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Abstract. In this paper we discuss the challenges and optimisations
opportunities when solving a large number of small, equally sized discre-
tised PDEs on regular grids. We present an extension of the OPS (Oxford
Parallel library for Structured meshes) embedded Domain Specific Lan-
guage, and show how support can be added for solving multiple systems,
and how OPS makes it easy to deploy a variety of transformations and
optimisations. The new capabilities in OPS allow to automatically apply
data structure transformations, as well as execution schedule transforma-
tions to deliver high performance on a variety of hardware platforms. We
evaluate our work on an industrially representative finance simulation on
Intel CPUs, as well as NVIDIA GPUs.

Keywords: Domain Specific Language · Stencil computations · Batch-
ing.

1 Introduction

Traditional imperative programming languages, such as C/C++ and Fortran,
still dominate computational sciences. However, these were designed for a single
thread of execution in mind together with a flat memory model. In contrast,
modern hardware provides massive amounts of parallelism, billions of threads
in large-scale machines, at multiple levels (such as multiple cores, each with
wide vectors), and a multi-level memory hierarchy or even several discrete mem-
ory spaces on a single system. Such hardware complexity need to be carefully
considered for their efficient utilisation.

To allow access to new hardware features, new programming models and
extensions are being introduced - the list is far too long, but the prominent
models and extensions include MPI[?], OpenMP[?], CUDA [?] and OpenCL [?].
Newer models also come to light with new hardware such as the introduction of
OpenACC for NVIDIA GPUs and the most recent announcement of the OneAPI
model from Intel for their upcoming Xe GPUs. Such diversity in both hardware,
as well as programming approaches, presents a huge challenge to computational
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scientists; how to productively develop code that will then be portable across
different platforms and perform well on all of them. The problem appears to
have no solution in the general sense, and research instead focuses on narrowing
the scope, and targeting smaller problem domains. A practical concept here is
the idea of separation of concerns; separate the description of what to compute
from how to actually do it. The challenge then is to design a programming
interface that is wide enough to support a large set of applications, but it is also
narrow enough that a considerable number of assumptions can be made, and
parallel execution, as well as data movement, can be organised in a variety of
ways targeting different hardware.

The separation of concerns approach yields a layer of abstraction that also
separates computational scientists, who use these tools, from the parallel com-
puting experts who develop these tools, whose goal is to apply transformations
and optimisations to codes using this abstraction - which given all the assump-
tions can be much more powerful than in the general case (i.e. what general
purpose compilers can do). Domain Specific Languages in high performance com-
puting narrow their focus on a set of well defined algorithmic patterns and data
structures - OPS is one such DSL, embedded in the C/C++ and the Fortran
languages. OPS presents an abstraction for describing computations on regular
meshes - and application written once with the OPS API can then be automati-
cally translated to utilise various parallel hardware using MPI, OpenMP, CUDA,
OpenCL, and OpenACC.

There is a rich literature of software libraries and DSLs targeting high per-
formance computing with the goal of performance portability. Some of the most
prominent ones include KOKKOS [?] and RAJA [?], which are C++ template li-
braries that allow execution of loops expressed using their STL-like API on CPUs
and GPUs. They also support the common Array-of-Structures to Structure-of-
Arrays data layout transformation. Their approach however is limited by having
to apply optimisations and transformations at compile-time, and the inability
to perform cross-loop analysis (though support for task graphs has been intro-
duced, but that is not directly applicable to the problem we study here). The
ExaStencils project has also developed the ExaSlang DSL which is capable of
data layout transformations and some limited execution schedule transforma-
tions [?], however their approach also does not consider batching, or the kind of
cross-loop analysis and transformations that our work does.

OPS was designed to tackle a moderate number of large structured meshes,
where there is sufficient parallelism within each mesh. However, there is a class
of applications where computations need to be carried out on a large number of
small structured meshes. This algorithmic pattern is prevalent in computational
finance, where predictions need to be made given a large set of different initial
conditions or other parameters. Similarly, a large fraction of computations in
Adaptive Mesh Refinement (AMR) computations execute the same computa-
tions on a collection of small structured blocks. With these application domains
in mind, in this paper we present an extension of the OPS abstraction that
makes it practically trivial to extend an OPS application computing on a single
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PDE system to compute on multiple systems of the same size. We are also in-
troducing a number of optimisations and transformations specific to situations
where multiple systems are present, and expose these to the user so the most
performant combination can be found easily - without requiring changes in the
code. Specifically we make the following contributions:

• Extend the OPS abstraction to accommodate multiple systems.
• Introduce a number of data layout and execution schedule transformations

applicable to the solution of multiple systems.
• We develop an industrially representative financial application, and evaluate

our work on Intel CPUs and NVIDIA GPUs.

