
Theoretical Computer Science 90 (1991) 37-46

Elsevier
37

Transformational approach to
program concretization

V. Kasyanov
Institute qf Informatics Systems, Siberian Division of the USSR Academy of Sciences

Novosibirsk 630090, USSR

Abstract

Kasyanov, V., Transformational approach to program concretization, Theoretical Computer

Science 90 (1991) 37-46.

This paper focuses on the problem of program concretization by applying correctness-preserving

transformations of annotated programs. According to the approach presented, a general-purpose

program can be annotated by known information about a specific context of its applications and

correctly transformed into a specialized program which is equivalent to the original one on the

context-defined ranges of inputs and outputs and is better than it by quality criteria given by the
context. Tools for program concretizations via annotated program transformations are considered.

1. Introduction

Transformation techniques are gaining in importance for both theoretical and

technological programming. Systems of equivalent (or correctness-preserving) trans-

formations have been conventionally used in the optimizing compilers [l-3] and

are currently widely applied in mechanical aids for supporting the program develop-

ment process [4,5]. The long-range objective of the program transformation para-

digm is to essentially improve the construction, reliability, maintenance and extend-

ability of software. The current state-of-the-art of program transformation is still

rather far from supporting these ambitious goals, and research continues along a

variety of diverse paths [6].

In this paper, we outline the transformational approach to program concretization,

whereby a given general-purpose program can be correctly transformed into a

multitude of more qualitative special-purpose programs. A concretization transfor-

mation is aimed at improving a given program without disturbing its correctness in

a given restricted and stable context of its applications. In addition to the restricted

sets of program inputs and outputs, some suitable criterion of program quality can

be defined by the program application context. For example, memory, time or

reliability may be considered as program quality criteria by the context given.

@ 1991-IFIP

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82730973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 V. Kasyanov

According to the approach presented, any source program is considered as a base

for constructions of a number of different specialized programs. Every construction

starts with the source program and an application context conveyed in formalized

comments (annotations). Some program annotations can be formed in parallel with

the development of the source program, others are added by users and describe a

specific context of source program applications. Then a series of concretizing

transformations is applied to the annotated general-purpose program (either

automatically or interactively with the user), which results in a correct and qualitative

specialized program.

The transformational approach described below was considerably influenced by

the works of Professor A.P. Ershov.

2. Concretization problem

Investigations of transformation systems and their applications to various kinds

of program manipulations show that during transformations it is important to take

into account information known about the application context of the program being

transformed, as well as to employ generalizing and specializing transformations

which are nonequivalent.

Unlike the equivalent transformations that preserve the functions calculated by

the programs being transformed, generalizing transformation can convert a source

program to a program that solves a more general problem than the source program

(for example, a function calculated by the result program can be obtained from the

source program function by the addition of further parameters or results).

Specialization is in some ways the complement of generalization. A well-known

example of specializing transformation is the so-called partial evaluation (or mixed

computation) of programs on partially given inputs [7,8]. Partial evaluation can be

applied to compiling, program generation, including compiler generation and gener-

ation of a compiler generator, and metaprogramming without order-of-magnitude

loss of efficiency [8].

Similar to distinguishing optimizing transformations among all equivalent ones,

it is possible to distinguish among generalizing and specializing transformations,

the so-called concretizing transformations aimed at optimization of the source

program in a restricted and stable context of program applications [9]. Every

concretizing transformation is aimed at improving the program given according to

a given qualitative criterion (for example, memory, time or reliability) without

disturbing the meaning of the program in a given restricted context of its application.

Let us illustrate the concretization problem with an example of a simple Pascal-

procedure El which computes in X the solution of linear equation system

Transformational approach to program concretization 39

represented by a triangular matrix A and a vector B

PROCEDURE El (A: MATRIX; B: VECTOR; VAR X: VECTOR);

VAR I,K: INTEGER: 2: REAL;

BEGIN X[l] := B[l]/A[l,l];

FOR I:=2 TO N DO

BEGIN 2 := 0;

FOR K:=lTO Z-l DO Z:=Z+A[Z,K]*X[K];
X[Z]:=(B[Z]-Z)/A[Z,Z]

END

END.

