110 research outputs found

    Actuators for a space manipulator

    Get PDF
    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator

    Modeling of Force and Motion Transmission in Tendon-Driven Surgical Robots

    Get PDF
    Tendon-based transmission is a common approach for transferring motion and forces in surgical robots. In spite of design simplicity and compactness that comes with the tendon drives, there exists a number of issues associated with the tendon-based transmission. In particular, the elasticity of the tendons and the frictional interaction between the tendon and the routing result in substantially nonlinear behavior. Also, in surgical applications, the distal joints of the robot and instruments cannot be sensorized in most cases due to technical limitations. Therefore, direct measurement of forces and use of feedback motion/force control for compensation of uncertainties in tendon-based motion and force transmission are not possible. However, force/motion estimation and control in tendon-based robots are important in view of the need for haptic feedback in robotic surgery and growing interest in automatizing common surgical tasks. One possible solution to the above-described problem is the development of mathematical models for tendon-based force and motion transmission that can be used for estimation and control purposes. This thesis provides analysis of force and motion transmission in tendon-pulley based surgical robots and addresses various aspects of the transmission modeling problem. Due to similarities between the quasi-static hysteretic behavior of a tendon-pulley based da Vinci® instrument and that of a typical tendon-sheath mechanism, a distributed friction approach for modeling the force transmission in the instrument is developed. The approach is extended to derive a formula for the apparent stiffness of the instrument. Consequently, a method is developed that uses the formula for apparent stiffness of the instrument to determine the stiffness distribution of the tissue palpated. The force transmission hysteresis is further investigated from a phenomenological point of view. It is shown that a classic Preisach hysteresis model can accurately describe the quasi-static input-output force transmission behavior of the da Vinci® instrument. Also, in order to describe the distributed friction effect in tendon-pulley mechanisms, the creep theory from belt mechanics is adopted for the robotic applications. As a result, a novel motion transmission model is suggested for tendon-pulley mechanisms. The developed model is of pseudo-kinematic type as it relates the output displacement to both the input displacement and the input force. The model is subsequently used for position control of the tip of the instrument. Furthermore, the proposed pseudo-kinematic model is extended to compensate for the coupled-hysteresis effect in a multi-DOF motion. A dynamic transmission model is also suggested that describes system’s response to high frequency inputs. Finally, the proposed motion transmission model was used for modeling of the backlash-like hysteresis in RAVEN II surgical robot

    Design Of An Anthropomorphic Upper Limb Exoskeleton Actuated By Ball-Screws And Cables

    Get PDF
    International audienceThis paper presents the design of ABLE, an anthropomorphic upper limb exoskeleton integrally actuated by highly reversible ball-screw and cable (SCS standing for Screw-and-Cable-System) allowing true joint torque control without force sensor. Their unique kinematics allows their integration in the structure thanks to dedicated mechanical innovations such as the shoulder articulation and the forearm-wrist. The result is an anthropomorphic, lightweight, open architecture which avoids imprisoning the human limb. Applicative projects are briefly presented in: medical rehabilitation, teleoperation and haptics (VR).Lucrarea prezintă proiectul lui ABLE, un exoschelet al braţului, integralacţionat de un sistem şurub cu cap sferic şi cablu (SSC, de la sistem cu şurub şicablu), puternic reversibil, care permite controlul real al momentului în articulaţiefără senzor de forţă. Cinematica unică permite integrarea lui în structură graţieinovaţiilor mecanice speciale, precum articulaţia umărului şi încheieturaantebraţului. Rezultatul este o arhitectură deschisă, uşoară, antropomorfică, careevită încorsetarea braţului uman. Sunt prezentate pe scurt proiecte de aplicaţii în:recuperarea medicală, telechirurgie şi interfaţare haptică (RV)

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Kinematics and Robot Design IV, KaRD2021

    Get PDF
    This volume collects the papers published on the special issue “Kinematics and Robot Design IV, KaRD2021” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2021), which is the forth edition of the KaRD special-issue series, hosted by the open-access journal “MDPI Robotics”. KaRD series is an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2021, after the peer-review process, accepted 12 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Soft Robotics: Design for Simplicity, Performance, and Robustness of Robots for Interaction with Humans.

    Get PDF
    This thesis deals with the design possibilities concerning the next generation of advanced Robots. Aim of the work is to study, analyse and realise artificial systems that are essentially simple, performing and robust and can live and coexist with humans. The main design guideline followed in doing so is the Soft Robotics Approach, that implies the design of systems with intrinsic mechanical compliance in their architecture. The first part of the thesis addresses design of new soft robotics actuators, or robotic muscles. At the beginning are provided information about what a robotic muscle is and what is needed to realise it. A possible classification of these systems is analysed and some criteria useful for their comparison are explained. After, a set of functional specifications and parameters is identified and defined, to characterise a specific subset of this kind of actuators, called Variable Stiffness Actuators. The selected parameters converge in a data-sheet that easily defines performance and abilities of the robotic system. A complete strategy for the design and realisation of this kind of system is provided, which takes into account their me- chanical morphology and architecture. As consequence of this, some new actuators are developed, validated and employed in the execution of complex experimental tasks. In particular the actuator VSA-Cube and its add-on, a Variable Damper, are developed as the main com- ponents of a robotics low-cost platform, called VSA-CubeBot, that v can be used as an exploratory platform for multi degrees of freedom experiments. Experimental validations and mathematical models of the system employed in multi degrees of freedom tasks (bimanual as- sembly and drawing on an uneven surface), are reported. The second part of the thesis is about the design of multi fingered hands for robots. In this part of the work the Pisa-IIT SoftHand is introduced. It is a novel robot hand prototype designed with the purpose of being as easily usable, robust and simple as an industrial gripper, while exhibiting a level of grasping versatility and an aspect comparable to that of the human hand. In the thesis the main theo- retical tool used to enable such simplification, i.e. the neuroscience– based notion of soft synergies, are briefly reviewed. The approach proposed rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive underactuated mechanisms, which is called the method of adaptive synergies, is discussed. This ap- proach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the method of adaptive syner- gies, the Pisa–IIT SoftHand is then described in detail. The design and implementation of the prototype hand are shown and its effec- tiveness demonstrated through grasping experiments. Finally, control of the Pisa/IIT Hand is considered. Few different control strategies are adopted, including an experimental setup with the use of surface Electromyographic signals