The rest of the paper is organised as follows: Section 2 describesthe OPS
framework, Section 3 describes the extension of the OPS abstraction and the
transformations and optimisations developed for batching. Section 4 describes
the test application and the results, and finally Section 5 draws conclusions.

2 The OPS DSL

The Oxford Parallel library for Structured meshes (OPS), is a DSL embedded
into C/C++ and Fortran [?]. It presents an abstraction to its users that lets them
describe what to compute on a number of structured blocks, without specifying
how – the details of data movement and the orchestration of parallelism are left
entirely to the library, thereby achieving separation of concerns.

The abstraction allows the user to define blocks (ops block) and describe
their dimensionality (2D/3D, etc.), which serves to group datasets (ops dat)
together - these have specific extents, user-defined boundary regions, and an
underlying datatype. Extents are defined by datasets rather than the blocks
to allow for staggered grids and multigrid. When multiple blocks are defined,
their datasets can be connected by user-defined halos (ops halo). The user then
defines a number of access patterns, or stencils (ops stencil), that describe
the pattern of access to neighbouring elements during computations later on.
This information is sufficient to initialise and distribute data across different
memory spaces and over MPI. The computations are then described as a parallel
iteration on a given N dimensional range, executing a user-defined kernel (defined
as a C or Fortran function pointer) at each point, accessing datasets using pre-
defined stencils, also specifying the method of access (read/write). The parallel
loop construct is ops par loop, with datasets passed wrapped in ops arg dat

arguments. Mesh invariant values can be passed using the ops arg gbl argument
to the parallel loops, and reductions with the ops arg reduce argument, passing
in a reduction handle (ops reduction), which can be queried separately. For a
full description of the API, please refer to the user documentation [?].

A specific example for a parallel loop is shown in Figure 1 - the user-defined
kernel is always written from the perspective of a single iteration on the mesh,
with data passed in through the templated ACC wrappers, which allow access
through the overloaded parentheses operator. The only requirement regarding
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1// user-defined kernel function

2void kernel(cost ACC<double> &in, ACC<double> &out) {

3 out(0,0) = (in(0,0) + in(1,0) + in(-1,0) +

4 in(0,1) + in(0,-1))/5.0;

5}

6...

7int range[] = {1, 99, 1, 499};

8ops_par_loop(kernel, "smooth", block, 2, range,

9 ops_arg_dat(in, 1, S2D_5pt, "double", OPS_READ),

10 ops_arg_dat(out, 1, S2D_00, "double", OPS_WRITE));

Fig. 1. An example for an OPS parallel loop
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Fig. 2. The workflow for developing an application with OPS

the user-defined kernel is that the order in which OPS iterates through the mesh
must not change the end result within machine precision. This description avoids
the specification of parallelism and how data gets to the user-defined kernel -
the goal of OPS is to facilitate efficient parallelisation and data movement on a
variety of hardware architectures, with different parallel programming models.

An OPS application written once with its high-level API can immediately be
compiled with a traditional compiler and tested for correctness using a header
file sequential implementation of ops par loop. OPS uses an “active-library” ap-
proach to parallelising on different targets; while its API looks like that of a tra-
ditional software library, it uses a combination of code generation and back-end
libraries. The full OPS build system is shown in Figure 2. The code generation
step takes the user’s code, looking for calls to ops par loop, and parses them,
gathering all information into internal data structures, that are then passed to a
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set of code generators targeting parallel programming methods such as OpenMP,
CUDA, OpenCL, OpenACC, etc., which essentially generate the boilerplate code
around the user-defined kernel, managing parallelism and data movement. These
can then be compiled with target-specific compilers, and linked to the backend
libraries of OPS that manage distributed and/or multiple memory spaces, and
execution schedules.

