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Numerical simulations can help solve complex problems. Most of these algorithms are massively parallel

and thus good candidates for FPGA acceleration thanks to spatial parallelism. Modern FPGA devices can

leverage high-bandwidth memory technologies, but when applications are memory-bound designers must

craft advanced communication and memory architectures for efficient data movement and on-chip storage.

This development process requires hardware design skills that are uncommon in domain-specific experts. In

this paper, we propose an automated tool flow from a domain-specific language (DSL) for tensor expressions

to generate massively-parallel accelerators on HBM-equipped FPGAs. Designers can use this flow to integrate

and evaluate various compiler or hardware optimizations. We use computational fluid dynamics (CFD) as a

paradigmatic example. Our flow starts from the high-level specification of tensor operations and combines an

MLIR-based compiler with an in-house hardware generation flow to generate systems with parallel accelerators

and a specialized memory architecture that moves data efficiently, aiming at fully exploiting the available

CPU-FPGA bandwidth. We simulated applications with millions of elements, achieving up to 103 GFLOPS

with one compute unit and custom precision when targeting a Xilinx Alveo U280. Our FPGA implementation

is up to 25× more energy efficient than expert-crafted Intel CPU implementations.

1 INTRODUCTION
Numerical simulations are computationally-intensive applications that are used to solve many

complex problems in industry [47]. These data-intensive applications are massively parallel since

they use a combination of tensor operators to compute smaller and independent contributions

that operate on different data to compose the final result [56]. In this context, high-performance
computing (HPC) is a powerful tool to reduce the costs of testing while giving the possibility

of exploring more solutions. HPC solutions can provide high-resolution physics results for many

domains, including molecular dynamics [10] or weather simulations [52].

In this context, FPGA devices are increasingly used to achieve energy-efficient high performance

by exploiting spatial parallelism with specialized accelerators. They are thus good candidates for
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Fig. 1. Our flow can help bridge the gap between domain and FPGA experts by providing a framework to
match software and hardware requirements.

accelerating numerical simulations. Embedded FPGA devices can provide parallel architectures that

overcome embedded processors, but are limited in terms of resources and memory bandwidth [16].

So, they cannot complete with large HPC data centres. Instead, modern FPGA data center cards offer

advanced high-bandwidth memory (HBM) architectures with multiple high-speed memory

channels that enable efficient and parallel data transfers between the CPU and the reconfigurable

logic [63, 26]. HBM is a modern memory technology that can offer a bandwidth of hundreds of

Gigabytes per second [25]. For example, both Intel and Xilinx offer HBM solutions in their FPGA

devices: Intel Stratix 10 MX FPGAs include HBM2 with 16GB of data that can be accessed up

to 409 GB/s, while Xilinx Alveo FPGA cards offer 8GB of HBM2 at 460 GB/s bandwidth. Such

platforms enable the acceleration of memory-bound applications. Additionally, designers can

use high-level synthesis (HLS) tools to raise the abstraction level of hardware design [38, 30].

However, designing efficient architectures for such systems is complex as it requires a concurrent

optimization of communication, computation, and storage [40]. These optimizations may be limited

by platform constraints, like the physical architecture, which can make the routing stages more

difficult, or the number of physical resources, which can limit the number of parallel executions

(see Section 2.3 for further details on these kinds of challenges).

Application and hardware developers face orthogonal challenges in fully exploiting HBM archi-

tectures [12]. In Figure 1, we highlight some key problems addressed in this work on both sides,

which create a gap between the experts in terms of:

• productivity: application designers usually have limited knowledge on hardware design and

cannot create efficient hardware architectures to fully exploit the available FPGA technology.

For this reason, they prefer to use DSL descriptions to abstract the semantics of their operators;

• performance: coordinating data transfers and execution requires an intimate knowledge of

both the application and the target platform that is uncommon in many developers In this case,

fine-tuned hardware descriptions are required to overcome these challenges.

On the architecture side, HBM poses several challenges. They have many parallel memory channels,

but the overall number is limited (up to 32 in modern Xilinx Alveo cards). The communication

cost between host and device memories is expensive: large CPU-FPGA data transfers can be much

longer than the computation time of the kernel offloaded to the FPGA fabric.

In this paper we look into computational kernels that are composed of tensor operations, using

CFD as a paradigmatic example. Such tensor expressions are common across domains, including fluid

dynamics, quantum chemistry, deep learning, image processing and data analytics [44], and put high

pressure on FPGA resources (especially DSP and BRAM). These resources are finite and they can

limit the deployment of parallel kernels. The designer must carefully trade-off kernel optimizations

to achieve the best target architecture. In addition, the number of possible implementations of tensor

expressions (see [6] for a distribution of the speedup for simple loop programs) only exacerbates

this problem. Finally, accelerators demand efficient data movement to exchange data with the

off-chip memory, but the designer needs to exploit the available bandwidth. Optimizing HLS code
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to maximize the performance is thus a complex task that requires the modeling and exploration of

different solutions at both software and hardware levels [54].

To address these challenges and support the designer in the optimization process, we propose a

DSL-to-bitstream workflow composed of: (1) an MLIR-based DSL compiler that abstracts low-
level specification details (for enhancing designer’s productivity by identifying the most suitable

HLS-ready code to exploit hardware parallelism) and generates HLS-optimized codes for the kernels

that enable us to deploy multiple hardware modules and to transfer the data more efficiently; and

(2) an automated HLS-based flow that exploits this information to design architectures that

can leverage the HBM subsystem for efficient data transfers (for enhancing performance results).

Our workflow allows application designers to describe their applications in a high-level,
domain-specific, and platform-agnostic language and use an automated toolchain to create
the corresponding system architecture that exploits the intrinsic parallelism and the
characteristics of HBM systems. The designer is able to select and apply various optimizations,

enabling a non-FPGA-expert to evaluate several alternatives. This paper extends the work presented

in [16] to target FPGA data center cards with HBM architectures. Our novel flow is based on multi-

level intermediate representation (MLIR) [53] to progressively lower the specification without

losing semantic information. The rest of the flow creates the memory architecture (in C++) around

the accelerator kernels, leveraging commercial HLS to generate the hardware description and, in

turn, the FPGA bitstreams. Our main contributions are:

• we present a compiler infrastructure based on MLIR for a DSL for tensor operations to

automatically generate HLS-ready code for the computational kernels;

• we describe an HBM-oriented hardware generation flow that interfaces with commercial

HLS to generate an optimized system architecture;

• we show how our flow can help an application designer in optimizing the Inverse Helmholtz
operator, a key element of CFD simulations. This complex operator subsumes other widely-used

tensor operators, like tensor contraction and tensor-based interpolation.

With our flow, the designer can generate, evaluate, and compare several alternatives, for example,

trading off accuracy of the results and performance. Our analysis also provides useful guidelines

for designers to understand what to do (or not to do) when implementing similar tensor-based

applications on HBM-based systems, especially when aiming at scaling up the computation with

multiple computing units that execute in parallel.

2 BACKGROUND
In this section, we present the main concepts at the basis of our work. We first introduce our target

application (Section 2.1), highlighting that it is representative of other similar numerical applications.

We then describe the characteristics and the challenges of our target platform (Section 2.2 and

Section 2.3, respectively). We conclude with an analysis of the related work (Section 2.5).

2.1 CFDlang DSL for Spectral Element Methods
In numerical mathematics, spectral element methods (SEM) are common in solving partial differen-

tial equations (PDEs), like the Navier-Stokes equations [35], which cannot be solved analytically.

SEM approximates the solution by transforming the unknown physical quantities of the problem

into spectral coefficients. To reduce the numerical complexity, the simulated volume is divided

into 𝑁𝑒𝑞 smaller elements. To further reduce the error, SEM uses an approximation based on

polynomials of a higher degree (𝑝 > 1). The solution is expressed as a linear system of equations

which can be solved locally for each element. An element solution 𝑒 can be represented in three

dimensions as a tensor 𝑣𝑖 𝑗𝑘,𝑒 with 𝑖, 𝑗, 𝑘 ∈ {0, . . . , 𝑝}. Often, the polynomial degree 𝑝 is the same
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1 var input S : [11 11]
2 var input D : [11 11 11]
3 var input u : [11 11 11]
4 var output v : [11 11 11]
5 var t : [11 11 11]
6 var r : [11 11 11]
7 t = S#S#S#u . [[1 6][3 7][5 8]]
8 r = D * t
9 v = S#S#S#r . [[0 6][2 7][4 8]]

Fig. 2. DSL code for the Inverse Helmholtz operator (𝑝 = 11).

for all spatial dimensions. All elements operate on independent tensors and can be elaborated in

parallel.

In our example, we focus on solving the Helmholtz equation _𝑢 − ∇2𝑢 = 𝑓 for quadrilateral

elements. The Inverse Helmholtz operator subsumes simpler operators (e.g., interpolation) that are

similarly relevant in CFD simulations [23]. The operator can be formulated as:

𝑡𝑖 𝑗𝑘,𝑒 =

𝑝∑︁
𝑙=0

𝑝∑︁
𝑚=0

𝑝∑︁
𝑛=0

𝑆𝑇
𝑙𝑖
· 𝑆𝑇𝑚𝑗 · 𝑆𝑇𝑛𝑘 · 𝑢𝑙𝑚𝑛,𝑒 = (𝑆 ⊗ 𝑆 ⊗ 𝑆 ⊗ 𝑢𝑒 )𝑖𝑙 𝑗𝑚𝑘𝑛

𝑙𝑚𝑛
(1a)

𝑟𝑖 𝑗𝑘,𝑒 = 𝐷𝑖 𝑗𝑘,𝑒 · 𝑡𝑖 𝑗𝑘,𝑒 (1b)

𝑣𝑖 𝑗𝑘,𝑒 =

𝑝∑︁
𝑙=0

𝑝∑︁
𝑚=0

𝑝∑︁
𝑛=0

𝑆𝑙𝑖 · 𝑆𝑚𝑗 · 𝑆𝑛𝑘 · 𝑟𝑙𝑚𝑛,𝑒 = (𝑆 ⊗ 𝑆 ⊗ 𝑆 ⊗ 𝑟𝑒 )𝑙𝑖𝑚𝑗𝑛𝑘
𝑙𝑚𝑛

(1c)

The CFDlang DSL for tensor operations [44] enables us to concisely encode these kinds of

operators. We have chosen this particular DSL because of its excellent domain capture and limited

optimization scope. CFDlang is target-agnostic and its user interface is close to the mathematical

problem specification, reducing the programming burden on application developers. Figure 2 shows

a CFDlang program implementing the Inverse Helmholtz operator, where lines 7-9 are the direct

transcriptions of the expressions (1a), (1b) and (1c). The CFDlang description does not define exact

implementation details, allowing the compiler to optimize the operations for a given target. Another

implicit part of the given DSL program is that it is assumed to be applied to all the independent

elements in an implicit outer “element loop”.

From the application developer viewpoint, once the kernel is specified in CFDlang, it can be

integrated into larger Fortran or C++ code applications via their respective foreign function interface

(FFI) mechanisms where we can embed also the FPGA runtime library calls.

Previous work found that typical software implementations achieve performances between

1 and 16 GFLOPS based on the polynomial degree 𝑝 , with an average power consumption of at

least 100W [44]. GPUs, in turn, do not feature as good a scaling behavior for these kernels [24].

