/C++/OpenCL/SYCL, with the tools generating functionally matching HDL

implementations. In contrast to overlays, generated HDL implementations will be passed

to backend tools to synthesize, place and route to get the FPGA configuration bitstream

to reconfigure the physical FPGA. In this way, HLS tools minimize the performance

penalty at the same time reducing the development time and supports a wider range of

domains. Moreover, HLS tools not only reduce the time required for HDL-based designing

but also save significant time spent on verification. With HLS tools, users no longer need

to be proficient in HDL language, low-level digital design concepts and optimizations, or

verification methods to program an FPGA.

While HLS tools are generally effective at generating functionally equivalent HDL im-

plementations, they require guidance and customization of high-level implementations

such as polyhedral loop optimizations, stream-based dataflow and wider port memory

access to generate a better-performing implementation. To guide HLS tools, Pragmas

and Attributes are used in C++ for Vivado [25] and SYCL [22]. Some of these trans-

formations, such as loop coalescing, loop fusion, loop interleaving, vectorizations, and

global reductions, are also used in CPU optimizations. Pragmas and Attributes are also

used to provide HLS tools with additional information such as dependency distance in

loop iterations to avoid pessimistic decisions by the tool. There are optimizations specific

to FPGAs, such as exploiting irregular parallelism by pipe-lining the loop and achieving

task-level parallelism by data flow optimizations. Pragmas directive can be applied to

bind the implementation to specific FPGA resources, a variable that can be implemented

using the register or on-chip memory. Users can also configure the circuit implemen-

tation of a high-level language construct, an array can be partitioned (cyclic, block, or

complete) and partitioned blocks could be implemented as individual block memories to

obtain higher throughput. Although HLS tools have reduced the required time and effort

to obtain an FPGA implementation, applying these customisations and transformations

is not a trivial task.

The portion of the program that is accelerated on the FPGA devices is called a kernel.

it can be implemented on FPGAs using one of the above FPGA programming methods.

To execute a kernel, the FPGA must be reconfigured to load the kernel, necessary data

need to be transferred to the device, and the kernel should be started. In order to transfer

the data to the device and manage kernel runs, additional hardware modules, such as an

external memory controller, Peripheral Component Interconnect Express (PCIe) modules

for communication with the host, and modules to manage the board and profile the

kernel execution, are required. It is a time-consuming process to implement these support

modules on FPGA, and establish communication with the host processor, often requiring

the operating system to be restarted.

To simplify this process, major FPGA vendors provide a pre-built shell containing

necessary hardware modules for data movement, loading the kernel and launching it.

10

During the FPGA board setup process, this shell is loaded onto the assigned FPGA

region, called as the static region. The dynamic region is the remaining region where user

kernels are loaded. The kernel is loaded into the dynamic region through a process called

partial reconfiguration. Partial reconfiguration allows the static region area on FPGA to

remain the same and continue to execute while just the dynamic region is reconfigured

for loading the new kernel. Since loading kernels using partial reconfiguration is a time-

consuming process (typically in seconds for larger FPGAs), it is recommended to load

the set kernels and use them repeatedly. The FPGA vendor-specific runtime library

communicates with hardware modules in the static region to move the data and execute

the kernel.

2.1.3 Loop Latency Estimation

When developing FPGA applications, users often face a tradeoff between performance and

the resources/area consumed by the hardware modules. In order to make decisions about

the required level of parallelism, it is useful to estimate the performance/latency of the

application. One way to estimate the latency of an application implemented using High-

Level languages is to analyze the applied parallelism of the high-level implementation.

Since most part of the application’s execution time is spent on executing loops, this

section focuses on building a latency model for loops, specifically for FOR loops. This

model is then utilized in Chapters 3-5 to construct predictive performance models.

1 for(int itr = 0; itr < lB; itr++){

2 C[itr] = A[itr] + B[itr];

3 E[itr] = C[itr] + D[itr];

4 }

Listing 1: Sequential execution of a for loop.

The loop in Listing 1 would be executed sequentially in a naive implementation on an

FPGA, with the loop statements executed one after another. Assuming that the integer

values are stored in register files (A, B, C, and D), instantaneous reading is possible, but

writing operations would take a clock cycle. Executing the addition operations in Listing 1

requires a hardware adder circuit which would be implemented using LUTs on FPGAs. If

we utilize one adder circuit, then it would take two clock cycles to complete the iteration.

The number of clock cycles needed to initiate a new loop iteration is called the Initiation

Interval (II), which, in this case, is two. The total execution latency of the loop would

be lB × II. To improve this latency, the loop could be executed in a pipelined manner

by executing two consecutive iterations in parallel, as shown in Listing 2.

Here a new iteration is introduced for each clock, hence II = 1. In this case, two

adders are required as two additions are done in each clock. This implementation is

with a pipeline depth pd = 2, as integer addition can be done in a single clock. Loops

with complex computations would require pipeline stages in tens. We note that multiple

iterations can’t be executed at the same clock as in this case if there is a loop-carried

11

1 // clock 0

2 C[0] = A[0] + B[0]

3 // clock 1

4 C[1] = A[1] + B[1]

5 E[0] = C[0] + D[0]

6 // clock 2

7 C[2] = A[2] + B[2]

8 E[1] = C[1] + D[1]

9

10 E[lB-1] = C[lB-1] + D[lB-1]

Listing 2: Pipelined loop body computation.

dependency where the result of one iteration is required by a subsequent iteration of the

same loop. The total latency in executing this fully pipelined loop will be lB + 1. The

latency of a pipelined loop (partially/fully) can be generalized to lB × II + db − 1.

The latency can be further improved by replicating the pipelined circuits. In this case,

the first circuit can execute the 0 to ⌈lB/2−1⌉ iterations and the second circuit can execute

iterations from ⌈lB/2⌉ to lB − 1. The resultant latency assuming fully pipelined circuits

will be ⌈lB/2 + 1⌉. The number of times a circuit is replicated is called as Vectorization

factor (V) and latency can be generalized to ⌈lB/V ⌉ × II + db − 1.

2.2 Structured Mesh-Based Numerical Schemes

The motivating class of applications for this work falls under the domain of structured

mesh based numerical algorithms. The performance of such algorithms on parallel archi-

tectures depends on their computational and memory access characteristics. In this sec-

tion, we explore these characteristics for various structured mesh-based numerical meth-

ods, using the example of solving the Poisson equation. Researchers and engineers often

turn to numerical solutions when analytical solutions are either impossible or require ad-

vanced mathematical skills. These methods often involve solving PDEs using a mesh that

discretizes the variable’s range. The numerical schemes discussed in this section belong

to the category of Finite Difference Method (FDM) [43, 44, 76]. Other commonly used

structured mesh-based methods include Finite Element Method (FEM) [9] and Finite

Volume Method (FVM) [20].

In the FDM, variables are directly discretized and the differential equation is rewritten

in terms of discrete differences. A simple differential equation df(X)
dX = k can be numeri-

cally solved by discretizing the variable X, where k is a constant. Let’s assume variable

X is discretized into N values at distance h = x/N as [x0, x1, ..., xi, ..., xN−1]. The dif-

ferential equation at xi using forward difference can be written as (f(xi+1 − f(xi)/h =

k. Similarly, the differential equation can be written as (f(xi) − f(xi−1)/h = k and

(f(xi+1− f(xi−1)/2h = k using backward and central differences. If the boundary values

(function value f(X) at x0 and xN−1) are known, function values at all the discretized

points can be calculated using forward or backward difference.

12

FDM can also be applied to higher-order partial differential equations involving multi-

ple variables. We develop FDM-based numerical methods to solve 2D Poisson equations

which have similarities with the Poisson application we develop later in Chapter 3.

∆ϕ(x, y) = f(x, y) (2.1)

∂2ϕ(x, y)

∂x2
+

∂2ϕ(x, y)

∂y2
= f(x, y) (2.2)

Here the function f(x, y) is known and function ϕ(x, y) is unknown. Let’s discretize x, y

domains and these values are represented by i, j in discretized mesh with resolution h

in both coordinates. The second-order central difference-based partial differentiation will

result in the following expression

ϕ(i+ h, j)− 2× ϕ(i, j) + ϕ(i− h, j)

h2
+

ϕ(i, j + h)− 2× ϕ(i, j) + ϕ(i, j − h)

h2
= f(i, j) (2.3)

The error order of the above second-order central difference discretization can be com-

puted using the Taylor series as follows:

ϕ(x+ h, y) = ϕ(x, y) + h×
∂ϕ(x, y)

∂x
+

h2

2
×

∂2ϕ(x, y)

∂2x
+

h3

6
×

∂3ϕ(x, y)

∂3x
+

h4

24
×

∂4ϕ(x, y)

∂4x
+ ... (2.4)

ϕ(x− h, y) = ϕ(x, y)− h×
∂ϕ(x, y)

∂x
+

h2

2
×

∂2ϕ(x, y)

∂2x
−

h3

6
×

∂3ϕ(x, y)

∂3x
+

h4

24
×

∂4ϕ(x, y)

∂4x
+ ... (2.5)

Adding Equation 2.4 and Equation 2.5, we will get following equation:

ϕ(x+ h, y) + ϕ(x− h, y) = 2× ϕ(x, y) + h2 × ∂2ϕ(x, y)

∂2x
+

h4

12
× ∂4ϕ(x, y)

∂4x
+ ... (2.6)

It will result in the following equation:

∂2ϕ(x, y)

∂2x
=

ϕ(x+ h, y)− 2× ϕ(x, y) + ϕ(x− h, y)

h2
+

h2

12
× ∂4ϕ(x, y)

∂4x
+ ... (2.7)

Hence the error order of discretization in Equation 2.3 is O(h2).

2.2.1 Explicit Schemes - Stencil Solvers

Explicit numerical scheme forms equations, such that mesh point values can be directly

evaluated. One of the popular methods is Jacobi iteration where neighbouring values are

used to find an estimate of a mesh point value. As such, Equation 2.3 can be rewritten

as Equation 2.8, again this can be specified as an iterative Equation 2.9.

13

ϕ(i, j) =
1

4
× (ϕ(i− h, j)

+ ϕ(i, j − h) + ϕ(i+ h, j) + ϕ(i, j + h)− h2 × f(i, j)) (2.8)

ϕN+1(i, j) =
1

4
× (ϕN (i− h, j)

+ ϕN (i, j − h) + ϕN (i+ h, j) + ϕN (i, j + h)− h2 × f(i, j)) (2.9)

Based on boundary conditions and initial values/ previous iteration values, next iter-

ation value of ϕN+1(i, j) in Equation 2.9 can be calculated. Updating ϕN+1(i, j) requires

access to (i, j + h), (i− h, j), (i+ h, j), (i, j − h) mesh points which can be specified using

the stencil in Figure 2.2.

ui,j−h

ui−h,j ui,j ui+h,j

ui,j+h

Figure 2.2: Five-point stencil for 2D-Poisson equation.

Mesh point values ϕ(i, j) in the time step N + 1 can be updated by moving this

stencil through this rectangular mesh at time step N and evaluating the expression in

equation 2.9. Since there is no dependency on updating any two mesh point values in

time step N + 1 in this Jacobi iterative method, it is suitable for acceleration on paral-

lel architectures. After iterating through multiple steps, mesh point values will usually

converge. Although the explicit numerical scheme equation for this 2D Poisson equation

is numerically stable, many explicit scheme equations such as the heat diffusion equation

(refer Appendix A) are only stable under certain discretization conditions. Moreover, an

explicit scheme requires a larger number of iterations to reach the convergence targeting

finer resolutions of discretization compared to the implicit methods that we develop later

in this Chapter. Memory requirements for current and next-time steps are proportional

to N2 for a square mesh.

2.2.2 Explicit Schemes - Related Work on FPGAs

Early works [71, 70, 68] targeting FPGAs for stencil computations used Hardware De-

scription Languages (HDL) for describing the architectures. However, the process required

extensive hardware knowledge and a time-consuming development cycle. The introduc-

tion of High-Level Synthesis (HLS) tools has significantly improved developer productivity

and time to design. As such more recent work [85, 84, 62, 10, 40] has utilized HLS tools

for implementing FPGA designs for stencil computations. As FPGAs have advanced to

incorporate a variety of high bandwidth interfaces and memory types, the system level

14

ɸ! ɸ!"#

Figure 2.3: Poisson stencil loop updates.

view of an accelerator architecture has become more important to achieving overall high

performance.

The most comprehensive implementation workflow and optimization methodology to

date is by Waidyasooriya et. al in [85, 84]. The authors use OpenCL and propose an

optimization strategy for stencil applications targeting Intel FPGAs. A number of 2-D

and 3-D stencil applications are developed through the above strategy, demonstrating

up to 950 GFLOPS of achieved computational performance on Intel FPGAs utilizing

93% of available DSP resources. Runtime and bandwidth performance are compared to

conventional GPU and multi-core CPU implementations. The work, however, limits the

investigation to applications with only a single stencil loop over the mesh. Multiple stencil

loops within a single time-step iterative loop are not considered.

A previous implementation of the 3D Reverse Time Migration (RTM) application,

which has similarities to the RTM application we develop later in this work in Chapter 3,

can be found in [23]. The implementation uses early-generation Xilinx FPGAs, prior to

the introduction of the HLS tool by major vendors, but with designs equivalent to the

techniques we use in this work through HLS. Zohouri et. al [98] use Intel FPGAs with a

design goal to enable unrestricted input sizes for stencil computations without sacrificing

performance. They combine spatial and temporal blocking to avoid input size restrictions

and employ multiple FPGA-specific optimizations to tackle the added design complexity.

The same authors apply these techniques to higher-order stencils in work [97]. The use

of spatial and temporal blocking is novel, which Chapter 3 also addresses, but we extend

it to variable sized tiling and multi-HBM port implementation, generalizing the technique

and incorporating it into our overall design workflow.

A number of previous works have also utilized high-level frameworks for generating

efficient FPGA accelerators. The SDSLc framework [62] presents the use of source-to-

15

source translation for generating parallel executables for a range of hardware platforms.

These include CPUs, GPUs and FPGAs and details optimizations such as iterative loop

unrolling and full data reuse within FPGAs. Similarly, the SODA framework [10] performs

several optimizations including perfect data reuse by minimal reuse buffers and data

quantization. Additionally, it models the performance and predicts resource consumption,

significantly reducing design time. The authors present competitive performance with

multi-core CPU implementations and state-of-the-art stencil implementations on FPGAs.

The main limitations of the work are fixed tile size and host-based tiling. Due to the DSL’s

support of only declarative programming, it is not clear whether any limitations exist for

porting complex kernels using SODA.

The more recent HeteroCL framework [40] addresses image processing applications. It

also supports stencil applications through a SODA back-end as well as through a gen-

eral back-end. The HeteroCL DSL separates the algorithm from compute, schedules and

determines data types, and automatically translates SODA DSL to reflect the iteration

unroll factor and other parameters such as data width. A deep single kernel pipeline

generated using the above frameworks usually suffers from routing congestion in mod-

ern large FPGAs from Xilinx, that incorporate multiple Super Logic Regions (SLRs).

This is addressed in work [39] by decoupling the kernel pipeline and assigning placement

constraints to limit the inter-SLR crossings. In [17], Dohi et. al, use the proprietary Max-

Compiler and MaxGenFD high-level design tools to implement finite-difference equations.

The work is limited to Maxeler Technologies FPGA platforms and does not compare re-

sults with other FPGAs, GPUs or CPUs. The authors of [52] use the polyhedral model

and implement a related framework to automatically accelerate iterative stencil loops on

a multi-FPGA system. In contrast, [69] develop a scalable streaming Array to implement

stencil computations on multiple FPGAs, using a DSL, achieving reduced development

time and near-peak performance. Automatic code generation is also used in Stencil-

Flow [15] and has similarities to our design in this work. However, it mainly focuses

on non-iterative applications with multiple kernels, hence spanning designs over multiple

FPGAs. Batching and spatially blocked optimizations are not attempted.

In contrast to the above works, Chapter 3 of this thesis presents a unifying strategy

for the development of FPGA implementations of both 2-D and 3-D stencil applications,

including multi-dimensional mesh elements and multiple stencil loops. Chapter 3 of this

work incorporate many of the optimization techniques in previous works that have usually

been applied in isolation or on a single application. Additionally, Chapter 3 of this work

introduce a number of further optimizations such as batching to achieve higher through-

put in real-world/production workloads and settings. A predictive analytical model that

estimates the feasibility of implementing a given stencil application on a given FPGA

platform is also presented. Additionally, the performance of the FPGA accelerators is

compared to equivalent highly-optimized implementations of the same applications on

modern HPC-grade GPUs, analyzing time to solution, bandwidth, and energy consump-

tion.

16

2.2.3 Implicit Schemes

The Jacobi method-based expression in Equation 2.9 is arranged in a way that ϕ(i, j)

could be directly evaluated using values in the previous step. In contrast, Equation 2.3

can also, be arranged such that unknown values will form an equation as in 2.10.

4× ϕ(i, j)− ϕ(i− h, j)− ϕ(i, j − h)− ϕ(i+ h, j)− ϕ(i, j + h) = h2 × f(i, j)) (2.10)

This equation relates ϕ(i, j) with neighbouring elements. Similarly, a set of equations

can be formed relating neighbouring elements for all the other mesh points. Such a set

of equations will form a matrix as follows for a 4x4 discretization (for N ×N mesh, the

coefficient matrix will be the size of N2 ×N2).

4 −1 −1

−1 4 −1 −1

−1 4 −1 −1

−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1

−1 −1 4 −1

−1 −1 4 −1

−1 −1 4

ϕ(0, 0)

ϕ(0, 1)

ϕ(0, 2)

ϕ(0, 3)

ϕ(1, 0)

ϕ(1, 1)

ϕ(1, 2)

ϕ(1, 3)

ϕ(2, 0)

ϕ(2, 1)

ϕ(2, 2)

ϕ(2, 3)

ϕ(3, 0)

ϕ(3, 1)

ϕ(3, 2)

ϕ(3, 3)

=

h2 × f(0, 0)

h2 × f(0, 1)

h2 × f(0, 2)

h2 × f(0, 3)

h2 × f(1, 0)

h2 × f(1, 1)

h2 × f(1, 2)

h2 × f(1, 3)

h2 × f(2, 0)

h2 × f(2, 1)

h2 × f(2, 2)

h2 × f(2, 3)

h2 × f(3, 0)

h2 × f(3, 1)

h2 × f(3, 2)

h2 × f(3, 3)

(2.11)

Solving the PDEs numerically using this method falls under the category of implicit

numerical schemes, as values can’t be explicitly evaluated. The benefit is, it is a direct

method not requiring multiple iterations for the convergence as in explicit methods and

it is unconditionally stable compared to explicit numerical schemes in some cases where

the error could amplify over the iteration and the solution could become unstable. The

drawback of this method is, finding solutions to such a linear system with a high diagonal

bandwidth coefficient matrix, requiring sophisticated algorithms. Accelerating such an

algorithm in parallel architectures is quite a challenging problem due to data dependency.

Moreover, the memory requirement will also be proportional N4 for a square mesh with

size N ×N compared to N2 for the Jacobi iteration we have seen previously.

17

2.2.3.1 Alternating Direction Implicit method

As a trade-off, the popular Alternating Direction Implicit (ADI) [18] method provides

faster convergence than the explicit methods at the same time offers a better degree of

parallelism compared to the above fully implicit method. For the Poisson equation in 2.3,

the ADI scheme adds another step N + 1
2 between N and N + 1 for a partial differential

equation involving two variables. Equation 2.12 can be formed by using step N + 1
2 to

find the derivative of ∂2ϕ(x,y)
∂x2 and step N for the rest in Equation 2.2. Similarly, step

N + 1
2 and N + 1 can be used to form the Equation 2.13. Those two equations can be

reduced to Equations 2.12, 2.13 respectively. A set of equations as in Equations 2.12 along

each x-dim will form a linear system with a tridiagonal coefficient matrix. Hence there

is a need to solve a number of tridiagonal systems when finding the mesh values in step

N + 1
2 . This makes it suitable for parallel computing architectures as tridiagonal systems

can be solved independently. Many scientific applications are based on the ADI scheme

as optimized libraries for solving tridiagonal systems available for in CPUs and GPUs.

ϕN+1/2(i+ h, j)− 2× ϕN+1/2(i, j)ϕN+1/2(i− h, j)

+ ϕN (i, j + h)− 2× ϕN (i, j) + ϕN (i, j − h) = f(i, j)× h2

(2.12)

ϕN+1/2(i+ h, j)− 2× ϕN+1/2(i, j) + ϕN+1/2(i− h, j)

+ ϕN+1(i, j + h)− 2× ϕN+1(i, j) + ϕN+1(i, j − h) = f(i, j)× h2

(2.13)

ϕN+1/2(i+ h, j)− 2× ϕN+1/2(i, j) + ϕN+1/2(i− h, j)

= f(i, j)− (ϕN (i, j + h)− 2× ϕN (i, j) + ϕN (i, j − h)) (2.14)

ϕN+1(i, j + h) − 2× ϕN+1(i, j) + ϕN+1(i, j − h)

= f(i, j)− (ϕN+1/2(i+ h, j)− 2× ϕN+1/2(i, j) + ϕN+1/2(i− h, j))

(2.15)

Equation 2.14 involves three unknowns, namely ϕN+1/2(i + h, j), ϕN+1/2(i, j), and

ϕN+1/2(i− h, j), at time step N + 1/2, while other values are known at time step N . A

system of equations can be constructed using the mesh points shown in Figure 2.4, which

results in a tridiagonal matrix. To compute the right-hand side (RHS) values, a 3-point

stencil is applied over the mesh at time step N . The mesh point values at time step

N +1/2 can be obtained by solving the tridiagonal matrix system in the form of Au = d.

aiui−1 + biui + ciui+1 = di, i = 0, 1, ..., N − 1 (2.16)

18

ɸ! ɸ!"#/%

Figure 2.4: Required mesh points for xsolve in step N and N + 1
2 .

b0 c0 0 . . . 0

a1 b1 c1 . . . 0

0 a2 b2 . . . 0
...

...
...

. . .
...

0 0 . . . aN−1 bN−1

u0

u1

u2

...

uN−1

=

d0

d1

d2
...

dN−1

(2.17)

The coefficient matrix A in Equation 2.17 has a size of N ×N , which is much smaller

than the previously encountered matrix size of N2 × N2 in Equation 2.11. In order to

solve the Poisson equation along both the X-Dim and Y-Dim, a set of N such matrix

systems need to be solved. Equation 2.15 can also be solved by using a set of equations

along the Y-Dim and utilizing the updated values obtained from Equation 2.14 at time

step N +1/2. The ADI method is an iterative solver that solves the system of tridiagonal

equations in each direction or variable cyclically, hence the name Alternating Direction

Implicit (ADI) method. This approach provides some level of parallelism compared to

direct implicit methods, as many smaller matrix systems needs to be solved in the ADI

method. Additionally, the ADI method is a more stable numerical method than the

explicit stencil-based solvers we have previously examined.

2.2.3.2 Tridiagonal solver algorithms

The solution to tridiagonal systems of equations is well known. The Thomas algorithm [77]

(see Algo. 1) carries out a specialized form of Gaussian elimination (assuming non-zero

bi). After the execution of the forward loop in Algorithm 1, the system will be modified

to upper diagonal form as in Equation 2.18. Solution to Thomas algorithm provides the

least computationally expensive solution, but suffers from a loop-carried dependency. It

has a time complexity of O(N). Here, N is the size of the system or the number of

equations.

19

1 c∗0 0 . . . 0

0 1 c∗1 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . 0 1

u0

u1

u2

...

uN−1

=

d∗0
d∗1
d∗2
...

d∗N−1

(2.18)

Algorithm 1: Thomas algorithm, see the tridiagonal system in equa-
tion 2.17 for a, b, c, d, u. Subscript denotes the particular row/equation in
the tridiagonal system. d∗i , c

∗
i , are intermediate values during the computa-

tion.
1: d∗0 ← d0/b0
2: c∗0 ← c0/b0
3: for i = 1, 2, ..., N − 1 do
4: r ← 1/(bi − aic

∗
i−1)

5: d∗i ← r(di − aid
∗
i−1)

6: c∗i ← rci
7: end for
8: uN−1 ← dN−1

9: for i = N − 2, ..., 1, 0 do
10: ui ← d∗i − c∗iui+1

11: end for
12: return u

In contrast, the Parallel Cyclic Reduction (PCR) algorithm [24](see Algo. 2), operates

on a normalized matrix so that bi = 1 and then for each matrix row i, subtracts multiples

of rows i ± 20, 21, 22, ..., 2P−1, where P is the smallest integer such that 2P ≥ N . This

leads to each iteration reducing each of the current systems into two systems of half the

size as in Figure 2.5. After P steps, all of the modified a and c coefficients are zero, leaving

values for the unknowns ui. In PCR, the iterations of the inner loop do not depend on

each other, which is well suited for traditional multi-core/many-core architectures such as

CPUs and GPUs allowing multiple threads to be used to solve each tridiagonal system.

However, PCR has a complexity of O(N logN) and is more computationally expensive

than the Thomas algorithm, which for an FPGA implementation poses an important

consideration, (as examined in Section 4.1) due to the limited availability of resources.

The SPIKE algorithm [60] decomposes the A matrix, into p partitions of size m to

obtain the factorization of A = DS where D is a main diagonal block matrix consisting

of tridiagonal matrices A1, ..., Ap and S is the so called spike matrix. The solution to the

system then becomes, DSx = d where the system DY = d can be used to obtain Y , and

Sx = Y to obtain x. Since matrix D is a simple collection of Ai, each AiYi = di can

be solved independently. Solving Sx = Y requires only solving a reduced penta-diagonal

system (see Wang et al. [87] for a detailed description). The algorithm therefore operates

in three steps: factorization, reduced system solve, and back substitution, where the

factorization (LU and UL) has a complexity of O(N). The reduced system can be solved

20

Algorithm 2: PCR algorithm, a, b, c, d, u in the tridiagonal system in
equation 2.17 corresponds to a0, b0, c0, d0, u in this algorithm.

1: for p = 1, 2, ..., P do
2: s← 2p−1

3: for i = 0, 1, ..., N − 1 do

4: r ← 1/(1− a
(p−1)
i c

(p−1)
i−s − c

(p−1)
i a

(p−1)
i+s)

5: a
(p)
i ← −r(a

(p−1)
i a

(p−1)
i−s)

6: c
(p)
i ← −r(c

(p−1)
i c

(p−1)
i+s)

7: d
(p)
i ← r(d

(p−1)
i − a

(p−1)
i d

(p−1)
i−s − c

(p−1)
i d

(p−1)
i+s)

8: end for
9: end for

10: u← d(P)

11: return u

1 c0
a1 1 c1

a2 1 c2
a3 1 c3

a4 1 c4
a5 1 c5

a6 1 c6
a7 1

−→

1 c∗0
a∗2 1 c∗2

a∗4 1 c∗4
a∗6 1 0

0 1 c∗1
a∗3 1 c∗3

a∗5 1 c∗5
a∗7 1

Figure 2.5: After one iteration of PCR outer loop.

directly or indeed can be further reduced to a block diagonal system using the truncated-

SPIKE variation that ignores the outer diagonals when A is diagonally dominant. The

SPIKE algorithm is particularly well suited for solving very large systems on traditional

architectures.

2.2.4 Implicit Scheme - Related work on FPGAs

Earlier work implementing tridiagonal system solvers on FPGAs such as by Oliveira

et al. [54], Warne et al. [88] and Zhang et al. [95] used low-level Hardware Descrip-

tion languages (HDL) such as VHDL or Verilog for implementing the Thomas algorithm.

These designs were restricted to solving 1D or 1D batched tridiagonal systems, instead

of full multi-dimensional applications. Oliveira et al. [54] pipelined both the forward and

backward loops and applied data flow between them and demonstrated the implementa-

tion for a smaller 163 mesh based application using only on-chip memory.

With the introduction of HLS tools, a number of more recent works [89, 49, 47, 48]

implemented the Thomas, PCR, and Spike algorithms on FPGA using HLS tools. Many

of these did not demonstrate the solver working on full applications, with the exception

of László et al. in 2015 [47] which compared a one factor Black-Scholes option pricing

equation using explicit and implicit methods on different architectures such as multi core

21

CPUs, GPUs, and FPGAs. Their implementation, based on the Thomas algorithm,

targets a Xilinx Virtex 7 FPGA and effectively pipelines both forward and backward

loops but was not able to apply data flow between these two steps and results showed an

Nvidia K40 GPU significantly outperforming the FPGA.

Macintosh, et al. [49] used OpenCL targeting an Altera Stratix V FPGA to implement

the PCR and SPIKE algorithms, showing comparable performance to an Nvidia Quadro

4000 GPU, not including reconfiguration time for the spike kernels. Later, Macintosh,

et al. [48] used OpenCL to develop oclspkt, a library that implements tridiagonal systems

solvers targeting FPGAs, GPUs, and CPUs. oclspkt uses the truncated spike algorithm

for diagonally dominant tridiagonal matrices, and as such does not give exact solutions.

Their results show oclspkt on an Altera Arria 10GX FPGA performing marginally slower

than an Nvidia Quadro M4000 GPU but providing better energy efficiency. The Xilinx

library also implements a Douglas ADI solver [18] a multi-dimensional solver based on

their PCR based solver [83].

In comparison, the HLS-based synthesis presented in Chapter 4 of this thesis, targets

the solution of multiple tridiagonal systems and in multiple dimensions as commonly found

in real-world applications. It uses the Thomas algorithm demonstrating that together

with techniques such as batching of systems [33], high throughput for small and medium

sized systems can be achieved. The Thomas algorithm uses fewer resources than the

more computationally intensive PCR algorithm. For larger systems that do not directly

fit in a single FPGA, novel Thomas-Thomas and Thomas-PCR solvers are developed in

Chapter 4 to handle a number of partitioned systems and then a reduced system solve to

exploit the limited available on-chip memory resources of a single FPGA.

Several recent works have also exploited HBM in modern FPGAs [72, 27, 38] showing

performance gains and energy savings for memory bandwidth bound applications com-

pared to traditional architectures and FPGA devices without HBM. Multi-dimensional

tridiagonal solvers are also bandwidth bound, but, to our knowledge, no previous work

has explored the use of HBM capable FPGAs to accelerate them, as this thesis has done

through the use of parallel compute units. To our knowledge, the 2D/3D ADI and SLV

applications developed in this work, motivated by real-world implicit problems on FPGAs

are also novel; SLV being one of the few non-trivial applications using multi-dimensional

tridiagonal solvers presented in the literature. The Thomas based solver developed in this

thesis gives higher performance than the current PCR based Xilinx library, as shown in

Section 4.2. Additionally, the analytical performance model and the comparison with a

state-of-the-art GPU based tridiagonal solver library gives a much needed frame of refer-

ence for evaluating our FPGA design’s performance, providing insights into the feasibility

and profitability of an FPGA design for realistic workloads.

22

Chapter 3

Explicit Solvers on FPGAs

Given the appealing features of explicit numerical schemes for parallel implementation,

several previous works have attempted to utilize FPGAs for explicit stencil solvers. Early

works [71, 70, 68] implemented stencil applications using HDL, some directly implement-

ing stencil applications using HDL and a few works developed specialized processing

architecture [68] and utilized it through a compiler. The main limitation being only sim-

ple stencil loops were explored. Recent works [85, 84, 62, 10, 40, 98] utilized High-level

languages to program FPGAs and attempted optimization such as Vectorization [85], un-

rolling iterative [85] loops and even spatial and temporal blocking [98] to support larger

meshes. The key limitation of the current research works is the lack of a unified method-

ology and systematic approach for implementing this class of applications on FPGAs.

In contrast to above works, we present a workflow for synthesizing near-optimal FPGA

implementations of structured-mesh-based stencil applications for explicit solvers. It

leverages key characteristics of the application class and its computation-communication

pattern and the architectural capabilities of the FPGA to accelerate solvers for high-

performance computing applications. Key new features of the workflow are (1) the uni-

fication of standard state-of-the-art techniques with a number of high-gain optimizations

such as batching and spatial blocking/tiling, motivated by increasing throughput for real-

world workloads and (2) the development and use of a predictive analytical model to

explore the design space, and obtain resource and performance estimates. Three repre-

sentative applications are implemented using the design workflow on a Xilinx Alveo U280

FPGA, demonstrating near-optimal performance and over 85% predictive model accu-

racy. These are compared with equivalent highly-optimized implementations of the same

applications on modern HPC-grade GPUs (Nvidia V100), analyzing time to solution,

bandwidth, and energy consumption. Performance results indicate comparable runtimes

with the V100 GPU, with over 2× energy savings for the largest non-trivial application

on the FPGA. Our investigation shows the challenges of achieving high performance on

current generation FPGAs compared to traditional architectures. We discuss determi-

nants for a given stencil application to be amenable to FPGA implementation, providing

insights into the feasibility and profitability of a design and its resulting performance.

23

Reg

RegReg Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computation

Input

Output

Input
Output

Figure 3.1: Perfect data reuse using window buffers. The design takes new mesh points
at each clock and buffers the required number of mesh points for stencil computation.
Mesh points specified by the stencil will appear in the registers denoted by Reg.

3.1 Accelerator Design for Stencil Computation

To achieve high computational throughput on FPGAs, a custom architecture is designed,

which is then implemented using low-level circuit elements such as LUTs and Registers.

A data-flow arrangement seeks to map a complex computation to a series of data paths

that implement the required computational steps with the movement of data through

direct connections. Compared to fixed CPU and GPU architectures where the steps

in an algorithm are computed sequentially with intermediate results stored in registers,

FPGA compute pipelines can be much deeper and more irregular parallelism can be

exploited. Performing a stencil computation will then involve, starting up the pipeline

(requiring some clock cycles equal to the pipeline depth) and outputting the result from

the computation for each mesh point per clock cycle as a pipelined execution.

For CPU/GPU architectures such a computation is implemented using nested loops,

iterating over the mesh and over the neighborhood points. On FPGAs these multiple

levels of loops can be unrolled. Retaining an outer loop can be costly due to the need

to flush the unrolled inner loop pipeline which can be long. Hence, multi-dimensional

nested loops should be flattened to a 1D loop either manually or by using HLS directives

such as loop flatten. We have observed that manual flattening still provides the best

performance and optimized resource utilization, as current Xilinx HLS compilers can make

pessimistic scheduling decisions.

A key approach to gaining the best performance from the above computational pipeline

is streaming data from/to external and near-chip memories to/from on-chip block memo-

ries to feed the computational pipelines efficiently. A perfect data reuse path can be cre-

ated by (1) using a First Input First Output (FIFO) buffer to fetch data from DDR4/HBM

memory without interruption (allowing burst transfers) to on-chip memory, and then (2)

by caching mesh points using the multiple levels of memory, from registers to block mem-

ories. Fig. 3.1 illustrates such a data path for a 2D, 2nd order stencil. This technique has

previously been referred to as window buffers [23]. A 2D, D order stencil requires D rows

to be buffered to achieve perfect data reuse. Similarly, D planes should be buffered for

24

1 for(int itr = 0; itr < m*n; itr++){

2 int i = itr / m;

3 int j = itr % m;

4 if(i>0 && j>0 && i<n-1 && j<m-1){

5 out[itr] = (in[itr-1]+in[itr+1] +

6 in[itr-m]+in[itr+m)*0.125 +

7 in[itr]*0.5;

8 }

9 }

Listing 3: A 2D flattened stencil loop.

a 3D stencil. The total number of mesh elements needed to be buffered is the maximum

number of mesh elements between any two stencil points. BRAM/URAMs can be used

to design window buffers by using cyclic buffering. Given their high capacity, URAMs

are preferred if the number of elements to be buffered is large.

3.1.1 Stencil Loop Transformation

Designing a window buffer design setup as in Figure 3.1 requires computing the number

of mesh points that need to be buffered between stencil points. If the number of elements

needed to be buffered is equal to one, then it can be implemented by registers, else a

cyclic buffer would be required. Mesh points will move through these buffers each clock

cycle emulating the moving of the stencil through the mesh. Following steps transform

the stencil loop in Listing 3 into a window buffer-based dataflow loop.

• Loop flattening: If the original loop is nested, it needs to be flattened, and the

data type of the iteration variable should be chosen carefully to accommodate the

larger iteration space of the resulting 1D loop. To achieve this, FPGA tools offer

template classes for arbitrary-width integer types. Lower width integers requires

fewer resources for the loop iterator variable’s increment and comparison. Addi-

tionally, this will lead to a better operating frequency of the implemented design.

• Distance calculation: All memory access indices should be based on the iterative

variable (itr) and should be ordered according to their index offset with respect to

itr. For example, in this case, the indices will be {-m, -1, 0, 1, +m}. Here, m is

the first dimension of mesh.