During the initialisation and set-up phase of an application all mesh data is
handed to OPS, and can later only be accessed through API calls. Temporaries
and working arrays can be automatically allocated by OPS. While obviously
limiting, it allows OPS to take full control of data management and movement.
This has a number of advantages; the most prominent is the automatic dis-
tribution of data over MPI, and the management of halo exchanges - OPS is
capable of running on distributed memory machines without any changes to
user code, and can scale up to hundreds of thousands of cores and thousands of
GPUs [?,?]. Multiple memory spaces can also be handled automatically - such
as up/downloading data to/from GPUs. The layout of data itself can also be
changed with the cooperation of backend logic and code generation - a simple
example is the Array-of-Structures to Structure-of-Arrays conversion, which in-
volves the transposition itself (and changed access patterns for MPI communica-
tions) in the backend, and a different indexing scheme in the ACC data wrappers
handed to the user-defined kernels.

OPS having full control over the data has another key advantage; the ability
to re-schedule to order of computations - not just within a single parallel loop,
but across multiple ones. The execution of an OPS application can be though
of as a series of transactions that access data in clearly defined ways, and unless
the control flow of the user code between calls to the OPS API is affected by
data coming out of OPS, it can be perfectly reproduced. This leads to the lazy
execution mechanism in OPS; calls to the OPS API are recorded and stored in
a queue (without actually executing them), up to a point where data has to be
returned to the user. This then triggers the execution of computations in the
queue, giving OPS the ability to make transformations on an intra- and inter-
loop level. We have previously used this mechanism to implement cache-blocking
tiling on CPUs [?], and out-of-core computations on GPUs [?].

3 Batching support in OPS

The key need tackled in this work is that of batching ; the same computations
have to be done on not just one structured block, but a large number of them.
The computations are identical except for the data that is being computed on.
This of course presents trivial parallelisation opportunities, and allowing for such
computations in most computations is easily done. The challenge lies in achieving
high performance on a variety of hardware, which may require significant data
layout and execution schedule transformations - and being able to do all this
without needing changes to the high level user code.
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Fig. 3. Examples of loop structure formulations when solving multiple systems

The most trivial ways to implement solving multiple systems is to either sur-
round the entire computational code with an iteration across different systems,
or just smaller code regions (such as each computational loop). This is a natural
way of coding, because it allows describing computations on a single system,
and the surrounding code just passes in data for different systems. This is the
approach used in most existing software - perhaps most commonly in Adap-
tive Mesh Refinement (AMR) codes [?,?]. The approach of surrounding several
computational steps with a loop over systems is also naturally cache-friendly
on CPUs, but can pose under-utilisation problems, particularly on GPUs. Loop
structures with some of the common options are shown in Figure 3.

More specifically with small individual systems, there may be considerable
overheads in carrying out a computational step - such as getting full vectorisa-
tion, good utilisation of prefetch engines on CPUs, or kernel launches on GPUs.
This is something OPS also suffers from - the generated boilerplate code that
executes and feeds the user-defined kernel has non-negligible costs, which can
become significant when executing on very small blocks (100-1000 grid points).
Task scheduling systems [?,?] are also affected by this.

Another trivial approach is to extend the problem to a higher dimension,
packing systems next to one another - e.g. packing multiple 2D systems into a
3D grid. While this does reduce the aforementioned overheads, it is less cache-
friendly on CPUs, and may require significant code refactoring.

The challenge of appropriately arranging data for efficient execution, and
scheduling computations to minimise overheads and improve data locality is
highly non-trivial on any given platform, and is further complicated by the need
for performance portability across multiple platforms. No implementation should
therefore tie itself to a particular data structure or execution structure - this is
what drove us to extend the OPS abstraction to support batching.

3.1 Extending the abstraction

Our goals in designing extension of the abstraction were twofold: (1) a minimally
intrusive change that makes it easy to extend existing applications, and (2) to
allow for OPS to apply a wide range of optimisations and transformations to
data layout and execution schedule.



Batch solution of small PDEs with the OPS DSL 7

First, we extend ops block with an additional count field, which indicates
the total number of systems. All datasets defined on these blocks will be extended
to store data for each system. Furthermore, reductions need to return values
of each system separately, therefore reduction handles, ops reduction, were
extended with a count field as well. The way computations in OPS are expressed
is unchanged - loops are written as if they only operated on a single system. This
extension allows for describing problems that are trivially batched.

