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Abstract 
 

In modern on-chip multi-core processors and multiprocessor systems, the 

communication between the processor cores and the shared memory modules of the 

system, (here in after, the terms ‘shared memory’ and ‘shared cache’ can be used 

interchangeably), suffers from a bottleneck problem. In the best interconnection 

network, the crossbar switch, when two or more cores make a request to access the 

same shared cache module, only one request will be accepted and the other requests 

have to be honoured in a sequence decided by the arbiter of that module. This 

increases the latency of the shared variable access. This considerably slows the 

performance of the cores in executing the program threads and hence, the whole 

execution process. 

In our proposed model for multi-core processor architecture, we have redesigned the 

shared cache modules and the interconnection network organization. This resulted in 

a Multi-port Content Addressable Memory (MPCAM) and the bottleneck has been 

totally eliminated. All the cores of the system can write to and read from this memory 

simultaneously. The shared variable communication process through this memory, by 

itself guarantees the snooping cache coherence process automatically. It worth noting 

that the cache coherence process increases the communication overhead in the current 

systems. In this organization, there is no queuing, no arbitration, and hence no 

additional latency. A latency of less than or equal five nanoseconds per shared 

variable access has been achieved. The simulation results of the MPCAM as part of a 

multi-core architecture have shown high bandwidth, and negligible cache miss ratio, 

negligible cache coherence and synchronization overhead as compared to the eight 

core AMD architecture. At the end of this work, the authors have proposed a linear 

scalable scheme which expands the system to include large number of cores with 
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linear growing cost and minimum fixed latency of 1.5t, where t is the MPCAM 

access time. 

 

Keywords: Multi-core, Multi-threading, Micro-threading, Content Addressable 

Memory (CAM), Cache Coherence, shared Variables, Interconnection Network, 

Bottleneck, Contention, Arbitration. 
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Chapter 1  

Introduction  

 

 

1.1 Motivation  

 

In shared memory multiprocessor systems,  there are three crucial issues to be considered; 

The interconnection networks and the communication bottleneck problem, the scheduling 

policy which needs load balancing and true dependency, and the cache coherence 

problem[Joh07][Chi06][jess96]. All these issues apply equally to the on chip shared 

memory multi-core processors. Multi-core processors are multiple pipelined processors on 

a chip. Symmetric shared memory multi-core processors exchange information via shared 

variables. Shared variables reside in shared memory modules and are accessible by all 

cores. Accessing the shared memory without delay necessities the existence of efficient 

interconnection network. Any bottleneck in the network causes delay and hence, degrades 

the performance of the multiprocessor/multi-core system. Provided that dependence rules 

are observed in the scheduling policy, the processor needs to read/write the right version of 

the data. This needs synchronization among the processors through hardware and software 

cache coherence protocols. Synchronization and cache coherence operations add burden on 

the communication in the interconnection network. The ideal multiprocessor case occur 
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when the software perfectly observes the dependence rules and load balancing, and when 

there is no communication overhead due to the bottleneck in the network and cache 

coherence operations. 

In this thesis we present multi-core architecture to solve the communication among cores 

and between shared memories, this architecture totally eliminates the bottleneck on the 

interconnection networks and need for arbitration. It also eliminates the need for cache 

coherence operations. We can say that, if the program is carefully partitioned and 

scheduled, it nearly can be executed in time equals to 1/n of the execution time on a single 

processor, i.e., the speed up of the system is ~n, where n is the number of processors 

(cores).    

1.2 Problem Specification and Justification 

 

Scheduling policy is other problems were migrated from discrete multiprocessor to multi-

core processor. Scheduling policy is concerned with dividing program among the 

processors to be executed in shortest possible time. Scheduling problem will be discussed 

in next chapter. Scheduling involves partitioning the program into chunks (nodes, grains) 

and scheduling these chunks to the processors without violating the dependence rules. The 

nodes have local and shared variable. The local variable is accessible by its node only, 

whereas the shared variable is accessible by all nodes which need them. Access by number 

of node must be synchronized so that the node reads or writes the correct version of data. 

Hardware synchronization and software cache coherence protocols are needed. 

All multi-core architecture has distributed cache Level, level1 (L1), level2 (L2) and in 

some cases level3 (L3) caches which must be coordinated. Multi-core architecture uses 
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shared caches among the cores. This led us to the last and main problem which is the 

communication among the cores through accessing shared variables. 

In the next chapter we will discussed these two problems; the communication via the 

interconnection network and the scheduling including the cache coherence operations. 

Then the proposed architecture will be justified in details. A primary justification is the 

elimination of these problems and their overhead. 

1.3 Thesis Contribution 

 

In modern on-chip multi-core processor systems [Intel12, AMD07, Joh07, Tor10], the 

communication between the processor cores and the shared cache modules of the system 

suffers from a bottleneck problem that negatively affects the performance of system. So we 

proposed a multi-pipelined processor on a chip to solve these problems. In this model we 

have designed a new interconnection networks based of small cache organization modules 

that are embedded at the cross points of the crossbar network. It provides a non blocking 

communication among the cores of the system and the shared memory module including 

snooping cache coherence at the same time. This organization, i.e., the network plus the 

dual port CAM (DPCAM) modules, has formed a multiport content addressable memory 

(MPCAM). 

1.4  Thesis Organization 

 

The remaining chapter in this thesis are organized as follows. In the chapter 2, we will 

discuss the modern multi-core system architecture and analyse its main problems; the 

contention in the interconnection network, the scheduling policy and the cache coherence. 

In the chapter 3, we will present the above design, its mathematical model and the results 
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of its performance as standalone component. In chapter 4, we will display the simulation 

results within the multi-core architecture and compare it with AMD multi-core 

architecture. In chapter 5, conclusion and future work will be drawn. 
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Chapter 2 

Background and Related Work 

 

 

2.1 Current Approach 

2.1.1 Multiprocessors Systems 

 

 The main idea for using the Multiple Processors (MP) is to increase the performance of 

system. It presents a great hope for massive parallel processing. The multiprocessor 

computer system is the use of two or more central processing units (CPUs) within a single 

computer system. 

According to Flynn classification of computers, multiprocessor systems are classified as 

Multiple Instruction Stream Multiple Data Stream computers (MIMD) [Barry96]. In this 

class of Computers, a number of processors can execute multiple streams of program 

instructions which operate on a number of different data streams simultaneously.  

 Multiprocessor systems are divided into two major classes; tightly coupled and loosely 

coupled [Joh07]. Loosely coupled multiprocessors are run on multicomputer system and 

use message passing techniques over the computer networks to communicate among the 

processes running on different computers. Tightly coupled multiprocessors [M.Ab12] is 

widely used in multiprocessor computer architecture. Tightly coupled mostly execute 

single program on a number of processors that share a space of memory of the same 

computer. Communication among the processes on different processors takes place via 
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shared variable in the shared memory. These variables are accessible by all the processors 

of the system.  

Multiprocessor power can, theoretically, be expanded to any scale we like. The processing 

power of a multiprocessor System can be increased; simply by adding more processing 

elements (PEs) to the system. However, expanding a multiprocessor system is not as 

straightforward as it looks. There are many issues usually have to be resolved. In this thesis 

we have proposed design and simulate new shared cache modules and interconnection 

network organization to improve the communication between PEs (cores) and to eliminate 

the bottleneck. The network plus the memory modules result in a new component called 

Multi-Port Content Addressable Memory MPCAM. Used as a second level shared cache in 

the multi-core processor system. 