If El deals only with a diagonal matrix A and qualitative criterion is a program

length then the procedure can be replaced by the following improved version of E 1.

PROCEDURE E2 (A: MATRIX; B: VECTOR; VAR X: VECTOR);

VAR I: INTEGER;

BEGIN FOR I:= 1 TO N DO X[Z]:= B[Z]/A[Z,Z] END.

In another context, if the single goal of any application of El is to compute the

first element of X, the following version of the procedure E 1 is more qualitative

with respect to all main criteria of program quality.

PROCEDURE E3 (A: MATRIX; B: VECTOR; VAR X: VECTOR);

BEGIN X[11 := B[l]/A[l,l] END.

It should be noted that most needs of concretizations are satisfied by using such

universal tools of program text construction as macrogenerators and editors. But

the approach of automatization of concretizations is not convenient for programmers

because it make high demands. Using this approach an end user must programme

all specialization processes of its own program.

3. Annotated programs

The main idea of concretization is to take advantage of the known context in

which only some program executions are admissible and only some of their results

are used to tailor that program to the context, with the objective of realizing a more

qualitative (in the meaning defined by the context) computation of the used results.

But modern high-level languages do not have enough means of description of

contexts of program applications.

So, it is natural to pass from program to program with annotations in which

context information can be conveyed [9].

As a basic language let us consider a high-level language, for example, Pascal.

The basic language is assumed to be extended adding the annotations which are

formalized comments in the basic programs and relevant for the semantics of the

40 V. Kasyanov

program annotated. In particular, every annotation-assertion is evaluated and if it

is false, the execution is inadmissible (beyond the context of program applications).

So, annotations-assertions are intended to state certain properties of the program

at its particular “places”, and these properties can be used for solving problems of

program concretization.

For example, the annotated procedure

PROCEDURE E4;

BEGIN {$Z=l; W=2; $}

IF X>O THEN

Z-:=2+1

ELSE BEGIN Y:=X+l, Z:= W END

{S DEAD(Y); $1
END;

where DEAD(Y) sets that the current value of Y is unused under any application

of E4, can be correctly transformed into the following special-purpose procedure

of higher quality

PROCEDURE E5;

BEGIN Z:= 2 END;

It is assumed that the following properties hold.

Annotations added to a basic program specify a covering context. It is guaranteed

that any actual program application from the context described will be admissible

by annotations, but some admissible applications may be beyond the actual context.

Annotated programs are subjected to concretizing transformations as a whole. It

means that the transformations can change not only the basic program but their

annotations as well.

Annotations intended to specify the context can also be represented in the form

of directives. Unlike annotation-assertion which are predicate constraints on admiss-

ible memory states, annotation-directive is either a statement that will change the

current memory state every time the annotation is reached during possible execution

of the program annotated [lo] or the name of some concretizing transformation

allowed for application at the corresponding annotated program point by the context

[31.
Below an example of annotated Pascal function which computes

C (-1)‘x2’+‘/(2i+ l)!

is presented. The example illustrates how assertions and directives can be used to

form a tracing algorithm which gathers some information about program execution

to verify its correctness.

FUNCTION E6 (X,E: REAL): REAL;

VAR A,B,C,D,S: REAL; {$ I: INTEGER; $}

{S
FUNCTION P (X: REAL; N: INTEGER): REAL;

BEGIN IF N = 0 THEN P:= 1 ELSE P:= P(X,N - 1) * X END;

Transformational approach to program concretization 41

FUNCTION F (N: INTEGER): INTEGER;

BEGIN IF N = 0 THEN F := 1 ELSE F := F(N - 1) * N END;

FUNCTION ELEM (X: REAL; N: INTEGER): REAL;

BEGIN ELEM:= P(-l,N) * P(X,2 * N- l)/F(2 * N- 1) END;

FUNCTION SUM (X: REAL; N: INTEGER): REAL;