However, there are situations, particularly when using iterative solvers, when
certain systems no longer need to be computed upon, but others do. This necessi-
tates the introduction of APIs that enable or disable the execution of certain sys-
tems. OPS adds two APIs - ops par loop blocks all() to indicate that com-
putations following this point need to be carried out on all systems (which is also
the default behaviour), and ops par loop blocks predicate(block, flags),
which takes an array of flags to indicate which systems to execute and which
ones to skip in following calls to ops par loop.

Semantically, the newly introduced support for multiple systems in OPS
means that each ops par loop will be executed for each system, and each reduc-
tion will compute results for each system separately, returning an array of results
(through ops reduction result, indexed in the same order as the systems are.
From the perspective of the user, execution is done in a “bulk synchronous” way
- whenever an API call is used to get data out of OPS (such as the result of a
reduction), data for all the systems is returned.

In summary, an existing single-block application can be extended to work on
multiple systems with the following steps:

• Specify the number of systems when declaring an ops block,
• Receive multiple reduction results from OPS, one for each system,
• Optionally, add the loop over blocks API calls, particularly when over time

some systems are to be omitted from the calculations.

3.2 Execution schedule transformation

The two most trivial ways to execute multiple systems, as discussed above, is (1)
for each ops par loop to introduce an extra loop over the different systems, and
(2) to execute all ops par loop operations to the first system in one go, then to
the second system, etc. On the level of loopnests, this maps down to having an
extra loop over systems just above each spatial loop nest, or to have this loop
over systems surround the whole computational code.

The first approach is trivial to implement in OPS as well, and it is indeed what
the sequential header-file implementation does. It is also the preferred option for
running on GPUs - launching a large grid of blocks and threads mitigates kernel
launch costs. It is however not optimal on CPUs because while individual systems
may fit in cache, all of them likely do not, leading to poor cache locality between
subsequent ops par loop operations. Parallelisation on the CPU using OpenMP
happens across the different systems, for each ops par loop separately, which
also leads to unnecessary synchronisation points.
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The second approach relies on the lazy execution scheme in OPS - as the
code executes, loops are queued instead of being executed, and once execution is
triggered, OPS iterates through all the systems, and within this iteration, all the
parallel loops in the queue, passing each one the current system. CPU paralleli-
sation is then done across different systems using OpenMP, which improves data
locality between subsequent parallel loops and also removes thread synchroni-
sation overheads. This optimisation can be enabled by defining the OPS LAZY

preprocessor macro.

When the memory footprint of a single system is small, and/or when efficient
execution requires it (overheads of executing a single loop on a single system,
as discussed above, e.g. efficient vectorisation on CPUs), one can create smaller
batches of systems, and execute them together, thereby mitigating overheads,
and making better use of caches. This is also facilitated by the lazy execution
mechanism in OPS, in a similar way to the second approach described above,
by passing batches of systems to each parallel loop in the queue. This num-
ber can be passed as a runtime argument to the application (OPS BATCH SIZE),
and optionally the same preprocessor macro can be defined to make this size a
compile-time constant, which enables further optimisations by the compiler.

3.3 Data layout transformation

The performance of computations can be significantly affected by how data is
laid out and how it is accessed, and whether it aligns with the execution schedule.
Considering that OPS owns all the data, it is free to make transformations to
layout, and work with the generated code and the data accessor objects of OPS
(ACC<>), so from the perspective of the user-defined kernel, these transformations
are completely transparent. Given the wide array of options and target architec-
tures, we have chosen to make these transformation options hyper-parameters -
specifiable at compile- and/or run-time.

OPS expects data that is read in by the user to be passed to it when datasets
are declared. Such data is supposed to follow a column major layout, and be con-
tiguous in memory; for example for a 2D application x size×y size×#systems.
OPS can then arbitrarily swap the axes, or even break them into multiple parts.

We first introduce the batching dimension parameter - i.e. which dimension of
the N + 1 dimensional tensor (N for spatial dimensions of an individual system,
+1 the different systems) storing data should be used for the different systems.
We have implemented code in OPS that can perform an arbitrary change of
axes on input data. There are two obviously useful choices; the last dimension
- the way data is given to OPS in the first place - or the first dimension, so
values at the same grid point from different systems are adjacent to each other:
#systems × x size × y size.... The batching dimension can be set by defining
the OPS BATCHED preprocessor macro to the desired dimension index.

