467 research outputs found

    Reduction of connections for multibus organization

    Get PDF
    The multibus interconnection network is an attractive solution for connecting processors and memory modules in a multiprocessor with shared memory. It provides a throughput which is intermediate between the single bus and the crossbar, with a corresponding intermediate cost.Postprint (published version

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version

    Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

    Get PDF
    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems

    PPMB: A Partial-Multiple-Bus Multiprocessor Architecture with Improved Cost-Effectiveness

    Get PDF
    This paper addresses the design and performance analysis of partial-multiple-bus interconnection networks. They are bus architectures that have evolved from multiple-bus structure by dividing buses into groups and reducing bus connections. Their effect is to reduce cost and alleviate arbitration and drive requirements without degrading performance significantly. One such structure, called processor-oriented partial-multiple-bus (or PPMB), is proposed. It serves as an alternative to the conventional structure called memory-oriented partial-multiple-bus (or MPMB) and is aimed at higher system performance at less or equal system cost. It has been shown, both analytically and by simulation, that a substantial increase in system bandwidth (up to 20%) is achieved by the PPMB structure over the MPMB structure. With very large systems, the results also imply a significantly improved cost-effectiveness over the conventional multiple-bus architecture

    Design of Reconfigurable Crossbar Switch for BiNoC Router

    Get PDF
    this paper presents implementation of 10x10 reconfigurable crossbar switch (RCS) architecture for Dynamic Self-Reconfigurable BiNoC Architecture for Network On Chip. Its main purpose is to increase the performance, flexibility. This paper presents a VHDL based cycle accurate register transfer level model for evaluating the, Power and Area of reconfigurable cross bar switch in BiNoC architectures. We implemented a parameterized register transfer level design of reconfigurable crossbar switch (RCS) architecture. The design is parameterized on (i) size of packets, (ii) length and width of physical links, (iii) number, and depth of arbiters, and (iv) switching technique. The paper discusses in detail the architecture and characterization of the various reconfigurable crossbar switch (RCS) architecture components. The characterized values were integrated into the VHDL based RTL design to build the cycle accurate performance model. In this paper we show the result of simple 10x10 crossbar switch .The results include VHDL simulation of RCS on Xilinx ISE 13.1 software tool

    Distributed modular RT-systems for detector DAQ, trigger and control applications

    Get PDF
    A modular approach to development of distributed modular system architecture for detector control, data acquisition and trigger data processing is proposed. A multilevel parallel-pipeline model of data acquisition, processing and control is proposed and discussed. Multiprocessor architecture with SCI-based interconnections is proposed as good high-performance system for parallel-pipeline data processing. A network (Ethernet -100) can be used for loading, monitoring and diagnostic purposes independent of basic interconnections. The modular cPCI-based structures with high speed modular interconnections are proposed for DAQ and control applications. For distributed control RT-systems, to construct the effective (cost-performance) systems the same platform of an Intel compatible processor board should be used. The basic computer multiprocessor nodes consist of high-power PC MB (Industrial Computer Systems), which are interconnected by SCI modules and link to embedded microprocessor-based sub-systems for control applications. The required number of multiprocessor nodes should be interconnected by SCI for parallel-pipeline data processing in real time (according to the multilevel model) and link to RT-systems for embedded control. (19 refs)

    The effect of an optical network on-chip on the performance of chip multiprocessors

    Get PDF
    Optical networks on-chip (ONoC) have been proposed to reduce power consumption and increase bandwidth density in high performance chip multiprocessors (CMP), compared to electrical NoCs. However, as buffering in an ONoC is not viable, the end-to-end message path needs to be acquired in advance during which the message is buffered at the network ingress. This waiting latency is therefore a combination of path setup latency and contention and forms a significant part of the total message latency. Many proposed ONoCs, such as Single Writer, Multiple Reader (SWMR), avoid path setup latency at the expense of increased optical components. In contrast, this thesis investigates a simple circuit-switched ONoC with lower component count where nodes need to request a channel before transmission. To hide the path setup latency, a coherence-based message predictor is proposed, to setup circuits before message arrival. Firstly, the effect of latency and bandwidth on application performance is thoroughly investigated using full-system simulations of shared memory CMPs. It is shown that the latency of an ideal NoC affects the CMP performance more than the NoC bandwidth. Increasing the number of wavelengths per channel decreases the serialisation latency and improves the performance of both ONoC types. With 2 or more wavelengths modulating at 25 Gbit=s , the ONoCs will outperform a conventional electrical mesh (maximal speedup of 20%). The SWMR ONoC outperforms the circuit-switched ONoC. Next coherence-based prediction techniques are proposed to reduce the waiting latency. The ideal coherence-based predictor reduces the waiting latency by 42%. A more streamlined predictor (smaller than a L1 cache) reduces the waiting latency by 31%. Without prediction, the message latency in the circuit-switched ONoC is 11% larger than in the SWMR ONoC. Applying the realistic predictor reverses this: the message latency in the SWMR ONoC is now 18% larger than the predictive circuitswitched ONoC
    corecore