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Abstract
Numerical simulation with partial differential equations is an important discipline
in high performance computing. Notable application areas include geosciences, fluid
dynamics, solid mechanics and electromagnetics. Recent hardware developments
have made it increasingly hard to achieve very good performance. This is both due to
a lack of numerical algorithms suited for the hardware and efficient implementations
of these algorithms not being available.
Modern CPUs require a sufficiently high arithmetic intensity in order to unfold
their full potential. In this thesis, we use a numerical scheme that is well-suited
for this scenario: The Discontinuous Galerkin Finite Element Method on cuboid
meshes can be implemented with optimal complexity exploiting the tensor product
structure of basis functions and quadrature formulae using a technique called sum
factorization. A matrix-free implementation of this scheme significantly lowers the
memory footprint of the method and delivers a fully compute-bound algorithm.
An efficient implementation of this scheme for a modern CPU requires maximum
use of the processor’s SIMD units. General purpose compilers are not capable
of autovectorizing traditional PDE simulation codes, requiring high performance
implementations to explicitly spell out SIMD instructions. With the SIMD width
increasing in the last years (reaching its current peak at 512 bits in the Intel Skylake
architecture) and programming languages not providing tools to directly target
SIMD units, such code suffers from a performance portability issue. This work
proposes generative programming as a solution to this issue.
To this end, we develop a toolchain that translates a PDE problem expressed in a
domain specific language into a piece of machine-dependent, optimized C++ code.
This toolchain is embedded into the existing user workflow of the DUNE project,
an open source framework for the numerical solution of PDEs. Compared to other
such toolchains, special emphasis is put on an intermediate representation that
enables performance-oriented transformations. Furthermore, this thesis defines a
new class of SIMD vectorization strategies that operate on batches of subkernels
within one integration kernel. The space of these vectorization strategies is explored
systematically from within the code generator in an autotuning procedure.
We demonstrate the performance of our vectorization strategies and their imple-
mentation by providing measurements on the Intel Haswell and Intel Skylake
architectures. We present numbers for the diffusion-reaction equation, the Stokes
equations and Maxwell’s equations, achieving up to 40% of the machine’s theoretical
floating point performance for an application of the DG operator.
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German Abstract
—Zusammenfassung—

Die numerische Simulation mit partiellen Differentialgleichungen ist eine wichti-
ge Teildisziplin des Höchstleistungsrechnens. Ihre Anwendungsgebiete umfassen
beispielsweise Geowissenschaften, Fluiddynamik, Festkörpermechanik oder Elek-
tromagnetismus. Durch die Entwicklungen der letzten Jahre im Hardwaresektor
ist es zunehmend schwer geworden, sehr gute Performance zu erzielen. Gründe
hierfür sind sowohl ein Mangel an numerischen Algorithmen, die gut für die Hard-
ware geeignet sind, als auch ein Mangel an effizienten Implementierungen dieser
Algorithmen.
In dieser Arbeit verwenden wir ein numerisches Verfahren, welches effizient auf
moderner Hardware implementiert werden kann: Das unstetige Galerkinverfahren
(Discontinuous Galerkin Finite Element Method) kann auf Hexaedergittern, unter
Ausnutzung der Tensorproduktstruktur der Basisfunktionen und Quadraturformeln,
mit optimaler Komplexität implementiert werden. Dies wird als Summenfakto-
risierung bezeichnet. Die selben Algorithmen können verwendet werden um die
Anwendung eines Operators zu implementieren, der in herkömmlichen Finite Ele-
mente Methoden in eine Datenstruktur für dünnbesetzte Matrizen assembliert
wird. Im Gegensatz zu assemblierten Matrizen erlaubt dies einen Algorithmus,
dessen Performance durch die Rechenleistung des Prozessors und nicht durch seine
Speicherbandbreite limitiert ist.
Effiziente Implementierungen dieses Verfahrens auf modernen CPUs müssen für eine
bestmögliche Auslastung der SIMD-Einheiten des Prozessors sorgen. Da Standard-
compiler für PDE-Probleme keinen zufriedenstellend vektorisierten Code generieren,
muss SIMD Vektorisierung explizit im Quellcode vorgenommen werden. Die verfüg-
bare SIMD Breite ist in den letzten Jahren stetig angestiegen (bis hin zu einer Breite
von 512 bits in der Intel Skylake Architektur). Da Programmiersprachen jedoch
kaum Sprachmittel für explizite SIMD Vektorisierung zur Verfügung stellen, ist es
schwierig dies auf hardware-unabhängige Weise zu tun. Diese Arbeit schlägt genera-
tive Programmierung als Lösungsansatz für dieses Performanceportabilitätsproblem
vor.
Zu diesem Zweck wird im Rahmen dieser Arbeit eine Toolchain entwickelt, wel-
che ein in einer domänenspezifischen Sprache beschriebenes PDE Problem in
hardware-spezifischen, optimierten C++ Code übersetzt. Diese Toolchain ist in
den Userworkflow des DUNE-Projekts eingebettet, einem quelloffenen C++ Fra-
mework zur numerischen Lösung partieller Differentialgleichungen. Hierbei liegt
das Hauptaugenmerk auf der Verwendung einer Zwischenrepräsentation, welche
performanceorientierte Transformationen erlaubt. Desweiteren führt diese Arbeit
eine neue Klasse von SIMD Vektorisierungsstrategien ein, welche Batches von Un-
terkerneln innerhalb eines Integrationskernels zusammenfasst. Der Codegenerator
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German Abstract — Zusammenfassung

traversiert die Menge dieser Vektorisierungsstrategien systematisch im Rahmen
eines Autotuning-Prozesses.
Die Performance unserer Vektorisierungsstrategien und ihrer Implementierung
wird durch Messungen auf den Intel Haswell und Intel Skylake Architekturen
belegt. Dabei werden die Diffusions-Reaktions-Gleichung, die Stokes-Gleichungen
sowie Maxwell’s Gleichungen als Beispiele herangezogen. Für die Anwendung eines
DG-Operators erzielen wir eine Maschinenauslastung von bis zu 40%.

viii
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1
Introduction

1.1 Motivation and Scope
Partial Differential Equations (PDEs) are an important tool in the modelling of
many physical processes of societal interest. Notable application areas include
geosciences, fluid dynamics, solid mechanics and electromagnetics. In the absence
of analytical solutions, numerical techniques are mandatory for the treatment of
PDEs. In fact, numerical simulation is often regarded as an emerging fundamental
pillar of scientific work, complementing theory and experiment.
Numerical solution techniques for PDEs approximate a continuous model with a
discrete model. Real world applications might require large computational domains
and/or resolution of small scale features, leading to discrete model sizes of billions
of unknowns and beyond. Numerical simulation with PDEs has therefore always
been a natural subject for High Performance Computing (HPC). Indeed, the biggest
supercomputing facilities in the world are used to perform numerical simulations
with PDEs.
Modern hardware has started to hit the limits of traditional scaling, forcing
hardware designers to introduce new levels of parallelism. As a consequence, HPC
software developers need to address many complex tasks: Leverage multicore
processors via multi threading, saturate the increased floating point capabilities of
the hardware or deal with heterogeneous clusters including Graphics Processing
Units (GPUs) and accelerator chips. Adapting numerical simulation codes to these
new architectures involves two separate challenges: Development of algorithms
suited for the hardware and efficient implementation of these algorithms.
The task of developing efficient algorithms requires revisiting existing numerical
techniques in the light of the available hardware and employ numerical schemes that
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enable HPC implementations. In the field of numerical simulation with PDEs this
comprises e.g. the ongoing endeavor to develop communication-minimal domain
decomposition schemes for Message Passing Interface (MPI) parallelism or the
search for algorithmic alternatives with high arithmetic intensity (Floating Point
Operations (FLOPs) per byte loaded from main memory) that allow compute-bound
implementations on current Central Processing Units (CPUs). The latter motivates
our use of the Discontinuous Galerkin (DG) Finite Element Method (FEM) on cuboid
meshes in this work, as it allows a reduction of the algorithmic complexity of finite
element assembly by exploiting the tensor product structure of finite elements
through a technique called sum factorization. A matrix-free implementation of the
DG scheme significantly lowers the memory footprint of the method and delivers a
fully compute-bound algorithm.

The development speed in programming languages cannot hold up to the speed in
hardware development. As a result, a lack of support for new hardware features in
general purpose programming languages and tools becomes apparent. This makes
performance portability across heterogeneous architectures a major challenge that
requires dedicated programming models. In fact, the same portability issue already
arises between CPU generations due to e.g. the increasing width of Single Instruction
Multiple Data (SIMD) units. General purpose C(++) compilers are not capable
of sufficiently vectorizing PDE codes and the C++ language does not provide a
portable way of explicitly expressing SIMD computations. Bridging this gap between
performance and portability is necessary in order to ensure the sustainability of
HPC software.

Generative programming is a potential solution to this performance portability
issue. Instead of manually implementing the performance-critical loops of finite
element assembly in a general purpose programming language, the mathematical
problem is expressed in a Domain-Specific Language (DSL). From this DSL, a source
code generator produces hardware-specific code that is integrated with the rest
of the simulation code. Beyond enabling performance portability, this approach
facilitates separation of concern between computational scientists and performance
engineers.

In the field of numerical simulation with PDEs, generative programming has been
pioneered by the FEniCS project [80] in the last decade. They provide a DSL for
finite element problems in the form of the Unified Form Language (UFL). Their
code generation toolchain is fully embedded into the Python language and geared
towards rapid prototyping of new models. In order to generate HPC-enabled code
from the UFL DSL, new algorithms and data structures need to be developed
and used in the code generation process. This work introduces such a toolchain
that integrates into the Distributed and Unified Numerics Environment (DUNE)
framework, a Free and Open Source Software (FOSS) simulation toolbox for PDE
problems.
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1.2 Contribution
The contribution of this thesis is two-fold: Firstly, we develop an HPC-enabled
toolchain that employs generative programming in the field of numerical simulation
with PDEs. Secondly, we formulate a new class of SIMD parallelization strategies
for finite element assembly and study it using a variety of example problems.
The developed code generation toolchain automates the generation of C++ code
for the innermost loops of finite element integration kernels. The user expresses
the PDE problem in the popular UFL DSL which is also used in other PDE software.
However, our toolchain translates UFL into an Intermediate Representation (IR)
that is more suited to performance engineering than earlier approaches. This IR
uses loopy, a Python project that expresses and transforms computational kernels
in a hardware-independent fashion. We embed our toolchain into the user workflow
of DUNE, greatly enriching the framework’s capabilities.
SIMD vectorization of the finite element assembly algorithm is often realized by
considering batches of local integration kernels, e.g. by grouping together multiple
grid cells. This approach however increases the memory footprint of the kernel
by a factor of the SIMD width and requires costly interleaving of the kernel input
data. We instead pursue and extend an idea from [91], where batches of subkernels
within a single integration kernel are used for SIMD vectorization. In contrast
to [91], we consider many more opportunities to batch subkernels allowing us
to target wider SIMD widths like in the Advanced Vector Extensions for 512
bits (AVX-512) instruction set. The class of vectorization strategies is explored
systematically from within the code generator in an autotuning procedure. We
show performance measurements for our strategies using the examples of the
diffusion-reaction equation, the Stokes equations and Maxwell’s equations. On the
Intel Haswell and Intel Skylake architectures (with the AVX-512 instruction set), we
achieve up to 40% of the machine’s theoretical peak performance for an application
of the DG operator.
The contributions of this thesis have been previously published in the following
articles:

• D. Kempf, R. Heß, S. Müthing, and P. Bastian. “Automatic Code Gen-
eration for High-Performance Discontinuous Galerkin Methods on Modern
Architectures”. In: arXiv preprint arXiv:1812.08075 (2018)

• D. Kempf and P. Bastian. “An HPC perspective on generative programming”.
In: Proceedings of the Software Engineering for Science workshop. 2019

• D. Kempf and T. Koch. “System testing in scientific numerical software
frameworks using the example of DUNE”. in: Archive of Numerical Software
5.1 (2017), pp. 151–168

This thesis reuses some of these articles verbatim, but indicates such use in the
introduction of the relevant section.
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1.3 Structure
This thesis is structured as follows: Section 2 introduces the fundamentals of this
work which cover many aspects of math and computer science. We start off by
giving a brief introduction into the finite element method and its DG variant. We
continue with the description of the DUNE framework as the major software project
that we base our work on. Afterwards, we summarize and characterize the use of
generative programming in the PDE software landscape. A detailed description
of the prevalent challenges in HPC on modern hardware architectures will lead
us to the introduction of an algorithmic technique that we advocate as a good
fit for implementation on such architectures: A matrix-free solution procedure in
combination with sum factorization which reduces the algorithmic complexity of
finite element problems. Section 3 is concerned with establishing a code generation
toolchain for the DUNE framework. For its input DSL and its IR, this toolchain
leverages several existing projects which are described in detail. After that, the
main code generation algorithms and their embedding into the DUNE user workflow
are described. Section 4 will introduce a new class of SIMD vectorization strategies
tailored to the finite element assembly problem. These strategies constitute a
search space which can be explored from an autotuning process integrated into
the code generator. We will back our work with performance measurements on
the Intel Haswell and Intel Skylake architectures in section 5. For that purpose
we examine the diffusion-reaction equation, the steady state Stokes equations and
Maxwell’s equations.
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2
Fundamentals

In this chapter, we will study the fundamentals of this work. This will cover the FEM
and the DG method, although we restrict ourselves to a very brief description that
introduces the necessary notation and highlights relevant aspects of the methods.
For a mathematically rigorous description, we refer to dedicated literature e.g. [21]
and [34]. After that, we will introduce the DUNE framework as a FOSS environment
for the numerical solution of PDEs. Following that we will study how generative
programming can be used in PDE software and how other projects already do
so successfully. We will then describe prevalent challenges in the current HPC
landscape and motivate the introduction of sum factorization and matrix-free
methods in subsequent sections.

2.1 The Finite Element Method
We will demonstrate the basics of the finite element method introducing the example
of the diffusion-reaction equation, that will be also be the object of investigation
in our numerical experiments in chapter 5. Considering a domain Ω ⊂ Rd, the
diffusion-reaction equation reads

−∇ · (k(x)∇u) + c(x)u = f in Ω (2.1)
u = g on ΓD ⊆ ∂Ω

−k(x)∇u · n = j on ΓN ⊆ ∂Ω

where k : Rd → R is called conductivity, c : Rd → R is the reaction rate and f is the
source term. The function g describes the Dirichlet boundary conditions, whereas
j describes the Neumann boundary flux. The above problem formulation requires
u ∈ C2(Ω) ∩ C0(Ω) which is a prohibitively severe constraint for both analytical
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results on existence and uniqueness of solutions, as well as for the development of
numerical solution techniques. Therefore, the concept of solution is extended to
take into account weak solutions that only fulfill the original PDE in a variational
sense. Weak solutions are obtained from strong formulations by multiplying with a
test function, integrating the result over the domain Ω and applying integration by
parts: ∫

Ω
(−∇ · (k(x)∇u) + c(x)u)v dx =

∫
Ω
fv dx∫

Ω
k(x)∇u · ∇v + c(x)uv dx−

∫
∂Ω
k(x)∇u · n ds =

∫
Ω
fv dx∫

Ω
k(x)∇u · ∇v + c(x)uv dx =

∫
Ω
fv dx−

∫
ΓN

jv ds (2.2)

In this weak formulation, it is sufficient that u is in the Sobolev space H1(Ω).
While Neumann boundary conditions are naturally implemented into the weak
formulation, Dirichlet boundary conditions are implemented by restricting the
solution space of the variational problem.
The finite element method aims at solving the variational problem from equation 2.2
in a discrete subspace of H1(Ω). In order to construct this subspace, the domain
Ω is subdivided into a triangulation Th, such that for all T ∈ Th, T is the image
of a polytopal reference element T̂ under a differentiable map µT . Additionally,
Th should cover the domain Ω in the sense that ⋂T∈Th

T = ∅ and ⋃T∈Th
T = Ω.

We require the triangulation to be conforming, meaning that the intersection of
the closure of two elements is the image of a boundary facet of the reference
polytope. In this work, we restrict ourselves to cuboid reference elements in order
to later exploit their tensor product structure. These reference elements do not vary
throughout the domain, allowing for a slightly simplified definition of the involved
function spaces. We define the local polynomial space Qd

k(T̂ ) of polynomials of
degree up to k being defined on the d-dimensional reference element. From these,
we can define the global space Vh:

Vh =
{
u ∈ C0(Ω)

∣∣∣ u|T = p ◦ µ−1
T , p ∈ Qd

k(T̂ ) ∀T ∈ Th

}
(2.3)

It is possible to show that Vh ⊂ H1(Ω), allowing Vh as a discrete solution space.
We use a subscript h for all elements of Vh, unless the function being in H1 is
sufficient in that context.
Choosing a basis {Φi}|Vh|−1

i=0 for the space Vh allows us to transform the variational
problem into an algebraic problem. To this end, we reformulate equation 2.2 in
terms of a bilinear form a and a linear form l.

a(u, v) :=
∫

Ω
k(x)∇u · ∇v + c(x)uv dx (2.4)

l(v) :=
∫

Ω
fv dx−

∫
ΓN

jv ds (2.5)
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Algorithm 2.1: Matrix assembly algorithm for a generic finite element problem.
Local contributions are accumulated into the dense matrix data structure Â and
afterwards scattered into global data strutures using the map g, that maps cell-local
indices to indices in the global space. The update expression at each quadrature
point q ∈ QP is given by the integrand of the given PDE.
1 for T ∈ Th do
2 N ← |Qd

k(T )− 1|
3 for i ∈ {0, . . . , N − 1} do
4 for j ∈ {0, . . . , N − 1} do
5 Â[i, j]← 0
6 for q ∈ QP do
7 for i ∈ {0, . . . , N − 1} do
8 for j ∈ {0, . . . , N − 1} do
9 Â[i, j]← Â[i, j] + update
10 for i ∈ {0, . . . , N − 1} do
11 for j ∈ {0, . . . , N − 1} do
12 A[g(T, i), g(T, j)]← A[g(T, i), g(T, j)] + Â[i, j]

The algebraic problem is then obtained in the following way, assuming that uh =∑
i(z)iΦi:

Find uh ∈ Vh s.t.: a(uh, vh) = l(vh) ∀vh ∈ Vh

a(
∑

i

(z)iΦi,Φj) = l(Φj) ∀j = 0, . . .∑
i

(z)ia(Φi,Φj) = l(Φj) ∀j = 0, . . .

Az = b (2.6)

The fact that the bilinear form a defines the linear system of equations in the
algebraic formulation motivates the most common choice of basis functions: Local
support of basis functions directly translates into sparsity of the system matrix A
which is necessary in order to be able to fit large matrices into computer memory
and allows more efficient solution techniques.

Typically, assembly of the matrix A is cheaper if not done matrix entry by matrix
entry. Instead, the assembly algorithm 2.1 loops over grid cells and updates the
degrees of freedom (DOFs) associated with all basis functions whose support overlaps
the current cell. The assembly contributions of the current cell are accumulated
into a dense container and afterwards scattered into the global data structures
using a local-to-global map g : Th × {0, . . . , |Qd

k| − 1} → {0, . . . , |Vh| − 1}. We will
see in section 2.2 that this step can also be avoided in some cases by chosing a
favorable memory layout of the global data structures.
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The size of the algebraic system in equation 2.6 scales with the dimensionality of
the space Vh and therefore with the number of cells in the triangulation Th. In
order to ensure a given bound on the discretization error, the mesh width h needs
to be reduced below a certain threshold. This might result in very large problems,
as applications with relevance in engineering may involve very large domains, small
scale features that need to be resolved or may require very high accuracy. Large
PDE problems may easily saturate and exceed the largest supercomputers in the
world, making finite element simulations a natural subject for HPC.

2.2 The Discontinuous Galerkin Finite Element
Method

We will now move on to extending the introduced notation for DG methods. We
restrict ourselves to cuboid meshes and express the tensor product structure of
basis functions. We do so in order to have the notation for sum factorization in
section 2.6 readily available. The discrete solution space for DG methods allows
functions to be discontinuous across interior faces F ∈ Fh, which results in the
functions being two-valued on such interfaces:

V kh =
{
v ∈ L2(Ω)

∣∣∣ ∀T ∈ Th, v|T = p ◦ µ−1
T with p ∈

d−1⊗
i=0

P1
ki

([0, 1])
}

(2.7)

Here, the tensor product space is constructed such that the polynomial degree
k = (k0, . . . , kd−1) is allowed to be anisotropic, although k is assumed to be constant
across the triangulation.

Given the enlarged space from equation 2.7, the bilinear form from equation 2.2 is
lacking analytical properties needed to ensure existence and uniqueness of solutions,
such as coercivity. In order to fix this deficit, the bilinear form is modified by
adding so called penalty terms which enforce continuity across interfaces in an
approximation sense. These are integrals over facets F ∈ Fh∪Bh, where Fh denotes
the set of facets inside the domain and Bh denotes the set of boundary facets.
These integrals involve the average and jump operators across F , which are defined
in the following way:

{v} := 1
2(v|T + + v|T −) (2.8)

JvK := v|T − − v|T + (2.9)

Here, T+(F ) ∈ Th and T−(F ) ∈ Th define the outer and inner cell of a facet
respectively. Such methods are called interior penalty methods and have been
introduced and studied in e.g. [11] [119] [20]. For the diffusion-reaction equation
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with spatially variable, tensor-valued coefficient k(x), the averaging is adapted to
be a weighted averaging [38]:

{w}ω := ω+v|T + + ω−v|T − (2.10)

ω+ := δ−

δ− + δ+ + 1e−20 ω− := δ+

δ− + δ+ + 1e−20 (2.11)

δ+ := nTk+(x)n δ− := nTk−(x)n (2.12)

For the sake of readability, we will restrict ourselves to the simpler case of a scalar
permeability function k(x).
The resulting method is called Symmetric Weighted Interior Penalty (SWIP) DG
method and its formulation for the diffusion-reaction equation reads the following:

aDG(u, v) =
∑

T∈Th

∫
T
k(x)∇u · ∇v + c(x)uv dx

−
∑

F∈Fh

∫
F

({k(x)∇u}ω,n)JvK + JuK({k(x)∇v}ω,n)− γF JuKJvK ds

−
∑

F∈Bh⊆ΓD

∫
F

(k(x)∇u,n)v + u(k(x)∇v,n)− γFuv ds (2.13)

l(v) =
∑

T∈Th

∫
T
fv dx−

∑
F∈Bh⊆ΓN

∫
F
jv ds

−
∑

F∈Bh⊆ΓD

∫
F
g(k(x)∇v,n)− γFgv ds (2.14)

where the penalty parameter γF is essential for the analytical properties of the
bilinear form. It is defined as

γF := α
|F |

min{|T−(F )|, |T+(F )|}
2δ−δ+

δ− + δ+ + 1e−20k(k + dim− 1) (2.15)

with α being a user-defined constant and k being the polynomial degree.
The given formulation of DG methods is only one variant of defining discontinuous
finite elements. Other approaches to DG, such as LDG [25] exist, but are not
covered in this work. Hyperbolic conservation laws are another important field of
application for DG methods. In this context, DG methods are a natural extension
of Finite Volume (FV) methods to higher polynomial degrees [26]. We will cover
this (very different) type of DG methods in section 5.4 while studying Maxwell’s
equations and assume the SWIP DG method everywhere else.
The standard assembly procedure for continuous finite elements from algorithm 2.1
contains a step where the assembly results are scattered back into global data
structures using a local-to-global map. This costly step can be avoided in DG
methods: As all DOFs are associated with cells (instead of facets, edges or vertices),
the global data structure can have a memory layout that contains per-element
blocks. Such layout induces a trivial local-to-global map and is vital for an HPC
implementation of DG methods.
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2.3 The DUNE Framework

DUNE is an open-source software framework for the solution of PDEs with grid-based
methods [15, 14]. It supports finite element methods, finite volume methods and
finite difference methods. It is written in C++ and tries to provide zero-overhead
interfaces to all the components of a simulation program by leveraging C++
templates. Simulation codes programmed to these interfaces allow easy interchange
of software components as the scientific requirements on the simulation code evolve.
The most notable and unique such interface is the DUNE grid interface. DUNE
allows massively parallel, adaptive simulations with a large variety of specialized
grid implementations.

We will now shortly describe the structure of DUNE: The source code is provided
in a heavily modularized way with each module being a git repository and CMake
project in itself. Modules can be categorized as follows:

• Core modules provide basic infrastructure like build system and data struc-
tures (dune-common), the grid interface (dune-grid), linear algebra including
an implementation of Algebraic Multigrid (AMG) (dune-istl), geometry imple-
mentations (dune-geometry) and local basis functions (dune-localfunctions).

• Grid modules provide additional implementations of the grid interface. Most
prominently, this section comprises the current status of the long-standing
projects UG [13] and ALUGrid [6], which both provide massively parallel,
adaptive, unstructured grid implementations in two and three dimensions.

• Discretization modules provide the necessary abstractions to implement the
finite element methods by introducing the involved discrete function spaces
and their representations in memory. Several such projects exist due to
the different focus of their developers. We will describe the discretization
framework PDELab in detail later in this section.

• Extension modules provide additional functionality extending the DUNE core
modules without being specific to a discretization framework. Examples are
dune-python [32], which provides Python binding to the DUNE core modules or
dune-testtools [65], which extends the testing infrastructure of dune-common.

• User modules use the same structure as upstream modules, standardizing the
process of building and installing any piece of DUNE software.

We continue with a description of two components that will later have a strong
influence on the design decisions for the code generation toolchain: The DUNE grid
interface and the discretization framework PDELab.
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The DUNE Grid Interface

The DUNE grid interface is the centerpiece of the DUNE framework software design.
It is used to access a large variety of grid implementations through an interface.
Available grid implementations cover a large variability of grid features such as:

• Dimensionality of the grid: The domain Ω may be a subset of Rd with
d = 1, 2, 3, . . . . Also, the topological dimension of the grid may differ from
its geometric one.

• Structure of the grid: Structured grids allow more efficient implementation of
algorithms compared to fully unstructured ones. The latter ones are needed
to mesh complex geometries.

• Local refinement can be implemented using a variety of refinement rules.
This includes building of a conforming closure versus using hanging nodes.

• Geometries in the grid: Grids may use different basic geometries, such as
cubes or simplices. Also, they might allow mixing of different geometries
within one grid.

• Parallelism can be implemented through overlapping or nonoverlapping sub-
domains. Not all grids provide communication methods for all these methods.

• The hierarchical structure of a refined grid can be used to implement multi-
grid schemes.

The grid interface allows iteration over cells using C++ iterators and iterator
ranges. Furthermore, given a cell, it provides iterators over a cells intersection
with its neighboring cells. For cells and intersections, the grid interface provides
the geometry mappings µT and µF . The interface of these geometry objects gives
access to commonly used geometric quantities, such as the inverse of the jacobian
∇µT .

We will now describe the basic abstractions of the discretization framework PDELab
[19]. Special emphasis is put on those parts that will affect the code generation
approach later on. The description given here is inspired by the tutorial texts in
the dune-pdelab-tutorials [97] module.

Function Spaces

PDELab provides implementations of discrete finite element spaces in the form of
GridFunctionSpaces. These combine the following pieces of information:

• a GridView object from dune-grid that describes the triangulation Th.
• a FiniteElementMap object that maps grid cells to finite element which then

provide the mapping of DOFs to subentities of the given cell.
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• a ConstraintsAssembler that describes how constraints for the space can
be assembled. These may arise from essential boundary conditions, hanging
nodes or overlapping computations.

• a VectorBackend that is used for implementation of the resulting linear
algebra containers.

A key feature of PDELab is composition of finite element spaces into product
spaces by building arbitrarily nested trees of finite element spaces. PDELab uses
template metaprogramming to statically reason about such trees to implement a
large variety of blocking schemes for the underlying linear algebra containers [90].
Such blocking scheme can be leveraged for DG methods to block all DOFs from one
grid cell into contiguous blocks of memory. This block structure can be exploited
from linear algebra algorithms.
In order to enable the user to write local integration kernels, PDELab pro-
vides an abstraction for the restriction of function spaces to a single cell. This
LocalFunctionSpace object provides the local finite element of that cell and the
mapping of its DOFs into the local assembly container.

Residual Formulation

In contrast to the introduction from section 2.1, PDELab expects the variational
problem to be in residual formulation, as it is beneficial for the unified treatment
of linear and nonlinear problems. With a residual formultion, we seek a solution
uh ∈ Uh, such that:

rh(uh, vh) = 0 ∀vh ∈ Vh (2.16)

with Uh and Vh being suitably constrained, discrete finite element function spaces.
The formulation from section 2.1 can be translated into residual formulation by
defining rh(uh, vh) = a(uh, vh) − l(vh). The solution uh is a linear combination
of basis functions {Φj}|Uh|−1

j=0 of the discrete space Uh. Let z denote the vector
of coefficients of this linear combination: uh = ∑

j(z)jΦj. This gives rise to an
algebraic formulation of equation 2.16:

Ri(z) = rh(
∑

j

(z)jΦj,Ψi) = 0 ∀i ∈ {0, . . . , |Vh| − 1} (2.17)

Here, we also used the fact that it is sufficient to test against the basis {Ψi}|Uh|−1
i=0

of the discrete space Vh. The non-linear, vector-valued mapping R : R|Uh| 7→ R|Vh|

fully describes the given discretization. Equation 2.17 is typically solved using
a fixed-point-type iteration method. We assume a Newton iteration taking the
following form (with k being the iteration index):

zk+1 = zk − J−1(zk)R(zk) (2.18)
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where J(zk) is the jacobian matrix of R defined as follows:

(J(z))i,j = ∂Ri

∂zj

(z). (2.19)

Introducing a correction variable dk+1 = zk − zk+1, equation 2.18 boils down to
solving the following linear system of equations:

J(zk)dk+1 = R(zk) (2.20)
Equation 2.20 draws the line between the abstractions of the discretization frame-
work PDELab and linear algebra libraries. PDELab provides all building blocks
necessary to assemble the following building blocks:

• Evaluation of the algebraic residual R(z) as needed on the right hand side of
equation 2.20. This has to be implemented by users for every new problem.

• Evaluation of the jacobian J(z) as needed in equation 2.20 if the linear solver
or a preconditioner works on matrices. Numerical differentiation can be used
to automatically derive this from the above residual.

• Evaluation of the action J(z)w of the jacobian on a vector w for matrix-free
linear solvers. Again, numerical differentiation can be used to provide this
implementation.

Although the described abstractions are motivated from the non-linear case, they
do hold for the linear case as well. In that case, the jacobian becomes independent
of z and the Newton scheme from equation 2.18 simplifies to one iteration that
solves the linear system.

Grid Operators

As described in section 2.1, finite element assembly is typically implemented in terms
of local integration kernels. PDELab follows the same idea with its abstractions.
A global assembly class called GridOperator performs the work needed to set
up local integration kernels: Iterating over the grid’s cells and facets, gathering
matrix and vector entries needed for the local computation into a contiguous data
structure, calling the local integration kernel, applying constraints and scattering
the data back into global data structures. The local integration kernels are collected
in a LocalOperator class, whose interface is of particular interest for this work,
as we will generate code against it. We split the residual rh(uh, vh) into three
contributions for integrals over cells, boundary facets and interior facets:

rh(uh, vh) =
∑

T∈Th

αvol(T, uh, vh)

+
∑

F∈Bh

αbnd(F, uh, vh)

+
∑

F∈Fh

αsk(F, u+
h , u

−
h , v

+
h , v

−
h ) (2.21)
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The functions αvol, αbnd and αsk need to be implemented in the interface methods
alpha_volume, alpha_boundary and alpha_skeleton, which take the integration
entity, local functions spaces for test and ansatz functions as well as local containers
for the finite element functions and residuals:

class LocalOperator {
public:
template<typename CELL,

typename LFSU, typename LFSV,
typename X, typename R>

void alpha_volume(
const CELL& cell,
const LFSU& lfsu, const X& x,
const LFSV& lfsv, R& r

) const;

template<typename INTERSECTION,
typename LFSU, typename LFSV,
typename X, typename R>

void alpha_boundary(
const INTERSECTION& intersection,
const LFSU& lfsu, const X& x,
const LFSV& lfsv, R& r

) const;

template<typename INTERSECTION,
typename LFSU_S, typename LFSV_S, typename X_S,
typename LFSU_N, typename LFSV_N, typename X_N,
typename R_S, typename R_N>

void alpha_skeleton(
const INTERSECTION& intersection,
const LFSU_S& lfsu_s, const X& x_s, const LFSV_S& lfsv_s,
const LFSU_N& lfsu_n, const X& x_n, const LFSV_N& lfsv_n,
R_S& r_s, R_N& r_n

) const;
};

Algorithm 2.2 shows the algorithmic work typically being done in these assem-
bly methods using the example of alpha_volume. The fact that all parameters
are accepted as template parameters in a duck-typing fashion enables more com-
plex applications like cut-cell geometries through the same interface [17]. Addi-
tional interface methods are available for assembling jacobians and their actions.
These rely on a similar splitting as equation 2.21 and are named jacobian_*
and jacobian_apply_* instead of alpha_*. The methods for the jacobian action
have two different signatures for linear and nonlinear problems, as they do not
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Algorithm 2.2: Assembly algorithm in PDELab studied on the example of the cell
integral of a residual evaluation for the diffusion-reaction problem from equation 2.2.
The local data structures z and r have been set up as dense vectors by the grid
operator similar to how it is outlined in algorithm 2.1 for matrices.
1 for q ∈ QP do
2 u← 0
3 gradu← 0
4 for i ∈ {0, . . . , |Qd

k| − 1} do
5 phi[i]← basis evaluation at q
6 gradphi[i]← basis gradient evaluation at q
7 u← u+ z[i] ∗ phi[i]
8 gradu← gradu+ z[i] ∗ gradphi[i]
9 fac← |detJTJ | 12 ∗ ωq

10 gq ← µT (q)
11 c← c(gq)
12 k ← k(gq)
13 f ← f(gq)
14 for i ∈ {0, . . . , |Qd

k| − 1} do
15 acc← (c ∗ u− f) ∗ phi[i] ∗ fac
16 for j ∈ {0, . . . , d− 1} do
17 acc← acc+ k · gradu[j] ∗ gradphi[i][j] ∗ fac
18 r[i]← r[i] + acc

only depend on uh, but also on a linearization point. The fact that PDELab
restricts itself to providing interfaces for integration over cells and intersections
with data access being limited to the cell or the neighboring cells of an intersection
is a deliberate decision. It is sufficient to implement most finite element schemes.
Notable exceptions are higher-order Finite Differences (FD) methods and methods
that require basis functions with wider support e.g. spline functions.