Keeping the batching dimension as the last dimension will keep data from the
same system contiguous in memory, which lead to good data locality, but may
lead to unaligned memory accesses when accessing adjacent grid points. It also
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means that the lowest level of parallelisation - vectorisation on CPUs, and adja-
cent threads on GPUs - will be on the first spatial dimension. For small systems,
this may lead to underutilisation, and cause issues for auto-vectorisation.

Setting the batching dimension to be the first one makes auto-vectorisation
in particular easier, as the loop over the batching dimension becomes trivially
parallelisable, all accesses become aligned, and with large system counts, the
utilisaiton of vector units will be high as well. It does however mean slightly
more indexing arithmetic; for example in 2D, accessing a neighbour with a (i, j)
offset yields the i ∗#systems+ j ∗x size ∗#systems computation. This change
in indexing scheme is done in the implementation of the ACC data wrapper, and
is applied at compile time. This layout also leads to jumps in memory addresses
when accessing neighbouring grid points, and accessing non-contiguous memory
when executing only a subset of all systems (batched execution schedule).

Finally, in situations where data locality is to be exploited, which prefers a
layout with batching dimension being the last one, and vectorisation efficiency
also to be improved, which prefers the layout with the batching dimension being
the first one, we can use a hybrid of the two. OPS can break up the dimension
of different systems into two - by forming smaller batches of systems (e.g. 4
or 8). This yields the following layout for 2D: batch size × x size × y size ×
#systems/batch size, which can be trivially extended to higher dimensions.
The batch size can be set to a multiple of the vector length on CPUs, ensuring
perfect utilisation of vector units, and sized so the memory footprint fits a certain
level of cache. OPS allows this parameter to be set at compile time, using the
OPS HYBRID LAYOUT macro, allowing for better compiler optimisations - e.g. if
batch size is a power of two, integer multiplications can be replaced with bit
shifts, and also no loop peeling is required for generating vectorised code.

3.4 Alternating Direction Implicit solver

The base OPS abstraction requires that all computations are order-independent
- that is, the manner in which OPS iterates through the mesh and calls the user-
defined kernel, does not affect the end result. This is a reasonable requirement for
most explicit methods, however many implicit methods are not implementable
because of this. The alternating direction implicit (ADI) method (see e.g. [?]
and the references therein) is very popular in structured mesh computations - it
involves an implicit solve in alternating dimensions. We have introduced support
for tridiagonal solvers (banded matrices with non-zeros on, above and below the
diagonal), for which the need arises naturally from stencil computations. Tridi-
agonal solves are then applied in different spatial dimensions. We integrate a
library which supports CPUs and GPUs [?], and write simple wrappers in OPS
to its API calls; the user has to define the datasets that store the coefficients
below, on, and above the diagonal, plus the right hand side, and specify the solve
direction. Then, there is trivial parallelism in every other dimension, and the in-
tegrated library is additionally capable of parallelising the solution of individual
systems as well using the parallel cyclic reduction (PCR) algorithm [?].
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The tridiagonal solver library has a number of different implementations for
solving systems that are laid out in the contiguous direction (X) - when solving
many of these systems in parallel, the challenge is that their coefficients do not
lend themselves to “coalesced” memory reads - which is a problem on GPUs in
particular. The library offers five options for GPUs;

0. Transpose the data using CUBLAS, and perform a Y-direction solve, then
transpose the solution back,

1. Each thread works on a different system and carries out non-coalesced reads,
2. Load data in a coalesced way into shared memory, and transpose it there
3. Load data in a coalesced way and use warp shuffle operations to transpose

it,
4. Load data in a coalesced way and use warp shuffle operations to transpose

it, and use a hybrid Thomas-PCR algorithm to expose parallelism within a
single system.

Fitting this solver in our batched extension is a matter of adding an extra
dimension to the data, and solving in the appropriate dimension. When data
layout is changed, the solve dimension is changed accordingly - e.g. when the
batching dimension is 0, X solves become Y solves. A call to this library is
represented just like any other ops par loop, and can be inserted into the queue
during lazy execution. The wrapper takes care of selecting the correct solve
dimension when the data layout is re-arranged, and passing the correct extents
so the desired systems are solved.

4 Evaluation

In this section, we evaluate our work on an industrially representative compu-
tational finance application. While it does not exercise all the newly introduced
features, it does help demonstrate the productivity achieved through OPS of
extending support to multiple systems, and exploring the optimisation space.

