16 research outputs found

    Solar response of the BATSE instrument on the gamma-ray observatory

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on board the gamma ray observatory (GRO) aims at comprehensive observations of time profiles, spectra, and locations of high-energy transient sources. The mysterious cosmic gamma ray bursts provided the main motivation for the observations, but BATSE will make excellent observations of many classes of sources, and in particular solar flares. The solar response of BATSE, as inferred from its design parameters, is analyzed for two purposes: the optimization of the solar observations themselves, and the characterization of the solar effects on ordinary nonsolar observations

    Transformational approach to program concretization

    Get PDF
    AbstractThis paper focuses on the problem of program concretization by applying correctness-preserving transformations of annotated programs. According to the approach presented, a general-purpose program can be annotated by known information about a specific context of its applications and correctly transformed into a specialized program which is equivalent to the original one on the context-defined ranges of inputs and outputs and is better than it by quality criteria given by the context. Tools for program concretizations via annotated program transformations are considered

    A complete transformational toolkit for compilers

    Get PDF
    In an earlier paper, one of the present authors presented a preliminary account of an equational logic called PIM. PIM is intended to function as a 'transformational toolkit' to be used by compilers and analysis tools for imperative languages, and has been applied to such problems as program slicing, symbolic evaluation, conditional constant propagation, and dependence analysis. PIM consists of the untyped lambda calculus extended with an algebraic rewriting system that characterizes the behavior of lazy stores and generalized conditionals. A major question left open in the earlier paper was whether there existed a complete equational axiomatization of PIM's semantics. In this paper, we answer this question in the affirmative for PIM's core algebraic component, PIMt, under the assumption of certain reasonable restrictions on term formation. We systematically derive the complete PIM logic as the culmination of a sequence of increasingly powerful equational systems starting from a straightforward 'interpreter' for closed PIM terms

    Towards a complete transformational toolkit for compilers

    Get PDF
    PIM is an equational logic designed to function as a ``transformational toolkit'' for compilers and other programming tools that analyze and manipulate imperative languages.It has been applied to such problems as program slicing, symbolic evaluation, conditional constant propagation, and dependence analysis.PIM consists of the untyped lambda calculus extended with an algebraic data type that characterizes the behavior of lazy stores and generalized conditionals.A graph form of PIM terms is by design closely related to several intermediate representations commonly used in optimizing compilers. In this paper, we show that PIM's core algebraic component, PIMt_t, possesses a complete equational axiomatization (under the assumption of certain reasonable restrictions on term formation). This has the practical consequence of guaranteeing that every semantics-preserving transformation on a program representable in PIMt_t can be derived by application of PIMt_t rules. We systematically derive the complete PIMt_t logic as the culmination of a sequence of increasingly powerful equational systems starting from a straightforward ``interpreter'' for closed PIMt_t terms. This work is an intermediate step in a larger program to develop a set of well-founded tools for manipulation of imperative programs by compilers and other systems that perform program analysis

    Fully abstract models of programming languages

    Get PDF

    Development of geometrical thinking via educational software by pupils of elementary school

    Get PDF
    The study is aimed to describe the using of geometrical educational software oriented to develop geometrical spatial thinking. This software is available on the webpage www.delmat.info. We would like to show his functions, propose concrete thematic areas in Slovak and Polish curriculum in the elementary level useful for this software. Future research in Polish elementary school in the 1-3 grades will be discussed

    A bibliography on formal languages and related topics

    Get PDF
    corecore