2.1.2  Multi-core System 

 

With the tremendous advent of semiconductor technology in the last two decades, 

Integrated circuit (IC) that integrates all components of a computer or other electronic 

system into a single chip is called system on a chip (SoC). As a result, it became possible 

to implement a number of pipelined processors (cores) with their caches and 

interconnection network on one chip named multi-core processor. All pros and cons of 

multiprocessors have moved with them from on-board to on-chip. They have the same 

architectural issues problems. The two extra problems is the space allowed on the chip 

because as Moore’s Law said (the doubling of transistors on chip every 18 months) 

[Moo74] and the power temperature consumption of multiple core on a single chip, which 

limits the number of implemented processors. These extra problems tended to be solved in 

recent years. 



 

 

 

7 

2.2  Alternate Approach  

2.2.1 Multi-core Processor Architecture 

 

As we explained on a chip multiprocessors (OCM), known as multi-core processor. This 

involves a number of pipelined processor implemented on a single chip. This can be 

considered as tightly-coupled multiprocessor on a chip. Mainframe systems with multiple 

processors are often tightly-coupled [M.Ab12]. 

Multi-core systems architecture is divided into two architecture classes; Symmetric Shared 

Memory (SSM) systems and Distributed Shared Memory (DSM) systems. These two 

classes will be discussed later.   

In OCM systems, three major issues are of prime concern; they have the same architectural 

problems as discrete multiprocessor system, namely, the effective scheduling policy and 

the effective communication among the processor elements PEs of the system. A third 

issue is the cache coherence among the processors of the system.  

 

2.2.1.1  The SSM Multi-core Processor Architecture 

 

In this type of architecture the cores and the shared memory modules are placed on 

different sides of the interconnection network. Each core includes a pipelined processor 

and one or two levels of local cache. Figure (2.1-a) depicts a block diagram of a typical 

SSM system, and figure (2.1-b) depicts a processing element of the system. 

Going through this architecture, we can note the following things: 

1-  Any processor can access any shared memory module through the supposed 

interconnection network.  
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2-  Even with the best network (crossbar switch) there is still a bottleneck when more 

than one processor tries to access the same module at the same time. 

3-  The cache coherence policy puts a severe overhead and bottleneck on the network. 

Only one processor can broadcast the latest version of the data at a time. All these 

issues will increase the latency [Joh07].   

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

LM = Local Memory 

P 
LM 

P: processor elements  

LM: Local Memory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PE = Processing element 

SMM = Shares Memory Modules 

 

 

                         

                           Possible Shared Memory Block 

 

 

Possible Shared Memory Block 

Pe1+ one or 

more level 

of Caches 

 

Interconnection Network 

 

SMM1 

Pe2+ one or 

more level 

of Caches 

 

Pen+ one or 

more level of 

Caches 

 

SMM2 

 

SMMm 

Figure 2.1(a): A Block Diagram of SMM System [Joh07]. 

 

 

 

 

 

Figure 2.1(b): Processing Elements (PEs) [Barry96]. 
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2.2.1.2  DSM Multi-core Processor Architecture   

 

In this architecture, each core has its own part of shared cache in addition to its local 

caches connected to the core local bus as shown in figure 2.2. A survey of these systems is 

shown in [Joh07] [Pro96]. All cores are connected to the interconnection network.  The 

computational task must communicate with one or more remote processors.  In this 

architecture, we can note the following: 

1-  Each processor can access any shared memory which belongs to other processor 

via the interconnection network.  

2- This architecture also has the same communication bottleneck (even for best 

interconnection network; the crossbar switch).   

3- Also the cache coherence presents a heavy overhead on the network.  

New DSM architectures are organized called a hybrid Distributed Shared Memory. The 

main goal of hybrid DSM organization is to support fast physical memory accesses for 

private data [Xia11]. 

 

Shared Mem 

 

Shared Mem 

 

Processor+ 

Caches 

 

 Processor+ 

Caches 

 

Processor+ 

Caches 

 

Processor+ 

Caches 

 

Shared Mem 

 

Shared Mem 

 

Shared 

Mem 

 

Shared 

Mem 

 

Processor+ 

Caches 

 

Interconnection Network 

Processor+ 

Caches 

 

Figure 2.2:  A block Diagram of DSM System [Joh07]. 
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2.2.2 Multithreading and Micro-threading 

 

In Von Neumann model architecture, the instruction is executed when its turn comes on 

the program counter, whereas in dataflow model, the instruction becomes ready to execute 

when its operands are available. If dataflow is applied on the instruction level, massive 

parallelism is expected.  Applying dataflow model on the instructional level is referred to 

as fine grain dataflow, and produces high degree of parallelism [D.E99]. In early eighties, 

several dataflow multiprocessor systems were built in USA and Europe. However, the 

results represented disappointment to the builders of these machines. This is because 

applying parallelism on instructional level necessitates exchanging large number of 

variables among the system PEs through the interconnection network. This leads to a 

network congestion, which means a large delay in communicating the variables, hence a 

large delay in executing the supposed ready-to-execute instructions [Barry96] [Fira01]. 

The result is a whole degradation of parallelism of the system. Large grain dataflow 

represented a solution for the congestion problem. In this model, the level of parallelism is 

increased to the grain level where the grain is part of the program of a function, a process 

or, a task level. The grain includes a number of instructions that are executed sequentially 

depending on an internal program counter to the grain. A number of independent grains of 

the program can be executed in parallel. The grain is sent to the queue when its arguments 

are available.  The grains exchange the shared arguments through the interconnection 

network. The production of arguments is less frequent than the production of operands in 

the instruction level parallelism. This represents less pressure and less congestion on the 

network. The optimisation of the grain size is an issue by itself. One needs to choose the 

size which suits the machine on which he runs the program. Here, we need to introduce 

multithreading concept before we continue to the micro-threading.  
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Multithreading was introduced on a single pipelined processor in order to avoid out-of-

order and interrupt problems in the pipelined processor. A number of instructions from 

different programs (threads) equals to the number of the stages of the pipeline are 

interleaved in the pipeline so that there is no dependency among the instructions [jess01]. 

This is simply because the instructions belong to different programs (threads). (See figure 

2.3). 

 

 

 The multithreading concept was extended so that threads become independent nodes 

(grains) of the same program. Again the size of the grain has to be optimal for better 

parallelism. Through his research, Jesshope and his team found, through statistical 

analysis, that if the program is divided into grains, each includes a number of instructions 

nearly equal to the number of the pipeline stages, a maximum parallelism will be obtained. 

Nodes (grains) of this size were given the name micro-threads [jess01, luo02]. 

Multithreading use a different set of solutions by utilizing coarse-grained parallelism. A 

multi threaded processor is able to concurrently execute instructions of different threads of 

control with a single pipeline [Theo02]. The need for multithreading mechanism in 
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multiprocessor system, especially in multi-pipelined cores is obvious. In order to use 

multiple cores simultaneously, multithreading mechanism are required. 

Jesshope et. al. [jess96] demonstrated in his work that dynamic scheduling of micro-

threads on several pipelined processors would result in massive parallelism, reducing the 

effect of out-of-order instructions in the pipeline. 