• Element count: As the memory accesses will be substituted with a dataflow

pipeline, buffering of several elements will be necessary between the memory access

points. The number of elements to be buffered between two access points is deter-

mined by the gap between the corresponding access points. In this case, it is {m−1,
1, 1, m− 1}.

• Window buffers: After determining the necessary number of elements to be

buffered, an array can be used to implement it, with reads and writes occurring

25

R6 R5 R4 R3

R0 R1

R9 R8

R2R7

input1 input2

Cyclic
Buffer

Cyclic
Buffer

CU1

R0
R4
R5
R6
R9

CU2

R1
R3
R4
R5
R8

Output2

Output1

Input1

Input2

Figure 3.2: Vectorization - two mesh points are updated in parallel. R1−R9 are registers
and CU1-CU2 are arithmetic units for stencil computations.

at the specified distance. For buffering just a single element, a simple variable as-

signment or data movement between two registers will suffice. These window buffers

can be linked together, as shown in Listing 4.

• Updating loop iteration bound: The term ”prime time” refers to the number

of iterations needed to generate the first valid output. To determine prime time, we

calculate the number of iterations required to fill the buffers. It equals the number

of elements between the stencil update point and the farthest point, assuming the

values outside the mesh are zero. In this example, prime time is DimX, and we need to

increase the number of iterations in the stencil loop by this amount. However, as the

loop iteration has now surpassed the mesh’s boundary, we need to use conditional

statements to prevent out-of-bounds access while accessing global memory.

After following the aforementioned steps, the stencil loop illustrated in Listing 3 can be

converted into a flattened loop that only reads and writes once in each iteration, as shown

in Listing 4. This flattened loop can be efficiently pipelined by High-Level Synthesis (HLS)

tools, and full data reuse can be attained. Additionally, global memory access within the

loop can be replaced with input/output data from a stream interface. This separation of

computation and memory access simplifies memory access optimizations for FPGA HLS

tools.

3.1.2 Vectorization and Unrolling the Iterative Loop

The design presented above updates only single mesh-point each clock or in each loop

iteration. Since there is no dependency between updating two mesh points, Multiple

pipelines for the same computation (i.e. loop body or kernel) can be created using HLS

directives. This technique, called the cell-parallel method in [85] allows computation of

the stencil on multiple mesh points simultaneously. The cell-parallel method is similar to

Single Instruction Multiple Data (SIMD) vectorization on CPUs and Single Instruction

Multi Thread (SIMT) on GPUs but on an FPGA it essentially creates parallel replicas

26

1 int pItr = m; // prime iterations

2 float window_1[m], window_2[m]; // buffer declaration

3 float s_1_0, s_0_1, s_1_1, s_2_1, s_1_2; // stencil points

4 for(int itr = 0; itr < m*n+pItr; itr++){

5 int i = (itr-pItr) / m;

6 int j = (itr-pItr) % m;

7 int l = itr % (m-1); //cyclic index for window buffer

8

9 // transformed memory access

10 //--------------------------

11 // s_2_1, s_1_1, s_0_1, s_1_0 gets meshpoints values

12 // stored in previous iterations. This emulates

13 // moving the stencil over the rectangular mesh

14 s_1_0 = window_2[l];

15 s_0_1 = s_1_1;

16 window_2[l] = s_0_1;

17 s_1_1 = s_2_1;

18 s_2_1 = window_1[l];

19

20 if(itr < m*n){ //guard

21 s_1_2 = in[itr];

22 }

23 window_1[l] = s_1_2;

24 //--------------------------

25

26 float res = (s_1_0+s_0_1+s_2_1+s_1_2)*0.125 + s_1_1*0.5;

27 if(i>0 && j>0 && i<m-1 && j<n-1){ // guards

28 out[itr-DimX] = res;

29 }

30 }

Listing 4: Transformed stencil loop.

of the computational units as opposed to single vector operations. However the resource

availability in an FPGA limits the number of parallel units that can be synthesized on a

given device. Figure 3.2 illustrates a factor of 2 implementation, where the vectorization

factor represents the number of mesh points updated in parallel.

Another approach that can increase performance is to unroll the iterative loop, which

encompasses one or more stencil loops over the rectangular mesh. This allows the re-

sults from a previous iteration to be fed to the next iteration without writing back to

external (DDR4 or HBM) memory. This scheme, called the step-parallel technique in

previous work [85] is illustrated in Figure 3.3. Note how the unrolling yields two “com-

pute modules” in this case. The technique leads to increased throughput without the

need for additional external memory bandwidth. However, the unrolling factor depends

once more on available FPGA resources and internal memory capacity. Cutting down on

external memory access in this manner also lead to more power-efficient designs. One

disadvantage, however, is the increased length of the computational pipeline, which sig-

nificantly affects performance for small mesh sizes.

27

Reg Reg Reg

Reg

Reg

input

Cyclic Buffer

Cyclic Buffer

Stencil
Computation

Reg Reg Reg

Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computation

Compute module for Iteration - k Compute module for Iteration – k+1

Figure 3.3: Unrolling the iterative loop. The output of a compute module is fed to another
compute module, essentially doing two steps/iterations in parallel

Reg Reg Reg

Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computa�on

Reg Reg Reg

Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computa�on

Compute module for Itera�on - k Compute module for Itera�on – k+1

Input

SLR1

SLR0

Figure 3.4: Kernel placement without SLR constraint.

3.1.3 Decoupled Kernel Pipeline

Xilinx FPGAs are partitioned into Super Logic Regions (SLRs) [91], and unrolling itera-

tive loops multiple times can cause compute modules to span across multiple SLRs as in

Figure 3.4. This can be problematic as the bandwidth between SLRs is lower than that

within an SLR. To address this, we can split the compute module pipeline into several

blocks, with each block becoming a separate kernel placed in single SLR as described

in [39]. This prevents these kernels from spanning multiple SLRs. The kernels can then

use the Advanced eXtensible Interface (AXI) stream to transfer data, as shown in Fig-

ure 3.5. This ensures that only AXI stream signals will cross the SLRs, rather than many

circuit connections within compute modules.

3.1.4 Data Layout for Vector Elements

The above compute module pipeline requires input to be read from and output to be

written to global memory. Real-world stencil applications require multiple meshes and

mesh elements could also be vectors (see RTM application in section 3.4.3). Popular

choices for the data structure of meshes with vector elements are Structure of Arrays (SoA)

28

Reg Reg Reg

Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computa�on

Reg Reg Reg

Reg

Reg

Cyclic Buffer

Cyclic Buffer

Stencil
Computa�on

Compute module for Itera�on - k

Compute module for Itera�on – k+1

Input

SLR0

SLR1

AXI Stream

Figure 3.5: SLR constrained kernel placement.

and Array of Structure (AoS). The choice of the data structure is closely related to data

access patterns. We prefer Array of Structures (AoS) data structure if all elements in the

vector block are used in the stencil computation. If only some of the vector elements are

used in the stencil computation, then memory access can’t be coalesced reducing memory

throughput.

On the other hand, if the SoA data structure is assigned to single off-chip memory

banks, then it would require reading chunks (large enough for better memory throughput

through sequential access) cyclically of each vector index, then buffering and feeding into

compute pipeline. This would make implementation a little more complex and requires

additional on-chip memory for buffers. Otherwise, each index would be assigned to a

separate bank in that case higher memory throughput could be obtained, but it would

require more FPGA resources as multiple AXI controllers are required for each bank.

3.2 Model for Baseline Design

The performance of a baseline design, as discussed previously, therefore depends on (1)

the capacity of the computational pipeline and (2) the external memory bandwidth. Com-

putational capacity depends on the number of mesh point updates done in parallel (vec-

torization factor), latency of the pipeline and operating clock frequency of the FPGA.

However, memory throughput depends on various factors such as the number of mesh

elements transferred, and the stride between each transferred element. To simplify, we

model reading/writing of contiguous data from/to memory with a maximum transfer size

29

of 4K bytes, to reach a near optimal throughput of external/near-chip memory for the

Xilinx U280 FPGA, our target hardware in this work.

D/2 row
Latency

Compute Module - i Compute Module – i+1

Output

Output Input

Figure 3.6: Pipeline Latency between compute modules

Assuming that the memory throughput is sufficient to supply V mesh points (i.e. a

vectorization factor of V) continuously without interruption, then the total clock cycles

taken to process a row from a 2D mesh with m× n elements will be given by
⌈
m
V

⌉
. Here,

we have padded each row to be a multiple of V if required. The clock cycles for looping

through the mesh of size m × n is
⌈
m
V

⌉
× n. There will be a D/2 row pipeline latency

between compute modules as in Figure 3.6. If the outer iterative loop unroll factor is

given by p (number of compute modules), the total pipeline latency between the first

module’s input and the last module’s output will be p×D/2×
⌈
m
V

⌉
. Adding the latency

for looping through the mesh points, and cascaded compute module pipeline latency, we

will get the total latency for the 2D case as follows:

Clks2D =
niter

p
×
(⌈m

V

⌉
× (n+ p× D

2
)

)
(3.1)

The above extends naturally to 3D meshes as in (Equation 3.2), where the 3D mesh size

is given by m× n× l and D is then equivalent to the number of plains to be buffered.

Clks3D =
niter

p
×
(⌈m

V

⌉
× n× (l + p× D

2
)

)
(3.2)

As noted before, the models above only hold for cases where the vectorization factor

V , which determines the number of parallel mesh points computed, does not demand

more memory bandwidth than what can be supplied by the FPGA’s external DDR4

bandwidth. The FPGA’s HBM memory can be used to support a larger V , which could

then be limited by the resources available to implement the parallel compute pipelines.

An estimate of maximum V for an application can be computed by using the FPGA

operating frequency f , and maximum supported bandwidth of a data channel (or port)

on the FPGA, BWchannel, and the size in bytes of a mesh element sizeof(Dtype) as

30

follows:

BWchannel ≥ 2V f × sizeof(DType) (3.3)

For 2D meshes, if the width of the mesh n is a multiple of the vectorization factor V,

then clock cycles for computing a single mesh point (or a cell) per iteration per compute

module can be obtained by dividing the equation (3.1) by m× n as :

Clks2D,cell = 1/V + pD/2nV (3.4)

Setting n to higher values gives a better clock cycles per mesh point ratio, the ideal being,

1/V . But higher order stencil applications on meshes with fewer rows will have a larger

(pD)/(2nV) value, indicating idling in the processing pipeline. We explore techniques to

reduce this idle time in Section 3.3.3.

A key parameter in (3.1) and (3.2) is the loop unroll factor, p which directly determines

performance, where a large p reduces the total clock cycles required. However, p is limited

by the available resources on the FPGA as in Fig. 3.3, a larger p requires more DSP blocks

and LUTs. Furthermore, the internal memory required for a compute module, primarily

due to memory capacity for the cyclic buffers also determines p. The number of DSP

blocks required for a single mesh-point update, Gdsp depends on the stencil loop kernel’s

arithmetic operations and number representation. Here we consider single precision float-

ing point arithmetic. With a V vectorization factor, the total consumed is V × Gdsp . If

the total available DSP blocks on the FPGA is FPGAdsp then the maximum unroll factor

based on DSP resources, pdsp is given by:

pdsp = FPGAdsp/V Gdsp (3.5)

The internal memory requirement for a single compute module which performs a D order

stencil operation on an m× n mesh is D ×m. If the total available internal memory on

the device is FPGAmem , then maximum possible iterative unroll factor based on internal

memory requirements, pmem is :

pmem =
FPGAmem

sizeof(DType)×Dm
(3.6)

Here, DType is the data type of a mesh element. The denominator of (3.6) becomes

sizeof(DType) × D × m × n for 3D meshes. Thus we see that the internal memory

of an FPGA, directly limits the solvable mesh size. Usually, the above ideal depth is

not achievable, as the FPGA internal memory, BRAMs and URAMs, are quantized (for

example BRAMs are 18Kb/36Kb and URAMs are 288Kb on the U280). Additionally,

the limited width configurations of the URAMs, plus the need to allow for flexible routing

further reduces the effective internal memory resources. Thus we usually target an 80%–

90% internal memory utilization. Then the maximum iterative loop unroll factor is given

by the minimum of pdsp and pmem . It is also worth considering that a larger pipeline

31

depth, and hence more resource consumption leads to the design spreading over multiple

SLRs. Communication between SLRs increases routing congestion between these regions,

directly impacting the achievable operating frequency.

3.3 Optimizations

Further optimizations and extensions are required to obtain high throughput for more

complex applications. These include (1) spatial and temporal blocking, specifically for

solvers over larger meshes, and (2) batching for improving performance and throughput

of stencil applications on smaller meshes. In this section, we build on the baseline design

from Section 3.1 and extend the performance models to account for these optimizations.

3.3.1 Spatial and Temporal Blocking

The baseline design attempts to obtain perfect data reuse, requiring FPGA internal mem-

ory (consisting of BRAMs and URAMs) to be of size D ×m for 2D and D ×m × n for

3D meshes. Equation (3.6) illustrates this, where the requirement becomes highly lim-

iting for applications with higher order (D) stencils and/or on larger meshes (increasing

m). Even if the mesh fully fits in the FPGA’s DDR4 memory, a sufficiently large mesh

could result in a pmem less than one, meaning that even a single compute module cannot

be synthesized. A solution is to implement a form of spatial blocking, similar to cache

blocking tiling on CPUs, for the FPGA.

The idea is to use the baseline design to build an accelerator that operates on a smaller

block of mesh elements and then transfer one such block at a time to the compute pipeline

from FPGA DDR4 memory. The compute pipeline is designed with an appropriate vec-

torization factor (V) and an outer iterative loop unroll factor (p). Larger p results in

better exploitation of temporal locality, where the execution uses the same data several

times. One issue with such a blocked execution is when applying the computation over

the boundary of a block where a stencil computation on the boundary will not have the

contributions from all the neighboring elements in the mesh as in Figure 3.7. The solution

is to overlap blocks such that the correct computation is carried out on the boundary by

a subsequent block. The amount of overlap depends on the order of the stencil. Overlap-

ping leads to redundant computation. However this overhead can be acceptable, due to

the savings from further exploiting local data in multiple iterations where the overlapped

region will widen.

The main challenge of tiling then is to get close to maximum DDR4 memory band-

width, due to the latency of smaller, non-contiguous data transfer sizes. Such data trans-

fers results due to a strided access pattern in one dimension when accessing memory

locations within a spatial block. For example on the Xilinx U280, it takes 16 clock cycles

to transfer 1024 Bytes via the 512 bit wide AXI interface bus, but the latency of the

transfer is about 14 clock cycles. As such, multiple read/write requests should be made

32

overlapped
computation

invalid computation in blue block
& valid computation in red block

element not available in
blue block

Figure 3.7: Overlapped spatial blocks.

to hide the latency of each individual memory transaction. The preference to maintain

a 512 bit wide bus interface to obtain better memory bandwidth further increases the

amount of redundant computation at block boundaries as we must maintain a 512 bit

alignment in read/write transactions, regardless of the order of the stencil.

A final modification is the need to loop through the spatial blocks to solve over the

full mesh. The control structure for looping through spatial blocks is implemented on the

FPGA itself, an alternative host-based implementation will reduce the throughput due to

overhead by calling the kernel multiple times. An important consideration is finding the

optimal spatial block size and its offset from the start of the mesh. The block size and

offsets need only be computed once, which can be done on the host and copied to FPGA

memory. Considering a 3D stencil application over a mesh of size m × n × l solved by

computing over with blocks (or tiles) of size M ×N × l, the valid number of mesh points

computed per block is given by:

Blockvalid = (M − pD)× (N − pD)× l (3.7)

Since the number of clock cycles required to process p iterations (or a temporal block) on

the M × N × l spatial block is similar to the baseline design, the average time taken to

compute one block (assuming block dimensions are a multiple of V) would be:

Clksblock,3D =
M

V
×N × l + pD/2

p
(3.8)

Dividing (Equation 3.7) by (Equation 3.8) leads to the number of valid mesh points (or

33

cells) computed per clock cycle (i.e. throughput, T) :

T = (1− pD

M
)× (1− pD

N
)× (

pV l

l + pD/2
) (3.9)

On-chip memory consumption is proportional to M ×N × p×D. Due to a fixed on-chip

memory size on FPGAs, M and N are inversely proportionate for given p,D. It can

be proven that T would become the maximum when M and N are equal for given p,D.

Now, substituting N with M for similar equation like Equation 3.6, for a 3D application,

assuming full utilization of the FPGA’s internal memory by a block, it can be shown that

maximum throughput can be achieved for a given p when spatial block size M is:

M =

√
FPGAmem

sizeof(DType)× pD
(3.10)

However, the throughput also varies with p and this can be analyzed by considering a

square tile (i.e. M = N) applied to equation (3.9) and assuming l to be very large such

that l
l+pD/2 is close to 1. With these assumptions, we can show that maximum throughput

is achieved, for a given M , when setting p to a pmax given by:

pmax = M/3D (3.11)

Obtaining a value for pV from Equation 3.5, assuming we use all the computational

capacity of the FPGA, we can rewrite Equation 3.9 as:

T3D = (1− pD

M
)2 ×

FPGAdsp

Gdsp
× (

l

l + pD/2
) (3.12)

The same for a 2D stencil application can also be derived as:

T2D = (1− pD

M
)×

FPGAdsp

Gdsp
× (

n

n+ pD/2
) (3.13)

Here, we see that reducing pipeline depth p and increasing V will improve the performance

of the spatial blocked design. The effect of p is more significant for 3D applications.

3.3.2 Spatially Blocked Design using Multiple HBM Ports

Redundant computation in a spatially blocked design is proportional to the iterative loop

unroll factor p. Considering that, a larger possible value for V is preferred to make the

iterative loop unroll factor p a lower value while getting a similar amount of mesh updates

per clock (Equation 3.5). Modern FPGAs come with High Bandwidth Memorys (HBMs)

and multiple HBM banks should be utilized to scale the V . The choice of the data layout

with respect to HBM banks also determines the obtainable memory throughput. The

usual choices are cyclic partitioning and block partitioning. Block partitioning maps each

block in the data structure to a HBM bank. Cyclic assignment assigns one or more mesh

34

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Time

Latency for one Iteration for single mesh

Compute kernel:1 Idle

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Time

Latency for one iteration of batch of three mesh

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Latency for one Iteration for single mesh

Compute Kernel:1

Read Kernel

Compute Kernel:2

Compute Kernel:3

Write Kernel

Latency for one Iteration for single mesh

Compute kernel:1 Idle

Mesh:1 Mesh:2 Mesh:3

Batched
Mesh

Figure 3.8: Individual Vs Batched computation.

elements cyclically to HBM banks.

As a vectorized stencil computation requires multiple adjustant mesh points fed to

compute pipeline at the same clock. Block partitioning will limit this as all adjustant

mesh points will be in the same bank. We prefer smaller blocks (4/8/16) of mesh

elements cyclically assigned to each bank as wider port memory access can bring multiple

mesh elements in a clock cycle. We also prefer padding the first dimension of the mesh

with zeros such that it completes cyclic partitioning with a targetted number of HBM

banks. This would help to avoid complex multiplexer to make coalesced memory access

and complex addresses calculation when reading each tile block in spatially blocked design.

3.3.3 Batching

A final optimization attempt to improve throughput for smaller mesh problems that

usually perform poorly on accelerator platforms, including FPGAs. On traditional ar-

chitectures such as GPUs the reason is the under-utilization of the massive parallelism

available. Essentially the time spent calling a kernel on the device and the overheads for

data movement between host and device comes to dominate the actual processing time.

On an FPGA, in addition to the above, further overheads are caused due to the

latency of the processing pipeline, as given in equation (3.4), compared to the time to

process the mesh. The active time of compute modules and their idle time is illustrated

in Figure 3.8. The idle time is proportional to the width of the 2D mesh. Thus if a large

number of smaller meshes are to be solved, as is the case in financial applications [64],

35

then processing one mesh at a time incurs significant latencies. This motivates the idea

of grouping together meshes with the same dimensions in batches, increasing the overall

throughput of the solution as illustrated in Figure 3.8. Here, meshes are extended in the

last dimension by stacking up the small meshes. Now, the inter-compute module latencies

only occur once at the start of the batched solve. With B, 2D meshes in a batch, the

time to process a single mesh within a batched execution is given by:

Clks2D/batched mesh =

(⌈m
V

⌉
× (n+ p× D

2B
)

)
(3.14)

Thus, increasing B significantly reduces the idle time from (3.4). Similar reasoning can

be applied for batched 3D meshes. Here we note that, last dimension batching doesn’t

require additional key resources, on-chip memory and DSP Units. Batching optimization

scales the number of mesh points that need to be looped through, hence it increases

the width of the integer required for the flattened loop’s iterative variable. This could

result in a minor increase in the latency of the clock-critical path on FPGA. The ceil

operation in Equation 3.14 becomes significant overhead for meshes with smaller width

on implementation with larger V . This overhead can be eliminated by first Dimension

batching, where elements of V meshes come one after another. Since the window buffers

keep the elements of V meshes, on-chip memory requirement will be V times of the

baseline design. Hybrid batching, combining first dimension and last dimension batching

can be used to get better throughput on FPGAs.

This workflow assumes that part of the program accelerated on FPGA can be mapped

to data-flow graph based computation. Lets assume the part of the program to be ac-

celerated contains the multiple stencil computational loops operating on multiple data

structures. On FPGA, these stencil loops will be mapped to computing nodes. Data

structures will be introduced to the data flow graph by read modules and will be taken

out from the data flow graph using write modules. Delay buffer will be another node in

data-flow graph to avoid stalling in data flow due to delay in processing in some comput-

ing nodes. Here we target parallel execution of all compute nodes on FPGAs, which can

be effectively utilised by batching or meshes with larger sizes. Proportional data flow is

targeted to avoid stalling and idling of a compute node, Hence proportional vectorization

factor V and loop initiation interval II is required. In Xilinx FPGAs this data-flow graph

should be equally partitioned and to be mapped to SLRs. Further details on optimally

implementing a dataflow graph on FPGA using batched optimization are presented in

Chapter 6.

36

Table 3.1: Experimental system’s specifications.

FPGA Xilinx Alveo U280 [92]

DSP blocks 8490
BRAM / URAM 6.6MB (1487 blocks) / 34.5MB (960 blocks)
HBM 8GB, 460GB/s, 32 channels
DDR4 32GB, 38.4GB/s, in 2 banks (1 channel/bank)
Host Intel Xeon Silver 4116 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Design SW Vivado HLS, Vitis-2019.2

GPU Nvidia Tesla V100 PCIe [92]

Global Mem. 16GB HBM2, 900GB/s
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 9.1.85, Debian 9.11

3.4 Performance

In this section we apply the FPGA design strategy, optimizations, and extensions to

illustrate their utility in accelerating stencil computations for explicit-iterative numerical

solvers. We select three representative applications consisting of, both 2D and 3D, low

and high order, and with single and multiple stencil loops to explore the versatility of our

design flow. Model-predicted resource utilization estimates are used to determine initial

design parameters, and runtime performance is compared to model predictions for each

application. The implementations target the Xilinx Alveo U280 accelerator board and

demonstrate concrete implementations for each application. We use Vivado C++ due to

ease of use for configurations, arbitrary precision data types, and support of some C++

constructs compared to OpenCL, but note OpenCL can be equally used to implement the

same design. Additionally, we compare equivalent implementations of each application’s

performance on a modern GPU system for comparison1 (raw runtime values are available

in Appendix section C.1) . Table 3.1 briefly details the specifications of the FPGA and

GPU systems (both hardware and software) used in our experiments.

Table 3.2: Model parameters for baseline and batched designs.

Application Freq. Gdsp pdsp

(MHz) (model) (actual)

Poisson-5pt-2D 250 14 68 60

Jacobi-7pt-3D 246 33 28 29

Reverse Time Migration 261 2444 3 3

1We have omitted CPU performance results here as our previous work [64] shows that GPUs provide
significant speedups over CPUs for these applications

37

3.4.1 Poisson-5pt-2D

200x100 200x200 300x150 300x300 400x200 400x400
Mesh Size

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

Ru
nt

im
e

(s
ec

on
ds

)

0.03 0.04 0.04 0.06 0.06
0.10

0.51
0.56

0.43

0.59 0.58
0.62

FPGA-Pred FPGA GPU

Figure 3.9: Poisson-5pt-2D performance (Baseline - 60k iterations), here FPGA-Pred rep-
resents the performance predicted using the models.

The first application is a 2D Poisson solver which uses a 2nd order stencil, with scalar

elements given in equation 3.15. It is slightly different from the Poisson equation 2.9 we

have developed in Chapter 2.2.1. Steps for obtaining equation 3.15 from equation 2.8,

assuming f(i, j) = 0.

ϕ(i, j) =
1

4
× (ϕ(i− h, j) + ϕ(i, j − h) + ϕ(i+ h, j) + ϕ(i, j + h))

2× ϕ(i, j) =
1

4
× (ϕ(i− h, j) + ϕ(i, j − h) + ϕ(i+ h, j) + ϕ(i, j + h)) + ϕ(i, j)

ϕ(i, j) =
1

8
× (ϕ(i− h, j) + ϕ(i, j − h) + ϕ(i+ h, j) + ϕ(i, j + h)) +

1

2
× ϕ(i, j)

ϕN+1(i, j) =
1

8
× (ϕN (i− h, j)

+ ϕN (i, j − h) + ϕN (i+ h, j) + ϕN (i, j + h)) +
1

2
× ϕN (i, j) (3.15)

A suitable initial vectorization factor V can be identified by using Equation 3.3 and

assuming an operating frequency of 300MHz given this is the default set by the Vivado

HLS tools. For a baseline implementation of Poisson a value of 8 for V is calculated

when using a single DDR4 channel or two HBM channels with a frequency of 300MHz.

However, this frequency could only be supported when iterative loop unroll factor p is

in the order of 1– 20. Higher p lead to routing congestion, which limited achievable

frequency. As such the frequency was reduced to 250MHz to support a p of 60, which

we observed to give the best performance for this stencil. We find in some cases such a

trial frequency adjustment is unavoidable, but our model significantly narrows the design

space, enabling us to reason about and quickly obtain an optimal configuration. The

number of DSP blocks required for a single mesh-point’s stencil computation for Poisson

and the resulting pdsp from Equation 3.5 for V = 8, assuming a 90% DSP utilization, is

38

Table 3.3: Spatial blocking model parameters.

App. p V M N T2D|3D Valid ratio

Poisson-5pt-2D 60 8 8192 472 98.5%

Jacobi-7pt-3D 3 64 768 768 189 98.4%

given in the first row of Table 3.2.Column 4 gives the predicted pdsp from our performance

model, while column 5 is the actual result after synthesis, indicating good agreement with

the predicted design.

200x100 200x200 300x150 300x300 400x200 400x400
Mesh Size

100

101

102

Ru
nt

im
e

(s
ec

on
ds

)

GPU-1000B
GPU-100B
FPGA-Pred

FPGA-1000B
FPGA-100B

(a) Batching - 60k iterations

512 1024 2048 4096 8000
Tile Size

101

2 × 101

3 × 101

4 × 101

Ru
nt

im
e

(s
ec

on
ds

)

GPU-20000^2
GPU-15000^2
FPGA-Pred

FPGA-20000^2
FPGA-15000^2

(b) Spatial-blocking - 6k iterations

Figure 3.10: Poisson-5pt-2D performance, here FPGA-Pred represents the performance
predicted using the models.

Figure 3.9 and Figure 3.10 (a) present the runtime performance of Poisson-5pt-2D, with

the above design and compare the resultant performance to an equivalent implementation

on the Nvidia V100 GPU. The achieved bandwidth and energy consumption from these

runs are summarized in Table 3.4. The bandwidth is computed by counting the total

number of bytes transferred during the execution of the stencil loop (looking at the mesh

data accessed) and dividing it by the total time taken by the loop. Baseline FPGA

performance is significantly better than on the V100, since the GPU is not saturated

by this application. The batching of 2D meshes as in [64] improves GPU performance

significantly and offers a closer comparison. The FPGA achieves a maximum speedup of

about 30–34% for different mesh sizes and batching sizes of 100 (100B) and 1000 (1000B).

Memory bandwidth results indicate high utilization of the communication channels in

agreement with the observed runtimes. The xbutil utility was used to measure power

during FPGA execution, while nvidi-smi was used for the same on the V100. The power

consumption of the FPGA during the 1000B runs is indicative of the significant energy

efficiency of the device compared to a GPU. The FPGA was operating at an average

70W, while the GPU’s power consumption ranged from 40W (for single batch) to 210W

for 1000B runs on the larger meshes.

39

Table 3.4: Poisson-5pt (Baseline and Batched, 60k iterations)

Bandwidth (GB/s) Energy (kJ)

Mesh Baseline 100B 1000B 1000B
FPGA GPU FPGA GPU FPGA GPU FPGA GPU

200× 100 384 18 857 404 867 530 0.77 3.48
200× 200 543 32 886 465 892 540 1.50 6.74
300× 150 535 38 901 483 907 560 1.66 7.60
300× 300 681 69 922 530
400× 200 612 62 889 536
400× 400 735 116 904 560

Table 3.5: Poisson-5pt (Spatial-blocking, 60k iters).

Bandwidth (GB/s) Energy(kJ)

Mesh Tile Size FPGA GPU FPGA GPU

150002 1024 805 607 0.93 2.91
4096 892 0.84
8000 905 0.83

200002 1024 800 609 1.67 4.96
4096 879 1.52
8000 907 1.48

To implement Poisson-5pt-2D on larger meshes with spatial blocking, we assume a V

and p equivalent to the baseline design and compute the valid mesh points updated per

clock cycle using (3.12). Here we assume the dimensions of the mesh to be very large.

Table 3.3 lists the model parameters for spatial blocking. For Poisson we see that the

2D spatially blocked designs theoretically perform similar to the baseline design and thus

we need not change the compute pipeline. Runtime, bandwidth and energy consumption

of this implementation is given in Figure 3.10 (b) and Table 3.5, respectively, including

comparison to performance from the V100 GPU. Again we see good speedups and higher

energy efficiency achieved with the FPGA, this time on large problem sizes with tiling.

3.4.2 Jacobi-7pt-3D

The Jacobi iteration as a 3D, 7-point stencil, provides us with an initial, 3D, single stencil

loop, for our evaluation:

U t+1
i,j,k = k1U

t
i+h,j,k + k2U

t
i−h,j,k + k3U

t
i,j−h,k + k4U

t
i,j,k+

k5U
t
i,j+h,k + k6U

t
i,j,k+h + k7U

t
i,j,k−h (18)

This application requires higher internal memory for the baseline design. For the

spatially blocked design it involves transfers less than 4K from memory, which makes it

difficult to approach raw external memory bandwidth. This is different to the baseline/-

40

50x50x50 100x100x100 150x150x150 200x200x200 250x250x250
Mesh Size

0.000

2.000

4.000

6.000

8.000

10.000

Ru
nt

im
e

(s
ec

on
ds

)
0.14

0.77

2.26

4.97

9.28

0.32
0.76

1.61

3.49

6.04

FPGA-Pred FPGA GPU

Figure 3.11: Jacobi-7pt-3D performance (Baseline - 29k iterations), here FPGA-Pred rep-
resents the performance predicted using the models.

503 1003 1503 2003 2503

Mesh Size

10 1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

GPU-50B
GPU-10B
FPGA-Pred

FPGA-50B
FPGA-10B

(a) Batching - 2900 iterations

256 384 512 640 768
Tile Size

100

4 × 10 1

6 × 10 1

2 × 100

Ru
nt

im
e

(s
ec

on
ds

)

GPU-1800^2x100
GPU-600^3
FPGA-Pred

FPGA-1800^2x600
FPGA-600^3

(b) Spatial-blocking - 120 iterations

Figure 3.12: Jacobi-7pt-3D performance, here FPGA-Pred represents the performance
predicted using the models.

batched and 2D spatially blocked design. We speculate that this could be the reason

for the slightly less accurate model predictions in Figure 3.12(c). While the stencil is

still fairly simple, now we see the GPU outperforming the FPGA conclusively, in both

baseline, Figure 3.11 and batched Figure 3.12(a) tests. The V100 GPU gives nearly 40%

faster runtimes on the 50B problem. However, the FPGA remains more energy efficient

for the same problem. For the 200 × 200 problem with 50B, it is nearly 2× more en-

ergy efficient than the faster GPU run (see Table 3.6). The FPGA operated at an average

90W while the GPU power ranged from 77–240W. Spatial blocking was significantly more

challenging and the resulting FPGA design, using a 6402 tile size was about 40% slower

than the GPU runtime (see Figure 3.12(b)). However, the FPGA was again more energy

efficient, operating at an average 70W consuming about 40–50% less energy than the

GPU (operating at 180–216 W) as seen in Table 3.7.

3.4.3 Reverse Time Migration (RTM) - Forward Pass

The final application we applied our development flow to is the forward pass from a

Reverse Time Migration (RTM) solver [11]. The application represents algorithms of in-

41

Table 3.6: Jacobi-7pt-3D, Baseline (29k iterations) and Batching (2.9k iterations)

Bandwidth (GB/s) Energy (kJ)

Mesh Baseline 10B 50B 50B
FPGA GPU FPGA GPU FPGA GPU FPGA GPU

503 202 83 307 284 323 404 0.04 0.07
1003 301 284 378 434 387 469 0.27 0.51
2003 374 496 421 548 426 543 1.96 3.77
2503 391 559 431 585
3003 403 553 438 569

Table 3.7: Jacobi-7pt-3D (Spatial-blocking, 120 iterations)

Bandwidth (GB/s) Energy(kJ)

Mesh Tile Size FPGA GPU FPGA GPU

6003 256 233 392 0.062 0.106
512 281 0.051
640 292 0.049

1800× 1800× 100 256 247 363 0.088 0.143
512 270 0.080
640 273 0.079

terest from industry [16], going beyond simple single stencil loops. It includes an iterative

loop consisting of multiple stencil loops as summarized in Algorithm 3. Y, T and K1..K4

are 3D floating-point (SP) data arrays defined on the mesh consisting of vector elements

of size 6. Y holds current values and T holds intermediate values, both updated with the

fpml function which uses a 25-point, eighth order 3D stencil. K1..K4 is accessed/updated

with a self-stencil (or zeroth-order, i.e. i, j, k). ρ and µ are two 3D scalar coefficient

meshes, which are also accessed using a self-stencil. Array of structures (AoS) data lay-

out is used in FPGA implementation as data access is sequential on FPGA and AoS

requires less logic for read module implementation on FPGA. On GPU, we tried both

AoS and SoA (Structure of Arrays) and better performance is observed when using SoA

data structure. We speculate better access data pattern when using SoA as the reason.

Algorithm 3: RTM - Forward Pass

1: for i = 0, i < niter, i++ do
2: K = fpml(Y25pt, ρ, µ)× dt; T = Y +K/2; S = K/6
3: K = fpml(T25pt, ρ, µ)× dt; T = Y +K/2; S = S +K/3
4: K = fpml(T25pt, ρ, µ)× dt; T = Y +K; S = S +K/3
5: K = fpml(T25pt, ρ, µ)× dt; Y = Y + S +K/6
6: end for

This application is significantly more complex than the previous applications and

pushes the resource usage on the FPGA to its limits. Nevertheless our design strat-

42

323 322x50 502x16 502x32 503 502x200 502x400
Mesh Size

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000
Ru

nt
im

e
(s

ec
on

ds
)

0.33 0.40
0.57 0.69 0.83

2.00

3.56

0.14 0.22 0.18
0.33 0.46

1.37

2.59

FPGA-Pred FPGA GPU

(a) Baseline - 1800 iterations

323 322x50 502x16 502x32 503

Mesh Size

10 1

100

Ru
nt

im
e

(s
ec

on
ds

)

GPU-40B
GPU-20B
FPGA-Pred

FPGA-40B
FPGA-20B

(b) Batching - 180 iterations

Figure 3.13: RTM performance, here FPGA-Pred represents the performance predicted
using the models.

egy is able to provide a good implementation, albeit limited to a batched design. The

number of stencil loops were reduced by fusing the K1,K2, and K3 with the correspond-

ing T loop. The K4 and final Y update were merged into one further loop, resulting

in a total of 4 loops. For an FPGA implementation, all the four fused loops needed to

be brought into a single pipeline. Intermediate data T and K1...K4 were replaced with

a FIFO stream connected through window buffers. Similarly ρ, µ and Y were internally

buffered and fed to subsequent compute units. These optimizations reduce the number

of memory accesses to a single read and write of Y and a single read each for ρ and µ.

These are significant savings compared to the original loop chain.