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot

    CABLE DECOUPLING AND CABLE-BASED STIFFENING OF CONTINUUM ROBOTS

    Get PDF
    Cable-driven continuum robots, which are robots with a continuously flexible backbone and no identifiable joints that are actuated by cables, have shown great potential for many applications in unstructured, uncertain environments. However, the standard design for a cable-driven continuum robot segment, which bends a continuous backbone along a circular arc, has many compliant modes of deformation which are uncontrolled, and which may result in buckling or other undesirable behaviors if not ameliorated. In this study, a detailed approach for using additional cables to selectively stiffen planar cable-driven robots without substantial coupling to the actuating cables is investigated. A mechanics-based model based on the planar Cosserat equations is used to find the design conditions under which additional cables can be routed without coupling of the cable lengths for small deformations. Simulations show that even for relatively large deformations, coupling remains small. A prototype was designed and evaluated, and it was demonstrated that the compliance of the robot is substantially modified relative to the same robot without the additional stiffening cables. The additional stiffening cables are shown to increase the end-effector output stiffness by a factor of approximately 10 over a typical design with actuating cables

    Development of an underactuated gripper with in hand manipulation capability

    Get PDF
    Sommario La relazione riguarda lo sviluppo di un dispositivo, destinato ad essere montato sul polso di un robot, in grado di afferrare una vasta gamma di oggetti di diverse forme e dimensioni ed avente inoltre la capacità di manipolarli mantenendo la presa, vale a dire cambiare il loro orientamento senza doverli rilasciare ed afferrare nuovamente con una diversa postura del robot. L'elevata destrezza deriva dalla sotto-attuazione, la quale permette alla semplice struttura cinematica del dispositivo di adattarsi alle diverse forme degli oggetti ed eseguire una presa con elevata stabilità; invece la capacità di manipolazione in mano è resa possibile grazie all'implementazione di \emph{superfici attive} che conferiscono un ulteriore grado di libertà alla superficie del gripper interessata alla presa.\\ La prima parte esporrà i requisiti richiesti al dispositivo e la soluzione proposta per ottenerli, seguirà la struttura cinematica del dispositivo sotto-attuato e le considerazioni fatte per la sua progettazione. La parte seguente mostrerà come sono state concepite le superfici attive e quali operazioni consentono di fare; infine seguiranno la presentazione dell'intero dispositivo, degli esperimenti svolti e le relative conclusioni. Abstract This report concerns the development of a device, intended to be mounted on the wrist of a robot , able to grasp a wide variety of objects of different shapes and sizes and further having the ability to manipulate they while keeping the grasp, namely to change their orientation without having to release and grasp again the object with a different posture of the robot. The high dexterity comes from the under-actuation, which allows at the simple kinematic structure of the device to adapt itself at different shapes of the objects and perform a power grasp; instead the in hand manipulation is made possible thanks to the implementation of \emph{active surfaces} that give a further degrees of freedom at the gripper's surfaces interested in the grasp. \\The first part will explain the requirements for the device and the proposed solution to obtain them, follow the considerations about the design of kinematic structure of the under-actuated device will be shown. The next part will show as the active surfaces are designed and what operation they can perform; the presentation of the entire device, the done experiments and the conclusions will follow

    Dexterous grippers: between simple industrial grippers and complex robotic hands

    Get PDF
    This thesis addresses the issue of introducing dexterity, namely the ability to manipulate objects in hand, into simple mechanical grippers. Among the many possibilities to give dexterity to a gripping device we opted to intervene at the finger-pad surface since it is the part of the end effector directly in contact with the object to be manipulated. The first contribution is the development of an under-actuated gripper with Active Surfaces on the inner side of the fingers which allow to in-hand manipulate the grasped objects. The gripper, named Velvet Fingers, was designed from the theoretical concepts, manufactured, assembled and then turned into an applicative scenario. A second main contribution of this thesis, carried out in collaboration with AASS Research Center, of the University of \"Orebro (Sweden), is a grasp execution routine using the Active Surfaces of the Velvet Fingers to achieve a robust power grasp starting from an initial fingertip grasp. This routine is very useful and effective in cluttered environment where an initial fingertip grasp is much more likely to be feasible than a bulky power grasp. The third main contribution is the development of a small gripper for small household objects such as cans, small bottles, little boxes, tennis balls etc. This gripper, named Velvet-II, is able to perform in-hand manipulation tasks, to elicit information from the grasped object, namely the contact point location and the components of the grasping forces and to detect incipient slippage between the gripper and the object. Within a collaboration with AASS Research Center the gripper has been employed on a robotic platform for autonomous picking and palletizing
    corecore