2.4 Generative Programming for PDEs
Generative programming is defined by the use of source code generators in the
software development process. Code generation is used in many disciplines of
computer science with varying motivation and terminology:

• In compiler design, code generation is the necessary last step that translates
an IR into the compiled output. Research in this field is e.g. focussed on how
to achieve this task in a portable fashion [44].

• The programming languages community uses the term multi stage program-
ming to refer to the use of code generators as a language design tool [110].
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• In embedded systems programming, customization of a software product to a
physical product is often realized through generative programming [28]. It
allows the selection of optimized variants for the specific given product.

• In performance engineering, source to source program transformation is
employed to transition from one program to another program that performs
better in a target metric [82].

Use of code generation in scientific software may fall into both the language design
and the performance engineering category, depending on the intended goals. We
provided a summary of important design decisions for a code generation approach
in scientific software in [61]:

• Choice of DSL. DSLs provide the user interface of a code generation toolchain,
which is tailored to the application domain. Defining a DSL for a numerical
task is the key point in designing a usable code generation toolchain. Only
an intuitive, simple design can balance the need for additional training with
the new language.

• To embed or not to embed. Embedding DSLs into general purpose programming
languages is advantageous in many ways: Developer knowledge about language
and toolchains can be leveraged and the syntax of the DSL is somewhat
standardized. However, you are tying your DSL’s popularity and lifetime to
those of the general purpose language, which might turn out disadvantageous
if the trends within the scientific community change.

• Scope of code generation. A simulation workflow consists of many individual
tasks from mesh generation to visualization. Generative programming may
of course be used for the entire workflow, but it only excels at some specific
tasks, mostly where performance-critical innermost loops are involved. A
related question is the choice of programming language which is used for
the simulation control flow. Fully embedded solutions use the programming
language that the DSL is embedded into, other solutions might choose the
target language of the code generator.

• Choice of IR. Leveraging generative programming for high performance com-
puting requires an IR within the code generator that is capable of hardware-
driven transformation. The design of such an IR is a very challenging task
as one has to find a trade-off about how many assumptions are built into
the IR. Having too many assumptions built in will limit the scope of the
toolchain, while a too broad scope can make it hard to actually define
performance-enabling transformations.

• Performance optimization decision making: Once an IR capable of trans-
formation based performance optimization is found, the question of how
decision making is driven in the transformation process arises. Having this
transformation process under user control might be intriguing, but further
widens the gap between performance and accessibility. A fully automatic
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transformation procedure on the other hand is often out of scope or might
require very detailed hardware models. Autotuning is another good possibility
to do performance optimization, which requires the systematic definition of
an optimization search space.

With these general criteria in mind, we study the design decisions of popular
projects employing generative programming techniques for the solution of PDEs
with the finite element method.

The FEniCS project [80] has established code generation within the PDE community
by providing a very popular framework. FEniCS user code is written entirely in
Python. To achieve this, FEniCS provides UFL [7], an embedded DSL for the
description of discretized weak formulations of finite element problems, and Python
bindings to the C++ problem solving environment dolfin [81]. Internally, the UFL
input is Just-in-time (JIT)-compiled in a two-step procedure: A form compiler
translates the DSL into C++ code and a general purpose C++ compiler compiles
it into an object file, which is then linked to. The FEniCS form compiler is called
FFC [70] and translates directly from UFL to C++ code without using another
IR. It draws additional information about the implementation of finite elements
from FIAT [68], which provides tabulations of finite element basis functions at
quadrature points. The interface between the form compiler and the problem
solving environment is of similar granularity as the LocalOperator interface in
section 2.3, although it is designed with code generation in mind [8]. As a result,
the interface e.g. uses plain C arrays for data transfers in order to simplify the code
generation process. With no additional IR in place, FFC has limited possibilities
to reason about performance of the generated code.

Another project that fully embeds the user workflow into Python is the Firedrake
project [101]. It tries to be compatible with the FEniCS input language as much
as possible. This includes both reuse of the input language UFL and interface
compatibility with the Python bindings of the dolfin framework. However, the
applied technology in the code generation toolchain differs vastly, as even the
underlying simulation framework is completely Python-driven: The firedrake form
compiler TSFC [55] generates a C-like IR, which COFFEE [83] optimizes further by
applying SIMD vectorization. Execution of JIT-compiled local integration kernels
is then controlled by the parallel grid iteration tool PyOP2 [102]. Lately, this
part of the toolchain has been adapted to also apply SIMD vectorization through
a transformation which is based on the programming model loopy, that we will
discuss in detail in this thesis [109]. Firedrake draws much functionality that
other frameworks implement in their underlying C++ framework (like grid data
structures or linear algebra containers and algorithms) from the PetSc framework
[12]. The declared goal of the Firedrake project is to enable separation of concern
between domain scientists, numerical mathematicians and performance engineers
in finite element software.
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The FEniCS and Firedrake projects have established generative programming as
a respected tool in the PDE community. They are not the only available projects
though and some differ vastly from their Python-based approach: FreeFEM++ [52]
provides a DSL that covers the entire simulation workflow, which is not embedded
into a general purpose language. There is no publicly available information on
the used IR or its capabilities to enable performance optimization. Feel++ [99]
embeds a DSL for finite element problems into C++ using expression templates.
This provides the usability aspects of DSLs at the cost of unfavorable compile-time
complexity, but does not help with any hardware-specific performance optimization.
Liszt [33] provides a non-embedded Scala-based DSL, which expresses the entire
simulation workflow. It focusses on stencil-like operations and requires users to
implement their problem in terms of global operations. Liszt applications are
mapped to MPI, pthreads or CUDA programs by a code generator. Again, there
is no detailed information on the IR available. The ExaStencils project [78] also
targets stencil code and aims for separation of concerns through stacked DSLs.

2.5 HPC Challenges on Modern Architectures
The DUNE project started in 2002 and its core software architecture dates back to
this time. A fundamental idea of achieving performance in numerical software was
to use generic programming and metaprogramming to remove the runtime overhead
of introducing interfaces. In the meantime, requirements for HPC have changed
drastically. We have entered the so called Post-Moore-Era, where the increase in
transistor density has drastically slowed down [107]. Clock frequency stays roughly
unchanged and additional performance is achieved by introducing and extending
parallelism within the architecture. We will now describe the current trends and
their impact on how numerical software needs to be written. We have previously
published this summary in [61].

Cluster Computing

The number of compute nodes in the latest supercomputers is still increasing,
making the challenge of writing code that scales to the limits of the machine an
increasingly difficult task involving both algorithmic and technical challenges. The
algorithmic challenges are part of an ongoing endeavour to develop communication-
minimal, scalable and robust numerical algorithms. The main technical tools and
abstractions (like MPI support) are built into the DUNE framework from the very
beginning.

Multicore Processing

Modern processors consist of many, often less powerful, cores. Memory band width
does not increase at the same speed though, resulting in an effective decrease of
memory band width per core. Making effective use of multicore processors with
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shared memory domains requires the use of multi threading. Support for multi
threading can either be integrated into the software framework or be delegated to
the framework user. However, there are many obstacles in doing so:

• There is a serious lack of standardization w.r.t. threads. Task-based program-
ming models seem a natural way of expressing numerical tasks, but C++
does not provide a built-in such model. Introducing external libraries such as
TBB [103] as hard external dependencies is however a very drastic step for a
numerical framework. The DUNE project has decided to stick to task-based
programming and a TBB-based implementation has been provided by the
EXADUNE project [18].

• Programmability is one of the major issues in making use of multi threaded
systems. Existing programming model solutions use either programming
language extensions (e.g. OpenCL [108]), libraries (e.g. Kokkos [37]) or
source code annotation (e.g. OpenMP [29]) to employ parallelism. All of
these approaches bear their advantages and disadvantages. Integrating them
into a numerical software requires commitment to the choice and prohibits
other concurrent solutions in the same codebase. For the DUNE project, no
consensus on an invasive solution was to be found, and TBB tasks were found
to be least invasive.

• Debugability of multi threaded applications, in particular finding nondetermin-
istic bugs is a big usability issue. This can be solved by improving developer
toolchains. However, this again introduces constraints on the developer
hampering accessibility of numerical software.

• Numerical software will often make use of external libraries for well-studied
tasks, such as solving linear systems or eigenvalue problems. Composability
of multi threaded applications, if those external libraries are themselves multi
threaded is a largely unsolved issue.

SIMD Vectorization

The width of SIMD units in modern CPUs has increased over the last years reaching
its current peak with 512 bits in the Intel Skylake architecture. Making effective
use of these vector units is essential to leveraging the machine’s floating point
capabilities. However, using these in PDE applications is not straight-forward and
there is no unique way of doing so. In our experience C++ compilers are not
capable of successfully autovectorizing PDE applications, due to the complexity of
the control flow in PDE programs. Explicitly vectorizing instead requires both a
concept of what to vectorize and a technical realization. Looking into a typical
structure of a PDE program, there are many nested loops that can potentially be
vectorized:

• Solution of multiple PDEs (Uncertainty Quantification (UQ), optimization)
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• Timesteps of an instationary problem
• Stages of a time stepping scheme
• Iterations of a Newton solver for nonlinear problems
• Iterations of an iterative linear solver
• Iteration over grid cells
• Quadrature points for cell-local integration
• Components of a coupled system of PDEs

• Local degrees of freedom that are updated

Classical choices for SIMD vectorization are the outermost level (if e.g. doing UQ),
the grid iteration level or the local degrees of freedom. Given such a choice, a
technical realization is necessary: C++ only provides intrinsic functions (or inline
assembler) for direct control of executed instructions. However, these pose a severe
threat to portability, accessibility and sustainability of a numerical code. Therefore,
many SIMD abstraction layer projects have come into existence (we will study these
in detail in section 3.2.3). The DUNE framework has started incorporating these
and adapting its codebase to be compatible with them. This framework-level SIMD
abstraction is best suited for high level parallelism, such as UQ. If SIMD parallelism
should be used on the innermost loops of the above loop structure, it needs to be
incorporated into user code instead of framework code. Even when using SIMD
abstraction libraries, this is a hard task that requires very specific user skills. We
will therefore advocate generative programming for this case in this work.

Instruction Level Parallelism

Modern CPUs offer a wide range of features that allow parallel code execution on the
lowest level, like instruction pipelining, superscalar execution on multiple floating
point units, Fused Multiplication and Addition (FMA), speculative execution (e.g.
branch prediction) or out of order execution. In practice, few of these are directly
addressed in numerical software frameworks and optimally using these features
is left to the C++ compiler and the hardware itself. This is partly because
programmers have limited influence on details of code execution at the Instruction
Level Parallelism (ILP) level. However, developers with technical knowledge of
these features are able to write better and more performant code by avoiding known
antipatterns. A good example of this would be to identify and avoid a data access
pattern that provokes a pipeline stall.

Heterogenous Computing

The use of GPUs and accelerator chips in extreme scale high performance computing
facilities has seen a drastic increase. In fact, eight of the ten largest supercomputers
on the last edition of the TOP500 list are of heterogeneous nature [112]. Similar to
multi threading, programmability is a large issue for these systems and usage of a
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programming model beyond general purpose programming languages is mandatory.
Beyond these technical obstacles, GPUs are hard to use for real world applications
with PDEs. Reasons are the amount of control flow involved and the amount of
data needed for computations and their transfer to the GPU. DUNE has only seen
exploratory research in the direction of GPUs [18] and there are currently no plans
to integrate GPU support into the framework.

2.6 Sum Factorization
Sum factorization is an algorithmic technique to exploit tensor product structure. In
a PDE context, it was first described by Orszag [94]. It has since been adopted into
a large variety of methods and code bases [22] [87] [116] [76] [54]. We will explain
it using an example from DG methods after introducing the necessary notation. In
the literature, tensor product structure is often expressed using Kronecker products.
For two matrices A ∈ Rn0×m0 ,B ∈ Rn1×m1 , the Kronecker product A⊗B yields
a 4-way tensor or interpreted differently, a block matrix:

(A⊗B)i0,j0,i1,j1 = ai0j0bi1j1 (2.22)

A⊗B =

 a0,0B · · · a1,m0−1B
· · · · · ·

an0−1,1B · · · an0−1,m0−1B

 (2.23)

For a review of the Kronecker product and its properties see [79].
In order to present the sum factorized evaluation of a function uh ∈ V kh from the
tensor product DG space in equation 2.7, we introduce the matrices A(i) ∈ Rmi×ni ,
whose entries are the evaluations of the chosen local basis functions of P1

ki
([0, 1]) at

the given 1D quadrature points ξ0, . . . , ξmi−1. This assumes the quadrature rule to
also exhibit tensor product structure, which is true for the reference cube. Given
the coefficient vector x as a d-way tensor X, the evaluation of ûh at all quadrature
points reads the following:

Û =
(
A(0) ⊗ A(1) ⊗ · · · ⊗ A(d−1)

)
X (2.24)

The tensor Û from equation 2.24 is evaluated in the following way, which is the
fundamental idea of sum factorization:

Ûi0...id−1 = ûh(ξi0...id−1) (2.25)

=
nd−1−1∑
jd−1=0

· · ·
n1−1∑
j1=0

n0−1∑
j0=0

d−1∏
k=0

A
(k)
ik,jk

Xj0...jd−1 (2.26)

=
nd−1−1∑
jd−1=0

A
(d−1)
id−1,jd−1

· · ·
n1−1∑
j1=0

A
(1)
i1,j1

n0−1∑
j0=0

A
(0)
i0,j0Xj0...jd−1 (2.27)
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Note how the complexity of the calculation reduces in equation 2.27 in comparison
to equation 2.26. Assuming ni = mi = p, the complexity of evaluating all elements
of Û decreases from O(p2d) to O(pd+1), illustrating well the desirability of the sum
factorization approach.
Evaluation of uh is not the only context, where the sum factorization technique
can be applied in finite element assembly. For the evaluation of the partial
derivative ∂jûh, the basis evaluation matrix A(j) needs to be replaced with the
matrix D(j) ∈ Rmj×nj containing the derivatives of the 1D basis functions at the
1D quadrature points. We use the notation ∂jÛ for the d-way tensor containing
the j-th component of the gradient of û at all quadrature points. Also, the tensor
product structure of the test functions can be exploited by assembling a tensor that
contains the value of the integrand without the test function at each quadrature
point and using that tensor as input for sum factorized multiplication with the
test function. In this case, the basis evaluation matrices need to be transposed.
This requires restructuring of the assembly algorithm, as it is not possible to
multiply with the test function within the quadrature loop. Algorithm 2.3 shows
how algorithm 2.2 changes in the sum factorization setting.
Of course, the sum factorization technique is not limited to cell integrals, although
we restrict ourselves to it most of the time when explaining algorithms. On a
facet, the reduced dimension is handled by using a dummy quadrature rule with
exactly one quadrature point. On the linear algebra level, a sum factorization
kernel boils down to a series of tensor contractions and tensor rotations, which
makes it desirable for HPC beyond it being an algorithm of reduced complexity, as
all floating point operations in tensor contractions are FMAs. These operations are
necessary in order to be able to aim for peak performance, because the theoretical
peak performance assumes an all FMA implementation.
The exploratory research within the DUNE framework that this thesis is based on
has been published in [91], [89] and [63]. Use of sum factorization on simplicial
elements using Bernstein polynomials has been studied in [69] and [4]. Applications
in isogeometric analysis are shown in [10].

2.7 Matrix-free Solvers
HPC applications that aim to fully exploit the capabilities of modern manycore
CPUs need to have a sufficiently high arithmetic intensity. For a critical code
section, this measure quantifies the number of floating point operations that are
executed for each byte loaded from main memory (flop-per-byte ratio). For a
given machine, a threshold for the arithmetic intensity can be calculated from the
theoretical floating point peak performance and the maximum memory bandwidth:
Performance of codes with an arithmetic intensity above this threshold are limited
by the machine’s floating point capabilities, those below are limited by memory
bandwidth.
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Algorithm 2.3: Sum factorized algorithm for calculating the cell integral for the
residual for the diffusion-reaction from equation 2.2. This illustrates how the
sum factorization approach restructures the local integration kernel compared
to algorithm 2.2. The input coefficient is given as a tensor X, the output is
accumulated into a tensor R. In the DG setting, these tensors are accessed direclty
in global data structures without the need of gathering them into a local data
structure first.

1 Û ←
(
A(0) ⊗ A(1) ⊗ A(2)

)
X . Part 1: Evaluation of solution

2 ∂0Û ←
(
D(0) ⊗ A(1) ⊗ A(2)

)
X

3 ∂1Û ←
(
A(0) ⊗D(1) ⊗ A(2)

)
X

4 ∂2Û ←
(
A(0) ⊗ A(1) ⊗D(2)

)
X

5 for ξ̂i0i1i2 ∈ quadrature points do . Part 2: Quadrature loop
6 fac← |detJTJ | 12 ∗∏2

i=0 ωi

7 gq ← µT (ξ̂i0i1i2)
8 c← c(gq)
9 k ← k(gq)
10 f ← f(gq)
11 Rv

i0i1i2 ← (c ∗ Ûi0i1i2 − f) ∗ fac
12 (R∂0v)i0i1i2 ← k ∗ ∂0Ûi0i1i2 ∗ fac
13 (R∂1v)i0i1i2 ← k ∗ ∂1Ûi0i1i2 ∗ fac
14 (R∂2v)i0i1i2 ← k ∗ ∂2Ûi0i1i2 ∗ fac
15 R← R +

(
A(0),T ⊗ A(1),T ⊗ A(2),T

)
Rv . Part 3: Mult. with test fct.

16 R← R +
(
D(0),T ⊗ A(1),T ⊗ A(2),T

)
R∂0v

17 R← R +
(
A(0),T ⊗D(1),T ⊗ A(2),T

)
R∂1v

18 R← R +
(
A(0),T ⊗ A(1),T ⊗D(2),T

)
R∂2v

In traditional FEM implementations, the system matrix is assembled in memory and
the sparse linear system (e.g. from equation 2.6) is solved with an efficient solver
technique. Optimal complexity solvers e.g. multigrid schemes [113] scale linearly
in the number of unknowns. Despite their optimal complexity, these schemes
cannot leverage the machines capabilities very well as they rely on sparse matrix
vector products of the assembled system matrix. The arithmetic intensity of this
operations is as low as one FMA operation per matrix entry and therefore inherently
memory-bound.

Matrix-free solvers are based on the rather simple idea of never assembling the
system matrix in the first place, but recalculate its entries within each matrix-vector
product. This has the obvious advantages of removing the costly matrix assembly
procedure and drastically reducing the memory requirements of the overall program.
The arithmetic intensity of such approach is also much higher, potentially enabling
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a compute-bound implementation. However, one needs to make sure to use an
optimal implementation of the matrix-free operator evaluation, because it might
even take longer than performing the memory bound matrix-vector product. Such
optimal implementations use sum factorization as described in section 2.6. The
O(p2d) to O(pd+1) complexity reduction of the sum factorization approach allows
matrix-free solvers to perform faster than matrix-based ones. This of course assumes
that the implementation of the operator evaluation is capable of exploiting the
machine, e.g. leverage its SIMD units. Achieving this task in a performance-portable
fashion is one of the core contributions of this thesis.
The sum factorization complexity reduction depends on the polynomial degree p,
showing more drastic gains for higher polynomial degrees. We therefore advocate
the use of higher order schemes, which are an increasingly popular tool in many
application areas e.g. Computational Fluid Dynamics (CFD) [118]. However,
substantial gains can be observed even for rather low polynomial degrees, such as
p = 2 [91].
It is worth noting, that iterative solvers using this kind of matrix-free operator
evaluation suffer from the additional challenge to implement preconditioners that
do not hamper the algorithmic complexity of the overall algorithm. Not applying
suitable preconditioning would result in a suboptimal number of iterations of the
linear solver that could easily outweigh the gains of being in the compute-bound
regime. Matrix-free preconditioning techiques have been studied by various authors:
In [89], Block-Jacobi and Block-Gauss-Seidel preconditioners in a fully matrix-free
and in a partially matrix-free setting are investigated. [95] uses a Kronecker product
singular value decomposition approach to approximate the jacobian such that it
can be evaluated matrix-free. In [35], the use of alternate-direction-implicit and
fast diagonalization methods is advocated.
In this work we try to provide the building blocks necessary for a solution procedure
outlined in [89]. A Krylov subspace method is used as the outer iterative solver
in the solution procedure. Any operator applications within the Krylov subspace
method are implemented in a matrix-free fashion instead of doing matrix-vector
products of a preassembled matrix. The method is preconditioned with a DG-
enabled AMG preconditioner from [16], where block smoothers for the DG space
are combined with AMG corrections in a low order subspace. In contrast to [16],
[89] implements the block smoothing step in a matrix-free way as well using
either Block-Jacobi, Block-Gauss-Seidel or Block-SOR smoothers. Within these
smoothers the diagonal blocks of the (never assembled) DG matrix need to be
inverted. This is done approximatively using an iterative matrix-free solver with a
relaxed convergence criterion.
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3
A Code Generation Toolchain for

the DUNE Framework

Section 2.4 provided an introduction to the field of generative programming in the
application area of PDEs. In this chapter, we will go into detail of how generative
programming can be exploited in the DUNE framework in an HPC-enabled fashion.
We will start off by discussing important design decisions in section 3.1. After
describing existing software projects and how they are leveraged in our software
design in section 3.2, we outline the complete code generation process in section 3.3.
We finish the chapter with a description of how code generation can be embedded
into the DUNE user workflow.

3.1 Design Decisions
In section 2.4 we listed criteria that are important in the software design of a code
generation toolchain: DSLs, embeddedness, scope of code generation, choice of IR
and performance optimization decision making. We will now describe our decisions
w.r.t. these criteria and the rationale behind them.

Given the popularity of the FEniCS project among researchers in scientific comput-
ing, knowledge about the UFL DSL is quite widespread in the community. Reusing
UFL as the input language to a code generation toolchain is significantly lowering
the bar for users to adopt their codes. We will therefore do this in our approach
and describe UFL in detail in section 3.2.1. For similar reasons, other projects are
using UFL in a non-FEniCS context as well, e.g. Firedrake. Also, UFL succeeds
quite well at providing a DSL that resembles the canonical mathematical form of
weak formulations. Writing a new DSL with the same rationale would necessarily
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User input

UFL Input File
Weak Forms and Function Spaces

Driver
Simulation Workflow

LocalOperator
Integration kernels

· · ·
Additional operators

Simulation executable

Form Compiler

optionally

CMake

Figure 3.1: Embedding of the code generator into the user workflow: Only in-
nermost loops of finite element assembly are generated from UFL input by the
form compiler. It outputs one or more header files each containing a class that
fulfills the LocalOperator interface. The simulation driver is still provided by the
user, although it can optionally be generated as well. The compilation process is
governed by DUNE’s CMake build system.

lead to a similar language, not making it worth the effort. In fact, the current
interest in UFL opens up opportunities for standardization of approaches in FOSS
for PDEs.

With UFL being embedded into Python, our code generation toolchain needs to
be as well. Given the popularity of Python in scientific computing right now, this
should be regarded an advantage of the overall approach. However, we do not
intend to fully embed the user workflow into Python, but instead limit the scope of
code generation to a collection of innermost loops. We do so in order to preserve
the DUNE framework’s native strength to provide extensible building blocks for
simulation components: Providing Python interfaces to these components makes it
harder for non-expert users to extend the framework’s capabilities. Nevertheless,
such interfaces are currently introduced in a project unrelated to this work [32].
The PDELab interface of the LocalOperator class described in section 2.3 is a
very good fit to restrict code generation to, as its interface and the abstractions
of UFL match quite well. E.g. the assembly methods for facet integrals within
the LocalOperator class are only given access to data from the two neighboring
cells and UFL is by design limited to express exactly this kind of data dependency.
Figure 3.1 summarizes how code generation integrates into the user workflow.
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Mathematical problem
PDE problem in residual formulation

UFL
Python formulation in domain specific language

preprocessed UFL
Apply preprocessing from

UFL with custom extensions

loo.py: intermediate representation
of the loop nest for the PDE kernel

C++ PDELab code
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Vectorization Backend
VC, VCL: C++
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of compiled source
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to grid, geometry and basis
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Polynomial
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Grid
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Memory
bandwidth

SIMD units

...

Figure 3.2: The form compiler toolchain at a glance: Input given in the UFL DSL
is preprocessed and translated into the loopy IR. This IR allows transformations
which are motivated from both mathematical concepts and hardware aspects.
Autotuning may be used to guide the transformation process in the absence of
detailed performance models.

The question of what kind of IR to use within the code generator is strongly tied
to the motivation to use code generation in the first place. Our work is driven by
the need to exploit knowledge about both the mathematical structure of the given
PDE and about the target hardware at code generation time. In this regard, our
approach differs from the FEniCS approach, because their main focus is robust
code generation and no additional IR that allows reasoning about hardware is
employed. Not trying to write the IR from scratch, we chose to use loopy which
allows symbolic representation of computational kernels and transformation of
such kernels with performance optimization in mind. We will study loopy in
detail in section 3.2.2. The choice of what transformations are applied to the
loopy IR in order to achieve maximum performance is guided by an autotuning
process in our case. This way we do not require users to interact with performance
engineering and achieve separation of concern between computational scientists
and performance engineers. The absence of this separation of concern is what
motivated the introduction of generative programming into DUNE in the first place.
Chapter 4 will be concerned with defining a good autotuning search space for the
domain of sum factorized finite element assembly. The employed toolchain within
the form compiler is summarized in figure 3.2.
Another area where our prerequisites differ from those of the FEniCS and the
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Firedrake project that partly rules out reusing their form compilers is the question
of target language. In their approaches, the generated C code adheres to an
interface which is designed for code generation. In our case, the interface is given
by a longstanding project and the code generation toolchain needs to adapt to
it. This is especially important when it comes to memory layouts of global data
structures: While a purely code generation based approach would have the liberty
to choose such layout, it needs to stick to the layout prescribed by the simulation
framework in our case. As a consequence, the chosen IR needs to provide some
flexibility in expressing memory layouts.

3.2 Involved Tools
The presented code generation toolchain for DUNE leverages many existing software
projects. The intention of this section is to present them in a fashion that both
provides the reader with the technical knowledge to understand the software design
of the code generation process, as well as the hands-on knowledge to use it to
implement their own PDE model. Section 3.2.1 covers UFL, a popular DSL for finite
element problems, which serves as user interface for code generation. Section 3.2.2
studies loopy, a Python package providing a powerful IR for array programming.
Finally, section 3.2.3 presents abstraction layer projects for SIMD programming.

3.2.1 UFL - a DSL for Finite Element Problems
UFL has been developed by the FEniCS project as a DSL for finite elements. In
section 3.1 we have already argued why we want to reuse UFL as the input language
of our code generator. For the rest of this section, we describe the most important
UFL components in detail to both enable the reader to implement his own models
and to understand the technical aspects of our code generation approach. We
highlight similarities, restrictions or differences to PDELab abstractions wherever
they occur. All code examples in this section assume that all symbols from UFL
have been imported into the global scope with from ufl import *. UFL has
previously been described extensively in [7].

Multilinear Forms

UFL is about defining multilinear forms of arity n, which take the form

a : V1 × · · · × Vn → R.

The form a is linear in each of its arguments vi ∈ Vi. However, in finite element
practice we usually deal with n = 1 (linear forms) and n = 2 (bilinear forms).
The considered multilinear forms can additionally be parametrized with a number
of finite element functions. The form is not necessarily linear in these additional
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arguments, which are called coefficient functions from now on. In accordance with
the UFL nomenclature from [7] we write this down as:

a : W1 × · · · ×Wm × V1 × · · · × Vn → R
(w1, . . . , wm, v1, . . . , vn) 7→ a(w1, . . . , wm; v1, . . . , vn)

In our intended toolchain, we are focussing on expressing the residual formulation
described in section 2.3, which is a linear form. It takes the general form r(u; v),
where v is the test function and u is the finite element solution. The residual
form is always linear in v and depending on the PDE being linear, either affine
linear or nonlinear in u . Of course, r might depend on arbitrarily many additional
coefficient functions.

This is a full implementation of a P1 discretization of the Poisson equation in UFL:

1 FE = FiniteElement('CG', triangle, 1)
2 u = TrialFunction(FE)
3 v = TestFunction(FE)
4 f = Coefficient(FE)
5 r = (inner(grad(u), grad(v)) - f*v)*dx

In this very condensed minimal example, all the basic building blocks of multilinear
UFL forms are present. We will now briefly describe these blocks and then proceed
to give detailed information about each of these and their inner workings for the
rest of this section:

• Line one defines a finite element e.g. here the continuous P1 finite element
on triangles. The finite element object does only store the given information
and does have no knowledge of the implementation of that finite element, e.g.
mapping of DOFs to subentities of the reference element or local interpolation.

• Lines two and three define trial and test functions using that finite element.
• Line four defines a coefficient function that is used for the source term f .

The function f is expected to be interpolated onto the finite element space
defined by FE.

• Line five defines a form object. It does so by building an arithmetic expression
(potentially using compound tensor algebra operations like an inner product)
from the given finite element functions and multiplying it with an integration
measure object. The object dx indicates that we are expressing a volume
integral.

The scope of UFL stops at providing an Abstract Syntax Tree (AST) data structure
for the form object r. Getting from this AST to generated code is the task of the
form compiler developed in this work.
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Short Name Reference Element Degree in FIAT
'CG' 'Lagrange' all k = 0 yes

1D, 2D, 3D simplex all yes
2D, 3D cube k = 1, 2 yes

'DG' 'Discontinuous Lagrange' 1D, 2D, 3D cube all yes
'GL' 'Gauss-Legendre' 1D, 2D, 3D cube all yes
'DGLL' 'Disc. Gauss-Lobatto-Legendre' 1D, 2D, 3D cube all no
'Monom' 'Monomials' 1D, 2D, 3D cube all no
'OPB' 'L2-Orthonormal Polynomials' 1D, 2D, 3D cube all no
'RaTu' 'Rannacher-Turek' 2D, 3D cube k = 1 no
'RT' 'Raviart-Thomas' 2D cube k = 0, 1, 2 yes

2D simplex, 3D cube k = 0, 1 yes
'BDM' 'Brezzi-Douglas-Marini' 2D simplex/cube k = 1 yes

Figure 3.3: A list of finite elements that are currently available from PDELab and
how they can be accessed from UFL.

Finite element spaces

UFL contains a description of finite elements which only serves the purpose of
annotating the symbolic representation of a finite element function with all the in-
formation needed within UFL. This does not incorporate the actual implementation
of basis function evaluation, mapping of degrees of freedom to subentities of the
reference element and local interpolation. Within the FEniCS/Firedrake toolchain
these tasks are handled by FIAT [68], which has it’s own, extended description
of the finite element. Finite elements in UFL are grouped into element families,
such that elements within a family only vary in polynomial degree and reference
element. The following properties are stored for each such family:

• Family Name A descriptive name of the finite element family.
• Short Name An abbreviation to identify the family.
• Sobolev Space The Sobolev space the space defined by the element is contained

in. For elements in UFL, the space is typically one of L2, H1, H2, H(div) or
H(curl).

• Rank An integer value specifying the tensor rank of the finite element’s range,
typically 0 (for scalars), 1 (for vectors) or 2 (for matrices).

• Mapping A string identifying the pullback transformation for this element.
This is typically 'identity' or e.g. in the case of a Raviart-Thomas element,
a more involved mapping like 'contravariant Piola'.

The finite elements available from PDELab and how they can be accessed from
UFL are summarized in figure 3.3.
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Space Dimension Simplex Cell Cube Cell
0 vertex vertex
1 interval interval
2 triangle quadrilateral
3 tetrahedron hexahedron

Figure 3.4: A list of reference elements available in UFL as named objects. Additional
reference elements beyond these need to be constructed by building tensor products
of these building blocks.