A limitation of the FPGA implementation is that the mesh plane size (in this 3D

application), is limited to 642 as it uses 3D stencils on a 6 dimensional element (i.e. a

vector of 6 floats). Furthermore, partitioning four compute-intensive kernels on the U280’s

three SLR regions was a significant challenge. Our implementation avoids spanning of a

compute unit on multiple SLRs to avoid inter SLR routing congestion, by setting V to

1, allowing us to fit the four fused loops in one SLR. This, then allows for an iterative

loop unroll factor of 3 (p) given the three SLRs on the U280. We do note that using

more HBM channels could provide more bandwidth to obtain a larger V , but we have

not explored this in our current work. A solution for the limited mesh size is of course

spatial blocking, but it requires p = 4. This leads to a tile size dimension M = 96 from

(3.11) given D is 8, which requires a large amount of FPGA internal memory, making an

implementation on the U280 challenging as the four fused loops will span across SRLs.

We leave this for future work.

From the runtime results in Figure 3.13 and bandwidth results in Table 3.8 we see that

the FPGA implementation is giving a competitive performance compared to the GPU.

Note that, given there are four stencil loops pipelined on the FPGA, the bandwidth

reported is for the pipelined loop chain. The GPU bandwidth, therefore, is the average

for the full loop chain. GPUs bandwidth reaching upto 518 GB/s indicate the optimal

implementation and a slight drop in bandwidth for larger mesh sizes can be seen. Higher

43

Table 3.8: RTM - Baseline (1800 iterations) and Batching (180 iterations)

Average Bandwidth (GB/s) Energy(kJ)

Mesh Baseline 20B 40B 40B

FPGA GPU FPGA GPU FPGA GPU FPGA GPU

32× 32× 32 95 227 197 518 203 542 0.043 0.037

32× 32× 50 120 222 211 430 215 447 0.062 0.062

50× 50× 16 68 221 186 426 195 463 0.055 0.056

50× 50× 32 105 219 218 350 224 362 0.091 0.137

50× 50× 50 134 243 233 346 238 352 0.130 0.215

order stencils on larger meshes will require a larger cache for full data reuse, we speculate

required cache lines getting evicted is the reason for the lower average bandwidth for

larger meshes. Again we see that the FPGA operates at a lower average power (70W)

than the GPU (51–170W) and the FPGA saves 40% of energy on GPU-based computation

for largest configuration.

3.5 Concluding Remarks and Discussion

In this Chapter we developed a unified workflow and a supporting predictive analytic

model for FPGA synthesis of structured-mesh stencil applications that combines standard

state-of-the-art techniques with a number of high-gain optimizations targeting features

of real-world work loads. The model allows estimation of design parameters, resource

usage, and performance for a performant FPGA implementation. The workflow was

applied to three representative applications, implemented on a Xilinx Alveo U280 FPGA.

Performance was compared to highly-optimized HPC-grade Nvidia V100 GPU code. In

most cases, the FPGA is able to match or improve on the GPU performance. However,

even when runtime is inferior to the GPU, significant energy savings, over 40% for the

largest application, are observed. Estimations produced by the model were shown to be

accurate and a good guide in the design process. The next chapter investigates how a

similar workflow can be applied to implicit solvers and Chapter 6 devise steps to automate

the development of this class of application on FPGAs. The FPGA and GPU source code

developed in this Chapter are available at [37].

44

Chapter 4

Implicit Schemes on FPGAs

In the preceding Chapter, we introduced a design space exploration and optimal workflow

for explicit applications based on structured meshes on Xilinx FPGAs. However, since

structured mesh-based implicit numerical schemes offer faster convergence and better

numerical stability benefits, this Chapter aims to explore their acceleration on FPGAs,

particularly schemes that utilize tridiagonal system solvers. Compared to stencil solver-

based explicit schemes, the key challenges in implementing implicit schemes on parallel

architectures are data dependency within iterations and complex memory accesses. Previ-

ous research works have implemented popular tridiagonal system solver algorithms using

both HDL [54, 88, 95] and high-level languages [89, 49, 47, 48] on FPGAs. However, their

focus has mainly been on solving single tridiagonal system solvers, rather than analyzing

the characteristics of the application class with respect to the architectural capabilities of

FPGAs for implicit solvers commonly found in real-world applications.

In this Chapter, we evaluate different tridiagonal solver algorithms on FPGAs for

batched systems using analytical models for latency prediction and FPGA resource con-

sumption. Based on such analysis, we designed a batched thomas solver library to solve

small and medium tridiagonal systems and a novel Tiled Thomas solver library for solv-

ing larger tridiagonal systems. These two tridiagonal system solvers are implemented as

a template-based HLS library for implicit application implementation on FPGAs. The

new library demonstrates over a magnitude performance improvement compared to Xilinx

library, for larger batches of tridiagonal systems.

Two non-trivial implicit applications were developed using this new library and explicit

stencil solver techniques presented in the previous Chapter. Several dataflow optimization

techniques and memory access transformation techniques for this class of applications are

presented using the two representative applications. We further scale the performance by

taking advantage of HBM memory in modern FPGAs. Performance predicted by analyt-

ical models developed in this Chapter reaches over 85% accuracy. A detailed comparison

using a current state-of-the-art GPU library [42] for multi-dimensional tridiagonal systems

for these two representative applications on an Nvidia V100 GPU shows the FPGA achiev-

ing competitive or better runtime and significant energy savings of over 30%. Through

45

these applications, we analyse the class of applications for which FPGAs can challenge

the current dominance of GPUs.

4.1 FPGA Design

4.1.1 Small and Medium System Solvers

Considering the resources available on an FPGA, a single tridiagonal system solve, us-

ing the Thomas algorithm in Algo. 1 would require 4 multiplications, 1 division, and 2

subtractions for the forward path and one multiplication and subtraction for the back-

ward path. However, due to dependencies for computing d∗i and c∗i , each iteration of

the forward path loop must be executed serially, incurring the full arithmetic pipeline

latency, lf (≈30 clock cycles on a Xilinx U280 FPGA for FP32), to complete the forward

loop datapath. Additionally the backward loop can only start when all iterations of the

forward path have been completed, due to the reverse data access where the loop starts

from iteration N − 2. Thus the total latency for solving a single system with the Thomas

algorithm would be approximately lf ×N + lb ×N clock cycles (assuming lb cycles is the

arithmetic pipeline latency for completing a single iteration of the backward loop). On

the other hand, a PCR based single solver implementation would require 4 subtractions, 9

multiplications, and 1 division within the inner loop of Algorithm 2. If l is the arithmetic

pipeline latency of the inner loop, then the total number of clock cycles for the PCR

algorithm, is (N + l)× logN . Here we assume that the outer loop is executed serially and

a fully pipelined inner loop, i.e., an initiation interval of one. Given inner loop iterations

are independent, they can be unrolled by some factor fU = 2, 3, ... which will then require

fU× the resources to implement the inner loop. The total clock cycles consumed will then

be (N/fU + l)× logN . The outer loop iterations have a dependency and thus cannot be

unrolled.

For the Thomas solver, there are lf clock cycles between consecutive iterations of a

single system solve in the forward path. This can be considered as a dependency distance.

As such, we could attempt to solve lf tridiagonal systems to fully utilize the forward path

circuit pipeline. This can be done by interleaving the iterations of the forward pass loop

of the Thomas solver such that iteration 1 of system 1 is input followed by iteration 1 of

system 2 and so on, per clock cycle, up to iteration 1 of system lf . In fact selecting a

group, g = MAX(lf , lb) enables g system solves to be interleaved, saturating the pipeline.

If there are B total tridiagonal systems to be solved, i.e. a batch size of B, then the total

latency with Thomas is given by (4.1):

(3 + ⌈B/g⌉)× gN (4.1)

Thus for large B the total latency tends to BN . This is a characteristic of all O(N)

algorithms, which can ideally be pipelined to accept inputs each clock cycle at the cost

of increased resource consumption.

46

For the PCR algorithm, there are no dependencies between iterations of a single system

and solving a batch of B systems (by batching the inner loop) incurs the latency in (4.2),

here lil is the pipeline latency of the inner loop:

(BN/fU + lil)× logN (4.2)

For large B, dividing (4.2) by (4.1) gives a factor of logN/fU pointing to the fact that

the batched Thomas solver is logN times faster than batched PCR, for fU = 1. Thus, to

match the Thomas solver latency, a batched PCR implementation needs an unroll factor

fU = logN . However, given that the PCR inner loop has a considerably higher resource

requirement compared to the Thomas solver, the batched Thomas solver will always

provide better performance for the same amount of FPGA resources. An exception to

this is when the system size, N , is large and FPGA on-chip memory becomes the limiting

factor. Designs for such cases are discussed in Sec 4.1.2.

Considering a batched solver based on the SPIKE algorithm, assume each system in

the batch is of size N . The algorithm creates Nb blocks and each has LU and UL factor-

ization done in parallel, followed by the pentadiagonal solve and then back-substitution

in parallel. This incurs a total latency given by (4.3):

(3 + ⌈BNb/g⌉)× gN/Nb +NbC + 3× gN/Nb (4.3)

The latency for the factorization for each block (first term), is similar to a Thomas

forward and backward solve carried out in an interleaved manner. Although the number

of clock cycles spent on the pentadiagonal reduced system solve is BNbC (assuming a

linear latency model), only the latency for first stage of the pentadiagonal solver is added

to equation 4.3 as all three modules are pipelined. The final term is the added delay due

to back-substitution stage which is again a Thomas solver. When B is sufficiently large

and stages are pipelined, a latency of BN is achieved. Again this is due to the SPIKE

algorithm having a O(N) complexity. However, if BNbC ⩾ BN then dataflow must stall

for some time, decreasing throughput. Resource consumption of the LU/UL factorizations

requires 3× the resources for an equivalent Thomas solver and the pentadiagonal solver

needs additional resources, again more than an equivalent Thomas solver.

Given the lower resource requirements and least computationally expensiveness of the

Thomas algorithm, compared to the other algorithms, we first focus on its optimized

batched implementation on an FPGA for system sizes that can fit into on-chip memory.

As we are interleaving groups of g, the ci−1, di−1 and ui+1 values needs to be stored in

on-chip memory such that they can be used in subsequent (ith) iterations. For a FP32

implementation we have found that a grouping of 32 is sufficient to effectively pipeline the

computation (this is 64 for FP64) on the Xilinx Alveo U280. The forward and backward

loops operate in opposite directions and thus a First-In-First-Out (FIFO) buffer cannot

be used, rather on-chip addressable memory is used for data movement. The forward and

47

backward loops can be made to operate in parallel when batching a number of system

solves, using ping-pong buffers (also called double buffers). With this technique, dual

port memory is partitioned into two parts, one being written while the other is read.

Once writes (by the forward pass) and reads (backward pass) are completed, read and

write halves are swapped. Note that the very first read must wait until the very first

write has completed. Additionally, the technique also doubles the memory requirement

compared to using the same memory portion for both read and write. The latencies for

writing to the ping-pong buffer, firstly for a, b, c, d belonging to the first group of systems,

then writing the resulting c∗, d∗ in forward solve and finally writing u in backward solve,

contribute to the latency term 3gN in (4.1). Here we assume, inputs a, b, c, d come from

FIFO and output u is written back to FIFO. If inputs/outputs are read/written to on-chip

memory instead, then (4.1) becomes (1 + ⌈B/g⌉)× gN .

The total on-chip memory required for a single Thomas solver interleaving g systems

can be computed based on the need to store the a, b, c, d, c∗, d∗ and u vectors, where each

consumes 2gN words in the ping-pong buffers. The total 14gN requirement with dual

port memory can be satisfied with 7× dual port block RAMs (URAM/BRAM) each with

a capacity of 2gN . Additionally there is a need to store g values of the (i− 1)th iteration

separately, requiring 3 on-chip memories with a capacity of g words.

Data transfer from external memory to on-chip memory plays a crucial role in achiev-

ing high performance, especially for multi-dimensional solvers such as the 3D ADI heat

diffusion application detailed later in this Chapter. If we consider a 3D application with

systems sizes (N) of 256 in all three dimensions, then a solve along the x-dimension will

have Y Z (256 × 256 in this case) systems to be solved, each corresponding to an x-line

system of size 256. Given the data is stored in consecutive memory locations along the

x-lines, good memory throughput can be achieved. However to exploit the full memory

bandwidth, a larger number of memory ports must be used. For the 512-bit memory

ports, on the Alveo U280, it is sufficient to saturate the data-flow pipeline with a width

of 256-bits at a 300MHz clock speed, which is our target frequency. This enables us to

fetch data sufficient to feed 8 Thomas solvers in parallel. Such a configuration can be

viewed as a vectorized Thomas solver. Additionally, the total Y Z x-lines can be set up to

be solved in groups (g) of 32. Here, the 1st Thomas solver datapath solves the 0th, 8th,

16th and so on x-lines, the 2nd solves 1st, 9th, 17th and so on x-lines, and so on. Batches

of x-lines can be solved in such interleaved groups to saturate the dataflow pipeline to

achieve higher throughput.

In the x-dimension, the reads from external memory bring in data stored in consecutive

memory locations. However, the data fetched belongs to the same line (i.e. same system),

thus we need to buffer 8 x-lines internally and carry out an 8×8 transpose to feed that to

8 different solvers (see Figure 4.1(a) for an illustration of the issue with a 4×4 transpose).

For solving along the y-dimension, we fetch each XY plane to on-chip memory to avoid

strided memory accesses and then read along the y-lines from the on-chip memory (see

Figure 4.1(b)). Similarly for solving along the z-dimension, we read in x-lines (which are

48

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

4 5 6 7
0 1 2 3
4 5 6 7
0 1 2 3
4 5 6 7
0 1 2 3
4 5 6 7
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

Th
om
as

Th
om
as

Th
om
as

Th
om
as

X

Ex
te

rn
al

 M
em

or
y

On-chip Memory

4-
po

in
t w

id
th

 d
at

a
pa

th
 to

 o
n-

ch
ip

 m
em

or
y

4-
po

in
ts

 a
rri

ve
 e

ac
h

cl
oc

k
cy

cl
e 4x4 registers

Loading 4x4 block
into register.
4 clock cycles to
load from on-chip
memory.

4x4 registers

Transpose
4x4 block.
1 clock
cycle to
Transpose.

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0 0 0 0
4-point
width data
path to on-
chip
memory.

Y

Th
om
as

Th
om
as

Th
om
as

Th
om
as

(a) x-dim solve (b) y-dim solve

Figure 4.1: Datapath for 4× (vectorized) x- and y-dim solves.

consecutive in memory) along the z dimension, fetching XZ planes, to on-chip memory.

No transpose is required for y- and z-dimension solves as each element corresponds to

a different system. Utilizing the HBM available on modern FPGAs, the full vectorized

Thomas solver, which can be viewed as a single compute unit (CU), can be instantiated a

number of times to obtain further parallel performance. Specific designs for applications

with multiple CUs are discussed in Section 4.2. For a 3D application, the x- and y-

dimension solves can be effectively pipelined, storing the resulting XY planes in on-chip

memory without writing to external memory. However the z-dimension solve requires

reading from external memory. As such, 2D applications can be further optimized with

unrolling. Again we discuss specific implementations with unrolling in Section 4.2.

4.1.2 Larger System Solvers

Interleaved solving of systems requires on-chip memory proportional to the system size,

N , and number of groups g. As such, the maximum size of the system that can be solved

is limited by the FPGA on-chip memory resources. We can split the tridiagonal system

into subsystems (or tiles) of size M where each subsystem can be solved using a modified

Thomas solver, where, after a forward and backward phase, each unknown is expressed

in terms of two unknowns u0 and uM−1:

aiu0 + ui + ciuM−1 = di, i = 1, 2, ...,M − 2 (4.4)

This results in a reduced tridiagonal system spread across each sub-domain as detailed

by László et al. [42]). The unknowns at the beginning and end of each subsystem can

49

b0 c0
a1 b1 c1

a2 b2 c2
a3 b3 c3

a4 b4 c4
a5 b5 c5

a6 b6 c6
a7 b7

u0
u1
u2
u3
u4
u5
u6
u7

=

d0
d1
d2
d3
d4
d5
d6
d7

1 c0
a∗1 1 c1
a∗2 1 c2
a∗3 1 c3

a∗4 1 c4
a∗5 1 c5
a∗6 1 c6
a∗7 1

u0
u1
u2
u3
u4
u5
u6
u7

=

d∗0
d∗1
d∗2
d∗3
d∗4
d∗5
d∗6
d∗7

1 c∗0
a∗1 1 c∗1
a∗2 1 c∗2
a∗3 1 c∗3

a∗4 1 c∗4
a∗5 1 c∗5
a∗6 1 c∗6
a∗7 1

u0
u1
u2
u3
u4
u5
u6
u7

=

d∗0
d∗1
d∗2
d∗3
d∗4
d∗5
d∗6
d∗7

Figure 4.2: Reduced system formation

be solved again using the Thomas algorithm, or indeed PCR. Finally, the result from the

reduced system, is substituted back into the individual subsystems (see László et al. [42]

which implements a Thomas-PCR solver for GPUs). In this thesis, Thomas-PCR denotes

solving the reduced system in the Tiled Thomas algorithm using the PCR algorithm and

Thomas-Thomas denotes solving the reduced system using the Thomas solver.

The tiled-Thomas-Thomas solver requires additional computation to solve the reduced

system. To achieve higher performance, forward and backward phases over tiles can be

interleaved. The reduced system size Nr is double the number of tiles. Solving the reduced

system with Thomas requires 2gNr clock cycles. This should not exceed the clock cycles

taken by the forward and backward phases over the tiles. At the end of the backward

phase, results (a∗, c∗ and d∗ as noted in [42]) are stored in a FIFO buffer while the reduced

system for each tile is computed. Then the reduced system results can be substituted back

to complete the solve. Using a FIFO maintains the dataflow pipeline without stalling.

Considering a system of size N , split into t tiles (note then Nr = 2t), assume we

interleave g tiles using the Thomas-Thomas algorithm to solve a total of B systems.

50

Then the total latency is given by (4.5):

(3 + ⌈Bt/g⌉)× ⌈N/t⌉g + gr × (2t)× 2 (4.5)

The second term is for the reduced solve. The gr is similar to g, but it is equal to or

larger than number of interleaved systems for the reduced solve. It is 32 for FP32 and

64 for FP64 on the U280. Similarly, based on the latency for solving the first phase of

the algorithm on a tile, the number of systems to be interleaved is ⌈32/t⌉ for FP32 and

⌈64/t⌉ for FP64. For larger B, we can see that the latency tends to Bt⌈N/t⌉. Considering
on-chip memory requirements the forward and backward phases of the modified Thomas

can be shown to require 9×2×g/t×N words that can be satisfied by 9 on-chip memories

setup as ping-pong buffers. Here we note that larger t lead to lower memory requirement.

The reduced solve requires much less memory, 7 × 2 × 2t × ⌈g/t⌉ in the form of 7 ping-

pong buffers. Furthermore, a FIFO buffer would be required, of length equivalent to the

maximum number of clock cycles spent on the reduced system, as we have to flush solved

tiles from the backward phase.

The reduced system solve can also be implemented with the PCR algorithm resulting

in the latency given in (4.6).

(3 + ⌈Bt/g⌉)× ⌈N/t⌉g + (2t+ l)× log(2t) (4.6)

Again for larger B, this tends to Bt⌈N/t⌉, however, there is a lower on-chip memory

requirement of (2t + l) × log(2t) words for each of the 3 FIFO buffers, due to the lower

latency for reduced system solve in PCR. Since dataflow design requires matching perfor-

mance of solving tiles and the reduced system and as PCR is faster when solving reduced

systems, the number of tiles can be increased even for smaller systems, further reducing

the on-chip memory requirements for the first phase of the algorithm. As such we can

expect the Thomas-PCR version to give better performance.

4.2 Performance

In this section we examine the achieved performance for the above FPGA design strat-

egy. First, we briefly compare the performance of our library to a current state-of-the-art

FPGA tridiagonal solver library from Xilinx [83] which is based on PCR, demonstrating

the higher performance gains from a batched Thomas-based solver as predicted by the

performance model developed in Section 4.1. Batching of systems is key to higher per-

formance. Figure 4.3 presents the performance of 1D tridiagonal systems of size 128 and

1024, in FP32, solved using the Xilinx library (xilinxlib-F1) compared to our Thomas

algorithm-based library (tridsolvlib) and tiled Thomas-PCR (Tiled-tridsolvlib) on

a range of batch sizes. As predicted by the model, for larger batch sizes the Xilinx

library performed significantly slower than the Thomas based solver. Adding further

51

1 10 100 1000
Batch Size

10−6

10−5

10−4

10−3

10−2

10−1

Ru
nt

im
e

(s
ec

on
ds

)

tridsolvelib-128
Xilinxlib_F1-128
Xilinxlib_F2-128
Tiled-tridsolvelib-1024
Xilinxlib_F1-1024
Xilinxlib_F2-1024

Figure 4.3: Proposed tridsolvlib vs xilinxlib (FP32) performance for system sizes of
128 and 1024.

optimizations, such as inner loop unrolling and a FIFO data path to the Xilinx solver

(xilinxlib-F2) only marginally improves performance, leaving an order of a magnitude

performance gap. We also observe that the PCR-based xilinxlib-F2 implementation

consumes higher resources. Tiled-tridsolvlib breaks the systems into 32 tiles, and

gives faster solve times compared to tridsolvlib for small batch sizes due to smaller

tiles being solved in an interleaved manner.

In the remainder of this section we focus on using our FPGA design strategy, specifi-

cally applied to representative, non-trivial applications. We investigate both 2D and 3D

applications, with both FP32 and FP64 precision. The performance models are used to

determine initial design parameters and runtimes, which we compare to achieved run-

times on a Xilinx Alveo U280 (raw runtime values are available in Appendix section C.2).

We use Vivado C++ due to ease of use for configurations and support of some C++

constructs compared to OpenCL. However, OpenCL could equally be used to implement

the same design. Resources are estimated, with the aid of Vivado HLS tools. Finally,

we compare performance on the FPGA to an Nvidia Tesla V100 GPU using the tridiag-

onal solver library, tridsolver implemented by László et al. [42, 78] using its batched

version presented by Reguly et al. [64]. This GPU library has been shown [3] to pro-

vide matching or better performance than the two current batch tridiagonal solver func-

tions in Nvidia’s cuSPARSE library [14, 79] – cusparse<t>gtsv2StridedBatch() and

cusparse<t>gtsvInterleavedBatch(). Our experiments also confirmed these results

for the applications evaluated in this Chapter. Additionally it features direct support

for creating multi-dimensional solvers, whereas gtsvInterleavedBatch() requires data

layout transformations, for example in between doing an x-solve and a y-solve to imple-

ment multi-dimensional problems. The cuSPARSE gtsv2StridedBatch() library variant

was observed to be slower. Thus we use tridsolver in our evaluation throughout this

Chapter, but note that cuSPARSE libs would have equally provided the same insights

when compared to the FPGA solvers on the Xilinx U280. Given that previous work

52

Table 4.1: Experimental systems specifications.

FPGA Xilinx Alveo U280 [92]

DSP blocks 8490
BRAM/URAM 6.6MB (1487 blocks)/34.5MB (960 blocks)
HBM 8GB, 460GB/s, 32 channels
DDR4 32GB, 38.4GB/s, in 2 banks
Host AMD Ryzen Threadripper PRO 3975WX (32 cores)

512GB RAM, Ubuntu 18.04.6 LTS
Design SW Xilinx Vivado HLS, Vitis 2019.2
Run-Time Xilinx XRT 202020.2.9.317

GPU Nvidia Tesla V100 PCIe [53]

Global Mem. 16GB HBM2, 900GB/s
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

has demonstrated GPUs to provide significantly better performance than multi-threaded

CPUs [42], we do not compare with CPU implementations. Note that we only measure

and present the time for the main iterative loop. As the applications carry out large

numbers of iterations, the data copied to the device (on both devices via PCIe, same

aggregate bandwidth), is used repeatedly. Therefore, the transfer overhead is amortized.

Furthermore, with large multi-batch execution in real workloads, the initial transfer is

further hidden behind computation. Hence, data copy time from host to device (both on

FPGA and GPU) are not included in our results.

Table 4.1 briefly details the specifications of the FPGA and the GPU systems (both

hardware and software) used in our evaluation. The Nvidia V100 is based on 12nm

technology while the Xilinx U280 is 16nm. The GPU also has a memory bandwidth of

900GB/s, nearly twice that of the U280’s 460GB/s. Thus we selected the V100 as a fair

but challenging competitor.

4.2.1 ADI Heat Diffusion Application

The first application is an Alternating Direction Implicit (ADI) based solve of the heat

diffusion equation. The high-level algorithm of the application in 3D is detailed in Algo. 4.

Algorithm 4: 3D ADI Heat Application

1: for i = 0, i < niter, i++ do
2: Calculate RHS : d = f7pt(u), a = −1

2 γ, b = γ, c = −1
2 γ

3: Tridslv(x-dim), update d
4: Tridslv(y-dim), update d
5: Tridslv(z-dim), update d
6: u = u+ d
7: end for

53

The application consists of an iterative loop which starts by calculating the RHS

values using a 7-point stencil, followed by calls to the tridiagonal solver for each of two or

three dimensions, depending on the application. The updates from the tridiagonal solver,

Tridslvs are accumulated to u before the next iteration. For the 3D ADI application,

there are three calls to Tridslv. A GPU implementation has four kernels called by an

iterative loop on the host. Fusing these kernels together does not improve performance as

it requires global synchronization for data structure d and the memory accesses are along

different directions of the 3D mesh, leading to poor cache utilization. The non-coalesced

memory access pattern of Tridslv(x-dim) is a challenge for GPUs. László et al. [42]

improved performance through shared memory and register based transposing.

An initial FPGA design implements the application as a single hardware unit given

the data dependencies between the calls. This enables FPGA resource utilization to

be maximized by implementing 6 CUs each having 8 Thomas solvers synthesized as a

vectorized solver. The RHS calculation, which is a 3D explicit stencil loop was implemented

using techniques similar to those in [33], as a separate module. The intermediate results

between CUs and RHS module were written/read to/from external memory. The number

of CUs is then limited by the available HBM ports but not by any other resource. An

improvement on this initial design fuses the generation of a, b, c coefficients with the

tridiagonal solver. This enables the required number of HBM ports to be reduced and

synthesis of a maximum of 16 CUs. We opt for 12 CUs to reduce routing congestion

which affects the maximum frequency achievable on the FPGA.

The x-dim and y-dim solves can be synthesized as separate modules, pipelining the X

and Y dimension calculation without needing to buffer intermediate results in external

memory. Essentially, XY planes are buffered in on-chip memory, but solvable mesh sizes

are limited by BRAM/URAM usage. Pipelining x-dim solve to z-dim solve requires

on-chip memory-based buffering of full mesh which significantly limits the mesh size,

hence we do not attempt it here. The pipelining reduces the bandwidth requirement

by half compared to the previous design. The first module, RHS + Tridslv(x-dim) +

Tridslv(y-dim) and second module, Tridslv(z-dim), operate in parallel in a ping-

pong fashion. This effectively increases the number of modules working in parallel to 24,

considering the availability of HBM ports. The design now has a large pipeline start delay

and is best utilized by batching large numbers of 3D meshes to obtain higher throughput.

Xilinx dataflow design synthesis requires separate data structures for independent read

and write operations. We introduce two data structures for accumulation in line 6 of

Algo 4. But due to limited HBM ports, we must share a single HBM port between two

data structures. This limits the dataflow per data structure from/to the HBM ports as

well as the size of data structure, given a single HBM bank has a capacity of 256MB. This

final design gave the best performance in our evaluations.

The component model in (4.1) can be combined with the delays due to buffering

(ping-pong buffers for the 8×8 transpose, row-to-col, rows-to-8×8-block data flow and

window buffers for stencil computations) to obtain an application performance model.

54

Thomas

Interleave

Thomas
Forward

Thomas
Backward

Tiled Thomas

Interleave

Tiled Thomas
Forward

Tiled Thomas

Backward

Reduced Solve
Thomas/PCR

Back
Subs�tu�on

2D Stencil
(RHS)

Rows to 8x8
Blocks

8x8
Transpose

Thomas
Solver

8x8
Transpose

8x8 Blocks
to Rows

Row to Col
Transpose

Thomas
Solver

Col to Row
Transpose

Read Module
(d,u)

Read Module
(acc1,acc2)

Write Module
(u,d)

Write Module
(acc2,acc1)

tridslv(x-dim) tridslv(y-dim)

Replicate block to
unroll Itera�ve loop (2D ADI)

2D ADI Compute Unit

Thomas Solver Tiled Thomas Solver

RHS+tridslv(x-dim)+tridslv(y-dim)

AXI Interconnect

2
G
b

2
G
b

2
G
b

2
G
b

Mem
Controller

Mem
Controller

Pa
rt

of
 H

BM

Buffer

Buffer

Figure 4.4: 2D ADI application datapath constructed from solver components.

These delays are determined by the clock cycles needed to fill the buffers in order to start

outputting the first result. Thus the full pipeline latency for the 3D ADI application

is (4.7):

Ladi,3D = niter ×MAX(Lrhs+xy, Lz) (4.7)

Lrhs+xy = (xy/V) + (2V x/V + 3gx) + (2xy/V + 3gy)+

⌈B/2NCU⌉(xyz/V) (4.8)

Lz = (2xz/V + 3gz) + ⌈B/2NCU⌉(xyz/V) (4.9)

Here, x, y and z are the sizes of systems in each dimension, NCU is the number of CUs

implemented on the FPGA and B is the total number of 3D meshes, i.e the num-

ber of batches. The terms in (4.8) account for the 3D stencil computation in RHS,

Tridslv(x-dim) including latency to transpose the x-lines, Tridslv(y-dim) including

the reading/writing y-lines from the buffered x-lines, and the latency to process B meshes

using NCU CUs respectively.

We take the maximum in (4.7) because the two modules need to be synchronized, as

they swap their read and write locations after processing B/2 meshes. The vectorization

factor V is 8 for our design and g is 32 for FP32 and 64 for FP64. A minor consideration

for obtaining improved predictions from the above model is when the number of points per

clock cycle arriving to the vectorized solvers is different to V due to memory bandwidth.

For example if we use a single HBM port to read two data structures and if we use a

256-bit data path, a lower number of points p will enter the datapath than V . Then,

55

Table 4.2: 2D ADI Heat Diffusion App (F - FPGA, G - GPU). Gx and Gy are achieved
bandwidth of Tridslv(x-dim) and Tridslv(y-dim) respectively.

2D FP32 (120 iterations, fU = 3)

Batch Size 1500 3000

Bandwidth (GB/s) Energy (J) Bandwidth (GB/s) Energy (J)

Mesh F Gx Gy F G F Gx Gy F G

322 501 375 276 1 5 563 435 377 2 9
642 524 428 449 3 16 556 447 512 6 29
1282 602 416 539 12 60 620 418 554 23 115

2D FP64 (120 iterations, fU = 2)

Batch Size 1500 3000

Bandwidth (GB/s) Energy (J) Bandwidth (GB/s) Energy (J)

Mesh F Gx Gy F G F Gx Gy F G

322 360 396 501 2 7 395 441 535 4 14
642 380 401 492 9 30 399 417 506 18 61
1282 411 286 512 34 141 422 281 548 67 284

replacing V by p is more accurate.

A similar design can be developed for the 2D ADI application, but now the functions

in the iterative loop RHS, Tridslv(x-dim) and Tridslv(y-dim) can all be pipelined.

This makes it possible to unroll the iterative loop by some factor fU . Note that the

variable u is incremented each iteration (line 6 of Algo. 4), where the previous value

of u must be input at the end of each unrolled iteration to carry out this increment.

However the RHS of each iteration also consumes u and thus we use a delay-buffer (similar

to ones used in StencilFlow [15]) implemented as an HBM FIFO to feed the previous

values of u to the increment stage on line 6. Implementation of an HBM FIFO with a

data access dependency distance based on the data structures allocated on specific HBM

banks makes global memory synchronization possible in the dataflow pipeline without

additional HBM throughput cost. Unrolling the iterative loop reduces the total number

of data structures in external memory. Hence we are able to assign dedicated ports for

each data structure which enables better dataflow throughput. The overall structure

of the 2D design, combining component modules is illustrated in Figure 4.4. A similar

illustration can be conceived for the 3D ADI application, which we do not show here. The

performance model for the 2D application is given in (4.10).

Ladi,2D = (niter/fU)× Lrhs+xy (4.10)

Lrhs+xy =fU × [(x/V) + (2V x/v + 3gx) + (2xy/V + 3gy)] +

⌈B/NCU⌉(xy/V) (4.11)

56

322 482 642 802 962 1122 128210−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

2D ADI, FP32, v = 8, fu = 3, NCU = 3

GPU-3000B
GPU-1500B
FPGA-Pred

FPGA-3000B
FPGA-1500B

322 482 642 802 962 1122 1282

Mesh Size

2D ADI, FP64, v = 8, fu = 2, NCU = 3

Figure 4.5: 2D ADI, 120 iterations, here FPGA-Pred represents the performance predicted
using the models.

Pipeline latency increases with the unroll factor fU , but for large B it results in a

higher overall speedup. The size of the FIFO delay buffer is equivalent to the total delay

of RHS, Tridslv(x-dim), and Tridslv(y-dim) : x/v + 2vx/v + 3gx+ 3gy + 2xy/v.

Figure 4.5 details the performance of the 2D ADI Heat diffusion application imple-

mented in both FP32 and FP64 on the FPGA and compares it to execution on the

GPU. The design parameters for each are noted in the graphs. Operating frequencies are

292MHz and 288MHz for FP32 and FP64 respectively. These improved post implementa-

tion frequencies were possible due to multiple compute units with careful SLR placement

and HBM bank assignment constraints, manually flattened loops with arbitrary word

length counters, and an optimally pipelined and vectorized design. In both FP32 and

FP64 cases the coefficients a, b and c are internally generated, on the FPGA. This means

that only u is read. Performance results demonstrate the FPGA outperforming the GPU

particularly for runs with large batch sizes.

We see that the performance model accuracy is over 85% with large batched predictions

being more accurate at over 90%. The prediction errors in the models are due to omitting

a number of minor latencies for simplicity. While the models account for only the latency

in loops, the real synthesized circuit on the FPGA will have additional stages to complete

before a loop. These include calculating the loop invariants, setting initial values and

state transition on hardware to reach the execution of the loop. For modelling loops,

we do not account for the hardware pipeline latency - i.e. the clock cycles required

between FIFO read and write and the arithmetic hardware pipeline. However, these can

be obtained from the HLS kernel schedule viewer to refine and improve predictions. We

also do not account for latency incurred on the first external memory transfer. All of the

above latencies are less than a few hundred clock cycles and become insignificant when

considering total runtimes of larger mesh or batch sizes as can be seen from the above

results.

Inspecting the effective bandwidth on each device as detailed in the two sub-tables in

Table 4.2 provides insights into the superior performance of the FPGA. The bandwidth

is computed by counting the total number of bytes transferred during the execution of

57

323 80x322 483 80x642 803 96310−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

3D ADI, FP32, v = 8, NCU = 6

GPU-72B
GPU-24B
FPGA-Pred

FPGA-72B
FPGA-24B

323 80x322 483 80x642 803 963

Mesh Size

3D ADI, FP64, v = 8, NCU = 3

Figure 4.6: 3D ADI, 100 iterations, here FPGA-Pred represents the performance predicted
using the models.

each call in Alg. 4, looking at the mesh data accessed and dividing it by the total time

taken by each call. On the GPU, we have detailed the achieved bandwidth of the x-

(Gx) and y-dim (Gy) solves. Bandwidths on both devices are computed by dividing the

required data movement by the total runtime. On the FPGA we show the full bandwidth

achieved in the pipeline. The x-dim bandwidth on the GPU is significantly worse due

to the block transpose operations. Such lower bandwidths are also confirmed by László

et al. [42]. We additionally confirmed the same performance when using cuSPARSE’s

cusparse<t>gtsv2StridedBatch() library function for the x-solve. The higher perfor-

mance of the FPGA can be attributed to the unrolling of the iterative loop, keeping

intermediate results in fast on-chip memories, thus allowing higher bandwidth utilization

for the data path and the internal generation of coefficients. The GPU tridiagonal solver

library does not support internal coefficient generation. Thus, the application writes a, b, c

and u to global memory after RHS and intermediate results also written/read between the

two Tridslv calls, whereas on the FPGA these stay on-chip. Even with modifications

to the GPU library to generate coefficients internally which would improve GPU perfor-

mance, we believe the FPGA results point to a very competitive solution, particularly

when batching large meshes that can fit within the resource constraints of the FPGA, for

this application.

The first two sub-tables in Table 4.2 also detail the energy consumption of the 2D runs.

The xbutil utility was used to measure power during FPGA execution, while nvidia-smi

was used for the GPU. The FPGA on average consumed 75W while the GPU power draw

ranged from 50W to 250W. We measure the power by making the runtime large enough

in minutes using a larger number of iterations. Energy consumption is computed by

multiplying the power for a particular test case with its runtime. Results indicate that

the FPGA energy consumption is approximately 5–6× lower for this 2D problem.