2.2.3  Valgrind Simulator Tool  

 

We will use simulator called Valgrind which is Open Source / Free Software under 

GNU/Linux. Valgrind is a runtime instrumentation framework; Valgrind catches all the 

memory accesses and gives the possibility to analyses these memory accesses. Other tool 

called Callgrind based to Valgrind which it performs detailed simulation of the L1, L2 and 

Last Level (LL) caches. Based to Valgrind developed by Josef Weidendorfer [valgrind, 

Fra08].  

Josef Weidendorfer tool of valgrind which is developed at Department of Informatics at 

the Technical University Munich. This tool is able to handle problems with the cache 

synchronization, concerning an AMD multi-core system. This tool must handle all the 

problems occurring on a multi-core system.  This tool implements the L1, L2 and LL of 

caches as the AMD multi-core architecture, crossbar switch interconnection networks 

where used. The main work in our thesis is to compare the performance of our architecture 

multi-core system that uses the embedded DPCAM in shared memory with AMD 

architecture, so we must modify the Valgrind to be simulated with our architecture. 

Micro-benchmarking programs were designed to measure the performance of a multi-core 

system. This will be used to compare the results between AMD and our design. OpenMP is 

a good micro-benchmarking program to get some concurrent software [Ope08]. This type 
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of micro-benchmarks program is used to measure the overheads of synchronization, loop 

scheduling and it has a best feature to be compared in multi-core system.  

Several parameters will be tested in this simulator. 

1.    The number of instruction, the program requires running. 

2.    The number of cache hits (hits ratio) in both L1 and L2. 

3.    The number of cache misses (miss ratio) in both L1 and L2. 

4.    The number of invalidation access the shared variable through the networks.  

5.    The execution time delay for the micro-benchmarking program. 

2.3 Major Issues in Multi-core System 

2.3.1 The Scheduling Policy for Multiprocessor 

 

Regarding to the scheduling policy in multiprocessor systems can be generally defined as 

how we can execute a set of processes on a set of processors. These criteria called 

scheduling policy that aimed to minimize the expected runtime (execution time) the 

program and other parameters as minimizing the cost and the communication delay [Ste02, 

Rama77]. 

The Scheduling policy includes two activities; first, partitioning the program into nodes 

(grains) arranged in a dependence graph, where the node size varies from one instruction to 

a process or a task [Barry96], and second assigning the nodes to the processing elements of 

the system. The portioning policy decides the level of parallelism, where as the assignment 

policy decides whether the scheduling policy is static (deterministic) or dynamic [jess96]. 

 In static scheduling, the nodes are assigned to the processing elements (PEs) (the pipelined 

cores) at the compile time [Cha10]. The set of nodes assigned to a processing element 

(without violating the dependency rules) forms a program stream. The program stream is 
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stored in the local memory of the processing element. PEs executes their streams in 

parallel. Also, dependency rules across the streams must be observed. Several Static and 

Dynamic Scheduling in multiprocessor systems were built in the last years, since 1980’s 

this issue has been over killed by research [Fang90, C.D88]. Easily one can find a 

scheduling policy that suits his architecture. Therefore, this is outside the subject of our 

research. 

2.3.2  Communication among the Cores  

 

Regarding to the communication issue, it implies that the interconnection network must 

provide effective communication among the processors and between the processors and the 

shared memory in both SSM and DSM in figure 2.1and figure 2.2. This issue represents 

the core of this thesis. 

Several topologies of multiprocessor interconnection networks were designed, 

implemented, and tested. Common shared bus, multiple bus, crossbar switch, multistage 

interconnection networks (Omega, Butterfly…), and tree and mesh topology are examples 

[Imr07]. All of them suffer from a bottleneck when more than one processor accesses the 

shared bus or when they request the same memory module. These different interconnection 

networks will be discussed in later sections.  

Also, two communication strategies among the PEs (the cores) of the system were 

identified; communication through shared variables, and message passing communication 

[Barry96]. The shared variable communication needs synchronization in order to make 

sure that the PEs are accessing the variable in the right time and the right order to satisfy 

best and correct performance. This issue causes the cache coherence problem which needs 

the synchronization of the variables among caches in each core. 
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2.3.3   Cache Coherence Issue 

 

As we explain in the communication issue the bottleneck happen when more than one core 

need to access the same module at the same time. The cache coherence is the second 

problem which adds burden to the interconnection networks. 

Cache coherence is a concern in all multi-core architecture because in all shared memory 

multi-core system, each core has its own distributed L1, L2 and L3 caches [Intel12] 

[Bar08].  Since each core has its own caches, the copy of the data in that cache may not 

always be the most up-to-date version. It is possible to have many copies, one copy may 

store in the main memory another copies in each cache memory. Therefore when one copy 

in any location is changed all other copy must be changed also, Figure 2.4 illustrates the 

cache coherence problem and shows how two different processors in dual core system can 

have two different values for the same location. This difficulty is generally referred to as 

the cache coherence problem. Without any additional precautions we can see different 

versions of the same variable in each core [Joh07]. 

Time event Cache content for core 1 Cache content for core 2 Memory content for 

Location X 

0    1 

1 Core 1 read X 1  1 

2 Core2 read X 1 1 1 

3 Core 1 store 0 to X 0 1 0 

 

 

 

 

Figure 2.4: The Cache Coherence Problem in Dual Core System [Joh07] 
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2.3.3.1 Cache Coherence Protocols   

 

A cache coherency protocol is a protocol that preserves the consistency between all caches 

in shared memory system [Arch86]. In general in multi-core architecture there are two 

protocols for cache coherence, a snooping protocol and a directory-based protocol. 

 The snooping protocol always works with a buses based system, and use number of 

different states to decide if the value must be updated or not. The simple way is to 

broadcast the update value to all caches. 

The directory-based protocol can be used on any networks; it is scalable to many cores, in 

contrast to snooping protocol which is not scalable.  In this protocol a directory is used that 

holds information about which memory locations are being shared in multiple caches. 

Also, it knows when it needs to be invalidated. As in snooping protocol, directory-based 

protocol use number of states to decide if the value is valid or invalid. Most modern 

architecture use Modified, Exclusive, shared and Invalid (MESI) states Modified Data 

means the cache data can be read and written locally without accessing the bus system. 

Exclusive as modified means that data are in one cache only, but it has not modified at all, 

and is exactly the same as in main memory.  Shared means that the data are held in more 

than one cache and this cache data are up to date. Invalid means that the cache data defined 

as invalid if the cache line is empty, or data in it are invalid [Joh07]. In the last years 

different protocol have been proposed with different number of states as (MSI) and (ESI) 

[AMD07]. 

In all interconnection networks the cache coherence protocol puts a severe overhead and 

bottleneck on the network. Only one processor can broadcast the latest version of the data 

at a time.  Also adding more cores in multi-core system has more impact on the amount of 

time necessary to validate the protocol [M.Zah10].  So, it poses a scalability problem. 
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In this work, we present a multi-core system architecture in which the communication 

medium solves and nearly eliminates the problems of bottleneck, the latency, the cache 

coherence and the scalability of the system. In the following sections, the traditional 

networks will be introduced in order to pave the way for clearing the features of the 

proposed architecture in chapter 3. 

2.4  Interconnection Networks in Multi-core Architecture   

 

In this section we will discuss the common Networks on a Chip (NoC) used in multi-core 

system, the discussion will include the networks topologies with some of its problems and 

the performance of these networks. 

2.4.1 The Common Bus Networks 

 

The common bus is the first and simplest interconnection topology. It is a shared path to 

which all units of the system are connected figure 2.5. 