In order to define a finite element, specification of the reference element - cell in
UFL terminology - is needed. UFL uses simple named objects to identify basic
reference elements, with the added convenience of accepting strings containing
that same name. The available cells are restricted to simplices and cubes in space
dimensions 0 to 3, as shown in figure 3.4. Given the desired element family, the
reference element and the polynomial degree, a finite element can be constructed:

FE = FiniteElement('CG', triangle, 1)

When dealing with systems of PDEs, finite elements for each system component need
to be combined into a larger data structure. As highlighted in section 2.3, this data
structure should exhibit a tree structure in order to allow for composability and
optimally blocked linear algebra data structures. UFL supports the construction of
such trees based on FiniteElement leaf nodes through the following three classes:

• VectorElement: Given a leaf element and a dimension (or all the parameters
needed for a finite element and a dimension), constructs an element for
a vector field. The resulting element builds a tree structure from several
components of the given leaf elements. This mirrors the tree structures for
finite element spaces in PDELab exactly. Note, that using VectorElement
differs from using vector-valued finite elements in the first place.

• TensorElement extends the concept of VectorElement: Instead of a di-
mension, a shape tuple is given e.g. to discretize a stress tensor in solid
mechanics. Tensor elements allow specification of symmetries as a Python
dictionary which contains pairs of indices of identified tensor entries. E.g.
symmetry={(0,1): (1,0)} describes a symmetric 2× 2 matrix. The result-
ing element is flattened out and components redundant due to symmetries
are omitted.

• MixedElement: Given an arbitrary list of finite elements, a mixed element
combines these into a larger finite element. This operation is also available
through the overloaded multiplication operator of finite elements, although
this does not allow for an element to have more than two child elements.
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The following example shows the construction of a continuous P2/P1-Taylor-Hood-
Element on quadrilaterals:
FE_V = VectorElement('CG', quadrilateral, 2, dim=2)
FE_P = FiniteElement('CG', quadrilateral, 1)
TH = MixedElement(FE_V, FE_P)

The number of available reference elements and finite elements in UFL increased
beyond the already listed through the introduction of tensor product cells and
elements [86]. Arbitrary tensor product reference elements can be constructed
through the TensorProductCell class using the basic building blocks from fig-
ure 3.4. Additionally, tensor product elements can be constructed from arbitrary
finite elements using the TensorProductElement class. In fact, the elements TE1
and TE2 in the following snippet are equivalent:
cell = interval
product_cell = TensorProductCell(cell, cell)
FE = FiniteElement("DG", cell, 1)

TE1 = FiniteElement("DG", product_cell, 1)
TE2 = TensorProductElement(FE, FE)

Tensor product elements are useful for the definition of elements over non-simplex
non-cube reference elements, such as prisms. They also allow elements with
anisotropic polynomial degree, where the degree property becomes a tuple. Using
a tensor product element also allows to indicate tensor product structure to a form
compiler, which can then algorithmically exploit it.
UFL supports more manipulation of existing finite elements which may be interesting
to leverage in the future: EnrichedElement takes a tuple of elements and combines
their degrees of freedom. This is used in practice by methods like Extended Finite
Element Method (XFEM) [24]. Enriched elements are also available through the
addition operator of finite elements. RestrictedElement allows to remove degrees
of freedom by specifying a restriction domain, that degrees of freedom need to be
associated with to be kept. This restriction domain can be one of 'interior',
'facet', 'edge' or 'vertex'. Such serendipity elements are commonly used in
solid mechanics. Of course, UFL only describes these finite elements, the actual
implementation is up to the assembly framework.
The finite elements described in this section map quite cleanly onto the PDELab
concept of a FiniteElementMap from section 2.3. However, these elements do not
fully describe the discrete finite element function space, as there is no notion of
a mesh. This enhanced concept exists in UFL under the name of FunctionSpace,
which combines a domain object and a finite element. Domain objects are imple-
mented through a Mesh object, whose scope is however not comparable to the scope
of a DUNE grid view object, as it only stores a finite element that describes the
nature of the coordinate transformation. For the sake of simplicity, we therefore
omit these function spaces and domains from our examples. Technically this means,
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that we are automatically constructing domains from cells and function spaces
from finite elements respectively.

Building UFL expressions

We will now look into how arithmetic expressions are constructed within UFL.
Right now, we will only investigate this from an end-user perspective and leave the
question of how the resulting ASTs look like for later in this section.

The most important basic building block of arithmetic expressions for weak formu-
lations of PDEs are functions from finite element spaces. These are used for test
and ansatz functions, but may also appear in more scenarios, such as solutions
from another PDE in a weakly coupled system of PDEs or a physical parameter
interpolated into a finite element space. UFL provides three user-facing classes
to create such finite element functions: one each for test, ansatz and coefficient
functions:

FE = FiniteElement('CG', triangle, 1)
u = TrialFunction(FE)
v = TestFunction(FE)
c = Coefficient(FE)

If the given finite element is of mixed nature, finite element functions can be split
using the UFL function split. It returns a tuple of UFL expressions that reflects
the structure of the MixedElement:

FE_V = VectorElement('CG', triangle, 2)
FE_P = FiniteElement('CG', triangle, 1)
TH = FE_V * FE_P
u, p = split(TrialFunction(TH))
v, q = split(TestFunction(TH))
c, d = split(Coefficient(TH))

UFL provides an additional shortcut for this splitting in the form of TestFunctions(TH)
(mind the plural!) etc. With UFL being embedded into Python, float and integer
literals can directly be plugged into UFL. These are however automatically wrapped
into UFL types representing these literals. This can be explicitly controlled by
calling the idempotent function as_ufl. Using Python literals for constants results
in the constant being directly written into generated code. There is however also a
concept to define runtime constants through the Constant, VectorConstant and
TensorConstant classes. How exactly these are assigned their proper runtime value
is not in the scope of UFL and might differ between problem solving environments.

Using these basic building blocks, we can compose mathematical expressions using
the most common operators and functions. With UFL being embedded into Python,
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arithmetic operators (+, -, *, /1) are implemented through operator overloads.
Mathematical functions are provided using their canonical name from mathematics,
e.g. exp, ln, sqrt, all trigonometric functions and more complex functions like
Bessel functions. The power function is available through both the ** operator and
the built-in pow function. The functions max and min cannot be intuitively defined,
as they would override the corresponding Python built-in functions. Therefore
minima and maxima must either be expressed using the max_value and min_value
functions or their Max and Min aliases. A three-argument conditional function
allows to implement branching in the form of

conditional(cond, A, B) =
{

A cond is True
B cond is False

In order to express the conditions for the first argument to conditional, the DSL
comprises a subset for logical expressions. Comparison operators can be accessed
either through Python operator overloads or by using their named form as eq, ne,
le, ge, lt and gt. Defining the logical operators for conjunction, disjunction and
negation again suffers from a name clash with Python language keywords. The
DSL therefore uses the uppercase function names And, Or and Not instead.

UFL has symbolic differentiation capabilities built in. It can both be explicitly
controlled by the user when specifying a form or used by a form compiler during
form processing. We will now focus on the user perspective and describe the form
compiler use cases later on. Common differential operators from tensor analysis are
available under their canonoical names, like grad, div and curl (or rot). These
use the convention that the newly created tensor axis is appended to the existing
tensor. There is a prepending version available under the names nabla_grad
and nabla_div. If only a specific partial derivative is needed, it can be accessed
through expr.dx(d) or Dx(expr, d). UFL expressions can also be differentiated
w.r.t. user-defined expressions, e.g. to implement sensitivity analysis. To do so,
that expression needs to be wrapped within the variable function. One can then
use diff(expr, var) to differentiate any expression expr that depends on the
wrapped var object.

So far, several ways to construct tensors directly from mathematical concepts
have been described. However, tensors can also be constructed manually, by using
the helper functions as_vector, as_matrix and as_tensor which take a (nested)
iterable of entries and construct a tensor from it. This example constructs an
identity matrix from Python generators, though the same result can be achieved
by using the more convenient Identity(n) from UFL:

I = as_matrix([[int(i == j) for i in range(n)] for j in range(n)])

1 Even when used with Python 2, UFL never implements the division operator as integer division.
One should be careful to not accidentally do it in user code though e.g. by writing 1/2*expr.
Instead write 0.5*expr.
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Math UFL Sum notation
A+B A + B Ci0···in−1 = Ai0···in−1 +Bi0···in−1

A ·B dot(A, B) Ci0···in−2j1···jm−1 = ∑
in−1 Ai0···in−1Bin−1j1···jm−1

A : B inner(A, B) C = ∑
i0 · · ·

∑
in−1 Ai0···in−1Bi0···in−1

A⊗B outer(A, B) Ci0···in−1j0···jm−1 = Ai0···in−1Bj0···jm−1

A×B cross(A, B) Ck = ∑
i

∑
j εijkAiBj

A ◦B elem_mult(A, B) Ci0···in−1 = Ai0···in−1Bi0···in−1

A�B elem_div(A, B) Ci0···in−1 = Ai0···in−1
Bi0···in−1

A◦B elem_pow(A, B) Ci0···in−1 = A
Bi0···in−1
i0···in−1

Figure 3.5: A list of tensor algebra operations in UFL. Whenever indices appear on
both input tensors A and B the shape of these tensor axes is assumed to match.
Indices on the output tensor C describe the output shape depending on the shape
of A and B.

Mathematical name UFL Remark
determinant det(A)
transposition transpose(A) or A.T
diagonal part diag(A) returning a matrix
diagonal part diag_vector(A) returning a vector

trace tr(A)
inverse inv(A)

cofactor matrix cofac(A)
symmetric part sym(A) sym(A) = 0.5 · (A+ AT )

skew-symmetric part skew(A) skew(A) = 0.5 · (A− AT )
deviatoric part dev(A) dev(A) = A− tr(A)

tr(I) I

Figure 3.6: A list of matrix operations in UFL

Tensor entries can be accessed using the square bracket operator of the tensor object
with an index tuple. The resulting expression has all the necessary knowledge to
be treated as a UFL expression in its own right, making the tensor language in UFL
fully composable. Explicit creation of indices and reductions over indices is - while
of course possible - not advisable for end users and therefore not decribed here.

We will now continue with a description of the tensor algebra operations available
in UFL. Binary operators known from tensor algebra, such as inner products, dot
products etc. and how they are available from UFL are summarized in figure 3.5.
On top of these, several linear algebra operations available only on matrices are
summarized in table 3.6.

A lot of numerical techniques explicitly depend on evaluation of geometric quantities
(as opposed to implicitly depending on it through transforming integrals to the
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reference element). Examples are DG methods, where penalty terms may depend
explicitly on the mesh width. For this purpose, UFL provides the user a variety of
geometry objects, which are class objects constructed given the domain (or in our
case, the cell):

• A SpatialCoordinate object describes a global coordinate. In the context of
quadrature-based integration, this is the coordinate of the current quadrature
point. We will later see how quadrature is realized in the code generation
toolchain.

• A FacetNormal object describes a unit normal vector of a facet in the mesh.
This is only well-defined when combined with a restriction to either the inside
or outside cell, which we will cover later in this section. An analogon for cells
is only useful for manifold meshes, which we currently do not support.

• Basic geometric properties of the cell can be accessed through the self-
explanatory names CellVolume, CellDiameter, Circumradius,
MinCellEdgeLength and MaxCellEdgeLength.

• Similarly, basic properties of a facet are available as FacetArea,
MinFacetEdgeLength and MaxFacetEdgeLength.

• The jacobian of the geometry mapping from the reference element and
some derived quantities can be explicitly accessed through the Jacobian,
JacobianInverse and JacobianDeterminant nodes. However, this is usually
not necessary, as the transformation of the integral to the reference element
is done automatically by the code generator.

Note, that UFL only describes cell-local operations. Consequently, all these ge-
ometric properties are evaluated by the form compiler or the problem solving
environment for the current cell in the grid loop. Accessing such information from
neighboring or arbitrary cells is not possible, with the notable exception of cell
information from adjacent cells being accessible on facet integrals by applying
suitable restrictions.

UFL has support for implementing DG methods built in [93]. In DG, integrals over
interior facets in the mesh appear. Finite element functions and cell quantities are
discontinuous and therefore two-valued on such a facet. UFL disambiguates these by
adding restrictions to those expressions. The inside and outside cells are identified
by the strings '-' and '+'. A restriction is applied to an arbitary expression
through the round bracket operator: expr('+'). As described in section 2.2, DG
methods are typically formulated using jump and averaging operators. These
are implemented in UFL as well and allow a very brief syntax without explicitly
restricting all quantities:

r = avg(u)*jump(v)*dS
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Integration Measures

The multilinear forms arising from the discretization of PDEs are given by integrals
over the domain, the domain boundary and over mesh facets in the interior of the
domain. These three types of integrals are represented in UFL by multiplying an
UFL expression that represents the integrand with a measure object from the right.
Measure objects do not need to be instantiated by the user, but are provided by
the language: Cell integrals are realized by dx, boundary facet integrals by ds and
integrals over interior facets by dS. Multiplying with such a measure from the right
constructs an integral object, which is wrapped in a form object. Form objects can
be constructed by adding other form objects using the addition operator. Sums
of integrals over matching measures are joined by adding the integrands during
UFL’s preprocessing step described in section 3.2.1. Note that the limitation to cell,
boundary and interior facet integrals is a limitation of the language. Fortunately, it
matches the limitations of our problem solving environment PDELab and of many
other finite element discretization packages..
The measure object does not only describe the geometric integration domain,
but it also allows to express restrictions of an integral to a subdomain. The
most common use case for this is to define heterogeneous boundary conditions,
composable multi-domain simulation might be another one. In order to restrict a
measure to a subdomain, a pair of parameters called subdomain ID and subdomain
data needs to provided. To this end, each subdomain is assigned an integer ID. A
measure can be customized by providing a single such ID or a tuple thereof, if the
integration domain is the union of multiple subdomains. The subdomain ID of a
measure defaults to the magic string 'everywhere', which represents the union of
all subdomains. The subdomain data used in measure customization is an object
that UFL does not further interpret which tells a form compiler how the subdomain
can be characterized. In our approach, this is a UFL expression, which evaluates
to the subdomain ID if and only if the current quadrature point belongs to the
subdomain. The easiest way to construct a restricted measure is to call an existing
measure’s round bracket operator with all the named keywords to override:
dx_sub = dx(subdomain_id=subdomain_id,

subdomain_data=subdomain_data)

Note that using this direct tweaking of measure objects is not how boundary
conditions are handled in other UFL-based problem solving environments, such as
dolfin. Instead, these use higher level concepts that wrap around this measure
modification.
We will now give examples of how to customize boundary integral measures. In the
above example with the Poisson equation, we have so far assumed essential Dirichlet
boundary conditions, which are realized at the function space level by constraining
the boundary degrees of freedom. Instead applying mixed Dirichlet/Neumann
boundary conditions requires us to define a boundary measure for ΓN ⊆ ∂Ω and
restrict integration of the Neumann boundary flux j to it. For this example we
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assume the domain Ω ⊂ R2 to be a rectangular domain and impose the Neumann
boundary condition on the left and right boundaries:
class BCType:

Dirichlet = 0
Neumann = 1

n = FacetNormal(triangle)('+')
bc_select = conditional(abs(n[1]) < 1e-8,

BCType.Neumann,
BCType.Dirichlet)

ds_neumann = ds(subdomain_id=BCType.Neumann,
subdomain_data=bc_select)

r = (inner(grad(u), grad(v)) - f*v) * dx
+ j*v*ds_neumann

Introducing the enum-like structure BCType is not strictly necessary, but should be
preferred over implicitly defining such a mapping for the sake of maintainability
and readability. In this example, we used the normal vectors y-component to
identify the left and right face of the domain. Alternatively, one might use global
coordinates - hardcoding the domain extents (here to Ω = (0, 1)2):
x = SpatialCoordinate(triangle)
bc_select = conditional(Or(x[0] < 1e-8, x[0] > 1 - 1e-8),

BCType.Neumann,
BCType.Dirichlet)

For more complicated domains, conditionals like this might be impossible or
infeasible to write down. We therefore present an additional solution which relies
on storing the boundary condition type in a vector. We (ab)use the P0 finite
element to define element-wise constant boundary condition types.
bc_select = Coefficient(FiniteElement('DG', triangle, 0))

This assumes that the boundary condition data has been correctly interpolated into
this coefficient function. Typically, this will happen in C++ under user control,
where the user can implement methods out of the scope of UFL, such as a lookup
of data parsed from a Gmsh file [46].
Attaching subdomain information is not the only way to modify existing measures.
They also allow to attach a dictionary of arbitrary meta data to a measure like
this:
dx = dx(metadata={'quadrature_order': 42})

UFL does not process this data beyond distinguishing measures that only differ in
meta data. Meta data can be used to customize form compiler behaviour directly
and is highly form compiler-specific. We are not currently supporting measure
meta data in our form compiler, but we will add this functionality in the near
future.
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Figure 3.7: Tree structure of an UFL expression by example: To the left, the tree
structure of an expression for the integrand of the Poisson equation is shown, to
the right a simplified version of the Python type realizing this tree.
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Condition BinaryCondition

Restricted

Derivative CompoundDerivative

Figure 3.8: An overview of the abstract class hierarchy of UFL expression nodes.
The Expr node is the root node. Using these base classes, UFL defines a total of
115 non-abstract nodes.

UFL implements additional measures beyond the mentioned volume, boundary
and skeleton integrals. As these are tuned specifically to applications in cut-cell
methods, we are not covering them here. For future applications that require
additional annotation of the integration measure, the possibility of creating custom
measures exists.

Expression Trees

So far, we described the user interface of UFL. We will now turn to details
about the UFL IR, which are necessary to understand the code generation process.
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UFL expressions are internally represented as an AST. ASTs are typically used in
programming language and compiler design to represent program semantics. A
simple example of a UFL AST is shown in figure 3.7. In the following, we will study
some relevant classification of the node types used in the UFL AST:

• Abstract vs. non-abstract nodes: With UFL being embedded in Python, class
polymorphism is used for node types. A hierarchy of base classes, as shown
in figure 3.8 is used to classify nodes. The root of the inheritance hierarchy
is the Expr node, which defines the interface for all nodes and provides the
operator overloads that implement the seamless embedding into the Python
language. Inner nodes of the inheritance tree are called abstract node types.
UFL currently comprises a total of 115 non-abstract node types based on this
hierarchy.

• Leaf nodes (or terminal nodes) are where the finite element application do-
main of UFL is obvious: These are either finite element functions, geometric
quantities or literals. The inner nodes in contrast implement a fairly generic
symbolic math language. In contrast to other symbolic languages like e.g.
sympy [88], UFL tries to preserve the mathematical structure as much as pos-
sible - meaning that (if the form compiler follows a similar policy) arithmetic
expressions in generated code will resemble the input.

• Some inner nodes are further classified as so called terminal modifiers, al-
though this classification for historical reasons does not appear in the in-
heritance tree from figure 3.8. These terminal modifiers ideally only occur
as direct parents of terminal nodes or other terminal modifiers. Examples
are the differential operators Grad and ReferenceGrad, the facet integral
restriction operators PositiveRestricted and NegativeRestricted and
the indicator node for evaluations in local coordinates ReferenceValue. In
user code, these nodes can appear everywhere, so one challenge in expression
preprocessing will be to propagate these towards leaf nodes.

• User-facing node types vs. code-generator-facing node types: The user input
previously described is translated into nodes almost one to one. However,
some of these nodes express a high-level mathematical concept, that is not
useful in the code generation process. This applies especially to the tensor
algebra nodes listed in figure 3.5 and 3.6, which we will seek to rewrite into
their low-level forms introducing reductions later on.

Visitor Patterns for UFL Expressions

We mentioned the necessity of expression modification and rewriting in several
places already. Such transformation algorithms are implement using a tree visitor
design pattern [43] ensuring a clean separation of the AST data structure and the
algorithms working on it. An expression tree is traversed depth-first, calling a
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function on each node, which is called a handler. The handler is selected using type-
based function dispatch. All the handlers that constitute a visitor algorithm are
gathered in a class which inherits from the design pattern base class MultiFunction.
During its construction, a handler cache is built using a naming convention to
automate the handler dispatch process: For a given node class name its “snake
case” (lower case with underscores between words) version is used as the handler
name. In type-based function dispatch, not only the tree node is inspected, but
also its method resolution order available from Python internals. This allows to
define handlers on abstract node types as well and ensures that the most specialized
handler for given node type is selected. When traversing an AST, there is several
possibilities regarding the traversal order: Pre-order traversal visits parent before
children, post-order traversal children before parent and in-order traversal visits the
parent after visiting the first of two children. In UFL, all of these traversal methods
can be implemented from within a handler, as the recursive call for the child
nodes is implemented by the programmer. Such handlers need to have exactly one
argument: the AST node to process. When a MultiFunction is called with such
recursive handlers, the Python call stack depth will be of the order of the depth
of the AST. However, there is also an entirely different way of writing handlers in
MultiFunctions to achieve a superior version of post-order traversal: If a handler
takes more arguments than just the AST node, the traversal algorithm passes the
return values of the visit of the children to the handler. The visiting process is
then controlled by a Directed Acyclic Graph (DAG) traversal algorithm, which
makes sure that identical subtrees are only visited once. Finally, mixing of these
two traversal algorithms is possible, by defining single handlers (so called cutoff
types) that need pre-order visiting, which will cause the DAG traversal to treat the
entire AST node as inseparable. The MultiFunction distinguishes cutoff types by
inspecting its argument list. Figure 3.9 shows an example of the available tree
traversal paradigms.

Algorithms on UFL Forms

The raw user input is processed by several algorithms provided by UFL before
it is fed into the form compiler toolchain. We will mention these algorithms in
this section, shortly outlining the transformation behaviour and the intent of the
algorithm. Application of these algorithms (and especially the application order)
is controlled by the entry point compute_form_data from the ufl.algorithms
package.

User input may apply restriction operators to arbitrary expressions as long as these
are not already restricted. In preprocessing the resulting Restricted nodes are
propagated towards terminal nodes by recursively applying them to all child nodes.
This process is necessary, because the code generation handler for a terminal node
is influenced by the presence of a restriction terminal modifier.
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Figure 3.9: Summary of iteration methods for UFL trees: Figure 3.9a shows a
preprocessed UFL AST for the Poisson equation used to study iteration order in
figures 3.9b to 3.9d. With [·] we denote an Indexed note, which implements
indexing of a tensor.
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Figure 3.10: Example of how the inner product (∇u,n) is simplified to a tensor
expression in UFL. Inner products of higher-dimensional tensors will produce a
chain of reduction nodes.

The tensor algebra operations described in figures 3.5 and 3.6 describe mathematical
operations very accurately. However, when it comes to code generation, these
abstractions are not the optimal choice of IR. Even if the underlying problem
solving environments provided interfaces for these high-level tensor operations,
generating code against such an interface would introduce code optimization
barriers by hiding the innermost loops in library code. We therefore seek to rewrite
these tensor operations into simple arithmetic operations. In these rewrites two
UFL node types not explicitly highlighted so far play a key role: The IndexSum
node realizes a reduction over a single index, which is introduced by the node.
The ComponentTensor node introduces a new tensor whose internal indexing is
completely separated from the outer indexing. Such a node is a key ingredient for
composability of tensor expressions. In the figures, we represent the component
tensor node by (·)[·]. The algebraic simplification algorithms are exemplified in
figure 3.10 and 3.11. While the algebraic simplifications might actually look more
complicated to the human eye, they are much better suited for handling in a form
compiler toolchain due to their much smaller set of nodes and the closeness to
multi-dimensional array programming.
Another important algorithmic task in the scope of UFL is application of the integral
transform from the world space geometry cell to the reference cell. The functionality
of this pullback is split out over two separate passes. A function pullback transforms
all the coefficient functions and form arguments into the reference frame, which
might involve complex mappings in the case of vector-valued finite elements. In
most cases, it only wraps a ReferenceValue node around the terminal node though.
After that, an integral scaling transformation multiplies the integrand with the
jacobian determinant and a quadrature weight.
The above two transformations may introduce a large variety of geometric quantities.
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Figure 3.11: Example of how a dot product is simplified to a tensor expression
in UFL. A and B are arbitrary input tensors that will most likely be realized by
component tensors themselves.

However, different problem solving environments might have different policies on
the granularity level of geometric quantities they provide. For example, dune-grid
provides the transpose of the inverse of the jacobian as a first class citizen of a
generic geometry, where other packages might want to invert the jacobian within
the generated code. For this reason, a geometry lowering transformation is applied,
which can be passed a list of cutoff types, which are not simplified further. We
use this to specify the inverse of the jacobian inverse as a cutoff type in order to
prevent the introduction of a symbolic matrix inversion being added to our UFL
expressions.
UFL comes with differentiation capabilities built in. There are three main ways
of doing differentiation in computer programs: Automatic Differentiation (AD),
symbolic differentiation and numerical differentiation. Numerical differentiation is
supported by our problem solving environment PDELab at the cost of a substantial
runtime increase due to the increased number of necessary residual evaluations.
The classification of UFL’s differentiation algorithms is a bit confusing because of
it’s dependence on the frame of reference. Looking from the Python perspective,
the algorithms implement forward AD as described in the literature [51]. However,
looking from the perspective of generated C++ code, the differentiation would be
classified as symbolic. Being aware of this ambiguity, we use the term AD from
now on.
There is a total of four distinct types of differentiation operations in UFL: the
gradient, the gradient on the reference element, differentiation w.r.t. a user-defined
expression and Gateaux differentiation w.r.t. a coefficient function. Note that
some additional mathematical differential operators are expressed in terms of the
above though during algebraic simplification e.g. the divergence is rewritten in
terms of the gradient. We have not covered Gateaux derivatives so far and will



3.2 • Involved Tools 45

u

∇i

[·]

x→ x̂

∇i

[·]

u j

[·]

∑

(·)[·] i

[·]

J−1 j, k

[·]

∗

k

∇̂

x→ x̂

u

j

Figure 3.12: Pullback transformation of the gradient of a finite element function:
The pullback transformation marks the finite element function for treatment in
the reference frame, automatic differentiation actually transforms the gradient
operator to the gradient operator in the reference frame. This tree transformation
is equivalent to the mathematical transformation (∇u)i = ∑

j J
−T
ij (∇̂û)j.

postpone this to section 3.3.1, where we will study them in the light of our typical
use case. The tree visitor that removes differential operators from the input applies
a two-step procedure: An outer visitor looks for differential operators and then
dispatches to an inner visitor that handles this type of differential operator. These
additional visitors all inherit from a base class that implements basic differentiation
rules like the chain and product rule. Figure 3.12 shows an example of how the
gradient is applied to a finite element function after the pullback is applied. This
also illustrates that the order of preprocessing transformations can be a delicate
issue, as the pullback transformation requires an additional application of the AD
transformation.

There are two more algorithmic operations on UFL forms that are relevant for our
applications: The action transformation creates a form that describes the action
of a n-form on a vector as an (n−1)-form. We will discuss this transformation later
on in our application context: Deriving symbolic descriptions of the matrix-free
application of the jacobian. The adjoint operator allows to symbolically derive the
adjoint of a PDE, which plays a key role in PDE-constrained optimization. Although
we are not covering this in this work, such transformation adds substantial value to
the overall approach as it might be quite tedious to manually derive and implement
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these forms for nonlinear problems.

3.2.2 Loopy
We will now describe the loopy project, a programming model for array computa-
tions embedded into Python. loopy will serve as the IR for our code generation
toolchain and provides the key ingredient for the generation of C++ code in
our application. It has been proven to be capable of handling the complexity of
PDE applications [73]. Our description of loopy is loosely based on the author’s
description in [71] though we put emphasis on topics relevant for our intended
toolchain. For the remainder of this chapter, we will use a different notion of
the term user : When talking about users of loopy, we mean developers of code
generators such as ourselves, whereas in other chapters we were referring to users
of our code generator. This also means that whenever something is user defined,
we will later seek to define it automatically in our code generator.

Design Decisions

loopy’s main goal is to solve the performance portability problem of modern
hardware, where many mathematically equivalent representations of a computation
result in code variants that vary drastically w.r.t. to their performance. Further-
more, the optimal code variant highly depends on the given hardware. loopy
asks the user to specify the computation by providing one such representation,
which is usually the one that follows mathematical notation the closest. Given this
representation, users may provide a sequence of transformations that transforms
it into the representation which is best suited for the given hardware. These
transformations may either come from loopy’s builtin transformation library or be
user-provided. loopy’s data model is based on three core components: A tree of
polyhedra describing the loop domain(s), a collection of statements describing the
computations which are tied to one node of the loop domain and a collection of
arrays. We will look at the data model and transformations in more detail later on.
It is a deliberate design decision of loopy to not provide any automatic code
transformation. Instead, generated code solely depends on user input in the
form of statements, loop bounds and a transformation sequence. loopy merely
implements the explicitly requested behaviour. This design principle rules out
internal use of many Python packages for symbolic expressions, such as sympy
[88], which unconditionally rewrites arithmetic expressions into a canonical form.
This canonical form will not necessarily translate into the best possible code.
With transformations being completely user-driven, final responsibility for the
applicability of a transformation and correctness of the resulting code also remains
with the user. This allows the loopy transformation space to be a superset of the
optimization search space of a conventional compiler, because loopy transformations
do not necessarily need to preserve the semantics of the generated C++ code. In
other words, there are loopy transformations that have no valid equivalent in
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the optimization step of a C++ compiler. As an example, we mention changing
the memory layout of data structures that are exposed to the user. We consider
this a defining feature of loopy, which is necessary for our memory layout based
transformations in chapter 4.2.
loopy is embedded into the Python language. Due to the dynamic nature of
Python, the loopy IR is open for inspection and modification by the user. loopy
embraces this fact by considering the IR a user interface. This allows users to
extend it to their own needs by writing their own transformations, adding new code
generation backends or even manipulating internal data structures. loopy further
utilizes the embedding into the Python language by providing deep integration
with popular Python projects such as numpy [114] and pyopencl [72]. Using this
integration allows users to drive their computations entirely from Python.
loopy does not only provide an IR and a transformation library, but also code
generators for a variety of target languages. These map the IR to actual code
variants. Encapsulation of the code generators in backend objects (called targets)
provides a clean separation between transformations and code generation. Currently
loopy supports plain C, OpenCL, CUDA, ISPC and numba as targets. We will
also study the translation to C code in more detail later on.

Loopy Data Model

loopy gathers an array computation kernel into a LoopKernel data structure.
Such kernel typically only represents the inner, compute-intensive part of a larger
program. This is reflected in the moderate amount of control flow that is expressable
in the language. loopy’s notion of kernel granularity matches that of frameworks
like OpenCL. A kernel object can be created with the make_kernel function from
loopy. The following example implements multiplication of two vectors b, c ∈ Cn,
where multiplication of two values x, y ∈ C is defined as

<z = <x<y −=x=y (3.1)
=z = <x=y + =x<y. (3.2)

The complex vectors are represented as two-dimensional arrays. This example was
advocated in [5] as a test case for memory layout changes in generative programming
for HPC. We will use this kernel throughout this chapter to demonstrate loopy2:
knl = make_kernel("{ [i]: 0<=i<n }",

["a[i, 0] = b[i, 0]*c[i, 0] - b[i, 1]*c[i, 1]",
"a[i, 1] = b[i, 0]*c[i, 1] + b[i, 1]*c[i, 0]"],

[GlobalArg("b", dtype=np.float64, shape=auto),
GlobalArg("c", dtype=np.float64, shape=auto),
GlobalArg("a", dtype=np.float64, shape=auto),

2 All code examples assume that all symbols from loopy have been imported with:
from loopy import *
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ValueArg("n", dtype=np.int32)],
)

The three arguments given here do specify the loop domain, the computational
statements and the array arguments that define the interface of the kernel with
the rest of the code. Using the print function on the obtained kernel object gives
us a summary of the kernel:
---------------------------------------------------------------------------
KERNEL: loopy_kernel
---------------------------------------------------------------------------
ARGUMENTS:
a: GlobalArg, type: np:dtype('float64'), shape: (n, 2), dim_tags: (N1:stride:2, N0:stride:1)
b: GlobalArg, type: np:dtype('float64'), shape: (n, 2), dim_tags: (N1:stride:2, N0:stride:1)
c: GlobalArg, type: np:dtype('float64'), shape: (n, 2), dim_tags: (N1:stride:2, N0:stride:1)
n: ValueArg, type: np:dtype('int32')
---------------------------------------------------------------------------
DOMAINS:
[n] -> { [i] : 0 <= i < n }
---------------------------------------------------------------------------
INAME IMPLEMENTATION TAGS:
i: None
---------------------------------------------------------------------------
STATEMENTS:
for i

a[i, 0] = b[i, 0]*c[i, 0] + (-1)*b[i, 1]*c[i, 1] {id=insn}
a[i, 1] = b[i, 0]*c[i, 1] + b[i, 1]*c[i, 0] {id=insn_0}

end i
---------------------------------------------------------------------------

We will now look carefully at the provided arguments. The domain was spec-
ified as a string that follows a syntax used in the integer set library ISL [115],
which is also commonly used in compiler development. loopy uses Python bind-
ings to that library in order to represent polyhedra and apply algorithms to
these. The example domain here is the most simple one: A one-dimensional
interval. Higher-dimensional cuboid domains can easily be expressed, e.g. as
"{ [i,j,k]: 0<=i,j<n and 0<=k<m }". For the sake of simplicity we restrict
ourselves to cuboid domains here, as non-cuboid index domains do not appear in
our work. In our example, the upper bound n is provided as an argument to the
kernel. The name i is called an iname in loopy terminology, which is an axis of a
polyhedral domain. In the summary, we see that inames may have tags attached
that annotate how this axis should be implemented. Not having specified any such
so far, it defaults to None, which results in a sequential for loop being generated.
We will see more implementation tags as soon as we discuss kernel transformations.
The next argument is the list of statements that comprises the computation.
Here, these are given as strings, but these strings are immediately parsed into
instances of Assignment by loopy. It is possible to directly pass these Assignment
instances which is advantageous when programmatically creating loopy kernels.
The same holds for above domain objects. The Assignment object has several
important data fields: For the above example the assignee and expression
represent the left and right hand side of the assignment. These should be ASTs that
represent the given arithmetic expression. Such a representation needs to have a full
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symbolic understanding of the expression in order to allow manipulation by kernel
transformations later on. The AST library used in loopy is called pymbolic. While
it is specifically designed for the needs of loopy, it is also a standalone Python
project in its own right. It provides an AST for basic arithmetic expressions and an
implementation of the visitor pattern. This implementation is quite similar to the
one in UFL and uses type-based function dispatch leveraging the dynamic nature
of Python. It differs from UFL AST in two important ways though: pymbolic does
not provide any terminal nodes specific to finite elements or to tensor algebra.
Instead, pymbolic allows subscripted array accesses with arbitrary indices as leaf
nodes, which does not exist in UFL as it does not have a notion of an array. Array
information such as shapes and data types is not part of pymbolic. Unlike e.g.
sympy [88], pymbolic preserves the input exactly and does not apply any automatic
symbolic modification. Beyond the left and right hand side expressions, assignments
have some more data fields:

• The id field uniquely identifies the assignment within the kernel (and defaults
to 'insn_*' above).