4.1 The application

In contemporary financial mathematics, stochastic local volatility (SLV) models
(see e.g. [?]) constitute state-of-the-art models to describe asset price processes,
notably foreign exchange rates. The model is specified via a stochastic differential
equation

dXt = (rd − rf − 1/2L2(Xt, t)Vt)dt+ L(Xt, t)
√
VtdW

1
t (1)

dVt = κ(η − Vt)dt+ ξ
√
VtdW

2
t

dW 1
t dW

2
t = ρdt

for constants rd, rf , κ, η, ξ and ρ and positive function L. W 1 and W 2 are two
independent standard Brownian motions. Note that X above is in log-space, so
can be positive or negative. The process V however cannot be negative.
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Using standard results from stochastic analysis, it follows that the price V
of any financial contract written on X with payoff f at time 0 is given by the
PDE

[h]0 = Vt + 1
2L

2(x, t)vVxx + (rd − rf − 1
2L

2(x, t)v)Vx (2)

+ 1
2ξ

2vVvv + κ(η − v)Vv + L(x, t)ξvρVxv

subject to the initial condition V (0, x, v) = f(x) for all x and all v ≥ 0. Usually
Dirichlet or so-called “zero gamma” boundary conditions are imposed as well.
The PDE (2) is usually solved with finite differences and time integration is via
an ADI time stepper, for example Modified Craig-Sneyd or Hundsdorfer-Verwer
(see e.g. [?] and [?,?]).

In [?] a finite difference solver was developed for this problem, and this solver
has been ported to OPS. The solver is fairly standard, using second order finite
differences on non-uniform grids and a first order upwind stencil at the v = 0
boundary. It uses the Hundsdorfer-Verwer (HV) method for time integration. In
financial applications the initial condition f is often non-smooth, and is typically
smoothed out with a few (2 or 4) fully implicit backward Euler steps (so-called
“Rannacher smoothing” in the finance literature) before switching to an ADI
method. The solver in [?] has this capability, but it is also possible to turn these
steps off and only use the HV stepper. Practitioners often do this when the non-
smoothness in f is not too severe. In our example of a European call option,
the non-smoothness in the initial condition f(x) = max{exp(x)−K, 0} is fairly
benign. We therefore switch off the Rannacher stepping and only use HV time
integration.

Computing the prices of financial options is important, however an arguably
more important task is risk management. Banks manage risk by hedging options.
Heuristically this is done by taking a first order Taylor series approximation of
the option price with respect to all parameters which depend on market data.
Banks therefore require derivative estimates of V with respect to many of the
parameters in the model, which means that not only one option price is sought,
but many prices, arising from pretty much identical PDEs (2) with slightly
different coefficients.

In addition, regulators are requiring banks to do comprehensive “What if”
scenario analyses on their trading books. These require getting option prices
in various “stressed” market conditions and seeing what the bank’s exposure
is. These market conditions again translate to solving (2) with different sets of
coefficients.

A single option contract may therefore need to be priced between 20 and 200
times (depending on various factors) each day to meet trading and regulatory
requirements. Banks trade thousands of options, large international banks can
trade hundreds of thousands of options. This translates to a massive computa-
tional burden in order to manage the bank’s trading risk.

Lastly, banks frequently trade very similar options, which translate compu-
tationally to many instances of (2) on the same (or similar) grids, but with
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different initial conditions or coefficients. There is therefore an ample supply of
small, more or less identical PDE problems that can be batched together.

4.2 Experimental set-up

Table 1. Problem sizes and system counts (batch size) considered - each problem size
X-V pair was evaluated with all listed system counts

Problem size X 50 100 100 200 200 200 300 300 400 400 500 500

Problem size V 50 50 100 50 100 200 150 300 200 400 250 500

Memory footprint (MB) 0.43 0.86 1.70 1.71 3.4 6.8 7.6 15.2 13.5 26.9 21.1 42.1

System count 1 48 96 144 200 248 296 400 600 800 1000

We solve the SLV problem on a range of grid sizes and numbers of systems
(batch size). The exact grid sizes are shown in Table 1, including the memory
footprint of a single system, as well as the system counts that were considered.
In a financial context, these problems range from tiny (50x50) to typical (200x50
or 200x100) to the large (500x500). Typical batch sizes are between 50 and 200,
large would be around 400 to 600, and beyond this the batch sizes are probably
unrealistic for identical PDE systems with different coefficients.