Figure 4.6 and the two sub-tables in Table 4.3 detail the performance of the 3D ADI

heat diffusion application in FP32 and FP64 respectively. Again we see performance

trends similar to the 2D case, however we were only able to run smaller batch sizes due to

HBM memory limitations for 3D meshes. On the GPU, again, we observe good achieved

58

Table 4.3: 3D ADI Heat Diffusion App (F - FPGA, G - GPU). Gx, Gy and Gz are achieved
bandwidth of Tridslv(x-dim), Tridslv(y-dim) and Tridslv(y-dim) respectively.

3D FP32 (100 iterations)

Batch Size 24 72

Bandwidth (GB/s) Energy (J) Bandwidth (GB/s) Energy (J)

Mesh F Gx Gy Gz F G F Gx Gy Gz F G

32× 32× 32 218 380 229 283 1 3 266 449 390 537 3 8
48× 48× 48 288 426 354 477 3 9 338 459 408 553 7 25
96× 96× 96 346 401 401 568 18 65 358 415 419 563 53 197

3D FP64 (100 iterations)

Batch Size 24 72

Bandwidth (GB/s) Energy (J) Bandwidth (GB/s) Energy (J)

Mesh F Gx Gy Gz F G F Gx Gy Gz F G

32× 32× 32 201 405 365 445 2 4 239 439 424 527 6 13
48× 48× 48 242 388 407 536 7 16 267 408 421 554 18 48
96× 96× 96 271 324 412 550 47 135 276 338 436 565 139 399

bandwidth. On the FPGA the achieved bandwidth is poorer due to no unrolling of the

iterative loop as done in the 2D case, where there are 3 CUs each unrolled by a factor of

3. The sharing of HBM ports as described in the design of this application limits the data

flow per data structure further reducing achieved bandwidth. The energy consumption

of the FPGA is 3–4× lower than the GPU’s.

A Thomas-Thomas based implementation for the 2D ADI-Heat application for larger

meshes can be modeled using (4.12):

Ladi,2D,tiled = niter × (Lrhs+x + Ly) (4.12)

Lrhs+x =x/V + 2V x/V + 3gx/t1 + 4gt1 +Bxy/V (4.13)

Ly =2yTx/V + 3gy/t2 + 4gt2 +Bxy/V (4.14)

In this case, RHS and x-solve can be pipelined but y-solve cannot as we are computing

“tiles” along the y-dim lines, a large amount of on-chip memory would be required to

transpose the mesh. The explicit stencil computation in RHS does not require tiling as

we are not processing very large meshes. If the tile sizes for the Thomas-Thomas solvers

are selected to be t1 and t2 then the reduced system sizes will be 2t1 and 2t2. Equation

(4.13) accounts for the latency for RHS with x-dimension solve where the terms correspond

to the latencies of the stencil, the data path, modified Thomas solve, and the reduced

solve. Similarly (4.14) gives the y-dimension solve latency. Note that here we have used

Tx (this is different to t1) as the tile size for the y-dim data path where we buffer Tx × y

59

2562 3842 5122 6402 7682 896210−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

Thomas–PCR, FP32, v = 8, NCU = 6

GPU-180B
GPU-60B
GPU-12B
FPGA-Pred

FPGA-180B
FPGA-60B
FPGA-12B

2562 3842 5122 6402 7682 8962

Mesh Size

Thomas–Thomas, FP32, v = 8, NCU = 6

Figure 4.7: 2D ADI-Tiled, 100 iterations, here FPGA-Pred represents the performance
predicted using the models.

Table 4.4: ADI Heat Diffusion App (2D FP32) – Large meshes, Thomas-PCR, 100 iter-
ations, F - FPGA and G - GPU. Gx and Gy are achieved bandwidth of Tridslv(x-dim)
and Tridslv(y-dim) respectively.

Batch Size 60 180

Bandwidth (GB/s) Energy (J) Bandwidth (GB/s) Energy (J)

Mesh F Gx Gy F G F Gx Gy F G

2562 692 213 238 5 8 217 766 437 13 21
5122 218 768 379 17 28 222 797 534 51 75
8962 220 345 495 53 104 222 342 562 156 312

sized planes. Note also that we have selected the number of interleaved systems and

interleaved reduced systems to be equal (i.e. g = gr in relation to (4.5)). The final term

in (4.13) and (4.14) are the latencies for processing a batch of B systems. Replacing the

reduced system solve with the PCR algorithm is also possible where the 4gt1 and 4gt2

terms in (4.13) and (4.14) then become log(2t1)× (2t1 + l) and log(2t2)× (2t2 + l). Here,

l is circuit pipeline latency as discussed in Section 4.1.

Figure 4.7 presents the performance of the 2D ADI heat diffusion application on

large meshes solved using Thomas-PCR and Thomas-Thomas hybrid implementations.

Again we compare with the same mesh sizes solved on the GPU. Due to the RHS and

Tridslv(x-dim) being pipelined together, the FPGA achieves better HBM bandwidth

utilization. The GPU also achieves good bandwidth utilization where it reaches band-

width levels similar to batched smaller meshes (see Table 4.4 for for Thomas-PCR;

Thomas-Thomas gave similar results). The FPGA can be seen to be 2–3× more energy

efficient than the GPU for the largest mesh sizes.

4.2.2 Stochastic Local Volatility

The second application we evaluate comes from computational finance. It implements a

Stochastic-Local Volatility (SLV) model, which describe asset price processes, particularly

60

0.00 0.01 0.02 0.03 0.04
Runtime (seconds)

30

300

3000
Nu

m
be

r o
f B

at
ch

es

0.0017

0.0047

0.0335

0.0083

0.0142

0.0310
Mesh : 40x20, itr= 11

0.00 1.00 2.00
Runtime (seconds)

0.0531

0.2372

2.0776

0.0607

0.2024

1.2022
Mesh : 100x50, itr= 104

GPU
FPGA
FPGA-Pred

Figure 4.8: SLV application performance.

foreign exchange rates [75]. A batched GPU implementation based on a second order

finite-difference scheme was developed for this problem using the OPS DSL by Reguly

et al. [64]. It is a 2D application implemented in FP64 precision. Its high-level algorithm

is detailed in Algo. 5.

Algorithm 5: 2D Heston SLV Backward

1: for i = 0, i < niter, i++ do
2: hv pred0(), hv matrices()

3: Tridslv(x-dim)

4: hv pred1(), Tridslv(y-dim)

5: hv pred2(), Tridslv(x-dim)

6: hv pred3(), Tridslv(y-dim)

7: end for

The application implements a Hundsdorfer-Verwer (HV) method, (also based on the

ADI method) for time integration. The Rannacher smoothing available in the original

application has been switched off in our evaluation. The hv pred* and hv matrices are

explicit loops each using 10 point stencils, requiring a window buffer implementation [33]

for data reuse. The 9 kernels in Algo. 5 were implemented as separate hardware modules,

pipelining the computation within the iterative loop. hv matrices generates a number of

2D coefficients AX,BX,CX,AV,BV,CV and 1D coefficient EV for the Tridslvs. Coefficients

AX,BX,CX then need to be input to (consumed by) Tridslv(x-dim) kernels and coeffi-

cients AV,BV,CV and EV to Tridslv(y-dim) kernels. A GPU implementation consists of

these nine kernels, moving data through global memory. Again, it is not possible to fuse

kernels to reduce global memory accesses for this bandwidth limited application. The

large number of kernels inside the iterative loop incur significant kernel call overhead and

data movement through the fixed data path increases latency on the GPU for processing

meshes with smaller batch sizes, leading to poor bandwidth utilization.

On the FPGA, generated coefficients are consumed at different stages of the pipeline.

61

Table 4.5: SLV Application, GPU-x and GPU-y are achieved bandwidths of
Tridslv(x-dim) and Tridslv(y-dim) respectively.

Bandwidth (GB/s) Energy (J)

Batch FPGA GPU-x GPU-y FPGA GPU

40×20 mesh: 11 iterations

30 55.24 3.04 28.01 0.13 0.45
300 202.31 16.48 176.51 0.35 1.02
3000 281.06 123.84 327.65 2.51 4.75

100×50 mesh: 104 iterations

30 124.63 51.28 109.65 3.98 3.76
300 278.87 235.22 238.34 17.79 22.26
3000 318.36 421.77 429.21 155.82 216.40

However other inputs to the Tridslv calls come through the computation of this multi-

stage pipeline. Therefore large FIFO delay buffers are required to keep synchronization

(i.e. avoid pipeline stalling). As such we opt to regenerate the above coefficients at sepa-

rate stages, essentially duplicating the circuitry. This results in the generation of coeffi-

cients AX,BX,CX, for the Tridslv(x-dim), being fused to hv pred0() and hv pred2()

and the generating of coefficients AV,BV,CV,EV, for Tridslv(y-dim), being fused to

hv pred1() and hv pred3(). This results in a total of 8 hardware modules, requiring

significantly smaller delay buffers than if we implemented the original set of kernels. The

performance model for SLV is given in (4.15):

Lslv = niter[4× (2x) + 2× (3gx)+

2× (3gy + 2xy) + ⌈B/NCU⌉xy] (4.15)

Here g is 64 as SLV uses FP64. The first term is the combined input/output latency for

the four explicit stencil computations in hv pred*. The second and third terms account

for the Tridslv (x-dim) and Tridslv(y-dim) calls respectively, including the read or

write y-lines from the buffered x-lines. The final term is the latency for processing a batch

size of B, 2D meshes. The number of CUs, NCU for SLV on the FPGA is 3, given the

considerably larger amount of DSP and memory resources required for the application,

particularly due to its use of FP64 precision. The FIFO delay-buffer size calculation was

aided by the Xilinx HLS tools where the exact datapath pipeline latency was estimated

to obtain buffer sizes adequate for an implementation.

The motivation for batched solves of multi-dimensional tridiagonal systems primarily

comes from financial computing where, for example, computing prices of financial options

and managing risk by hedging options leads to the need to solve Algo. 5 type applications

with different sets of coefficients [64]. Additionally carrying out extensive speculative

scenarios required by regulators under various market conditions to evaluate a bank’s

62

exposure means that there are large number of options in the order of thousands to

hundreds of thousands to be computed every day. Such workloads would entail large

numbers of roughly identical PDE problems to be solved which are well suited to be

batched together.

Figure 4.8 and Table 4.5 detail the runtime, bandwidth, and energy performance of

the SLV application implementation. Only two specific mesh sizes were available from

the authors of the original code [64], each was batched up to 3000 batches of 2D meshes

for this evaluation. The application is significantly more complex given the additional

explicit stencil loops as well as the tridiagonal solvers. The runtimes here were obtained

with the FPGA operating at 253MHz. As can be seen from the figures, the FPGA in

some cases is faster than the V100 GPU, but for the largest batch sizes we attempted

here, it is 8%-70% slower than the GPU. However the FPGA solution is over 30% more

energy efficient for large batch solves compared to the GPU. The achieved bandwidth on

the FPGA is approximately at the same level as the 2D ADI FP64 version. Runtime

predictions from the model were also observed to be over 90% accurate for all cases.

4.3 Discussion

The experiments in Section 4.2.1 show better performance on the Xilinx Alveo U280

FPGA compared to the Nvidia V100 GPU for ADI 2D and ADI 3D applications in both

FP32 and FP64 formats. Key optimizations possible on the FPGA, such as pipelining

and fusing coefficient generation with tridiagonal solvers leads to this performance gain.

These optimizations helped to achieve higher effective bandwidth on the FPGA although

U280 HBM’s maximum theoretical bandwidth (460GB/s) is close to half of the V100 HBM

(900 GB/s). Additionally, lower FPGA resource consumption due to these optimization

makes it possible to scale to multiple compute units on the Alveo U280. Implementation

of an 8×8 transpose on the FPGA enables higher throughput for Tridslv(x-dim) making

memory accesses coalesced, while the GPU implementation using shared memory based

transpose and Tridslv to address non-coalesced accesses suffers significant performance

loss. In Section 4.2.2, the FPGA demonstrates competitive performance with the GPU

for the SLV application. However, the computationally intensive complex coefficient cal-

culation using 10-point stencils makes it hard to fuse with the Thomas solver and results

in higher FPGA resource usage, limiting the number of implementable compute units.

Due to this, the GPU performs better than the FPGA for the SLV application on larger

meshes. Future FPGAs with more DSP blocks or floating point primitives will provide

better performance than the Xilinx Alveo U280. However, SLV with smaller meshes/-

batches is better matched to the FPGA due to the low latency FPGA data movement as

well as lower kernel call overhead as the iterative loop is implemented within the FPGA

63

4.4 Concluding Remarks

We have developed a new FPGA-based tridiagonal solver library aimed at solving multiple

multi-dimension tridiagonal systems on FPGAs. Key new features of the library include

dataflow techniques and optimizations for gaining high throughput, through batching

multiple system solves, replication of compute units, and utilization of High Bandwidth

Memory on modern FPGAs. The Thomas algorithm was shown to be effective, even

with its loop carried dependencies, due to its simplicity and lower resource consump-

tion. This somewhat subverts the conventional expectation of the more parallel PCR

or SPIKE algorithms being better suited for high performance on parallel architectures.

Our library significantly outperforms the Xilinx tridiagonal library that uses the PCR

algorithm, for larger batch sizes. However, for larger mesh sizes a hybrid Thomas-PCR

or Thomas-Thomas solution was required to overcome the limitations of on-chip memory

and demonstrated considerable performance with batched configurations.

Two representative applications, (1) a heat diffusion problem based on the ADI method

and (2) a stochastic local volatility (SLV) model from the financial computing domain,

that rely on the solution of multi-dimensional tridiagonal systems were implemented using

the new library on a Xilinx Alveo U280 FPGA. As part of the design process an analytical

performance model was developed to estimate runtime performance of the FPGA designs

and assist in design space evaluations. The FPGA performance was compared to opti-

mized solutions of the same applications on a modern Nvidia Tesla V100 GPU, showing

competitive performance, sometimes even surpassing the performance on the GPU. This

was due to designs creating longer pipelines keeping intermediate results on fast FPGA

on-chip memory.

Even when runtime is inferior to the GPU, significant energy savings, over 30% for

the most complex application (SLV) with large batch sizes, were observed. Considering

the motivating real-world scenario for such an application from the financial computing

domain, such energy savings point to a significant operational cost benefit. The analytical

performance model provides over 85% accuracy illustrating its significant utility in devel-

oping profitable FPGA designs. The results showcase a key class of applications and their

characteristics where the FPGA is able to provide competitive performance on-par with

GPUs, with the added benefit of large energy savings. The techniques and optimizations

required to achieve high performance on FPGAs, as demonstrated in this work, provide

key insights into the feasibility and profitability of using FPGAs in high-performance

computing workloads.

The FPGA library, the 2D/3D ADI heat diffusion application, and the optimized GPU

source code developed in this work are available as open-source software at [36]. The

library and workflow are tested again on Xilinx Alveo U50 FPGA (see Appendix B) as

well, which further supports the conclusions in this Chapter. The next Chapter explores

the use of FPGA hardware from Intel, the other major FPGA device vendor.

64

Chapter 5

FPGA Designs with SYCL

This Chapter explores the design and development of structured mesh based solvers us-

ing the SYCL programming model on the Intel FPGA hardware, based on previously

developed workflow (Chapter 3-4). Both explicit and implicit classes of applications are

targeted : (1) stencil applications based on explicit numerical methods and (2) multi-

dimensional tridiagonal solvers based on implicit methods. Special optimisation & tech-

niques along with finer predictive models for the SYCL Programming model and intel

FPGAs to explore design space and get optimised design is presented in this Chapter.

Performance of synthesized designs, using the above techniques, for two non-trivial ap-

plications on an Intel PAC D5005 FPGA card is benchmarked. Results are compared

to the performance of optimized parallel implementations of the same applications on a

Nvidia V100 GPU. Observed runtime results indicate the FPGA providing comparable

or improved performance to the V100 GPU. However, more importantly the FPGA so-

lutions consume 59%–76% less energy for their largest configurations. Our performance

model predicts the runtime of designs with high accuracy with less than 5% error for all

cases tested, demonstrating significant utility for design space exploration on Intel FP-

GAs. With these tools and techniques, this Chapter discusses special optimisations and

techniques using SYCL to target intel FPGAs compared to C++ for Vivado for Xilinx

FPGAs and how to codify using SYCL, and the resulting performance.

5.1 Intel FPGAs and SYCL

Similar to Xilinx FPGAs which we have utilized in Chapters 3-4, Intel FPGA devices

consist of basic circuit elements such as configurable logic, known as Adaptive Logic

Moduless (ALMs) in Intel devices, that include LUTs and registers; specialized blocks such

as random-access-memory blocks (640-bit MLABs and 20K bits M20K in Intel devices);

and Digital Signal Processings (DSPs) blocks. These are interconnected via a rich routing

fabric providing large bandwidth between elements. In addition to on chip memories, Intel

FPGA boards comes with larger DDR4 memories and some modern FPGA boards comes

with HBM2 memory. In contrast to Xilinx FPGAs, Intel FPGAs include DSP blocks

65

1 using namespace sycl;

2 void stencil_WI(queue &q,

3 buffer<float,2> b_data_in,

4 buffer<float,2> b_data_out,

5 int size0, int size1,

6 int block0, int block1){

7 q.submit([&] (handler& h){

8 accessor in(b_data_in, h);

9 accessor out(b_data_out, h);

10

11 range<2> local_range(block0, block1);

12 range<2> global_range(size0, size1);

13

14 h.parallel_for<class stencil_WI>

15 (nd_range<2>(local_range, global_range),

16 [=] (nd_item<2> point){

17 int y = point.get_global_id(0);

18 int x = point.get_global_id(1);

19 if(x > 0 && y > 0 && x < size0-1 && y < size1-1){

20 float r = (in[y-1][x] + in[y+1][x])*0.125f +

21 in[y][x]*0.5f;

22 out[y][x] = r;

23 }

24 });});

25 }

Listing 5: NDRange based stencil computation.

which support low latency single precision (FP32) ADD,SUB,MUL and ACCU operations.

This helps modern Intel FPGAs to achieve higher computational throughput. As a given

circuit design grows and begins to occupy a larger portion of the FPGA, routing (i.e.

connecting all the circuit elements together) becomes more challenging, and can reduce

the achievable clock frequency and hence overall performance. In this aspect, Intel’s

Hyperflex technology [28] gives more flexibility in routing which helps achieve better

clock frequency.

The recently introduced Data Parallel C++ (DPC++) programming model1 based on

the SYCL programming model to program FPGAs, follows OpenCL. Here, the portions of

the program to be executed on an accelerator device are called kernels. SYCL’s accelerator

model consists of a number of compute units, each made of processing elements (similar

to SMs on a GPU). An instance of a kernel executed on a processing element is called a

work-item (equivalent to threads in the Compute Unified Device Architectures (CUDAs)

programming model) and an instance of a work-item is identified using an index id in

a global index space. Work-items are organized into groups called work-groups (thread-

blocks in CUDA) and each work-item inside the group will have a local-id. Work-items in

a work-group are executed concurrently on processing elements of the compute unit where

the index space is specified using SYCL’s N-dimensional range model. Kernels based on

1Terms DPC++ and SYCL are used interchangeably in this Chapter due to the use of Intel target
hardware.

66

1 using namespace sycl;

2 void stencil_ST(queue &q,

3 buffer<float,2> &b_data_in,

4 buffer<float,2> &b_data_out,

5 int size0, int size1){

6 q.submit([&] (handler& h){

7 accessor in(b_data_in, h);

8 accessor out(b_data_out, h);

9 h.single_task<class stencil_ST> ([=] (){

10 /* optimisations - see Section 2 ... */

11 float window1[1024];

12 float window2[1024];

13 [[intel::loop_coalesce(2)]]

14 /* +1 due to one row delay through window buffer */

15 for(int y = 0; y < size1+1; y++){

16 for(int x = 0; x < size0; x++){

17 float s_12;

18 if(y < size1) s_12 = in[y][x];

19 float s_11 = window1[x];

20 float s_10 = window2[x];

21 window1[x] = s_12;

22 window2[x] = s_11;

23 float r = (s_10 + s_12)*0.125f + s_11*0.5f;

24 if(x > 0 && y > 0 &&

25 x < size0-1 && y < size1){

26 out[y-1][x] = r;

27 }

28 }

29 }

30 });});

31 }

Listing 6: single task based stencil computation.

this index space are called NDRange kernels (see Listing 5).

NDRange kernels therefore essentially follow a SIMT execution model where on a GPU,

multiple kernels are called, with the system scheduling them to be executed on the avail-

able Streaming Multi-Processors (SMs). Such an execution can be done for FPGAs as

well, but performance becomes severely limited due to FPGA global memory bandwidth

(about 19–76GB/s with DDR4 or ≈ 460GB/s with HBM2, compared to over 900GB/s

on modern GPUs) when having to write the results of one kernel back to global memory

before calling the next kernel and the new kernel having to read all the necessary data

back from global memory. However, on-chip memory bandwidth on FPGAs exceeds tens

of TB/s and therefore feeding the results from one kernel to the next in a pipeline, pro-

vides significant opportunities for performance gains. This is achieved by a single task

kernel, by attempting to create longer and longer computational pipelines essentially fol-

lowing a Multiple Instruction Multiple Data (MISD) model. A sequence of kernels within

nested loops then lead to flattening the loop nests and fusing the loops (see discussion

in Section 5.2), of course within the resource limits of the FPGA for implementing the

67

computation. With SYCL, such a single-task kernel can be codified as in Listing-6.

In comparison to OpenCL, which is used by most of the previous work on Intel FP-

GAs [85, 84, 98, 97, 32, 49, 48], SYCL provides a higher level of abstraction, including

removing much of the fixed “boiler-plate” code segments required to setup the device. Ad-

ditionally, kernel arguments need not be set explicitly and data is automatically moved

from host to device through sycl::buffers. Device memory is released when these

buffers run out of scope. Essentially, the SYCL run-time makes sure that data is avail-

able on device/host before the execution of the kernel/host part of the program. The

runtime additionally analyzes data dependencies where a kernel consuming dependent

data will not be scheduled for execution the until completion of kernels that produce that

data. This introduces the limit of only one kernel being able to write to a data structure

at a time. An example of issues due to this limitation includes the challenge of moving

the time-marching/iterative loop in an explicit stencil computation to the FPGA. This

and other key designs for synthesizing the two classes of applications on Intel FPGAs

using SYCL are discussed in the next two sections.

5.2 Stencil Solvers

Chapter 3 developed a generalized workflow for synthesizing stencil applications on Xilinx

FPGAs. In this section we extend the workflow to Intel FPGAs with SYCL. The full

FPGA designs implemented with SYCL can be found in [37].

Nested Loop Unrolling

As we alluded to previously, multi-dimensional nested loops should therefore be flattened

to a 1D loop either manually or by using HLS directives in-order to avoid the clocks

required to flush data from inner loop’s circuit pipeline. With SYCL (specifically with

the Intel® oneAPI DPC++/C++ compiler, Intel’s implementation of a SYCL compiler),

we can easily achieve this by using the loop coalesce attribute specified as a pragma on

the nested loop.

Vectorisation (Cell Parallel method)

Replicating the circuitry for the elemental computation can also be done, provided (1)

there are no data dependencies between the nested loop iterations and (2) there are enough

resources available for synthesis on the FPGA (e.g. DSP units, FP cores etc). For stencil

applications there are no such dependencies. This will lead to multiple pipelines (number

limited by resources) operating in parallel, similar in operation to a vector operation

on CPUs. This technique is also known as the cell-parallel method [85, 84], where if

you visualize the stencil computation implemented with a nested loop as a loop over

a regular multi-dimensional rectangle of mesh points/cells, this method will compute

multiple “cells” in parallel. For SYCL synthesis, this requires reading a wider block

68

1 /* Data type for wider data path */

2 struct dPath16 {[[intel::fpga_register]]float data[16];};

3

4 for(int i = 0; i < total_itr; i++){

5 struct dPath16 s_1_0, s_1_1, s_1_2, vec_wr;

6 /* other declarations, index calculation, window buffer*/

7 # pragma unroll VFACTOR

8 for(int v = 0; v < VFACTOR; v++){

9 int i_ind = i *VFACTOR + v;

10 float val = (s_1_0.data[v]+s_1_2.data[v])*0.125f+ \

11 s_1_1.data[v]*0.5f;

12 bool cond = (i_ind>0 && i_ind<size0-1 && j>1 && j<size1);

13 vec_wr.data[v]= cond ? val : s_1_1.data[v];

14 }

15 /* writing results to pipe */

16 }

Listing 7: Vectored stencil computation.

of memory, we prefer to program with a struct-based data type as in Listing 7 due to

simplicity on accessing individual elements.

Window Buffers

Next, the design flow from Chapter 3 specifies the need to stream data from/to external

(DDR4) and near-chip (HBM2) memories to/from on-chip MLABs/M20Ks to feed the

computational pipeline efficiently. A perfect data reuse path can be created by (1) using a

First-In-First-Out (FIFO) buffer to fetch data from DDR4/HBM memory without inter-

ruption (allowing burst transfers) to on-chip memory, and then (2) by caching mesh points

using the multiple levels of memory, from registers to MLABs/M20Ks. This is known as

implementing a window buffer [23]. To implement such a data-reuse path with SYCL,

the external/near-chip memory read, computation and write back to external/near-chip

memory each was codified as a separate SYCL kernel with sycl::pipes, a DPC++ ex-

tension, used to move data between the kernels. These kernels operate in parallel. A basic

window buffer setup can be seen in Listing 6 lines 11–12 and lines 17–20 where we are

reading and writing values such that a certain length of data is buffered in the window.

Unrolling Iterative (time-marching) loop / Step Parallel method

Unrolling the iterative loop as in Chapter 3 will instantiate the same stencil loop’s com-

putation many times. In C++ for Vivado, it can be a function encapsulating a stencil

loop and called many times. Data flow optimisation can be applied between function calls

for the parallel operation of stencil loops. When targeting intel FPGAs using SYCL, the

HLS tool doesn’t apply data flow optimisations across multiple loops. In-order to execute

two loops in parallel on the FPGA, they should be encapsulated in separate kernels. Thus

we use a template based stencil computation function to produce unique names (see List-

ing 8, line 2). While unique kernel names are optional in SYCL 2020, unique kernel names

69

1 using namespace sycl;

2 template <int id> struct stencil_compute_id;

3 template<int idx, int DMAX, int VFACTOR>

4 void stencil_compute(queue &q, int size0, int size1){

5 q.submit([&] (handler& h){

6 h.single_task<class stencil_compute_id<idx>> ([=] (){

7 ... // declarations and setups

8 for(int i = 0; i < size0/VFACTOR*(size1+D/2); i++){

9 if(cond1) vec_r =pipeS::PipeAt<idx>::read();

10 ... // window buffers and stencil computation

11 if(cond2) pipeS::PipeAt<idx+1>::write(vec_w);

12 }

13 });});

14 }

Listing 8: Stencil compute kernel skeleton.

1 template <int N> struct itr_loop {

2 static void instantiate(queue &q, int nx, int ny){

3 itr_loop<N-1>::instantiate(q, nx, ny);

4 stencil_compute<N-1, 4096, 8>(q, nx, ny);

5 }

6 };

7 template<> struct itr_loop<1>{

8 static void instantiate(queue &q, int nx, int ny){

9 stencil_compute<0, 4096, 8>(q, nx, ny);

10 }

11 };

Listing 9: Pipelining stencil compute kernels.

are used here to create multiple instances of same kernels on the FPGA. As noted before,

to move data from one kernel to another, internally, SYCL uses pipes which are similar

to streams (e.g. hls::stream) in Vivado C++ on Xilinx FPGAs. Thus, a stencil kernel

will get input from a pipe and it will push the output to another pipe. As such, pipes

should also be unique to indicate the connection between the unique producer/consumer

kernels. An indexable pipe array can be created using a struct construct to obtain unique

pipes. We use the index from the instantiated template of the stencil compute function

for the kernels name and choose the pipes as illustrated in Listing 8.

Unrolling of the time-marching loop can be implemented in SYCL using a template

based recursive struct function and with a template specialization as in Listing 9. Here

we note that stencil compute kernel pops the input data from and pushes the result to

the relevant pipes with the adjacent index on the pipe array. Using these techniques we

can create a kernel pipeline with any given iterative loop unroll factor of N .

Batching

In Chapter 3, Batching optimisation is applied to amortize the overheads such as compute

pipeline latency and kernel call overheads. Same optimisation is required on intel FPGAs

70

1 [[intel::disable_loop_pipelining]]

2 for(int itr = 0; itr < n_iter; itr++) {

3 accessor ptrR = ((itr & 1) == 0) ? in : out;

4 accessor ptrW = ((itr & 1) == 1) ? in : out;

5 [[intel::ivdep]] [[intel::initiation_interval(1)]]

6 for(int i = 0; i < total_itr+delay; i++) {

7 struct dPath16 vecR = ptrR[i+delay];

8 if(i < total_itr) pipeM::PipeAt<idx1>::write(vecR);

9 struct dPath16 vecW;

10 if(i >= delay) vecW = pipeM::PipeAt<idx2>::read();

11 ptrW[i] = vecW;

12 }

13 }

Listing 10: Global memory read-write loop.

using sycl and no special techniques in SYCL are required to program batching. We

discuss and quantify the performance implications of batching later in section 5.2.1

Reducing kernel call overhead

While batching provides a reasonably good way to hide kernel call overheads, it requires

large batch sizes to be effective. For example for the RTM application, we benchmark

later in this Chapter, a 3D mesh of size 32 × 32 × 32 requires a batch size of 1000 (i.e.

1000 meshes) to hide kernel call latency. A general solution for this problem is to move

the time-marching loop to the FPGA(Chapter 3). When the host executes the time-

marching loop, the read and write kernels are called by swapping the memory locations

and the runtime can schedule the read kernel and write kernel at the same time as each

access different data structures. In this case, the host must wait until the completion of

the dependant kernels, providing an implicit sync point. However, if the time-marching

loop is moved to the device (i.e. FPGA), then both the read and write kernels must

be called with both the read and write memory locations together with a signal/flag

(through a pipe) to notify the read kernel that the write kernel has completed writing

to the specified memory locations. In this case, the SYCL runtime notes this as a data

dependency, leading to a deadlock. The run-time waits for the write module to complete

first before scheduling the read kernel, hanging the kernel pipeline. In contrast on Xilinx

FPGAs using C++ for Vivado in Chapter 3, such a deadlock does not occur as a more

hand-tuned complete data-flow path can be created, from read, compute, to write, within

the iterative loop in a single kernel.

A solution can be attempted to avoid a deadlock, by fusing global memory read and

write accesses into one nested loop as in Listing 10, creating a single kernel. Attribute

intel::ivdep is used to instruct the compiler that there are no memory access dependen-

cies in the inner loop allowing the compiler to fully pipeline the inner loop. Pipelining is

disabled for the outer loop due to data dependency between iterations as the inner loop’s

read and write locations are swapped in each iteration. However, this implementation

71

will also result in a deadlock or poor performance if pipe read is not delayed correctly.

To understand the issues we must look at how statements inside a kernel are scheduled

and how an iteration of a loop moves through the stages of the compute pipeline for each

clock cycle on the FPGA.

In Listing 10, Pipe read and write are blocking operations, where the loop iteration

will not continue until these operations complete. Here vecR is loaded from memory and

will be pushed to the pipe and go through the compute pipeline before returning as an

output result vecW through another pipe for read. There are a number of clock cycles

between the first push of vecR and first pop of vecW. Assume, for example, read (rd) and

write (wr) are scheduled at the 10th and 800th clock cycles (exact clock schedules for rd

and wr can be obtained from the kernel schedule viewer section of the report generated by

Intel’s DPC++ compiler). Then for loop iteration 0, rd and wr operations are scheduled

at the 10th and 800th clocks and for iteration 1 they are scheduled at 11th and 801st clocks

and so on. If the first rd is not successful until the 50th cycle, then first wr can only occur

in the 50− 10 + 800 = 840th cycle. Such blocking can be avoided by introducing a delay

as done in the conditional statement on line 10 in Listing 10.

To calculate the required delay, assume rd, wr operations are scheduled at clkrd and

clkwr and there are S number of pipeline stages between pipe idx1 and pipe idx2. In

this case, data pushed to pipe idx1 will come back to pipe idx2 only after S clock cycles.

Hence, we have to delay the pipe read by delay d >= clkrd − clkwr + S number of loop

iterations to avoid stalling of pipeline (here we assume uniform data path width across

kernels). If delay d >= clkrd− clkwr and d < clkrd− clkwr +S then there will be stalling,

but loop will continue as data will be available after a fewer clock cycles than expected,

leading to reduced throughput. In case of delay d < clkrd−clkwr, then the implementation

will deadlock, as data is expected from read pipe (idx2) before it is pushed to the pipe

idx1. A further consideration for a 2D stencil computation as in Listing 6, is that at

least a row of elements are required to start the computation and return the first output.

This adds an additional delay which we note as a buffer delay db, leading to a total delay

d >= clkwr − clkrd + S + db to avoid stalling. Again d < clkwr − clkrd + db will result in

a deadlock as pushed data will never be available at the time a read is attempted and

it stalls the whole loop iteration leading to no new data also being pushed to the write

pipe.

5.2.1 Performance Model

Section 3.2 developed models for 2D and 3D stencil applications to analytically predict the

total runtime of the time-marching loop on Xilinx FPGAs. The same terms are used here

for the SYCL design on Intel FPGAs with the addition of the schedule delays discussed in

the previous section. Schedule delays are usually small when the mesh size is reasonably

large but it is significant compared to the processing time for smaller meshes with small

72

batch sizes. The total delay for a 2D stencil application can be modeled as follows:

delay2D = (S2D + db,2D) (5.1)

S2D =
kernels∑
i=0

(clkwr,i − clkrd,i) (5.2)

db,2D =
⌈m
V

⌉
× p× D

2
(5.3)

Here the mesh size in each dimension is given by m,n and V, p,D are vectorization factor,

iterative loop unroll factor and stencil order respectively. clkwr,i, clkrd,i are the clock

cycles where pipe write and pipe read are scheduled in the ith kernel. Here we note that,

pipe width is V for all kernels. Similarly for a 3D application the delay can be modeled

as in equation (5.4) when the size of the 3rd dimension is l.

delay3D = (S3D + db,3D) (5.4)

S3D =
kernels∑
i=0

(clkwr,i − clkrd,i) (5.5)

db 3D =
⌈m
V

⌉
× n× p× D

2
(5.6)

Adding the above delays to the latency for processing B number of meshes (i.e. batch

size) from (Chapter 3) gives the total latency of a 2D and 3D application as equations

(5.7) and (5.8) respectively:

Clks2D =
niter

p
×
(⌈m

V

⌉
× n×B + delay2D

)
(5.7)

Clks3D =
niter

p
×
(⌈m

V

⌉
× n× l ×B + delay3D

)
(5.8)

We make use of the models developed here to predict the performance of the applications

benchmarked in Section 5.4.

5.3 Multi-Dimensional Tridiagonal Solvers

Chapter 4 explored workflow for Multi-Dimensional Tridiagonal solvers on Xilinx FPGAs.

Various algorithms for implementing multi-dimensional tridiagonal solvers on FPGAs

were explored there, focusing on gaining higher throughput from multiple solvers setup on

a multi-dimensional domain. Analytical models presented in Section 4.1 reveals that the

inexpensive Thomas solver(Algo 1) is the most efficient algorithm when there are multiple

systems to be solved even though it suffers from intra-loop and inter-loop dependencies.

This section explores Thomas solver algorithm on intel FPGAs together with the utility

of SYCL for their synthesis on Intel FPGAs.

The Thomas algorithm carries out a specialized form of Gaussian elimination (assum-

ing non-zero bi) providing the least computationally expensive solution, but suffers from

73

a loop carried dependency. It has a time complexity of O(N). Implementing Alg. 1 using

floating-point primitive cores on an Intel FPGA such as the PAC D5005 would incur an

arithmetic pipeline latency of 37 clock cycles for the forward path and 6 clock cycles for

the backward path. The forward path cycles are dominated by the slow floating-point

division operations (26 clks latency for division operation). This essentially gives a depen-

dency distance (lf) of about 37 cycles (taking the maximum out of the forward loop and

backward loops latencies). Then, Chapter 4 demonstrates how g = lf number of tridiag-

onal systems can be grouped and interleaved such that iteration 1 of system 1 is input to

the pipeline, followed by iteration 1 of system 2 and so on, per clock cycle, up to iteration

1 of system g. This allows us to obtain higher throughput by continuously utilizing the

computational pipeline versus solving one system at a time. Techniques such as double

buffering (i.e. ping-pong buffers), can be used to further optimize the implementation.