• The within_inames field describes where in the polyhedral domain the
statement needs to be executed. Its default is derived from the inames that
appear in subscripted expression of the left and right hand side expressions.

• For explicit dependencies between statements, the depends_on field can be
given a set of ids that the statement does depend on.

Although the Assignment class is the most important realization of a computation
statement, the possibility to add a C snippet as a statement exists. This should be
seen as a sort of an escape hatch though, because those statements are opaque to
many other parts of loopy, preventing many transformations.
The last argument of kernel creation describes the arguments of the kernel. Here
we use the GlobalArg class to pass arrays from the calling scope into the kernel.
loopy automatically determines whether these are read or written and will apply
the const qualifier suitably. The array base type is specified using the numpy type
system. For this work, only np.float32 (single precision) and np.float64 (double
precision) are relevant. The shape field is used to define the size of the array as a
tuple of logical axes - or with the marker auto that enables autodeduction from
the array accesses in the kernel. Index tuples in the symbolic representation of
the computation refer to these logical axes. Mapping these arbitrary many logical
axes to a linear representation in memory can be defined in many ways. The
dim_tags field, which we did not specify explicitly, defines this mapping allowing
the following values:

• 'c' and 'f' indicate row major ordering (C-style) and column major ordering
(Fortran-style) respectively.
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• 'N<N> defines an explicit nesting level for the axis with 'N0' being the
innermost, stride 1 axis.

• 'stride:<N>' is using a fixed stride of N for a given axis. Internally, all
tags are translated into this one at some point. Using this directly allows for
the definition of arrays which are non-contiguous in memory by specifiying a
stride which exceeds the size of the associated domain axis.

• 'vec' indicates an axis to be SIMD vectorized. This forces the axis to be of
stride 1 and have a length that matches the SIMD width. Larger array axes
need to be split into SIMD chunks before this tag can be applied. Using this
tag is of course only meaningful if the code generation target supports SIMD
vectorization.

• 'sep' splits the implementation of the axis into separate C-arrays. This
allows loopy to deal with a multidimensional array, but have several lower
dimensional arrays in the implementation.

An array memory layout is defined by a comma-separated list of per-axis tags.
Combining the above tags in arbitrary ways allows us to define many, possibly very
complex layouts. Defining computations indepedently of the memory layout and
later changing it by transformation is one of the key features of loopy.

Transforming into Source Code

loopy encapsulates the code generation step into a backend object, which is called
a target. The target object is a data field of the kernel object, which can be passed
on construction or added later on:
knl = knl.copy(target=CTarget())

Here, we present code generation results using the target that generates C code.
We will customize the target mechanism to our needs in section 3.3.3. loopy also
supports CUDA, OpenCL, ISPC and numba as target languages. Some of these
provide additional support for kernel execution from Python.
Code generation is triggered through the generate_code and generate_body
functions, where the latter omits the function signature. For the above example,
this yields:
for (int i = 0; i <= -1 + n; ++i)
{

a[2 * i + 1] = b[2 * i] * c[2 * i + 1] + b[2 * i + 1] * c[2 * i];
a[2 * i] = b[2 * i] * c[2 * i] + -1.0 * b[2 * i + 1] * c[2 * i + 1];

}

In order to achieve this result, loopy needs to provide three core facilities:

• A scheduling algorithm needs to provide a nesting of inames and an explicit
order of statements. As statements within a loopy kernel are not strictly
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ordered, but instead have dependency relations between each others, there
might be some freedom for the scheduler in doing so. The scheduler imple-
mented in loopy performs a rather simple backtracking algorithm in order
to find a valid schedule.

• Generation of additional code snippets that are not part of the given state-
ments. This includes a function signature, declaration of all temporary
variables, a set of custom - maybe target-specific - preambles and the actual
for loops for the given iname nesting. Also, loopy can express a limited
amount of control flow at this level by attaching conditionals to statements,
which result in if blocks being wrapped around statements.

• A mapping from statements to their C code implementation. This is a two-
step procedure: At first the given ASTs need to be transformed to ASTs that
structurally resemble C code. Rewriting of indexing expressions as linear
subscripts using the array axis implementation tags is e.g. performed in this
step. Also, function names are mapped to their target-specific implementation
names by querying the target class with the given name and the inferred
argument types. As an example, loopy kernels are defined using a generic
"min" function, which is then mapped to fmin (C language double precision),
fminf (C language single precision), std::min (C++) etc. The second step
transforms the reduced AST into C code. Both of these steps are implemented
as tree visitor algorithms. Target languages that are a superset of C extend
these mappers by inheriting from them.

Applying Transformations

All loopy kernel transformations are implemented as Python functions, which take
the kernel to be transformed as their first argument. They return a transformed
copy of the kernel. Transformations can be classified into three categories: Those
that apply transformations to the domain (e.g. loop tiling), those that annotate
inames and arrays for the code generator (e.g. loop unrolling) and those that
perform symbolic manipulation of the computation statements (e.g. prefetching).

We will use the above example kernel implementing the multiplication of two
Cn vectors to provide some examples of loopy transformations. These are partly
adopted from [71]. First, we will perform a splitting of the domain axis of size n
into chunks of 4 and unroll the inner loop. This is accomplished by the following
sequence of transformations, where we assume the argument n to be divisible by
four in order to avoid the generation of a lengthy tail loop including conditionals:

knl = lp.split_iname(knl, "i", 4, outer_iname="j", inner_iname="k")
knl = lp.tag_inames(knl, [("j", "unr")])
knl = lp.assume(knl, "n mod 4 = 0")
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The resulting kernel is changed in the following way:
...
---------------------------------------------------------------------------
DOMAINS:
[n] -> { [j, k] : k >= 0 and -4j <= k <= 3 and k < n - 4j }
---------------------------------------------------------------------------
INAME IMPLEMENTATION TAGS:
j: None
k: unr
---------------------------------------------------------------------------
STATEMENTS:
for k, j

a[k + j*4, 0] = b[k + j*4, 0]*c[k + j*4, 0] + (-1)*b[k + j*4, 1]*c[k + j*4, 1] {id=insn}
a[k + j*4, 1] = b[k + j*4, 0]*c[k + j*4, 1] + b[k + j*4, 1]*c[k + j*4, 0] {id=insn_0}

end k, j
---------------------------------------------------------------------------

Note how the tiling transformation has changed the domain axes and the indexing
expressions in the computation, whereas the unrolling transformation merely
marked an iname for unrolling within the code generation stage.
A commonly applied transformation is a memory layout change that transforms
an Array of Structures (AoS) into an Structure of Arrays (SoA) layout. For the
specific use case of arrays of complex numbers, AoS stores pairs of double precision
values, whereas an SoA layout stores two arrays: One contains all the real parts,
one all the imaginary parts. Switching between these is common enough that some
C libraries such as UMFPack [30] provide interfaces for both layouts. In loopy, the
memory layout may be changed by applying a transformation that retags the data
axes of the arrays using the aforementioned data axis tags. With the following
transformation, the output array uses a SoA layout, where the inputs assume AoS:
knl = lp.tag_array_axes(knl, "a", "N0,N1")

Again, the effect on the IR is only an altered tag. The generated C code does look
completely different though:
for (int i = 0; i <= -1 + n; ++i)
{

a[i + n] = b[2 * i] * c[2 * i + 1] + b[2 * i + 1] * c[2 * i];
a[i] = b[2 * i] * c[2 * i] + -1.0 * b[2 * i + 1] * c[2 * i + 1];

}

Note that this transformation does not actually change the memory layout of the
input data by applying a sequence of permuting instructions. The responsibility to
pass an array with matching layout is with the calling scope.
Finally, loopy transformations may also be used to compose kernels in a procedural
manner. The fundamental difference with these transformations is that they alter
the mathematical problem that the kernel describes as opposed to just modifying
its implementation. An example for such a transformation is to_batched which
applies a given kernel to an array of inputs. The following code results in the
same kernel as in our previous example, only that the original kernel only describes
multiplication of complex numbers and the batching is done via a transformation:
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knl = make_kernel("{ : }",
["a[0] = b[0]*c[0] - b[1]*c[1]",
"a[1] = b[0]*c[1] + b[1]*c[0]"],

[GlobalArg("b", dtype=np.float64, shape=lp.auto),
GlobalArg("c", dtype=np.float64, shape=lp.auto),
GlobalArg("a", dtype=np.float64, shape=lp.auto)],

target=lp.CTarget())

knl = to_batched(knl, "n", ["a", "b", "c"])

The given parameters here denote the batch size "n" and the list of arguments
which should vary across the batch. Dropping e.g. "c" from that list would result
in a kernel that multiplies all elements of a vector b ∈ Cn with a fixed value c ∈ C.

loopy is by no means restricted to its builtin library of transformations. Custom
transformations benefit greatly from the openness of the loopy IR: Data fields can
be identified and modified by inspecting data structures in an interpreter session.

3.2.3 Vector Class Library
Writing explicitly SIMD-vectorized C++ code is an enormous technical challenge, as
the C++ standard does not provide a high level interface to do so. Currently, there
are three possible approaches: Write inline assembly, use intrinsic functions or use
a library. Inline assembly is the worst choice from a performance portability point
of view, as the code is tailored to the specific instruction set. Also, inline assembly
requires expert knowledge to write and even if written perfectly, it introduces
an optimization barrier for the compiler. Intrinsic functions mitigate this last
disadvantage: Although the granularity level of intrinsic functions is close to the
one of instructions, the compiler is able to optimize across intrinsic function calls.
Intrinsic functions still suffer the problem of being architecture-dependent and
compiler-specific, which poses a threat to performance portability. We will therefore
advocate the use of a library for this purpose.

Choosing a SIMD Library

As intrinsic SIMD functions are proper, statically typed, C++ functions (as opposed
to macros) they come with a full type system describing SIMD registers, e.g. __m256d
describes an Advanced Vector Extensions 2 (AVX2) register interpreted as a SIMD
vector of double precision values. With such a type system already being in place,
the idea to extend this into a convenience library for SIMD programming using C++
operator overloading is quite obvious. In the last years, many such approaches
have been published. We mention Agner Fog’s vector class library [42], Vc [75],
Boost.SIMD [39], Generic SIMD library [117], Sierra [77], MIPP [23], xsimd [100],
Google’s dimsum [50] UME::SIMD [58] and libsimdpp [57]. Additionally, compilers
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have lately (e.g. GNU compiler version 6 or later) started adding compiler-specific
extensions that allow definition of similarly rich SIMD types using a special attribute:

using AVXdoublevec = double __attribute__ ((vector_size (32)));

In order to decide which of the above libraries suits our purpose the best, we study
classification criteria for these library approaches:

• Portability. Libraries should be usable from common compilers (g++, clang,
icc) and across the most relevant cross-section of microarchitectures using
one unified interface. This is a big issue with compiler vector extensions, as
they lack standardization across compilers.

• Templates. Many libraries internally use templates which take the vector
length as a template parameter. These templates are then specialized for
the SIMD width available in the architecture. Other libaries use classes with
fixed SIMD width mangled into the name instead. Some libraries take the
templatization aspect even further to provide a truely portable approach:
Code is written using vector lengths independent of the available SIMD width
and the implementation splits these vectors into chunks of SIMD width. These
approaches are better described as programming models rather than just
convenience libraries.

• Library functions. All of the above mentioned libraries define basic types
and overloaded operators for these types. However, they differ vastly in
the amount of additional functionality they provide. This functionality
covers vector construction, permutations, blends, reductions, conversions and
mathematical functions. The missing availability of a lot of these is another
big disadvantage of compiler vector extensions.

• Stability and support. For explicitly vectorized numerical codes, one usually
wants to stay up-to-date with recent hardware developments. This boils
down to a question of how well maintained the library is. In the case of
the introduction of AVX-512, the differences in library adaptation ranged
from “implemented before hardware was for sale” to “still missing as of this
writing”.

For our code generation toolchain, we put emphasis on portability (across instruction
sets and compilers), instruction set support and additional functionality in form of
mathematical function implementations. Use of C++ templates to define SIMD-
width independent vectors is not an important feature to us, as the code generation
toolchain allows some flexibility in hardcoding the SIMD width in a performance-
portable fashion. Infact, having non-template types might even be beneficial in code
generation as it makes the generated code more simple, removing some potential
sources of bugs. With these criteria in mind, we chose Agner Fog’s vector class
library.
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Fortunately, a satisfactory solution to the chaotic situation in SIMD programming
is on the horizon, as Matthias Kretz, the developer of the Vc library, makes a move
to introduce such functionality into the C++ standard [74]. Once such effort is
successful, the advantages of standardization and of a wide user base will outweigh
most of above considerations.

SIMD Vector Types

The SIMD vector types available in Agner Fog’s vector class library can be subdivided
into three categories: Floating point types, integer types and boolean or mask
types. Floating point types can be described as the product of the available total
vector widths 128, 256 or 512 bits and the bit width of the underlying type: 32 or
64 bits. The naming scheme in use is Vec<n><ident>, where n is a placeholder for
the number of SIMD lanes (quotient of total bits and bits of underlying type) and
ident is a short string describing the underlying type - here either f or d. Integer
types work the same, except the underlying type is allowed to vary from (identifiers
in brackets): 8 (c, not for 512 total bits), 16 (s, not for 512 total bits), 32 (i)
and 64 bits (q). Additionally, all of these types are available as unsigned types by
prepending u to the identifier. Mask types are available for all of the above types
by appending b to the full class name, e.g. Vec4db. Data can be stored into these
SIMD vectors through a variety of methods:

• Construction from one scalar results in a broadcast instruction.
• Construction from scalars using compile time constants is possible. Using

runtime data effectively results in a gather operation.
• Lower and upper half construction uses instructions intended for compatibility

with previous instruction sets to initialize e.g. an AVX2 register from two
Streaming SIMD Extensions (SSE) registers.

• Loading from an (un)aligned address is implemented as a load or load_a
method on the vector. This results in a load instruction.

• Insertion of a scalar is available as an insert method of the vector. The fact
that the more convenient non-const overload of operator[] is not available
is intentional to discourage users from writing such code, as it might often
incur a forward store stall [41].

• Assignment and copy construction work with vectors of the same type. This
is especially important when working with C-arrays of these vector types.

• Gather operations are possible through a gather (compile-time indices) and
lookup (runtime indices) function using an integer vector with indices de-
scribing the offsets w.r.t. a given base pointer. Though available, vector
gather instructions are not advisable on latest Intel architectures, as they
have the highest latency and lowest throughput of all instructions in the
instruction set [40].



56 Chapter 3 • A Code Generation Toolchain for the DUNE Framework

Similarly, data can be retrieved from SIMD vectors through a variety of methods:

• Extraction of a scalar can either be done using an explicit extract method
or using the const version of operator[].

• Retrieval of lower and upper half is available using the methods get_low and
get_high again using compatibility instructions.

• Store to an (un)aligned address is implemented as store or store_a in
analogy to loads.

• Scatter operations are available in analogy with the above gather operations
as a scatter function. The same performance warning applies.

SIMD vector types from the vector class library support all common arithmetic
operations via C++ operator overloading. The same holds for logical operators,
which yield the associated mask type. On top of that, the vector class library
provides functions for the common tasks of permutation and blending, which are
useful in data memory layout changes. It also gives direct control over FMA via
the functions mul_add, mul_sub and nmul_add. As a unique feature compared to
other SIMD libraries (to this extent), the vector class library provides its own set
of high performance implementations of mathematical functions like min and max,
sqrt, pow, integer rounding and truncation functions, exponential and logarithmic
functions, trigonometric and hyperbolic functions as well as error functions. Having
such implementations is necessary, as the C++ standard library does not provide
templates, but specialized implementations for single and double precision. Efficient
SIMD implementations of such functions are much more intricate than just executing
a state-of-the-art algorithm on each lane, as these often contain too much branching
to be feasible in SIMD calculations. Dedicated research on this matter exists, e.g.
[106] and [84].

3.3 Code Generation Algorithms
With all the software pieces of the code generation puzzle being described, we will
now look into the description of the actual code generation process. We will first
look at how the input is preprocessed, then cover the main tree visiting algorithms
and finally look at the generation of C++ code.

3.3.1 Defining and Preprocessing of UFL Expressions
The UFL input is provided by the user as a single Python object, describing the
residual form of the PDE to solve. In this section, we go into detail about how
we customize UFL compared to the general description in section 3.2.1 and what
algorithms we apply to the input before starting the code generation process.
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Residual Formulation

It is our intent to express the residual formulation from equation 2.16 directly in
UFL. This approach differs from the FEniCS approach which distinguishes the
linear and the nonlinear case. They do define bilinear and linear forms in the
linear case, but use a residual formulation in the non-linear case - requiring users
to switch to a different class for the ansatz function:

u = TrialFunction(FE) # Linear case
u = Function(FE) # Nonlinear case

The Function class used in FEniCS programs is not part of UFL, but imported from
the dolfin Python package that extends UFL with dolfin-specific abstractions.
As we want to use the same approach for both linear and nonlinear problems, we
do not need this distinction and instead modify the TrialFunction node from UFL
such that it is a coefficient function instead of a form argument. We distinguish
trial functions and other coefficient functions by assigning a special reserved
index to the internally stored count variable (which is used for distinguishing
coefficient functions from each other). The modification is done in the module
dune.codegen.ufl.execution, which provides the execution context for our UFL
files.

Automatic Differentiation

As mentioned, AD greatly extends the power of our code generation approach.
While in handwritten PDELab code maximum performance can only be achieved if
the residual, its jacobian and potentially also the action of its jacobian on a vector
are manually implemented, we can derive the latter two from the residual form
using form manipulation algorithms from section 3.2.1. On a function space level,
the jacobian matrix from equation 2.19 is obtained as the Gateaux differential
Dr of the residual form. The resulting form is bilinear and still depends on u
in the nonlinear case. UFL naturally handles Gateaux differentials through its
derivative form transformation:

u = TrialFunction(FE)
jac = derivative(residual, u)

Having derived a jacobian form using AD, we can apply another symbolic trans-
formation to obtain the linear form describing its action on a vector. Given the
linearization point x := ∑

j(w)jΦj, this reads:
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(J(z)w)i =
∑

j

(J(z))ij(w)j

=
∑

j

J(u; Φj,Ψi)(w)j

= J(u;
∑

j

(w)jΦj,Ψi)

= J(u;x,Ψi)
=: ja(u, x; Ψi)

Assuming jac to be the jacobian form, this UFL transformation reads the following:
coeff = Coefficient(FE, index)
jacapply = action(jac, coeff)

index is used as a placeholder here for another reserved index, just like we imple-
mented the trial function in the context of the residual formulation. This procedure
is necessary to distinguish coefficient functions with special meaning in the code
generation process.
Here, we have shown how the form compiler toolchain uses AD. The possibility to
add AD code into the user input is untouched, e.g. for doing sensitivity analysis.

Simplifying Expressions

We have studied UFL’s algorithms for preprocessing in section 3.2.1. In our
toolchain we do always apply all of these algorithms to the input: Simplifica-
tion of tensor expressions, pullback to the reference element, rewriting of geo-
metric expressions and application of AD. We do this in order to reduce the
number of UFL nodes that need to be handled by the main code generation vis-
itor algorithm to a minimum. In the case of geometric quantities, it is worth
having a closer look at cutoff types in use, meaning the UFL nodes that we
keep in the input although a simplification might be available. We chose these
such that they match the interface of DUNE’s generic geometry interface, cutting
off at the following types: CellVolume, FacetArea, FacetJacobianDeterminant,
FacetNormal,JacobianDeterminant and JacobianInverse. It is worth taking a
closer look at the effect of keeping JacobianInverse: The resulting expressions are
as easy as the example AST from figure 3.12, whereas the simplified version would
contain a symbolically inverted matrix expression. These inverted expression grow
very fast with the geometric dimension and make the generated code very hard to
read. Additionally, as UFL does not allow any procedural statements, the inverted
matrix needs to be written out element by element, whereas inversion within C++
allows to define a temporary variable holding the matrix inverse. In the case of
the jacobian inverse, this can be avoided by using the appropriate cutoff type. For
general matrix inversion nodes, UFL does not currently allow keeping these in the
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input, even if it was beneficial. We have targetted this issue in order to make the
example of Maxwell’s equation from section 5.4 work, where a 6× 6 matrix needs
to be inverted as part of the discretization (UFL cannot invert matrices larger than
4× 4). We monkey patch (runtime source code manipulation) the inverse handler
of the simplification algorithm to be non-operational. Furthermore the AD code
needs to be patched with the following identity obtained from the product rule:

∂A−1

∂u
= −A−1∂A

∂u
A−1 (3.3)

This identity is taken from [47], which also provides a good source for handling other
matrix quantities in a similar way. The inverse node will instead be handled such
that the matrix will be assembled into a dense matrix structure in the generated
code and a library function for inversion from dune-common is called.
Note that in this section, we have only described simplifications that are applied
on the UFL level. Some simplifications, like propagation of zeroes or Common
Subexpression Elimination (CSE) will be applicable at a later stage.

3.3.2 Transforming UFL Expressions to Loopy Kernels
The main goal of this section is the transition of the AST of a UFL integral to a
loopy kernel. That kernel will then provide the basis of any transformation-based
performance reasoning. Finally, this kernel object can be translated into a piece of
C++ code. The crucial point in transitioning towards a loopy kernel is identifying
and adding those parts that are not part of the UFL AST.

Splitting Forms into Assembly Terms

UFL provides a symbolic description of the integrals in a multilinear form. The
arguments of these forms are represented by a dedicated AST node. In implementa-
tion loops over test functions need to be added, as the generic problem formulation
from equation 2.17 requires us to test against all basis functions of the test space.
Within this loop, an update expression is added to the corresponding entry of the
residual vector. When assembling jacobian matrices, additional loops for the trial
functions need to be wrapped around the quadrature loop, and the results need to
be accumulated into the corresponding matrix entry. This accumulation process
in PDELab is controlled by the accumulate method of the local container that is
passed to the assembly method. It takes the local function space object, a test
function index and the update expression (or a pair of spaces and indices in the
jacobian case) as arguments. We now seek to transition from a given UFL integral
to this update expression, so that we can generate code for the call to accumulate
directly. In order to do so, we have to programmatically separate those update
expressions, that require a separate call to accumulate. This is necessary if the
method needs to be called on a different container or if a different child of the
local function space needs to be passed. This is the case, if (for facet integrals)
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the restrictions on the form arguments do not match or the sub element index
of a MixedElement node differs. We traverse the given integrand expression in a
preprocessing step to identify all combinations of such modified terminals. Then,
we run the main tree visiting algorithm from the next section once for each such
term, looking to isolate the update expression needed for the call to accumulate.
Due to loopy’s way of implicitly defining loop structure through inames, having
the update expression depend on the assembly index will automatically result in
the accumulate call to be correctly nested in the assembly loop nest.

Tree Visitor Algorithm

As seen in section 3.2.1, algorithms working on UFL ASTs are implemented using
the visitor pattern. The algorithm that translates UFL integrals into loopy kernels
is no exception. However, providing one such visitor class would lead into a lot
of branching based on form compiler options within the handlers. We therefore
construct the visitor class as a composition of mixins, which are selected by
form compiler options. Currently, four types of mixin configuration options are
considered: geometry_mixins (providing specialized geometries for subclasses
of grids e.g. structured equidistant grids), quadrature_mixins (allowing tensor
product quadrature formulae in section 4.4), basis_mixins (again allowing tensor
product structure of basis functions later on) and accumulation_mixins (describing
the splitting described above, which also varies in sum factorization). All of these
mixin parameters default to a generic implementation that works for any DUNE grid
and uses generic high-level constructs from PDELab. We will discuss specialized
mixins where appropriate.
We will now study how UFL node types are handled by the UFL-to-loopy visitor
looking at groups of nodes that are treated similarly. The visitor would be better
described as a converter from UFL to pymoblic, as the return value of the traversal
process is a pymbolic expression, that we can then plug into the loopy statement
that realizes the accumulate call. The visitor is not only translating expressions to
pymbolic, but handlers of the visitor may also have side effects, which add more
statements to the loopy kernel to be created (such as evaluation of basis functions).
In section 3.2.1 we introduced terminal modifiers as a special node type that can
only occur as a direct parent node of a terminal or another terminal modifier.
Examples are the restriction node types or the Grad node. These nodes cannot be
directly translated into the target language, as they have no pymbolic analogon.
Instead, the presence of a terminal modifier alters the way that the child terminal
node is handled, e.g. a gradient node attached to a test function should result in
evaluation of the gradient of the test function, not differentiation of the evaluation
of the test function. Therefore, handlers for terminal modifiers modify the state of
the visitor marking their presence and go into recursion.
We will now have a look at how the code for indices and indexed expressions is
generated. First, we observe that integrands of UFL integrals are always scalar i.e.
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no free indices. The only way for indices to be introduced within a UFL AST is
through the IndexSum node. When handling such nodes, we do unrolling of the
reduction index space at code generation time, meaning we visit the reduction
expressions once for each possible index, turning the reduction into a regular sum.
TSFC, the form compiler used by the firedrake project, behaves similarly in this
regard [55]. This is a drastic decision, so we give a few more reasons about why we
consider it a good one: Reductions expressed in UFL typically only appear with
index ranges of the order of the geometric dimension or of the number of components
in a PDE system. In both cases, these are rather small, such that the compiler
would typically unroll the corresponding loops anyway. Furthermore, treatment
of the resulting expressions is much easier when performing CSE in order to find
a code variant that uses the minimum number of floating point operations. Also,
these unrolled expressions allow additional optimizations that propagate zeroes
and thereby reduce the complexity of expressions. We will talk about this zero
propagation in more detail later this section. When doing the code generation time
reduction unrolling, each IndexSum node introduces a replacement of its symbolic
index with the current unrolled integer index. As UFL does not reuse index names
across an expression, we can simply store the index replacement rule in a dictionary
on the visitor. In this unrolled setting, the handling of ComponentTensor nodes is
straight-forward, as it only adds index replacement rules the index dictionary. In
the non-unrolled setting however, handling component tensors would require us to
introduce a temporary variable array for each such tensor.

The handler for the Indexed node looks up the given multi index (its second
operand) in the transitive closure of the replacement dictionary and pushes the
result onto a stack of indices stored with the visitor. It then continues to visit its
first operand recursively. Afterwards, if the top stack element is a multi index, it
wraps the returned pymbolic expression into a Subscript node indexed with that
multi index. This procedure is necessary to enable other handlers to treat indices
implicitly instead of explicitly adding a subscripted expression. For an example of
where this happens, we return to the Taylor-Hood element studied before:

TH = FiniteElement("CG", cell, 1) * VectorElement("CG", cell, 2)
test = TestFunction(TH)
p, u = test.split()

Here, the children of the finite element tree, such as p, are accessed by indexing
the test function object test. However, when handling the test function object, we
need to generate code for leaves of the finite element tree, so we implicity handle
the index that selects the component of the PDE system. Another such example
is the handling of the ListTensor node, as in the unrolled setting, it can just
implicitly handle the index by selecting the correct tensor entry at code generation
time. Handlers that implicitly treat indices push None onto the index stack in
order to prevent the Indexed handler from erroneously adding a subscript from
the stack.
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Many non-leaf node types have a pymbolic counterpart, that can be translated
verbatim. This applies to all arithmetic operations, mathematical functions and
logical operators. One important optimization that is applied to these nodes is
code generation-time evaluation, which is quite relevant in two cases: Firstly,
multiplication with zero should yield zero and not even generate code for any other
factors. Secondly, if some operands of mathematical operators and functions are
literals, code generation-time evaluation (a more general version of constant folding)
can be applied. With all operands being literals, it is even possible to completely
omit the operator and write the result directly into the generated code. With the
above unrolling of reductions, this situation appears quite common, e.g. think of
a gravity vector being defined as (0, 0,−9.81)T : It will never be assembled into a
vector in generated code as the x and y component will be removed during the
code generation process, saving some floating point operations. When we look
into code generation for sum factorization on axiparallel grids in section 4.4, this
simplification will be the foundation of a very huge gain: As the interior facet
integrals are implemented separately for each facet orientation, the normal vector
n will be a (negative) unit vector, resulting in elimination of a lot of work, e.g.
(∇u,n) = ±∂iu.

We will now turn to handlers for finite element functions. The handler for the
Argument node takes into account the splitting into accumulation terms mentioned
above. For each accumulation term, the visiting process is started once and if the
visited argument node’s terminal modifiers do not match the current accumulation
term, 0 is returned. With the described propagation of zeroes, this will lead to
expressions collapsing in such a way that the visiting process returns a minimal
representation of the accumulation update term in pymbolic, which we can directly
plug into a loopy statement that realizes the accumulate call. If the given
Argument node’s terminal modifiers do match the current accumulation term,
we need to return the properly indexed temporary variable that contains the
evaluations of basis functions (or respectively their gradients). Also, we need to
make sure to trigger the evaluation of these basis functions, which will be realized
in separate loopy statements. Coefficient nodes are handled in two ways: If they
have a reserved index (finite element solution or linearization point in matrix-free
computations), we implement the evaluation of its basis and the linear combination
with given coefficients. Other coefficient functions are expected to be grid functions
in the PDELab sense, which provide a high-level interface for evaluation. All
finite element function related handlers are grouped into a mixin class, as the code
generation process for sum factorization requires entirely different handlers.

Another category of handlers that is grouped into a mixin are quadrature-related
ones. Again, the intent is to allow the tensor product structure exploiting variant
to behave differently. It provides the quadrature weight and position in local
coordinates for the geometric quantity handlers to operate on. The returned
quantites are subscripted with the quadrature iname(s), again implicitly defining
the nesting of statements inside the quadrature loop.
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Mixin name J−1 | det J |,|T |,|F | n
generic position-dependent position-dependent position-dependent

full pattern
axiparallel constant on cell constant on cell constant on cell

diagonal pattern
equidistant constant on grid constant on grid constant on grid

diagonal pattern

Figure 3.13: Geometry mixins available to exploit geometric structure in certain
grids. The generic mixin works for all grids conforming with the dune-grid interface.
The geometry mixin is selected through a form compiler option geometry_mixins.
Sum factorization-specific mixins are not shown.

The most important group of handlers controlled by a mixin are the ones that
calculate properties of the geometry mapping µT . Also, it has the richest variety of
implementations available. Table 3.13 shows those, omitting any mixins introduces
in section 4.4 for the sum factorization case. Choosing the correct mixin for
structured grids can greatly reduce the number of required floating point operations
for several reasons: In structured grids, many quantities do not need to be evaluated
at every quadrature point, as they do not vary across these. In equidistant grids,
this precomputation can even be moved into the class constructor. Also, exploiting
the diagonal structure of the jacobian of the geometry mapping µT and its inverse
saves some operations. This optimization can be nicely implemented in the loop
unrolling setting, as the handler implicitly handle the indices at code generation
time and return 0 if an off-diagonal entry is requested.

Memoization Patterns in Code Generation

Memoization is a computing technique that reuses cached results of function calls
upon reevaluation, quite similar to dynamic programming. While memoization is
an optimization technique in the case of expensive function calls, it can as well be
used to give guarantees about a function being called exactly once with a given
set of parameters. The latter is what we are primarily interested in in the field of
code generation: Nodes that appear multiple times in ASTs should often map to a
single snippet of C++ code in order to ensure the generation of valid C++ and
to avoid unnecessary operations. As a large portion of the code generator code
base consists of memoized functions, we will describe the software design of the
memoization infrastructure in a bit more detail.
The following requirements on the memoization pattern arise in our code generation
toolchain:

• Partial memoization: The caching decision should not necessarily depend on
all function arguments.
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• Fine-grained cache lifetime control: Some cache results need to be reset for
each integration kernel, some for each UFL form, some never. We need the
possibility to filter cache entries when retrieving and deleting them.

• Insertion order preservation for caches: This is important if the memoization
technique is used to ensure validity of C++ code. Otherwise, objects might
be instantiated in the wrong order.

• Simplicity: The development workflow in Python should be simple.