The first workstation has an Intel(R) Xeon(R) Silver 4116 CPU with 12 cores
per socket, running at 2.10GHz, which has 32KB of L1 cache, 1 MB of L2 cache
per core, and 16 MB of L3 cache. The system has 96 GB of DDR4 memory across
12 memory modules to utilise all channels. The machine is running Debian Linux
version 9, kernel version 4.9.0. We use the Intel Parallel Studio 18.0.2, as well
as GCC 8.1.0. All tests use a single socket of the workstation with 24 OpenMP
threads to avoid any NUMA effects - the STREAM benchmark shows a 62 GB/s
achievable bandwidth on one socket.

The second workstation houses an NVIDIA Tesla P100 GPU (16 GB, PCI-e)
- it has an Intel(R) Xeon(R) E5-2650 v3 CPU with 10 cores per socket, running
at 2.30GHz. The system is running CentOS 7, kernel version 3.10.0, and we used
CUDA 10 (with a GCC 5.3 host compiler) to compile our codes. The Babel
STREAM benchmark [?] shows an achievable bandwidth of 550 GB/s.

Considering that our application has an approximately 1.25 flop/byte ra-
tio, it is bound by memory bandwidth - thus the key metric that we evaluate
is achieved bandwidth. We report “effective bandwidth”; based on algorithmic
analysis we calculate the amount of data moved by each computational step by
adding up the sizes of the input and output arrays, neglecting any additional data
movement due to having to store intermediate results (which may be affecting
some tridiagonal solver algorithms).

Most of our results show performance based on timing the purely computa-
tional part of the code, which does not include start-up costs such as as reading
data from a file, or even the data layout transformation (where applicable) - this
is discussed separately at the end of Section 4.3.
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Fig. 4. Bandwidth on Skylake CPU and P100 GPU when solving a single system

4.3 Results

First, we discuss baseline results that do not use the new API of OPS, and solve
only a single system. The results are shown in Figure 4; due to the small size of
individual systems, utilisation is low, but increases steadily with larger systems.
On the CPU, it does reach 58% of peak bandwidth at the largest problem, but
on the P100 GPU these sizes are still far too small to efficiently use the device.
For completeness, here we show performance achieved with both the Intel and
the GNU compilers – the latter is 5-15% slower, and this difference is observed
on later tests as well, which we omit for space reasons.

Next, we discuss the effect of optimisations at the other extreme, having 1000
systems. Results are shown in Figure 5. The two basic strategies use flat OpenMP
parallelism - here each ops par loop is extended with an extra loop over the
different systems and parallelised over the outermost loop using OpenMP. The
two variants of this scheme are when data is laid out in a way so values from sub-
sequent systems are in the last dimension (Dim 2 - x size×y size×#systems),
or in the first dimension (Dim 0 - #systems× x size× y size). Results clearly
show the advantage of the Dim 2 layout, which consistently achieves 45-50 GB/s,
or 72-80% of peak, as opposed to the 35-40 GB/s achieved by the Dim 0 layout.
This is in part due to the Intel compilers having vectorised all the loops regard-
less of layout, and the loss in parallel efficiency when executing remainder loops
being negligible.

When enabling execution schedule transformations, relying on the lazy exe-
cution functionality of OPS, we can specify a Batchsize parameter - the number
of systems to be solved together by a single thread. There are then combined
with various data layouts, the two that are applicable here is the original Dim 2
layout, and the hybrid batched layout in Dim 0 (batch size× x size× y size×
#systems/batch size) - the flat Dim 0 layout causes non-contiguous memory ac-
cesses when solving groups of systems separately, and performs poorly, therefore
it is not shown in this figure.
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Fig. 5. Achieved bandwidth on the Skylake CPU when using different optimisations,

solving 1000 systems

Two obvious choices for the Batchsize parameter are 1 - where the Dim 2 and
hybrid Dim 0 layouts are actually the same, and a Batchsize that matches the
vector length of the CPU, which in this case is 8 (512 bit vector length with 64
bit doubles). For the Dim 2 layout smaller batch sizes may be useful to mitigate
any overheads in executing an ops par loop on a given system. For the Dim
0 layout having fewer systems in a batch would result in the underutilisation
of vector units, because the innermost loop (which is being vectorised) is over
different systems.