 

 

The common bus is the least complex and easiest to configure. The common bus represents 

a bottleneck by itself.  It can serve only one communication request at a time, so to prevent 

PEs 1 PEs 2 

 

PEs n 

 

SMM 1 SMM 2 SMM m 

Common bus 

        

        

Sn S2 S1 

PEs: processor elements                                                   

S : Switch                                                                       

SMM: shared memory module 

 

Figure 2.5: Common Bus Interconnection Networks [Edw86]. 
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contention on the bus an arbitrator is used and any core need to use the networks must first 

request the arbitrator to determine the bus status [Edw86]. 

2.4.2 The Crossbar Switch Networks  

 

Crossbar switch networks are obtained by increasing the number of buses for every core 

and memory module in horizontal and vertical links, such that buses can be accessed at 

cross points as Figure 2.6. 

 

Figure 2.6: Crossbar Switch Interconnection Networks [Imr07]. 

The number of vertical and horizontal buses equal the number of PEs and memory module. 

The crossbar switch is the most effective interconnection network. It has complete 

connectivity with memory module. However, the conflict appears if more than one source 

request is competing for the same memory module. This case is called memory 

interference. Only one request will be served [Imr07]. To solve this conflict, every bus 

leading to a memory module must be provided with an arbitrator see Figure 2.7. But the 

arbitrator adds to the implementation of crossbar more complexity and cost when we 

increase the number of processors.  
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Figure 2.7: Crossbar Switch with Arbitrator Interconnection Networks [Imr07]. 

 

Crossbar networks can be improved by including small buffers at sources and destinations 

this called buffered crossbar. In last year many research were published and suggested in 

this topic, Critical internal Buffer First (CBF), input queued (IQ) and internally buffered 

crossbar (IBC) switches [Lot05].  

More recent papers focused on the development of the arbitrator in different networks.  

Some paper suggested a new design by adding an asynchronous First IN First Out (FIFO) 

after each processor requests to hide the delay of waiting time during request. But it still 

requires a complex arbitrator [Moor02, Rig02]. Other mechanism create intelligent 

arbitrator that provides priority for processor to make request, it is shown that this 

arbitrator can be extended easily to support large numbers of processors [Has06].   

To conclude we can say that the crossbar switch is the most effective interconnection 

network [Lan82] and the most modern multi-core system adopts this interconnection 

networks, but it still suffer from bottleneck. In addition to the problem of the cost and 
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complexity of crossbar grows rapidly as a function of square of inputs number, where if N 

is the number of processors then the number of switches equal  .  

2.4.3 The Multiple Bus Network 

 

Crossbar network is meant to include same number of cores and memory modules. This to 

meet the demand of the processor at a rate of a request per processor in each cycle. But 

after each request the processors do an internal operation after each request so the 

probability to make new request will drop from 1 to 0.5 [Ayy93]. Studies have suggested 

that connecting N processor to M memory using number of shared  buses B equal to half 

the number of processors, pluses one, this design called multiple bus networks as we 

explain in Figure 2.8. 

 

Figure 2.8: Multiple Bus Interconnection Networks [Ayy93]. 
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The Multiple bus can serve only a number of requests less than or equal to the number of 

buses. If two or more requests are going to the same shared memory module, only one of 

them can be served [Mud84]. 

2.4.4  Multistage Interconnection Networks  

 

Multistage Interconnection Networks (MINs) are mostly used in parallel multiprocessors 

systems to connect processors to processors and/or to memory modules [Imr07]. Crossbar 

switch provides a full connection between source and destination. But, as we mentioned 

the cost and complexity of crossbar grows rapidly as a function of square of inputs number 

(in a full crossbar the number of inputs, N, equal the number of outputs). If the 2 x 2 

switching elements are used in building a crossbar system then the number of switching 

elements needed is         . 

In MINs we can use different size of switching elements 2 x 2, 4 x 2 or any size, the most 

commonly used size of the switching elements is the 2 x 2 switching elements. Hwang and 

Briggs [Hwa93] have shown how to provide complete interconnection of one set of N 

devices to another set of N devices using multistage network of       stages with N/2 

switching elements of size 2 x 2 in each stage.   

There exists various types of  MINs where proposed and implemented as Delta networks, 

Omega networks, Butterfly networks, Self Routing and shuffle-exchange MINs [Barry96 

][Chi06, Bhu89, Var89]. The difference between each of these networks is the topology of 

interconnection links between the crossbar stages. In all MINs if more than one request 

need the same intermediate link or the same destination shared module, bottleneck will be 

happened then only one of them will be served as we shown in Figure 2.9. 
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Figure 2.9: Multistage Interconnections (MIN) with 2 x2 Switch Elements [Imr07] 

2.5  Network on Chip on Modern Multi-core System 

 

The most modern multi-core system use different Network on Chip (NoC) to communicate 

between processors and shared memories. Sun T1 is a multi-core multiprocessor 

introduced by Sun in 2005 as a server processor; each core has private Level 1 caches, 

each core access shared level 2 caches via a crossbar switch networks as shown in Figure 

2.10 [Joh07]. IN AMD multi-core system use System Request Interface & Crossbar Switch 

to organize communications among the cores [Bar08]. Intel multi-core especially in Intel 

i7 add the L3 smart and shared cache and increase its size about 16M to reduce the traffic 

among the cores.  But it still needs buses interface. Intel developed their Quick Path 

Interconnect bus (QPI), which is a 20 bit wide bus running about 4.8 and 6.4 GHz ,as 

shown in figure 2.11[Neh11]. All of this topology still suffers of bottleneck problems, and 

the variable synchronization between caches. 
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Figure 2.10:  The T1 Sun Multi-core Architecture [Joh07]. 

 

 

 

 

 

 

 

Figure 2.11: Intel I7 Multi-core Architecture [Neh11]. 

2.6 Types of Cache Memory 

 

There are three types of cache organization; the direct mapping, the set associative and the 

fully associative cache. 

2.6.1  Fully Associative  

 

In this type of cache both memory address and data are store in the cache. The memory is 

of the Content Addressable Memory (CAM) type. Memory address is simultaneously 
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compared with all addresses store in caches using the internal comparator in each location. 

Figure 2.12 illustrates the architecture of fully associative cache memory. 

The main advantage of fully associative cache is its high performance compared to its size. 

The main disadvantage of the CAM cache is the complexity in design and the cost. Also, 

the fully associative cache needs an algorithm to select where to store information in it. 

Different algorithms were used to solve this problem, as Random Selection, First In First 

Out (FIFO) and Least Recently Used algorithm (LRU) [Sha96] [Bary96]. The Content-

addressable memory (CAM) is a special type of fully associative cache. 

 

2.6.2  Direct Mapped 

 

In this case, the memory is divided into blocks called sets. So in one cache line we can 

hold one entry of a set of the main memory. The main advantages of this type are very easy 

and cheap to implement, but the performance will be dropped if accesses are made to 

different locations with the same index. 
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Figure 2.12: Fully Associative Cache Memory [Barry96] 
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2.6.3   Set-Associative Mapping 

 

This is a combination between a fully associative cache and a direct mapped cache. Cache 

divided into sets of lines. One address of a set of the main memory can be stored in n 

possible cache. It is not as complex as fully associative cache, but offers an improvement 

of performance because more than one address can be stored. Figure 2.13 represent set 

associative cache memory.  