2.2 HBM-based Platform Description
HBM is a novel memory architecture that enables high-performance and adaptability for memory-

bound applications [17]. HBM is a 3D-stacked DRAM that offers high-bandwidth and energy-

efficient data movements. The logic die is connected to the HBM die(s) with through-silicon

vias (TSVs). The rest of this work focuses on the Xilinx Alveo U280 data center accelerator

card. However, other HBM-based FPGA devices (like the Intel Stratix 10 MX) are conceptually

similar [12]. The Alveo U280 is built on the Xilinx 16nm UltraScale+ architecture and offers a rich

set of memory solutions, as shown in Figure 3. The Alveo U280 card features the XCU280 FPGA,

which combines three super logic regions (SLRs). An SLR is a physical section of the FPGA with

a specific amount of resources and connections, as shown in Table 1. SLR0 integrates an HBM

controller to interface with the HBM2 subsystem through 32 pseudo-channels (PCs) each with
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Fig. 3. Architecture of the XCU280 device.

Table 1. Alveo U280 SLR resources.

Resources SLR0 SLR1 SLR2

HBM 32×256MB - -

DDR4 16GB 16GB -

PLRAM 2×4MB 2×4MB 2×4MB

CLB LUT 369K 333K 367K

CLB Register 746K 675K 729K

Block RAM tile 507 468 512

UltraRAM 320 320 320

DSP 2,733 2,877 2,880

direct access to 256 MB of storage (8 GB in total). Each 256-bit PC operates at 450 MHz, yielding a

maximum bandwidth of 14.4 GB/s. The full system can thus achieve a theoretical bandwidth of

460.8 GB/s. SLR0 also connects to the host via 16 lanes of the PCI Express (PCI-e) interface. SLR0

and SLR1 each connect to 16 GB of DDR4 each. Finally, each region has up to 8 MB of PLRAM for

fast access to small data sets. In the following, we will use the term global memory for the set

of memories available on the board. The host must transfer data into the device global memory

before they can be accessed by the FPGA logic.

The target system for the Alveo U280 is composed of multiple compute units (CUs). Each CU

is a user-defined hardware module that can be attached to any of the PCs through independent

AXI interfaces, while the built-in HBM controller and switch have access to all physical channels.

The CU can be described in C++ and synthesized with HLS or specified directly in RTL. Multiple

CUs allow parallel execution but must be connected to different HBM channels. The system
configuration file describes the connections between the CU ports and the HBM channels. The

required logic is automatically generated during system synthesis.

Xilinx offers a unified software platform, called Vitis, to develop FPGA applications. Vitis

includes a rich set of hardware-accelerated open-source libraries optimized for Xilinx FPGA and the

Xilinx Runtime library (XRT) to facilitate communication between the host application (running

on the host CPU) and the accelerator deployed on the reconfigurable portion of the card, which

is connected via PCI-Express. It also includes user-space libraries and APIs, kernel drivers, and

board utilities that can be used to measure performance and monitor power consumption. In this

work, we aim at automating the generation of CU descriptions and the associated configuration

file directly on top of the existing Xilinx libraries.

2.3 Challenges for Efficient HBM-Optimized Designs
In modern FPGA data center cards like the Xilinx Alveo U280, DDR4 memory is excellent for having

access to large data sets with modest latency, but the transfer bandwidth is limited to 36 GB/s and

no more than two parallel accesses [22]. Conversely, HBM has slightly higher latency, but it can

reach a much higher theoretical bandwidth (460.8 GB/s) when fully using all its 32 PCs [12, 50].

HBM-based architectures are becoming popular for memory-bound applications [26, 7]. They have

been used for convolutional neural networks, graph analytics, or weather-prediction [60, 33, 48, 51].

These platforms also feature PLRAM that can be used for small amounts of frequently-accessed

data. In the case of the Alveo U280, the designer can configure these connections in the system

configuration file. However, several factors can affect the performance of the resulting system.

Challenge 1: CPU-Host Communication Cost. Moving data across the PCI-e interface to the

global memory has high cost compared to the data access from the logic regions to the global

memory. So, such movements must be optimized to reduce their latency. First, the designers must

move enough data to perform significant computation, for example by operating on multiple
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elements in sequence before sending back the results. In many cases, the kernel needs to read the

same data multiple times. For example, the Inverse Helmholtz operator must read matrix S several
times during the two tensor contractions. To avoid multiple global memory accesses to the same

data, designers can use internal buffers that gather enough data.

Challenge 2: Read/Write Burst Transactions. Vitis can automatically infer the size of data

transfers to create more efficient burst transactions. However, frequently switching between read

and write transactions is inefficient due to memory controller timing parameters. So, transactions

should be ordered to maximize the data movement in one direction before switching to move data

in the other direction. The alternative is to partition reads and writes into separate HBM channels,

at the cost of increasing the number of channels required for each CU.

Challenge 3: Full Bandwidth Utilization. The AXI interfaces to the HBM channels can be

configured with wider data busses. For example, the designer can use a bus width of 256 bits running

at 450 MHz or even 512 bits running at 225 MHz. This allows the CU to exchange more data in

each clock cycles, reducing the read/write cost from/to the HBM channels. For example, when

configuring the 32 parallel HBM channels with a bus width of 256 bits, the potential bandwidth

between the CPU and the FPGA is about 460 GB/s at 450 MHz. However, such data must be

processed efficiently and in parallel to avoid performance bottlenecks [26].

Challenge 4: HBM-Data Allocation. To avoid congestion in the switch, it is important to

partition the data into the different HBM memory regions such that each CU uses as few channels

as possible, and shares these channels with as few other CUs as possible. Otherwise, the designer

needs to introduce an efficient crossbar to mitigate congestion [11].

Challenge 5: Synthesis-Related Issues. FPGA devices include hard macros like DSP and BRAM

for efficient computation and storage, respectively. However, the physical location of these FPGA

resources can affect routing. Also, the XCU280 FPGA, which is the device at the basis of the Alveo

U280, is partitioned into three SLRs, but only SLR0 is connected to the HBM channels (cf. Section 2.2).

When the CUs cannot fit into a single SLR, they are automatically split over multiple SLRs using

special resources called super long line (SLL) routes. These resources allow routing between CUs

in any SLR, enabling access to all memory resources, but they introduce performance overhead. So,

if a CU requires access to the HBM, it should be allocated in SLR0. Also, hardware modules that

access multiple HBM channels should be close together to reduce wirelength.

2.4 MLIR
MLIR [32] is a recent compiler infrastructure that allows defining custom abstractions and high-level

transformations. It has received considerable traction as a framework to develop domain-specific

compilers for heterogeneous systems, especially for machine learning frameworks. MLIR is in itself

not a fixed intermediate representation (IR), but an infrastructure with a central plug-in mechanism

to extend the vocabulary of the IR by means of dialects. A dialect implements an intermediate

abstraction as a set of operations, types, and attributes. Examples of prominent dialects include

linalg for linear algebra operations, affine for nested loop programs, and the llvm dialect which
enables a seamless transition into the LLVM compiler framework at the lowest level of abstraction.

Custom dialects allow compiler designers to develop analyses and transformations at the right level

of abstraction. Dialects can be integrated into larger language stacks, fostering reuse of abstractions

and code transformations. A typical way of integrating a dialect is by means of lowering, where
a more abstract dialect is converted into a more concrete one through specific transformations.

Arguably the most complete flow built on top of MLIR to date is presented in [58], where authors

describe how MLIR allows for a decentralized and composable compiler.

In this paper we leverage MLIR to create a composable and reusable domain-specific com-

piler. We implement the abstractions for tensors described in Section 2.1 and propose a lowering
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pipeline that integrates with existing dialects in MLIR, while exposing profitable transformations

for HBM-optimized designs. We also show how hardware-specific abstractions, e.g., for number

representations, are integrated into the compilation flow.

2.5 Related Work
As FPGA devices are entering into data centers, HBM architectures are becoming extremely popular

to accelerate a variety of data-intensive applications [25]. Benchmarking these architectures defined

that HBM provides higher bandwidth but also higher access latency than traditional DDR [60, 22, 36,

34]. Instead, comparing FPGA performance with both CPUs and GPUs in HPC workloads concluded

that there is potential in this technology. They also point out that although FPGAs struggle to

compete in absolute terms with GPUs, they achieve much greater energy efficiency [7, 39, 28]. [17]

and [11] argue that one of the main problems in FPGA is the absence of a comprehensive memory

hierarchy, like the one in CPUs. For this reason, they propose two different custom crossbar solutions

that efficiently access the HBM and create an additional memory layer using the BRAMs available

inside the FPGA. However, these solutions restrict the amount of BRAMs available to implement

the user’s application and they do not fully exploit the FPGA pipeline parallelism. Other works

like [21, 12, 51] define a series of guidelines to achieve high performance. Specifically, the designer

must always instantiate the maximum number of computing units to exploit HBM parallelism, use

256-bit packets to maximize the bandwidth of the HBM AXI port, exploit the algorithm parallelism

through hardware pipelining, and finally execute the task in a dataflow manner [26]. However,

none of these works evaluated these optimizations together, along with the effects when scaling the

number of computing units. None of the papers presented so far defines methodologies at the HLS

level that can be applied to design to improve its performance, especially for tensor applications.

[13] proposes three buffer restructuring approaches, coarse-grained, fine-grained, and hybrid, to

adjust the BRAM and LUT utilization as needed. Similar, tensor optimizations were proposed in [54].

[43] studies the effect of HLS pragma directives on the design. In particular, they indicate that loop

unrolling and array partitioning directives can cause overhead in off-chip memory performance due

to non-burst access. Finally, they provide a code transformation technique to exploit the data width

of the memory controller. The Merlin compiler
1
provides an infrastructure for source-to-source

transformation to accelerate applications on FPGA that are already described in C++ [14]. Instead,

operating at the DSL level allows us to implement high-level transformations to the source code,

including exploring different memory layouts.

The core of our DSL abstraction consists in modelling tensor expressions. There are several

such DSLs, like TensorComprehensions (TC) [59] and TensorFlow Eager [2], that are capable of

representing tensor operations in a more general domain. However, many are based on backing

software libraries, such as TensorFlow [1] and Theano [5], which are less flexible in terms of their

back-end. TVM [9] is a compiler with a focus on machine learning (ML) that is not as limited in

that regard, even providing an FPGA back-end. Its focus on ML makes it hard to apply TVM to

other application domains. A similar application-specific flow is provided by ESP4ML [19], which

explores a bigger design space of systems-on-chip (SoCs) using HLS but does not provides automatic

generation from tensor expressions. More generally applicable, the Halide [42] ecosystem provides

extensive support for heterogeneous systems. Spatial [27] provides automatic compilation and

system generation from high-level descriptions. The framework offers high-level communication

libraries but the application development burden is still on the designer.

Thanks to MLIR [53], as a framework for designing intermediate languages, several projects

have recently proposed programming flows for heterogeneous systems. In the MLIR infrastructure,

1
https://github.com/Xilinx/merlin-compiler
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Fig. 4. Target system for the massively-parallel applications, like computational fluid dynamics (CFD).

compiler internals are composed using a plug-in system, which allows connecting a variety of

front-, middle- and back-ends, which may be entirely orthogonal. For example, with Teckyl
2
, the

aforementioned TC has received a front-end for the MLIR compiler infrastructure, enabling a variety

of back-end consumers. As an alternative to just lowering to LLVM [31], IREE
3
offers perhaps the

first functional end-to-end flow entirely designed within MLIR. Closer to our domain is the recent

Open Earth Compiler [20] for efficient GPU code generation for stencil operations. We also rely

on the plug-and-compile MLIR philosophy, which will allow others to reuse our abstractions and

allows us to profit from existing language stacks and compilation flows.