VAR I: INTEGER; S: REAL;

BEGIN S:= X; FOR I := 1 TO N DO S:= S+ ELEM(XJ);

SUM := S

END;

S]
BEGIN A:= -2; B:= 0; C := X; S:= X; II:= -SQR(X);

{$ I:= 0; $}

WHILE ABS(C) > E DO

BEGIN{$A=8*1-2; B=2*1*(2*1+1); C=ELEM(X,I);

S = SUM(X,I); ABS(C) > E; $}

A:=A+8; B:=B+A; C:=C*D/B; S:=S+C;

{$1:=1+1; $}

END;

{$ S=SUM(XJ); ABS(ELEM(X,I)) < = E; $}

E6:= s

END;

In [lo] a model of programs annotated with assertions and directives which is

based on large-scale program schemata covering a broad class of programs and

their transformations [3, 111 is described, and the equivalence and generalization

relations between annotated and basic programs are defined.

For example, it is assumed that the annotated function

FUNCTION POWER1 (X: REAL; N: INTEGER): REAL;

BEGIN {$ N := 5; $}
y:= 1;
WHILE N>O DO

BEGIN WHILE NOT ODD(N) DO

BEGIN N := N DIV 2; X:= SQR(X) END;
N:=N-1; Y:= Y*X

END;

POWER1 := Y

END

is equivalent to the basic function

FUNCTION POWER2 (X: REAL; N: INTEGER);

BEGIN Y:= SQR(SQR(X)) * X; POWER2:= Y END

42 V. Kasyanov

and generalizes the annotated function

FUNCTION POWER3 (X: REAL; N: INTEGER);

BEGIN {$ N = 5; $} POWER3 := SQR(SQR(X)) * X END

but is not equivalent to it.

4. Transformation machine for program concretization

The class of correct transformations of annotated programs covers various kinds

of work with basic programs [3, lo]. It contains both all equivalent transformations

and a number of such nonequivalent transformations which specialize or generate

a basic program to be transformed, in particular partial evaluation.

So, the approach permits specializing and generalizing transformations of basic

programs to reduce to equivalent transformations of annotated programs and to

employ for their investigation equivalent transformation techniques developed in

terms of program schemata theory [12].

Another advantage of the approach outlined above is the possibility of performing

global transformations of basic programs by iterative application of elementary

transformations of annotated programs.

To construct annotated program transformation tools, we may make use of the

concept of an abstract device which has elementary transformations as its instruction

set and is called a transformation machine [13].

Various processes of correct transformations of annotated programs seem to have

a relatively small number of underlying elementary transformations being correct

in the class of all annotated programs. Thus, it is possible to develop a transformation

machine (TM), whose data and instructions are the annotated programs and their

transformations, respectively [141. Transformation rules used as TM instructions

are of the three types:

(1) instructions for moving active points about the programs processed; they make

one or a few points of the program accessible for transformations;

(2) control instructions to express higher level transformation rules in terms of

lower ones;

(3) elementary transformations which are rules of correct transformations of

annotated programs and which alone are able to modify the program processed.

Every ordered pair of annotated program fragments is called a rule. A rule is

correct if both its fragments have the same meaning in all admissible program

executions. An elementary (or basic) transformation is a set of correct rules. Every

elementary transformation is either applicable to a given point of the program, or

unapplicable. In the first case, the transformation can be applied to this point. Any

transformation application replaces an occurrence of the left side of a certain rule

by the right side of this rule.

An elementary transformation system is defined as the instruction set of TM.

Thus unlike the transformation machine described in [131, TM employs no instruc-

tions whose application correctness depends not only on the fragment transformed,

Transformational approach to program concretization 43

but on the program as a whole. So, every program in the TM instruction language

defines a correct transformation of any annotated program, i.e. it is a program

processor in a sense of the definition of [131. Program processor describes a concreti-

zation transformation if it is total and defines a partial order on the set of the

annotated programs.