We meet these requirements by implementing our own memoization infrastructure
that provides Python decorators [43]. These decorators are used on most functions
in the code generation process. Here is a simplified example that shows how a
nested finite element tree is traversed bottom up to with memoization being applied
to all subtrees:

@cached
def define_gfs(FE):

if isinstance(FE, MixedElement):
for e in FE.sub_elements():

define_gfs(e)
return "Defining mixed element {}".format(FE)

else:
return "Defining finite element {}".format(FE)

TH = FiniteElement("CG", cell, 1) * VectorElement("CG", cell, 2)
define_gfs(TH)

The cached decorator has insertion order preservation enabled, such that the
output upon cache retrieval correctly traverses the finite element tree bottom up:

'Defining finite element <CG1 on a triangle>'
'Defining finite element <CG2 on a triangle>'
'Defining mixed element <vector element of <CG2 ...>>'
'Defining mixed element <Mixed element:'

'(<CG1 ...>, <vector element of <CG2 ...>>)>'

For partial memoization, a lambda can be applied to map the function arguments
to a memoization cache key. Life time control is implemented by instantiating the
memoization decorators with a list of tags. Retrieval and deletion of cached func-
tion evaluations are done with delete_cache_items and retrieve_cache_items
functions. These can filter cache items based on the tags that the decorator was
built with.
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3.3.3 Generating C++ Code
So far, we described the translation of PDE models between the IRs of UFL and
loopy. We will now turn to describing how the latter IR is translated into C++
code.

A Loopy Target for DUNE

We have studied the code generation abstraction of loopy - a target - in section 3.2.2.
The built-in loopy target which is closest to our needs is the plain C target. We
inherit from it to enhance it for our additional needs which stem from the following
requirements:

• C++. Generating C++ code instead of C code does not require much
adaptation, as we are sticking with the C subset of C++ wherever possible
and only generate C++ code, when strictly necessary. This includes using
plain C arrays for temporary variables of a kernel. An example of what
needs to be adopted is registration of math functions from the C++ standard
library to have these take precedence over the plain C functions.

• VCL support. The C target is extended to support the vector class library from
section 3.2.3. The only necessary step to do so is to register the additional
vector types into loopy’s type system. Having done so, vectorized statements
are expressed by tagging domain array axis with the vec tag. Also, functions
operating on these vector types need to be registered.

• FMA. As of this writing, loopy does not treat FMA as a separate tree node.
We introduce this node and its handlers in order to ensure FMA instructions
are issued in code using the vector class library. The newly introduced node
is directly used in tensor contraction code covered in section 4.4. In order
to also use FMA nodes in expression that were translated from UFL, a loopy
transformation is called that matches FMA patterns.

• Compatibility with framework data structures. Some memory layouts, e.g. the
layout of global DOF data structures, are fixed by PDELab and the generated
code needs to respect this memory layout. In contrast to C arrays, in C++
this memory layout is defined by using nested containers. loopy’s way of
calculating indices from multi-indices and the corresponding strides does
not work here, as the only correct implementation of data accesses into a
nested container is through multiple square bracket operators. We subclass
the loopy classes for arrays such that we can switch the indexing behaviour
between flat indexing and nested [] operators. DUNE’s data structure for a
dense matrix from Rn×m is an example of such data structure.

• Operation-counting floating point type. In the benchmark setup description in
section 5.1, we will introduce a floating point type, that counts the conducted
floating point operations. Our target can switch between Plain Old Data
Structures (PODs) and these.



66 Chapter 3 • A Code Generation Toolchain for the DUNE Framework

We implement all of these changes into a new class DuneTarget, although it would
also make sense to further split this into an inheritance hierarchy or mixins for
future customization.

The Local Operator Class

The target mechanism of loopy produces the function bodies of the assembly
methods alpha_*, jacobian_*, etc. The rest of the local operator class and the
header file it is contained in is generated using a more simple approach using
code snippets and the described memoization infrastructure. Snippets gathered in
this way include the following: Include directives, class template parameters, base
classes, constructor arguments, initializer list entries, class member variables and
methods. A notable exception is the constructor body: It is also generated from a
loopy kernel, allowing precomputation of complex quantities on the operator level.
Some template parameters and constructor parameters are generated regardless of
the visiting process in order to reduce the variation of how local operator objects
are instantiated. This minimal interface looks as follows:
template<typename TRIAL_GFS,

typename TEST_GFS>
class LocalOperator
{

public:
LocalOperator(const TRIAL_GFS& trial_gfs,

const TEST_GFS& test_gfs,
const Dune::ParameterTree& iniParams);

};

The given parameters are the trial and test grid function spaces and the configuration
tree, whose keys can be read by the operator class. The visiting process may append
additional arguments to the template parameter list and additional constructor
arguments. E.g. if the UFL input contains a coefficient function, the user needs
to pass a grid function to the constructor. The ordering of arguments is made
deterministic by adding tags that serve as sorting criterion.

Generating Simulation Driver Code

Although we deliberately chose to restrict the code generation process to the
integration kernels gathered in a LocalOperator, generating code for the entire
simulation workflow can sometimes be beneficial. This is the case in automated
testing, as it drastically reduces the amount of code duplication involved in a test
suite. It is also beneficial when it comes to rapid prototyping, as it removes the
burden of coding up a simulation driver when quickly trying out a new discretization
scheme. We therefore try to provide automatically generated simulation drivers
as well. Of course, this comes at a cost: Several choices of building blocks from
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Figure 3.14: Flowchart of a PDELab simulation driver: Arrows define dependencies
between simulation components. Traversing this DAG bottom-up and generating
C++ snippets on the fly yields the generated code for the driver function.

DUNE/PDELab are fixed at code generation time with no means of changing them.
Such blocks are: the grid implementation (always using a structured grid - although
implemented through an unstructured grid manager in the simplicial case) and the
linear solver, which is always chosen to be UMFPack [30], a direct solver. Many
other building blocks can be correctly selected at code generation time without
additional knowledge e.g. a Newton solver is selected if and only if the UFL input
is a nonlinear form. Generation of such driver code is implemented as a large
collection of functions that implement small C++ snippets and make heavy use
of the memoization infrastructure from section 3.3.2 to ensure the generation of
valid C++ code. The code generation process is triggered by a function call that
generates the return statement of the main function. With each function calling all
other functions which it depends on, a correct topological sorting of code snippets
can be achieved if the memoization infrastructure is preserving the order of cache
entries. Figure 3.14 shows the dependency graph of the framework components
involved.
We do allow a few exceptions from the above rule of not providing customizations
to the driver generation process with the intent of lowering the bar for extensive
automated system testing (section 3.4.2 will extend on this). These are mainly
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concerned with information which is not part of the UFL form, but is expressable
using the symbolic language of UFL:

• If an expression interpolate_expression exists in the UFL file, it is inter-
polated into the DOF vector before solvers are applied. This way, Dirichlet
boundary conditions and initial conditions of instationary problems can be
implemented.

• An expression is_dirichlet from the UFL file is interpreted as the condi-
tion when to apply Dirichlet constraints (using 1 for constrained and 0 for
unconstrained).

• If an expression exact_solution exists, it is interpolated into a different
vector, which is used to calculate the error norm ‖uh − Ihu‖L2(Ω), with Ih

being the operator interpolating the solution onto the finite element space.
This is important to rule out purely numeric errors in automated testing.

When solving a PDE system, all of the above accept a tuple of UFL expressions,
a vector-valued UFL expressions or a mixture thereof. In all cases, the provided
data is flattened into a tuple who entries correspond to the leaf nodes of the finite
element tree.

3.4 Integration into the DUNE Framework
We will now turn to describing how the Python-based toolchain can be embedded
into the DUNE user workflow. Alternatively, one could seek to provide Python
bindings for DUNE, as pioneered in other work [32]. As explained in section 3.1, we
will instead trigger the code generation process from the DUNE build system.

3.4.1 The Module dune-codegen
The modular structure of the DUNE framework makes it a natural choice to provide
the code generation toolchain in the form a new DUNE module. The module
dune-codegen is available under a BSD license from the DUNE Gitlab server [62],
installation instructions can be found in appendix B.1. The dune-codegen module
provides the following components:

• CMake code needed for integration of the code generation process into the
DUNE user workflow. This will be covered in the rest of this section.

• C++ code used from code generation: Sometimes it is easier to generate a
call to a C++ function instead of actually generating the function body itself.
We provide such code in C++ header files, which are included by generated
header files.

• The Python package dune.codegen that implements the code generation
process, as described in section 3.3.
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• Upstream Python package dependencies bundled as git submodules. Having
the source code of Python packages available is important for a seamless
development workflow and to be able to apply patches to upstream depen-
dencies.

3.4.2 CMake Integration
DUNE uses a CMake build system [85] to control the important tasks of configuring,
building, testing and installing software. CMake provides functionality well-suited
to integrate code generators into the build process. In this section, we will describe
the user interface of the integration into DUNE, omitting any CMake-internal
technical details.

Integrating Python Support into the DUNE CMake Build System

In order to automatically trigger the code generation process as part of the build
process, CMake needs to be able to run Python code in a well-defined environment.
Additionally, the Python sources provided by dune-codegen need to be installed into
this environment. We have implemented a build system extension in dune-common
which allows CMake to set up its own virtual environment3 and install Python
software into it at CMake runtime. This virtual environment is shared across all
DUNE modules in the same build allowing the interplay of Python packages provided
by multiple Dune modules. The advantage of such an automated approach is that
the requirements on the user side are kept to a minimum: A Python interpreter
needs to be available and the automatic environment setup needs to be enabled
according to the instructions in appendix B.1.

Triggering Code Generation from CMake

A simulation executable whose local assembly kernels should be generated is added
using the following CMake function:
dune_add_generated_executable(

UFLFILE uflfile
INIFILE inifile
TARGET target
[SOURCE source]

)

The target parameter is given the name of the CMake target to be created, the
source parameter is the C++ source, which defaults to a simulation driver auto-
generated as described in section 3.3.3. The UFL file is where the actual code in
the UFL DSL is supplied. These files are also used in the FEniCS context and use

3 This uses one of the Python packages virtualenv and venv.
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the extension ufl. The content is pure Python, where you can assume that all
symbols from ufl have been imported.
The file given to the ini file parameter is a standard DUNE configuration file. These
files consist of key/value pairs separated by an equal sign and arbitrarily nested
sections specified through square bracket section headers or dots in keys. The
above CMake macro only reads the [formcompiler] section of the inifile, allowing
the use of the same configuration file for the simulation run. A comprehensive
list of valid keys in the formcompiler section can be obtained using instructions
from appendix B.1. Right now, we will only mention those necessary to drive the
code generation process. The operators key expects a comma-separated list of
identifiers, where each identifier refers to one header file with one LocalOperator
to be generated. A subsection of the same name as this identifier can be used to
provide form-specific options. The following example generates the two operators
necessary for a simple instationary problem:
[formcompiler]
operators = mass, residual
[formcompiler.mass]
form = mass
filename = mass_operator.hh
classname = MassOperator
[formcompiler.residual]
form = residual
filename = residual_operator.hh
classname = ResidualOperator

The form parameter specifies the name of the Python object that describes the UFL
form to generate code for. It defaults to the operator identifier. The example also
shows how names of generated classes and headers can be controlled. Including the
generated headers in a C++ source code and building the executable using make
will first invoke the source code generator and then the C++ compiler. Furthermore,
changes in Python code will retrigger the code generation process, whereas changes
in C++ code will not.

Automated Testing of Code Generation

Software testing is one of the central challenges in the development of research
software. With general purpose PDE software, system testing that covers the
variability of the framework is essential. We have described the issue before in [65]
and provided a solution that allows description of a variability model through a DSL
that is embedded into DUNE configuration files. This DSL is available in the module
dune-testtools [64]. In the context of code generation, system testing becomes even
more important, as bugs introduced in this additional layer are hard to spot if they
do not break compilation, but just produce wrong simulation results. We therefore
extend the approach of dune-testtools by not only allowing static (compile-time)
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and dynamic (run-time) variation points, but also generation-time variation, which
is expressed by applying the dune-testtools DSL to the [formcompiler] section in
the configuration file.
A CMake function to add such system tests is also provided:
dune_add_formcompiler_system_test(

UFLFILE uflfile
INIFILE inifile
BASENAME basename
[SCRIPT script]
[SOURCE source]

)

Compared to above, the base name replaces the target name parameter, which
static variants use to append suffixes defined in the dune-testtools DSL. The script
parameter can be given any script that is wrapped around the simulation run
during test execution and that may determine test success or failure. It defaults to
a no-op wrapper, but dune-testtools also provides more involved wrappers that do
comparison of output files or calculation of convergence rates. In order to be able to
introduce variation points that require variation of the UFL input e.g. polynomial
degrees, a special section [formcompiler.ufl_variants] is implemented, that
injects its key value pairs into the execution context of the UFL file.
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4
SIMD vectorization of DG methods

Making effective use of the SIMD capabilities of a modern CPU is a necessary
criterion for an HPC implementation of finite element assembly to be competitive.
In this chapter, we will study the vectorization problem for the DG assembly
problem with sum factorization from section 2.6. We will start off with a discussion
of the challenges unique to the finite element problem in section 4.1. In section 4.2
we will present a new class of vectorization strategies based on identifying multiple,
structurally similar workloads within the assembly problem on one cell or facet.
Implementation of these contains some performance-critical SIMD operations, which
we will study at the assembly level in section 4.3. Having defined these new
strategies, we will discuss in section 4.4 how they are integrated into the code
generation procedure from chapter 3. Section 4.4.3 will put special focus on the use
of autotuning for identifying optimal vectorization strategies in the code generation
process.

4.1 Challenges in Vectorizing PDE Codes
To understand the challenges in SIMD vectorization of PDE code, we reiterate on the
nested loops typically present in a general potentially nonlinear and time-dependent
PDE problem already mentioned in section 2.5:

• Solution of multiple PDEs (UQ, optimization)
• Timesteps of an instationary problem
• Stages of a time stepping scheme
• Iterations of a Newton solver for nonlinear problems
• Iterations of an iterative linear solver



74 Chapter 4 • SIMD vectorization of DG methods

• Iteration over grid cells
• Quadrature points for cell-local integration
• Components of a coupled system of PDEs

• Local degrees of freedom that are updated

Despite many of these loops being perfectly nested, compiler-based autovectorization
is typically not capable of fully saturating the SIMD capabilities of modern CPUs.
Two prominent reasons for this are unfavorable loop bounds and the amount of
complex control flow involved. The loop bounds of the innermost loops typically
depend on the number of local basis functions, the number of quadrature points,
the geometric dimension of the domain or the number of components in a system
of PDEs. These quantities are typically not divisible by the SIMD width and the
loops are too short to amortize the cost of a tail loop. Typically, the granularity of
a cell integral evaluation (and the amount of control flow involved) is too big for a
compiler-based technique, such as whole function vectorization [59].
The effect of unfavorable loop bounds is even more pronounced when applying
sum factorization, as the loop bounds stem from the 1D basis functions and
quadrature rules. Although the sum factorization algorithm consists only of tensor
contractions, which can be recast into the well-studied form of a General Matrix
Multiply (GEMM), it is hard to leverage existing implementations due to the very
severe loop bound constraints. Level 3 Basic Linear Algebra Subprograms (BLAS)
do not only suffer from the same divisibility problem, but also from the fact that
the workload of a single GEMM is too small to amortize the function call overhead.
To target such problems a batched BLAS Application Programming Interface (API)
has been introduced, that allows amortizing the function call overhead more easily
by executing a large batch of GEMMs at once. Unfortunately, it is geared towards
very large batch sizes of GEMMs, which do not fit the requirements of the sum
factorization algorithm. Quite recently, Intel has introduced a compact BLAS API
[67] into the Intel Math Kernel Library (MKL) that defines GEMM operations in
batches of SIMD width. Such an API will be very useful for the explicit vectorization
strategies described in this work once it is sufficiently mature. As of this writing,
the support for memory layouts and matrix transpositions is not sufficient for our
algorithms.
Another approach developed at Intel is the use of JIT-compiled GEMM kernels
for small matrices through a library called libxsmm [53]. However, the same
technical obstacles as in the compact BLAS case apply: The library currently does
not implement the necessary memory layout and transposition variants of GEMM.
Additionally, it does not batch GEMM operations and therefore - although geared
towards small matrices - suffers from divisibility constraints for very small matrices
such as 3× 3.
Several approaches towards explicit SIMD vectorization for PDE codes have been
developed in the literature. We review these in order of appearance of the targeted
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loops in the above nesting order. Vectorizing multiple realizations of a simulation
in the UQ setting has been studied e.g. in [98] under the name embedded ensemble
propagation. The goal of this strategy is to manipulate global data structures such
that the PDE is solved with different data on each SIMD lane. For the easier case
of restricting the variation in data to the right hand side of the finite element
problem, a similar procedure has also been studied for the DUNE framework [18]. In
such approaches, ensemble divergence is a fundamental, largely unsolved, problem:
Whenever the control flow of the computations on SIMD lanes diverges, expensive
restarting or rearranging of ensembles needs to be performed. Such scenarios arise
in many simulation scenarios like: Data-dependent iteration numbers in iterative
solution techniques, adaptively refined grids or discrete events like contact in
Fluid-Structure Interaction (FSI) problems.

A popular choice for SIMD vectorization of PDE code is the grid iteration loop. Here,
several cell integrals are calculated in parallel on the SIMD lanes. The approach
has the big advantage of being always applicable, as there are always enough cells
in a grid to amortize a potential tail loop. Also, it is applicable for any SIMD
width. It bears however some disadvantages as well, as the memory footprint of the
integration kernel is increased by a factor of the SIMD width. This becomes even
more of a problem when batching facet integrals due to their reduced dimensionality.
Additionally, data structures for an integration kernel need to be setup through
a (partial) SoA to AoS transformation, which is similar to the one we will show in
section 4.3, even when an individual kernel would be able to operate directly on
global data structures. Such cross-element vectorization is the most common choice
in numerical software packages. deal.ii tries to mitigate the memory footprint effects
by using a special Hermite basis with reduced support [76], firedrake employs cross-
element vectorization on structured grids fully automated from a code generation
toolchain [109]. A very broad overview of applicable vectorization methods and
how autotuning is used to select an optimal code variant for the finite element code
BLAST is provided in [1].

4.2 SIMD Vectorization Strategies
In the following we will develop vectorization strategies for the sum factorized
assembly algorithm 2.3. These strategies are based on an original idea from [91] and
were further extended in [63]. Our description here is in part taken from the latter.
The novel idea of these vectorization strategies is to perform explicit vectorization
within one cell integral regardless of the polynomial degree by performing parallel
evaluation of several sum factorized quantities. We will classify our approaches
into two categories: Loop-fusion based approaches and loop-splitting based ones.
Loop fusion based approaches studied in section 4.2.1 typically require a drastical
change in memory layout to work, where loop splitting based ones from section 4.2.2
only work optimally if the mathematical problem leads to loop bounds satisfying
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suitable divisibility constraints. Section 4.2.3 will then aim at extending the scope
of applicability of these strategies by introducing hybrid strategies as well.

4.2.1 Loop Fusion Based Strategies
An integration kernel on a cell or facet typically computes several quantities
that need to be evaluated by a sum factorized algorithm. Many of these sum
factorization algorithms exhibit great structural similarities. We explain the idea
using the example of the volume integral of the residual evaluation algorithm 2.3
for a second order elliptic PDE in 3D with a SIMD width of 256 bits. We do this
restriction to illustrate our core ideas and later discuss generalizations to other
models, architectures, space dimensions and jacobian assembly. The core idea
is to use the necessary four tensor quantities of step one in algorithm 2.3 for
vectorization: The finite element function Û , evaluated at all quadrature points
ξi0i1i2 , as well as the three components of its gradient ∂kÛ . We recall the main
tensor product formulae from section 2.6 for these quantities (in 3D):

∂0Û =
(
D(0) ⊗ A(1) ⊗ A(2)

)
X (4.1)

∂1Û =
(
A(0) ⊗D(1) ⊗ A(2)

)
X (4.2)

∂2Û =
(
A(0) ⊗ A(1) ⊗D(2)

)
X (4.3)

Û =
(
A(0) ⊗ A(1) ⊗ A(2)

)
X (4.4)

As the tensor bounds mj and nj match in all of these computation, so do the loop
bounds in the resulting sum factorization kernel implementation. Therefore, the
loops in the implementation can be fused to achieve an implementation suitable
for SIMD vectorization. In such an implementation, each of the equations 4.1 -
4.4 would be carried out in one SIMD lane. We will now introduce mathematical
notation to reason about such a fused kernel as a tensor calculation. To this end,
we define two operations commonly used in tensor algebra [79]:

• The vec operator maps a d-way tensor to a vector by flattening. This
operation imposes an order on the tensor axes. This is completely analoguous
to selecting strides in multi-dimensional array computations. We will use this
operator to refer to the representation of a tensor in memory.

• Given d-way tensors A0, . . . , An with identical bounds, we define A0| . . . |An

as the (d+ 1)-way tensor constructed by stacking the tensors Ai on top of
each other. We assume that the order of axes of the input tensors is preserved
in the stacked tensor and that the new axis generated by stacking is the
fastest varying (or has stride 1).
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vec(Û) U∗3 U∗7 U∗11 U∗15 U∗19

vec(∂2Û) U∗2 U∗6 U∗10 U∗14 U∗18

vec(∂1Û) U∗1 U∗5 U∗9 U∗13 U∗17

vec(∂0Û) U∗0 U∗4 U∗8 U∗12 U∗16

Figure 4.1: The memory layout of the tensor U∗ := vec(∂0Û |∂1Û |∂2Û |Û) is an AoS
obtained from the four original arrays vec(∂0Û), vec(∂1Û), vec(∂2Û) and vec(Û)
by interleaving.

Using this notation, equations 4.1 to 4.4 can be combined into one equation:

∂0Û |∂1Û |∂2Û |Û =
(
D(0)|A(0)|A(0)|A(0)

⊗ A(1)|D(1)|A(1)|A(1)

⊗A(2)|A(2)|D(2)|A(2)
)
X|X|X|X (4.5)

We will now discuss the memory layout implications of implementing equation 4.5.
The memory layout of the input tensor X is prescribed by the underlying discretiza-
tion framework. Accesses to the stacked tensor X|X|X|X can be implemented
easily by accessing an element of X and broadcasting it into a SIMD register. Our
code generator will do this, whenever it finds a stacking of identical matrices.
The layout of the stacked basis evaluation matrices is given by interleaving the
individual basis evaluation matrices, such that the stacked axis has stride 1. We
assemble these stacked basis evaluation matrices in memory. This is a trade off
decision between the increased memory traffic of loading redundant data and the
necessity of instructions that manipulate single SIMD lanes. These underlying
matrices may be stored in column major or row major fashion, the code generation
approach allows for flexibility in this regard. Carrying out the sum factorization
algorithm with these stacked tensors, the resulting stacked tensor ∂0Û |∂1Û |∂2Û |Û
will be given as an interleaved tensor as well. This can be seen as an AoS layout,
where the inner structure is of fixed size 4. The layout is illustrated in figure 4.1.
All data structures are aligned to the vector size to allow aligned loads into SIMD
registers. We will now discuss how the AoS nature of the data structure affects step
2 of algorithm 2.3, the quadrature loop.
Our idea of vectorizing the quadrature loop is based on the idea to treat four
quadrature points at a time. We have found it beneficial to neglect the tensor
product structure of the quadrature loop here and instead use flat indexing. In order
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⇒⇐

vec(Û)i/4

vec(∂2Û)i/4

vec(∂1Û)i/4

vec(∂0Û)i/4

Figure 4.2: Register transposition needed in the quadrature loop: Four SIMD
vectors of U∗ := vec(∂0Û |∂1Û |∂2Û |Û) are loaded and transposed in-place. The
resulting four SIMD vectors have the layout needed for an efficient, straightforward
vectorized implementation of the quadrature loop. The inverse operation is needed
to get the correct layout for the input tensor for step 3 of algorithm 2.3.

to assemble the tensors Rv
i0i1i2 and R∂kv

i0i1i2 from algorithm 2.3 with vector arguments,
we need to undo the AoS layout. We do so in the quadrature loop by applying
a transposition of four consecutive SIMD vectors of U∗ := vec(∂0Û |∂1Û |∂2Û |Û).
When before the transposition a SIMD register would hold function evaluation
and evaluation of the gradient at one quadrature point, it will hold one of these
quantities at four consecutive quadrature points afterwards. The procedure is
illustrated in figure 4.2. Implementation of this transposition code is crucial for the
overall performance of the algorithm and will be studied in detail in section 4.3,
where the core idea is to hide the cost of the transposition algorithm behind the
floating point workload of the quadrature loop.
Step three of algorithm 2.3 again expects an AoS type layout, that is not naturally
imposed on the tensors Rv

i0i1i2 and R∂kv
i0i1i2 . We achieve this by applying the trans-

position algorithm from figure 4.2 again. The overall quadrature loop algorithm is
summarized in algorithm 4.1. It is worth noting that the i-loop does not need a
tail loop although the total number of quadrature points is not necessarily divisible
by four: It is sufficient to overallocate the storage of R to assure that the last
loop iteration cannot write out of bounds. Step three of algorithm 2.3 is treated
in the exact same way step one is, with the notable exception of the necessity to
accumulate the results of four sum factorization kernel into the residual tensor.
With the chosen memory layout, this requires an intra-register reduction. The
implementation of this operation is subject to special care in section 4.3, as it
benefits greatly from microarchitecture-dependent optimization.
So far, we have studied the explicitly vectorized assembly algorithm under quite a
number of simplifications and assumptions, such as only studying volume integrals,
restricting to residual evalutions, the problem being defined in 3D space, the SIMD
width being 256 bits, the use of double precision arithmetic and the PDE residual
rh(u, v) depending on u, ∇u, v and ∇v. We will now discuss which of these
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Algorithm 4.1: Explicitly vectorized quadrature loop for a SIMD width of 4 and a to-
tal ofM quadrature points. We use U∗ and R∗ as shortcuts for vec(∂0Û |∂1Û |∂2Û |Û)
and vec(R∂0v|R∂1v|R∂2v|Rv). The j loop is implemented through SIMD vectorization.
This is formulated in the same frame as algorithm 2.3: Assembly of a 3D volume
integral for a second order elliptic problem.
1 i← 0
2 while i < M do
3 TransposeRegisters(U∗4i,. . . , U∗4i+15)
4 for j ∈ {0, 1, 2, 3} do
5 R∗4i+j ← r̃volume

∂0vh
(U∗4i+j, U

∗
4(i+1)+j, U

∗
4(i+2)+j, U

∗
4(i+3)+j, µT , ξ̂)

6 R∗4(i+1)+j ← r̃volume
∂1vh

(U∗4i+j, U
∗
4(i+1)+j, U

∗
4(i+2)+j, U

∗
4(i+3)+j, µT , ξ̂)

7 R∗4(i+2)+j ← r̃volume
∂2vh

(U∗4i+j, U
∗
4(i+1)+j, U

∗
4(i+2)+j, U

∗
4(i+3)+j, µT , ξ̂)

8 R∗4(i+3)+j ← r̃volume
vh

(U∗4i+j, U
∗
4(i+1)+j, U

∗
4(i+2)+j, U

∗
4(i+3)+j, µT , ξ̂)

9 TransposeRegisters(R∗4i,. . . , R∗4i+15)
10 i← i+ 4

assumptions were made for the sake of presentability in this thesis and which are
actual limitations of the approach.
Extension to boundary and interior facet integrals can be implemented by replacing
the basis evaluation matrix for the normal direction of the facet with a special
matrix consisisting of only one quadrature point. Note, that this quadrature point
is either located at 0.0 or 1.0 depending on the facet being on the upper or lower
boundary of the reference cube. Consequently, facet kernel implementations depend
on the embedding of the facet into the reference cube. Treating this dependency
in the code generation workflow has the additional advantage of being able to
exploit additional generation-time knowledge about geometric quantities. Facet
kernel implementations generally have a lower arithmetic intensity, as the number
of floating point operations both in sum factorization kernels and in the quadrature
loop is of reduced dimensionality, while the number of DOFs that the kernel depends
on is not reduced.
While we are typically denoting the Kronecker product of basis evaluation matrices
for a sum factorization kernel in x-y-z order, it is important to understand that we
might implement the kernel in any order, as long as we correctly access the entries
in the output tensor. In fact, some orders are strictly better in terms of the total
floating point operations carried out. This can be seen best in the case of a facet
integral: Performing the tensor contraction associated with the reduced size matrix
first will result in a temporary output of reduced dimensionality. For anisotropic
polynomial degree, the optimal order depends on the degree tuple even for volume
integrals. We always aim for the implementation with the minimum number of
floating point operations available. Not doing so would taint any SIMD throughput
measurements provided in section 5.
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Although algorithm 2.3 is formulated for a residual evaluation, the same techniques
can be applied when assembling jacobians or their action on a vector. In the latter
case, an additional finite element function may need to be evaluated for nonlinear
problems, as described in section 3.3. This additional evaluation is also done in
a sum factorized fashion and gives rise to additional vectorization opportunities
that we will describe below. Although not the primary target of this work, sum
factorization can also be used when assembling jacobian matrices: In that case,
step two and three of algorithm 2.3 are executed once per basis function in the
ansatz space. This introduces additional d loops wrapped around steps two and
three. Evaluations of the ansatz function are implemented as the product of the
1D basis functions directly in the quadrature loop.
The scenario studied so far in this section was a best-case scenario in the sense that
the number of sum factorization kernels within one step of algorithm 2.3 matches
the number of SIMD lanes available. Although this described special case is an
absolutely valid use case with many physically relevant applications, this ratio
will often be below or above 1. The ratio decreases for 2D simulations, where the
gradient has one component less and for PDE models that do not depend on all
given quantities, such as e.g. equation 2.1 in the absence of a reaction term. The
ratio can also decrease if the number of available SIMD lanes is increased by either
doing single precision calculations or moving to an instruction set with wider SIMD
units, such as the AVX-512 instruction set. The ratio increases in the above cases of
calculating the action of the jacobian in the nonlinear case and on facet integrals
due to the necessity to evaluate finite element functions w.r.t. the inside and the
outside cell and in the case of systems of PDEs. In the case of systems of PDEs,
finite element functions defined over different spaces cannot be fused together into
one vectorization strategy, as the loop bounds of the sum factorization kernel do
not match.
In those cases where there is less sum factorization kernels than there are SIMD
lanes, we have the possibility to fuse this smaller amount of kernels and ignore any
values in the additional SIMD lanes. Of course, such an approach wastes some of the
floating point capabilities of the processor and artificially increases the measured
floating point throughput of the computation. We will consider such strategies in
the code generation driven autotuning process from section 4.4 whenever there is a
mismatch of one SIMD lane, but not beyond that.
If there are more sum factorized quantities than SIMD lanes, sum factorization
kernels can be grouped into batches of SIMD width given that their tensor bounds
agree. If the number of quantities is not divisible by the number of SIMD lanes,
the above padding strategy might again become necessary. Special care needs to
be taken concerning the input tensor X from equation 4.5: So far we only looked
at fusing kernels that operate on the same input tensor X, where the stacked
input tensor X|X| . . . |X could be realized as a broadcast instruction into a SIMD
register. However, sum factorization kernels with differing input tensors can be
fused together as well, sacrificing the very efficient broadcast instruction. In the
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AVX2 and AVX-512 instruction sets, dedicated instructions to load a value into the
lower and upper half of a register exist. These stem from backwards compatibility
with older instruction sets during the SIMD transition from SSE to AVX-512. We
leverage these instructions to fuse kernels with two different input tensors. This
scenario often arises on interior facets, where quantities need to be evaluated on
the inside and outside cell:

U−|∂0U
−|U+|∂0U

+ =
(
A↑F |D

↑
F |A

↓
F |D

↓
F ⊗ A|A|A|A⊗ A|A|A|A

)
X−|X−|X+|X+

(4.6)
Here, A↑F and A↓F denote the basis evaluation matrices for the direction of reduced
dimension with the arrow indicating whether the facet is embedded into the lower or
upper face of the reference cube. We will restrict ourselves to treating two different
input tensors at a time in section 4.4, although arbitrary input tensors could be
combined by means of vector gather instructions. However, these instructions are
not amortized in our workload setting and should be avoided if alternatives exist.
In step three of algorithm 2.3, the analogon of the SIMD broadcast is horizontal
addition. We implement accumulation into multiple output tensors by providing
reduction functions over the lower and upper half of a SIMD register.
While the above strategies manage to mitigate some of the mentioned disadvantages
of our loop-fusion based SIMD vectorization, we will now turn to extend the
possibilities of the approach by introducing a new concept. This is necessary in
order to be able to target the AVX-512 instruction set, where the number of SIMD
lanes commonly exceeds the number of sum factorized quantities to be evaluated.