In the context of MLIR, projects such as Polygeist [37] and Phism [65] use polyhedral modelling

to ingest, optimize, and even emit C code for HLS. Our compiler still employs polyhedral anal-

ysis and rescheduling as described in [16]. Streaming implementations are a challenge in FPGA

implementations, which can tie into the polyhedral model via consecutivity constraints [62].

In conclusion, to address productivity issues in scientific computing, designers need a compre-

hensive framework that 1) allow them to use high-level tensor expressions to specify the behavior,

2) automate the hardware generation process on top of commercial HLS solutions, and 3) efficiently

target modern HBM architectures.

3 AUTOMATIC CFDLANG-TO-BITSTREAM FLOW
This section describes our proposed approach. We first discuss our envisioned target architecture

to implement CFD applications on HBM architectures (Section 3.1). We then outline our CFDlang-

to-Bitstream flow (Section 3.2), followed by details on the two major components: the CFDlang

compiler (Section 3.3 and Section 3.4) and the hardware generation flow (Section 3.5 and Section 3.6).

3.1 Target System Architecture
To simulate the complete volume, the CFD application applies the Inverse Helmholtz operator to 𝑁𝑒𝑞

independent elements. To exploit such intrinsic parallelism and address the challenges discussed in

Section 2.3, we aim at building a target system like the one in Figure 4.

From the system-level perspective, the CFD simulation runs on the host CPU, which sends the

data to the FPGA HBM via PCIe. Once the data are in the HBM, the compute unit (CU) can fetch

them in parallel through AXI channels for several simulation elements. Since each HBM interface

is 256 bits wide, the channel can be conceptually divided into multiple lanes based on the data

2
https://github.com/andidr/teckyl

3
https://google.github.io/iree/
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Fig. 5. Tool flow from CFDlang to FPGA bitstream generation.

bitwidth. Each lane can serve an independent accelerator, called Kernel, derived from the high-level

DSL description, i.e., the Inverse Helmholtz operator of Figure 2. The CU is the fundamental unit

that can be directly attached to the HBM channels and can be internally composed of several

kernels with a wide range of communication patterns depending on the high-level description

of the functionality to be implemented. To manage data exchanges between the HBM interfaces

and the parallel kernels, the CU uses two additional hardware modules, i.e., Read and Write in
Figure 4, that execute in parallel to the kernels and communicate with a dataflow model. The Read
module fetches the input data of one element (matrices S, D, and u) from the HBM memory into

internal buffers, while the Write module transfers the corresponding results (matrix v) into the

HBM memory. To avoid conflicts and reduce the complexity of the AXI interfaces, we assign these

modules to independent HBM channels. The data read and write modules within the CU split the

256-bit HBM data into 32-bit or 64-bit data for the computation modules based on the data format.

To hide the communication cost, the host computes the maximum number of sets of input data

that can fit in one HBM channel. We thus define a batch as the number of elements 𝐸 that the CU

kernels will elaborate before the host retrieves the output. Executing a batch of several elements

maximizes the size of the host data transfers, minimizing their associated overhead. In this way, the

data exchanges between the CPU and the global memory can be overlapped with the CU execution

using a double-buffer method. While the host is exchanging data with the Ping (Pong) channel, CUs
can operate on the Pong (Ping) channel. Given the CU structure, we can compute the number of

batches 𝑁𝑏 = 𝑁𝑒𝑞/𝐸 to be executed based on the total number of elements 𝑁𝑒𝑞 to be simulated.

To further exploit parallelism, we can then replicate the CU structure multiple times, each of them

operating on independent HBM channels. Let 𝑁𝑐𝑢 be the number of CUs that can be instantiated

based on the resource constraints, the host application executes 𝐼 = 𝑁𝑏/𝑁𝑐𝑢 iterations, evenly

distributing the number of batches over the available CUs.

In the following, we describe our DSL-to-bitstream flow to automatically create this architecture

on top of the existing HLS platform (e.g., Vitis for the Alveo U280). We also describe how to

automate the integration of the optimizations to increase performance and resource efficiency, and

how to modify the host code to match the memory layout required by the hardware modules.

3.2 Overview of the Proposed Flow
We propose a modular tool flow that simplifies the creation of FPGA accelerators for tensor-based

applications, like numerical simulations, that are expressed in domain-specific languages. Figure 5

shows an overview of our flow which is composed of two major steps. We start from the DSL
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description of the kernel and generate the corresponding optimized and HLS-friendly C code

(DSL-to-C generation). The compiler performs a series of transformations at different levels

of abstraction (cf. Section 3.4), inserts pragmas to guide the HLS flow, and produces meta data

for the memory generation. Starting from the C code of the kernel, we create the corresponding

parallel system with multiple CUs (cf. Section 3.5), each of them connected to one or more PCs

(C-to-system generation). Also, each CU can instantiate one or more kernels based on the

required amount of FPGA resources (cf. Section 3.6), along with the logic to move data from

the global memory to the kernel on-chip buffer (Read and Write modules). We specify the CU

functionality in C++, wrapping the kernel code with specific code and HLS directives to enable

the generation of the memory-optimized architecture. To do so, we use a combination of distinct

tools: a redesign of the CFDlang compiler (cf. Section 3.3), which integrates novel kernel-level

transformations, the Mnemosyne tool [41], which improves memory sharing inside the single

kernel to reduce on-chip memory requirements, and the newly-developed Olympus tool, which
generates the system architecture (i.e., CU description and configuration file) around the kernels

based on the optimization requested by the designer. Olympus also generates the corresponding

host software to control the accelerators. This code is composed of multiple steps (data allocation,

kernel configuration, data transfers, synchronization primitives). Each step is wrapped into a

specific function so that it can be further specialized in the hardware generation flow with specific

optimizations. We then use the v++ tool of the commercial Xilinx Vitis Unified Platform to create

the hardware description with HLS and generate the final FPGA bitstream. The Vitis platform also

builds and links the host application with the Xilinx Runtime (g++). Our flow can easily be extended

to target similar HBM-based platforms (like the Intel Stratix 10 MX) with the respective toolchains.

3.3 Compiler Architecture
Compiling for the template architecture in Figure 4 is fundamentally different to compiling for

mainstream multicore CPUs. Instead of extending the original CFDlang compiler [44] with new

target support, we devise an entirely new implementation based on the MLIR framework. With

MLIR, we raise the language abstraction level while remaining target-agnostic in our front-end. At

the same time, our middle-end is also mostly agnostic towards the concrete DSL we chose.

This also allows us to profit from the well-engineered and widespread MLIR and LLVM ecosys-

tems, enabling re-use of abstractions and of lowering flows to different architectures. In the

following, we describe the new CFDlang compiler infrastructure, focusing on the stack of dialects

we created to support CFD simulations (cf. Figure 6). Our infrastructure includes the key additions

of only three new dialects: cfdlang, i.e., our language front-end, teil, i.e., our domain optimiza-

tion middle-end, and base2, i.e., our example for a hardware-specific back-end task. Apart from

the dialects linalg and affine mentioned in Section 2.4, the figure also includes other standard

dialects, like tensor for cross-domain tensor operations, scf to model structured control flow with,

e.g., explicit loops, and external tools such as the ISL, which we use to produce the code for the

downstream HLS compilation. The transformations performed within these dialects are discussed

in Section 3.4.

Since we aim at leveraging a commercial HLS tool that does not currently support MLIR as input,

our DSL compiler is an MLIR-based transpiler that emits C99 source code and additional metadata

outputs to directly interface with Vitis HLS and Mnemosyne, respectively.

3.3.1 The Front-end. Following our motivating example given by Figure 2, we enter the compiler

flow at the highest level of abstraction. Here, the cfdlang dialect replaces both the abstract syntax

tree (AST) and expression tree representations that were used previously in CFDlang [44]. During

translation, the DSL parser directly emits cfdlang dialect operations while ingesting the DSL
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cfdlang
teil

lower

base2

materialize

tensor

linalglower

Bambuexport

affine
ISLexport

scf
lower

lower

Fig. 6. MLIR dialects and tools (ellipses) in the compiler and their dependencies. Our contributions to the
MLIR language stack are marked in red.

// t = S#S#S#u . [[1 6][3 7][5 8]]
cfdlang.define @t : [11 11 11] {

%S = cfdlang.eval @S : [11 11]
%u = cfdlang.eval @u : [11 11 11]
%0 = cfdlang.prod %S, %u : [11 11], [11 11 11]
%1 = cfdlang.prod %S, %0 : [11 11], [11 11 11 11 11]
%2 = cfdlang.prod %S, %1 : [11 11], [11 11 11 11 11 11 11]
%3 = cfdlang.cont %2 : [11 11 11 11 11 11 11 11 11] indices [2 7][4 8][6 9]
cfdlang.yield %3 : [11 11 11]

}

(a) Translation of Figure 2 (excerpt)

1 %0 = teil.prod %S, %u : tensor <11 x11x!teil.num >, tensor <11 x11x11x!teil.num >
2 %1 = teil.diag 2 5 %0 : tensor <11 x11x11x11x11x!teil.num >
3 %2 = teil.red add 2 %1 : tensor <11 x11x11x11x!teil.num >
4 %3 = teil.prod %S, %2 : tensor <11 x11x!teil.num >, tensor <11 x11x11x!teil.num >
5 %4 = teil.diag 2 5 %3 : tensor <11 x11x11x11x11x!teil.num >
6 %5 = teil.red add 2 %4 : tensor <11 x11x11x11x!teil.num >
7 %6 = teil.prod %S, %5 : tensor <11 x11x!teil.num >, tensor <11 x11x11x!teil.num >
8 %7 = teil.diag 2 5 %6 : tensor <11 x11x11x11x11x!teil.num >
9 %8 = teil.red add 2 %7 : tensor <11 x11x11x11x!teil.num >

(b) Optimized teil lowering of Figure 7a

Fig. 7. DSL lowering in the compiler.

code, resulting in Figure 7a. This dialect mirrors the syntactical elements of the DSL in MLIR. To

establish a working front-end, we implement a translation from the DSL to the cfdlang dialect,
which also works backwards. In addition, we implement a lowering to our DSL agnostic middle-end

dialect teil. We benefit from the MLIR diagnostic engine, and immediate semantic analyses and

verification in the MLIR infrastructure.

As this dialect replaces the AST, it does not perform aggressive canonicalization and instead

attempts to preserve the input program as closely as possible, with the exception of type declarations.

CFDlang’s implicit scalar type greatly simplifies its type system and unclutters this particular MLIR

representation. The set of operations is also kept extremely simple, mapping language elements

1 : 1 onto operations in the CFDlang dialect, with elements such as cfdlang.eval taking the place

of identifier expressions and the like. Transformations and optimizations are left to the middle-end.