The set of all elementary transformations of TM is subdivided into four subsets:

property and schematic transformations to be outlined below, elementary transfor-

mations which reflect the semantics of language constructions (e.g. CASE const OF

const: statement; sequence END + statement) and elementary transformations

that originate from object domain laws (e.g., 1 t-2 3 3; exp x 1 + exp; exp/O +

error-division-by-zero).

The subset of the schematic transformations includes removing and inserting

inaccessible fragments; removing and inserting useless computations; replacing the

terms according to their properties; replacing the variables; deadlock standard-

ization; copying the fragments and pasting copies together; folding and unfolding

for functions and procedures, removing and inserting unessential branches.

Property transformations are intended to generate new annotations by extracting

information from a basic program construction, to propagate information taking

into account the property modification which originates from a relevant language

construction and to update annotations through the new information logically

inferred from current annotations. Any property transformation can modify only

annotations of the program processed.

The transformation implemented by a TM program can be applied either as a

fully automatic process or a programmer-guided manipulation of annotated pro-

grams. This process may involve significant system-programmer interactions.

TM instruction language also allows writing procedures to define more complex

rules in terms of elementary ones and contains a set of built-in procedures. For

example, there are built-in procedures for data flow analysis for the extraction of

such properties as equality of terms, ranges of variables and a number of properties

which can be described by finite sets of predicates. Different strategies of program

transformations can be expressed in the instruction language as a procedure with

transformations as formal parameters. For example, there are built-in procedures

to realize algorithms of data flow analysis, to convert various constructions of an

annotated program into canonical forms, for logical inference and so on.

The instruction set of a TM must be extensible. But the programmer must be able

to prove the correctness of added elementary transformations. So, there is a great

interest in constructing such a metamechanism which assists the programmer with

the extension of the instruction set of a TM.

5. Tools for program concretization

The transformation approach described above enables us to construct program

transforming tools of various types. An example is a program transformer that

44 V. Kasyanov

realizes a collection of connected program processors and is used as a technological

module in the programming environment. Also, the implementation is possible of

the so-called concretization systems being an integrated device for constructing

program concretizators [3].

With respect to the main criteria of program quality, among program concretizators

the following types of tools can be distinguished.

(1) Source-to-source optimizers. They aim at improving basic programs conven-

tionally for the optimizing compiler, but they transform programs on the source

language level and take into account the parameters of both the compilation and

execution environment.

(2) Concretizators making annotated programs clearer and more self-descriptive.

They annotate the program by assertions on its semantic properties (such as

invariants for term equality, control flow graph and so on), improve the program

structure by renaming objects, inserting descriptions, etc.

(3) Instrumentation tools. They make a debugging version of a source program

by adding basic language statements which test the program properties described

in the annotations.

(4) Verijication tools aimed at a statical check of a source annotated program for

correctness and supplementing it with annotations which present discrepancies

discovered in the program. For example, the verification tools can elicit the so-called

implausibility properties (redundant actions, noninitialized variables, infinite execu-

tion, useless objects, over-complicated data organization, etc.) due to certain dis-

crepancies between the source program text and the executions which it represents;

a test for implausibility permits static detection of some dynamic errors and formal

detection of some informal errors [151.

(5) Reducers. They eliminate redundant objects and constructions from source

annotated programs. Reducers are aimed at improving a given program according

to all main qualitative criteria by way of the maximal use of the information contained

in its annotations.

It should be noted that some conventional tools in which program processing

does not always terminate or goes beyond the limits of a basic language can also

be replaced by concretizators. For instance, instead of an interpreter, the program-

mer’s environment may utilize a concretizator which performs a basic program from

transformations of the program annotated and constructs the evaluation trace in

the annotations having user-defined form. Other concretizators for annotated pro-

grams can be used as tools for partial evaluation and specialization of basic programs.

Concretization systems are based on the transformation machine concept and

support operational environments ensuring safe and rapid programming of a variety

of program processors, as well as their application in combinations that are usually

impossible (for example, to optimize the debugging version of a source program).