With SYCL, this can be codified with three kernels, one each for forward and backward

loops and one for the interleaving of the systems.

With a minimum group size of gf = 37, on the Intel PAC D5005, to solve systems with

size N , with interleaving, the Thomas solver would require four on-chip block RAMs (for

a, b, c, d) with 2× gf ×N number of words, totaling 8× gf ×N words. The 2× is due to

the need of twice as much memory to setup ping-pong buffers. Storage for c∗, d∗ for the

forward pass kernel will require two RAMs with 2× gf ×N , totaling 4× gf ×N words.

Additionally storage for u in backward pass would require a RAM with 2× gb×N words.

As such a total of 456 × N words is required for the Thomas solver implementation on

this specific FPGA. Additional RAMs with a smaller number of words are required for

storing the previous iteration values as detailed in Chapter 4.

In some applications, the coefficients a, b, c can be generated without reading from

external memory, using an initialization routine. In these cases, coefficients a, b, c need

not be interleaved, but instead could be calculated as part of the interleaving kernel.

Fusing this coefficient generation reduces total memory cost to 234×N words. A further

saving of on-chip memory can be done for Intel FPGAs by separating the calculation of

r into a separate kernel which we denote as a r generator kernel. This can be done

for Alg. 1 by creating a kernel with only lines 4 and 6. Line 5 will be a separate kernel

that gets the computed value of r through a pipe. Calculating r only requires coefficients

a, b, c which again can be internally calculated within the r generator kernel. Now, the

r generator kernel would require group size gr = 37, Thomas forward and interleave

kernels would require group size of gf = 9. The group size of Thomas backward remains

same. This optimisation reduces the total memory cost to 140 × N words. It is a 69%

reduction from the non-fused version and a 40% reduction compared to a fused variant

with no r generator in Chapter 4.

The Thomas solver can be vectorized to solve multiple systems in parallel. Again this

can be done using a wider data path using arrays inside struct as illustrated in Section

5.2’s struct dPath16. In our implementation, template parameters are used to specify

the vectorization factor, data type, group size and input and output pipe index of the pipe

74

Table 5.1: Experimental systems specifications.

FPGA Intel PAC D5005 [29]

DSP blocks 5760
MLABs / M20K 7.6MB / 29.3 MB
DDR4 64GB, 76.8GB/s, in 4 banks (1 channel/bank)
PCIe 32 GB/s
Fabrication 12nm
Launch Price $12000
Host Intel Xeon Platinum 8256 @3.8GHz

(16 CPUs, 4 cores each)
1559 GB RAM, Ubuntu 18.04.6 LTS

Design SW Intel oneAPI 2021.4.0, Intel Quartus software 19.2
board variant pac s10

GPU Nvidia Tesla V100 PCIe [53]

Global Mem. 16GB HBM2, 900GB/s
PCIe 32 GB/s
Fabrication 12 nm
Launch Price $10664
Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS
Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

array. We use a manually flattened loop with custom ping-pong buffers to save device

resources using custom integer data types for loop control and improve the latency by

continuous execution rather than a nested loop based ping-pong buffer implementation.

However, manually flattened loops require a dependency distance that can be specified

using the [[intel::ivdep(safelen)]] attribute.

5.4 Performance

This section presents the experimental results of applying our design strategy by imple-

menting two non-trivial, representative applications using SYCL on Intel FPGAs. The

first application is a stencil application implementing an explicit numerical solver and

the second application uses multi-dimensional tridiagonal solvers. The applications are

synthesized on an Intel PAC D5005. Non-Unified Shared Memory (USM) model of SYCL

is used as it provides a simpler memory access implementation compared to the alter-

native USM model [65]. Finally, the performance of the applications on the FPGA is

compared to equivalent implementations of the same applications, written in CUDA [78],

on an Nvidia V100 GPU (raw runtime values are available in Appendix section C.3).

Specification of FPGA and GPU Systems along with the specific software tools used in

the evaluation are detailed in Table 5.1.

75

0.005

0.050

0.500

5.000

10x10x10 16x16x16 22x22x22 28x28x28 34x34x34 40x40x40

R
un

tim
e

(s
ec

on
ds

)

Mesh size

GPU - 10B FPGA - 10B
GPU - 100B FPGA - 100B
FPGA - Pred

Figure 5.1: RTM forward-pass, FP32, p = 2, v = 3, 200 iterations, here FPGA-Pred

represents the performance predicted using the models.

5.4.1 Reverse Time Migration (RTM) Forward-Pass

In the section 3.4, we compared the performance of 3D RTM application(Algorithm 3) on

Xilinx U280 FPGA and Nvidia V100 GPU. This section compares the same application

implementation on Intel PAC 5005 FPGA and Nvidia V100. This 3D application using

higher order stencils on vectored elements requires access to multiple data structures.

Fused loops along with kernel-to-kernel data movement using SYCL pipes reduce the

required off-chip memory bandwidth within the available 76.8 GB/s limit. Available DSP

resources with native support for single precision operations are utilised well by unrolling

the iterative loop / replicating the compute modules.

Managing the on-chip memory to enable the execution of larger mesh sizes is a chal-

lenge for higher order stencil applications with vector mesh elements. We attempted to

maximize the vectorization factor to reduce the iterative unroll factor to save on-chip

memory while maintaining the same compute throughput. The maximum possible vec-

torization factor is 4, due to the off-chip memory bandwidth limitation. We opted to

set this to 3, as it then allowed us to have an iterative loop unroll factor of 2 as well (a

vectorization factor of 4 and an unroll factor of 2 would result in a design that hits the

upper limit of the available DSP units). In Chapter 3, RTM application is implemented

on Xilinx’s U280 FPGA but vectorization isn’t attempted. This was due to the organi-

zation of the U280 into Super Logic Regions (SLRs), with each single SLR not having

sufficient DSP resources for such an implementation.

Application runtimes are detailed in Figure 5.1. Mesh sizes from 103 to 403 are exe-

cuted with batch sizes (B) of 10 and 100. The model is also used to predict the runtime

(dotted line noted as FPGA-Pred) for each case and the prediction error is below 5%.

It shows that the FPGA performance is on par or better compared to the V100 GPU

performance. We attribute this to the availability of a larger number of DSP units with

native support for floating-point operations. Table 5.2 compares the effective bandwidth

and energy consumption on the FPGA with the GPU. Bandwidth Utilisation is provided

76

Table 5.2: RTM - 200 iterations.

Avg. Bandwidth (GB/s), Utilisation(%) Energy (J)

10B 100B 100B
Mesh FPGA GPU FPGA GPU FPGA GPU

103 154 158 (18%) 192 506 (56%) 8.5 4.8
163 230 391 (43%) 258 681 (76%) 19.4 12.9
223 286 379 (42%) 313 598 (66%) 36.2 37.7
283 331 414 (46%) 342 588 (65%) 62.9 75.2
343 367 420 (47%) 390 486 (54%) 96.2 164.6
403 397 344 (38%) 418 379 (52%) 141.3 344.7

for GPU which mainly depends on global memory. FPGA’s bandwidth utilisation is un-

derpinned by the fast on-chip memory performance (with tens of TB/s) which we do

not show here. As such, the FPGA’s effective bandwidth reaches up to 418GB/s even

though global memory bandwidth is limited to 76.8 GB/s. Utilizing fast on-chip memory

performance is a direct consequence of using window buffers and communication between

stencil compute kernels via pipes. GPU reaches bandwidths of up to 681GB/s for the

163 utilizing higher portions of its peak bandwidth. This indicates near-optimal perfor-

mance from the GPU implementation. We explored both Array of Structure (AoS) and

Structure of Arrays (SoA) data layout for the vector elements on the GPU. SoA gives

the best throughput due to better data access patterns. We speculate that the reduced

performance for larger mesh sizes is due to poor cache utilization when solving higher

order stencils.

We used the fpgainfo utility to measure power consumption on the PAC D5005. The

utility gives voltages and current of the 12V PCIe power supply as well as 12V AUX

power supply. GPU power consumption is obtained through nvidia-smi. For RTM, the

power consumption of the Intel PAC D5005 is between 84-94W while the V100 GPU’s

power consumption is between 47–200W. Observed power-draw indicate that the FPGA

is just over 59% less energy consuming than the GPU for the largest mesh with the larger

batch sizes.

5.4.2 ADI 2D Heat Diffusion Application

Algorithm 6: 2D ADI Heat Diffusion Application

1: for i = 0, i < niter, i++ do
2: Calculate RHS : d = f7pt(u), a = −1

2 γ, b = γ, c = −1
2 γ

3: Tridslv(x-dim), update d
4: Tridslv(y-dim), update d
5: u = u+ d
6: end for

As in Chapter 3, Alternating Direction Implicit (ADI) time discretization requires

77

multiple tridiagonal systems to be solved in multiple dimensions. This section compares

implementation of the 2D heat diffusion equation using ADI on FPGA and GPU. The

High-Level algorithm is detailed in Alg. 6. Performance on FPGAs could be maximized

by pipelining all four steps in Alg. 6 due limitations in global memory bandwidth. Inter-

mediate results from Tridslv(x-dim) will need to be transposed using on-chip memory to

achieve this. Once all the kernels are pipelined, the iterative loop can also be unrolled.

The implementation in Chapter 4, on the Xilinx U280 for the same application, used an

unroll factor of 3 and then scaled the design to multiple compute units (CUs) based on

available HBM ports. Scaling to multiple CUs, instead of using a higher unroll factor

results in lower latency for small batch sizes. Since HBM memory is not available on the

Intel D5005, we preferred to unroll the iterative loop instead of scaling to CUs in the

present work. The performance model for this implementation including the scheduling

latency (due to the existence of a stencil loop) can be noted as in equation (5.9):

Ladi,2D = (niter/fU)× Lrhs+xy (5.9)

Lrhs+xy =fU × [(2x/V) + (2vx/V + 3gx) + (2xy/V + 3gy)] +

B × (xy/V) +
kernels∑
i=0

(clkwr,i − clkrd,i) (5.10)

Here, x, y are mesh sizes, B is the batch size, V is the vectorization factor, g is the group

size of systems, fU is the unroll factor of the iterative loop. This is similar to the models

created for the 2D ADI application in Chapter 4.

Figure 5.2 gives runtime performance of 2D ADI Heat Diffusion application in FP32

on the Intel PAC D5005 and compares it to performance on the Nvidia V100 GPU. Even

though the FPGA implementation operates at 231MHz, it outperforms the GPU. We

attribute this to the unrolling of the iterative loop by a factor of 8 and the fusion of

coefficient in the Thomas solver. This essentially allows data to be kept on faster on-chip

memory without writing to global (external) memory for the whole computation. The

same type of fusion is not supported by the GPU implementation as the GPU tridiagonal

solver [78] call is a function call to an external library. Additionally, it does not support

fusion of coefficient generation internally.

We can estimate the runtime of the GPU if coefficients were generated internally,

assuming that the GPU is not compute limited and the same sustained bandwidth is

maintained for each of the application cases. Estimated Run times for each kernel call

can be computed using equation (5.11). Here, topt, t are run-times for the GPU implemen-

tations with and without internally generated coefficients respectively. When generating

coefficients internally, data movement does not include data structures coefficient meshes

a, b, c. Then the run-time estimate for the full ADI application is can be obtained from

equation (5.12), where runtimes are adjusted for the RHS calculation, Tridslv(x-dim)

and Tridslv(y-dim). Here, we note that the accumulation step in Alg. 6 is fused into

78

0.500

5.000

50.000

500.000

32x32 40x40 48x48 56x56 64x64

R
un

tim
e

(s
ec

on
ds

)

Mesh size

GPU - 800B FPGA - 800B
GPU - 4000B FPGA - 4000B
FPGA - Pred GPU_opt_est - 800B
GPU_opt_est - 4000B

Figure 5.2: ADI 2D, FP32, fU = 8, V = 8, 16k iterations, here FPGA-Pred represents the
performance predicted using the models. GPU opt est represents the predicted perfor-
mance if tridiagonal matrix coefficients are generated internally.

Tridslv(y-dim) of the GPU implementation.

topt = t× data movementopt/data movement (5.11)

t adiopt =
1

4
× tpreproc +

2

5
× txsolve +

4

7
× tysolve (5.12)

Even when the coefficients are internally generated on the GPU, the FPGA appears to

perform marginally better, as can be seen by the dotted red lines in Figure 5.2. The

model predicted runtimes for FPGA is closely matching with the actual runtimes with a

prediction error of less than 2%.

Table 5.3 details the effective bandwidth of the FPGA and GPUs with bandwidth

utilisation for GPU and Energy consumption for both devices. The GPU bandwidth is

noted for x and y solves separately given that these are separate calls to the tridiagonal

solver library. The FPGA bandwidth reaches up to 463GB/s. This, as noted above, is due

to on-chip memory based data movement without reading/writing from lower bandwidth

global memory. In GPU, Tridslv(y-dim) reaches a good bandwidth of 555 GB/s but

Tridslv(x-dim) performs poorly, only reaching up to 205 GB/s. Such lower bandwidths

are also reported by [42] due to the 8 × 8 transpose operations using registers/shared

memory on GPUs. FPGA power consumption varies between 95− 101W while the GPU

power consumption varies between 105 − 151W. for the largest mesh with running the

largest batch size, the FPGA saves over 76% energy used compared to the GPU. The

same application on the U280 used HBM based delay buffers [15] to save on-chip memory

and managed to run mesh sizes of up to 128× 128. On the Intel PAC D5005, larger delay

buffers are also implemented using on-chip memory and this limits the largest mesh size

to 64× 64.

79

Table 5.3: ADI Heat Diffusion Application. F - FPGA and G - GPU. Gx and Gy are
achieved bandwidth of Tridslv(x-dim) and Tridslv(y-dim) respectively.

Bandwidth (GB/s), Utilization (%) Energy (Kj)

800B 4000B 4000B
Mesh F Gx Gy F Gx Gy F G

322 386 131 (15%) 288 (32%) 453 185 (21%) 524 (58%) 0.453 1.825
402 403 144 (16%) 330 (37%) 457 197 (22%) 478 (53%) 0.712 3.159
482 414 163 (18%) 389 (43%) 460 202 (22%) 517 (57%) 1.032 4.363
562 422 169 (19%) 412 (46%) 462 202 (22%) 498 (55%) 1.411 6.220
642 428 182 (20%) 477 (53%) 463 205 (23%) 555 (62%) 1.820 7.580

5.5 Concluding Remarks

In this Chapter, we explored the design and development of structured-mesh based solvers

using SYCL for Intel FPGA hardware. Two classes of applications were targeted (1)

stencil applications based on explicit iterative methods and (2) multi-dimensional tridi-

agonal solvers based on implicit methods. A generalized workflow, extending the work

in Chapter 3-4, for synthesizing optimized solvers of these applications was developed

together with an analytic model to predict their performance in support of design space

explorations. The extensions targeted key optimizations required to obtain the best per-

formance using SYCL programming techniques. The main methods for improving per-

formance with SYCL included (1) reducing SYCL kernel calling overhead by moving the

time-marching outer loop onto the FPGA device and (2) reducing on-chip memory us-

age for the Thomas solver for implementing multi-dimensional tridiagonal solvers. The

designs and workflow were applied to two non-trivial applications synthesizing them on

an Intel PAC D5005 FPGA. Performance results were compared to the same applications

implemented on an Nvidia V100 GPU as a baseline. Observed results indicate the FPGA

provided better or matching performance compared to the V100 GPU in terms of run-

time. We also see 59%–76% less power consumption when executing these applications

at their largest mesh and batch sizes. The performance models provided high accuracy

with less than 5% model prediction errors for all cases. Future work will extend these

techniques to other Intel FPGAs with HBM memory and also consider applications with

larger meshes that were currently limited by the PAC D5005’s hardware resources. We

will also compare the performance of our multi-dimensional tridiagonal solver design to

Intel’s tridiagonal solver library.

The significant effort in applying non-trivial transformation to optimize the SYCL

implementations demonstrates the programming overheads still dominating development

on FPGAs. This is still true even with the hardware vendors providing mature HLS tools

for development. While we have not quantified the productivity overheads in this thesis, it

is clear that such hand-tuned, hardware specific programming is not tractable particularly

for developing and maintaining codes for execution on multiple hardware platforms such

80

as GPUs and FPGAs, even with language extensions such as SYCL.

81

Chapter 6

Towards Automating FPGA

Designs

High-level workflow to target structured mesh based explicit and implicit numerical ap-

plications on FPGA devices have been detailed in previous Chapters. Profitability of

FPGAs in terms of time to solution (latency), throughput and energy consumption has

been demonstrated. These benefits come at the cost of longer development time and ex-

pertise in hardware architecture design/dataflow programming model to implement these

applications on FPGAs. Additionally, finding optimal design parameters requires tedious

analysis considering FPGA’s specification, kernel’s stencil computation, as well as overall

data movement. Several FPGA specific transformations explained in previous Chapters,

such as full data reuse, batching and tiling are not trivial to implement with an FPGA

target language such as C/C++ or SYCL. The unified workflow presented in this thesis

eliminates the time to re-evaluate these optimisations by domain scientists. However,

when targeting FPGAs from multiple vendors, different PRAGMAS or Attributes needs

to be applied. Additionally, a novice FPGA developer (e.g. domain scientist) would

have to spend a significant amount of time and effort learning these optimisations and

implementing the applications using FPGA target languages. Learning specific FPGA

transformations as well as vendor-specific configurations and instructions would have a

steep learning curve. An automatic translator/code-generator could significantly reduce

the time to implement this workflow, ideally eliminating manual tuning.

Previous works have attempted to automate the design and development of applica-

tions for parallel computing architectures. A recent development more widely used for

performance portability on traditional architectures such as multi-core/many-core pro-

cessors is a separation of concerns approach – separating problem specification from its

implementations [56, 45, 30, 50, 61, 94, 26]. A domain scientist specifies the application

using a DSL, and automatic techniques such as code-generation/translation are used to

obtain highly optimized target implementations. A user can explore the performance of

the application on different accelerator platforms using code generation and can choose

the best accelerator for their requirement. Further, the separation of concerns approach

82

allows the same DSL framework to be used on future devices, just the translator needs

to be updated in compliance with specifications and required optimization of future ac-

celerator devices.

Several previous works have attempted to automatically generate FPGA target im-

plementations for structured mesh based applications using domain specific frameworks.

SODA [10] provides a DSL by which multiple stencil loops can be chained together and

be implemented on an FPGA. It also provides the variables to set the design parameters

such as the vectorization factor and the iterative loop unroll factor. SODA is based on a

declarative programming model and it is not clear that complex stencil applications can

be easily ported to SODA DSL. Moreover, FPGA implementations with SODA require a

specific data layout with padding and the host has to reorganise the mesh-points for each

iteration for the FPGA kernel to obtain correct data points.

HeteroCL [40] is another domain specific framework for stencil solvers and other pop-

ular domains of applications (Image processing, Neural networks) with a python based

DSL. HeteroCL attempts to decouple the algorithm from the hardware customisation such

as the ones arising in computations (e.g coalescing the loops, loop fusion), data type and

memory architecture. In this way, it facilitates design space exploration while keeping

the application specification unchanged. In contrast to SODA, HetroCL supports both

declarative and imperative programming and supports a wider domain of applications.

Unlike the DSL for classical accelerators, HeteroCL supports bit-accurate data types to

obtain better Quality of Results (QoR) on FPGAs. HertroCL offers a general backend

and utilizes two specialized backends, SODA [10] for stencil computations and PolySA [12]

for systolic array-based computations. Users can choose the code generation through the

specialized backends using a macro or else FPGA target implementation will be generated

using the general backend.

The more recent, StencilFlow [15] targets graph like data dependent stencil kernels on

multi FPGAs. It extends the Stateful DataFlow multiGraph (SDFG) intermediate rep-

resentation of DaCe [6] framework and generates HLS target code using the DaCe frame-

work. Like HeteroCL, DaCe targets to separate program definition from optimisation.

The stencil application written using StencilFlow will be lowered to SDFG intermediate

representation and performance optimisation can be applied to it. In this way, DaCe

targets to separate program specification from performance optimisation. Optimisations

include fusing loops, expanding stencil computation nodes for data reuse and adding delay

buffers nodes to avoid deadlock in circular branches.

In spite of the above works, users face several obstacles when attempting to employ FP-

GAs. Firstly, optimizations such as batching, tiling and integration of tridiagonal solvers,

particularly for real-world, non-trivial applications are not immediately supported by the

current frameworks. Secondly, porting complex applications using declarative program-

ming would require significant time and effort. Instead, users would prefer more familiar

imperative languages (C++/Python) based embedded DSLs. Finally, a domain scientist

may prefer a framework which supports automatic code generation for many accelerator

83

platforms including FPGAs for a more straightforward exploration of performance on

multiple platforms using the same DSL.

To this end, in this final Chapter, we use the OPS (Oxford Parallel Library for

Structured-mesh solvers) DSL for structured mesh-based numerical applications for propos-

ing a path to automation. OPS has the following features that support our development:

• The DSL separates computation, communication, and data structures, enabling

effective optimization for each of these aspects independently on FPGAs.

• By providing APIs/constructs for stencil computation and multi-dimensional tridi-

agonal system solving, along with explicit annotations on inputs, outputs, stencil

specifications, data access modes, and mesh dimensions, it limits implementation

to a small set of APIs/constructs while supporting a broader range of structured

mesh-based applications.

• OPS already supports a variety of accelerator platforms, including GPUs and CPUs,

which will minimize the amount of time users spend learning about a new frame-

work to target FPGAs. Additionally, it allows for the exploration of benefits and

comparison of implementations using the same DSL-based application.

• OPS code generation is extensible, supporting the integration of new target archi-

tectures through a simple and well-organized translator stack.

To bridge the research gap in achieving the near-optimal FPGA implementation through

high-level application specification, we employ OPS in this Chapter and establish trans-

formation procedures to execute OPS applications on FPGAs. Although transformation

techniques detailed in this Chapter targets C++ for Vivado, the techniques can be ap-

plied in a similar manner to obtain SYCL implementations. We choose C++ for Vivado

as it supports programming Xilinx FPGAs which come with HBM memory, enabling us

to explore 3D implicit applications on FPGAs. These steps are designed such that they

will enable the creation of an automatic translator using modern compiler frameworks.

The implementation of the compiler stack is not attempted in this work but

is left as future work.

The organization of this Chapter is as follows: The first section provides an overview

of OPS, while the subsequent sections outline the transformation methodology for the

baseline design described in Chapter 3, followed by the application of optimizations. The

later sections present the steps required to implement full OPS applications on FPGAs

and detail the procedure for identifying the optimal design parameters automatically.

6.1 OPS Framework for Structured Mesh Applications

OPS is a C/C++ based embedded DSL to target the domain of structured mesh-based

numerical applications. Applications in this domain are characterised by looping over

84

1 int halo_neg[] = {-1,-1}; //negative block halo

2 int halo_pos[] = {1,1}; //positive block halo

3 int size[] = {10,20};

4 int base[] = {0,0};

5 double* d1 = malloc(...)

6 double* d2 = malloc(...)

7 ops_block A = ops_decl_block(2, "A");

8

9 ops_dat dat1 = ops_decl_dat(A,1, size, base, \

10 halo_pos, halo_neg, d1, "double", "dat1");

11

12 ops_dat dat2 = ops_decl_dat(A,1, size, base, \

13 halo_pos, halo_neg, d1, "double", "dat2");

Listing 11: OPS block and datasets.

rectangular meshes where connectivity is implicit. OPS utilizes the characteristics of this

application class and decomposes the applications into abstract parts such as mesh data,

stencils defining how data is accessed and computation over the accessed data. While

OPS supports multi-blocks to facilitate computation over complex shapes, the focus of

this thesis is limited to single blocks.

Implementation of the applications is supported through high-level domain-specific

APIs, which will appear as a classical software library for the developers. OPS then

uses a source-to-source translator to parse the APIs and generate parallel implementa-

tions. This generated implementation is linked against specific parallel library backend

implementations for execution on accelerator devices.

6.1.1 OPS API

A typical OPS application is developed as a sequential program. This makes numerical

validation and debugging more straightforward, while high-level specifications make the

resulting implementation easy to comprehend and maintain. As OPS is designed for

multi-block problems, it requires datasets to be assigned to certain blocks. An OPS block

is defined with dimensionality and a name string. Multiple datasets can be attached to

the OPS block, as shown in Listing 11. The function ops decl dat(...) attaches the

datasets (d1, d2) to the block (A), and takes additional parameters such as the number

of values for each point (1 in this case), the dimensions (size) of the mesh, the starting

point of actual data (base), the sizes of the block halos (halo neg, halo pos), the data

type of values on each mesh point (double), and name strings ("dat1", "dat2") for the

data.

Another way of defining an ops dat is through ops decl dat hdf5, which reads the

data directly from an HDF5 file. A null pointer can also be passed to ops decl dat(...)

if initialized data is not required. OPS takes ownership of data fields declared through

ops decl dat(...), and can reorganize the data structure to optimize acceleration on

the target platform.

85

The key assumption that makes the separation and re-organization of data possible

is that the result of the computation may not depend on the order in which primitive

computations are carried out on mesh points. This gives OPS the freedom to execute

the computation using various optimization and parallelization techniques. However,

there are a few exceptional cases, specifically when solving implicit applications using

tridiagonal system solvers, which are order-dependent algorithms.

A typical structured mesh-based stencil application can be described as an operation

over the mesh points on the data structures in the given block. This corresponds to a

reading set of mesh points specified by stencils, doing computations on the read data, and

writing back results through a stencil. Such a simple application is shown in Listing 12.

1 int Range[4] = {1, 9, 1, 19};

2

3 for(int i = Range[2]; i < Range[3]; i++){

4 for(int j = Range[0]; j < Range[1]; j++){

5 d2[i][j] = d1[i][j] + d1[i][j+1] + d1[i+1][j] + d1[i][j-1] + \

6 d1[i-1][j];

7 }

8 }

Listing 12: A Stencil computation loop.

The loop in Listing 12 can be mapped to the OPS application as in Listing 13 with the

separation of data structures and computation which is specified through a kernel function.

The function calc is called the user kernel in OPS terminology, as it is specified by the

domain scientist to apply over data points. Here, we can clearly see that the computation

is specified without any indication of how it will be paralleized on a target architecture.

Additionally, ops par loop specifies the block the computation is to be attached to, its

dimension, ranges over each dimension, and the ops dats involved in the computation.

OPS ACC0 and OPS ACC1 are access macros that convert to corresponding indexes to access

a contiguous memory block allocated by OPS internally for each ops dat. Although the

specified stencils are not directly used in such index calculations, they are useful for

error-checking memory access. Moreover, OPS WRITE and OPS READ convey information

on access modes on each ops dat, which could be used to efficiently implement memory

access with different optimizations. Similar to ops arg dat, ops arg gbl() can be used

when there is a need for a global reduction on a certain variable. Further details of the

OPS Application Programming Interfaces (APIs) can be found in the OPS manual [57].

6.1.2 Application Development Using OPS

Input data and corresponding computation are specified through the OPS API as in

Listing 13. OPS have the flexibility to rearrange the data set and to do the computation

in the desired order so as to get the best performance on the target architecture. OPS

employs two key techniques to implement the target application optimally on accelerator

devices. The first one is to factor out the common patterns to the backend library, which

86

1 /* Stencil declarations */

2 int st0[] = {0,0};

3 ops_stencil S0 = ops_decl_stencil(2,1,st0,"00");

4 int st1[] = {0,0, 0,1, 1,0,-1,0, 0,-1};

5 ops_stencil S1 = ops_decl_stencil(2,5,st1,"5P");

6

7 /* User kernel */

8 void calc(double *a, const double *b) {

9 b[OPS_ACC1(0,0)] = a[OPS_ACC0(0,0)] + a[OPS_ACC0(0,1)]

10 + a[OPS_ACC0(1,0)] + a[OPS_ACC0(0,-1)] + a[OPS_ACC0(-1,0)];

11 }

12

13 /* OPS parallel loop */

14 int range[4] = {1,9,1,19};

15 ops_par_loop(calc, A, 2, range,

16 ops_arg_dat(dat2,S0,"double",OPS_WRITE),

17 ops_arg_dat(dat1,S1,"double",OPS_READ));

Listing 13: Example OPS application.

includes data movements between device and host, solving tridiagonal systems in implicit

applications and parallel file IO operations.

The second technique is code generation, through the source-to-source translation tech-

nique. it is specifically used to produce the parallel implementation of ops par loop as

implementation is specific to the target architecture and application case. A CPU imple-

mentation requires multi-threaded/vectorized implementation and GPU implementation

is thread-based and generated code will also include the calls to data movement between

the device and host.

Figure 6.1 illustrates the workflow for developing the structured mesh-based applica-

tion using OPS. As mentioned before, domain scientists develop structured mesh-based

applications using OPS APIs. The numerical accuracy of the implementation can be

tested on a single core CPU by directly compiling and executing it. OPS provides the

header file ops seq.h for this purpose. If it is a correct numerical solution, then the do-

main scientist can move to target parallel architectures using code translation. During the

code translation, the OPS translator parses the APIs and generates parallel implemen-

tation along with library calls to backend implementations. The generated code can be

compiled using conventional compilers such as nvcc, icpc, gcc etc and linked against

backend libraries as in Figure 6.1.

87

Structured mesh Problem

OPS header file
(ops_seq.h)

OPS Application
(C/C++/FORTRAN API)

Conventional
Compiler

(icc, g++,ifort,
gfortran)

Run on a
Single CPU

OPS Source to Source Translator

Modified OPS Application Platform Specific Optimized
Application files

Platform Specific Binary

Hardware

Mesh

Conventional Compiler + Compiler Flags
(e.g icc, nvcc, pgcc, ifort, gfortran, v++)

CUDA MPI+CUDA

OpenMP MPI+OpenMP

MPI OpenACC

C++ for Vivado SYCL

OPS Platform Specific Optimized Backend Libraries

If Correct Numerical solution

link

+FPGA Target

+FPGA Backend Library

Figure 6.1: The workflow for developing an application with OPS (based on [51]) and
how the proposed new FPGA back-end will fit within the framework.

6.2 OPS to FPGA Target transformation

Code generation for FPGA differs significantly from traditional devices (CPUs and GPUs)

due to the wider configuration and design space of FPGA kernels and the constraints as-

sociated with the fixed amount of resources. As discussed in previous Chapters, unlike

kernels for CPUs and GPUs, FPGA kernels implement a tailored architecture (a circuit)

for the algorithm, essentially allowing explicit control over internal data movement. How-

ever, implementing such architecture requires a certain amount of FPGA resources and

must fit within the target FPGA. Loading a kernel into the dynamic region of FPGA takes

a few seconds, so it is best to load a set of kernels and use them repeatedly. Unlike CPUs

and FPGAs, the performance of kernels on FPGA depends on internal data movement, as

off-chip memory bandwidth is limited, as shown in Figure 6.2. Therefore, the performance

of a kernel depends on the kernels that feed data to it and take data from it. Therefore,

optimization should be applied to a set of kernels as a whole, rather than individually, as

is the case with classical accelerators. In order to do collective optimizations on a set of

Kernel3

Kernel2Kernel1

Kernel4

Global Memory

FPGA
Kernel1 Kernel2 Kernel3 Kernel4

Global Memory

GPU

off chip data movement

Internal data movement

being executed

not being executed

Figure 6.2: kernel execution overview, classical accelerators Vs FPGA

88

kernels, parallel execution of OPS kernels can be modelled as a dataflow graph based on

data dependencies. In such dataflow graphs, nodes process the data and edges represent

the data movement. Since the parts of the program accelerated in an OPS application

are only specified through ops par loop for stencil kernels and ops tridMultiDimBatch

for solving tridiagonal systems, these two OPS API calls will be mapped to nodes in the

generated dataflow graph. The following data structure can be used to represent a node

to facilitate the automatic dataflow graph generation.

struct Node{int OrderId, List* Inputs, List* Outputs,

int accDim, List* Indeps, List* Outdeps};

ops par loop and ops tridMultiDimBatch APIs carries information on input and

output ops dats. An OrderId value is set for the node based on the order API calls are

made. We use the OrderId as the primary key for identifying the node. accDim is data

access dimension, it is always zero for ops par loop and it corresponds to the dimension

along which systems are solved for ops tridMultiDimBatch. Indeps and Outdeps will

be used for matching nodes that provide data and consume data for corresponding inputs

and outputs for a particular node. Steps to identifying the list of Indeps can be detailed

as follows:

1. Take a node (assume node x) from the List of nodes. Loop through each input

(assume dat x) of that node and find a dependency node that satisfies the following

condition

• It’s OrderId is closest but lower to OrderId of node x

• It writes to dat x

• if a node satisfies the above two conditions, add the node to deps list of node x.

if no node satisfies the above condition, the corresponding dependency for

dat x will be NULL.

2. Repeat step 1 until all nodes are looped through

Algorithm 7: 2D ADI Heat Diffusion Application

1: for i = 0, i < niter, i++ do
2: Calculate RHS : d = f7pt(u), a = −1

2 γ, b = γ, c = −1
2 γ

3: Tridslv(x-dim), update d
4: Tridslv(y-dim), update d
5: u = u+ d
6: end for

In a similar way Outdeps for a node can be identified. Indeps and Outdeps provide the

connectivity/dependency between the nodes and a dataflow graph can be generated. As

FPGA kernels move the data through internal streams/FIFOs, additional nodes/kernels

might be required for the proper execution of the dataflow graph:

89

• If a node’s input dependency is NULL, then it should get data from global memory.

As we separate computation and communication, a new node will be added to read

from global memory. Similarly, if a node’s output dependency is NULL, a global

memory write node will be added. These source and sink nodes in the dataflow

graph are detailed in section 6.2.5

• If the access dimension (accDim) of the producer node and consumer node are

different, then an explicit data reorganization is required through a node between

them. We restrict the supported accDim to {0,1,2}. If the absolute difference

between accDim of two nodes is zero, then no additional node between them is

required. if the difference is one, a plane transpose is required and it is achieved

through a templated library function (refer section 6.2.7). if the difference is two,

it would require buffering the entire mesh and is not feasible to do using on chip

memory of FPGAs.

Moreover, a circular datapath (when there are at least two paths from one node to another)

could be found in such dataflow graphs as detailed in section 6.2.6. A stall/deadlock-free

execution of such a dataflow graph would require buffers to be inserted in one branch

of the circular datapath. In this work, we call these nodes as delay buffers. Including

the delay buffers, there are five key types of node when mapping a OPS application to

dataflow graph based computation:

1. ops par loop nodes

2. global memory access nodes

3. delay buffer nodes

4. ops tridMultiDimBatch nodes

5. data re-organiser nodes

Once the dataflow graph is generated, corresponding nodes need to be implemented using

FPGA target language. This thesis proposes the use of implementation skeletons (or tem-

plates as used in [4]) for generating the FPGA implementation of nodes in the dataflow

graph. The skeletons encode the common program structure, or circuit structure in this

case, for each node, which can then be reused for instantiating the concrete implementa-

tions of specific nodes in a given program. The use of the skeletons in the overall workflow

is illustrated in Figure 6.3. In the following sections, the implementation skeletons for the

above different types of nodes is illustrated, starting from ops par loop nodes. Once each

of them are implemented, can be made to execute in parallel by applying the dataflow

optimization.

90

ops application

• N1:ops_par_loop1
• N2:tridslv(x-dim)
• N3:tridslv(y-dim)
• N4: ops_par_loop2

• T1:ROW2COL
• T2:COL2ROW
• B1:BUFFER1
• R1: READ U1
• W1:WRITE U2

Skeletons node parameters

Skeleton Re-write

node implementation

• Replicate dataflow
graph to unroll

• Replace edges with
streams

• Call the nodes and
apply data flow

Parser
Identified Kernel nodes
1. ops_par_loops
2. trid solver calls

Add additional nodes

node implementations

Map to dataflow graph

Top implementations

ADI 2D Heat
application
(Algorithm: 7)

N1

N2 N3

N4

R1 N1

N2 T1 N3

B1 T2

N4W1

Figure 6.3: Skeleton based source to source translation for FPGA

91

Table 6.1: Stencil kernel parameters.