4.2.2 Loop Splitting Based Strategies
While the loop fusion vectorization from section 4.2.1 tries to fuse multiple sum
factorization kernels, the idea of this section is to split the workload of one sum
factorization kernel such that execution can make use of SIMD parallelism. This
does not suffer from the disadvantages seen above: Increased memory footprint of
the kernel and the necessity of memory layout adjustments. On the other hand,
these splitting based vectorization techniques come with the disadvantage that
maximum efficiency can only be reached if the kernel structure exhibits loop bounds
with suitable divisibility constraints. We will now explore these strategies. For the
sake of readability, we again limit ourselves to a SIMD width of four lanes and to
the treatment of the evaluation of Û via

Û =
(
A(0) ⊗ A(1) ⊗ A(2)

)
X (4.7)

and discuss possible generalizations later.
We base our strategy on the idea to split the set of quadrature points into a number
of subsets equal to the SIMD width. We do so by choosing one direction i and
splitting the basis evaluation matrix A(i) into w matrices, where w is the SIMD
width. For now, we assume the number of 1D quadrature points to be divisible by



82 Chapter 4 • SIMD vectorization of DG methods

A(i)

A
(i)
0,0 · · · A

(i)
0,ni−1

A
(i)
1,0 · · · A

(i)
1,ni−1

A
(i)
2,0 · · · A

(i)
2,ni−1

A
(i)
3,0 · · · A

(i)
3,ni−1

A
(i)
4,0 · · · A

(i)
4,ni−1

A
(i)
5,0 · · · A

(i)
5,ni−1

A
(i)
6,0 · · · A

(i)
6,ni−1

A
(i)
7,0 · · · A

(i)
7,ni−1

A
(i)
0,0 · · · A

(i)
0,ni−1

A
(i)
4,0 · · · A

(i)
4,ni−1

A(i),0

A
(i)
1,0 · · · A

(i)
1,ni−1

A
(i)
5,0 · · · A

(i)
5,ni−1

A(i),1

A
(i)
2,0 · · · A

(i)
2,ni−1

A
(i)
6,0 · · · A

(i)
6,ni−1

A(i),2

A
(i)
3,0 · · · A

(i)
3,ni−1

A
(i)
7,0 · · · A

(i)
7,ni−1

A(i),3

Figure 4.3: Slicing of the basis evaluation matrix: A(i) is split into four matrices
A(i),s with s ∈ {0, . . . , w − 1} in a circular fashion. The sliced matrices are used in
sum factorization kernels that compute 1

w
of the entries of the output tensor Û .

w and discuss other cases later on. The index s ∈ {0, . . . , w− 1} denotes the index
of the slice A(i),s of the basis evaluation matrix. Note that we do not split A(i) in
a blocked fashion, but in a circular one, as illustrated in figure 4.3. Carrying out
the sum factorized computation from equation 4.7 with a slice A(i),s instead of A(i)

leads to an output tensor Û s only containing evaluations at 1/w of the quadrature
points. Equation 4.7 can then be recast into the following equivalent formulation
using the notation from section 4.2.1:

Û0|Û1|Û2|Û3 =
(
A(0),0|A(0),1|A(0),2|A(0),3

⊗ A(1)|A(1)|A(1)|A(1)

⊗A(2)|A(2)|A(2)|A(2)
)
X|X|X|X (4.8)

The fact that we have sliced A(0) in a circular fashion leads to the following,
desirable property that allows us to load data of the resulting tensor Û0|Û1|Û2|Û3

without further manipulation of memory layout:

vec(Û0|Û1|Û2|Û3) = vec(Û) (4.9)

We observe that in contrast to section 4.2.1, the combined basis evaluation matrices
do not have to be explicitly set up beforehand, as vec(A(0),0|A(0),1|A(0),2|A(0),3) =
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vec(A(0)) and A(i)|A(i)|A(i)|A(i) can again be implemented as a broadcast of elements
of A(i). The loop splitting based approach described in this section does not depend
on the problem structure in the same way as the loop fusion based one from
section 4.2.1. As there is no need to group multiple sum factorization kernels, the
approach vectorizes equally well in two and three dimensional space, as well as
with arbitrary combination of terms present in the problem formulation. However,
applicability of the approach depends on the divisibility of the number of 1D
quadrature points. Having this constraint on the number of quadrature points is
not as bad as having it on the number of basis functions: Artificially increasing
the number of quadrature points is equivalent to overintegration, which even yields
additional accuracy for problems that are not exactly integrated. However, one
has to be cautious as the increase in floating point operations affects the whole
algorithm and not only the sum factorization kernel to be vectorized. We now
study the additional cost of such a procedure and refer to section 4.4 for discussion
of the necessary trade off decisions.

Recall that the number of quadrature points per direction is given as a tuple
m = (m0, . . . ,md−1) and the number of basis functions per direction as a tuple
n = (n0, . . . , nd−1). The floating point cost CSF (m,n) of a single sum factorization
kernel reads

CSF (m,n) = 2
d−1∑
k=0

k∏
i=0

mi

d−1∏
j=k

nj. (4.10)

We observe that CSF (m,n) is linear in m0. This also holds for other relevant parts
of the algorithm such as the quadrature loop. Consequently, the total cost of the
algorithm will be increased by a factor of m∗

m0
, if the number of quadrature points

in the first direction is increased to m∗. Setting m∗ to the next multiple of the
SIMD width w, we get a cost increase of dm0

w
e · w

m0
. For sufficiently high numbers

of quadrature points, this increase becomes reasonably small. In the worst case
scenario of a Q1 discretization with minimal quadrature order however, it can be
as high as w

2 .

In section 4.2.1, we briefly touched on the necessity to reorder the tensor contractions
in a sum factorization kernel in order to get to an implementation with a minimal
number of floating point operations. This makes the loop splitting based strategy
described in this section only partly applicable to facet integrals, as in order to get
the desired result, the basis evaluation matrix of the first tensor contractions needs
to be split. On facet integrals, this matrix has only one quadrature point and is
not splittable. Splitting a different basis evaluation matrix is of course possible,
but prevents vectorization of the first tensor contraction. See this example, where
we assume only two SIMD lanes for the sake of simplicity:

Û0|Û1 =
(
A

(0)
F |A

(0)
F ⊗ A(1),0|A(1),1 ⊗ A(2)|A(2)

)
X|X (4.11)
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Here, the contraction with A(0)
F needs to be done first in order to be FLOP-minimal,

but the same calculation would be carried out on each SIMD lane - effectively
turning the code into an unvectorized one.
In this section, we formulated the implementation idea in terms of the fusion based
vectorization described in section 4.2.1. The same ideas could have been developed
from a different perspective, but having it formulated using the same notation will
be of great benefit for developing hybrid strategies in section 4.2.3 and also for the
vectorization heuristics in the code generator described in section 4.4.

4.2.3 Hybrid Strategies
Neither the strategy described in section 4.2.1 nor the strategy from section 4.2.2
are in general a perfect fit for vectorization with wider SIMD widths. For the loop
fusion strategy, the problem description will usually not exhibit enough quantities
that can be computed in parallel. On the other hand, the loop splitting strategy
leads to prohibitively severe constraints on the number of quadrature points with
increasing SIMD width. We now seek to combine these two strategies into a hybrid
vectorization strategy mitigating their individual disadvantages.

We have formulated the loop fusion approach from section 4.2.1 and the loop split-
ting one from section 4.2.2 using a common framework: A set of sum factorization
kernels is collected into a larger kernel, which is suitable for vectorization, where
these kernels are potentially obtained by first splitting the given sum factorization
kernels. We will now generalize this to arbitrary SIMD widths and combinations
of these techniques. We define f and s, such that f denotes the number of sum
factorization kernels to be combined through loop fusion and s denotes the number
of slices these are split into. We only treat those cases where f · s = w with w
the number of SIMD lanes. For f = 4 and s = 2, this allows a natural extension of
section 4.2.1 for a SIMD width w = 8 (AVX-512), which calculates ûh and ∇ûh in
parallel and introduces a divisibility constraint of 2 on m0:

∂0Û
0|∂0Û

1|∂1Û
0|∂1Û

1|∂2Û
0|∂2Û

1|Û0|Û1

= (D(0),0|D(0),1|A(0),0|A(0),1|A(0),0|A(0),1|A(0),0|A(0),1

⊗ A(1)|A(1)|D(1)|D(1)|A(1)|A(1)|A(1)|A(1)

⊗ A(2)|A(2)|A(2)|A(2)|D(2)|D(2)|A(2)|A(2))
X|X|X|X|X|X|X|X (4.12)

Again, we will study the memory layout implications of implementing equation 4.12.
The stacked basis evaluation matrices are preevaluated and loaded from memory,
just like in section 4.2.1. The input tensor X|X|X|X|X|X|X|X is implemented
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Algorithm 4.2: A generic shuffling algorithm for hybrid strategies that generalizes
the transposition from figure 4.2. Here, f and s denote the number of quantities
fused together and s the splitting factor as described in section 4.2.2. We only
treat the case of f · s = w, where w is the SIMD width.
1 function GenericTranspose(data[f ][w])
2 for i = 0, . . . , f − 1 do
3 for j = 0, . . . , f − 1 do
4 for k = 0, . . . , s− 1 do
5 swap(data[i][js+ k], data[j][is+ k])

Algorithm 4.3: General quadrature loop with a hybrid vectorization strategy for
SIMD width w: The input data is given as a set of flat tensors {U∗j }. Similarly, the
output will be written as a set of flat tensors {R∗k}. Each of of these flat tensors
results from a fusion of a set of w sum factorization kernels. The function f maps
those tensors to the number of fused quantities as described in section 4.2.3.
1 i← 0
2 while i < M do
3 for j ∈ {0, . . . } do
4 TransposeRegisters((U∗j )f(U∗

j )i, . . . , (U∗j )f(U∗
j )i+f(U∗

j )w−1)
5 for k ∈ {0, . . . } do
6 R∗k ← Quadrature computation
7 TransposeRegisters((R∗k)f(R∗

k
)i, . . . , (R∗k)f(R∗

k
)i+f(R∗

k
)w−1)

8 i← i+ w

by broadcasting the values of X. The only remaining question is how the mem-
ory layout of the output tensor ∂0Û

0|∂0Û
1|∂1Û

0|∂1Û
1|∂2Û

0|∂2Û
1|Û0|Û1 affects the

quadrature loop implementation. Independently of the choice of f and s, the
quadrature loop treats w quadrature points at a time. However, to get w values of
the f quantities present in the data, we need to shuffle f consecutive vectors. This
results in the need for non-square matrix shuffles which generalize the transposition
algorithm from figure 4.2. We fix the intra-register layout to be such that kernels
resulting from splitting need to be on adjacent SIMD lanes. In other words, we
disallow tensors like ∂0Û

0|∂1Û
0|∂2Û

0|Û0|∂0Û
1|∂1Û

1|∂2Û
1|Û1. These generic shuffle

operations are described in algorithm 4.2. Note how the generic formulation from
algorithm 4.2 generalizes both the case of purely fusion based vectorization from
figure 4.2 (where f = w) and the case of purely splitting based vectorization from
section 4.2.1 (where s = w and the transposition is the identity). The quadrature
loop algorithm 4.3 is further complicated by the fact that an integration kernel
might consist of more than one vectorized sum factorization kernel and that the
choice of f and s can differ for each of these.
We have seen, that the techniques of sections 4.2.1 and 4.2.2 can be combined to
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mitigate their disadvantages and target wider SIMD widths. However, for a given
problem, the number of possible vectorization strategies grows exponentially in
the number of input kernels and it is not a priori known, which one performs best.
This issue is targeted in section 4.4 by introducing a cost model approach.

4.3 Performance Critical SIMD Operations
SIMD abstraction libraries as described in section 3.2.3 do a great job at keeping
many very technical low-level considerations away from the developer. However, it
is always worth taking a closer look at the assembly code that is generated from
using these libraries. This is especially true if several sequences of instructions
exist that accomplish a given task. For the vectorization algorithms presented
in section 4.2, two such operations stood out in our experiments: Intra-register
reduction (or horizontal addition) and the register transposition algorithm 4.2.
Therefore, we will study these in a bit more detail in this section. The assembly
code provided here is obtained using the API of the Godbolt Compiler Explorer [48].
An interactive version of the examples is available by clicking the given Godbolt
short code1.

4.3.1 Intra-register Reduction
We only consider intra-register addition, although similar considerations may apply
to other reductions on SIMD registers. Focussing on the more relevant double
precision case, we will study implementations for the AVX2 and AVX-512 instruction
sets.

AVX2 Double Precision

We will assume the Intel Haswell architecture for the remainder of this paragraph.
Horizontal addition of four double values in an AVX2 register using the implementa-
tion from Agner Fog’s vector class library [42] and g++ is shown in figure 4.4. The
same implementation is obtained from other libraries from section 3.2.3 that provide
horizontal addition functionality, such as xsimd [100]. With the horizontal addition
being a bottleneck in our experiments (we will see this in detail in section 5), it is
worth studying the generated assembly code in more detail using Agner Fog’s in-
struction tables [40], a vendor-independent source of information about instruction
µ-ops, latency and throughput. As the horizontal addition function will always
be inlined in our use case, we assume the input being in a register (ignoring the
vmovapd instruction) and assume the costly vzeroupper instruction to be moved
towards the bottom of the coarse-grained enclosing function. Following the analysis
of horizontal addition in [27], we count the executed (unfused) µ-ops and on which
port they execute. The vector class library implementation from figure 4.4 requires
1 Godbolt short codes can also be entered manually: https://www.godbolt.org/z/<shortcode>

https://www.godbolt.org/z/<shortcode>
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#include<vectorclass.h>
double hadd(const Vec4d& a) {

__m256d t1 = _mm256_hadd_pd(a,a);
__m128d t2 = _mm256_extractf128_pd(t1,1);
__m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2);
return _mm_cvtsd_f64(t3);

}

Godbolt code:
40jd15

Compiler:
g++ 8.3

_Z4haddRK5Vec4d:
vmovapd ymm0, YMMWORD PTR [rdi]
vhaddpd ymm0, ymm0, ymm0
vextractf128 xmm1, ymm0, 0x1
vaddsd xmm0, xmm0, xmm1
vzeroupper
ret

Figure 4.4: Godbolt disassembly of VCL’s implementation of horizontal addition
for SIMD vectors of four double precision values.

a total of five µ-ops, three of which execute on the processor’s shuffle port. Most
notably, the vhaddpd instruction takes four µ-ops and has the worst throughput. In
contrast, the alternative implementation from figure 4.5 avoids vhaddpd, requires
only four µ-ops and removes some of the pressure on the shuffle port (only two
µ-ops on it). We have made good experiences with such alternative implementation,
although rigorously benchmarking such implementations is impossible in isolation,
as the execution context is crucial for the performance. We therefore postpone
benchmarks for this problem to section 5.2, where we have the benchmark setup
for the full finite element assembly problem available.

AVX-512 Double Precision

Horizontal addition does naturally not scale perfectly with the size of the SIMD
register. Being already a bottleneck in AVX2 applications, it is worth taking a very
close look at available implementations in the transition to the AVX-512 instruction
set. We limit ourselves to the Intel Skylake architecture with the AVX-512 instruction
set e.g. the system described in appendix A.22. With the introduction of the
AVX-512 instruction set, Intel added an intrinsic function _mm512_reduce_add_pd
for horizontal addition. Unfortunately, the common compilers differ vastly in
what code they generate from that intrinsic, as can be seen in figure 4.6. The
implementation within the vector class library resembles the GCC implementation
from figure 4.6, as it reuses its 256 bit implementation. In order to achieve best

2 On a side note, many of the problems regarding scalability with SIMD width are even more
pronounced on the Intel Xeon Phi (Knights Landing) architecture.

https://www.godbolt.org/z/40jd15
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#include<vectorclass.h>
double hadd(const Vec4d& a) {

__m128d t1 = _mm_add_pd(a.get_low(), a.get_high());
__m128d t2 = _mm_unpackhi_pd(t1, t1);
__m128d t3 = _mm_add_sd(t2, t1);
return _mm_cvtsd_f64(t3);

}

Godbolt code:
qlY759

Compiler:
g++ 8.3

_Z4haddRK5Vec4d:
vmovapd ymm0, YMMWORD PTR [rdi]
vextractf128 xmm1, ymm0, 0x1
vaddpd xmm0, xmm0, xmm1
vunpckhpd xmm1, xmm0, xmm0
vaddsd xmm0, xmm1, xmm0
vzeroupper
ret

Figure 4.5: Godbolt disassembly of an alternative implementation of horizontal
addition for SIMD vectors of four double precision values. Implementation taken
from [27].

performance across compilers, we implement horizontal addition with a combination
of elements of the vector class library and intrinsics:
#include<vectorclass.h>
double hadd(const Vec8d& a) {

auto t0 = a.get_low() + a.get_high();
auto t1 = t0.get_low() + t0.get_high();
auto t2 = _mm_unpackhi_pd(t1, t1);
auto t3 = _mm_add_sd(t2, t1);
return _mm_cvtsd_f64(t3);

}

This implementation matches the generated assembly of Clang in figure 4.6 and is
a natural extension of the AVX2 horizontal addition presented in figure 4.5.

4.3.2 Structure of Arrays/Array of Structures Transforma-
tion

Data permutations across SIMD registers are often necessary in order to enforce
memory layouts that allow for maximum usage of SIMD registers. However, these
permutation operations can also easily become a bottleneck of the application. It
is therefore of vital importance to generate an optimal sequence of instructions
for a given data permutation. Dedicated research regarding this topic exists in
[104], where permutations are expressed as a sequence of elementary operations,
whose execution order is then optimized. As we do not deal with general SIMD

https://www.godbolt.org/z/qlY759


4.3 • Performance Critical SIMD Operations 89

#include<vectorclass.h>
double hadd(const Vec8d& a) {

return _mm512_reduce_add_pd(a);
}

Godbolt code:
lkNB9S

Compiler:
g++ 8.3

_Z4haddRK5Vec8d:
vmovapd zmm0, ZMMWORD PTR [rdi]
vextractf64x4 ymm1, zmm0, 0x1
vaddpd ymm1, ymm1, ymm0
vextractf64x2 xmm0, ymm1, 0x1
vaddpd xmm0, xmm0, xmm1
vhaddpd xmm0, xmm0, xmm0
vzeroupper
ret

Godbolt code:
SA28vA

Compiler:
clang++ 8.0

_Z4haddRK5Vec8d:
vmovapd ymm0, ymmword ptr [rdi]
vaddpd ymm0, ymm0, ymmword ptr [rdi + 32]
vextractf128 xmm1, ymm0, 1
vaddpd xmm0, xmm0, xmm1
vpermilpd xmm1, xmm0, 1
vaddpd xmm0, xmm0, xmm1
vzeroupper
ret

Godbolt code:
COrts4

Compiler:
icc 19.1

_Z4haddRK5Vec8d:
vmovups zmm1, ZMMWORD PTR [rdi]
vshuff32x4 zmm0, zmm1, zmm1, 238
vaddpd zmm2, zmm0, zmm1
vpermpd zmm3, zmm2, 78
vaddpd zmm4, zmm2, zmm3
vpermpd zmm5, zmm4, 177
vaddpd zmm0, zmm4, zmm5
vzeroupper
ret

Figure 4.6: Godbolt disassembly of the AVX-512 intrinsic function for horizontal
addition with the latest version of the GNU compiler, Clang and the Intel compiler.
Generated assembly code differs a lot between compilers. The assembly generated
by Clang needs the fewest µ-ops: Six, only two of which are executed on the shuffle
port.

https://www.godbolt.org/z/lkNB9S
https://www.godbolt.org/z/SA28vA
https://www.godbolt.org/z/COrts4
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#include<vectorclass.h>
void transpose(Vec4d& a0, Vec4d& a1, Vec4d& a2, Vec4d& a3) {

Vec4d b0,b1,b2,b3;
b0 = blend4d<0,4,2,6>(a0,a1);
b1 = blend4d<1,5,3,7>(a0,a1);
b2 = blend4d<0,4,2,6>(a2,a3);
b3 = blend4d<1,5,3,7>(a2,a3);
a0 = blend4d<0,1,4,5>(b0,b2);
a1 = blend4d<0,1,4,5>(b1,b3);
a2 = blend4d<2,3,6,7>(b0,b2);
a3 = blend4d<2,3,6,7>(b1,b3);

}

Godbolt code:
vZIx3D

Compiler:
g++ 8.3

_Z9transposeR5Vec4dS0_S0_S0_:
vmovapd ymm5, YMMWORD PTR [rdi]
vmovapd ymm7, YMMWORD PTR [rdx]
vunpcklpd ymm2, ymm5, YMMWORD PTR [rsi]
vunpcklpd ymm3, ymm7, YMMWORD PTR [rcx]
vunpckhpd ymm0, ymm5, YMMWORD PTR [rsi]
vunpckhpd ymm1, ymm7, YMMWORD PTR [rcx]
vinsertf128 ymm4, ymm2, xmm3, 1
vmovapd YMMWORD PTR [rdi], ymm4
vperm2f128 ymm2, ymm2, ymm3, 49
vinsertf128 ymm4, ymm0, xmm1, 1
vperm2f128 ymm0, ymm0, ymm1, 49
vmovapd YMMWORD PTR [rsi], ymm4
vmovapd YMMWORD PTR [rdx], ymm2
vmovapd YMMWORD PTR [rcx], ymm0
vzeroupper
ret

Figure 4.7: Godbolt disassembly of a AoS⇒SoA register transposition of four AVX2
registers as given in figure 4.2.

permutations, but with the rather structured ones from algorithm 4.2, we instead
implement them semi-manually using the vector class library from section 3.2.3:
We split the permutation into a sequence of elementary permutations manually
but delegate the choice of instructions to the library. The instruction selection is
implemented by providing the permutation pattern as a template parameter, which
allows for compile-time analysis of the pattern. In figure 4.7, we see the disassembly
of the four SIMD vector transpose from figure 4.2. The generated assembly for this
transposition algorithm does not change between the major compilers.

Data permutations for other values of f and s in algorithm 4.2 can be implemented
analogously. For more SIMD lanes, this usually results in a hierarchic approach, e.g.

https://www.godbolt.org/z/vZIx3D
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a transposition of 8 vectors can be implemented as a block transpose of the 4× 4
blocks, which have been transposed exactly like in figure 4.7.

Many instructions in the disassembly in figure 4.7 are executed on the shuffle
port. It is worth noting that modern Intel processors are capable of executing
instructions on multiple ports within one cycle, implementing a form of ILP. Given
this parallelism, it is possible to overlap the permutation algorithm with the FLOP
workload of the quadrature loop. It is our goal to effectively hide the permutation
in this way. Performance numbers given in chapter 5 indicate that this is indeed
possible.

4.4 Integration into the Code Generator
Section 4.2 introduced a whole class of SIMD vectorization strategies. We will now
turn to the important question of how to handle this wide range of vectorization
opportunities. How can they be implemented in an automatic fashion from a
source code generator? This will be targeted in section 4.4.1, where we will see
how sum factorization kernels can be implemented as loopy kernels and how the
C++ code for them looks like. Section 4.4.2 will provide answers to how an
optimal vectorization strategy can be selected from within the code generator. This
includes systematic traversal of the vectorization strategies from section 4.2 and
a heuristic performance model. Section 4.4.3 introduces autotuning as a (costly)
alternative to the heuristic model. Finally, we elaborate on some ways to extend
the capabilities of the code generator for two use cases: Section 4.4.4 describes how
custom geometry mappings are integrated into the code generator and section 4.4.5
describes how symbolic form manipulation can be used to implement matrix-free
block preconditioners.

4.4.1 From Sum Factorization Kernels to Loopy Kernels
We will start off with how we symbolically represent sum factorization kernels and
then move on to how these are represented as loopy kernels and how generated
C++ code for them looks like.

Intermediate Representations

We have seen in section 3.3 that the code generation process is based entirely
on AST transformations (UFL to loopy, loopy to C) that are implemented via
recursive tree traversals with type-based function dispatch. These algorithms work
best if the tree transformation is fully local, meaning that the visitor object is
completely stateless. Our vectorization strategies - especially those based on loop
fusion - are inherently non-local, as they depend on the occurence of other terms
in the PDE. We therefore apply a procedure where we visit the expression twice:
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• During the first tree traversal, any quantity that is calculated through a sum
factorization kernel is represented by a dedicated AST node SumfactKernel,
that stores all the relevant information, but does not yet introduce any array
data structures in the loopy kernel.

• After the first tree traversal, an algorithm selects a vectorization strategy
by providing a mapping of all the SumfactKernel objects in the AST to
objects of VectorizedSumfactKernel nodes which have vectorization infor-
mation attached. We will study the decision-making algorithm in detail in
section 4.4.2.

• A second tree traversal is done, in which these nodes with vectorization
information are realized by loopy statements. Only the kernels that result
from this second traversal are fully functional loopy kernels from which code
can be generated.

The SumfactKernel AST node contains the following pieces of information: A
sequence of basis evaluation matrix objects, an object representing the input (or
resp. output) tensor and additional loopy information about loops and conditionals
that need to be wrapped around the kernel implementation, or dependencies on
other loopy statements. The VectorizedSumfactKernel node implements the
same interface, but internally stores a tuple of SumfactKernel objects that hold
the actual data.

From Sum Factorization Kernels to C Code

We recall the sum factorization approach in tensor notation from equation 2.27
(limiting ourselves to d = 3 for readability):

Ûi0i1i2 =
n2−1∑
j2=0

A
(2)
i2,j2

n1−1∑
j1=0

A
(1)
i1,j1

n0−1∑
j0=0

A
(0)
i0,j0Xj0j1j2 (4.13)

Introducing intermediate tensors T i this series of tensor contractions can be inter-
preted as follows:

T 0
i0j1j2 =

n0−1∑
j0=0

A
(0)
i0,j0Xj0j1j2 (4.14)

T 1
j1j2i0 = T 0

i0j1j2 (4.15)

T 2
i1j2i0 =

n1−1∑
j1=0

A
(1)
i1,j1T

1
j1j2i0 (4.16)

T 3
j2i0i1 = T 2

i1j2i0 (4.17)

T 4
i2i0i1 =

n2−1∑
j2=0

A
(2)
i2,j2T

3
j2i0i1 (4.18)

Ûi0i1i2 = T 4
i2i0i1 (4.19)
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As can be seen, each tensor contraction is followed by a permutation of the
intermediate tensor. An implementation that strictly follows equations 4.14 to
4.19 would be quite inefficient, as the FMA operations from the contraction would
outperform the permutation operations turning the latter into a bottleneck of the
computation. Therefore, we aim at implicitly handling permutations while storing
the result of the tensor contraction. This goal disinguishes our implementation from
early work such as [22] which used level 3 BLAS for both GEMMs and permutation
operations.
The memory layout of the input tensor, which in our example contains the DOFs
associated with one cell, is prescribed by the FiniteElementMap implementation
from PDELab. The code generator needs to adapt to this fixed layout. The memory
layout of the basis evaluation matrices A(i) can be chosen to be either row- or
column-major. In fact, this decision can be included into an autotuning search
space in future work. Given these layouts, our goal is to store the permuted tensor
T 1 from equation 4.15 with unit stride while performing the tensor contraction from
equation 4.14. Additionally, the tensor T 1 should also be stored in column-major
format for the next tensor contraction step to take the same form. From these
constraints follows an iteration order for the tensor contraction, which results
in rows of the basis evaluation matrices to be held in registers, while they are
multiplied with slices of X.
We do not automatically inline the implementation of sum factorization kernels
into the integration kernels. Instead, we create a separate loopy kernel for each
sum factorization kernel and add a function call to the integration kernel. We do
so for several reasons:

• The compiler is still able to always inline these kernels in our experiments,
partly because of the given always_inline attribute.

• Readability of the generated code suffers when many kernels are inlined.
• loopy kernels of finer granularity allow us to write better transformations

for them. This enables the composability of transformation search spaces in
a divide and conquer approach.

This is what an example kernel that implements evaluation of ∂0Û = (D⊗A⊗A)X
for a Q2 finite element with an 8th order quadrature formula (three basis functions
and five quadrature points per direction) looks like:
-----------------------------------------------------------------
ARGUMENTS:
A: GlobalArg, type:'float64', shape: (5, 3), dim_tags: (N0, N1)
D: GlobalArg, type:'float64', shape: (5, 3), dim_tags: (N0, N1)
buffer0: GlobalArg, type:'float64', shape: ()
buffer1: GlobalArg, type:'float64', shape: ()
dofs: GlobalArg, type:'float64', shape: (3, 3, 3), dim_tags: (N0, N1, N2)
-----------------------------------------------------------------
DOMAINS:
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{ [sf_2_2] : 0 <= sf_2_2 <= 4 }
{ [sf_0_1] : 0 <= sf_0_1 <= 4 }
{ [sf_0_2] : 0 <= sf_0_2 <= 4 }
{ [sf_red_0] : 0 <= sf_red_0 <= 2 }
{ [sf_2_0] : 0 <= sf_2_0 <= 2 }
{ [sf_red_1] : 0 <= sf_red_1 <= 2 }
{ [sf_red_2] : 0 <= sf_red_2 <= 2 }
{ [sf_1_2] : 0 <= sf_1_2 <= 4 }
{ [sf_1_0] : 0 <= sf_1_0 <= 2 }
{ [sf_2_1] : 0 <= sf_2_1 <= 4 }
{ [sf_0_0] : 0 <= sf_0_0 <= 4 }
{ [sf_1_1] : 0 <= sf_1_1 <= 2 }
-----------------------------------------------------------------
TEMPORARIES:
step0_out: type:'float64', shape: (3, 3, 5), dim_tags: (N0, N1, N2), base:buffer1
step1_in: type:'float64', shape: (3, 3, 5), dim_tags: (N0, N1, N2), base:buffer1
step1_out: type:'float64', shape: (3, 5, 5), dim_tags: (N0, N1, N2), base:buffer0
step2_in: type:'float64', shape: (3, 5, 5), dim_tags: (N0, N1, N2), base:buffer0
step2_out: type:'float64', shape: (5, 5, 5), dim_tags: (N0, N1, N2), base:buffer1
-----------------------------------------------------------------
STATEMENTS:
for sf_0_0, sf_2_0, sf_1_0

step0_out[sf_1_0, sf_2_0, sf_0_0] = reduce(sum, [sf_red_0],
D[sf_0_0, sf_red_0] * dofs[sf_red_0, sf_1_0, sf_2_0])

end sf_0_0, sf_2_0, sf_1_0
for sf_0_1, sf_2_1, sf_1_1

step1_out[sf_1_1, sf_2_1, sf_0_1] = reduce(sum, [sf_red_1],
A[sf_0_1, sf_red_1] * step1_in[sf_red_1, sf_1_1, sf_2_1])

end sf_0_1, sf_2_1, sf_1_1
for sf_0_2, sf_2_2, sf_1_2

step2_out[sf_1_2, sf_2_2, sf_0_2] = reduce(sum, [sf_red_2]
A[sf_0_2, sf_red_2] * step2_in[sf_red_2, sf_1_2, sf_2_2])

end sf_0_2, sf_2_2, sf_1_2
-----------------------------------------------------------------

Some names in this kernel have been changed for the sake of readability, e.g. many
names in reality encode polynomial degrees and quadrature orders. The arguments
of the kernel are the basis evaluation matrices A and D, which we precompute in
the constructor of the LocalOperator, the input tensor X of DOFs and two buffers.
These buffers are used to store the intermediate tensors and the code switches back
and forth between the two buffers: The first contraction writes into the first buffer,
the second contraction writes into the second buffer and the third contraction
can again use the first buffer, as the result of the first contraction is not needed
anymore. We allocate these buffers on the stack in the calling scope, calculating
their size at code generation time.

The given temporary variables used for the intermediate tensors have an additional
field 'base', which indicates a loopy mechanism not being used so far. It allows
temporary variables to alias other temporary variables while their shape, array axis
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implementation tags or underlying data type3 may vary. We leverage this concept
in order to choose the correct buffer for the current contraction step.

This is the resulting generated code of the above example kernel:
void sfimpl(double const *__restrict__ dofs, double* buffer0, double* buffer1)
{
double acc_sf_red_0;
double acc_sf_red_1;
double acc_sf_red_2;
double *step0_out = (double *)buffer1;
double *step1_in = (double *)buffer1;
double *step1_out = (double *)buffer0;
double *step2_in = (double *)buffer0;
double *step2_out = (double *)buffer1;

for (int sf_2_0 = 0; sf_2_0 <= 2; ++sf_2_0)
for (int sf_1_0 = 0; sf_1_0 <= 2; ++sf_1_0)

for (int sf_0_0 = 0; sf_0_0 <= 4; ++sf_0_0)
{
acc_sf_red_0 = 0.0;
for (int sf_red_0 = 0; sf_red_0 <= 2; ++sf_red_0)

acc_sf_red_0 = acc_sf_red_0 +
D[sf_0_0 + 5 * sf_red_0] * dofs[sf_red_0 + 3 * sf_1_0 + 9 * sf_2_0];

step0_out[sf_1_0 + 3 * sf_2_0 + 9 * sf_0_0] = acc_sf_red_0;
}

for (int sf_2_1 = 0; sf_2_1 <= 4; ++sf_2_1)
for (int sf_1_1 = 0; sf_1_1 <= 2; ++sf_1_1)

for (int sf_0_1 = 0; sf_0_1 <= 4; ++sf_0_1)
{
acc_sf_red_1 = 0.0;
for (int sf_red_1 = 0; sf_red_1 <= 2; ++sf_red_1)

acc_sf_red_1 = acc_sf_red_1 +
A[sf_0_1 + 5 * sf_red_1] * step1_in[sf_red_1 + 3 * sf_1_1 + 9 * sf_2_1];

step1_out[sf_1_1 + 3 * sf_2_1 + 15 * sf_0_1] = acc_sf_red_1;
}

for (int sf_2_2 = 0; sf_2_2 <= 4; ++sf_2_2)
for (int sf_1_2 = 0; sf_1_2 <= 4; ++sf_1_2)

for (int sf_0_2 = 0; sf_0_2 <= 4; ++sf_0_2)
{
acc_sf_red_2 = 0.0;
for (int sf_red_2 = 0; sf_red_2 <= 2; ++sf_red_2)
acc_sf_red_2 = acc_sf_red_2 +

A[sf_0_2 + 5 * sf_red_2] * step2_in[sf_red_2 + 3 * sf_1_2 + 15 * sf_2_2];
step2_out[sf_1_2 + 5 * sf_2_2 + 25 * sf_0_2] = acc_sf_red_2;

}
}

In this example, we only show a simple, scalar example. For the SIMD-vectorized
kernels that result from the strategies in section 4.2, all arrays in the generated

3 In this case, the resulting code would violate the strict aliasing rule and should be compiled
using -fno-strict-aliasing.
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code would use a SIMD base type, such as Vec4d and additional operations like
SIMD broadcasts and horizontal additions would appear in the code.