 

Figure 2.13: Set Associative Cache Memory [Barry96] 

2.7 Cache Events Classification 

 

When a processor accesses the data, the data may be cached or not. These two events are 

called cache-hit and cache-miss. A cache-hit and cache-miss may occur on any level of 

caches. Both cache hit and miss are an important event when looking to cache coherency. 

In this section we will focus on how miss and hit cache exactly works? 
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2.7.1 Cache-Hit and Cache-Miss 

 

Usually, the processor presents its request for data to both cache and the main memory. If 

the data found in the cache, the processor cache it within its cycle time and the main 

memory is informed. This is called a cache hit case. If the data not found in the cache, the 

processor has to wait for the slow response of the main memory. Upon receiving the data, a 

copy of it is kept in the cache for future accesses. This is called a cache miss case. 

Cache-Miss can be classified into four types [Rob08] [Joh07].   

1- Cold Miss:  the processor requests the data for the first time and data is not stored 

in the cache system. 

2- Capacity Miss:  because the cache size is limited, some data was stored in the 

cache, but it has been replaced with new data. 

3- Conflict Miss: we can’t store some data in a set associative cache because the 

number of blocks is limited. Thus a miss occurs, but this type can be avoided in 

fully associative cache. 

4- Coherency Miss:  this kind of misses happened when processor writes some data. 

The cache line in other cache has to be invalidated so when other processor 

accesses these data a coherency miss occurs (these data called shared variable). 

This type of miss is the most important miss associated with multi-core systems, 

more techniques proposed to reduce this type of miss[Hyu09][Jae04][ 

Mil12][Che10]. So in our multi-core architecture design simulator Coherency Miss 

is the biggest concern to reduce miss ratio as we will explain in chapter 4. 
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2.8 Embedded Memory Unit Crossbars Interconnection Networks 

 

In 1995, Ayyad and Radolf designed, implemented and successfully tested an embedded 

crossbar buffer using 4 Kbyte (2KbytesX2) FIFO memories [Ayy96]. The design was 

implemented on board to connect four of the 32 Intel 486 motherboards of The Makbilan 

Multiprocessor at Hebrew University. Makbilan was a DSM system. At that time the 

FPGA technology was not advanced enough to accommodate this architecture. Message 

passing and packets were used to send, multicast, or broadcast messages from source/s to 

destination/s simultaneously.16-bit data buses were used. Packetizing, de-packetizing, and 

storing the received data in the right local destination memory location/s represented a 

considerable communication overhead.   

New designs of Dual Port content addressable memory (DPCAM) was suggested; a port 

for reading and another for writing. Under the supervision of Abu-Mwais, two students (S. 

Surkhy and A. shawar) managed to implements the idea using Veriloge language.  Later, 

the author modified this design, then successfully implemented and simulated it.  In the 

next chapter, the architecture of this memory will be presented. 

After that we took this as a basis for multiport CAM (MPCAM). CAM is not feasible to be 

implemented as a standalone memory (we need very large number of pins). However it 

proved too useful as a part of multi-core architecture if implemented as shared memory. 

Also, it proved useful for fast cache coherence. So we decided to design and simulate it as 

a part of multi-core architecture as we will show in chapter 4.  
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Chapter 3 

The Design of New Crossbar 

Embedded DPCAM and the 

Simulation Results 

 

3.1  Cache Memory in Multi-core System  

 

There has been always a speed gap between processor and memory [Car02, Pat97]. A great 

deal of the researchers’ effort went to narrow this gap. Cache memory is extremely fast 

memory that is built into processor to decrease the speed gap between the processor and 

the main memory. In fact, cache memory responds to the processor request in the real time, 

and the processor does not need to insert wait states. The processor uses cache to store 

instructions and data that are repeatedly needed to run programs, when processor access 

data, it normally fetches it from main memory, this access need long time as compared 

with the cache. If data already stored in the cache, the processor does not need to wait. The 

cache responds within the processor cycle. This improves the overall system performance. 

There are different types of cache as we will discuss later in this chapter. 
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The most modern multi-core systems use more than on level of cache [Intel12][Neh11]. As 

figure 3.1 illustrates, the AMD Barcelona multicore system [AMD07], Level 1 (L1) of the 

cache is the fastest one and is directly next to the PEs (the cores) with 64KB per core. L1-

Cache in AMD multi-core architecture exists in two versions. One for data, and the other 

for instructions. They are Called L1D for data and L1I for instructions. The second cache 

is Cache level 2 (L2-cache) with 512 KB per core followed by the third level of cache 

(L3). Cache L3 represents the shared memory with total size about 3MB. This multilevel 

of caches required to improve the communications between cores in multi-core system, 

thus synchronization between all these caches is required. 

 

 

Figure 3.1: AMD Multi-core Cache Level [AMD07] 

3.2 The Design of Dual-Port CAM and Multi-Port CAM   
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accessibility to multiple cores.  In this section, we propose a Dual Port CAM (DPCAM) to 

be used as an integrated part of a new crossbar interconnection network organization. This 

organization results in what we call Multi-Port CAM. This MPCAM guarantees that all 

cores of the system can access data for read and write operations simultaneously. Queuing, 

contention and the need for arbitration are totally eliminated. Also, as large number of data 

versions can be accommodated in this MPCAM and accessed by presenting their unique 

tags, the cache coherence problem is totally eliminated because each core broadcast the last 

version of shared variable to other cores, so the variables always update. 

3.2.1 Single Port CAM 

 

 Content Addressable Memory CAM is a memory which its locations are accessed through 

comparing Tags rather than providing their addresses.  In 1980s, the designers of dataflow 

machines badly needed these devices. However, the available semiconductor technology 

did not allow implementing large CAMs at that time. Small CAMs (up to 64 memory 

location CAMs) were available). So, designers resorted to employ RAMs as lookup tables 

in order to emulate the CAMs. With the advent in semiconductor technology, large CAMs 

are available now (an order of 100 Kbytes CAMs). Also, universal dual port cache 

memories have been designed [Kos06, Ara12, Hassa05]. 

In CAM, each stored data is associated with a unique tag. When we like to retrieve the 

data, we apply its tag with a read signal to all locations simultaneously. The applied tag is 

compared with all stored tags simultaneously. If any of the stored tags matches the applied 

tag, the equality signal of the location comparator enables the output of the location, and 

the data is placed on the data bus in order to be read by the processor. Figure 3.2 depicts a 

single port CAM. 
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3.2.2  Dual Port CAM   

 

In our crossbar embedded CAM interconnection network among multi-core the need arises 

for implementing a Dual Port CAM (DPCAM) cache memory modules at the cross-points 

of the crossbar; to overcome the problems in memory as addressing and unused spaces.  

The shared data will be residing in these modules and simultaneously accessed by all 

cores. 

These DPCAMs have two ports; one for writing (broadcasting), and the other for reading. 

They allow simultaneous access operations from the two ports as far as they are not 

accessing the same memory location. In our organization we only need one port to write, 

and the other to read, including writing and reading to the same location. This is because in 

our crossbar embedded cache organization, simultaneous writing and reading on the same 

Figure 3.2: Single Port CAM Design 
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location is likely to happen even with very small probability. The fact that we are 

designing this DPCAM to meet the needs of our cache organization has affected our design 

decisions. This included the data width, the tag size, the storage type, and the control 

circuit of the cache module. 