Parameter Symbol

Number of Dimension N DIM

mesh Dimension Dims[N DIM]

stencil update start SRange[N DIM]

stencil update end ERange[N DIM]

Stencil Order S O[N DIM]

Number of stencil Points N SPTS

Stencil Points Spts[N SPTS][N DIM]

Data Type Dtype

6.2.1 ops par loop nodes: Skeleton For Baseline Design

To transform an ops par loop into an FPGA target code, the kernel parameters must

first be identified from the loop. The essential parameters necessary for implementing

a stencil loop specified through ops par loop on FPGA are outlined in Table 6.1. The

number of dimensions of the mesh, N DIM can be obtained from the 3rd argument (it is

two in Listing 13) of ops par loops. Dimension of each mesh including boundaries on

both sides can be obtained from the ops decl dat declaration of mesh. The ith dimension

will be size[i] + halo pos[i] + halo neg[i] for the dat1 in Listing 11. The range of mesh

points updated by the stencil kernel is provided through range parameter of ops par loop

API. SRange[i] and ERange[i] in Table 6.1 corresponds 4th parameter of ops par loop,

range[2*i] and range[2*i+1] respectively in Listing 13. The data type of the mesh

points also obtained from 8th argument of ops decl dat. The Stencil specification of

each mesh can be obtained from ops arg object which is passed to ops par loop as a

parameter. The corresponding stencil declaration will detail the stencil dimension, the

number of stencil points and the array name corresponding to each stencil point. Stencil

points can also be implicitly obtained from memory access of the kernel function specified

in ops par loop.

A baseline design (as discussed in Section 3.1) can be developed once the parameters

in Table 6.1 is identified. In order to automate the implementation of the design, a

skeleton (Listing 14) has been devised based on commonly employed blocks in baseline

FPGA implementations. Firstly, the parameters of the function in this skeleton will

correspond to hardware module’s interface during high level synthesis. As such, skeleton

move the data through the hls stream<Dtype> stream, which is equivalent moving data

through FIFOs in the baseline design. Hence, each ops arg dat in the ops par loop

API will have corresponding hls stream<Dtype> type function parameter in the high

level implementation. Design parameters such as mesh dimensions are passed through

a struct type function argument in the skeleton, which would be mapped to AXI lite

(a lightweight memory-mapped protocol to configure registers and memory in hardware)

interface.

92

1 void stencil_kernel(hls::stream<Dtype> &dat0, ..., struct meshParams mp){

2 // B1: local variables to hold stencil points

3 // B2: local array declaration for window buffers

4 // B3: pragma to select window buffer memory type

5 // B4: loop invariant declarations, computations

6

7 B5: for(ap_uint<D_SIZE> itr = 0; itr < loopBound; itr++){

8 # pragma HLS pipeline II=1

9 // B6: mesh point indices calculations

10 // B7: for each dat read

11 // B7.1: window buffer pointers calculations

12 // B7.2: window buffer implementation

13 // B7.3: conditional FIFO pop

14 // B8: stencil kernel computation

15

16 // B9: for each dat written conditional FIFO push

17 }

18

19 }

Listing 14: Skeleton for the baseline design.

Once the interface of the baseline design is set, stencil computation needs to be

carried out using the mesh data that comes through hls stream<Dtype>. It requires

caching/buffering of required mesh-points specified by the stencil to update the mesh-

points in the next time step. In order to loop through all the mesh-points, a for loop

(block B5 in skeleton) is used. Baseline design use window buffers as full data reuse

caches, which are implemented as cyclic buffers using on chip memory. A cyclic buffer

can be implemented by reading and writing an array at a specific distance using HLS.

Hence, it would require a declaration of arrays (block B2) and blocks (B7.1-7.2) for

access pointer computation and read/write access. Skeleton utilizes the block B3 for

choosing the right memory block in the device for a window buffer. The data read from

the window buffers will be placed in registers which hold the values specified by stencil.

Hence a declaration of variables (block B1) for stencil registers is required. The stencil

computation arithmetic block (B8) access the stencil variables and do the computation.

Stencil computation enforces boundary conditions which requires indices of the mesh-

point which is computed in block B6. The values in the stencil registers would be invalid

for a certain number of iterations until window buffers are fully filled. This would re-

quire conditional stream write (block B9) block to avoid invalid outputs. Similarly, input

stream read should not be attempted (block B7.3) in the last set of iterations which

account for flushing the data from window buffers. Computation of the conditions, loop

bound is carried out in block B4.

Following subsections illustrates how to derive the blocks B1-B9 in detail:

93

B1 - Local Variables to hold Stencil Points

In the baseline design, registers are employed to store the values indicated by stencils

for immediate access by a stencil computation block (see Figure 3.3). The variables in

C++ can be mapped to registers. To simplify the mapping between memory access (

a[OPS ACC0(0,0)] in Listing 13) in the stencil kernel specified in ops par loop, stencil

coordinates are used when naming the registers as follows:

u(n1, n2, ...) = s datID Xn1 Xn2....

where datID is the ID of corresponding ops dat and X is n, p based on the positivity or

negativity of stencil coordinate corresponding values in {n1, n2, ..}. X will be nill if the

corresponding coordinate is zero. As such, registers for the five-point stencil in Listing 13

can be declared as follows:

Dtype s_dat0_0_0, s_dat0_n1_0, s_dat0_p1_0, s_dat0_0_n1, s_dat0_0_p1;

B2 - Local Array Declaration for Window Buffers

In the Baseline design (refer to section 3.1), window buffers are utilized as a customized

cache to achieve full data reuse. Implementing a window buffer often requires multiple

on-chip memories. In HLS, static arrays serve as the corresponding element for on-chip

memory. The size of the window buffer corresponds to the number of elements between

two stencil points, which can be calculated from the mesh dimension and stencil points,

as detailed in section 3.1.1. As the baseline design supports dynamically sized meshes,

the window buffer size should be set such that it can support the largest mesh size in the

given set. Consequently, the window buffer would require multiple memory declarations.

The naming convention for window buffers is window datID S1 A S2, here S1 and S2 are

corresponding stencil points. Corresponding window buffer declarations for stencil in

Listing 13 are:

Dtype window_dat0_0_p1_A_p1_0[D_MAX], window_dat0_n1_0_A_0_n1[D_MAX];

B3 - PRAGMA to Select Window Buffer Memory Type

The required memory size for a window buffer is dependent on the mesh dimension and

stencil point pattern. Consequently, the memory requirement could be larger when buffer-

ing planes in 3D applications and relatively smaller when buffering lines. In FPGAs , on-

chip memory blocks come in two variations: smaller blocks (BRAM, MLAB) and larger

blocks (URAM, M20K). When there is a large memory requirement, it is efficient to use a

larger block memory than multiple smaller blocks as it would improve FPGA placement

and routing. A threshold can be set to select between these memory blocks. #pragma as

in Listing 15 can be applied to select the local memory type in C++ for Vivado. The

latency specifies the number of clock cycles for local memory reads and writes, essentially

pipeline stages that improve the clock frequency.

94

pragma HLS RESOURCE variable=window_dat0_0_p1_A_p1_0 \

core=XPM_MEMORY uram latency=2

pragma HLS RESOURCE variable=window_dat0_n1_0_A_0_n1 \

core=XPM_MEMORY uram latency=2

Listing 15: #pragma to select on chip memory block.

B4 - Loop Invariant Declarations, Computations

As the main loop (B5 in Listing 14) to iterate over the mesh points is fully pipelined,

the loop invariant could be calculated sequentially outside the loop to reduce resource

consumption. Such loop invariants are a number of FIFO POPs, FIFO PUSH DELAY and

the LOOP BOUND. The following expressions can be used to compute these invariants and

we prefer the calculation of these expressions to be implemented on FPGA to support

mesh sizes dynamically. Expression for prime itr is presented later in this Chapter in

Equation 6.4.

FIFO POPs =
N DIM∏

i=0

Dims[i]

LOOP BOUND =
N DIM∏

i=0

Dims[i] + prime itr

FIFO PUSH DELAY = prime itr

We note here, Vivado-HLS supports custom-width integers. Smaller width integer opera-

tion requires less FPGA area and will help to achieve better frequency. As such required

minimum bit-width can be calculated as follows.

• Two’s compliment addition’s output requires one-bit width more place holder than

the maximum bit width of operands

• Two’s compliment multiplication’s output requires the sum of the bit width of

operands for the output placeholder

As such, loop invariants can be declared and defined as follows.

ap_uint<SIZE_FIFO_POPs> fifoPops = FIFO_POPs ;

ap_uint<SIZE_LOOP_BOUND> loopBound = LOOP_BOUND;

ap_uint<SIZE_FIFO_PUSH_DELAY> fifoPushDelay = FIFO_PUSH_DELAY;

B5 - Flattened For Loop

In order to obtain performance and area-saving benefits, the skeleton employs a flattened

loop instead of a nested loop. Additionally, the flattened loop construct remains consistent

across all stencil applications, except for the loop iteration variable width itr. To ensure

that each loop iteration is executed every clock cycle, the directive #pragma pipeline

II=1 is used.

95

B6 - Mesh Point Indices Calculation

To enforce the boundary conditions in stencil computations, it is necessary to determine

the mesh indices. These indices can be obtained by utilizing the iteration value of the

loop. The computation of mesh indices can be performed as in Listing 16. In this context,

1 ap_uint<D_SIZE> CIndex[N_DIM];

2 B5: for(ap_uint<D_SIZE> itr = 0; itr < totalCount; itr++){

3 CIndex[0] = itr % Dims[0];

4 CIndex[1] = (itr / (Dims[0]) % Dims[1];

5 CIndex[2] = (itr / (Dims[1]*Dims[0]) % Dims[2];

6 ...

7 }

Listing 16: Mesh point index computation.

the array CIndex[] stores the mesh cell indices across the dimensions for each iteration.

For an n-dimensional mesh, this implementation can be extended to the kth dimension,

where k < n, by utilizing the following expression:

ind k =
itr∏k−1

i=0 Dims[i]
%Dims[k]

The direct implementation of the aforementioned expressions is computationally expen-

sive, as it necessitates the use of modulus operators, dividers, and multipliers. However,

this calculation can be carried out using counters (implemented with adders in hardware)

and comparators, which consume far fewer resources. Additionally, another register block,

denoted as CIndexD[], is employed in Listing 17 to improve clock frequency by minimiz-

ing the fanout (number of connections it feeds to in the circuit) and critical path on the

update of the CIndexD[] registers.

1 ap_uint<D_SIZE> CIndex[N_DIM];

2 ap_uint<D_SIZE> CIndexD[N_DIM];

3 bool cmp[N_DIM]

4 B5: for(ap_uint<D_SIZE> itr = 0; itr < loopBound; itr++){

5 CIndex[0] = CIndexD[0];

6 CIndex[1] = CIndexD[1];

7 CIndex[2] = CIndexD[2];

8

9

10 bool cmp[0] = (CIndex[0] == Dims[0]-1);

11 if(cmp_0){ CIndexD[0] = 0;} else { CIndexD[0]++;}

12 bool cmp[1] = (cmp[0] && ind_1 == Dims[1] -1);

13 if(cmp[1]){CIndexD[1] = 0;} else if(cmp[0]} {CIndexD[1]++;}

14 ...

15 bool cmp[k] = (cmp[k-1] && CIndex[k] == Dims[k] -1);

16 if(cmp[k]){CIndexD[k] = 0;} else if(cmp[k-1]) {CIndexD[k]++;}

17

18 }

Listing 17: Resource optimized mesh index computation.

96

B7.1 - Window Buffer Pointers Calculations

Window buffers are designed such that it buffers a certain number of elements, let’s say nb.

This could be implemented using on-chip memory by maintaining nb distance between

reads and write locations, a chunk of memory with size nb can be read and written

cyclically. A naive implementation would require two access pointers, one for reading and

the other for write. In order to make the implementation simple, we use a single access

pointer and make the cyclic distance equal to nb. A window buffer can be implemented

as in Listing 18, here HLS tool will automatically enforce the Write After Read (WAR)

dependency.

1 B5: for(ap_uint<D_SIZE> itr = 0; itr < loopBound; itr++){

2 ap_uint<D_SIZE> ptr_0 = itr % n_b;

3 // Write after Read

4 out = windo_0_1[ptr_0];

5 windo_0_1[ptr_0] = in;

6 ...

7 }

Listing 18: Window buffer index computation.

The value of nb can be calculated using the steps outlined in section 3.1.1. Additionally,

the calculation of ptr 0 can be optimized using a counter-based implementation, thereby

avoiding the expensive implementation of modulus operators on the FPGA. When mul-

tiple window buffers require buffering the same number of elements, a single pointer can

be utilized to conserve FPGA resources.

B7.2 - Window Buffer Implementation

Multiple window buffers as above can be chained together as in Listing 19 to buffer

required number of mesh points between stencil points. Data will move through local

variables when stencil points are adjacent.

1 B5: for(ap_uint<D_SIZE> itr = 0; itr < totalCount; itr++){

2 ap_uint<D_SIZE> ptr_0 = itr % number_of_elements_buffered_0;

3 ap_uint<D_SIZE> ptr_1 = itr % number_of_elements_buffered_1;

4

5 out_1 = windo_0_1[ptr_1];

6 windo_0_1[ptr_1] = in_1; // Write after Read

7

8 // data moves through registers

9 in_1 = var_0;

10 var_0 = out_0;

11

12 out_0 = windo_0_1[ptr_0];

13 windo_0_1[ptr_0] = in_0; // Write after Read

14 ...

15 }

Listing 19: Window buffer implementation.

97

B7.3 - Conditional FIFO Pop

Using blocking FIFO operations such as FIFO pop and FIFO push can simplify the design

and implementation of the stencil loop on FPGA. However, the number of read attempts

should precisely match the amount of data available through that FIFO, otherwise, the

design will hang due to blocking FIFO operations. As the flattened loop’s bound is

modified to incorporate prime time, FIFO reads should not be attempted during the

last few iterations. Conditional guards can be utilized to implement this, as shown in

Listing 20.

1 B5: for(ap_uint<D_SIZE> itr = 0; itr < totalCount; itr++){

2 if(itr < fifoPops){

3 in_0 = dat_0.read();

4 }

5 ...

6 }

Listing 20: Conditional FIFO pop.

fifoPops will be equal to the number of mesh cells. This count would be calculated in

B4: loop invariant declarations, computations

B8 - Stencil Kernel Computation

This block corresponds to a kernel function that is defined in the ops par loop. In this

kernel function, memory accesses must be substituted with stencil points that are stored

in registers. To perform this substitution, we will apply a direct mapping described in

B3: local variables to hold stencil points. We should ensure that mesh points beyond the

specified iter range in ops par loop remain unaffected. this would require a conditional

update similar to kernel implementation on GPU. As suchB8 block for kernel in Listing 13

will as in Listing 21.

1 Dtype result = (s_n1_0 +s_p1_0 + s_0_n1 + s_0_p1)*0.5f + \

2 s_0_0 * 0.5f;

3 bool cond = (CIndex[0] < SRange[0] || CIndex[0] > ERange[0] \

4 || CIndex[1] < SRange[1] || CIndex[1] > ERange[1])

5 Dtype out = cond ? s_0_0: result;

Listing 21: Stencil computation using values in the register.

B9 - Conditional FIFO Push

As stencil computation is done before window buffers not being filled enough is invalid.

The minimum number of iterations required to fill the window buffers sufficiently is rep-

resented by the variable prime itr. The condition for pushing the result to the output

hls::stream<Dtype> is illustrated in Listing 22.

98

1 B5: for(ap_uint<D_SIZE> itr = 0; itr < totalCount; itr++){

2 if(itr > prime_itr){

3 dat_1 << out_0;

4 }

5 ...

6 }

Listing 22: Conditional FIFO push

Above presented skeleton based transformation of ops par loop requires further im-

provements for exploiting available compute capability of FPGAs (vectorization) and sup-

port range of mesh sizes effectively (batching and spatial blocking). Following sections

illustrates required modification in the blocks B1-B9 transformation to enable those op-

timizations.

6.2.2 ops par loop nodes: Vectorization

In the current implementation, only one mesh point is updated per iteration or clock cycle.

However, it is possible to update multiple mesh points in a single iteration to improve the

performance. To enable vectorization, certain blocks (B1 to B9) in the existing skeleton

need to be modified. The optimization for vectorization also necessitates a wider data

path from the input stream to the output stream, as illustrated in Figure 6.4. This can

be achieved by utilizing a struct data type that includes a static array of elements or by

using a wider integer datatype as in Listing 23.

1 // struct based implementation

2 struct vecBlockS{

3 DType points[V];

4 };

5

6 // wider integer based

7 typedef ap_uint<V*sizeof(DType)> vecBlockI;

Listing 23: Wider data types.

The use of struct based wider data type enable to implement vectored computation

as mesh elements can be easily indexed. The struct vecBlockS in Listing 23 can also be

utilized to create wider on-chip memories. However, older HLS compilers have a tendency

to generate separate RAM blocks for each array element inside the struct, which can lead

to under utilization of URAMs if the size of the array element is less than the URAM’s

width. To address this issue, later HLS compilers concatenate the array elements and

map them to a wider port memory. A similar optimization can also be performed in older

HLS compilers by declaring wider integer types. A portion of the wider integer can be

accessed through range (vecBlockI.range(a,b) for the wider datatype in Listing 23),

and a union construct can be used to reinterpret it to the desired type.

In order to obtain better external memory throughput, vectorization is preferred along

99

Buffer Depth = D_MAX

Buffer Depth = D_MAX

Buffer Depth = D_MAX / VEC_SIZE

Buffer Depth = D_MAX / VEC_SIZE

Registers for stencil points

Registers for vectorized stencil points

Figure 6.4: Data path for vectored stencil computation

the first dimension since mesh cells are then located in consecutive memory locations. It

is important to note that vectorization optimization assumes that the first dimension

(Dims[0]) is a multiple of the vectorization factor, denoted as V . To simplify the data

path implementation using the existing skeleton, stacked vector stencil points can be

treated as a single stencil. This stacked stencil can then be segmented into vector blocks,

which we refer to as vector stencils. The number of vector blocks between two points in

a vector stencil can be determined in a similar manner to standard stencils. Therefore,

in order to optimize for vectorization, the above skeleton blocks require the following

modifications.

• B1, B3: data type (Dtype) should be wider data type such as vecBlockS to hold

vector block. The corresponding array size should be 1/V as each word of RAM

contains V number of mesh cells.

struct vecBlockS window_0_1[D_MAX/V];

• In calculations such as loopBound, fifo Pops, mesh indices, window buffer Pointers

and prime itr, the first dimension Dims[0] should be assumed as

Dims[0]/V .

• B8: Stencil kernel computation should be vectored. This can be implemented using

a fully unrolled for loop as in Listing 24.

100

1 for(int v = 0; v < V; v++){

2 # pragma HLS unroll

3 ap_uint<D_SIZE> ind0 = CIndex[0] * V + v;

4 Dtype s_dat0_n1_0_scalar, s_dat0_p1_0_scalar;

5 s_dat0_n1_0_scalar = (v == 0) ? s_dat0_n1_0.data[V-1] : s_dat0_0_0[v-1];

6 s_dat0_p1_0_scalar = (v == V-1) ? s_dat0_p1_0.data[0] : s_0_0[v+1];

7

8 Dtype result = s_dat0_n1_0_scalar + s_dat0_p1_0_scalar + \

9 s_dat0_0_n1.data[v] + s_dat0_0_p1.data[v] + s_dat0_0_0.data[v];

10 bool cond = (ind0 < SRange[0] || ind0 > ERange[0] \

11 || CIndex[1] < SRange[1] || CIndex[1] > ERange[1])

12 Dtype out.data[v] = cond ? s_dat0_0_0.data[v]: result;

13 }

Listing 24: Vectored stencil computation.

Parameter Data Structure

Tile Block Sizes Tiles[]

Tile Block Indexs TileID[]

Mesh cell index in A Tile Block LocalID[]

global mesh cell index globalID[]

Halo Region size in each Dimension HO[]

Table 6.2: Spatially Blocked Design parameters.

6.2.3 ops par loop nodes: Batched Computation

The batching optimization presented in section 3.3.3 improves throughput specifically for

medium and small meshes. Batching on the last dimension is preferred because it doesn’t

require additional on-chip memory and amortizes pipeline latency as prime itr is only

present for the first mesh. Batching on the last dimension can be viewed as extending

the last dimension by a batch size of B times. However, the boundary condition for each

mesh should be applied and it requires index calculation. To simplify this, N DIM will

increase to N DIM +1 in all calculations (last dimension becoming batch index), except

in B8 of the stencil computation.

6.2.4 ops par loop nodes: Spatially Blocked Computation

The optimization technique referred to as spatially blocked optimization to support larger

meshes, as explained in section 3.3.1, involves dividing the mesh into smaller blocks to

allow for effective computation using the available on-chip memory. The skeleton of the

kernel for this optimization approach is similar to that of the baseline design, but with

minor adjustments made to blocks B1 -B9. In this case, the tile dimensions (Tiles[])

should be viewed as the mesh dimensions in the baseline design. It is also necessary to

have actual mesh indexes in order to identify the mesh boundary and enforce boundary

conditions. These global mesh indexes will be utilized as a condition for updates in block

B8. Furthermore, the identification of the global index of the mesh cell requires the tile

101

block’s TileID[] positions in the entire tile blocks. Assuming uniform spatial blocking

with the same tile sizes, the mesh cell index for the ith dimension can be expressed as

TileID[i]× (Tile[i]− 2×HO[i]) + LocalID[i].

Since there are multiple tile blocks that need to be processed, it requires another

control structure to loop through all blocks. This can be simply implemented by calling

a kernel function with required parameters inside a loop structure as in Listing 25.

1 for(ap_uint<D_size> blk; blk < totalBlocks; blk++){

2 // Tile block offset from memory or FIFO

3 stencil_kernel(dat0, ..., meshParams);

4 }

Listing 25: Looping through spatial blocks.

This implementation is simple and skeleton for baseline design can be used with minor

modifications for stencil kernel function. The benefit of this approach is that each

tile block undergoes independent processing, thereby enabling support for variable tile

sizes. This feature is particularly advantageous when smaller tiles suffice at the mesh’s

corners. To accomplish this, an added data structure indicating the offset of each tile is

necessary. The host program can provide this information through either a memory or

stream interface, and the corresponding offset can be transferred to the kernel.

The drawback is that when dealing with tile blocks on higher dimensional meshes, the

prime itr latency is typically substantial in comparison to the complete processing time

of a tile block. This is because the dimensions of the tile could shrink due to on-chip

memory constraints, while the number of mesh points that necessitate buffering before

initiating computation increases when moving to higher dimensional meshes. Once again,

the solution to this issue is batching, where tile blocks are batched instead of different

meshes. The computation of the total number of batches is depend on the size of the

overlapping or ”halo” region. The halo region’s size depends on the stencil order along a

dimension and expands when multiple ops par loops are chained, as invalid computation

propagates. Let us assume that the halo region along each dimension of the tile blocks is

denoted by HO[]. As a result, the number of tile blocks, N Tiles, will be calculated as

follows, assuming uniform tile blocks:

N Tiles =
N DIM−2∏

i=0

⌈
Dims[i]

Tile[i]− 2 ∗HO[i]

⌉

Inspired by the advantages of batched computation of tile blocks, we prefer utilizing

the same skeleton for batched optimization, albeit with some modifications. The key

difference here is that global mesh indices must be determined based on TileID[]. The

computation of TileID[] can be accomplished in a similar manner to the computation of

mesh indexes in the baseline design. As we are computing both TileID[] and LocalID[]

from the flattened loop iteration, we can regard the dimensions of TileID[] as an exten-

sion of the Tile block dimensions.

102

• B4: loop invariant declarations, computations

Compared to the skeleton for batched optimization, loop in-variants like loopBound

and fifoPops need to be computed in different way. In this scenario, the last

dimension of the tile block should be regarded as expanded by a factor of N Tiles.

• B6: Mesh point indices calculations

The indices within the tile block (LocalID) and the tile block index (TileID[])

can be calculated in the typical fashion by treating each tile block dimension as an

extension of the mesh dimensions. Once the tile block index (TileID[]) and the

index within the tile block (LocalID[]) have been calculated, the global mesh point

index (globalID[]) can be determined.

6.2.5 Global Memory Access Nodes

The source and sink nodes of the dataflow graph for global memory access serve as

a means of separating communication from computation. This separation allows for

effective optimization and simplified bottleneck analysis. Global memory access nodes

issue requests for data from external or nearby memory via AXI interfaces. The AXI

protocol is a widely used protocol for memory-mapped data movement within a chip. To

initiate memory transfers through the AXI interface using the AXI protocol, a Global

memory access node includes an AXI controller block. The AXI interface is connected to

the external memory controller, which then translates AXI memory requests to physical

memory-specific protocol and manages the data movement.

The global memory access nodes play a critical role in determining the performance

of the dataflow graph pipeline. If the throughput of a global memory access node is

lower than the compute pipeline connected to it, the entire pipeline will stall. Improving

the external memory throughput depends on various factors, including design parameters

and physical memory and memory controller specifications. Therefore, the rate at which

data is transferred between global memory access nodes and external or nearby memory

depends on physical memory specification, memory controller, AXI bus architecture and

AXI controller.

The achievable memory throughput between access nodes and external memory will

be minimum of the physical memory throughput, memory controller throughput, and

AXI bus throughput. Once the required throughput for a global memory access node

is determined, the number of memory banks and memory controllers required can be

identified. If a larger throughput is needed for a specific data structure, it can be divided

into cyclically assigned chunks to dedicated memory banks.

The AXI interface parameters can be chosen to match the throughput of the memory

controller and memory banks. The maximum theoretical throughput of the AXI bus can

be calculated based on the data width and operating frequency of the AXI interface as

in Equation 6.1, ignoring AXI transaction latency. Here, f is clock frequency and W is

103

width of AXI port.

BW = 2 ∗ f ∗W (6.1)

Multiple data structures can share a single bank if the required throughput for a single

data structure is much lower than the provided throughput of that memory bank. The

kernel’s data structure can be assigned to a memory bank through the AXI port provided

by the HLS tool using the pragma HLS INTERFACE (Listing 26) in the top function of

the kernel (kernel 0). The AXI width corresponds to the size of the data type of the

global memory pointer, and the AXI burst length is derived by the HLS tool based on the

memory access pattern. The same pragma (Listing 26) can be used to specify additional

AXI parameters such as maximum outstanding transactions and maximum burst length

that need to be supported by the AXI bus interface.

1 extern "C" {

2 void kernel_0(

3 DType* g_data0,

4 DType* g_data1,

5 // other parmeters

6){

7 # pragma HLS INTERFACE m_axi port=g_data0 offset = slave \

8 bundle = gmem0 max_read_burst_length=64 max_write_burst_length=64 \

9 num_read_outstanding=4 num_write_outstanding=4

10

11 }

Listing 26: Memory interface configuration.

The purpose of this section is to classify memory access patterns that are typically

found in the global memory access kernels of structured-mesh based applications, and

to present skeletons for implementing these kernels. Three common memory access pat-

terns are identified, namely sequential memory access, tiled memory access, and accessing

memory at specific distances. Depending on the memory access pattern, specific loop

transformations and interface configurations are necessary to optimize memory through-

put.

Sequential memory access nodes

Sequential memory access is common in baseline and batched design where mesh points

are read sequentially one after another in memory. In HLS, a loop can be used to run

through the mesh and obtain each cell from external memory. A flattened loop with

sequential memory access is preferred as this will correspond to a single memory request.

This request will later be split into multiple AXI transactions by the AXI controller based

on a maximum AXI burst length limitation of 256 or 4K total bytes limitation for single

transaction. Since burst length can be set to the possible maximum value, it won’t require

many outstanding transactions to get better memory throughput.

If a while loop is used, then it will be mapped to individual transactions with burst

104

length size one, this is because usually exit condition of while loop can’t be resolved at

compile time. This will cost in performance as each AXI transaction can take multiple

tens of clocks. If transactions are performed one after another, it will be very inefficient.

If multiple outstanding transactions are set then, it will cost additional FPGA resources

and make FPGA implementation complex. Hence a flattened for loop is preferred for

sequential memory access. Moreover, coalesced memory access is preferred as it will help

to achieve better memory bandwidth. A struct data type with fixed size array or wider

integer type can be used for this purpose. Skeleton for preferred for loop implementation

for sequential memory access is as in Listing 27 (similar structure for global memory

write).

1 struct Dtype {float data[4]};

2 static void gMem_access_node_0(Dtype* g_data0, hls<float>::stream out_s,

3 int total_length){

4 for(ap_uint<D_size> t_0; t_0 < total_length; t_0++){

5 # pragma HLS PIPELINE II=4

6 Dtype data_w = g_data0[t_0]; // wider memory access

7 // pushing individual data to output stream

8 out_s << data_w.data[0];

9 out_s << data_w.data[1];

10 out_s << data_w.data[2];

11 out_s << data_w.data[3];

12 }

13 }

Listing 27: Coalesced memory access.

Tiled memory access nodes

Spatially blocking optimization (section 3.3.1) requires reading chunks of data at specific

distances. This can be effectively implemented using a nested loop with depth two as

in Listing 28. Here, inner loop count corresponding to size of the chunks to be read

and Ap.total t x corresponds to number of such chunks. # pragma HLS PIPELINE is

applied to inner loop to advice HLS tool to infer burst mode AXI transfers. As AXI

transactions is associated with significant latency (lets say l axi clocks) and throughput

can be calculated as in Equation 6.2, here lenburst which corresponds to chunk size.

BW = 2 ∗ f ∗ lenburst

lenburst + laxi
(6.2)

In that case, we prefer to set higher number of outstanding transaction to hide latency

of previous transactions. If the number of outstanding transaction isNtrans, corresponding

bandwidth will be as in Equation 6.3. Since outstanding transaction will require additional

onchip memory for buffering, we prefer to set Ntrans such that over 90% bandwidth

provided by memory bank is achieved.

105

BW = 2 ∗ f ∗ Ntrans × lenburst

Ntrans × lenburst + laxi
(6.3)

In Listing 28 offset need to be calculated for each chunks and it could be calculated

using the parent loop iteration, similar to computing the mesh index from the flattened

loop iterations in baseline design skeleton.

1 static void gMemT_access_node_0(Dtype* g_data0, hls<float>::stream out_s,

2 struct AppParams Ap){

3

4 for(ap_uint<D_size> t_x = 0; t_x < Ap.total_t_x; t_x++){

5 // Tile block Id computations

6 // local ID computation except the first dimension

7 // Address offset computation

8

9 // Single AXI request - Burst mode transfer

10 for(ap_uint<D_size> i = 0; i < Ap.Tile_X; i++){

11 # pragma HLS PIPELINE II=1

12 Dtype data = g_data0[offset+i];

13 }

14 }

15 }

Listing 28: Tiled memory access.

6.2.6 Delay Buffers Nodes

Branches could arise when mapping the OPS API calls to the dataflow graph computing

and there could be circular branches as in Figure 6.5, when there are at least two paths

from one node to another. As blocking FIFO operations are used in kernels, it could lead

to deadlock in circular branches if data pushed on one branch is not consumed, making

that FIFO full. Figure 6.5 illustrate such a possible scenario. Here kernel:1 flushes the

data along path A and B. Let’s assume db number of elements need to be buffered (E.g

window buffers) before the first output to be released from kernel:2 to path C (db is

equal to prime itr). kernel:3 would require a data from each path B and C to start

computation. As data coming from path C is delayed, path B become full if the buffer

capacity is exceeded. Now kernel:1 can’t release the data to path A as well, as data

should be pushed to paths A and B simultaneously. This essentially creates a deadlock

in the data flow graph.

In some cases, kernel:2 doesn’t require a certain number of elements to be buffered

but each element entering the kernel is released after a certain number of clocks due to

pipeline stages S in kernel:2. In this case, there won’t be a deadlock but intermittent

stalls if the buffer capacity of path B is not enough. In order to have the optimal operation

of the above dataflow graph branch, the buffer capacity of the FIFO/Stream should be

higher than db + S.

106

Kernel: 1

Kernel: 2

Kernel: 3
Circular

Dependency

A

B

C

Figure 6.5: Circular dependency on branches.

Value db of a kernel can be calculated using the stencil provided in the ops par loop

for the particular data structure. This is equivalent to the number of elements between

the stencil’s starting point’s index (I s) and updating point’s index (I u) as follows.

prime itr = db = (Spts[I u][0]− Spts[I s][0])

+

Dims−1∏
i=1

(Spts[I u][i]− Spts[I s][i]) ∗Dims[i]
(6.4)

Value S can’t be precisely calculated as HLS synthesizer will add additional pipeline

stages to meet the target frequency. The number of pipeline stages between the input

and the output of a kernel can be obtained by inspecting the HLS scheduler report. it

is usually less than a few hundred pipeline stages. This also can be estimated using

arithmetic computations over the critical path of the expressions. Additional slack like

100 can be added to this to allow additional pipeline stages introduced by the HLS

compiler. Once the total number of elements that need to be buffered is calculated,

that will be the depth of the required buffer. A delay buffer node can be implemented

using hls::stream<Dtype>. It will be mapped to FIFO on hardware which is usually

implemented using register/BRAM/URAM.

static hls::stream<DType> pathB;

pragma HLS STREAM variable = pathB depth = FIFO_DEPTH

6.2.7 ops tridMultiDimBatch: Tridiagonal Solver Nodes

Tridiagonal systems are common in structured mesh-based implicit applications and OPS

provides the following API for solving tridiagonal systems formed along each dimension

of multi-dimensional meshes.

void ops_tridMultiDimBatch(int ndim, int solvedim, int* dims, ops_dat a, \

ops_dat b, ops_dat c, ops_dat d, ops_tridsolver_params *tridsolver_ctx)

This API supports solving multi-dimensional tridiagonal systems along each dimension

of 1D,2D and 3D meshes. Input tridiagonal matrix coefficients (a,b,c), RHS (d) and

output (d) are multi-dimensional meshes. This API is mapped to highly optimized CPU

and GPU library functions when generating target implementation for CPUs and GPUs.

107

We also employ a similar approach using library functions along with specializations for

the cases where tridiagonal matrix coefficients are constants (e.g. Poisson equation) or

could be internally calculated. In those cases, the coefficient computation can be fused

with the library function to save on-chip memory required for coefficient interleaving as

well as required off-chip memory space and bandwidth for those coefficients. Again this

is also a skeleton-based technique but just a few lines related to setting coefficients need

to be replaced.

In contrast to CPU and GPU tridiagonal system libraries that OPS translator employs,

where data move from/to global memory, our batched tridiagonal solver library presented

in Chapter 4 gets data from and to streaming interfaces as dataflow graph nodes are

connected using streams. This requires certain data re-organization transformations such

as rows to columns transpose in order to feed data to the tridiagonal solver in the required

order (data re-organiser nodes). Listing 29 illustrates how library modules are used

to make such data re-organization transformation for solving along the first dimension. In

essence, these library functions are templated, taking vectorization factor, dimension and

data type as the template parameters. First routines (interleaved row blockV) take V

number of systems and stream out V ×V blocks and these V ×V blocks are fed to V ×V

transpose module (stream VxVtranspose) to feed the output to V number of Thomas

solver pipelines as illustrated in Figure 4.1. The last two library functions re-organize the

data and send the output of each system sequentially. for simplicity, we have presented

the case where coefficients can be internally generated, if not, coefficient inputs (a, b, c)

also should go through such transformations.

1 interleaved_row_blockV<V, 128>(d_stm_0[1], d_stm_0[2], M, N, B, 1);

2 stream_VxVtranspose<V, float>(d_stm_0[2], d_stm_0[3], M, N, B, 1);

3 thomas_interleave<V, float, 128>(d_stm_0[3], d_fw_stm[0], M, B_X, ReadLimit_X);

4 thomas_forward<V, float, 128>(d_fw_stm[0], c2_fw_stm[0], d2_fw_stm[0], M, B_X);

5 thomas_backward<V, float, 128>(c2_fw_stm[0], d2_fw_stm[0], u_stm_0[0], M, B_X, \

6 ReadLimit_X);

7 stream_VxVtranspose<V, float>(u_stm_0[0], u_stm_0[1], M, N, B, 1);

8 undo_interleaved_row_blockV<V, 128>(u_stm_0[1], u_stm_0[2], M, N, B, 1);

Listing 29: tridslv(x-dim) on FPGA.

On the other hand, solving along the second dimension of mesh requires a plane trans-

pose if input data is organized sequentially along the first dimensions. it will be mapped

to the following library functions as in Listing 30. Solving along the third dimension

1 row2col<V, 128>(u_stm_0[2], d_stm_0[4], M, N, B);

2 thomas_interleave<V, float, 128>(d_stm_0[4], d_fw_stm[1], N, B_Y, ReadLimit_Y);

3 thomas_forward<V, float, 128>(d_fw_stm[1], c2_fw_stm[1], d2_fw_stm[1], N, B_Y);

4 thomas_backward<V, float, 128>(c2_fw_stm[1], d2_fw_stm[1], u_stm_0[3], \

5 N, B_Y, ReadLimit_Y);

6 col2row<V, 128>(u_stm_0[3], u_stm_0[4], M, N, B);

Listing 30: tridslv(y-dim) on FPGA.

108

requires the support of the off-chip memory as buffering the whole 3D mesh using on-chip

memory is not feasible. Hence it requires another global memory access node to be added

and which will buffer each mesh on off-chip memory and read planes formed using 0th

dimension and 2nd dimension. Again a transpose library function should be utilized to

feed the systems along 3rd dimension.