4.4.2 Cost Model-based Selection of Vectorization Strate-
gies

We will now give details about the algorithm used to select a vectorization strategy.
The search space of admissible vectorization strategies described in section 4.2 for
a given set of sum factorization kernels is large and it is not known a priori which
strategy delivers optimal performance. We mention two scenarios arising in the
examples in chapter 5 to illustrate that trade off decisions need to be made:

• For a simple Poisson problem in 3D, ∂iu are needed, but not the evaluation of
u itself. Given a SIMD width of 256 bits, is it better to fuse three kernels and
ignore the forth SIMD lane or to apply a (partly) splitting based vectorization
strategy? How does the quadrature order affect this?

• For the implementation of the Qk/Qk−1 DG scheme for the Stokes equation
from section 5.3, the evaluation of pressure cannot be parallelized with any
other necessary evaluations. Vectorizing pressure evaluation by splitting may
come at the cost of increasing the number of quadrature points for the whole
algorithm though. When is it better to not vectorize pressure evaluation?

A cost model based approach is required in order to make optimal vectorization
decisions. Such an approach consists of two core components: A function that
systematically traverses all vectorization opportunities to find a minimum and an
actual cost function. In order to handle the exponential complexity of the traversal
of vectorization opportunities, we employ a divide and conquer strategy splitting
the optimization problem into several subproblems:

• Starting from the quadrature point tuple (m0, . . . ,md−1) that was specified by
the user or deduced from the problem formulation, we list all possible tuples
with increased number of quadrature points, that enable other vectorization
strategies. For each of those we find an optimal vectorization strategy and
find the minimum among these:

minimize
q

cost(FixedQPMinimalStrategy(sumfacts, width, q))

q ∈
{(⌈

m0

i

⌉
· i, . . . ,md−1

) ∣∣∣∣ i = 1, 2, 4, . . . , w
}
.

(4.20)
Here, w again denotes the SIMD width.

• When finding an optimal strategy for a given fixed quadrature point tuple,
we first divide the given set of sum factorization kernels into smaller subsets,
which may potentially be subject to a loop fusion based vectorization approach
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Algorithm 4.4: Finding an optimal vectorization strategy: Given a set of sum factor-
ization kernels, the SIMD width and a fixed quadrature point tuple, a vectorization
strategy is returned as a mapping of sum factorization kernels to vectorized kernels.
The VectorizationStrategies function will be provided by algorithm 4.5.
1 function FixedQPMinimalStrategy(sumfacts, width, q)
2 groups← ∅
3 for all sf ∈ sumfacts do
4 insert sf in groups[ClassifyBounds(sf)]
5 results← ∅
6 for all groupsumfacts ∈ values(groups) do
7 vecsf← VectorizationStrategies(groupsumfacts, width, q)
8 insert argminv∈vecsf cost(v) in results
9 return combine(results)

i.e. they share the same loop bounds. Minimal solutions w.r.t. the defined
cost function for these subsets are then combined into a full vectorization
strategy.

We define a function ClassifyBounds(sf) such that two sum factorization kernels
that yield the same value are potentially vectorizable via loop fusion. Likewise,
we define a function ClassifyInput(sf) such that two kernels yielding the same
result operate on the same input tensor. To wrap up the divide and conquer
approach, a function combine that merges the minimal solutions on subsets is
used. Algorithm 4.4 illustrates the overall optimization algorithm and algorithm 4.5
shows the algorithm within one of the subsets.
Algorithms 4.4 and 4.5 establish a framework to explore different cost functions.
Equation 4.23 provides a heuristic cost model function. It reproduces our practical
experiences quite well, but does not take into account specific hardware features
beyond the SIMD width. We mainly use it as a drop-in replacement if the autotuning
approach from section 4.4.3 is infeasible. A good heuristic cost model function is
also beneficial to guide a non-backtracking search space traversal method for the
autotuning process. The cost function depends on the following quantities:

• the number of issued FLOP instructions is given as flops(sf). This counts
SIMD operations only once.

• a heuristic penalty function ilp(sf) describing the instruction level parallelism
potential of a sum factorization kernel depending on the size of the splitting s
as used in section 4.2.2, where we observe that loop fusion based vectorization
should always be preferred over splitting based vectorization when applicable.

ilp(sf) = 1 + c0 log2(s) (4.21)
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Algorithm 4.5: For a given set of sum factorization kernels, that are pairwise
implementable in parallel, return all vectorization strategies from the pool of
implemented methods in section 4.2. The combine function merges the given
mappings into one large mapping.
1 function VectorizationStrategies(sumfacts, width, q)
2 strategies← ∅
3 input_groups← ∅
4 for all sf ∈ sumfacts do
5 insert sf in input_groups[ClassifyInput(sf)]
6 for all num_inputs ∈ {1, 2} do
7 if num_inputs > len(input_groups) then
8 break
9 for all f ∈ {1, 2, 4, . . . , w/num_inputs} do
10 if (w/(f ∗ num_inputs)) mod m0 ≡ 0 then
11 kernels← ∅
12 for all i ∈ {0, . . . , num_inputs− 1} do
13 insert input_groups[i][0 : f− 1] in kernels
14 s← ∅
15 for all sf ∈ kernels do
16 s[sf] = VectorizedSumfactKernel(kernels)
17 for all other ∈VectorizationStrategies(sumfacts−kernels,

width, q) do
18 extend(strategies,combine(other, s))
19 return strategies

• a heuristic penalty function loads(sf) for the necessary load instructions.
This depends on the number of input coefficients p used for loop fusion in
the kernel.

loads(sf) = 1 + c1 log2(p) (4.22)

The resulting cost function is the product of these terms:

cost(sf) = flops(sf) · ilp(sf) · loads(sf) (4.23)

In practice, we have chosen c0 = 0.5 and c1 = 0.25 and achieved good results. We
will validate this choice in more detail in section 5.2. While it is definitely useful
to have a very cheap cost model at hand in order to quickly generate code or to
discriminate slow variants, we will use the established minimization procedure for
an autotuning approach in the following section.
Although necessary in order to handle the complexity of the vectorization strategy
search space, the divide and conquer approach mentioned above bears an intrinsic
problem. When performing the minimization over the set of possible quadrature
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point tuples at the outermost divide and conquer level in equation 4.20, the cost
function cannot account for any costs that an increased number of quadature points
causes outside of the sum factorization kernel. In our case, this occurs in the
quadrature loop, where the additional work depends on the number of floating
point operations per quadrature point, which is prescribed by the PDE problem.
We fix this issue by introducing a penalized cost function pcost that takes into
account the total number of FLOPs. We obtain that number ops from introspection
of the ASTs of the quadrature loop:

pcost(sf, q, qmin) = flops(sf) + ops ·∏i qi

flops(sf) + ops ·∏i q
min
i

cost(sf) (4.24)

Here, qmin denotes the quadrature tuple that is the minimum requirement for the
problem to be correctly solved. Another cost not correctly reflected by cost is the
overhead of the transposition operations described in figure 4.2. This is assuming
that these can be effectively hidden behind the floating point workload of the
quadrature loop, as we described in section 4.3. This assumption held true for our
experiments in section 5.2, but it might fail for PDE problems that do not require
much floating point operations in the quadrature loop or for future architectures
with even wider SIMD widths.

4.4.3 Autotuning
Autotuning is a technique in computer science that is getting more and more
important in HPC due to the complexity of modern architectures [120]. The
performance of different program realizations often varies drastically and a priori
performance models cannot be found. In these cases, autotuning can be used to
evaluate program variants from a search space in a preprocessing step to perform
a minimization of needed ressources (e.g. runtime). This preprocessing step
perfectly integrates into a code generation tool chain. Implementation of GEMMs
on modern architectures has been subject to autotuning by many authors, e.g. [2],
[45]. Software frameworks that implement generic tuning algorithms on top of
user-provided search spaces have been introduced, e.g. Opentuner [9] or CLTune
[92].
Autotuning requires the following key components: Definition of a search space
that describes available program variants, a way of traversing this search space
and a facility to generate, compile, execute and measure program variants. In
order to handle the complexity of the search space, divide and conquer approaches
should be used wherever possible. In the context of complex applications, such
as simulations with PDEs, this starts with identifying the correct granularity level
for autotuning. In our case, the natural choice of granularity level is given by the
sum factorization kernels in the problem. The vectorization strategies provided
in section 4.3 and the traversal algorithm from section 4.4 implement a custom
search space which can be explored by means of an autotuner. We currently use
backtracking to traverse this search space.
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We implement the following toolchain for generation, compilation, execution and
measurement of program variants:

• We implement an additional code path in the source code generator that
generates stand-alone benchmarking code for a loopy kernel. These kernels
may have a smaller scope, such as one individual sum factorization kernel
implementation. Input and output arrays of such kernels are mocked within
the benchmark program.

• The CMake integration of our code generator described in section 3.4.2 is used
to determine compiler paths and flags. To this end, a dummy target in the
dune-codegen project is configured with all the necessary flags for autotuning.
The code generator retrieves these flags by accessing CMake-internal caches.
Optionally, a build environment-specific wrapper is used. This is e.g. helpful
if the compilation node uses a module system to access compilers.

• Execution of the benchmark programs is again subject to some build environment-
specific tweaks. We therefore allow an execution wrapper script to be passed
to the code generator. We have used this in the past to offload benchmark
execution onto compute nodes via a scheduler in a cluster environment. Com-
pilation and execution results are cached on disk in order to save resources.

• Measurement of benchmark execution is done through the Google benchmark
library [49]. The above mentioned generated stand-alone code already contains
the necessary benchmarking code. The benchmark library controls repeated
execution of the kernel until a good runtime estimate is available and writes
out the result as a JavaScript Object Notation (JSON) file.

The above toolchain is hooked into the code generation process through a cost
function, which generates code, compiles it, runs it and reads the written JSON file.
The minimization procedure from algorithm 4.5 then finds the code variant that
minimizes the total execution time. This cost function is selected through the form
compiler option vectorization_strategy=autotune.
This autotune approach delivers very good results and we generally use it for our
performance measurements. Depending on how large the search space is, code
generation may take a substantial amount of time though. While this is not
important for an HPC application to be run at large scale, it is unfeasible during
development cycle. The necessity to penalize cost functions in the divide and
conquer setting described in section 4.4 also applies to autotuned code.
In future work, the use of autotuning in the code generator can be greatly extended.
The loopy IR that we use to represent our loop nests allows us to define search
spaces for different program variants of a given (vectorized) sum factorization
kernel. This search space is formulated in terms of loopy transformations. The
following techniques are a promising starting point for optimization of the sum
factorization kernel code realization:
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• Loop reordering: Tensor contractions of the form Aij = ∑
k BikCkj, although

typically expressed in i-j-k order - can be nested in many different ways,
which can be enforced by loopy transformations.

• Loop tiling: Tensor contraction loops can be tiled such that the working set
size is optimized for the L1 cache of the given architecture. Especially for
very high polynomial order, this is a promising approach.

• The memory layout of basis evaluation matrices could be changed between
row-major and column-major format.

• Loop unrolling is an optimization expressable as a loopy transformation that
is quite important for maximum performance. However, in our experience, the
compiler does sufficiently unroll our sum factorization kernel implementation
even without explicit guidance.

4.4.4 Geometry Evaluations
Optimal implementations of sum factorization kernels for facet integrals depend on
the embedding of the reference facet into the reference element of the neighboring
cell, as it allows the reordering of tensor contractions in order to minimize the
total number of executed FLOPs. We provide one implementation per facet of the
reference element for boundary integrals and one implementation per combination of
facets of the two adjacent cells for interior facets. The number of actually releveant
combinations in the skeleton case is reduced drastically on structured grids though.
Our generated code determines the facet embedding and dispatches to the correct
implementation. Having this facet-specific implementations in place also has a
beneficial impact on the implementation of geometry evaluations. We therefore
provide dedicated mixin classes for sum factorized code which extend the choice of
mixins given in figure 3.13. The mixin classes identified by 'sumfact_axiparallel'
and 'sumfact_equidistant' inherit from their base version and implement the
following additional optimization on a facet whose normal vector is parallel to ej:

ni = ±δij (4.25)

With the code generation time unrolling of reduction indices described in sec-
tion 3.3.2 being applied, this completely removes the FacetNormal node from the
generated code. Also, the zero entries of the normal vector are propagated through
the AST and guarantee a FLOP-minimal code variant.

Semistructured Geometry Mapping

We will now present a custom domain-specific geometry mapping for simulations
of soil physics applications. We do so to demonstrate how the composition pattern
of the main UFL to loopy visitor allows users to provide custom implementations
tailored to application requirements. We assume the grid to be axiparallel and
equidistant within the x−y plane, but allow z-coordinates to vary non-equidistantly.
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We do so by prescribing elevation functions zt(x, y) and zb(x, y) at top and bottom
and use an equidistant meshing along each vertical line. In DUNE such a grid can
be realized by the GeometryGrid class, which is a meta grid. Meta grids do wrap
the implementation of a host grid but may provide additional functionality. In the
case of GeometryGrid, the vertices of the host grid are remapped with a custom
multilinear map µ∗T . For our semi-structured grid, a structured grid is transformed
with the following transformation µ∗T :

µ∗T (

 x′

y′

z′

) =

 x′

y′

zb(x′, y′) + z′(zt(x′, y′)− zb(x′, y′))

 . (4.26)

The function µ∗T assumes the host grid to be using the unit interval as its extension
in z direction. The geometry evaluations provided by the GeometryGrid instance
would have the same computational complexity as a fully unstructured mesh though,
because it does not grasp the special structure in the x-y plane. We therefore only
use this grid for the purposes of visualization and perform the evaluation of any
semistructured geometric quantity in the code generator.
The geometry mapping µ∗T exhibits some special structure that can be exploited
at code generation time to reduce the computational complexity of the geometry
evaluation:

• The side facets of the transformed hexahedra are parallel to the x− z or y− z
plane. This results in the normal vector being axiparallel: n = ±ex (or ey).
In the sum factorization approach we are using different implementations
for all facets of the reference cube which greatly simplifies two thirds of our
integrals over interior facets.

• The jacobian of the geometry mapping µ∗T from equation 4.26 exhibits a
special structure:

∇µ∗T =

 hx 0 0
0 hy 0
δ0 δ1 δ2

 (4.27)

with δi := ∂iµ
∗
T,z((x′, y′, z′)T ). The jacobian matrix is a scaled version of

a Frobenius matrix and as such, its inverse shares the original jacobian’s
sparsity pattern:

(∇µ∗T )−1 =

 h−1
x 0 0
0 h−1

y 0
−δ0δ

−1
2 h−1

x −δ1δ
−1
2 h−1

y δ−1
2

 (4.28)

Due to its way of unrolling operations on small tensors, the code generator
can exploit this sparsity pattern and reduce the complexity of the resulting
expression. Furthermore, the determinant of the inverted jacobian is as simple
as (hxhyδ2)−1.
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• Evaluation of the above quantities δi can be implemented using sum fac-
torization techniques. In order to do so, we again calculate the quantity
at all quadrature points at the same time. The basis functions are chosen
as Q1 Lagrange functions and the input tensor is given by the tensor that
collects the z-coordinates of all the vertices of the cube. Within the code
generator, these sum factorization kernels are handled in the same way as the
ones arising from finite element function evaluation e.g. SIMD vectorization
strategies are applied.

The evaluation of δi through a sum factorization kernel can also be done for all
entries of the jacobian if the geometry mapping is multilinear and does not exhibit
any special structure. Such geometry mappings have also been implemented into
our code generator though we do not show any details here. Compared to fully
multilinear geometry mappings, semistructured geometries provide a great tradeoff
between computational efficiency and flexibility w.r.t. the computational domain.

4.4.5 Block Preconditioners
The matrix-free solution procedure described in section 2.7 requires the implemen-
tation of building blocks beyond the LocalOperator for the given PDE. One such
building block is an operator that applies the block-diagonal part of the DG operator
in a potentially matrix-free fashion. For the overall complexity and performance to
be preserved, the same performance optimization strategies need to be applied for
these operations. In [89], this was realized by adding compile-time conditionals
to the local operator implementation that restricted the full operator to the block
diagonal contributions. In a code generation procedure, we can instead formulate
a form transformation that restricts the given form to the block diagonal part and
then generates code for this modified input. This way, the implementations of the
preconditioner and the standard code generator are separated perfectly.
Given the jacobian form, the form transformation to restrict a given problem to
the block diagonal works as follows: Any occurence of the pattern
PositiveRestricted(Argument(...))

is mapped to Zero, while all other expressions are not altered. Note that this is only
true as we are generating local operators which are meant for two-sided assembly,
meaning that we expect each intersection F ∈ Fh to be visited twice - once from
each neighboring cell. Normally, in PDELab each intersection is only visited
once and we would be required to also take into account those terms where both
arguments are restricted to the outside cell in the form transformation. However,
in the solution procedure in section 2.7, we are required to calculate the diagonal
jacobian block associated with a cell locally, i.e. without iterating over all the grid.
Another quantity that is required in the matrix-free solver is the diagonal of the
diagonal blocks. It is used to precondition the matrix-free inversion of a diagonal



104 Chapter 4 • SIMD vectorization of DG methods

block. Our goal is to assemble the diagonal directly into a vector and never assemble
the full diagonal block. Such an assembly procedure would preserve the optimal
O(kd+1) complexity of the overall algorithm. Given the jacobian form j(u; v, w),
we study how d(u; v2) := j(u; v, v) can be implemented directly. As d is linear in
v2, we are interested in how to efficiently evaluate these squared basis functions.
We do so by reordering the one dimensional functions such that we formulate the
overall evaluation in terms of products of these:

(φ(x))2 =
(

d−1∏
k=0

φ1D
k (xk)

)2

=
d−1∏
k=0

(φ1D
k (xk))2. (4.29)

This gives rise to the following sum factorized assembly of d(u; v2) from the tensor
R̂ which describes the evaluations at all quadarature points which needs to be
multiplied with v2:

Ĵ =
(
AT ◦ AT ⊗ AT ◦ AT ⊗ AT ◦ AT

)
R̂ (4.30)

Here, ◦ denotes the element-wise product of two matrices. For the sake of simplicity,
we omitted any gradients of v in the above description. Taking these into account
requires us to consider a lot of combinations arising from test and trial functions
having different partial derivatives applied. Where in residual assembly, we had up
to d+ 1 sum factorization kernels in this step (multiplication with the test function
and the d components of its gradient), we need to consider (d+ 1)2 combinations
here. Fortunately, many of these can be discarded due the multiplication of basis
evaluation matrices being commutative. While implementing this diagonal operator
manually might be a very tedious procedure, the code generation approach allows
us to do this in a generic, problem-independent fashion.
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5
Performance Experiments

We have introduced an HPC-enabled code generation toolchain in section 3 which
allows us to generate code that uses sum factorization to exploit the tensor product
structure of finite elements. In section 2.7 we highlighted that such an imple-
mentation is especially valuable when performing matrix-free evaluation of an
operator for DG elements. Together with the SIMD vectorization strategies from
section 4.2, an implementation that achieves a substantial amount of the machine’s
theoretical floating point peak performance is possible. We will now back this
claim with performance measurements of our generated code. In order to give the
reader full insight into how these numbers were measured, we will first describe
the benchmark setup in detail in section 5.1. We will then move on to perform
measurements with the diffusion-reaction problem which we investigated in a lot
of places throughout this thesis. Sections 5.3 and 5.4 will apply the techniques
to more complex systems of PDEs: the Stokes equations and Maxwell’s equations.
We will seize the opportunity of introducing these PDEs to also provide the full
implementation of those examples in the UFL DSL, illustrating the desirability of
the code generation approach for the user.

5.1 Benchmark Setup
It is our intent to be as transparent as possible about how the performance numbers
from sections 5.2 to 5.4 were produced. We will therefore give all necessary details
about the methodology in this section. This spans explanation of performance
metrics, measurement of floating point operations and runtimes, hardware con-
figurations, compilers and how benchmark programs are executed. This setup
description is partly taken from [63].
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We use the following two performance metrics in this work:

• FLOPs per second expressed in GFLOPs/s and often given as a percentage of
the machine’s maximum floating point performance. We will often refer to
this as machine utilization.

• DOFs per second processed during a full operator application. Note that we
prefer this measure over its inverse (time per DOF). We will often call this
throughput in the following.

Good results on the latter are always more important from the application point
of view, as it gives an accurate measure of how fast a real problem can be solved.
However, the former is still an interesting measure that allows reasoning about
how good a code is suited for a given hardware. As implementations that are
not minimal w.r.t. the total number of FLOPs executed do artificially increase the
utilization, the throughput measure becomes even more important in those case.
In order to accurately measure the FLOPs per second, the number of performed
FLOPs needs to be measured exactly. This can in principle be done by reading special
registers provided in Intel architectures. However, speculative branch execution
and other sorts of ILP effects make this number differ from the minimal number
of FLOPs required by the mathematical problem. We therefore pursue a different
approach exploiting the fact that we are generating code for dune-pdelab, which
uses C++ templates to the extent that we can replace the underlying floating point
type throughout all our simulation workflow. Instead of using double, we use a
custom type templated to double, which has overloads for all arithmetic operations
that increase a global counter and forward the operation to the underlying template
type. This floating point type is provided in a separate module dune-opcounter
[66] which is also usable outside of the DUNE context. In order to also count FLOPs
executed with SIMD types from the vector class library from section 3.2.3, we
provide a vector type that mimics its interface but forwards all operations to the
underlying scalar counter type. This counting of course introduces a non-negligible
performance overhead. We therefore compile different executables from the same
source for operation counting and time measurement. The approach bears another
disadvantage in that the compiler cannot perform CSE on the operation counting
executable. We therefore need to assume that our code is minimal in terms of
executed FLOPs, which is quite often either a reasonable assumption or the overall
work is dominated by the FLOP-minimal work in sum factorization kernels.
Apart from counting FLOPs, accurate time measurements are needed. We instrument
our code with C macros to start and stop timers using the Time Stamp Counter
(TSC) registers. The performance overhead of starting and stopping a timer is
measured at runtime and the measurements are calibrated accordingly. Processes
are pinned to physical cores to prevent spoiled TSC measurements and unnecessary
context switches. To gain further insight into the performance bottlenecks of our
implementation, we measure time and FLOP rates at different levels of granularity:
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Full operator application, cell-local integration kernel and individual steps of
algorithm 2.3. For all these granularity levels, separate executables are compiled to
assure that no measurement is tampered by additional measurements taken within
the measuring interval. In our experience, the finest granularity level is subject
to measurement artifacts at very low polynomial degrees, as the total number of
FLOPs within the measurement interval becomes small. We therefore take these
measurements for Q1 elements with a grain of salt. All time measurements are
repeated at least ten times and the minimum of these runtimes is reported.

We study the node-level performance of our generated code on two Intel micro
architectures: Haswell and Skylake. Details about these CPUs can be found in
appendix A. The theoretical peak performance is given as the product of the
processor frequency, the number of SIMD lanes for double precision values, the
number of ports capable of executing arithmetic instructions (here: two in both
cases) and a factor of two to account for FMA. A survey of issues in determining a
machine’s theoretical peak performance is given in [36]. It is worth noting, that
the additional frequency reduction moving to AVX-512 on Intel Skylake results in
the theoretical throughput increase moving from AVX2 to AVX-512 being as low as
1.83, instead of the naively expected factor of 2. We are always seeking to saturate
the full machine with our computation. Otherwise, some processors may have
privileged access to resources such as memory controllers and tamper results. We
do so by doing MPI parallel computations with one rank per core and an identical
workload size on each of these ranks.

We choose the problem size of the benchmark program such that one vector of
DOFs exceeds the level 3 cache of the machine. While this may not be a realistic
setting when doing strong scaling of simulation codes, it gives a good worst case
estimate of our code’s node level performance. The time for communication of
overlap data via MPI is not included in our measurement, as the task of hiding that
communication behind computation is not the subject of this work. Measurements
are presented for volume and skeleton integrals only, assuming a periodic grid.
Boundary integrals can of course be generated as well, but their impact on the
overall performance is negligible. Unless otherwise mentioned, we use the GNU
compiler in version 8.1 for our results.

5.2 Diffusion-Reaction Equation
The diffusion-reaction equation was used as an example problem throughout this
thesis. We will now move to provide detailed performance results for its implemen-
tation. Before showing results for the Intel Haswell and Skylake architectures we
will recap the mathematical formulation of the DG discretization and provide its
full implementation in the UFL DSL.
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Mathematical Formulation

We recall the SWIP DG formulation for the diffusion-reaction equation from equa-
tion 2.13 and recast it into residual formulation:

rh(uh, vh) =
∑

T∈Th

∫
T
k(x)∇u · ∇v + c(x)uv − fv dx

−
∑

F∈Fh

∫
F

({k(x)∇u}ω,n)JvK + JuK({k(x)∇v}ω,n)− γF JuKJvK ds

−
∑

F∈Bh⊆ΓD

∫
F

(k(x)∇u,n)v + (u− g)(k(x∇v,n)− γF (u− g)v ds

(5.1)

where the penalty parameter γF is chosen exactly as in equation 2.15. In this
section, we will fix the physical parameters in equation 5.1 to the following simple
choices:

k(x) = xxT + I (5.2)
c(x) = 10 (5.3)
f(x) = −6 (5.4)
g(x) = ‖x‖2

2 (5.5)

These parameters are chosen such that u(x) = ‖x‖2
2 solves the original PDE. This

procedure is called method of manufactured solution and allows code verificiation
for PDE codes [105].

UFL Implementation

We will now provide the full UFL implementation of the diffusion-reaction problem.
We do so both in order to exemplify the usage of the DSL and to provide full details
about the given benchmark in case the reader wants to compare performance results
against different implementations.
We start off with defining some basic geometric quantities:
dim = 3
cell = hexahedron
x = SpatialCoordinate(cell)
n = FacetNormal(cell)('+')

Given these, we can implement the physical parameters from equations 5.2 to 5.5:
g = x[0]*x[0] + x[1]*x[1] + x[2]*x[2]
I = Identity(3)
k = as_matrix([[x[i]*x[j] + I[i,j] for j in range(3)] for i in range(3)])
f = -6.
c = 10.
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We continue to define the used finite element space and the test and trial functions
taken from it. The polynomial degree is not fixed here, but it can be set to any
non-zero value.
V = FiniteElement("DG", cell, degree)
u = TrialFunction(V)
v = TestFunction(V)

The penalty parameter for the DG method is implemented exactly as defined in
equation 2.15:
alpha = 3.0
h_ext = CellVolume(cell) / FacetArea(cell)
gamma_ext = (alpha * degree * (degree + dim - 1)) / h_ext
h = Min(CellVolume(cell)('+'), CellVolume(cell)('-')) / FacetArea(cell)
gamma_int = (alpha * degree * (degree + dim - 1)) / h
theta = -1.0

Finally, the residual form is written down in UFL notation which resembles the
mathematical notation from equation 5.1. Details about the used UFL functionality
are provided in section 3.2.1:
r = (inner(k*grad(u), grad(v)) + (c*u-f)*v)*dx \

- inner(n, k*avg(grad(u)))*jump(v)*dS \
+ gamma_int*jump(u)*jump(v)*dS \
+ theta*jump(u)*inner(k*avg(grad(v)), n)*dS \
- inner(n, k*grad(u))*v*ds \
+ gamma_ext*u*v*ds \
+ theta*u*inner(k*grad(v), n)*ds \
- theta*g*inner(k*grad(v), n)*ds \
- gamma_ext*g*v*ds

Intel Haswell Results

We will now turn to performance results for the diffusion-reaction equation on the
Intel Haswell architecture. The equation is solved as given in equation 5.1 on a
structured equidistant mesh with varying polynomial degree. We used autotuning
to select a suitable vectorization strategy, though minimization of the cost model
function from equation 4.23 yields the same results for the diffusion-reaction
equation. Figure 5.1 shows the performance measurements for a full operator
application, as well as the volume and skeleton integrals individually. We make
several obervations:

• Given a polynomial degree k > 2, the total machine utilization is at roughly
40%.

• Volume integrals are capable of utilizing the machine even better peaking at
60% of the machine’s floating point capabilities for k = 3. Skeleton integrals
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Figure 5.1: Performance of the diffusion-reaction equation on Intel Haswell: The
upper row of plots show the machine utilization and the DOF throughput for a
full application of the DG operator. The lower row shows the same numbers with
measurements restricted to the integration kernels for volume and skeleton integrals.
We show performance numbers for the full operator application in a separate plot
in order to have an insightful scaling in the throughput plot. Our implementation
achieves 40% machine utilization for medium to high polynomial degrees.

on the other hand only run at roughly 35%. This gap can be explained by
the much higher flop-per-byte-ratio in volume integrals and the amount of
ILP between the two floating point ports that is enabled by these additional
FLOPs.

• The vectorization strategy that enables these performance numbers is a
fully fusion-based one. A comparison with other strategies will be given in
figure 5.3.

• The maximum total DOF throughput of a full operator application is roughly
650 MDOFs/s. The thoughput of skeleton integrals is independent of the
polynomial degree, because the FLOPs per DOF ratio is constant. For volume
integrals however, the number of FLOPs per DOF increases with the polynomial
degree, making them increasingly dominant for higher polynomial degree.
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This property holds independently of the PDE as it results from a surface to
volume ratio effect.

• For k = 1, performance is drastically reduced. Additionally, performance
numbers from the two shown granularity level do not add up in a coherent
way. We suspect that the very short time span of the measurement interval
yields significant errors in our measurements. This might be related to the
measuring instruction introducing a memory barrier which has more impact
on the measurement at low polynomial orders. With the shown technology
being geared towards high order methods, we did not attach importance to
the Q1 case though.

In figure 5.2 we have an even more detailed look at how individual steps from
algorithm 2.3 perform. Step one performs a sequence of tensor contractions with a
SIMD broadcast of the input tensor. This operation is executed at up to 60% of
machine peak. In contrast, step three only runs at 30% (on skeleton integrals) to
40% (on volume integrals) of the machine peak. The main difference between these
is the necessity of horizontal addition of the tensor contraction result (instead of
the SIMD broadcast in step one). This illustrates well, how much of a bottleneck
the horizontal addition may be. Despite its very high machine utilization, the
quadrature loop step does not contribute much to the overall performance, because
of the small number of total FLOPs executed in it.

Comparison of Vectorization Strategies

As noted in the previous section, the best performing code variants from our
vectorization search space were purely fusion based ones. We will now turn to
investigate how other strategies perform. Figure 5.3 shows a comparison of three
vectorization strategies:

• The purely fusion based one as described in section 4.2.1, which fuses the sum
factorization kernels for the evaluation of u and ∇u into one SIMD-vectorized
sum factorization kernel.

• The splitting strategy described in section 4.2.2. This strategy vectorizes each
sum factorization kernel individually but requires a divisibility constraint of
4 on q0. If this constraint is not satisfied by the specified minimal number of
quadrature points, q0 is artificially increased.

• A hybrid strategy following the ideas of section 4.2.3. Here, this strategy
fuses pairs of sum factorization kernels and introduces a relaxed divisibility
constraint of 2 on q0.

We observe that strategies based on kernel fusion perform scrictly better in terms of
DOFs throughput. This can be explained with the high total number of FMA chains
needed to saturate the two floating point ports of the processor: The pipeline depth
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Figure 5.2: Fine grained performance measurements of diffusion-reaction integration
kernels on Intel Haswell: Machine utilization and throughput for the three main
steps from algorithm 2.3 are shown for volume and skeleton integrals.

of the processor requires long, unrolled chains of FMA operations in order to run
at full utilization. Applying a fusion strategy effectively increases the number of
such chains in a sum factorization kernel implementation by a factor of the SIMD
width. This necessity of having a sufficient amount of independent FMA chains is
also one reason that makes the difference in throughput so much more pronounced
for skeleton integrals. Another reason was already described in section 4.2.2: FLOP-
minimal implementations of sum factorization kernels reorder the tensor contraction
sequence such that the contraction associated to the normal direction is executed
first. However, this contraction cannot be vectorized with a splitting strategy, as
there is only one quadrature point for the normal direction. This results in the first
tensor contraction being executed in a non-vectorized way. The mismatch between
the DOFs throughput and the machine utilization measurements can be explained
with an increased number of quadrature points: In order to make the fully splitting
strategy work for k = 1, the number of quadrature points is doubled (q0 = 4 instead
of q0 = 2). While this increased workload achieves a higher machine utilization,
those additional FLOPs are not necessary in a fusion strategy that achieves a higher
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Figure 5.3: Performance comparison of multiple SIMD vectorization strategies
for the diffusion-reaction equation on Intel Haswell: The upper rows shows the
measurements for a full application of the DG operator, the lower rows show volume
and skeleton integrals. The fusion strategy was described in section 4.2.1 and fuses
the evaluations of u and ∇u. The splitting strategy from section 4.2.2 vectorizes
each sum factorization kernel individually potentially requiring an increase of the
quadrature points to satisfy the associated divisibility constraint. The hybrid
strategy from section 4.2.3 fuses two quantities and introduces a more moderate
divisibility constraint of 2 on q0.
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Figure 5.4: Validation of the cost model function from equation 4.23 given the
diffusion-reaction problem: Each data point represents one vectorization strategy.
The cost model function correlates with the measured overall performance and
most importantly captures the maximum performance correctly.