3.3.2 The Middle-end. The program description obtained in Figure 7a is tied to the CFDlang DSL,

which is not desirable for implementing reusable optimization pipelines. We address this issue

by introducing another level of abstraction based on the concept of tensors as immutable values,

implemented by the teil dialect. The exact semantics of this cross-domain tensor abstraction

are directly imported from its specification [45]. We first lower onto this dialect as illustrated by

Figure 7b, removing DSL-specific elements from the IR, and then continue to transition downwards

as outlined in Figure 6. The set of abstractions and transformations starting with and below the

teil dialect make up our compiler’s middle-end.
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Unlike MLIR’s linalg dialect for linear algebra and tensor expressions, teil is more restrictive

on the operations it models. Similarly, teil does not allow for partially defined values or incomplete

domains, but also prohibits treating tensors as arrays. teil is a true value-based dialect with tensors
as first-class citizens without any links to array materialization. It is therefore more related to the

vtensor concept of torch-mlir
4
and the linalg_ex extensions found in IREE

5
. This allows us to

perform deductive reasoning on complex tensor operators, assigning them to array buffers later.

teil is another dialect bridging the gap between other high-level tensor dialects, such as the

related HLO and TOSA dialects, and lower dialects, such as linalg and affine. While HLO
6
,

TOSA
7
and TPP [18] are closer to Instruction Set Architectures (ISAs) for tensor accelerators

in ML applications, teil aspires to be a cross-domain tensor expression dialect. For example,

tosa.matmul (Figure 8a) encodes the well-known generic matrix-matrix multiplication (GEMM),

which is broken down into primitive operations in teil as shown in Figure 8b. Trying to map

arbitrary teil programs onto tosa or HLO is generally not possible, however, for reasons of

unsupported operators and data types.

%C = "tosa.matmul"(%A, %B)

(a) tosa

%AB = teil.prod %A %B
%AB_ikkj = teil.diag 2 3 %AB
%C = teil.red add 2 %AB_ikkj

(b) teil equivalent of (a)

affine.parallel (%i, %j) = (0, 0) to (16, 16) {
%1 = affine.for %k = 0 to 16 iter_args(%2 = %0) {

%3 = affine.load %A[%i, %k]
%4 = affine.load %B[%k, %j]
%5 = arith.mulf %3, %4
%6 = arith.addf %2, %5
affine.yield %6

}
affine.store %1, %C[%i, %j]

}

(c) Simple affine

Fig. 8. GEMM in MLIR (types omitted)

3.3.3 The Back-end. Lowering teil to the affine dialect (cf. Figure 8c), we integrate with our

polyhedral optimizations for CFD applications described in [16]. Starting with affine, the MLIR

stack also allows us to import optimizations for mainstream CPUs such as in [44]. In the next

section, we will show how this maps to the template architecture from Figure 4.

We designed the base2 dialect to include arbitrary-precision floating-point operations. Both

cfdlang and teil use an abstract scalar type, implemented by base2’s parametric types, and

operations that model arbitrary-precision data. We can then use the ieee754 type to encode

custom floating-point types that can be consumed by subsequent HLS tools, like Bambu [15].

3.3.4 Limitations. We support programs that can be directly mapped onto the primitives of

TeIL [45], which is currently the most abstract middle-end representation of our compiler. On one

hand, these primitives are common in many scientific applications similar to CFD simulations. On

the other hand, the MLIR ecosystem “at large” is modular and flexible, offering additional dialects

that can be potentially lowered towards affine and base2, extending our flow to more domains.

A downside to using the CFDlang DSL for this demonstration is that it does not allow for depen-

dencies between the implicit elements. Solvers commonly examined on FPGA platforms include

4
https://github.com/llvm/torch-mlir

5
https://github.com/google/iree

6
https://github.com/tensorflow/mlir-hlo

7
https://developer.mlplatform.org/w/tosa/
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Expression 
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Scalar type 
implementation

Operator 
scheduling Operator implementation

cfdlang teil

base2

Translation 
(import)

Translation 
(export)

linalg affine

Factorization Graph partitioning Polyhedral scheduling

Fig. 9. Steps in the CFDlang compiler, including MLIR dialects and principal transformations.

t4 = S#t3.[0 4]

v = S#t4.[0 4]

t3 = S#t .[0 4]

r = D*tr

t1 = S#t0.[1 4]

t = S#t1.[1 4]

t0 = S#u .[1 4]

S Du

v

t0

r

t1

t

t3

t4

t = S#S#S#u.[…]

v = S#S#S#r.[…]

t

S Du

v

Fig. 10. Expression rewriting example. Circles indicate buffers and diamonds virtual tensors. Arrows are
added to indicate dataflow dependences, and nodes ordered according to a naive schedule.

Lattice-Boltzmann methods (LBM) [46], which need to exchange halo regions with neighbouring

compute units. However, for single devices, we expect this problem to be negotiated through

memory, via overlapped compute and alternating kernels, thus still utilizing most of our flow.

3.4 Compilation Process
In [16] we described analysis and transformations at the kernel-level that allowed for memory

allocation and operation scheduling for FPGA offloading. These were based on polyhedral tech-

niques, which still apply to the affine intermediaries that our MLIR flow produces. For example,

the liveness analysis required for Mnemosyne’s sharing optimization follows the same approach

described in [16]. To address the HBM challenges (cf. Section 2.3), we introduce new transforms

at higher levels, namely operator graph partitioning and pipelining. These increase the achieved

memory bandwidth, required to take advantage of the high throughput of the HBM-based target

architecture. We elaborate on Section 3.3 by discussing the individual steps as shown in Figure 9.

3.4.1 Expression Rewriting. The teil dialect provides a high level view on the tensor expressions,

allowing them to be rewritten effectively. During the expression rewriting phase, our compiler uses

strictly beneficial mathematical identities to reduce the runtime complexity of the program. Within

teil, which uses abstract scalars modeling R, these are always semantically preserving.

One such rewrite, introduced to CFDlang in [44], uses associativity and distributivity to factorize

contractions, as shown in Figure 10. This exact rewrite can also be observed in Figure 7b, where the

input expression is given by Figure 7a (with a teil lowering beforehand). In this transformation, the

computational complexity of a contraction on an outer product is reduced by pulling it (partially)

down to the factors. The design of teilmakes these scenarios easy to recognize, and fully automates

this and other kinds of rewriting, such as aggressively transforming towards GEMM patterns.
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3.4.2 Scalar Type Implementation. Digital signal processors (DSPs), which are used to implement

IEEE-754 floating-point operations, are critical resources in FPGAs. In addition to being relatively

scarce and routing intensive, when compared to lookup tables (LUTs) and flip-flops (FFs), floating-

point operations require multiple clock cycles. Such long pipelines are especially large design

hazards once the design frequency drops, as the adverse effects are multiplicative.

To reduce the impact of floating-point operations, our compiler infrastructure supports custom

number representations. While the existing CPU compilation flow uses double as default scalar
type, the FPGA flow allows arbitrary-precision types. The exploration of this design space, however,

is not automated by this work, and left up to the user. We intend on coupling the compiler with

exploration frameworks such as [49, 8] in the future. Implementations make use of the fact that teil
can work with multiple equivalence classes of its own abstract scalar type. This allows deferring

the choice of a concrete type while still retaining the ability to reason about precision boundaries.

As a starting point, we developed the base2 dialect that provides a minimal interface to encode

this information, which must be processed by a back-end consumer. To test our implementations

on the CPU using software-emulated arbitrary-precision floating-point arithmetic, we emit calls

to libsoftfloat
8
. Additionally, calls to this library can be conveniently synthesized to hardware

arbitrary-precision floating-point logic by HLS tools that support this feature, like Bambu [15].

3.4.3 Operator Scheduling. To saturate the bandwidth of the HBM memory interface, the compiler

must generate an implementation that maximizes the throughput from and into the PCs. This is

mostly done by trading resources for frequency and cycle count using chained pipelines.

Compare Figure 10 for the level of abstraction that this transformation is preformed on, which

is the tensor value graph. Following all rewrites to the whole input program from Figure 2, this

operator scheduling arrives at the graph shown in Figure 11. The additions here are the operator

groups, represented by grey boxes, and streams, represented by arrows. Within each box, standard

FPGA-directed pipeline scheduling will be implemented.

To achieve maximum throughput, a grouping must be found that allows streaming the inputs and

outputs at saturating rates. Unfortunately, although these constraints can be propagated from the

PCs, rates are not reliable measurements for this process. The actual throughput of the hardware

design depends on the achieved design frequency, which remains a variable until the end, leaving

timings uncertain. As a result, our current implementation relies either on user input, or assumes

that no variables outside of its control will lower the design frequency.

Our current strategy first aggressively partitions the graph into the smallest possible operators

(i.e. one per tensor value), and then collapses them. Assuming less stages are better since they use

fewer resources, operators can be merged automatically under a given private local memory (PLM)

and DSP budget. This heuristic prefers collapsing chains, thus reducing the first in - first out (FIFO)

queues required to implement the top-level dataflow. For our running example, this strategy yields

the three top-level groups shown and named in Figure 11.

Aside from the groups shown here, the template architecture fixes two groups implicitly, namely

the read from and write to HBM (cf. Figure 4). We found that our designs synthesized in a way

where the group cycle intervals can be reasonably estimated by the sum of trip counts of their child

loops. When collapsing, the group with the longest interval determines the lower bound on the

achievable latency, and thus our heuristic uses that interval as a budget to collapse towards.

Starting from Figure 11, we can obtain an implicit top-level pipeline over the groups. Our

simple implementation selects one topological ordering, as-late-as-possible (ALAP) [4], which is

later used for the system generation (cf. Figure 5). Respecting the concurrent nature of hardware

implementations, future extensions may consider merging stages that can execute in parallel.

8
https://github.com/ucb-bar/berkeley-softfloat-3
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Fig. 11. Operator scheduling example. The program from Figure 10 is partitioned into 3 groups (gemm, mmult,
and gemm_inv). Interfaces between stages are turned into streams, as indicated by the broad arrows.

3.4.4 Operator Implementation. To ensure the group pipeline scheduled in the previous step runs

as designed, the inner nodes of each group must be implemented as a regular pipelined loop nest.

In [16], we extended the CFDlang compiler with polyhedral analysis and code generation

capabilities. This framework allowed us to implement transformations to render the code amenable

to futher processing with HLS tools. In particular, we incorporated changes to the memory layout

and loop structure, alleviating resource burdens and improving pipelining. Here, the polyhedral

model was an especially good fit for liveness analysis, which allowed us to defer an implementation

problem, the memory sharing, to the C-to-system generation part.

We lower from teil to affine and plumb directly into this previous code generator from [16]

(cf. Figure 12). This also allows us to reuse code generation via the integer set library (ISL) [61],

circumventing the need for a new HLS back-end dialect. The streaming property of tensors between

groups can be trivially upheld using polyhedral scheduling, by constraining the order of the writes.

More than one output stream per operator requires additional effort that was not needed for this

work but has been examined previously [62]. A stopgap solution lies in buffering the reads in

the groups (as shown in Figure 11), which may sometimes even be a necessary resource trade-off

if consecutivity cannot be established. In [16] we described memory sharing optimizations that

reduce this pressure on the FPGA’s BRAM again. For the kernel evaluated in this paper, memory

sharing turned out to be not as relevant, especially when increasing the number of groups. In fact,

a downside of the stage level sharing is that it may limit the ability to pipeline the internals of the

stage, ultimately sacrificing throughput and increasing the cycle interval.

3.4.5 Automation. There are two sides to automation of these transforms in the MLIR flow, because

of the separation of policy and mechanism. The teil dialect allows us to fully automate tensor

expression rewriting, within the confines of mathematical reasoning, including decision making.

The base2 dialect in conjunction with teil provides a mechanism for arbitrary-precision scalars,

but offers no support for exploring that design space. In teil, we can encode partitions of operator

pipelines with ease, but as we also see in vendor toolchains, simple heuristics can not replace

proper design space exploration based on performance estimation in the general case. The ISL

is a powerful tool that can make and enforce decisions (e.g. schedule loops based on streaming

constraints), but has an inherently biased and non-deterministic scheduler.