6.2.8 Building Dataflow Graph

Once the required nodes are implemented using the above methodology, a top-level

dataflow can be built by replacing the edges of the dataflow graph with the stream and

applying the dataflow optimization over the node computation calls as in Listing 31.

Additionally kernel arguments need to be computed above the dataflow region.

1 void ops2dataflow(Dtype* g_data0, Dtype* g_data1, ..., struct meshParams mp){

2 // hls::stream<Dtype> declarations

3 // kernel argument computations

4 # pragma HLS dataflow

5 // all the nodes in the dataflow graph

6 }

Listing 31: Dataflow optimization.

6.3 Optimal Design Parameter Identification

DataFlow Graph
Nodes with
p=1, V=1

no II constraint

DSP & Onchip
met?

Reduce II
(min II=1)

Design can't be
implemented

DSP
met?

set minimum
possible II

Yes

No

No

Final Parameters

II=1?

No

Yes

BaseLine
Approach

Spatially
Blocked

Approach

Max
Throughput

Select

Figure 6.6: High-level overview to estimate design parameters.

Each node in the dataflow graph requires a certain amount of FPGA resources (LUT,

109

registers, on-chip memory, DSP, etc) and FPGAs come with a fixed amount of these re-

sources. Optimizations such as pipelining loops and vectorization will scale up the resource

consumption, indeed resource utilization can be estimated based on these optimization

parameters. In order to enable these optimisations and choose design parameters, the

resource consumption of the dataflow graph needs to be estimated, to make sure overall

resource consumption is within the available resource limit. FPGA device resource con-

sumption of a dataflow graph can be estimated in two ways. Resources such as DSP units

and on-chip memory consumption can be estimated theoretically but other device re-

sources such as LUTs and registers can be better estimated using the Vitis HLS synthesis

report. In order to get the Vitis HLS report, the dataflow graph needs to be implemented

using the FPGA target language. Based on previous transformation techniques, when

design parameters are known, the kernel can be automatically generated.

As each kernel can have a different set of design parameters, the theoretical search

space to find optimal parameters is huge. This search space can be narrowed down as

uniform data flow requires similar V/II in each node as the lower performance of one

node will reduce the whole dataflow graph’s throughput. We prefer making II = 1 before

scaling the V to make the design use fewer resources to get the same performance. If data

structures with different numbers of mesh points are used, then V should be proportionate

to the number of mesh points, assuming adjusted V for a node is Vi. Let’s assume

the data container for resource consumption struct FPGA resource (DSP, mem, LUT,

Reg) and such resource consumption values for node i for target V of largest output data

structure is RNode(i, Vi). If the sum of the resource utilization in the nodes is a few times

less than available FPGA resources the entire data flow graph can be unrolled p times if

such dataflow the graph is inside an iterative loop. As such, we propose the flow chart in

Figure 6.6 to find the optimal design parameter for the design. It explores three design

parameters (II, V, p) and two design strategies, baseline design and spatially blocked

design. The best design strategy and corresponding design parameters are estimated

through the algorithm given in Figure 6.6.

In this algorithm, we first check if it is possible to reach II=1 for the dataflow graph,

if it is possible we check both the baseline approach and spatially blocked approach

to select the approach which gives better performance. Finding the design parameters

using the baseline approach and spatially blocked approach are described in Algorithm 8

and Algorithm 9. Here, we define the total available FPGA resources in data structure

Struct FPGA resource F. Thpt(V,p) and ThptT(V,p, Tile) compute the throughput

of the dataflow graph for baseline and spatially blocked design respectively. calTile(p)

computes the maximum possible Tile for the dataflow graph for given p.

In both baseline and spatially blocked approaches, search space is minimized by esti-

mating the maximum possible values for design parameters for V (vectorization factor)

and p (iterative loop unroll factor). Since at least one FPGA resource (on-chip mem-

ory, DSP) will scale with p and V , the maximum value for p can be obtained when V

is smallest, V = 1. Aggregate resource consumption for dataflow graph nodes can be

110

Algorithm 8: Baseline approach

1: r0←
∑#kernels

i=0 RNode(i, 1)
2: k0← max(r0.DSP/F.DSP, r0.mem/F.mem, r0.LUT/F.LUT, r0.Reg/F.Reg)
3: p max← 1/k0
4: VmaxRes ← 1/k0
5: VmaxBW ← total banwdidth

2×f×sizeof(DType)×no of global nodes

6: Vmax ← min(VmaxRes, VmaxBW)
7: Vf ← 1
8: pf ← 1
9: Tmax ← Thpt(1, 1)

10: for p = 1, 2, ..., p max do
11: for V = 1, 2, ..., v max do
12: r ←

∑#kernels
i=0 RNode(i, V)

13: k ← max(r.DSP/F.DSP, r.mem/F.mem, r.LUT/F.LUT, r.Reg/F.Reg)
14: if K > 1 then
15: continue
16: end if
17: T ← Thpt(V, p)
18: if T > Tmax then
19: Tmax ← T
20: Vf ← V
21: pF ← p
22: end if
23: end for
24: end for

estimated by setting V = 1 and the accumulation resource consumption of each node. At

this point, the most used resource will determine the maximum possible iterative unroll

factor (p max) as resource consumption will scale with p. Similarly, V will also scale DSP

resource consumption, hence maximum VmaxRes can be obtained by setting maximising V

until it hits the DSP limit. Other than DSP units, available off chip memory bandwidth

also restrict the scaling of V . Required off chip memory bandwidth is proportional to V ,

number of global memory access nodes, operating frequency (Default frequency 300 MHz

can be used for U280) and size of DType. We estimate the maximum possible VmaxBW

from other known factors related to bandwidth requirement. Maximum throughput Tmax

and design parameters can be initialized to (Thpt(Vf , pf)) where pf = 1 and Vf = 1.

Once search space and initial values are set, a brute force search (search space is small) is

employed to find pf and Vf such that Thpt(Vf , pf) is maximum and resource consumption

is within FPGA resource limit.

The algorithm for spatially blocked design also employs a similar strategy but it always

keeps the on-chip memory requirement within the resource limit by scaling down the size

of spatial blocks. Hence, on-chip memory resources will no longer be determining factors

for maximum design parameters. As spatially blocked design does overlap computation,

throughput (Thpt(Vf , pf , T ile)) will depend on spatial block size, Tile. Similar to the

baseline approach, it explores all the design space and determines the design parameters

which give maximum throughput while required resources are within FPGA resource

111

limit. in addition to design parameters pf and Vf , corresponding spatial block size, Tile

will also determined.

Algorithm 9: Spatial blocking approach

1: r0←
∑#kernels

i=0 RNode(i, 1)
2: k0← max(r0.DSP/F.DSP, r0.LUT/F.LUT, r0.Reg/F.Reg)
3: p max← 1/k0
4: VmaxRes ← 1/k0
5: VmaxBW ← total banwdidth

2×f×sizeof(DType)×no of global nodes

6: Vmax ← min(VmaxRes, VmaxBW)
7: Vf ← 1
8: pf ← 1
9: Tilef ← calT ile(0)

10: Tmax ← Thpt(1, 1)
11: for p = 1, 2, ..., p max do
12: for V = 1, 2, ..., v max do
13: r ←

∑#kernels
i=0 RNode(i, V)

14: k ← max(r.DSP/F.DSP, r.LUT/F.LUT, r.Reg/F.Reg)
15: Tile← calT ile(p)
16: if K > 1 then
17: continue
18: end if
19: T ← ThptT (V, p, T ile)
20: if T > Tmax then
21: Tmax ← T
22: Vf ← V
23: pF ← p
24: Tilef ← Tile
25: end if
26: end for
27: end for

6.4 Discussion and Concluding Remarks

This Chapter proposed a methodology for transforming structured mesh-based numerical

applications specified using a DSL to FPGA target language, specifically C++ for Vivado.

This approach is motivated by the profitability of FPGAs for a subset of such applica-

tions. Unlike existing state-of-the-art automatic translators, our methodology focuses on

utilizing proven DSL to specify this class of applications and on transformation techniques

and optimizations such as batching and tiling that are required for realistic applications.

Furthermore, we provide several FPGA-specific optimizations to improve the quality of

results, such as device area and clock frequency on FPGAs. The transformation steps

are designed in a way that an automatic translator can be built using modern compiler

frameworks. However, it should be noted that although the provided methodology can

be used to translate a wider range of applications, only a subset of applications will yield

good performance on FPGAs. One major limitation of the current generation of FPGAs

is their larger reconfiguration time (in the order of a few seconds), which requires all

112

nodes in the dataflow graph to fit into the FPGA. If the resource consumption exceeds

the available resources on the FPGA, it is impossible for the nodes to fit, and even if they

marginally fit, the operating frequency will be low due to possible routing congestion.

113

Chapter 7

Conclusions and Future Work

The utilization of FPGAs has gained significant traction within the HPC community, pri-

marily due to their exceptional processing speeds, low latency, and energy efficiency when

deployed in specific domains. Nevertheless, both industry and research are constrained in

their ability to utilize FPGAs for HPC applications due to the challenging nature of pro-

gramming these devices. Despite the introduction of HLS tools and High-Level APIs by

FPGA vendors, developing a high-performing FPGA-based implementation for an appli-

cation remains a formidable task. The difficulty arises primarily from the requirement of

FPGA-specific transformations that demand a high level of proficiency in digital system

design and data flow programming models.

In this thesis, we have attempted to bridge the gap in getting better performance and

ease of programming FPGAs through a domain-specific approach. The key character-

istics of application class, their computation and communication patterns or motifs are

leveraged in this approach to explore the design space on the target accelerator device.

We applied such analysis to the widely used domain of structured mesh-based numeri-

cal algorithms, specifically for (1) explicit stencil solvers characterised by looping through

rectangular mesh and accessing mesh elements using a stencil and (2) tridiagonal systems-

based implicit solvers, which solve linear systems along each dimension of mesh.

Several prior studies have investigated and examined the use of FPGAs for structured

mesh-based explicit applications. However, these analyses have been primarily limited to

evaluating the performance of individual applications on FPGAs, without developing a

comprehensive methodology. Additionally, key optimizations required for realistic work-

loads, such as batched and tiled computation for implicit applications, have not been ex-

plored for this application class on FPGAs. Furthermore, previous works have not clearly

demonstrated the codification of FPGA-specific optimizations using high-level languages.

As a result, this study aimed to consolidate the optimization techniques of prior research,

alongside new optimization strategies, to enable the optimal implementation of realistic

applications on FPGAs.

The current state of the art in accelerating implicit numerical algorithms is primarily

focused on implementing single tridiagonal system solvers on FPGA, rather than analyzing

114

and implementing full applications. This thesis proposed a systematic approach for eval-

uating the performance of different tridiagonal solver algorithms for implicit applications

through models. Based on the characteristics of the applications, several optimization

techniques are presented in this thesis to save memory bandwidth and improve perfor-

mance on modern FPGAs. Using these techniques, a new multi-dimensional tridiagonal

solver library is developed, along with data path transformation routines for data path

design. This new library achieves over one order of magnitude improvement in throughput

compared to the state of the art tridiagonal solvers for larger batches of systems.

7.1 Contributions and Conclusions

In order to address the above key gaps in the research, Chapter 3 investigated and pre-

sented methodology to accelerate the structured mesh-based explicit numerical applica-

tion on FPGAs, Chapter 4 explored implicit application on FPGAs and chapter 5 ex-

plored the acceleration of both implicit and explicit application on FPGAs using SYCL

programming model.

Chapter 3 and 5 presented the first main contribution involving the development of a

unified workflow and implementation template for implementing structured mesh-based

numerical explicit and implicit numerical algorithms on FPGAs. The batched execution

of stencil solvers on independent meshes presented in this thesis is a novel approach. It

demonstrates that FPGAs can not only provide low latency for processing a single mesh

but can also be utilized to obtain higher throughput for solving set of meshes.

The second main contribution (Chapter 4) comes from the development of a high-

throughput multi-dimensional tridiagonal system solver library with a design space ex-

ploration technique for implementing implicit applications on FPGAs. A design and

optimization strategy is proposed based on the size and dimensionality of the mesh, along

with dataflow path optimizations. This library achieves over one order of magnitude

improvement in speed compared to the state-of-the-art Xilinx tridiagonal system solver

library.

The third main contribution (also in Chapters 3 in 5) pertains to the development of

analytical models that aid in predicting performance and facilitating design exploration.

The predictive performance model, along with models for key resource consumption,

provides a systematic approach to determining optimal design parameters, selecting an

optimization strategy, and evaluating the profitability of FPGA implementations. The

models presented in this thesis demonstrate over 85% accuracy in predicting runtime

compared to actual results.

The above contributions are supported by benchmarking realistic applications on mod-

ern FPGAs using developed methodology with performance of same application on HPC

grade GPUs. Targetting Xilinx and Intel FPGAs, we present design and optimization of

three representative explicit stencil solver based applications and two implicit tridiagonal

solver based application, comparing different optimizations and performance trade-offs.

115

These representative applications include 2D and 3D solvers using both FP32 and FP64

arithmetic, operating on both scalar and vector mesh-points. Detailed performance anal-

ysis in terms of runtime, power and bandwidth is presented comparing implementation

on FPGAs with highly optimized implementation on HPC grade Nvidia V100 GPU. The

results of the benchmarking show that FPGAs provide competitive performance com-

pared to the same generation GPUs while consuming over 30% less energy in GPU-based

computation.

A final contribution (Chapter 6) of this research pertains to the proposed automatable

workflow based on design and optimization techniques developed in this work for FPGA

implementation of this class of applications. Utilizing the DSL of popular OPS framework,

this work presents a generalized high level technique based on design templates/skeletons

to transform it to FPGA target implementation. The transformation technique is devised

such that it can be automatable using modern compiler techniques.

7.2 Future Work

There are several potential areas for future research based on the work in this thesis. They

can be broadly categorized into two orthogonal areas. Firstly, there is a need for support

for larger applications with memory and FPGA resource requirements that exceed the

capabilities of a single FPGA device. Secondly, there is scope for the automatic translation

of structured mesh-based numerical applications specified using a DSL such as OPS. The

skeleton and steps presented in Chapter 6 can be utilized alongside modern compiler tools

to generate FPGA target implementations automatically.

7.2.1 Support for Larger Meshes

This thesis presented a workflow for executing structured mesh-based applications on

FPGA boards with memory requirements that fall within the device’s storage capac-

ity. Additionally, the resource demands of chained kernels are constrained to within the

FPGA’s resource limit. Scientific applications, such as Computational Fluid Dynamics

(CFD), often necessitate large data structures, leading to implementation on multi-node

accelerator devices to ensure sufficient aggregate memory. However, these implementa-

tions commonly face communication overhead bottlenecks during the exchange of halo

regions between nodes, with users lacking direct control over node communication.

In FPGA implementations, larger memory requirements can be addressed in two ways.

Firstly, if the host has sufficient memory to accommodate the corresponding data struc-

ture, the entire structure can reside on the host, and a tile block can be moved to and

processed on the device before being returned to the host. This approach is similar to

host-based spatial blocking, but the implementation’s performance is constrained by the

bandwidth between the host and device. While modern devices like Intel Agilex 7 devices

with PCIe 5.0 x16 can support around 128GB/s throughput, this speed is much lower than

116

that of HBM memory throughput. The time required for data movement can be mini-

mized by overlapping computation and communication and utilizing the tile blocks moved

to the device for multiple steps. However, the tile blocks sent to the device are likely to be

large enough to necessitate another spatially blocked implementation within the FPGA,

creating a multi-level tiling implementation capable of supporting larger meshes that ex-

ceed the accelerator device’s memory capacity.

Alternatively, a larger data structure can be divided into multiple chunks and mapped

to many FPGA accelerator devices. Each device can then compute on its designated

chunk, often exchanging boundary/halo data with other nodes. This method provides

better performance than the first approach since multiple chunks can be processed in

parallel. To facilitate data exchange, a dedicated communication link can be established

between FPGA devices via a network interface. These links can help overcome com-

munication bottlenecks that arise in traditional multi-node GPU and CPU accelerator

implementations.

7.2.2 Support for Larger Number of Kernels

Instructions-based accelerators are capable of loading kernels within microseconds, and

the overhead of loading kernels in sequence is insignificant if the runtime of each kernel is

sufficiently long. Therefore, executing a set of kernels in an iterative loop does not incur

a significant overhead for kernel loading. However, on FPGAs, loading a set of kernels

requires partial reconfiguration of the device, which can take several seconds, often longer

than the runtime of the kernel call in the iterative loop. As a result, the set of kernels in

the iterative loop must be chained together and loaded in a single partial reconfiguration,

which imposes area/resource constraints on each kernel in the iterative loop. In order to

support a larger number of kernels, researchers have attempted to implement structured

mesh-based numerical algorithms, particularly explicit stencil solvers [15], on multiple FP-

GAs. The aggregate resources available in multiple FPGAs enable longer kernel pipelines.

Communication between devices is limited by network and PCIe communication speeds,

but these links have achieved significant improvements in bandwidth for data movement

between kernels. However, previous works on multi-FPGA implementation have been

limited to baseline designs, and realistic application optimizations such as batching and

spatial blocking have not been explored in multi-FPGA implementations. Such an imple-

mentation would broaden the scope of FPGAs for this class of applications and provide

insights into the profitability of using FPGAs for larger structured mesh-based numerical

applications.

7.2.3 DSL based Automatic Translator

The first part of the thesis focuses on developing an optimized workflow for implementing

structured mesh-based numerical applications on FPGAs. Chapter 6 utilizes the tech-

niques presented in Chapters 3–5 to propose a methodology for codifying FPGA kernels

117

using skeletons for OPS applications. While this approach simplifies the development of

FPGA target kernels, significant effort is still required to explore the design space and

find the optimal design parameters to codify the kernels.

The implementation of FPGA kernels requires lower-level customizations and multiple

FPGA-specific transformations, resulting in a significantly larger number of lines in the

target language implementation. This not only requires a longer implementation time but

also leads to longer verification and debugging times due to possible user implementation

mistakes. Additionally, FPGA HLS tools are continuously evolving, resulting in differ-

ent #pragma usage across various HLS compilers, and new FPGA devices with different

hardware specifications are being introduced to the market, making it time-consuming to

explore the design space for each new hardware device and implement the application for

the target device.

To address a similar challenge, recent research works have focused on utilizing domain-

specific frameworks, such as OPS, to automatically generate target implementations for

parallel architectures such as GPUs and CPUs. OPS is capable of applying optimiza-

tions specific to the target architecture, resulting in implementations that achieve perfor-

mance similar to that of hand-written code. Additionally, applications written using these

domain-specific languages (DSLs) do not need to be updated to support new devices and

target compilers, only the translator needs to be updated. This is potentially a pathway

for future-proofing the applications.

The authors of [4] developed a skeleton-based domain-specific language (DSL) trans-

lator for OPS DSL that generates target kernels using the LLVM framework. The ideas

in this approach can be extended to generate FPGA target kernels using the techniques

presented in Chapter 6. The LLVM framework offers a rich set of functions to analyze

front-end specifications, such as syntax errors, data types, and semantic analysis. Since

OPS is a C++-based embedded DSL, the benefits of the LLVM framework can be lever-

aged to create a production-quality FPGA kernel translator. Moreover, since OPS uses

the same host program for all target platforms, the same host program can be used for

FPGA targets as well, provided that library functions for data movement between kernel

and device are implemented.

Modern FPGA accelerator devices not only provide energy-efficient and low-latency

processing but also provides high throughput for certain classes of applications. The

introduction of high-level synthesis tools significantly improved the FPGA application

development productivity. Along with continuous improvement on HLS tools and the

introduction of new powerful HPC grade FPGAs, high-level abstraction using domain-

specific languages could enable domain scientists to take full advantage of the benefits

provided by FPGAs. We look forward to the wider use of FPGAs for HPC workloads and

expect this work will contribute to demonstrating an accessible path for their extended

utility.

118

Bibliography

[1] Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel®
Agilex™ 7 FPGAs M-Series. Addressing Memory-Bandwidth and Compute-

Intensive Challenges with Intel® Agilex™ 7 FPGAs M-Series, 2022. https://www.

intel.com/content/dam/www/central-libraries/us/en/documents/memory-

bandwidth-and-compute-intensive-with-agilex-m-series-white-paper.pdf.

[2] J. Babb, R. Tessier, and A. Agarwal. Virtual wires: overcoming pin limitations

in FPGA-based logic emulators. In [1993] Proceedings IEEE Workshop on FPGAs

for Custom Computing Machines, pages 142–151, 1993. doi: 10.1109/FPGA.1993.

279469.

[3] G. D. Balogh, T. Flynn, S. Laizet, G. R. Mudalige, and I. Z. Reguly. Scalable

Many-core Algorithms for Tridiagonal Solvers. Journal of Computing in Science and

Engineering, 2021. (In Press).

[4] G.D. Balogh, G.R. Mudalige, I.Z. Reguly, S.F. Antao, and C. Bertolli. OP2-Clang:

A Source-to-Source Translator Using Clang/LLVM LibTooling. In 2018 IEEE/ACM

5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), pages

59–70, 2018. doi: 10.1109/LLVM-HPC.2018.8639205.

[5] Tobias Becker, Oskar Mencer, Stephen Weston, and Georgi Gaydadjiev. Maxeler

Data-Flow in Computational Finance, pages 243–266. Springer International Pub-

lishing, Cham, 2015. ISBN 978-3-319-15407-7. doi: 10.1007/978-3-319-15407-7 11.

URL https://doi.org/10.1007/978-3-319-15407-7_11.

[6] Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schnei-

der, and Torsten Hoefler. Stateful Dataflow Multigraphs: A Data-Centric Model for

Performance Portability on Heterogeneous Architectures. In Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’19, 2019.

[7] Neil W. Bergmann, Sunil K. Shukla, and Jürgen Becker. QUKU: A Dual-Layer

Reconfigurable Architecture. ACM Trans. Embed. Comput. Syst., 12(1s), mar 2013.

ISSN 1539-9087. doi: 10.1145/2435227.2435259. URL https://doi.org/10.1145/

2435227.2435259.

119

 https://www.intel.com/content/dam/www/central-libraries/us/en/documents/memory-bandwidth-and-compute-intensive-with-agilex-m-series-white-paper.pdf
 https://www.intel.com/content/dam/www/central-libraries/us/en/documents/memory-bandwidth-and-compute-intensive-with-agilex-m-series-white-paper.pdf
 https://www.intel.com/content/dam/www/central-libraries/us/en/documents/memory-bandwidth-and-compute-intensive-with-agilex-m-series-white-paper.pdf
https://doi.org/10.1007/978-3-319-15407-7_11
https://doi.org/10.1145/2435227.2435259
https://doi.org/10.1145/2435227.2435259

[8] Alexander Brant and Guy G.F. Lemieux. ZUMA: An Open FPGA Overlay Architec-

ture. In 2012 IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines, pages 93–96, 2012. doi: 10.1109/FCCM.2012.25.

[9] P. Nithiarasu C. Zienkiewicz, R. L. Taylor and J. Zhu. ”The finite element method,

volume 3”. McGraw-Hill, London, 1977.

[10] Y. Chi, J. Cong, P. Wei, and P. Zhou. SODA: Stencil with Optimized Dataflow

Architecture. In 2018 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 1–8, 2018.

[11] Robert Clayton and Björn Engquist. Absorbing boundary conditions for acoustic

and elastic wave equations. Bulletin of the Seismological Society of America, 67(6):

1529–1540, 12 1977. ISSN 0037-1106.

[12] J. Cong and J. Wang. PolySA: Polyhedral-Based Systolic Array Auto-Compilation.

In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 1–8, 2018.

[13] David Bruce Cousins, Kurt Rohloff, and Daniel Sumorok. Designing an FPGA-

accelerated homomorphic encryption co-processor. IEEE Transactions on Emerging

Topics in Computing, 5(2):193–206, 2016.

[14] cuSPARSE API Reference. cuSPARSE API Reference, Oct 2021. [https://docs.

nvidia.com/cuda/cusparse/index.html].

[15] Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Dominic

Hofer, and Torsten Hoefler. StencilFlow: Mapping Large Stencil Programs to Dis-

tributed Spatial Computing Systems. In Proceedings of the 2021 IEEE/ACM Inter-

national Symposium on Code Generation and Optimization, CGO ’21, page 315–326.

IEEE Press, 2021. ISBN 9781728186139. doi: 10.1109/CGO51591.2021.9370315.

URL https://doi.org/10.1109/CGO51591.2021.9370315.

[16] Discussions with the Numerical Algorithms Group, UK. Discussions with the Nu-

merical Algorithms Group, UK., 2019.

[17] K. Dohi, K. Fukumoto, Y. Shibata, and K. Oguri. Performance modeling and opti-

mization of 3-D stencil computation on a stream-based FPGA accelerator. In 2013 In-

ternational Conference on Reconfigurable Computing and FPGAs (ReConFig), pages

1–6, 2013.

[18] Jim Douglas and James E Gunn. A General Formulation of Alternating Direction

Methods. Numèrische mathèmatik, 6(1):428–453, 1964.

[19] DSP HDL Toolbox. DSP HDL Toolbox, Design digital signal processing applications

for FPGAs, ASICs, and SoCs, 2023. https://uk.mathworks.com/products/dsp-

hdl.html.

120

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1109/CGO51591.2021.9370315
https://uk.mathworks.com/products/dsp-hdl.html
https://uk.mathworks.com/products/dsp-hdl.html

[20] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods.

Handbook of numerical analysis, 7:713–1018, 2000.

[21] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized FPGA ac-

celerators for efficient cloud computing. In Proceedings of the IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), pages 430–

435, 2015.

[22] FPGA Optimization Guide for Intel® oneAPI Toolkits. FPGA Optimization

Guide for Intel® oneAPI Toolkits, 2023. https://www.intel.com/content/

dam/develop/external/us/en/documents/oneapi-dpcpp-fpga-optimization-

guide.pdf.

[23] Haohuan Fu and Robert G. Clapp. Eliminating the Memory Bottleneck: An

FPGA-Based Solution for 3d Reverse Time Migration. In Proceedings of the 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA

’11, page 65–74, New York, NY, USA, 2011. Association for Computing Machinery.

ISBN 9781450305549. doi: 10.1145/1950413.1950429. URL https://doi.org/10.

1145/1950413.1950429.

[24] Walter Gander and Gene H Golub. Cyclic Reduction—History and Applications.

Scientific computing (Hong Kong, 1997), 7385, 1997.

[25] Getting Started with Vitis HLS. Getting Started with Vitis HLS, 2023.

https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Getting-

Started-with-Vitis-HLS.

[26] Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C. Schulthess.

STELLA: a domain-specific tool for structured grid methods in weather and climate

models. In SC ’15: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1–12, 2015. doi: 10.1145/

2807591.2807627.

[27] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. GraphLily: Accelerating

Graph Linear Algebra on HBM-Equipped FPGAs. In IEEE/ACM International

Conference On Computer Aided Design (ICCAD), 2021.

[28] Mike Hutton. Understanding How the New Intel® HyperFlex™ FPGA

Architecture Enables Next-Generation High-Performance Systems, 2022.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/wp/wp-01231-understanding-how-hyperflex-architecture-

enables-high-performance-systems.pdf/.

[29] Intel® FPGA Programmable Acceleration Card D5005. Intel® FPGA Pro-

grammable Acceleration Card D5005, 2022. https://www.intel.com/content/

www/us/en/products/details/fpga/platforms/pac/d5005.html.

121

https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi-dpcpp-fpga-optimization-guide.pdf
https://doi.org/10.1145/1950413.1950429
https://doi.org/10.1145/1950413.1950429
https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.pdf/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.pdf/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01231-understanding-how-hyperflex-architecture-enables-high-performance-systems.pdf/
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html

[30] Christian T. Jacobs, Satya P. Jammy, and Neil D. Sandham. OpenSBLI: A framework

for the automated derivation and parallel execution of finite difference solvers on

a range of computer architectures. Journal of Computational Science, 18:12–23,

2017. ISSN 1877-7503. doi: https://doi.org/10.1016/j.jocs.2016.11.001. URL https:

//www.sciencedirect.com/science/article/pii/S187775031630299X.

[31] Abhishek Kumar Jain, Suhaib A. Fahmy, and Douglas L. Maskell. Efficient Overlay

Architecture Based on DSP Blocks. In 2015 IEEE 23rd Annual International Sympo-

sium on Field-Programmable Custom Computing Machines, pages 25–28, 2015. doi:

10.1109/FCCM.2015.15.

[32] Q. Jia and H. Zhou. Tuning Stencil codes in OpenCL for FPGAs. In 2016 IEEE

34th International Conference on Computer Design (ICCD), pages 249–256, 2016.

[33] Kamalavasan Kamalakkannan, Gihan R. Mudalige, István Z. Reguly, and Suhaib A.

Fahmy. High-Level FPGA Accelerator Design for Structured-Mesh-Based Explicit

Numerical Solvers. In 2021 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 1087–1096, 2021. doi: 10.1109/IPDPS49936.2021.00117.

[34] Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A.

Fahmy. FPGA Acceleration of Structured-Mesh-Based Explicit and Implicit Nu-

merical Solvers Using SYCL. In International Workshop on OpenCL, IWOCL’22,

New York, NY, USA, 2022. Association for Computing Machinery. ISBN

9781450396585. doi: 10.1145/3529538.3530007. URL https://doi.org/10.1145/

3529538.3530007.

[35] Kamalavasan Kamalakkannan, Gihan R. Mudalige, Istvan Z. Reguly, and Suhaib A.

Fahmy. High Throughput Multidimensional Tridiagonal System Solvers on FP-

GAs. In Proceedings of the 36th ACM International Conference on Supercomputing,

ICS ’22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN

9781450392815. doi: 10.1145/3524059.3532371. URL https://doi.org/10.1145/

3524059.3532371.

[36] Kamalavasan Kamalakkannan, Gihan Mudalige, István Zoltán Reguly, and Suhaib

Fahmy. FPGA tridiagonal solver library, March 2023. URL https://doi.org/10.

5281/zenodo.7750458.

[37] Kamalavasan Kamalakkannan, Beniel Thileepan, Gihan Mudalige, István Zoltán

Reguly, and Suhaib Fahmy. Benchmarking - Xilinx Alveo U280 vs Nvidia V100

for Stencil applications, March 2023. URL https://doi.org/10.5281/zenodo.

7750461.

[38] Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and

Gustavo Alonso. High Bandwidth Memory on FPGAs: A Data Analytics Perspective.

122

https://www.sciencedirect.com/science/article/pii/S187775031630299X
https://www.sciencedirect.com/science/article/pii/S187775031630299X
https://doi.org/10.1145/3529538.3530007
https://doi.org/10.1145/3529538.3530007
https://doi.org/10.1145/3524059.3532371
https://doi.org/10.1145/3524059.3532371
https://doi.org/10.5281/zenodo.7750458
https://doi.org/10.5281/zenodo.7750458
https://doi.org/10.5281/zenodo.7750461
https://doi.org/10.5281/zenodo.7750461

In International Conference on Field-Programmable Logic and Applications (FPL),

2020.

[39] T. Kenter, J. Förstner, and C. Plessl. Flexible FPGA design for FDTD using

OpenCL. In 2017 27th International Conference on Field Programmable Logic and

Applications (FPL), pages 1–7, 2017.

[40] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Ja-

son Cong, and Zhiru Zhang. HeteroCL: A Multi-Paradigm Programming Infras-

tructure for Software-Defined Reconfigurable Computing. In Proceedings of the

2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

FPGA ’19, page 242–251, New York, NY, USA, 2019. Association for Computing

Machinery. ISBN 9781450361378. doi: 10.1145/3289602.3293910. URL https:

//doi.org/10.1145/3289602.3293910.

[41] Michael Lange, Navjot Kukreja, Mathias Louboutin, Fabio Luporini, Felippe Vieira,

Vincenzo Pandolfo, Paulius Velesko, Paulius Kazakas, and Gerard Gorman. Devito:

Towards a generic finite difference dsl using symbolic python. 2016 6th Workshop

on Python for High-Performance and Scientific Computing (PyHPC), pages 67–75,

2016.

[42] Endre Laszlo, Mike Giles, and Jeremy Appleyard. Manycore Algorithms for Batch

Scalar and Block Tridiagonal Solvers. ACM Transactions on Mathematical Software

(TOMS), 42(4):1–36, 2016.

[43] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differ-

ential Equations. Society for Industrial and Applied Mathematics, 2007. doi:

10.1137/1.9780898717839. URL https://epubs.siam.org/doi/abs/10.1137/1.

9780898717839.

[44] H. Levy and F. Lessman. ”Finite difference equations”. Courier Corporation, 1992.

[45] Fabio Luporini, Mathias Louboutin, Michael Lange, Navjot Kukreja, Philipp Witte,

Jan Hückelheim, Charles Yount, Paul H. J. Kelly, Felix J. Herrmann, and Gerard J.

Gorman. Architecture and Performance of Devito, a System for Automated Stencil

Computation. ACM Trans. Math. Softw., 46(1), apr 2020. ISSN 0098-3500. doi:

10.1145/3374916. URL https://doi.org/10.1145/3374916.

[46] Roman Lysecky, Kris Miller, Frank Vahid, and Kees Vissers. Firm-Core Vir-

tual FPGA for Just-in-Time FPGA Compilation (Abstract Only). In Proceedings

of the 2005 ACM/SIGDA 13th International Symposium on Field-Programmable

Gate Arrays, FPGA ’05, page 271, New York, NY, USA, 2005. Association for

Computing Machinery. ISBN 1595930299. doi: 10.1145/1046192.1046247. URL

https://doi.org/10.1145/1046192.1046247.

123

https://doi.org/10.1145/3289602.3293910
https://doi.org/10.1145/3289602.3293910
https://epubs.siam.org/doi/abs/10.1137/1.9780898717839
https://epubs.siam.org/doi/abs/10.1137/1.9780898717839
https://doi.org/10.1145/3374916
https://doi.org/10.1145/1046192.1046247

[47] Endre László, Zoltán Nagy, Michael B. Giles, István Reguly, Jeremy Appleyard, and

Peter Szolgay. Analysis of Parallel Processor Architectures for the Solution of the

Black-Scholes PDE. In 2015 IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1977–1980, 2015. doi: 10.1109/ISCAS.2015.7169062.

[48] H. Macintosh, Jasmine Banks, and N. Kelson. Implementing and Evaluating an Het-

erogeneous, Scalable, Tridiagonal Linear System Solver with OpenCL to Target FP-

GAs, GPUs, and CPUs. Int. J. Reconfigurable Comput., 2019:3679839:1–3679839:13,

2019.

[49] H. J. Macintosh, D. J. Warne, N. A. Kelson, J. E. Banks, and T. W. Farrell. Imple-

mentation of Parallel Tridiagonal Solvers for a Heterogeneous Computing Environ-

ment. In Jason Sharples and Judith Bunder, editors, Proceedings of the 17th Biennial

Computational Techniques and Applications Conference, CTAC-2014, volume 56 of

ANZIAM J., pages C446–C462, Feb 2016. URL http://journal.austms.org.au/

ojs/index.php/ANZIAMJ/article/view/9371.

[50] GR Mudalige, MB Giles, I Reguly, C Bertolli, and PHJ Kelly. OP2: An active

library framework for solving unstructured mesh-based applications on multi-core

and many-core architectures. 2012 Innovative Parallel Computing, InPar 2012, 2012.

doi: 10.1109/InPar.2012.6339594. URL http://dx.doi.org/10.1109/InPar.2012.

6339594.

[51] G.R. Mudalige, I.Z. Reguly, S.P. Jammy, C.T. Jacobs, M.B. Giles, and N.D. Sand-

ham. Large-scale performance of a DSL-based multi-block structured-mesh applica-

tion for Direct Numerical Simulation. Journal of Parallel and Distributed Computing,

131:130 – 146, 2019. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2019.04.

019.

[52] G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto, and M. D. Santam-

brogio. A polyhedral model-based framework for dataflow implementation on FPGA

devices of Iterative Stencil Loops. In 2016 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 1–8, 2016.

[53] NVIDIA V100 Data Sheet. NVIDIA V100 Data Sheet, Jan 2020.

https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-

datasheet-update-us-1165301-r5.pdf.

[54] Filipe Oliveira, C. Silva Santos, F. A. Castro, and José C. Alves. A Custom Processor

for a TDMA Solver in a CFD Application. In Roger Woods, Katherine Compton,

Christos Bouganis, and Pedro C. Diniz, editors, Reconfigurable Computing: Architec-

tures, Tools and Applications, pages 63–74, Berlin, Heidelberg, 2008. Springer Berlin

Heidelberg. ISBN 978-3-540-78610-8.