With reference to figure 3.3, in this design, each memory line is composed of two fields; 

the data field and the tag field. The length of each field depends on the architecture in 

which the CAM is used. The data field can be 32 or 64 bits in order to go with 32 or 64 bit 

processors. The tag field can be varied to suit the number of shared data versions, e.g., 32 

bit tag can accommodate up to 4 Giga versions of data. 

 

Figure 3.3: The Dual Port CAM Design 

The writing process is controlled by the control circuit and the WR signal. The control 

circuit of the DPCAM includes a pointer to produce an active high Latch Enable (LE) 
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signal for each memory line on a rotating basis. When the system is reset, this pointer 

points to the LE0 first memory location, so that the first writing operation will be 

performed on line 0 of the memory. After writing to the current location, the pointer points 

to the next location, and so on until Ln-1. In the case of simultaneous write and read 

process, the circuit gives the priority for writing and gives the reading processor a WAIT 

signal. The WAIT signal can be obtained by ORing the active low RD and WR signal 

coming from the writing and the reading processors.   

The Store Back (SB) of writing core provides the data [Ds31-Ds0], the tag [Ts15-Ts0] (the 

tag can be the address plus the version number), and the active low WR signal. With the 

rising edge of WR signal (the end of WR), the control circuit moves the LE to LE1 in 

preparation for the next writing which will be to line 1. This process can be repeated until 

LEn-1 is reached, after which it moves back to LE0 where it starts the overwriting process 

over the old data and tags. The memory lines are made of latches which means that the 

writing process is level triggered. 

The READ process occurs when the Operand Fetch stage (OF) of the reading core applies 

the destination tag [Td15-Td0], and an active low read (RD) signal to all tag fields 

simultaneously. The RD signal outputs the stored source tags to the comparator of each 

memory line in order to be compared with the applied tag simultaneously. If a match 

occurs, the equality signal (EQU) of the comparator is used as an output enable (OE) signal 

which outputs the stored data from the data field to the destination data bus where it can be 

read by the OF unit of the reading core. 
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3.2.3 Multi Port CAM   

 

In the proposed architecture in figure 3.4 we have redesigned the shared cache to become a 

two dimensional array of DPCAM elements. The number of rows and columns of the array 

are equal and equals the number of the pipelined cores. An extra row is added for the 

primary shared data which will be loaded by the global memory management unit. This 

design eliminates the need for arbitration because there is no contention. Also, this cache 

eliminates the need for global register.  

  

Figure 3.4: The Multi-port Content Addressable Memory 

3.3 The Crossbar Embedded DPCAM Architecture (The MPCAM) 

 

In chapter two we discussed the problems in different type of interconnection networks in 

DSM and SSM multiprocessor. All problems come from the fact that, in spite of moving 

the architecture into the chip, the designers are still stuck with the past usage of the off-

shelf components and using in the same way they were used on the printed circuit board 

(PCB). There is no reason to suggest that the cache must be one piece and no busses can be 

implemented within the cache architecture. In Fact Crossbar like buses can be embedded 

Array of CAM element 

SB0 

SB1 

SB7 

OF0 OF1 OF7 



 

 

 

35 

among a matrix of small caches. This is the same as saying “Small cache modules can be 

embedded at the cross points of a crossbar architecture”. So the DPCAM which we 

designed and simulated can be implemented at the cross points of the crossbar. 

In our design in figure 3.4, a SSM Multi-core architecture is assumed, where the shared 

cache modules are distributed on the cross points of the crossbar. The Store Back (SB) of 

the pipelined core is connected to the horizontal buses, and the Operand Fetch (OF) units 

of these cores are connected to the vertical buses of the network. The shared cache 

modules are specially designed (DPCAM) modules. While loading a program stream, the 

memory management unit, which loads the instructions and the data to cache L1, loads the 

primary shared data to the last row of DPCAMs in the MPCAM. This organization is 

considered cache L2 in our proposed architecture. 

3.3.1  The Claims for Embedded DPCAM Networks 

 

 With the above MPCAM organization we can claim the following: 

1. SBs of all cores can broadcast data, each to the DPCAM modules in its row 

simultaneously. There is no queuing and no arbitration. Note that this is not the 

case if the modules were placed on the edge of the crossbar as in the usual way, 

where the broadcast forces queuing with severe latency. 

2. OFs of all cores can search for the data, each in the CAM modules of its column 

simultaneously. Also, there is no queuing and hence, no arbitration is needed. 

3. In the writing (broadcasting) process, the DPCAM module is designed to place the 

data in the first empty (or least recently written to) location. So, there is no unused 

memory location. 
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4. The data in the DPCAM location won’t be overwritten before n clock cycles 

elapses, where n is the number of memory lines in the module. The compiler and 

the scheduler must guarantee the usage of data within the allowed time. Also, if the 

core needs the read version of data for beyond the allowed time, it can keep it in its 

local cache. 

5. As an alternative to point 4, we can implement two DPCAM modules at each cross 

point; one for short reaching and the other (less frequently used) for far reaching 

communication. The cores will be less frequently writing to the far reaching parts 

so that longer time elapsed before they need to overwrite a datum. 

3.3.2 The Mathematical Model of Crossbar Embedded DPCAM Network 

 

In this section we will compare the performance of our network design (Crossbar 

Embedded DPCAM ) with normal crossbar switch networks. The bandwidth (BW) is the 

most important parameter in any multicore system networks ( number of requests served 

by the network). The mathematical models of these networks are derived from probabilities 

theories. The derivation of the model is based on the model assumptions.  For the 

traditional crossbar and the MPCAM performance models, the following assumptions are 

made: 

1- The number of processor cores = (n). 

2- The probability that a core is making a request to the crossbar network during a 

cycle is (r). 

3- In the crossbar switch architecture, n processor cores are connected to the row 

buses of the crossbar. The cross point switch connects the row bus to the required 
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column bus to which the requested memory module is connected. Not more than a 

single core can access the destination module at a time. 

4- In Crossbar embedded cache (MPCAM), n (SB) units of n cores are connected to n 

row buses, while n (OF) units of the same n cores are connected to the column 

buses of the crossbar. 

5- So, 2n units are expected to present requests to the MPCAM, and 2nr requests are 

expected during the cycle. 

6- As claimed before, all SBs can broadcast and all OFs can read simultaneously, 

unless two are addressing the same memory location, which has nearly zero 

probability. 

7- The bandwidth is the number of requests served by the network (BW). 

8- The bandwidth of the crossbar switch is given by equation 3.1 [K.W99, Barry96]. 

          
 

 
 
 

    ………………………..3.1 

Where m is a memory module and n is the processor elements in ideal cases n= m. 

9- The bandwidth of crossbar embedded DPCAM is given by equation 3.2. 

                              …………………………..3.2 

i.e., provided that the dependency rules are satisfied, all requests will be served. 

3.3.3  Comparing Results Between Crossbar Embedded DPCAM and Normal     

Crossbar Switch. 

 

Using the mathematical model in section 3.3.2 we can draw the bandwidth function with 

different values of r and n, and then we will compare the results from the crossbar 

embedded DPCAM and the normal crossbar switch. Figure 3.5 to 3.7 show the bandwidth 
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versus number of cores (n), results shown that bandwidth function increases when the 

number of core increases linearly.  