For custom data types, we currently rely on command-line parameters to guide the grouping in

the presence of design frequency hazards and apply array layout and partitioning maps [16]. While

we aim at keeping these hints out of the DSL, they can be represented using meta-operations in the

IR. An example of this is HeteroCL [29], and this has already been proposed for TeIL [55].
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affine.for %arg5 = 0 to 11 {
affine.for %arg6 = 0 to 11 {

affine.for %arg7 = 0 to 11 {
affine.for %arg8 = 0 to 11 {

%6 = affine.load %bS[%arg5 , %arg8] : memref <11 x11xf64 >
%7 = affine.load %b0[%arg6 , %arg7 , %arg8] : memref <11 x11x11xf64 >
%8 = arith.mulf %6 , %7 : f64
%9 = affine.load %b1[%arg5 , %arg6 , %arg7] : memref <11 x11x11xf64 >
%10 = arith.addf %8, %9 : f64
affine.store %10 , %b1[%arg5 , %arg6 , %arg7] : memref <11 x11x11xf64 >

}
}

}
}

(a) in affine

for (int c1 = 0; c1 <= 10; c1 += 1)
for (int c2 = 0; c2 <= 10; c2 += 1)

for (int c3 = 0; c3 <= 10; c3 += 1) {
// stmt0
b1[121 * c1 + 11 * c2 + c3] = 0;
for (int c4 = 0; c4 <= 10; c4 += 1) {

#pragma HLS pipeline
// stmt0
b1[121 * c1 + 11 * c2 + c3] = b1[121 * c1 + 11 * c2 + c3] + bS[11 * c1 + c4] *

↩→ b0[121 * c2 + 11 * c3 + c4];
}

}

(b) in C99

Fig. 12. Figure 7b lines 1-3 during operator implementation

3.5 Hardware Generation Architecture
Our hardware generation flow aims at optimizing the data transfers around the kernel implementa-

tion produced by CFDlang. It receives as input the description of the kernel and the compatibility

graph of the internal buffers (from CFDlang), along with information about board resources (from

the user). It produces an optimized CU description (in C++) and the platform configuration file

based on the number of CUs that can be instantiated. The configuration file specifies also the proper

connections to the HBM channels. To implement our hardware generation flow, we developed

Olympus, which creates an optimized system-level architecture (in synthesizable C++) for our

accelerators. During its execution, it interfaces with Mnemosyne [41] to optimize the on-chip

memory associated with each kernel and limit the number of local memory resources. Mnemosyne

uses the buffer compatibility graph generated by the CFDlang compiler to determine when the

physical on-chip memory banks can be reused without performance overhead [41]. After this,

Olympus reads the kernel interface and determines how to connect the input/output ports to the

rest of the system to efficiently exchange data with the HBM channels. Data ports are connected to

HBM channels via AXI Master interfaces, while configuration ports are connected to the host via

AXI-Lite, memory-mapped interfaces. Data exchanged with HBM channels (i.e., input and output

matrices) are buffered on-chip to allow fast, fixed-latency access during kernel execution.

The generation of the system architecture is guided by the designer, as shown in Figure 5. Starting

from the C kernel produced by the CFDlang compiler, Olympus generates a minimal wrapper to

run HLS and obtain an estimate of the resources needed for the target FPGA device. Then, we

apply optimizations to both the on-chip local memory of each kernel (with Mnemosyne) and the

system-level memory architecture to exchange data with the HBM (with Olympus).

At the kernel level, we use Mnemosyne to generate the RTL of the on-chip memory architecture

associated with each kernel. Mnemosyne is a tool that exploits sharing compatibilities, i.e., when

distinct internal buffers have no overlapping lifetime, to assign them to the same physical banks

based on a given cost metric. In these cases, the tool generates custom logic to manage the accesses
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void kernel(double S[121], double D[1331] , double u[1331] , double v[1331] , double t0[1331] ,
double t1[1331] , double t[1331] , double r[1331] , double v0[1331] , double v1 [1331]) {

//...
}

(a) After CFDlang

void top_kernel(double S[121], double D[1331] , double u[1331] , double v[1331]) {
double t0[1331] , t1[1331] , t[1331] , r[1331] , v0[1331] , v1 [1331];
kernel(S, D, u, v, t0, t1, t, r, v0, v1);

}

(b) After Mnemosyne

void top_kernel(double S[121], double D[1331] , double u[1331] , double v[1331]) {
double t0[1331] , t1 [1331];
kernel(S, D, u, v, t0, t1, t0, t1 , t0, t1);

}

(c) After Mnemosyne with array sharing

Fig. 13. Kernel interface before and after Mnemosyne. Internal buffers are exposed by CFDlang. Mnemosyne
reproduces a kernel description that has only “real” input and output buffers for interfacing with the HBM
channels. Other temporary on-chip buffers are internally optimized and possibly shared.

to the same memory banks from different kernel interfaces [41, 16]. Figure 13 shows the conceptual

interface, described in C, of a kernel before and after the execution of Mnemosyne. Mnemosyne

requires the specification of the compatibility graph of the local arrays and, in our flow, these

metadata are computed and produced by CFDlang during liveness analysis [16]. Mnemosyne wraps

the RTL kernel description (produced by HLS) with the resulting RTL description of the kernel

memory architecture to expose only input and output ports to the CU. This conceptual interface is

then used for integration of the kernel into the CU.

At the system level, Olympus generates the C++ description of the memory architecture around

the kernel description, which is integrated as custom RTL to use the results produced byMnemosyne.

Since the hardware cost of the kernel may limit the number of parallel CUs, the designer can use

Olympus to understand which optimizations can be applied given the FPGA available resources.

Indeed, we characterize each optimization with an estimation of the extra resources. With this

information, the designer can select the most suitable optimizations and Olympus generates the

corresponding CU description around the CFDlang-generated code of the kernel and the system

configuration file. In the future, this process can be further automated by combining it with state-

of-the-art design space exploration frameworks. Each CU can feature multiple kernels, each of

them connected to a lane to fully utilize the AXI bandwidth (cf. Section 3.1). The CU wrapper

implements data-movement optimizations and is designed accordingly with changes to the host

application and the configuration file. For example, the kernel may benefit from a change in the

way data is written to and read from global memory and therefore the host application must be

updated accordingly. The configuration file, instead, defines how each CU interfaces with the HBM.

By modifying this file, Olympus defines how each CU is connected to the individual channels.

The resulting components are then passed to Vitis, i.e., the HLS platform that we use, to auto-

matically generate the bitstream required for board configuration. When timing is not met, Vitis

automatically downscales the execution frequency. While this is useful to enable proper func-

tionality, the designer has little control over this process. Conversely, Olympus introduces some

optimizations for the synthesis process (cf. Section 3.6.4).

3.5.1 Limitations. Our hardware generation flow does not currently include a step for including

platform-specific optimizations, like the mapping of array streams to specific memory resources.
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Fig. 14. Optimizations targeting the memory and communication challenges of the HBM-based systems.

This is the step that also needs customization when bringing the flow to a new HLS tool or platform

as it requires insertion of the proper directives.

Also, our flow is required to emit C99 source code to interface with the given HLS tool. A direct

interface would be beneficial to avoid losing semantic details that are contained in the MLIR dialects.

3.6 Hardware Generation Process
Let 𝑝 be the polynomial degree for the simulation, each Inverse Helmholtz kernel needs 𝑝 × 𝑝

values for matrix S and 𝑝 × 𝑝 × 𝑝 values for matrices D and u. The kernel then produces 𝑝 × 𝑝 × 𝑝

values for the output matrix v. These values are useful to estimate the number of resources for

input, temporary, and output buffers. The size of the total amount of data used to compute one

element can be used to determine how many elements worth of data can fit into an HBM channel

(max size is 256MB). The number of elements is the batch size, i.e., the number of executions the

CU can perform without interruption before needing the host to send more data. Data transfers are

required between consecutive batches.

In the following, we describe the optimizations that we apply to our CFD application by means

of the Olympus options (step Optimize in Figure 5). Such optimizations (and the Olympus hardware

generation process) can be easily adapted to similar tensor-based applications.

3.6.1 Host-HBM Double Buffering. In a naive implementation, the host code transfers the input

data required to execute one batch of kernel elements into HBM. The host then invokes the CUs to

execute on each of these elements and generate the corresponding output results. The host transfers

these outputs back from HBM to its main memory. Each CU interfaces with one PC and we can

instantiate up to 32 CUs (each with one kernel) to operate in parallel. However, all communication
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and execution for a single CUs is serialized. Since the host-HBM communication is as expensive as

the computational part, this significantly affects the overall performance.

To overlap the host-HBM data transfers with the CU execution, we use double buffering as

shown in Figure 14a. Each CU interfaces with two PCs, namely “even” and “odd”. The host reads

the output from the last iteration and writes new input into the “even” channels while the PCs

operate on the data in the “odd” channels, and vice versa. When the total host transfer time for

input and output of one batch is less than the total CU execution time for the same batch, the host

transfer time is entirely hidden and the CUs are actively executing at all times.

Olympus Implementation: Double buffering requires changes in the wrapper to determine

which PC the CU should operate on for the current batch, in the configuration file to attach more

channels to the same CU, and in the host code to manage the data transfers to separate HBM

channels. Additionally, since we use two PCs to implement double buffering, we limit the maximum

number of parallel CUs to 16. However, when the total number of CUs that can be instantiated is

less than 8, we also separate input and output channels to simplify the control logic and improve

logic connectivity of the FPGA resources.

3.6.2 HBM-FPGA Bandwidth Optimization. The data elements of the Inverse Helmholtz operator

are 2- or 3-D tensors (𝑝 × 𝑝 or 𝑝 × 𝑝 × 𝑝 , respectively), where each element is a 64-bit floating-point

number (double). The HBM interfaces have 256 bits, so transferring one double at a time uses only

25% of the bandwidth. Packing four doubles (or more depending on the custom data type) onto the

bus allows us to significantly reduce the number of clock cycles for data transfers. However, we

need to efficiently manage the multiple parallel data to avoid serialization when writing them into

the buffers. To fully exploit the parallelism, we conceptually divide the 256-bit bus into four 64-bit

“lanes” and replicate the kernel four times within a CU. Each of these kernels is directly connected

to one of the “lanes”, i.e., to 64 bits of the bus, so that all kernels can operate in parallel. In this way,

Read/Write modules still require the same amount of cycles (cf. Figure 14b) but we can now start

the computation of four elements in parallel.

Olympus Implementation: To obtain the layout shown in Figure 14b, Olympus modifies the host

code to interleave the input for the multiple elements before sending it to HBM and de-interleave

the output after receiving the results. The optimization only needs information on the bus bitwidth

(e.g., 256 bits) and the data type bitwidth (i.e., 32 or 64 bits). Both parameters are available from the

user-supplied board specification and the compiler-supplied array information, respectively. From

this, Olympus generates the CU Read and Write functions to split and aggregate the data into the

appropriate number of lanes. The overall CU structure is then created by composing the Read/Write
functions with multiple instances of the kernels. Similarly, the data reorganization portion of the

host code can be generated with the same information by specializing the allocation functions of

the host application.