DOFs throughput. For this reason, only the combination of these two measures
gives good insight into our kernels’ performance.

Validation of the Cost Model

The cost model function from equation 4.23 is a very cheap alternative to the
autotuning procedure. However, the construction of the cost function is purely
heuristic. Figure 5.4 shows how the cost function value and the measured per-
formance correlate. The plots are obtained by restricting the DG formulation to
one integral type and adding one data point per vectorization strategy for that
integral. Most importantly, the cost function minimum and the maximum measured
performance agree.

Comparison of Horizontal Addition Implementations

In section 4.3 we studied performance critical SIMD operations and provided
several implementations of horizontal addition. Figure 5.5 compares our improved
implementation from figure 4.5 with the default implementation of the vector class
library from figure 4.4. In this measurement, we restrict ourselves to the volume
integral of the diffusion-reaction equation, which is vectorized with a fusion-based
strategy. The figure shows the speedup of our implementation for both the full
volume integral and for step three of algorithm 2.3 in isolation. We observe a
consistent speedup across all polynomial degrees with the total gain being around
2%. The fact that this overall gain is achieved by merely avoiding the vhaddpd
instruction in one place illustrates how delicate SIMD performance bottlenecks are.
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Figure 5.5: Speedup of the custom implementation of AVX2 horizontal addition
from figure 4.5 compared to the vector class library implemenetation from figure 4.4.
Both the speedup for the full evaluation of the volume integral and for step three
of algorithm 2.3 are shown.
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Figure 5.6: Performance of Continuous Galerkin (CG) implementation of the
diffusion-reaction equation using sum factorization. As expected, the volume kernel
performs similar to its DG counterpart from figure 5.1, but the performance is lost
in the data gathering and scattering.
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Sum Factorized Continuous Finite Elements

We motivated our use of sum factorization with DG methods. However, local CG
bases exhibit the same tensor product structure and can be evaluated with sum
factorization. A CG formulation of the diffusion-reaction equation was given in
equation 2.4. In contrast to DG, the CG formulation consists of volume integrals
only. However, the local integration kernels cannot operate directly on the global
data structures. Instead, PDELab provides dense containers for DOFs and residuals
which are gathered from and scatter to global memory in a pre- and postprocessing
step. Figure 5.6 shows the performance of these local integration kernels which
is on par with the DG volume integrals from figure 5.1. The embedding of this
local integration into a global operator application does seriously hamper the
performance though, as the costly data movement operations cannot be hidden. As
a result, the DOF thoughput of the CG implementation is drastically reduced. It is
lower than the overall DG DOF throughput although it performs much fewer FLOPs.
A 20% machine utilization is still a competitive value for CG methods though. Our
CG implementation is currently limited to structured grids, as continuous Qk finite
elements on hexahedra with k > 2 require special care [3].

Single Precision Results

For the performance numbers presented so far, a fusion based strategy was always
possible. We will now present measurements of single precision computations for
the diffusion-reaction equation on the Intel Haswell architecture. With a SIMD
widths of 8 lanes, volume integrals cannot be vectorized by fusion due to a lack
of suitable quantities. Consequently, a hybrid splitting strategy with a divisibility
constraint of 2 for the number of quadrature points in x-direction is used. In the
skeleton case, fusion is possible when allowing two distinct input tensors as there
appear exactly eight quantities: u−, u+, ∇u+ and ∇u−. Figure 5.7 shows the
resulting performance and figure 5.8 shows the achieved speed-up compared to the
double precision case from figure 5.1.
The theoretical maximum utilization increase is a factor of 2 when moving from
double to single precision operations, although the increase in DOFs throughput
might be lower due to an artificially increased number of FLOPs. However, in
practice we only achieve a speed-up of 1.8 for volume integrals at high polynomial
degrees and no speed-up at all at low polynomial degrees and for skeleton integrals.
One reason for this lack of performance is that the complexity of critical SIMD
operations like horizontal addition and AoS to SoA transformations is increased.
Furthermore, we have not provided custom implementations of horizontal addition
for single precision calculations like we did in section 4.3 for the double precision case.
A look at more fine-grained measurements exhibits that step one of algorithm 2.3
delivers 2.5 the DOFs throughput stage three does, meaning that the horizontal
addition is becoming a severe bottleneck.
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Figure 5.7: Single precision performance of the diffusion-reaction equation on Intel
Haswell. On volume integrals, the selected vectorization strategy is of hybrid
nature: Four quantities are fused together and a splitting of 2 is applied. Skeleton
integrals are vectorized by a fusion-based strategy.

Intel Skylake Results

The single precision results on the Intel Haswell architecture above were the first
results with 8 SIMD lanes. We now move to performance measurements on the
Intel Skylake architecture which features the AVX-512 instruction set allowing 8
double precision values in one SIMD register. Figure 5.9 shows the results. In order
to distinguish effects of the increased SIMD width from effects of the advanced
technology in the Intel Skylake architecture, figure 5.10 also shows the speed-up
obtained moving from AVX2 to AVX-512 on the machine. The theoretical utilization
increase for this case is 1.83 and was described in section 5.1.

A machine utilization of roughly 30% is achieved and the maximum achieved
DOFs throughput is around 1GDOFs/s. The performance gaps between volume
and skeleton integrals resemble those of the single precision measurements on
Intel Haswell. In fact, the superior performance of volume integrals is even more
pronounced on the Intel Skylake architecture. While the utilization for volume



118 Chapter 5 • Performance Experiments

2 4 6 8 10
Polynomial degree

0.8

1.0

1.2

1.4

1.6

1.8

GF
lo

ps
 / 

s
Single Precision Speedup on Haswell
Total Operator Application
Volume Integrals
Skeleton Integrals

2 4 6 8 10
Polynomial degree

0.8

1.0

1.2

1.4

1.6

1.8

M
DO

Fs
 / 

s

Single Precision Speedup on Haswell
Total Operator Application
Volume Integrals
Skeleton Integrals

Figure 5.8: Speed-up of the single precision results for the diffusion-reaction
equation on Intel Haswell compared to above double precision results. Numbers
for volume and skeleton integrals, as well as the full operator application are
shown. The perfect speed-up would be 2 which is feasible for volume integrals, but
completely out of scope for skeleton integrals.

integrals is comparable with the Haswell single precision results from figure 5.7,
skeleton integrals show worse results.
Another interesting number to look at when comparing performance of the examined
Intel Haswell and the Intel Skylake processors is the total node performance. While
our Intel Haswell node was able to achieve 500 GFLOPs/s, the Skylake node performs
up to 850 GFLOPs/s. A number of factors play an important role when comparing
these numbers:

• The Skylake node has 40 cores compared to the 32 cores of the Haswell node
running at roughly the same frequency.

• The Skylake architecture is an improved successor of the Haswell architecture
providing e.g. a more powerful front-end. This becomes apparent when
directly comparing AVX2 results between Skylake and Haswell.

• The introduction of AVX-512 and the theoretical utilization increase it offers.

Although performance numbers of our skeleton kernels do not scale with the
additional available SIMD width, the overall numbers exhibit a drastically increased
node performance and make the Intel Skylake architecture a desirable hardware
platform for HPC implementations of DG methods.

5.3 Stokes Equations
We will now move to the steady state Stokes equations, adding the complexity of
treating a system of PDEs. The Stokes equations are a linearization of the more
general Navier-Stokes equations which is valid in the low Reynolds number regime.
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Figure 5.9: Performance of the diffusion-reaction equation on Intel Skylake using
AVX-512: We achieve around 30% machine utilization for a full operator application.
Volume integrals perform much better and run at 50% whereas skeleton integrals
only run at 20%.

Again, the full mathematical formulation and implementation in UFL are provided
before presenting performance results for our implementation.

Mathematical Formulation

Both the velocity field u ∈ (V k
h (Ω))3 and the pressure p ∈ V k−1

h are unknowns of
the Stokes equations. The strong formulation is given by

−∆u+∇p = f in Ω (5.6)
∇ · u = 0 in Ω (5.7)

u = g on ΓD (5.8)
∇u n− pn = 0 on ΓN (5.9)

for Dirichlet boundary ΓD ⊂ ∂Ω, ΓD 6= {∅, ∂Ω} and Neumann boundary ΓN =
∂Ω \ ΓD. Again, we omitted physical constants such as viscosity, because they are
not important for our goal of measuring performance.
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Figure 5.10: Speedup of AVX-512 vs. AVX2 for the diffusion-reaction equation on
Intel Skylake. Both results have been measured on the same machine restricting
it to the AVX2 instruction subset for the base numbers. The theoretical speedup
of such computation is 1.83 due to the reduced base frequency issue described in
section 5.1.

The residual function for the DG discretization of this problem is

r(uh, ph,vh, qh) =
∑

T∈Th

∫
T
∇uh : ∇vh − ph(∇ · vh)− (∇ · uh)qh dx

+
∑

F∈Fi
h
∪FD

h

∫
F
−{∇uh}nF · JvhK− JuhK · {vh}nF + γF JuhK · JvhK ds

+
∑

F∈Fi
h
∪FD

h

∫
F
{ph}JvhK · nF + JuhK · nF{qh} ds

+
∑

F∈FD
h

∫
F
g · ∇vhnF − γF (g · vh)− (g · nF )qh ds, (5.10)

where FD
h = Bh∩ΓD is the set of boundary faces with Dirichlet boundary condition.

The penalty term γF is chosen exactly as before for the diffusion-reaction equation.

UFL Implementation

The UFL implementation of the Stokes equations is a good example how UFL’s
property to closely resemble the mathematical formulations is preserved even for
complex systems. We only show those parts here that differ from the diffusion-
reaction equation. Test and trial functions are taken from a suitable product space
which was introduced in section 3.2.1:
V = VectorElement("DG", cell, v_degree)
P = FiniteElement("DG", cell, p_degree)
TH = V * P
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v, q = TestFunctions(TH)
u, p = TrialFunctions(TH)

Finally, we provide the full residual formulation, which closely resembles the discrete
weak formulation from equation 5.10:
r = inner(grad(u), grad(v))*dx \
- p*div(v)*dx \
- q*div(u)*dx \
- inner(avg(grad(u))*n, jump(v))*dS \
+ gamma_int * inner(jump(u), jump(v))*dS \
- inner(avg(grad(v))*n, jump(u))*dS \
+ avg(p)*inner(jump(v), n)*dS \
+ avg(q)*inner(jump(u), n)*dS \
- inner(grad(u)*n, v)*ds \
+ gamma_ext * inner(u-g_v, v)*ds \
- inner(grad(v)*n, u-g_v)*ds \
+ p*inner(v, n)*ds \
+ q*inner(u-g_v, n)*ds

Here, the velocity boundary condition g_v was not further specified as our perfor-
mance measurements are again omitting boundary integrals.

Intel Haswell Results

Performance measurements of the Stokes equations on the Intel Haswell architecture
are presented in figure 5.11. We will start with a discussion of the vectorization
strategies that are selected by the autotuning process for this problem. This is
interesting because a number of trade off decisions are involved. As we do not
need evaluations of ∇p, evalutions of the pressure p cannot be vectorized by a
pure fusion strategy, though the evaluation of p+ and p− in skeleton integrals can
be fused. Vectorization of pressure evaluation therefore depends on the number
of quadrature points: If it exhibits suitable divisibility, a splitting strategy is
applied to the evaluation of pressure. If the number of quadrature points does
not exhibit this divisibility, a non-vectorized implementation is generated. This is
indeed optimal, as artificially increasing the number of quadrature points would
introduce a global cost increase that outweighs the gains of vectorizing the pressure
evaluation. The cost function penalization from equation 4.24 (which is also applied
to autotuning measurements) correctly captures this phenomenon. The evaluation
of ∇v on volume integrals requires a total of nine sum factorization kernels with
triplets sharing the input tensor. There are two routes to follow in vectorizing this
evaluation: Three kernels sharing the same input tensor (e.g. ∂ivj for i = 0, 1, 2)
can be vectorized by fusion ignoring the fourth SIMD lane. On the other hand, the
nine kernels could be realized by a number of vectorized implementations using
splitting-based and hybrid strategies. Again, the strategy selection depends on the
number of quadrature points: For even polynomial degrees we have an odd number
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Figure 5.11: Performance measurements of the Stokes equations on Intel Haswell:
The overall machine utilization is between 20% and 25% whereas the DOF though-
put is slightly increased compared to the diffusion-reaction equation. The given
polynomial degrees are used for the velocity components.

of 1D quadrature points and the padded strategy is used. For odd polynomial
degrees however, a combination of splitting and hybrid strategies is selected. On
facet integrals, the choice of strategy is more straight-forward: As we are using an
axiparallel grid, we only need the partial derivatives of the velocity components in
normal direction. This allows us to always apply a fusion based vectorization of
the form v−i |∂nv

−
i |v+

i |∂nv
+
i .

With the optimal, purely fusion-based strategies from the diffusion-reaction equation
being inapplicable for the Stokes equations, the total machine utilization is decreased
in comparison. We still achieve 20 - 25% of machine utilization though. The DOFs
throughput is slightly increased in comparison to the diffusion-reaction equation
though which can be explained with the fewer FLOPs per DOF executed. This stems
from less FLOPs being executed in the quadrature loop and pressure DOFs requiring
much less FLOPs. Looking at the more fine-grained measurements for volume and
skeleton integrals from figure 5.11, we see that both integral types suffer equally
from the inavailability of optimal strategies.
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Figure 5.12: Performance measurements of the Stokes equations on Intel Skylake:
The machine utilization with the AVX-512 instruction set is around 20%.

Intel Skylake Results

Figure 5.12 shows the measurements for the Stokes equations on the Intel Skylake
architecture. The selected vectorization strategies are similar to the ones in the
Haswell case with an additional splitting factor of two applied. In order to guarantee
the applicability of that strategy, the number of quadrature points needs to be
increased in many cases. This explains that despite a clearly visible utilization
increase compared to figure 5.11, the DOFs throughput does not increase by the
same factor. Interestingly, the performance gap between volume and skeleton
integrals is not as pronounced in figure 5.12 as it was before. This can be explained
with the selected vectorization strategies for volume integrals not achieving the
same utilization as in the diffusion-reaction equation.

5.4 Maxwell’s Equations
Maxwell’s equation in 3D is a hyberbolic conservation law with six conserved
quantities. We will provide a DG discretization for a generic hyperbolic conservation
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law and provide a UFL implementation that separates the implementation of the
conservation law and the implementation of the numerical flux function. This is
similar to an approach pursued lately on top of the FEniCS framework [56]. A
similarly modular implementation of DG methods for hyperbolic conservation laws
was provided as a tutorial for PDELab in [97]. The description of the treatment of
Maxwell’s equations in this section follows the latter.

Mathematical Formulation

Hyperbolic conservation laws are time-dependent first order PDE systems of the
following form:

∂tu(x, t) +∇ · F (u(x, t),x, t) = f(u(x, t),x, t) ∀x ∈ Ω× Σ (5.11)
u(x, t) = u0(x) t = 0 (5.12)

Here, Ω is the spatial domain, Σ = [0, T ] is the temporal interval and u(x, t) is
the solution. The function F : Rm × Ω × Σ → Rm×d is called flux function and
uniquely describes the PDE problem in the absence of source terms f . Discretizing
equation 5.11 with a discontinuous function space and applying integration by
parts, we end up with the following residual evaluation:

rh(uh,vh) =−
∑

T∈Th

∫
T
F (uh(x, t),x, t) : ∇vh dx (5.13)

+
∑

F∈Fh

∫
F

Ψ(u+
h (x, t),u−h (x, t)) · JvhK ds (5.14)

+
∑

F∈Bh

∫
F

Ψ(g(x, t),uh(x, t)) · JvhK ds (5.15)

Here, Ψ is a numerical flux function that provides the evaluation of the flux on
the two-valued interface. For scalar problems, the simplest possible flux function
is an upwind function, which selects either u+ or u− depending on the sign of
the flux function. With Maxwell’s equations being a system of PDEs, we apply a
generalization of upwinding called flux vector splitting. This method relies on the
system being linear and the reformulation of the flux function in terms of a matrix
B:

F (u(x, t),x, t) · n = B(n)u(x, t) (5.16)

From the hyperbolicity of the system 5.11 follows that B(n) is real diagonalizable
with eigenvalues λi. The corresponding eigenvectors are the columns of a matrix
R, such that B = RDR−1. Multiplication with R−1 transforms a state u into
characteristic variables, where the flux function is diagonal and upwinding can
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be applied for each component individually. We express the whole splitting in a
condensed matrix notation:

D+ = diag (max{0, λ1}, . . . ,max{0, λm})
D− = diag (min{0, λ1}, . . . ,min{0, λm})
B+ = RD+R−1

B− = RD−R−1

Ψ(n,u+,u−) = B+(n)u− +B−(n)u+ (5.17)

UFL Implementation

Formulating the discretization of Maxwell’s equations directly in UFL can be easily
done. For the sake of composability of the resulting implementation, we will
split it into three main building blocks: A generic DG discretization of hyperbolic
conservation laws in UFL, a description of the conservation law and a description
of the numerical flux function. Introducing interfaces for these blocks allows reuse
of these components in a composable way.
A description of a hyperbolic conservation law needs to provide the following
information: The number of conserved quantities in the system, the flux function
F and a boundary condition. On top of this numerical flux functions might require
additional information, such as eigenvalues and eigenvectors of the matrix B(n)
from equation 5.16. The resulting interface and its implementation for Maxwell’s
equation look as follows:
class MaxwellProblem(GenericHyperbolicProblem):

@property
def components(self):

return 6

def flux(self, state):
E0, E1, E2, B0, B1, B2 = state
return as_matrix([[0., -B2, B1 ],

[B2, 0., -B0],
[-B1, B0, 0. ],
[0., E2, -E1],
[-E2, 0., E0 ],
[E1, -E0, 0. ]])

def eigenvalues(self, state):
return (0.0, 0.0, -1.0, -1.0, 1.0, 1.0)

def eigenvectors(self, state):
n = FacetNormal(self.cell)('+')
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a = [conditional(abs(n[2]) < 0.5, n[0]*n[2], n[0]*n[1] ),
conditional(abs(n[2]) < 0.5, n[1]*n[2], n[1]*n[1]-1 ),
conditional(abs(n[2]) < 0.5, n[2]*n[2]-1, n[1]*n[2] )]

b = [conditional(abs(n[2]) < 0.5, -n[1], n[2] ),
conditional(abs(n[2]) < 0.5, n[0], 0. ),
conditional(abs(n[2]) < 0.5, 0., -n[0] )]

return as_matrix(
[[n[0], 0, b[0], a[0], a[0], -b[0]],
[n[1], 0, b[1], a[1], a[1], -b[1]],
[n[2], 0, b[2], a[2], a[2], -b[2]],
[0, n[0], a[0], -b[0], b[0], a[0]],
[0, n[1], a[1], -b[1], b[1], a[1]],
[0, n[2], a[2], -b[2], b[2], a[2]]])

def boundary_state(self, state):
return (0.0,) * self.components

For the sake of simplicity, this example assumes the physical constants present in
Maxwell’s equation to be 1. This does not notably affect any performance numbers
presented in this section.
Numerical flux functions are implemented as Python callables which accept the
outer and inner state as their only arguments. For Maxwell’s equations, we
implement the flux vector splitting from equation 5.17. With the problem class
and the flux function being defined, the generic spatial DG discretization can be
obtained in the following way:
def generic_hyperbolic_operator(problem, numerical_flux, degree=1):

V = FiniteElement("DG", problem.cell, degree)
MV = MixedElement(*tuple(V for i in range(problem.components)))

u = TrialFunction(MV)
v = TestFunction(MV)

state = split(u)
outer_state = tuple(s('+') for s in state)
inner_state = tuple(s('-') for s in state)
boundary_state = problem.boundary_state(state)

r = -1. * inner(problem.flux(state), grad(v))*dx \
+ inner(numerical_flux(outer_state, inner_state), jump(v))*dS \
+ inner(numerical_flux(boundary_state, state), v)*ds

return r
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Figure 5.13: Performance results for 3D Maxwells equations on the Intel Haswell
architecture: The upper plots show GFLOPs/s and MDOF/s for a full residual
evaluation. The lower plots split these results into volume and skeleton integrals.
20% of theoretical machine peak are reached for this system of six components.

A UFL form for the necessary mass operators can easily defined as u*v*dx.

Intel Haswell Results

We will now present the performance result of Maxwells equations in 3D on the
Intel Haswell architecture. As the time discretization of hyperbolic systems is
often done with explicit Ordinary Differential Equation (ODE) solvers, we mea-
sure evaluation of the residual instead of matrix-free applications of the jacobian.
Figure 5.13 summarizes the results for varying polynomial degree. Across a full
residual evaluation, we can achieve roughly 20% of the machine’s theoretical peak
performance and sustain a total of roughly 1 GDOF/s.

Comparing these results to the performance numbers achieved for the diffusion-
reaction equation on the same machine from figure 5.1 we see that while the
machine utilization is much lower (approximately half), the DOF thoughput is much
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higher (approximately doubled). The following two paragraphs will describe two
aspects that allow explanation of this discrepancy.
The integrals in the generic DG problem from equation 5.11 depend only on the
state u and not on its gradient, so all sum factorization kernels in step one of
algorithm 2.3 stem from evaluation of components of u. The fact that we did
only allow a maximum of two different input kernels when fusing sum factorization
kernels into SIMD batches rules out many fusion-based vectorization strategies.
Then again, these strategies worked optimally for the diffusion-reaction equation
as shown in figure 5.3. This partly explains the reduced machine utilization
observed in figure 5.13. In future work, this could be remedied by allowing fusion
of sum factorization kernels with four different input tensors. Fused kernels of this
kind would utilize SIMD gather instructions (instead of SIMD broadcasts) to load
data in step 1 of algorithm 2.3 and extract scalar values from SIMD lanes in the
accumulation step.
With the Maxwell implementation achieving roughly twice the throughput while
having roughly half the machine utilization, it is obvious that it performs only a
quarter of the FLOPs compared to the diffusion-reaction equation. Partly, this can
be credited to the reduced number of sum factorization kernels described before
due to the absence of gradients in the equations (note the volume integral still
depends on ∇v). However, there is another important aspect that reduces the
number of executed FLOPs: As the matrices B(n) and R(n) only depend on the
normal vector and normal vectors are explicitly known at code generation time
in the axiparallel sum factorization setting, the inverse matrix R−1(n) can be
calculated at code generation time. As a consequence the evaluation of the numerical
flux function from equation 5.17 becomes a linear combination of components of
u. Furthermore, the special structure of the Maxwell problem results in those
fluxes only depending on four of the six components of u. With this being code
generation time information, the other components never need to be evaluated.
This minimization of executed FLOPs is a genuine advantage of the code generation
approach which is infeasible to implement in C++ implementations like [97]. Those
codes necessarily need to assemble, invert and apply the 6 × 6 matrix R(n) in
each skeleton integral. The code generation toolchain can also implement such
procedure, if code generation time evaluation is impossible, e.g. in the case of
spatially varying material properties that affect B(n).
With the fusion based approach being only partly applicable even on AVX2, moving
to AVX-512 will exhibit even less machine utilization with the currently implemented
vectorization strategies. We conclude that scaling Maxwells equations beyond AVX2
requires inclusion of additional strategies into our search space. One such strategy
is the inclusion of fusions with four different input tensors that can be implemented
by vector gather instructions. Another class of vectorization strategies worth
exploring is cross-element vectorization and hybrid strategies of our approach and
cross-element vectorization.
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Closing Remarks

6.1 Summary

Throughout this thesis and its performance experiments we have seen that DG
methods can be a good fit to achieve high performance on HPC systems. This
especially holds true for matrix-free evaluations of the DG operator that exploit the
tensor product structure of basis functions and quadrature formulae through sum
factorization. These algorithms are able to perform both finite element assembly
and the necessary sparse linear algebra operations in the FLOP-bound regime. The
availability of such algorithms is an important fact for the HPC community.

Regarding the efficient implementation of these methods on modern architectures,
we observe that many of the programmability issues with heterogeneous computing
environments even apply to different CPU generations. This is due to a lack of
toolchain support for codes that explicitly employ SIMD vectorization. We therefore
advocate the use of generative programming to achieve performance portability
across CPU instruction sets with increasing SIMD width. This allows flexibility in
how to vectorize and removes the burden of writing hardware-specific code from
the user.

This thesis has established an HPC-enabled toolchain that allows to generate code
for finite element integration kernels. It does so by leveraging existing projects
such as the UFL DSL for finite element problems and the loopy IR that allows us to
apply performance-oriented code transformation. The same IR is used to express
sum factorization kernels and generate code for them. We embed this toolchain
into the user workflow of DUNE, focussing on the generation of innermost loops in
the finite element integration kernels.
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Furthermore, this thesis has provided a new class of SIMD vectorization strategies
that work on batches of subkernels within an integration kernel. We have studied
several variants whose applicability relies on features of the mathematical model,
such as the occurence of specific terms in the PDE or the number of quadrature points
used for integration. Embedding of the vectorization strategy selection algorithm
into the code generator allows to inspect the PDE problem to find suitable variants.
From these, an autotuning approach selects the best variant by running a set
of micro benchmarks at code generation time. The definition of performance
optimization search spaces and their exploration at code generation time allows a
separation of concern between performance engineers and computational scientists.
We have shown performance measurements of our approach for the diffusion-reaction
equation, the Stokes equations and Maxwell’s equations. For a full application of
the DG operator in the matrix-free setting, a machine utilization of 40% could be
reached on the Intel Haswell architecture. For volume integrals, the utilization
even reaches 60%, while skeleton integrals run at rougly 35% of the machine’s
theoretical peak. On the Intel Skylake architecture with the AVX-512 instruction
set, the differences between integral types are even more pronounced: Volume
integrals run at 50% utilization and almost show the expected speed-up compared
to AVX2 for sufficiently high polynomial degrees. Skeleton integrals however cannot
achieve such speed-ups and limit the performance of the overall algorithm.

6.2 Outlook
The vectorization strategy search space introduced in section 4 could be improved
by considering additional strategies. We have already seen the necessity of fusion
strategies with an arbitrary number of input tensors in the case of Maxwell’s
equations. Furthermore, inclusion of cross-element vectorization strategies would
be very interesting: This would allow rigorous comparison of our strategies with
those developed by e.g. [76] and [109], which is currently not possible because no
code base supports both types of vectorization strategies. Integrating cross-element
vectorization into our framework would also open up space for interesting hybrid
strategies, where e.g. two volume integrals are batched together such that the lower
and upper half of a SIMD register calculate the contributions for one cell.
With our code generator’s vectorization capabilities being implemented indepen-
dently of the SIMD width, it will be very interesting to follow future SIMD devel-
opments. If the trend of increasing SIMD width continues, the above mentioned
extension of the search space will be necessary. If future CPU generations focus on
improving cross-lane manipulation of SIMD registers such as horizontal addition,
our strategies would benefit significantly.
We have restricted the performance measurements in this thesis to structured
grids. However, work on doing the same on unstructured grids has already been
started. This involves two major challenges: The multilinear (or even higher order)
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geometry mappings need to be evaluated using sum factorization techniques in
order to preserve the overall algorithmic complexity, much like we mentioned for
the semistructured geometries in section 4.4.4. On the other hand, the embedding
of the reference element of the facet into the cell reference element requires special
care in the code generator for fully unstructured grids.
Our code generator and its HPC-enabled IR have also seen use in a different area of
HPC: In order to apply SIMD vectorization to low order CG finite element methods,
virtually refined volume integral kernels are generated. Within these kernels,
explicit SIMD vectorization is employed through loopy transformations.
So far, the autotuning procedure has been restricted to the selection of vectorization
strategies from the search space defined in section 4. However, many other search
spaces are imaginable. We already mentioned some transformation opportunities
for sum factorization kernels such as loop reordering and loop tiling in section 4.4.3.
The code generation approach is a very good fit to introduce such search spaces.
Finally, we mention that although the introduction of code generation into the DUNE
framework was motivated by the need for HPC implementations, the implemented
toolchain has more benefits: Robust code generation for complex PDE models
greatly reduces development time for both experienced programmers and beginners.
This adds an exciting new facet to DUNE’s rich feature set.
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Hardware Configurations

We used two compute nodes for the performance measurements in section 5. We
now give details about the hardware and its configuration. The frequencies used to
calculate the theoretical peak performance are those that we measured during the
execution of SIMD-heavy workloads. These frequencies match the minimum of the
CPU base frequency and the all core turbo frequency given in [31].

A.1 Intel Haswell
• Dual-socket main board
• Intel Xeon processor E5-2698v3

– 2x 16 cores
– Turbo mode switched off
– Base frequency: 2.3 GHz, 1.9 GHz on AVX2-heavy loads
– Observed frequency for AVX2-heavy loads: 2.3 GHz
– Theoretical full node double precision peak performance: 1.17 TFLOPs/s
– TDP: 270 W

• 128 GB DDR4 RAM, 2133 MHz

A.2 Intel Skylake
• Dual-socket main board
• 2x Intel Xeon Gold 6148

– 2x 20 cores
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– Turbo mode switched off
– Base frequency: 2.4 GHz, 2.0 GHz on AVX2-heavy loads, 1.6 GHz on

AVX-512-heavy loads
– Observed frequency for AVX2-heavy loads: 2.4 GHz
– Observed frequency for AVX-512-heavy loads: 2.2 GHz
– Theoretical full node double precision peak performance: 2.82 TFLOPs/s
– TDP: 300 W

• 384 GB DDR4 RAM, 2666 MHz
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Getting the Software

This thesis documents the design and implementation of several software projects.
In this appendix, we provide details about how the source code of these software
projects can be obtained. We distinguish two intentions the reader might have in
doing so: Firstly, we provide an exact description of the DUNE software stack at
the time of this writing. We provide this in order to allow the reader to reproduce
any results of this thesis. Secondly, we explain how the reader can obtain the latest
version of the software contributions of this thesis. In both cases, the software is
distributed as DUNE modules and the reader should familiarize themselves with
the DUNE build system which is documented on the DUNE website [111].

B.1 Obtaining dune-codegen
The dune-codegen module [62] is the main project that provides the form compiler
that translates UFL into C++ code that can be used with DUNE. dune-codegen
depends on the following other DUNE modules:

• dune-pdelab and its dependencies which include all the core functionality
of DUNE. PDELab provides all the components of the simulation workflow
which are not covered by the code generator. PDELab can be obtained from
the DUNE GitLab server [96].

• dune-opcounter provides the C++ floating point type that automatically
counts FLOPs. It also provides an interface compatible, operation counting
version of the vector class library from section 3.2.3. It is also available from
the DUNE GitLab server [66].

• dune-testtools [65] provides the build system integration for system tests.
The systematic covery of functionality through these tests is essential for the
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software quality of dune-codegen. dune-testtools is available from the DUNE
GitLab as well [64].

• dune-alugrid [6] is used for testing discretizations on simplicial meshes.

Beyond these DUNE dependencies, a Python interpreter (preferrably version 3.6
or higher) with the Python packages virtualenv (or venv) and pip installed is
required.
In contrast to other DUNE modules, dune-codegen makes use of git submodules
to bundle upstream dependencies such as necessary Python projects. Therefore,
dune-codegen needs to be cloned recursively:
git clone --recursive \

https://gitlab.dune-project.org/extensions/dune-codegen.git

Currently, this clones the master branch of dune-codegen, but starting with the
upcoming 2.7 release of DUNE, release branches that stay compatible with the
release branches of other DUNE modules will become available. As dune-codegen
currently still relies on patching its Python dependencies in some places, this
additional step is necessary:
cd dune-codegen
./patches/apply_patches.sh

The stack of DUNE modules is best built with the dunecontrol tool provided by
dune-common. In order to enable the execution of Python code under control of
CMake, the following two options should be given to the CMake process:
-DDUNE_PYTHON_VIRTUALENV_SETUP=1
-DDUNE_PYTHON_ALLOW_GET_PIP=1

This will allow the creation of a virtual environment that is shared between all
DUNE modules that contain Python code. If the user-provided Python interpreter
is from a virtual environment itself, the environment needs to be activated before
running CMake. The build directories of these DUNE modules contains an activate
script which enables DUNE’s virtual environment, e.g. like this:
source activate
which python
deactivate

However, the intended user workflow does not require users to explicitly activate
the virtual environment. It can be useful however to do so in some cases, e.g. to
get a list of configuration options for the code generation process:
source activate
show_options

Users should typically write their own DUNE module and list dune-codegen as a
dependency of the module. Within such a user module, the code generator is
controlled through the CMake functions described in section 3.4.2.
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B.2 Reproducing this thesis
The stack of DUNE modules that was used for the results in this thesis is archived
in [60]. The reference provides the exact state of all DUNE modules that were in
use as of the writing of this thesis. Once checked out, the software can be built
using the same instructions as above.
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