In figure 3.5 we notice that when r=0.8, in normal crossbar switch the bandwidth always 

less than number of cores. But in crossbar embedded DPCAM network can serve more 

requests. In figure 3.5, when (n=64), the bandwidth in crossbar switch about 35 whereas in 

crossbar embedded DPCAM the bandwidth about 102, when (n=8) the bandwidth in 

crossbar switch about 5, in crossbar embedded DPCAM the bandwidth about 13. So the 

crossbar embedded DPCAM can serve more request than normal crossbar.  

 

Figure 3.5: Bandwidth Function with(r=0.8) 

 

Figure 3.6: Bandwidth Function with(r=0.5) 
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Figure 3.6 displays the bandwidth function when the r=0.5. This means that the probability 

to make request from any core is down to half, this cause the reduction of the bandwidth 

when compared to request rate 0.8. The Crossbar embedded DPCAM still better than 

normal crossbar switch because there is no competing between cores across the network. 

When (n=64) the bandwidth in crossbar switch about 25, in crossbar embedded DPCAM 

the bandwidth about 64. This is due to the fact that in the case of crossbar embedded 

DPCAM the number of requests is double those of the traditional crossbar. Moreover, the 

crossbar embedded DPCAM is not blocking, i.e., all the requests are accepted, whereas 

some are rejected in the case of the traditional crossbar. 

 

Figure 3.7: Bandwidth Function at Broadcast Situation 

Figure 3.7 Depicts the broadcast situation, in normal crossbar switch only one processor 

can broadcast the shared variable at a time so the maximum bandwidth equal          , 

while in crossbar embedded DPCAM there is no competition among the cores of the 

system. So all cores can broadcast their variables and the maximum bandwidth equal   
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In conclusion we can say that the crossbar embedded DPCAM network has better 

bandwidth than normal crossbar switch. This is because there is no competition between   

cores in both write and read operation. But in the traditional crossbar switch 

interconnection networks  only read or write (one core) can be served at a time, whereas in 

our shared cache two cores, one for read and another for write can be served 

simultaneously. 

3.4 Simulation Results of Crossbar Embedded DPCAM Circuit 

 

Using Verilog Hardware Description Language (VHDL) in Quartus II software from 

ALTERA, DPCAM and the crossbar embedded DPCAM network have been designed and 

implemented. In our work we use a Stratix III FPGA which has good specifications for this 

type of design as a target. It provides high-performance, lowest possible power 

consumption and high-integration capabilities. The main advantage of a Stratix III FPGA 

actually increase with design size because it has large number of I/O pins and gates 

compared to other available chips family [Alt08, Alt13]. More of other characteristics can 

be found in ALTERA-site [Altera]. The simulation results show that latency of less than or 

equal four nanoseconds per shared variable access in multi-core system has been achieved 

where the latency to access the shared memory is, approximately, 65 nanoseconds in 

modern multi-core system [Neh11], and about 40 nanoseconds in Intel multi-core system 

that use  QPI. Figures 3.8 to 3.11 explain the simulation results in both functional and 

timing simulations.  

Figure 3.8 shows the functional simulation of crossbar Embedded DPCAM , as we 

explained in section 3.2.2 for write process core add Data and tags(Tag source) with active 

low WR signal and in case of read core generate tagd (Tag destination) with active low RD 
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signal. In functional simulation the outputs appear on the pins without considering the 

delay of the gates in design. In this figure we have executed the network in different 

situations. In the first situation all cores write their shared variable simultaneously. In the 

second situation all cores read the same variable produced by the second core 

simultaneously. In the third situation both the first and second core write shared variable 

also the third core read variable produced by first core. Finally both first and second core 

read simultaneously and the third core writes variable. In all situations we made sure that 

the embedded DPCAM network operates in multi-core system with full non-blocking and 

without bottleneck also no arbitration is needed. 

 

Figure 3.8: Crossbar Embedded DPCAM Functional Simulation 

 Figures 3.9 to 3.11 show the Timing simulation of crossbar Embedded DPCAM. In timing 

simulation we can measure the delay of accessing a shared variable in nanosecond. Figure 

3.9 shows that when the first core  broadcasts variable, the delay is about three nanosecond 

and when all cores read shared  variable simultaneously four and half nanosecond this due 

to the delay of comparator units. Figure 3.10 shows that when all cores write different 

variable simultaneously, the delay is about three nanosecond and when all cores read 

shared variable simultaneously four and half nanosecond. Figure 3.11 displays that when 
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the first core   write shared variable and the third core wants to read the same variable the 

delay is about three nanosecond for first core and about nine nanosecond for third core. 

This because when the writing operation has just completed the reading operation starts to 

compare the tags.    

 

Figure 3.9: Crossbar Embedded DPCAM Timing 1 Simulation 

 

 

Figure 3.10: Crossbar Embedded DPCAM Timing 2 Simulation 
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Figure 3.11: Crossbar Embedded DPCAM Timing 3 Simulation 

 

So, this simulation process proved that all cores can access the shared variables in the 

shared CAM simultaneously without the problems of contention, queuing, and arbitration. 

3.5  Area Estimations and Model Complexity  

 

Because the technology continue to shrink and the size of chip continue to be larger. So 

estimating the area of our proposed architecture would help use in judging this design. In 

this section we have adopted on published papers, especially for cache estimated area to 

decide and compare the die area of our model with AMD model. Figure 3.12 displays the 

total area for AMD multi-core architecture this architecture use two level of caches, L1 as 

private cache and L2 as shared cache. Figure 3.13 displays the total area for our multi-core 

architecture this architecture uses two level of caches also, L1 as private cache and L2 

(embedded DPCAM) as shared cache.   
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Components Size of 

cache 


2 
Area    Area 

mm
2
 

num Total 

area 

mm
2
 

Ref# 

L1 Cache 64 KB 

(32I+32D) 

8.06e+8 12.593 8 100.75 [Kie98][Lin99] 

L2 Cache 512 KB 

shard 

7.25e+9 113.281 8 906.24 [Bat98][Gua09] 

 Total Area 

(mm
2
) 

 1006.9 

 

Figure 3.12: AMD Model Area Estimation 

 

Components Size  
2 
Area    Area 

mm
2
 

num Total 

area 

mm
2
 

Ref# 

L1 Cache 64 KB 

(32I+32D) 

8.06e+8 12.593 8 100.75 [Kie98][Lin99] 

Embedded 

DPCAM 
16 KB 

shard 

5.10e+8 7.987 64 511.16 [Sha02] 

Total Area 

model 

(mm
2
) 

 611.91  

 

Figure 3.13: Embedded DPCAM Model Area Estimation 

 

As stated earlier, the design of the multi-port CAM is meant to allow simultaneous access 

of a number of cores to the memory. This includes simultaneous writing and reading of the 

shared variables to and from the memory. As a crossbar topology is used in this design, the 

cost and complexity is expected to grow as a square function of the number of ports. Note 

that the number of input ports is equal to the number of output ports. The growth of 

complexity is limited by two factors; the available silicone area on the chip and the number 

of pins.  
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The design of the multiport CAM as a standalone chip is really limited by the number of 

pins rather than the silicone area. It needs a number of pins equal to 2nw, where n is the 

number of port and w is the number of pins per port. For example, designing a four 8-byte 

ports CAM needs 2X4X64= 512 pins. This is we could not design and simulate more than 

3-port standalone CAM as targeted to Altera StratixIII FPGA chip which has less than 512 

pins[Alt08, Alt13]. However, if the design is integrated as part of a multi-core processor, it 

is fairly feasible to design eight or sixteen port CAM of 2Mbytes as a shared cache of the 

processor. This is less than or equal to the shared cache used in Intel and AMD multi-core 

processors so far. 