3.6.3 Dataflow Optimization. Each single execution of the CU in the batch must read data from the

HBM, execute the operator on them, and write back the result into the HBM. The Inverse Helmholtz

operator is implemented in DSL as three operations: a tensor contraction, a Hadamard product, and

another tensor contraction. We can further decompose the single operations into elementary blocks,

as shown in Figure 11. The fundamental blocks can be implemented as subfunctions in the kernel

that communicate via AXI Stream in a dataflow model. These hardware modules will thus execute

in a pipelined manner, significantly improving the throughput. The number of elementary blocks

in each subfunction is a tradeoff between latency and resource requirements. Indeed, having more

blocks in the same subfunction increase resource sharing opportunities but also increases the latency

of the pipeline stages, reducing the throughput. This optimization improves the performance but

also increases the resource usage, potentially limiting the number of CUs that can be instantiated.
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Olympus Implementation: The dataflow optimization is enabled by the compiler generating

a kernel composed of subfunctions using streams, instead of one flat kernel function. The exact

scheduling of the stages may not be as straightforward as the three conceptual operators, as the

compiler has freedom to optimize the grouping for the best performance. Olympus then creates

data streams among the subkernels for data communication. In order to stream data between the

subkernels, data must be buffered when the subkernel does not operate on it in the same order that

it is streamed or when the same values are reused multiple times inside the same subfunction. In

most cases, this means that data streamed in gets stored in an internal buffer, then the data can be

operated on using random access, and as each result is computed, it is streamed out. Data structures

that are reused across multiple blocks (like matrix S) must be streamed through these blocks and

buffered inside them to keep a consistent structure and avoid multiple hardware modules accessing

the same data concurrently. This optimization does not require any changes in the host code and

the size of the streams can be configured by the designer when selecting the optimization. When

no information is provided, the tool assumes to use the full size of the array as the size of the

corresponding stream.

3.6.4 Resource Optimizations and Multiple Compute Units. The Inverse Helmholtz operator is

composed of seven loops that are executed in sequence. Each loop produces a matrix. Intermediate

matrices are used by the next loops. Each of these matrices requires on-chip resources (generally

BRAMs) to store the values. The number of available BRAMs can limit the number of FPGA kernels.

However, once the matrix is not used anymore, the corresponding BRAM resources can be used by

the same kernel to store new data.

Using the liveness information generated by the CFDlang compiler, we can reduce the number of

on-chip resources required by each kernel. Arrays with disjoint lifetimes can use the same physical

memory buffer as shown in Figure 14d. Reducing the kernel’s BRAM requirements can increase the

total number of kernels that we can instantiate. However, sharing opportunities can operate only

inside each subkernel. So, the effects of this optimization may be limited. It is worth noting that we

currently optimize the use of memory resources only by exploiting sharing opportunities while

platform-specific optimizations (like the implementation of arrays with specific memory resources)

can be integrated as an additional step.

Also, given the physical nature of the input data, we can adapt the measurement scale so that the

values are always in a range between -1 and 1. This observation allows us to change the way we

interpret the data, passing from a floating-point representation to a fixed point one. In particular, we

use a 64-bit representation where 24 bits are assigned to the integer part (including the sign) and 40

to the decimal part. Specifically, we used the ap_fixed library to specify these formats so that they

can be automatically synthesized by Vitis HLS. So, these optimizations are compatible with any

HLS tool (like Bambu [15]) that can synthesize these formats. This step brings with it considerable

advantages. Fixed-point operations require simpler hardware than floating-point operations. Tensor

operators make heavy use of multipliers. So, fixed-point operations allow designers to obtain faster

hardware that uses fewer resources and consumes less energy.

In CFD, another method to decrease resource utilization is to reduce the degree 𝑝 . This will be

at some cost to convergence of the overall simulation, but this choice is up to the designer who

provides the required value of 𝑝 for the simulation in the input DSL. Once this value is decided,

our flow will be able to automatically instantiate more parallel compute units due to the smaller

data size and reduced number of the operations/loop iterations.

Olympus Implementation: For buffer sharing, as discussed above, we use Mnemosyne to auto-

matically generate optimized PLM units that can share physical banks in a way that is completely

transparent to the kernel execution [41, 16]. Olympus only combines the resulting kernel description
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with the rest of the system in a transparent way. Data representation is left as a design choice for the

application developer, as the tolerable error depends heavily on the application. Using this choice as

input, the data type can be automatically changed in the implementation to be able to observe the

effects on area, power, and performance. Fixed-point implementations only require a redefinition

of the data types before HLS using the given arbitrary-precision libraries. We decided to implement

the conversion from/to double in the host code to save hardware resources. However, this requires

an adaptation of the data allocation functions, which receive the input values in double but need to

write fixed-point values in the FPGA buffers, and the functions to retrieve the results that must

implement the opposite conversion. Finally, the polynomial degree 𝑝 is an intrinsic parameter of

the input DSL code (cf. Figure 2). We can re-run the complete flow to generate an accelerator with a

different polynomial degree to enable the proper compiler and hardware generation optimizations.

4 EVALUATION
In this section, we use our DSL-to-bitstream flow to evaluate and compare several implementations

of the CFD application. To do so, we present our experimental setup (Section 4.1), we analyze the

impact of each optimization for the Inverse Helmholtz kernel (Section 4.2), and we compare our

final results with software implementations (Section 4.3).

4.1 Experimental Setup
To evaluate our DSL-to-bitstream flow, we extended the flow presented in [16] as described in

Figure 5: CFDlang is implemented on top of the MLIR infrastructure, Mnemosyne [41] is an open-

source tool
9
, and Olympus is a new in-house prototype. Olympus is built in Python on top of

the Pyverilog library [57] for hardware generation (i.e., the generation of the kernel wrappers

around Mnemosyne artifacts) and the Pycparser library
10

for code generation. With our novel

flow, we targeted a Xilinx Alveo U280 card on an AMD EPYC 7282 [3] server running Centos 7.

We used Xilinx Vitis 2021.1 [64] for synthesis and bitstream creation. Unless otherwise specified,

we target a synthesis frequency of 450 MHz for both the platform and the CU description. For

each implementation, we evaluate performance and energy efficiency by using the GFLOPS and

GFLOPS/W metrics, respectively. The GFLOPS metric is obtained by dividing the total number

of floating-point operations executed by the application by the total execution time, while the

GFLOPS/W metric is obtained by dividing the GFLOPS metric by the average power consumption

of the system. To get accurate information about FPGA power consumption, we profile the power

consumption during the system execution with Xilinx XRT and we use the average value.

4.2 Impact of Hardware Optimizations
To evaluate the cumulative benefits introduced by each hardware optimization, we progressively

apply them to the Inverse Helmholtz operator used as case study and so extensively discussed in

this paper. We evaluated the implementations for two polynomial degrees: 𝑝 = 7 and 𝑝 = 11. In

particular, given the polynomial degree 𝑝 , we assume that each contraction is composed of three

loop nests that execute two floating-point operations (one addition and one multiplication) for

𝑝 × 𝑝 × 𝑝 × 𝑝 times each. Similarly, the Hadamard product requires 𝑝 × 𝑝 × 𝑝 multiplications. So,

the entire Inverse Helmholtz operator the following number of floating-point operations:

𝑁 𝑒𝑙
𝑜𝑝 = 2 · [2 · (𝑝 ·𝑝 ·𝑝 · 𝑝) +2 · (𝑝 ·𝑝 ·𝑝 · 𝑝) +2 · (𝑝 ·𝑝 ·𝑝 · 𝑝)] + (𝑝 ·𝑝 ·𝑝) = (12 ·𝑝 +1) · (𝑝 ·𝑝 ·𝑝) (2)

9
https://github.com/chrpilat/mnemosyne

10
https://github.com/eliben/pycparser
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Fig. 15. Performance of each optimization implemented with 1 CU and 𝑝 = 11.

So, a single element is required to execute 𝑁 𝑒𝑙
𝑜𝑝=177,023 floating-point operations when 𝑝 = 11 and

𝑁 𝑒𝑙
𝑜𝑝=29,155 floating-point operations when 𝑝 = 7. The total number of floating-point operations

for a CFD simulation can be obtained as:

𝑁𝑜𝑝 = 𝑁𝑒𝑞 × 𝑁 𝑒𝑙
𝑜𝑝 (3)

We executed all experiments with 𝑁𝑒𝑞 = 2, 000, 000, i.e., we simulated 2,000,000 elements.

We executed our CFDlang on the DSL description in Figure 2 to generate the C kernel for

hardware optimization. We first performed experiments to evaluate the effects of optimizations

with 𝑝 = 11. In particular, we progressively added the following optimizations:

• Baseline: No optimizations are used. The code serially executes kernels and data transfers, while

each CU contains only one kernel and is connected to the HBM with 64-bit AXI channels.

• Host-HBM Double Buffering: We introduce this well-known optimization to hide CPU-FPGA

communication latency.

• HBM-FPGA Bus Optimization: We evaluate the effect of widening the bus to 256 bits, with only

one kernel unit (and serializing the data) and with multiple lanes feeding parallel kernel units.

• Dataflow optimization: We create several variants of the compute functions with one, two,

three, and seven subkernels. We evaluate the performance vs. resources trade-off.

• Resource Optimization: We apply on-chip memory sharing (only in the case of dataflow

implementations with one block inside the compute part) and fixed-point optimizations (with

64- and 32-bit implementations).

For each of these implementations, we measured total and kernel execution times, maximum and

average power consumption, and cost in terms of hardware resources. Figure 15 shows the perfor-

mance (in terms of GFLOPS) achieved in each experiment when adding the specific optimization

on top of the previous ones. In each experiment, the left black & white bar (CU) shows the GFLOPS

of the CUs on their own, without considering host-FPGA data transfers, while the right azure bar

(System) includes the entire application. Comparing the two bars allows us to evaluate the peak

performance of the kernels and the effects of data transfers.

The Baseline case achieves only 2.9 GFLOPS, and the difference between the CU performance

and the overall system performance is 9.2%. This is due to the serial nature of the implementation

where data is transferred from the host to the HBM, then processed by the CU and sent back to the

host before starting a new batch. If more data needs to be transferred, this discrepancy between
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CU performance and overall system performance will grow larger, as the CU needs to wait for all

of the data to be sent before beginning execution.

After the Double Buffering optimization, the CU performance remains similar, with a small

degradation due to overhead, while the system performance is now exactly the same as the CU

performance. This is an improvement over the Baseline implementation, because now the host to

HBM data transfers are happening in parallel to and are entirely hidden behind the CU execution.

We then executed two experiments for evaluating Bus Optimization. In the Serial version, we
attempt to utilize the full bandwidth of the 256-bit bus by packing four doubles. The CU reads

them in parallel but then it serializes them when it needs to access its own local buffers. While this

optimization is supposed to speed up data reads from the HBM, its implementation in the CU leads

to a performance degradation of about 3×. This is mostly due to the complexity of aligning the data

(𝑝 × 𝑝 and 𝑝 × 𝑝 × 𝑝) to multiples of fours inside the bus. To combat this, but still use the full bus

bandwidth, this optimization was replaced with the Parallel implementation where four kernels

are instantiated in the CU and the data for each “lane” is stored in separate buffers, one for each

kernel. This led to a 3.92× speedup over the Serial implementation, as the four lanes are now all

read in parallel. There is only a 1.23× speedup over the Double Buffering implementation, where

a 4× speedup would be expected. This is because in both Bus Opt implementations, the HLS tool

only instantiated two double-precision multipliers (rather than 11 in all other implementations).

So when the innermost loops are unrolled, a resource limitation violation increases the initiation

interval (II) to 4, effectively counteracting the expected 4× speedup. We use the Parallel architecture
in the following experiments.

