126 research outputs found

    A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring

    Get PDF
    Kernel methods are a class of learning machines for the fast recognition of nonlinear patterns in any data set. In this paper, the applications of kernel methods for feature extraction in industrial process monitoring are systematically reviewed. First, we describe the reasons for using kernel methods and contextualize them among other machine learning tools. Second, by reviewing a total of 230 papers, this work has identified 12 major issues surrounding the use of kernel methods for nonlinear feature extraction. Each issue was discussed as to why they are important and how they were addressed through the years by many researchers. We also present a breakdown of the commonly used kernel functions, parameter selection routes, and case studies. Lastly, this review provides an outlook into the future of kernel-based process monitoring, which can hopefully instigate more advanced yet practical solutions in the process industries

    Process Monitoring and Data Mining with Chemical Process Historical Databases

    Get PDF
    Modern chemical plants have distributed control systems (DCS) that handle normal operations and quality control. However, the DCS cannot compensate for fault events such as fouling or equipment failures. When faults occur, human operators must rapidly assess the situation, determine causes, and take corrective action, a challenging task further complicated by the sheer number of sensors. This information overload as well as measurement noise can hide information critical to diagnosing and fixing faults. Process monitoring algorithms can highlight key trends in data and detect faults faster, reducing or even preventing the damage that faults can cause. This research improves tools for process monitoring on different chemical processes. Previously successful monitoring methods based on statistics can fail on non-linear processes and processes with multiple operating states. To address these challenges, we develop a process monitoring technique based on multiple self-organizing maps (MSOM) and apply it in industrial case studies including a simulated plant and a batch reactor. We also use standard SOM to detect a novel event in a separation tower and produce contribution plots which help isolate the causes of the event. Another key challenge to any engineer designing a process monitoring system is that implementing most algorithms requires data organized into “normal” and “faulty”; however, data from faulty operations can be difficult to locate in databases storing months or years of operations. To assist in identifying faulty data, we apply data mining algorithms from computer science and compare how they cluster chemical process data from normal and faulty conditions. We identify several techniques which successfully duplicated normal and faulty labels from expert knowledge and introduce a process data mining software tool to make analysis simpler for practitioners. The research in this dissertation enhances chemical process monitoring tasks. MSOM-based process monitoring improves upon standard process monitoring algorithms in fault identification and diagnosis tasks. The data mining research reduces a crucial barrier to the implementation of monitoring algorithms. The enhanced monitoring introduced can help engineers develop effective and scalable process monitoring systems to improve plant safety and reduce losses from fault events

    Principal Component Analysis

    Get PDF
    This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as image processing, biometric, face recognition and speech processing. It also includes the core concepts and the state-of-the-art methods in data analysis and feature extraction

    Un paquete de R para control y monitoreo de procesos por lotes utilizando el enfoque Statis Dual-Coordenadas Paralelas

    Get PDF
    El control estadístico multivariante de procesos para la producción por lotes generalmente toma en consideración características correlacionadas para la inspección del desempeño del proceso. En la literatura, los investigadores han utilizado varias técnicas estadísticas de forma individual para abordar esta inspección durante las fases de control y seguimiento. Nuevas estrategias han explorado la posibilidad de combinar dos técnicas con el fin de optimizar el control y el monitoreo del proceso por lotes, como el enfoque DS-PC. Este enfoque novedoso se refiere al uso de Statis Dual y Coordenadas Paralelas e implica una serie de varios pasos de protocolos y aplicaciones de fórmulas que son propensas a errores y consumen mucho tiempo. Utilizando la metodología que se encuentra en la literatura, el paquete DSPC para R se desarrolló con el objetivo de ofrecer una herramienta simple para realizar el cómputo de Statis Dual rápidamente para las fases de control y seguimiento. Las salidas del paquete ofrecen visualizaciones gráficas para detectar comportamientos inusuales durante la producción a través de gráficos de control IS (Interestructura) y CO (Intraestructura). La salida también incluye el gráfico de coordenadas paralelas. Este paquete será útil para los profesionales interesados en la aplicación del enfoque DS-PC a cualquier industria de proceso por lotes a través de la automatización sugerida por defecto o la opción personalizada. Para familiarizar a los usuarios con esta estrategia, el paquete proporciona un conjunto de datos simulado de fabricación de bolsas de plástico industriales

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book

    Monitoring the waste to energy plant using the latest AI methods and tools

    Get PDF
    Solid wastes for instance, municipal and industrial wastes present great environmental concerns and challenges all over the world. This has led to development of innovative waste-to-energy process technologies capable of handling different waste materials in a more sustainable and energy efficient manner. However, like in many other complex industrial process operations, waste-to-energy plants would require sophisticated process monitoring systems in order to realize very high overall plant efficiencies. Conventional data-driven statistical methods which include principal component analysis, partial least squares, multivariable linear regression and so forth, are normally applied in process monitoring. But recently, latest artificial intelligence (AI) methods in particular deep learning algorithms have demostrated remarkable performances in several important areas such as machine vision, natural language processing and pattern recognition. The new AI algorithms have gained increasing attention from the process industrial applications for instance in areas such as predictive product quality control and machine health monitoring. Moreover, the availability of big-data processing tools and cloud computing technologies further support the use of deep learning based algorithms for process monitoring. In this work, a process monitoring scheme based on the state-of-the-art artificial intelligence methods and cloud computing platforms is proposed for a waste-to-energy industrial use case. The monitoring scheme supports use of latest AI methods, laveraging big-data processing tools and taking advantage of available cloud computing platforms. Deep learning algorithms are able to describe non-linear, dynamic and high demensionality systems better than most conventional data-based process monitoring methods. Moreover, deep learning based methods are best suited for big-data analytics unlike traditional statistical machine learning methods which are less efficient. Furthermore, the proposed monitoring scheme emphasizes real-time process monitoring in addition to offline data analysis. To achieve this the monitoring scheme proposes use of big-data analytics software frameworks and tools such as Microsoft Azure stream analytics, Apache storm, Apache Spark, Hadoop and many others. The availability of open source in addition to proprietary cloud computing platforms, AI and big-data software tools, all support the realization of the proposed monitoring scheme

    Data-Driven Fault Detection and Reasoning for Industrial Monitoring

    Get PDF
    This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book

    Tensor Regression

    Full text link
    Regression analysis is a key area of interest in the field of data analysis and machine learning which is devoted to exploring the dependencies between variables, often using vectors. The emergence of high dimensional data in technologies such as neuroimaging, computer vision, climatology and social networks, has brought challenges to traditional data representation methods. Tensors, as high dimensional extensions of vectors, are considered as natural representations of high dimensional data. In this book, the authors provide a systematic study and analysis of tensor-based regression models and their applications in recent years. It groups and illustrates the existing tensor-based regression methods and covers the basics, core ideas, and theoretical characteristics of most tensor-based regression methods. In addition, readers can learn how to use existing tensor-based regression methods to solve specific regression tasks with multiway data, what datasets can be selected, and what software packages are available to start related work as soon as possible. Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis. It is essential reading for all students, researchers and practitioners of working on high dimensional data.Comment: 187 pages, 32 figures, 10 table
    corecore