For our application, which has a considerable memory footprint for each sys-
tem, and is primarily bandwidth-limited, the performance of these combinations
is driven by how efficiently they can use the cache. At the largest problems it
is clear, that not even a single system fits in cache, therefore the performance
is bound by DDR4 bandwidth, and the different approaches are within 10% of
each other - the lazy execution variant is the fastest due to having fewer syn-
chronisations than the flat OpenMP version. At smaller problem sizes however,
the Batchsize=1 version performs the best, achieving over 90 GB/s, well above
the DDR4 bandwidth; this is due to the data for a single system still fitting in
cache. The memory footprint of individual systems is shown in Table 1 - consid-
ering that on this CPU, each core has approximately 2.3 MB of L2+L3 cache,
the drop in performance above system sizes of 200x50 matches the cache ca-
pacity. At the smallest problem size, the caching effect is still observable on the
Batchsize=8 versions (8 systems of size 50x50 have a memory footprint of 3.4
MB), but performance quickly falls below the DDR4 bandwidth when moving
to larger problems. It should also be noted, that at Batchsize=8, the Dim 0 lay-
out always outperforms the Dim 2 layout, thanks to more efficient vectorisation.
This suggests that on applications which have fewer data per grid point, this
strategy may perform the best.

The number of systems to be solved is also an important factor to perfor-
mance. Figure 6 shows the best performance out of the various optimisation
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Fig. 6. Achieved bandwidth on the Skylake CPU when solving different numbers of

systems

options above, when running with 48, 200, or 1000 systems - system counts in-
between are omitted from this figure as the behaviour is near-linear. Performance
is bound by DDR4 bandwidth at larger problem sizes even at low system counts.
It can be clearly observed that at smaller sizes, the larger the system count, the
better the performance - in large part due to better load balance across different
threads.

Finally, we evaluate performance on an NVIDIA Tesla P100 GPU. Here the
range of options in terms of execution schedule and data layout transformations
are more limited - cache locality cannot be reasonably exploited between sub-
sequent CUDA kernel launches. This leaves us with the two layouts where the
batching dimension is either the first or the last one (denoted as Dim 0 or Dim
2). However, the tridiagonal solver library exposes a number of algorithmic op-
tions for solving in the contiguous (X) dimension. There are no such options for
solving in the Y or Z directions, as data accesses are naturally coalesced when
adjacent threads solve adjacent systems. Figure 7 shows the results - Trid #0-4
denote the different X solve algorithms. While at smaller problem sizes, perfor-
mance is affected by underutilisation, performance quickly reaches the 270-300
GB/s levels (50-55% of peak) for the two fastest options; when batching in Dim
0, and when using the Hybrid Thomas-PCR tridiagonal solver algorithm with
register shuffles during the X solves for the Dim 2 layout.

The data layout transformations in particular have non-negligible overheads
- OPS usually makes a copy of the user-supplied data even when no transforma-
tion is necessary to e.g. pad data in the X direction to a multiple of the cache
line length. This transformation is parallelised by OPS using OpenMP, and its
overhead is reported. Here, we show the overhead in relative terms compared to
the time it takes to execute a single time iteration (for our tests we execute 10
time iterations). Figure 8 shows the overhead of the conversion from the default
Dim 2 layout as the user provides the input, when using 200 systems - relative to
the cost of a single time iteration. Clearly, the larger the system size the less the
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Fig. 7. Achieved bandwidth on the P100 GPU when using different optimisations,

solving 1000 systems

overhead, and it stabilises around the 0.25-0.35 time iteration cost. Conversion
to Dim 0, or the hybrid layout is inevitably less efficient because of the strided
memory accesses when writing data.

5 Conclusions

In this paper we have considered the challenge of performing the same calcula-
tions on multiple independent systems on various hardware platforms. We dis-
cussed a number of data layout options, as well as execution schedules, and inte-
grated these into the OPS library. Our work allows users to trivially extend their
single-system code to operate on multiple systems, and gives them the ability
to easily switch between data layouts and execution schedules, thereby granting
productivity. We have evaluated our work on state-of-the art Intel CPUs and
NVIDIA GPUs, and an industrially representative financial application. Our ex-
periments demonstrate that a high fraction of peak throughput can be achieved
- delivering performance portability.
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