Next, we tested various forms of the Dataflow Optimization. Each implementation of this

optimization separated the kernels into read, compute, and write modules and streams were used

to pass data between them, allowing a pipelined structure. When using one compute subkernel

(Dataflow (1 Compute)) test, the speedup was 3.68×. In these cases, the HLS tool instantiated the full

11 multipliers, removing the II violation. This decision of the HLS tool along with the overlapping

execution of the read, compute, and write modules allows us to effectively achieve a 4× speed-up,

i.e., to full exploit the four parallel lanes. Since the compute module was dominating the execution

time, it was further split into 2, 3, and 7 modules. The Inverse Helmholtz operator comprises seven

loop nests, each implementing the operations in the seven grey rows on the right side of Figure 10.

To split into 2 modules, the kernel is divided into a first module with the first three loop nests with

S and u as input and t as output, and a second module with the last four loop nests with S, D, and t
as input and v as the final output. The split was made as such so that the first module does not

need D as an input and the second module does not need u as an input. To split into 3 modules,

we use the division shown on the left side of Figure 10 and in Figure 11. This is the most natural

division as it matches the initial DSL representation and the first three loop nests implement the

gemm operator, the fourth loop nest implements the mmult operator, and the last three loop nests

implement the gemm_inv operator. Another benefit to this division is that the mmult loop nest

consumes and produces data in the same order it is sent via the streams, meaning that no extra

buffering is needed for this module and each data element can be immediately processed as it is

received leading to a minimal latency. To split into 7 modules, each loop nest is a separate module.

All three of these tests gained speedup over the 1-Compute version by breaking the total execution
time of a single module down further. The 2-Compute version is 1.7× faster than the 1-Compute
version. The discrepancy between this result and the ideal speedup of 2× is due to the extra data

buffering that must be done in each module in order to allow random access. In the 1-Compute case,
the input arrays are each buffered one time, which adds an overall latency equal to the total input

data size. In the 2-Compute case, the S array is needed by both modules and must be buffered twice.

Additionally, the output of the first module, t, is used as input to the second module and must

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article . Publication date: September 2022.



24 Soldavini et al.

also be buffered. This extra buffering is overlapped while the two modules execute in a pipeline

fashion, but it means that the latencies of each module are not exactly half of the total latency

of one unified module. However, 3-Compute modules was slower than 2-Compute modules. The

overall execution time is determined by the module with the longest latency, as it is the limiting

factor in the overall latency of the system. Because the loop nest implementing the gemm operator

has a minimal latency, moving it to a separate module does not significantly reduce the latency of

the largest module. In fact, in each case, the module with the longest latency was the same, but the

extra modules and control routing caused the tools to frequency scale the 3-Compute case to execute
at 266 MHz whereas the 2-Compute case executed at 292 MHz. When this is taken into account,

the performance of both tests is approximately the same. The 7-Compute test, however, performed

the best because each of the compute modules were much smaller than the previous tests. In this

case, the latencies of these modules were now slightly shorter than the latency of the read module,

meaning that this is the limit of the performance increase by dividing the compute portion. The

7-Compute test gained a total speedup of 4.03× over the Bus Opt Parallel implementation.

To evaluate the efficiency of the allocated resources, we computed the “ideal” GFLOPS value for

each of the double-precision floating-point implementations. We identified the total number of

double-precision adders and multipliers instantiated in the CU (# Ops) by analyzing the synthesis

reports generated by Vitis HLS. The ideal GFLOPS is computed by multiplying this value by the

frequency of the CU and represents the performance if all operators were always in use concurrently.

Table 2 compares these values with the measured GFLOPS of each implementation. In the last

column, an “efficiency” is calculated as a ratio between the ideal and achieved GFLOPS.

Table 2. Efficiency of floating-point operators

# Ops

𝑓

(MHz)

Ideal GFLOPS

(# Ops ×𝑓 )
Achieved

GFLOPS

Efficiency

Baseline 22 274.6 6.041 2.903 0.481

Double Buffering 22 259.8 5.716 3.055 0.535

Bus Opt (Serial) 4 286.5 1.146 0.959 0.837

Bus Opt (Parallel) 16 296.6 4.746 3.759 0.792

Dataflow (1 compute) 88 286.2 25.186 13.842 0.550

Dataflow (2 compute) 176 291.9 51.374 23.363 0.455

Dataflow (3 compute) 180 266.3 47.934 20.136 0.420

Dataflow (7 compute) 532 199.5 106.134 43.410 0.409

This “efficiency” reflects the behavior of the allocation and scheduling of the HLS tool more than

the efficiency of our system design surrounding each HLS kernel. However, we can still gain some

insight into our design in the cases where the HLS decisions were the same. For instance, in the

Baseline and Double Buffering cases, the same kernels are used and therefore they each have the

same # Ops. The efficiency increases because less time is “wasted” waiting on data transfers from

the host. Both Bus Opt implementations reduce the # Ops because the HLS tool used a different

local memory type with less read ports, restricting the unrolling and therefore only used two

adders and two multipliers for each kernel. The efficiency values of these implementations are also

much higher because these are the only cases where the multipliers themselves are pipelined. The

ideal GFLOPS metric expects each operator to produce a result every clock cycle, so in all other

cases where the operators are not pipelined, there are several cycles of latency for each operation

reducing the efficiency. Between each of the Dataflow implementations, the efficiency drops slightly

as the computation is split into more modules because it is impossible to split the computation

into equal latency modules. The module of longest latency may be computing at all times, but the

shorter length modules must stall.
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Table 3. Resource utilization for each optimization implemented with 1 CU and 𝑝 = 11. Highlighted in red is
any value over 25% utilization, indicating possible issues when instantiating more than one CU.

𝑓𝑚𝑎𝑥

(MHz)

LUT FF BRAM URAM DSP

Baseline 274.6 141137 (10.8%) 214402 (8.2%) 244 (12.1%) 57 (5.9%) 150 (1.7%)

Double Buffering 259.8 148873 (11.4%) 228561 (8.8%) 246 (12.2%) 57 (5.9%) 150 (1.7%)

Bus Opt (Serial) 286.5 146088 (11.2%) 225542 (8.7%) 268 (13.3%) 3 (0.3%) 55 (0.6%)

Bus Opt (Parallel) 296.6 182632 (14.0%) 295340 (11.3%) 330 (16.4%) 12 (1.3%) 192 (2.1%)

Dataflow (1 compute) 286.2 215199 (16.5%) 335009 (12.8%) 330 (16.4%) 240 (25.0%) 592 (6.6%)

Dataflow (2 compute) 291.9 291964 (22.4%) 446258 (17.1%) 330 (16.4%) 240 (25.0%) 1068 (11.8%)

Dataflow (3 compute) 266.3 293757 (22.5%) 448385 (17.2%) 298 (14.8%) 164 (17.1%) 1096 (12.1%)

Dataflow (7 compute) 199.5 473743 (36.4%) 735030 (28.2%) 330 (16.4%) 252 (26.3%) 3016 (33.4%)

Mem Sharing (1 compute) 282.4 229115 (17.6%) 336133 (12.9%) 282 (14.0%) 124 (12.9%) 592 (6.6%)

Fixed Point 64 233.8 254242 (19.5%) 342390 (13.1%) 330 (16.4%) 252 (26.3%) 4368 (48.4%)

Fixed Point 32 244.5 231062 (17.7%) 346507 (13.3%) 1338 (66.4%) 0 (0.0%) 2294 (25.4%)

The efficiency values for all implementations (except Bus Opt) are all near 0.5 because each

multiply-accumulate is implemented as eleven parallel multipliers and eleven sequential adders.

Even though the additions are sequential, the tool still allocated eleven of them. Because the Bus
Opt implementations are restricted to two adders, their efficiencies are higher.

At this point, we want to start replicating the CUs using the remaining area available in the

FPGA fabric to maximize parallelism. For this reason, we need to evaluate the hardware cost of each

implementation. The numbers of LUT, FF, BRAM, URAM, and DSP used by each case for 𝑝 = 11 are

shown in Table 3. In general, each test from Baseline to Dataflow (7 Compute) showed an increase

in resource utilization. Any utilization value over 25% is shown in red. These are the resources

most likely to cause placement and routing issues when instantiating multiple CUs. We tested a

few methods to reduce resource utilization to be able to increase the number of instantiated CUs.

TheMem Sharing optimization is applied to theDataflow 1-Compute implementation where sev-

eral arrays are used in the compute module (cf. Figure 14d). Mnemosyne generated an architecture

to internally share arrays based on their liveness intervals. This decreased the BRAM utilization by

14.5% and the URAM utilization by 48.3% while the LUT and FF utilization only increased minimally

and the DSP utilization remained the same. Also, the execution time was only slightly reduced (a

slowdown of 0.98×). Conversely, this optimization cannot be applied to the Dataflow 2-Compute,
3-Compute, and 7-Compute implementations because, in these cases, each compute module only

uses arrays that cannot be shared, as they are always in use during the module execution. This

optimization is indeed beneficial when on-chip memory inside the CU is the limiting factor, and

when replicating the CUs brings more improvements than dataflow execution.

Another method to reduce resources is to change the numerical representation. All of the previous

tests used the floating-point format with double precision. In general, fixed-point representations

utilize fewer resources than floating-point ones. We tested 64- and 32-bit fixed-point representations

by modifying the Dataflow 7-Compute implementation. The 64-bit implementation uses 24 bits

for the integer portion and 40 bits for the fractional portion. The 32-bit implementation uses 8

bits for the integer portion and 24 bits for the fractional portion. These values are provided by the

user after an analysis of the algorithm. Because the 32-bit data is half the size, we instantiate 8

kernels per CU and divide the 256-bit bus into 8 lanes. In the Fixed Point 64 test, the LUT utilization

reduced by 46.3%, the FF utilization reduced by 53.4%, the RAM utilization remained the same, and

the DSP utilization increased 44.8%. In the Fixed Point 32 test, with respect to the Fixed Point 64 test,
the LUT and FF utilization remained roughly the same. The DSP utilization was nearly halved. The

BRAM increased by about four times while the URAM decreased to zero. This is because the data

representation is half as long, so the overall size of the data structures are half as big. The arrays
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Fig. 16. Performance of each data representation implemented with 1 CU and 𝑝 = 11 or 𝑝 = 7

Table 4. Resource utilization for each data representation implemented with 1 CU and 𝑝 = 11 or 𝑝 = 7. Shown
in red is any value over 25% utilization, indicating possible issues when instantiating multiple CUs.

𝑝
𝑓𝑚𝑎𝑥

(MHz)

LUT FF BRAM URAM DSP

Double 11 199.5 473743 (36.4%) 735030 (28.2%) 330 (16.4%) 252 (26.3%) 3016 (33.4%)

Double 7 225.9 328267 (25.2%) 527809 (20.2%) 438 (21.7%) 0 (0.0%) 1888 (20.9%)

Fixed Point 64 11 233.8 254242 (19.5%) 342390 (13.1%) 330 (16.4%) 252 (26.3%) 4368 (48.4%)

Fixed Point 64 7 201.4 191348 (14.7%) 299992 (11.5%) 438 (21.7%) 0 (0.0%) 2760 (30.6%)

Fixed Point 32 11 244.5 231062 (17.7%) 346507 (13.3%) 1338 (66.4%) 0 (0.0%) 2294 (25.4%)

Fixed Point 32 7 297.0 177280 (13.6%) 306386 (11.8%) 438 (21.7%) 0 (0.0%) 1382 (15.3%)

representing the tensors are no longer big enough for the synthesis tool to decide it is efficient to

use URAM to store them. When taking into account the size of the physical memories, the total

memory space is approximately halved. The performance of the Fixed Point 64 test had a slight

speedup of 1.19× due to the simplification of the logic allowing the frequency to be higher. The

Dataflow 7-Compute test with double format was scaled to 199 MHz while the Fixed Point 64 test
was scaled to 234 MHz. The performance of the Fixed Point 32 test had a speedup over the double

format of 2.37× and it reaches up to 103 GFLOPS. This represents a speed up of more than 35× over

the Baseline version. The Fixed Point 64 test exhibited a mean square error of 9.39 × 10
−22

while

the Fixed Point 32 test had a mean square error of 3.58 × 10
−12

. It is up to the application designer

to determine what an acceptable error is and decide on an appropriate number format, and our

flow can help facilitate a design space exploration of these parameters.