Reliability of tools implemented by means of the concretization system is provided

by applying only such transformation rules that preserve the meaning of the program

processed. The language level for writing transformation tools is getting higher,

Transformational approach to program concretization 45

which contributes to a greater automation of program development. It should be

noted that tools can be extended and implement self-descriptive processes of program

transformation (the history of development is presented by a sequence of applied

transformations).

In the environment supported by a concretization system, it seems practical to

create experimental tools for program transformation as well as tools for “single”

and “individual” applications, i.e. tools constructed to transform a specific program

or designed for one programmer.

If the basic language of a concretization system and its implementation language

are the same, mutual applications of program processors will be possible which

would provide us with the opportunity to make a compiler from an interpreter, a

compiler generator from a partial evaluator and other applications usually con-

sidered as motivations for partial evaluation [7,8].

6. Conclusion

Usually the process of program development by successive application of transfor-

mations starts with specification (that is a formal statement of a problem or its

solution) and ends with a program to be executed. In this paper, an attempt is made

to suggest tools and techniques for annotated programming, whereby a general-

purpose program can be annotated by known information about a specific context

of its applications and correctly transformed into a specialized program which is

equivalent to the original one on the context-defined ranges of inputs and outputs

and is better than it by quality criteria given by the context.

Tools and techniques for annotated program transformations can be used for

partial evaluation, program optimization compiling, program generation (including

compiler generation and generation of compiler generator), and metaprogramming

without order-of-magnitude loss of efficiency.

References

[l] A.P. Ershov, ALPHA - an automatic programming system of high efficiency, J. ACM 13(1) (1966)
17-24.

[2] K.N. Kennedy, A survey of compiler optimization, in: Program How Analysis: Theory and Applica-

tions (Prentice-Hall, Englewood Cliffs, NJ, 1981) 5-54.

[3] V.N. Kasyanov, Optimizing Transformations of Programs (Nauka, Moscow, 1988) (in Russian).

[4] A.P. Ershov, The transformational approach in software engineering, in: Software Engineering,

Abstracts of the reports to the All-Union Conference, Plenary sessions and general material, (Institute

of Cybernetics, Ukrainian Academy of Science, Kiev, 1979) 12-26 (in Russian).

[5] H. Partsh and R. Steinbruggen, Program transformation systems, ACM Cornput. Surveys 15(3)

(1983) 199-236.
[6] M.S. Feather, A survey and classification of some program transformation approaches and tech-

niques, in: Program Specification and Transformation (North-Holland, Amsterdam, 1987) 165-195.

[7] A.P. Ershov, On the partial computation principle, Inform. Process. Lett. 6(2) (1977) 38-41.

46 V Kasyanov

[S] New Generation Computing, Special Issue: Selected Papers from the Workshop on Partial Evaluation

and Mixed Computation, 6(2,3) (1988).
[9] V.N. Kasyanov, Program concretization problems, in: Problems of Theoretical and Systems Program-

ming (Novosibirsk State University, Novosibirsk, 1982) 35-45 (in Russian).

[lo] V.N. Kasyanov, Annotated Program Transformations, Lecture Notes in Computer Science 405

(Springer, Berlin, 1989) 171-180.

[ll] V.N. Kasyanov, Basis for program optimization, in: Proc. IFIP Congress 83 (North-Holland,

Amsterdam, 1983) 315-320.

[12] A.P. Ershov, Theory of program schemata, in: Proc. IFlPCongress 71 (North-Holland, Amsterdam,
1971) 28-45.

[13] A.P. Ershov, The Transformational Machine: theme and Variations, Lecture Notes in Computer

Science 118 (Springer, Berlin, 1981) 16-32.

[14] V.N. Kasyanov and V.K. Sabelfeld, Tools for program transformations, in: Informatika-88: Acres

du Seminaire Fcanco-Sovie’tique, (INRIA, Roquencourt, 1988) 89-100.

[15] V.N. Kasyanov and I.V. Pottosin, Application of optimization techniques to correctness problems,

in: Constructing Quality Software, Proc. IFIP TC 2 Working Conf: (North-Holland, Amsterdam,

1979) 237-248.