124

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9371
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9371
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1109/InPar.2012.6339594
 https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
 https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf

[55] OpenCL Specification. OpenCL Specification, 2023. https://registry.khronos.

org/OpenCL/specs/2.2/html/OpenCL_API.html.

[56] OPS for Many-Core Platforms. OPS for Many-Core Platforms, 2014. https://

github.com/OP-DSL/OPS.

[57] OPS Manual. OPS Manual, 2023. https://ops-dsl.readthedocs.io/en/latest/.

[58] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A frame-

work for hybrid CPU-FPGA databases. In Proceedings of the IEEE International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pages

211–218, 2017.

[59] P.G. Paulin and J.P. Knight. Force-directed scheduling for the behavioral synthesis

of ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 8(6):661–679, 1989. doi: 10.1109/43.31522.

[60] Eric Polizzi and Ahmed H. Sameh. A Parallel Hybrid Banded System Solver: the

SPIKE Algorithm. Parallel Computing, 32(2):177–194, 2006. ISSN 0167-8191. doi:

https://doi.org/10.1016/j.parco.2005.07.005. Parallel Matrix Algorithms and Appli-

cations (PMAA’04).

[61] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Lu-

porini, Andrew T. T. Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and

Paul H. J. Kelly. Firedrake: Automating the Finite Element Method by Composing

Abstractions. ACM Trans. Math. Softw., 43(3), dec 2016. ISSN 0098-3500. doi:

10.1145/2998441. URL https://doi.org/10.1145/2998441.

[62] Prashant Rawat, Martin Kong, Tom Henretty, Justin Holewinski, Kevin Stock, Louis-

Noël Pouchet, J. Ramanujam, Atanas Rountev, and P. Sadayappan. SDSLc: A

Multi-Target Domain-Specific Compiler for Stencil Computations. In Proceedings

of the 5th International Workshop on Domain-Specific Languages and High-Level

Frameworks for High Performance Computing, WOLFHPC ’15, New York, NY, USA,

2015. Association for Computing Machinery. ISBN 9781450340168. doi: 10.1145/

2830018.2830025. URL https://doi.org/10.1145/2830018.2830025.

[63] I. Z. Reguly, G. R. Mudalige, and M. B. Giles. Loop Tiling in Large-Scale Stencil

Codes at Run-Time with OPS. IEEE Transactions on Parallel and Distributed Sys-

tems, 29(4):873–886, April 2018. ISSN 1045-9219. doi: 10.1109/TPDS.2017.2778161.

[64] Istvan Z. Reguly, Branden Moore, Tim Schmielau, Jacques du Toit, and Gihan R.

Mudalige. Batch solution of small PDEs with the OPS DSL. In Michèle Weiland,

Guido Juckeland, Sadaf Alam, and Heike Jagode, editors, High Performance Com-

puting, pages 124–141, Cham, 2019. Springer International Publishing. ISBN 978-3-

030-34356-9.

125

https://registry.khronos.org/OpenCL/specs/2.2/html/OpenCL_API.html
https://registry.khronos.org/OpenCL/specs/2.2/html/OpenCL_API.html
https://github.com/OP-DSL/OPS
https://github.com/OP-DSL/OPS
 https://ops-dsl.readthedocs.io/en/latest/
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2830018.2830025

[65] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook,

and Xinmin Tian. ”Unified Shared Memory”, pages 149–171. Apress, Berkeley, CA,

2021. ISBN 978-1-4842-5574-2. doi: 10.1007/978-1-4842-5574-2 6. URL https:

//doi.org/10.1007/978-1-4842-5574-2_6.

[66] Bajaj Ronak and Suhaib A Fahmy. Mapping for maximum performance on FPGA

DSP blocks. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 35(4):573–585, 2015.

[67] Thomas F. Russell and Mary Fanett Wheeler. 2. Finite Element and Finite

Difference Methods for Continuous Flows in Porous Media, pages 35–106. doi:

10.1137/1.9781611971071.ch2. URL https://epubs.siam.org/doi/abs/10.1137/

1.9781611971071.ch2.

[68] K. Sano, Y. Hatsuda, and S. Yamamoto. Scalable Streaming-Array of Simple Soft-

Processors for Stencil Computations with Constant Memory-Bandwidth. In 2011

IEEE 19th Annual International Symposium on Field-Programmable Custom Com-

puting Machines, pages 234–241, 2011.

[69] K. Sano, Y. Hatsuda, and S. Yamamoto. Multi-FPGA Accelerator for Scalable

Stencil Computation with Constant Memory Bandwidth. IEEE Transactions on

Parallel and Distributed Systems, 25(3):695–705, 2014.

[70] M. Schmidt, M. Reichenbach, and D. Fey. A Generic VHDL Template for 2D Stencil

Code Applications on FPGAs. In 2012 IEEE 15th International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing Workshops,

pages 180–187, 2012.

[71] M. Shafiq, M. Pericàs, R. de la Cruz, M. Araya-Polo, N. Navarro, and E. Ayguadé.

Exploiting memory customization in FPGA for 3D stencil computations. In 2009

International Conference on Field-Programmable Technology, pages 38–45, 2009.

[72] Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gomez-

Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. NERO: A Near High-

Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling. In In-

ternational Conference on Field-Programmable Logic and Applications (FPL), pages

9–7, 2020.

[73] Hayden Kwok-Hay ”So and Cheng” Liu. ”FPGA Overlays”, pages 285–305. Springer

International Publishing, Cham, 2016. ISBN 978-3-319-26408-0. doi: 10.1007/978-

3-319-26408-0 16. URL https://doi.org/10.1007/978-3-319-26408-0_16.

[74] SYCL 2020 Specification. SYCL 2020 Specification, 2023. https://registry.

khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html.

126

https://doi.org/10.1007/978-1-4842-5574-2_6
https://doi.org/10.1007/978-1-4842-5574-2_6
https://epubs.siam.org/doi/abs/10.1137/1.9781611971071.ch2
https://epubs.siam.org/doi/abs/10.1137/1.9781611971071.ch2
https://doi.org/10.1007/978-3-319-26408-0_16
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html

[75] G. Tataru and T. Fisher. Stochastic Local Volatility. Quantitative Development

Group, Bloomberg Version 1, Feb 5 2010.

[76] J. W. Thomas. ”Numerical Partial Differential Equations: Finite Difference Meth-

ods”. Springer New York, NY, 1995.

[77] Llewellyn Thomas. Elliptic Problems in Linear Differential Equations Over a Net-

work: Watson Scientific Computing Laboratory. Columbia Univ., NY, 1949.

[78] Tridsolver Library. Tridsolver Library, July 2020. https://github.com/OP-DSL/

tridsolver.

[79] Pedro Valero-Lara, Ivan Mart́ınez-Pérez, Raül Sirvent, Xavier Martorell, and An-

tonio J. Peña. NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal

Systems Implementation of cuThomasBatch. In Roman Wyrzykowski, Jack Don-

garra, Ewa Deelman, and Konrad Karczewski, editors, Parallel Processing and Ap-

plied Mathematics, pages 243–253, Cham, 2018. Springer International Publishing.

ISBN 978-3-319-78024-5. doi: 10.1007/978-3-319-78024-5 22.

[80] P. Vincent, F. Witherden, B. Vermeire, J. S. Park, and A. Iyer. Towards Green

Aviation with Python at Petascale. In SC16: International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–11, Nov 2016.

doi: 10.1109/SC.2016.1.

[81] Virtex UltraScale+ HBM FPGA: A Revolutionary Increase in Memory Performance.

Virtex UltraScale+ HBM FPGA: A Revolutionary Increase in Memory Performance,

2022. https://docs.xilinx.com/v/u/en-US/wp485-hbm.

[82] Vision HDL Toolbox. Vision HDL Toolbox, Design image processing, video, and

computer vision systems for FPGAs and ASICs, 2023. https://uk.mathworks.

com/products/vision-hdl.html.

[83] Vitis Quantitative Finance Library V.2020.2. Vitis Quantitative Finance Library

V.2020.2, 2020. https://xilinx.github.io/Vitis_Libraries/quantitative_

finance/2020.2/.

[84] H. M. Waidyasooriya and M. Hariyama. Multi-FPGA Accelerator Architecture for

Stencil Computation Exploiting Spacial and Temporal Scalability. IEEE Access, 7:

53188–53201, 2019.

[85] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama. OpenCL-Based

FPGA-Platform for Stencil Computation and Its Optimization Methodology. IEEE

Transactions on Parallel and Distributed Systems, 28(5):1390–1402, 2017.

[86] Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. DLAU: A scalable

deep learning accelerator unit on FPGA. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 36(3):513–517, 2016.

127

https://github.com/OP-DSL/tridsolver
https://github.com/OP-DSL/tridsolver
 https://docs.xilinx.com/v/u/en-US/wp485-hbm
https://uk.mathworks.com/products/vision-hdl.html
https://uk.mathworks.com/products/vision-hdl.html
https://xilinx.github.io/Vitis_Libraries/quantitative_finance/2020.2/
https://xilinx.github.io/Vitis_Libraries/quantitative_finance/2020.2/

[87] Xinliang Wang, Yangtong Xu, and Wei Xue. A Hierarchical Tridiagonal System

Solver for Heterogenous Supercomputers. In 2014 5th Workshop on Latest Advances

in Scalable Algorithms for Large-Scale Systems, pages 69–76, 2014. doi: 10.1109/

ScalA.2014.12.

[88] David Warne, Neil Kelson, and Ross Hayward. Solving Tri-diagonal Linear Systems

Using Field Programmable Gate Arrays. In Y Gu and S Saha, editors, Proceedings of

the 4th International Conference on Computational Methods, pages 1–8. Queensland

University of Technology, Australia, 2012. URL https://eprints.qut.edu.au/

54894/.

[89] David J. Warne, Neil A. Kelson, and Ross F. Hayward. Comparison of High Level

FPGA Hardware Design for Solving Tri-diagonal Linear Systems. Procedia Com-

puter Science, 29:95–101, 2014. ISSN 1877-0509. doi: https://doi.org/10.1016/

j.procs.2014.05.009. URL https://www.sciencedirect.com/science/article/

pii/S1877050914001860. 2014 International Conference on Computational Science.

[90] Wireless HDL Toolbox. Wireless HDL Toolbox, Design and implement 5G and

LTE communications subsystems for FPGAs, ASICs, and SoCs, 2023. https://uk.

mathworks.com/products/wireless-hdl.html.

[91] Xilinx - Large FPGA methodology guide. Xilinx - Large FPGA methodology guide,

2012. https://www.xilinx.com/htmldocs/xilinx14_4/ug872_largefpga.pdf.

[92] Alveo U280 Data Center Accelerator Card Data Sheet. Xilinx Inc., May 2020. v1.3.

[93] J.L. Yanosik and T.A. McCracken. A Nine-Point, Finite-Difference Reservoir Sim-

ulator for Realistic Prediction of Adverse Mobility Ratio Displacements. Society

of Petroleum Engineers Journal, 19(04):253–262, 08 1979. ISSN 0197-7520. doi:

10.2118/5734-PA. URL https://doi.org/10.2118/5734-PA.

[94] YASK–Yet Another Stencil Kit. YASK–Yet Another Stencil Kit, 2023. https:

//github.com/intel/yask.

[95] Wei Zhang, Vaughn Betz, and Jonathan Rose. Portable and Scalable FPGA-Based

Acceleration of a Direct Linear System Solver. ACM Trans. Reconfigurable Technol.

Syst., 5(1), Mar 2012. ISSN 1936-7406. doi: 10.1145/2133352.2133358. URL https:

//doi.org/10.1145/2133352.2133358.

[96] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong.

”AutoPilot: A Platform-Based ESL Synthesis System”, pages 99–112. Springer

Netherlands, Dordrecht, 2008. ISBN 978-1-4020-8588-8. doi: 10.1007/978-1-4020-

8588-8 6. URL https://doi.org/10.1007/978-1-4020-8588-8_6.

128

https://eprints.qut.edu.au/54894/
https://eprints.qut.edu.au/54894/
https://www.sciencedirect.com/science/article/pii/S1877050914001860
https://www.sciencedirect.com/science/article/pii/S1877050914001860
https://uk.mathworks.com/products/wireless-hdl.html
https://uk.mathworks.com/products/wireless-hdl.html
 https://www.xilinx.com/htmldocs/xilinx14_4/ug872_largefpga.pdf
https://doi.org/10.2118/5734-PA
https://github.com/intel/yask
https://github.com/intel/yask
https://doi.org/10.1145/2133352.2133358
https://doi.org/10.1145/2133352.2133358
https://doi.org/10.1007/978-1-4020-8588-8_6

[97] H. R. Zohouri, A. Podobas, and S. Matsuoka. High-Performance High-Order Stencil

Computation on FPGAs Using OpenCL. In 2018 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), pages 123–130, 2018.

[98] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. Combined Spatial

and Temporal Blocking for High-Performance Stencil Computation on FPGAs Using

OpenCL. In Proceedings of the 2018 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA ’18, page 153–162, New York, NY, USA,

2018. Association for Computing Machinery. ISBN 9781450356145. doi: 10.1145/

3174243.3174248. URL https://doi.org/10.1145/3174243.3174248.

129

https://doi.org/10.1145/3174243.3174248

Appendix A

2D Heat diffusion using FDM

In Chapter 2, the 2D-Poisson equation is solved through three different numerical schemes

and an analysis of their suitability for parallel architectures based on compute and commu-

nication patterns was presented. This appendix section illustrates the numerical stability

of those schemes through a 2D heat equation that has a similarity with the 2D heat

application we used for benchmarking FPGAs and GPUs in Chapter 4-5.

∂T

∂t
= α

(
∂2T

∂2x
+

∂2T

∂2y

)
(A.1)

Above abstract 2D heat equation can be attempted to be solved using the finite dif-

ference method. We discretize the 2D space x, y into i, j and time t into k, as such the

temperature T using discretized space would be T k
i,j . We note the following boundary

condition and initial values for this problem:

• Initial temperature (T) at 2D space (T 0
i,j) is given

• Temperature (T) along the boundary is known at any time step k

A.1 FTCS - Explicit Numerical Scheme

In Equation A.1, the forward difference can be used to compute ∂T
∂t with the resolution of

∆t and second order central difference can be used to rewrite ∂2T
∂2x

,∂
2T

∂2y
with the resolution

of h for both x and y. It is called the Forward Time Centered Space (FTCS) method and

the resulting equation will be as follows:

T k+1
i,j − T k

i,j

∆t
= α

(
T k
i−1,j − 2T k

i,j + T k
i+1,j

h2
+

T k
i,j−1 − 2T k

i,j + T k
i,j+1

h2

)
(A.2)

Above equation can be re-written as:

T k+1
i,j =

(
1− 4∆tα

h2

)
T k
i,j +∆tα

(
T k
i−1,j + T k

i+1,j + T k
i,j−1 + T k

i,j+1

)
(A.3)

130

Values in time step k+ 1 can be obtained using a 5-point stencil that accesses the values

in time step k. However, it can be shown through analysis of the amplification factor that

the above equation is stable only if:(
1− 4∆tα

h2

)
> 0 (A.4)

It can be re-written as

∆t <
h2

4α
(A.5)

The following can be inferred from the above condition:

• This explicit scheme is conditionally stable

• Smaller resolution in space would require a much smaller resolution in the time

domain, hence it would require a huge number of iterations

A.2 BTCS Numerical Scheme

In Equation A.2, FTCS scheme used forward difference of ∂T
∂t . Instead, the backward

difference can be used for ∂T
∂t and the resulting equation will be as follows.

T k
i,j − T k−1

i,j

∆t
= α

(
T k
i−1,j − 2T k

i,j + T k
i+1,j

h2
+

T k
i,j−1 − 2T k

i,j + T k
i,j+1

h2

)
(A.6)

This scheme is called Backward Time Centered Space (BTCS) method and the above

equation can be arranged as follows:

aT k
i,j − bT k

i−1,j − bT k
i+1,j − bT k

i,j−1 − bT k
i,j+1 = T k−1

i,j (A.7)

Here a = 1+ 4α∆t
h2 and b = α∆t

h2 . A system of equations, similar to one in Equation 2.11 can

be formed by writing the above equation for all the i, j points along utilizing the initial

and boundary values. This scheme is unconditionally stable. The drawback is solution

method is hard to implement and parallelize.

A.3 ADI Scheme

In ADI scheme, ∂2T
∂2x

is re-written using time step k+1/2 while ∂T
∂t and ∂2T

∂2y
are re-written

using time step k. This leads to the following equation:

T
k+1/2
i,j − T k

i,j

∆t/2
= α

(
T
k+1/2
i−1,j − 2T

k+1/2
i,j + T

k+1/2
i+1,j

h2
+

T k
i,j−1 − 2T k

i,j + T k
i,j+1

h2

)
(A.8)

131

It can be re-written as follows:

aT
k+1/2
i,j + bT

k+1/2
i−1,j + bT

k+1/2
i+1,j = cT k

i,j + dT k
i,j−1 + dT k

i,j+1 (A.9)

Here, a = 1 + α∆t
h2 , b = −α∆t

2h2 , c = 1 − α∆t
h2 and d = α∆t

2h2 . A set of equations as A.9 can

be formed as a tridiagonal system for each j. Similarly, another set of equations can be

written using the time step k+1 for ∂2T
∂2y

and using the time step k+1/2 for ∂T
∂t and ∂2T

∂2x

as follows:

T k+1
i,j − T k

i,j

∆t/2
= α

(
T
k+1/2
i−1,j − 2T

k+1/2
i,j + T

k+1/2
i+1,j

h2
+

T k+1
i,j−1 − 2T k+1

i,j + T k+1
i,j+1

h2

)
(A.10)

It can be re-written as follows:

aT k+1
i,j + bT k+1

i,j−1 + bT k+1
i,j+1 = cT

k+1/2
i,j + dT

k+1/2
i−1,j + dT

k+1/2
i+1,j (A.11)

This ADI scheme is unconditionally numerically stable for the 2D heat equation. However,

it is only conditionally stable for the 3D heat equation.

132

Appendix B

Performance of Implicit

Applications on U50

In Chapter 4, we benchmarked performance on Xilinx Alveo U280 for two representative

applications with Nvidia V100. Here, instead of Xilinx Alveo U280, we benchmark the

performance on Xilinx Alveo U50 with Nvidia V100. Xilinx Alveo U50 is a low-power

(TDP 75W) accelerator device with two SLR regions and comes with HBM memory.

Compared to U280, which consists of three SLR regions, we are limited by resources to

scale the compute modules.

B.1 2D ADI Heat Diffusion Application

322 482 642 802 962 1122 128210−2

10−1

100

Ru
nt

im
e

(s
ec

on
ds

)

2D ADI, FP32, v = 8, fu = 3, NCU = 2

GPU-3000B
GPU-1500B
FPGA-Pred

FPGA-3000B
FPGA-1500B

322 482 642 802 962 1122 1282

Mesh Size

2D ADI, FP64, v = 8, fu = 2, NCU = 2

Figure B.1: 120 iterations.

133

B.2 3D ADI Heat Diffusion Application

323 80x322 483 80x642 803 96310−2

10−1

100

Ru
nt

im
e

(s
ec

on
ds

)

3D ADI, FP32, v = 8, NCU = 4

GPU-72B
GPU-24B
FPGA-Pred

FPGA-72B
FPGA-24B

323 80x322 483 80x642 803 963

Mesh Size

3D ADI, FP64, v = 8, NCU = 2

Figure B.2: 100 iterations.

B.3 2D ADI Heat Diffusion Application on Larger Meshes

2562 3842 5122 6402 7682 896210−2

10−1

100

101

Ru
nt

im
e

(s
ec

on
ds

)

Thomas–PCR, FP32, v = 8, NCU = 4

GPU-180B
GPU-60B
GPU-12B
FPGA-Pred

FPGA-180B
FPGA-60B
FPGA-12B

2562 3842 5122 6402 7682 8962

Mesh Size

Thomas–Thomas, FP32, v = 8, NCU = 4

Figure B.3: 100 iterations.

134

B.4 SLV Application

0.00 0.02 0.04 0.06
Runtime (seconds)

30

300

3000

Nu
m

be
r o

f B
at

ch
es

0.0019

0.0062

0.0494

0.0083

0.0142

0.0310
Mesh : 40x20, itr= 11

0.00 1.00 2.00 3.00 4.00
Runtime (seconds)

0.0632

0.3386

3.0925

0.0607

0.2024

1.2022
Mesh : 100x50, itr= 104

GPU
FPGA
FPGA-Pred

Figure B.4: SLV application

135

Appendix C

Runtimes of Benchmarked

Applications

C.1 Chapter 3 Runtimes

Experimental system’s specifications.

FPGA Xilinx Alveo U280 [92]

DSP blocks 8490

BRAM / URAM 6.6MB (1487 blocks) / 34.5MB (960 blocks)

HBM 8GB, 460GB/s, 32 channels

DDR4 32GB, 38.4GB/s, in 2 banks (1 channel/bank)

Host Intel Xeon Silver 4116 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS

Design SW Vivado HLS, Vitis-2019.2

GPU Nvidia Tesla V100 PCIe [92]

Global Mem. 16GB HBM2, 900GB/s

Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS

Compilers, OS nvcc CUDA 9.1.85, Debian 9.11

Poisson-5pt-2D: Baseline (Figure 3.9, Runtimes in Seconds)

Mesh 200× 100 200× 200 300× 150 300× 300 400× 200 400× 400

GPU 0.506456 0.557750 0.434420 0.588450 0.577390 0.618230

FPGA 0.025010 0.035380 0.040370 0.063450 0.062740 0.104500

FPGA Pred 0.023088 0.033488 0.041344 0.064144 0.064400 0.104400

136

Poisson-5pt-2D: Batched (Figure 3.10 (a), Runtimes in Seconds)

Mesh 200× 100 200× 200 300× 150 300× 300 400× 200 400× 400

GPU-100B 2.21160 3.84453 4.16839 7.60413 6.66065 12.76010

GPU-1000B 17.0044 33.3788 36.1999

FPGA-100B 1.12066 2.16644 2.39700 4.68609 4.32076 8.49650

FPGA-1000B 11.0788 21.5203 23.8158

Pred-100B 1.07328 2.11328 2.32864 4.60864 4.06400 8.06400

Pred-1000B 10.6205 21.0205 23.1222

Poisson-5pt-2D: Tiled (Figure 3.10 (b), Runtimes in Seconds)

Mesh 512 1024 2048 4096 8000

GPU-150002 16.5599 16.5599 16.5599 16.5599 16.5599

GPU-200002 29.3727 29.3727 29.3727 29.3727 29.3727

FPGA-150002 16.3820 13.4231 12.4851 12.1019 11.9352

FPGA-200002 29.4516 23.9899 22.1574 21.8531 21.1726

Pred-150002 15.122 12.8960 12.0250 11.6378 11.4443

Pred-200002 26.8186 22.9551 21.4098 20.7659 20.3795

Jacobi-7pt-3D: Baseline (Figure 3.11, Runtimes in Seconds)

Mesh 503 1003 1503 2003 2503

GPU 0.324091 0.759514 1.60740 3.48595 6.03895

FPGA 0.143326 0.770618 2.25649 4.96895 9.27608

FPGA Pred 0.136976 0.760439 2.23674 4.93175 9.21131

137

Jacobi-7pt-3D: Batched (Figure 3.12 (a), Runtimes in Seconds)

Mesh 503 1003 1503 2003 2503

GPU-10B 0.095170 0.498283 1.331192 3.210194 5.774286

GPU-50B 0.334188 2.303245 6.517967

FPGA-10B 0.094334 0.613718 1.927346 4.403692 8.410590

FPGA-50B 0.448523 2.997540 9.489546

Pred-10B 0.092839 0.608932 1.914211 4.374532 8.355746

Pred-50B 0.444579 2.977322 9.427707

Jacobi-7pt-3D: Tiled (Figure 3.12 (b), Runtimes in Seconds)

Mesh 256 384 512 640 768

GPU-6003 0.492143 0.492143 0.492143 0.492143

GPU-18002 × 100 0.798848 0.798848 0.798848 0.798848 0.7988487

FPGA-6003 0.890816 0.731525 0.738536 0.710701

FPGA-18002 × 100 1.25812 1.25056 1.153999 1.140489 1.141086

Pred-6003 0.778627 0.642515 0.642515 0.636175

Pred-18002 × 100 1.082243 1.071679 1.001397 0.998096 0.998096

RTM: Baseline (Figure 3.13 (a), Runtimes in Seconds)

Mesh 323 322 × 50 502 × 16 502 × 32 503 502 × 200 502 × 400

GPU 0.138056 0.215500 0.175447 0.331792 0.457383 1.366103 2.585701

FPGA 0.331113 0.397877 0.565685 0.690383 0.830591 1.999264 3.557081

FPGA Pred 0.323678 0.389885 0.556800 0.680533 0.819733 1.979733 3.526400

138

RTM: Batched (Figure 3.13 (b), Runtimes in Seconds)

Mesh 323 322 × 50 502 × 16 502 × 32 503

GPU-20B 0.120959 0.222077 0.181801 0.415573 0.642531

GPU-40B 0.231278 0.427226 0.334811 0.804417 1.262631

FPGA-20B 0.318709 0.453378 0.416621 0.668576 0.952004

FPGA-40B 0.618231 0.887511 0.794693 1.298273 1.864900

Pred-20B 0.311908 0.444322 0.408320 0.655787 0.934187

Pred-40B 0.606161 0.870989 0.779520 1.274453 1.831253

C.2 Chapter 4 Runtimes

Experimental systems specifications.

FPGA Xilinx Alveo U280 [92]

DSP blocks 8490

BRAM/URAM 6.6MB (1487 blocks)/34.5MB (960 blocks)

HBM 8GB, 460GB/s, 32 channels

DDR4 32GB, 38.4GB/s, in 2 banks

Host AMD Ryzen Threadripper PRO 3975WX (32 cores)

512GB RAM, Ubuntu 18.04.6 LTS

Design SW Xilinx Vivado HLS, Vitis 2019.2

Run-Time Xilinx XRT 202020.2.9.317

GPU Nvidia Tesla V100 PCIe [53]

Global Mem. 16GB HBM2, 900GB/s

Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS

Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

ADI 2D: FP32 (Figure 4.5, Runtimes in Seconds)

Mesh 322 482 642 802 962 1122 1282

GPU-1500B 0.051926 0.100185 0.164678 0.252945 0.352306 0.478392 0.608963

GPU-3000B 0.08929 0.185628 0.311998 0.490501 0.694886 0.946668 1.21891

FPGA-1500B 0.011768 0.024065 0.045064 0.06177 0.087886 0.119968 0.15678

FPGA-3000B 0.020959 0.044525 0.084882 0.118695 0.169448 0.23099 0.304469

Pred-1500B 0.011426 0.023794 0.040598 0.061838 0.087514 0.117626 0.152175

Pred-3000B 0.020193 0.043520 0.075666 0.116632 0.16641 0.22502 0.292449

139

ADI 2D: FP64 (Figure 4.5, Runtimes in Seconds)

Mesh 322 482 642 802 962 1122 1282

GPU-1500B 0.083552 0.180618 0.309131 0.486596 0.688309 0.959437 1.262698

GPU-3000B 0.158329 0.35355 0.627219 0.975146 1.3695 1.908415 2.448809

FPGA-1500B 0.032777 0.070323 0.124069 0.183378 0.260491 0.351374 0.459245

FPGA-3000B 0.0598 0.13201 0.236424 0.352789 0.503768 0.682056 0.894456

Pred-1500B 0.032033 0.06821 0.117826 0.180883 0.25738 0.347316 0.450693

Pred-3000B 0.0587 0.12821 0.224493 0.34755 0.49738 0.673983 0.87736

ADI 3D: FP32 (Figure 4.6, Runtimes in Seconds)

Mesh 323 80× 322 483 80× 642 803 963

GPU-24B 0.033485 0.064337 0.078677 0.207939 0.318074 0.534816

GPU-72B 0.068051 0.159311 0.209396 0.605547 0.966475 1.605493

FPGA-24B 0.014435 0.031197 0.036908 0.09639 0.145938 0.245777

FPGA-72B 0.035474 0.073093 0.0942 0.268703 0.418207 0.712403

Pred-24B 0.013710 0.030467 0.036084 0.094831 0.142153 0.237960

Pred-72B 0.029860 0.070842 0.090591 0.256332 0.394499 0.674013

ADI 3D: FP64 (Figure 4.6, Runtimes in Seconds)

Mesh 323 80× 322 483 80× 642 803 963

GPU-24B 0.047983 0.109056 0.143062 0.406282 0.630805 1.090251

GPU-72B 0.125366 0.307859 0.410969 1.210522 1.894097 3.200741

FPGA-24B 0.031326 0.07085 0.087803 0.240179 0.371648 0.626418

FPGA-72B 0.078996 0.180131 0.238624 0.689622 1.089421 1.847857

Pred-24B 0.030766 0.070762 0.087616 0.240405 0.366186 0.620672

Pred-72B 0.074453 0.179989 0.235072 0.677312 1.048853 1.80032

140

ADI 2D: Thomas-PCR, FP32 (Figure 4.7, Runtimes in Seconds)

Mesh 2562 3842 5122 6402 7682 8962

GPU-12B 0.089786 0.142 0.19506 0.2532 0.321498 0.387086

GPU-60B 0.137726 0.250878 0.383688 0.568991 0.795465 1.049155

GPU-180B 0.270218 0.567759 0.982022 1.548083 2.197039 2.986251

FPGA-12B 0.015729 0.03157 0.051094 0.077999 0.109692 0.148295

FPGA-60B 0.060961 0.13298 0.231108 0.360772 0.514358 0.701884

FPGA-180B 0.174262 0.386244 0.681082 1.067558 1.525821 2.085651

Pred-12B 0.015261 0.030717 0.049586 0.075453 0.106781 0.143570

Pred-60B 0.058952 0.129021 0.224349 0.34852 0.499997 0.678781

Pred-180B 0.168178 0.374781 0.661256 1.031186 1.483037 2.016808

ADI 2D: Thomas-Thomas, (Figure 4.7, Runtimes in Seconds)

Mesh 2562 3842 5122 6402 7682 8962

GPU-12B 0.089786 0.142 0.19506 0.2532 0.321498 0.387086

GPU-60B 0.137726 0.250878 0.383688 0.568991 0.795465 1.049155

GPU-180B 0.270218 0.567759 0.982022 1.548083 2.197039 2.986251

FPGA-12B 0.016794 0.033331 0.051978 0.079304 0.111366 0.150252

FPGA-60B 0.062061 0.13553 0.232126 0.36213 0.516121 0.703584

FPGA-180B 0.175236 0.389155 0.68165 1.069117 1.527731 2.087249

Pred-12B 0.015914 0.032064 0.053674 0.080746 0.11328 0.151274

Pred-60B 0.059605 0.130368 0.228437 0.353813 0.506496 0.686485

Pred-180B 0.168832 0.376128 0.665344 1.03648 1.489536 2.024512

SLV: Batched 40× 20 (Figure 4.8, Runtimes in Seconds)

Batch 30 300 3000

GPU 0.008342 0.014189 0.031037

FPGA 0.001705 0.004655 0.033508

FPGA Pred 0.001357 0.004187 0.032477

141

SLV: Batched 100× 50 (Figure 4.8, Runtimes in Seconds)

Batch 30 300 3000

GPU 0.060663 0.202378 1.20224

FPGA 0.053073 0.23719 2.077623

FPGA Pred 0.052469 0.236359 2.075259

C.3 Chapter 5 Runtimes

Experimental systems specifications.

FPGA Intel PAC D5005 [29]

DSP blocks 5760

MLABs / M20K 7.6MB / 29.3 MB

DDR4 64GB, 76.8GB/s, in 4 banks (1 channel/bank)

Host Intel Xeon Platinum 8256 @3.8GHz

(16 CPUs, 4 cores each)

1559 GB RAM, Ubuntu 18.04.6 LTS

Design SW Intel oneAPI 2021.4.0, Intel Quartus software 19.2

board variant pac s10

GPU Nvidia Tesla V100 PCIe [53]

Global Mem. 16GB HBM2, 900GB/s

Host Intel Xeon Gold 6252 @2.10GHz (48 cores)

256GB RAM, Ubuntu 18.04.3 LTS

Compilers, OS nvcc CUDA 10.0.130, Debian 9.11

RTM forward-pass: Batched (Figure 5.1, Runtimes in Seconds)

Mesh 103 163 223 283 343 403

GPU-10B 0.011478 0.014003 0.033032 0.058117 0.098145 0.189857

GPU-100B 0.035713 0.080376 0.209297 0.408905 0.848501 1.723459

FPGA-10B 0.011721 0.023837 0.043807 0.072718 0.112303 0.164298

FPGA-100B 0.094341 0.211727 0.400258 0.703664 1.057610 1.559980

Pred-10B 0.011322 0.023992 0.044029 0.073109 0.112904 0.165090

Pred-100B 0.094206 0.211527 0.399843 0.675899 1.056439 1.558206

142

ADI 2D on Intel FPGAs: FP32(Figure 5.1, Runtimes in Seconds)

Mesh 322 402 482 562 642

GPU-800B 3.938412 5.624536 7.167415 9.374078 11.206901

GPU-4000B 13.515752 21.061396 29.08813 40.131187 50.196379

GPU opt est-800B 1.68678 2.383387 3.011662 3.926800 4.647422

GPU opt est-4000B 5.560471 8.74728 12.02255 16.62653 20.63857

FPGA-800B 1.08793 1.62754 2.28043 3.04603 3.924

FPGA-4000B 4.63369 7.16889 10.2588 13.9052 18.1093

Pred-800B 1.066900 1.609792 2.265722 3.034692 3.916701

Pred-4000B 4.613220 7.150917 10.24494 13.8952 18.10198

143

	Contents
	Acknowledgement
	Declarations
	Abstract
	Abbreviations
	Symbols
	List of Algorithms
	List of Figures
	List of Tables
	Chapter Introduction
	Contributions
	Thesis Overview

	Chapter Background
	FPGA Accelerator Device and Eco-System
	FPGA Accelerator Device Overview
	FPGA Programming
	Loop Latency Estimation

	Structured Mesh-Based Numerical Schemes
	Explicit Schemes - Stencil Solvers
	Explicit Schemes - Related Work on FPGAs
	Implicit Schemes
	Alternating Direction Implicit method
	Tridiagonal solver algorithms

	Implicit Scheme - Related work on FPGAs

	Chapter Explicit Solvers on FPGAs
	Accelerator Design for Stencil Computation
	Stencil Loop Transformation
	Vectorization and Unrolling the Iterative Loop
	Decoupled Kernel Pipeline
	Data Layout for Vector Elements

	Model for Baseline Design
	Optimizations
	Spatial and Temporal Blocking
	Spatially Blocked Design using Multiple HBM Ports
	Batching

	Performance
	Poisson-5pt-2D
	Jacobi-7pt-3D
	Reverse Time Migration (RTM) - Forward Pass

	Concluding Remarks and Discussion

	Chapter Implicit Schemes on FPGAs
	FPGA Design
	Small and Medium System Solvers
	Larger System Solvers

	Performance
	ADI Heat Diffusion Application
	Stochastic Local Volatility

	Discussion
	Concluding Remarks

	Chapter FPGA Designs with SYCL
	Intel FPGAs and SYCL
	Stencil Solvers
	Performance Model

	Multi-Dimensional Tridiagonal Solvers
	Performance
	Reverse Time Migration (RTM) Forward-Pass
	ADI 2D Heat Diffusion Application

	Concluding Remarks

	Chapter Towards Automating FPGA Designs
	OPS Framework for Structured Mesh Applications
	OPS API
	Application Development Using OPS

	OPS to FPGA Target transformation
	ops_par_loop nodes: Skeleton For Baseline Design
	ops_par_loop nodes: Vectorization
	ops_par_loop nodes: Batched Computation
	ops_par_loop nodes: Spatially Blocked Computation
	Global Memory Access Nodes
	Delay Buffers Nodes
	ops_tridMultiDimBatch: Tridiagonal Solver Nodes
	Building Dataflow Graph

	Optimal Design Parameter Identification
	Discussion and Concluding Remarks

	Chapter Conclusions and Future Work
	Contributions and Conclusions
	Future Work
	Support for Larger Meshes
	Support for Larger Number of Kernels
	DSL based Automatic Translator

	Appendix 2D Heat diffusion using FDM
	FTCS - Explicit Numerical Scheme
	BTCS Numerical Scheme
	ADI Scheme

	Appendix Performance of Implicit Applications on U50
	2D ADI Heat Diffusion Application
	3D ADI Heat Diffusion Application
	2D ADI Heat Diffusion Application on Larger Meshes
	SLV Application

	Appendix Runtimes of Benchmarked Applications
	Chapter 3 Runtimes
	Chapter 4 Runtimes
	Chapter 5 Runtimes