Another method to reduce resource utilization for this kernel is to vary the input parameter 𝑝 .

We tested the Dataflow 7-Compute implementation using 64-bit double, 64-bit fixed point, and

32-bit fixed point with 𝑝 = 7 and 𝑝 = 11. The results are summarized in Figure 16 and Table 4.

Compared to their 𝑝 = 11 counterparts, the 𝑝 = 7 implementations performed slightly slower.

This is because the actual hardware implementation does not scale exactly the same way as the

conceptual floating point operations per kernel (used to compute the GFLOPS). However, the

resource reduction between 𝑝 = 11 and 𝑝 = 7 is enough to allow for more replication of the CUs.

For instance, the Fixed Point 32 implementation uses 66.4% of the available BRAM for 𝑝 = 11 while

it only uses 21.7% for 𝑝 = 7, allowing 4× replication.

In order to further facilitate instantiating multiple CUs, we reduced the stream FIFOs from a naive

full size to small enough to save space and still prevent deadlock. This led to a small performance

reduction, due to stalls, but significantly reduced the total number of BRAMs. Also, because the
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Fig. 17. Performance of each data representation implemented with multiple CUs and 𝑝 = 11 or 𝑝 = 7

Table 5. Resource utilization for each data representation implemented with multiple CUs and 𝑝 = 11 or
𝑝 = 7. Shown in red is any value over 50% utilization to show which resources are the limiting factor.

𝑝 CUs

𝑓𝑚𝑎𝑥

(MHz)

LUT FF BRAM URAM DSP

Double 11 2 146.0 760903 (58.4%) 795663 (30.5%) 442 (21.9%) 456 (47.5%) 6020 (66.7%)

Double 7 3 179.2 777208 (59.7%) 955705 (36.7%) 878 (43.6%) 0 (0.0%) 5651 (62.6%)

Fixed Point 64 11 2 132.3 755752 (58.0%) 485525 (18.6%) 442 (21.9%) 440 (45.8%) 7316 (81.1%)

Fixed Point 64 7 2 168.2 268285 (20.6%) 368056 (14.1%) 658 (32.6%) 0 (0.0%) 5508 (61.0%)

Fixed Point 32 11 3 194.0 479387 (36.8%) 571733 (21.9%) 1274 (63.2%) 960 (100.0%) 6868 (76.1%)

Fixed Point 32 7 4 178.3 404747 (31.1%) 498999 (19.1%) 1100 (54.6%) 0 (0%) 5508 (61.0%)

DSP utilization was particularly high in some cases, we used pragmas to guide the HLS tool on

how to use LUTs instead of DSPs to implement fixed-point multipliers. We used this pragma in one

of the seven compute modules to shift some of the resource load off of DSPs and onto LUTs.

We were able to instantiate two parallel CUs for the cases of Double with 𝑝 = 11, Fixed Point
64 with 𝑝 = 11, and Fixed Point 64 with 𝑝 = 7, three CUs for the cases of Double with 𝑝 = 7 and

Fixed Point 32 with 𝑝 = 11, and four CUs for the case of Fixed Point 32 with 𝑝 = 7. The performance

results for these implementations are shown in Figure 17 and the area results are shown in Table 5.

All of these implementations were built targeting 225 MHz, as most of their 1 CU counterparts

could not even achieve this.

In most cases, replicating the CUs actually led to slowdown. This is because the extra logic and

routing caused the maximum frequency to be reduced thereby slowing down everything in the

system. However, most cases did show speedup in terms of the CU execution time. In particular, the

Fixed Point 32 implementations were able to achieve up to 172 GFLOPS for the kernel but around

87 GFLOPS for the system. This huge discrepancy is due to the fact that even though several CUs

are now executing in parallel, all of the data must still be sent from the host to the HBM in series.

The host data transfers are now the dominating factor by far, so it is not recommended to replicate

CUs until the host data transfer time can be reduced. Otherwise, the overall system will have a

slowdown from the extra logic.

From the resource utilization results it can be seen that both 64-bit data types are constrained by

resources used for computation, namely LUTs and DSPs. The 32-bit fixed point implementation is

also somewhat constrained by DSPs. In any case, this application is composed of almost entirely

floating or fixed point multiplications, and performance-optimized designs will quickly use most
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Fig. 18. Power usage of the Dataflow (7 Compute) optimization with each datatype, 𝑝 = 11 or 𝑝 = 7, and
1-CU or multiple-CU.

of the available DSPs. The 32-bit cases are also constrained by the on chip memories, the 3 CU

implementation of Fixed Point 32 with 𝑝 = 11 even uses 100% of the URAM, but both Fixed Point
32 implementations were able to be replicated more than their Fixed Point 64 counterparts, due
to the data width reduction. The 𝑝 = 7 tests were also, in general, able to be replicated more than

their 𝑝 = 11 counterparts due to the effect 𝑝 has on the amount of computations and the array

sizes. Fixed Point 64 was only able to be replicated twice in both cases of 𝑝 , as the reduction of DSPs

between 𝑝 = 11 and 𝑝 = 7 was not enough to allow for a third CU.

Figure 18 shows the power consumption of the different implementations and a comparison

of the energy efficiency (GFLOPS/W for floating-point operations and GOPS/W for fixed-point

operations). The bars report the average power consumption measured with the XRT infrastructure.

We also include the results of the multiple-CU implementations, to show the effects of replication

on both power consumption (W bars) and energy efficiency (GFLOPS/W and GOPS/W bars).

As expected, the fixed-point implementations are more efficient than the floating-point ones.

Also, reducing the bitwidth from 64 to 32 bits allows us to achieve the maximum efficiency. This

is because these implementations are much faster and use less hardware resources. The 𝑝 = 7

implementations have lower average power consumption than their 𝑝 = 11 counterparts, due to

their smaller resource utilization. However, in most cases the efficiency of the 𝑝 = 7 cases is lower

due to their longer overall execution time. The multiple-CU implementations are generally less

efficient than their single-CU counterparts, both because of the increased work occurring in parallel,

yielding a higher average power, and because of longer execution times from frequency scaling.

4.3 Comparison with Software Implementations
This sections presents the results for two additional kernels. The first kernel performs an inter-

polation, which maps from u ∈ R𝑁×𝑁×𝑁
to u′ ∈ R𝑀×𝑀×𝑀

via an isotropic operator A ∈ R𝑀×𝑁
.

We implemented the Interpolation kernel with𝑀 = 𝑁 = 11. The second kernel computes ∇𝑢, the
gradient of 𝑢 in all 3 dimensions. We implemented the Gradient kernel with dimensions 8× 7× 6. In
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Fig. 19. Performance and power results of various kernels. For the Inverse Helmholtz and Interpolation
kernels, we also include the performance and estimated efficiency of the corresponding highly-optimized
Intel implementations [44]. All experiments are executed using double-precision floating point.

all cases, we compute the total number of floating-point operations needed for simulating 2,000,000

elements and we use these numbers to compute the GFLOPS and GFLOPS/W metrics.

Figure 19a shows the performance results for the Inverse Helmholtz, Interpolation, and Gradient
kernels on the AMD EPYC 7282 and the FPGA. These results include the AMD execution (black

bars), baseline (no optimizations) FPGA implementation (green bars) and the fully optimized FPGA

implementation (azure bars). The fully optimized kernels all use double-precision floating point

data and implement the Double Buffering, Bus Opt (Parallel), and Dataflow (where each loop nest is

a subkernel module) optimizations. The baseline implementations achieved 10.7× - 38.3× speedup

over their software execution on the AMD EPYC 7282. The optimized FPGA implementations,

however, were able to achieve 36.4× - 160.2× speedup over the AMD execution.

To compare our results with state-of-the-art software implementations, Figure 19a also includes

the performance of highly-optimized Intel implementations for the Inverse Helmholtz and Interpola-
tion kernels [44] (red bars). These implementations are generated by the original CFDlang compiler

using the process described in [44], which was found to outperform expert-crafted manually opti-

mized kernels. The executables are compiled with the Intel Compiler and uses the Math Kernel

Library 2017.2.174 and were profiled on a 24-core Intel Xeon E5-2680 v3 CPU (Haswell), running at

2.50 GHz. The FPGA-optimized Inverse Helmholtz and Interpolation kernels achieved 2.7× and 1.4×
speedup over the optimized Intel execution, respectively.

The average power and efficiency for the optimized kernels are shown in Figure 19b. The

estimated efficiencies (GFLOPS/W) of the Intel executions for the Inverse Helmholtz and Interpolation
kernels are also shown. These estimations are calculated using the GFLOPS results of the kernel

and a conservative estimate of the average power (100 W), assuming the CPU would be operating

under a lower load than the thermal design power (120 W). The Interpolation and Inverse Helmholtz
kernels are 4.8× and 7.0× more efficient than the Intel CPU execution, respectively. Recalling the

results from Figure 18, the most power-efficient implementation of the Inverse Helmholtz (32-bit
fixed-point with 𝑝 = 11 and 1 CU) is 24.5× more efficient than the Intel execution.
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5 CONCLUDING REMARKS
Numerical simulations are compute-intensive HPC applications used to solve complex problems

in many scientific fields. Such applications benefit greatly from parallelization. In this context,

HBM FPGA devices are increasingly used to achieve high performance with high energy efficiency.

However, designing HBM architectures for such systems is complex and requires specific skills.

Our analysis of such architectures reveals that the high cost of communication between CPU

and FPGA memories and the limited amount of resources to implement parallel kernels are the

major issues. To address these challenges, we redesigned a DSL compiler in MLIR to automatically

generate HLS-ready code, along with an HLS-based flow to automate the generation of optimized

system architectures that implements several memory-related optimizations. Our MLIR framework

offers much quicker turnaround times in implementing the language. The differences in flexibility

between our custom IR and the new dialects were negligible, while diagnostics, stability, and

composition are greatly improved. We have created an opportunity to apply our strategies, even if

partially, to other MLIR-based flows to achieve a more direct comparison with our results in future.

Our results show that the data format can have a significant impact on performance; a smaller

data format simplifies the logic and allows the circuit to have a shorter overall latency and a to

operate at a higher frequency. The polynomial degree, an application-specific parameter, can also

have an impact on the performance for similar reasons. These parameters also reduce the total FPGA

resources needed to perform the computations, allowing for the possibility of instantiating multiple

compute units in the FPGA fabric. However, replication does not equate to increased performance

unless the host data transfers can be significantly reduced. If the host data transfers are bounding

the application, the design can be optimized for power efficiency by only instantiating one compute

unit. However, if the host were interfaced with multiple FPGAs and were able to send data in

parallel to all of them, replicating the compute units on to separate FPGAs would achieve increased

performance. Overall, we were able to achieve up to 103 GFLOPS–more than 6× faster than highly-

optimized Intel implementations–with an energy efficiency of about 4 GFLOPS/W–almost 24×
more efficient than highly-optimized Intel implementations.
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