Regarding the scalability of the system as we will explain in chapter 5, it has been shown 

in this thesis that if n-core processor with n-port CAM shared cache is feasible, then as far 

as the available silicone allows, the system can be linearly expanded to n blocks where 

each block is an n-core processor. This means a system of n square cores. Its cost will be 

nXc, where c is the cost of the n-core processor. The expected latency is fixed at an 

average of 1.5t, where t is latency of accessing the local cache or the shred cache (the 

same) in an n-core processor.  

We conclude that the design presented and simulated in this thesis represents a quite 

simple, efficient, fast, and powerful system.  
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Chapter 4  

Simulation Results within Multi-Core 

System 
 

 

 

4.1 AMD Vs. Our Model Architecture 

 

In the AMD multi-core simulator it is necessary to understand the main parts are required 

for the simulator. The simulator is based on the crossbar switch interconnection network, 

ESI (Exclusion-Shared-Invalid) cache coherence protocol, and accessing through cache 

and main memory. In the memory access works as first check whether there is a L1 cache 

hit, then if there is a L2 cache hit. If no cache hits, a miss is returned (in this design there is 

no L3 of caches) Figure 4.1 display the AMD multi-core architecture. But as we know in 

case of the multi-core simulator, shared caches must be checked whether the variables have 

been changed by another core or not. Further actions depend on the fact whether the 

requested data are already cached or not. This will be done by (ESI) cache coherence 

protocol.    

In our multi-core architecture the embedded DPCAM behaves as an internal register file. 

At the same time it is considered as shared L2 of caches.  
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Figure 4.1: AMD Multi-core Architecture [AMD07] 

 

The ESI cache coherence protocol can be abandoned in our design because any core 

modifies variable can broadcast it to all DPCAM caches in its row. So, any shared variable 

is up to date for all caches. So, the state is either valid or invalid. In other word all the valid 

variables in caches is a shared at all time. Figure 4.2 display the Embedded DPCAM multi-

core architecture. 

AMD Vallgrind simulator has two caches. One first level of cache and one second level 

shared cache for each core; each of them has instruction and data. So there is various 

numbers of caches dependent on the number of cores. This simulator implements an 

algorithm to generate these caches by using a one dimensional array of caches for each 

cache level. The maximum number of caches is assigned by the parameter multi-core in 

simulator, in this simulator there is a maximum eight cores. 
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Core1 Core8 

 

Core2 

 

L1=64KB L1=64KB L1=64KB 

 Embedded DPCAM (shard cache) Interconnection Network 

    

Memory Management Unit (MMU) 

To main memory 

Figure 4.2: Crossbar Embedded DPCAM Multi-core Architecture 

In Embedded DPCAM simulator there are also two levels of caches. The first level of 

cache for each core and the shared second level of cache had been put at crossbars. in 

second level of cache the number of caches equal the square of number of cores     where 

n is the number of cores, this can be done by using a two dimensional array of MPCAM 

(which is explained in chapter 3), the size of array is assigned by the parameter multi-core 

number in simulator, then any OF for all cores want to search data, read the column of 

MPCAM simultaneously and any SB of all cores want to write data broadcast data to row 

of MPCAM simultaneously. The interconnection networks between cores represents the 

main differences between AMD and our model, where in AMD used crossbar switch 

interconnection networks while in our model we used crossbar embedded DPCAM as new 

design of interconnection networks. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

49 

4.2 Results 

 

In this section we will handle the results that have been obtained by the valgrind simulator. 

This results help use to compare between the AMD multi-core and our proposed multi-core 

system. Many benchmarking program used to test multi-core system, by using this 

program we can study the behaviour of our proposed system with AMD multi-core. This 

includes studying the five parameters listed in section 2.2.3.    

4.2.1 Benchmarking program 

 

Three types of benchmarking program were used. The first type is used in order to be sure 

if the multi-core cache simulator works without any problems, this program contain with 

single threaded so the results in both AMD and our proposed system will be similar.  We 

use two program for this type (date) and (df).  (date) that returns the current date, as well as 

time and time zone. We tested this program in both design. Another program is (df) that 

returns the amount of space used on all mounted volumes. The second type of program is a 

multithreaded program used in order to check the performance of multi-core system this 

program called performance program (PP) based on OpenMP. The (pp) program shown in 

figure 4.3. When we look to source code, line 9 contains the following command: 

omp_set_num_threads (n); to control the number of threads that shall be simulated this 

parameter can be changed. In line 11 to creates threads in parallel and runs the for loop 

variable as shared variable. Line 16 identifies a synchronization point for parallel threads. 

The third type of program is a multithreaded dependency program used to compare the 

execution time between our model and AMD model. 
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4.3.1.1 Single thread testing (date) program  

 

 

4.2.2 Single thread testing (date) and (df) program 

 

To check if the proposed simulator works without problem using (date) and (df) program 

we run these program in both simulators as the following: 

#valgrind --tool=callgrind --multicore=n date         , n change from 1 to 8 for AMD. 

The results of the AMD multi-core simulator can be seen in Appendix A, where numerous 

tests were run: 

#valgrind --tool=callgrind --newmulticore =n date   , n change from 1 to 8 for proposed multi-core.     

The results of the proposed multi-core simulator can be seen in Appendix A, where 

numerous tests were run: 

In Appendix A. We can see that results in both AMD and proposed multi-core system are 

exactly same. The number of L1 misses and L2 misses is the same.  

The second program is df. We run this program in both simulators as the following: 

1 #include <omp. h> 

2#include < s t d i o . h> 

3#include < s t d l i b . h> 

4  int main ( void ) 

5{ 

6       int  *shared ; 

7      int abc=0; 

8     shared =&abc ; 

9    omp_set_num_threads ( n ) ; 

10   int numof_proc=8888000/n; 

11 #pragma omp parallel for shared ( abc ) 

12 for ( int i =0; i < numof_proc; i ++) 

13 { 

14   abc++; 

 15    abc--; 

 16#pragma omp barrier 
 17} 
18return EXIT_SUCCESS; 

19} 

 

Figure 4.3: (pp) Benchmarking Program 
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 #valgrind --tool=callgrind --multicore=n df          , n change from 1 to 8 for AMD       

The results of the AMD multi-core simulator can be seen in Appendix A Where numerous 

tests were run. 

 #valgrind --tool=callgrind – newmulticore =n df      , n change from 1 to 8 for proposed multi-core     

The results of the AMD multi-core simulator can be seen in Appendix A where numerous 

tests were run. When comparing these results we show that in both multi-core simulator 

results are the same.  

However these results in (date) and (df) programs confirm that proposed multi-core system 

works without problems. 

4.2.3  Multithreading Testing Performance Program (pp) 

 

This section describes and analysis the results by the AMD and proposed multi core 

simulator using (PP) benchmarking program. 

We run this program in both simulators as the following: 

  # gcc -fopenmp ./pp.c -o pp.o               ,this command to compile the (pp) program and save it pp.o . 

  # valgrind --tool=callgrind --multicore=n  pp.o           , n change 1 to 8 this for AMD 

  # valgrind --tool=callgrind --newmulticore=n  pp.o    , n change 1 to 8 this for proposed design . 

The results of both AMD and proposed multi-core simulator at n=2 and n=8 can be seen in 

Appendix B. All these results will be explained later. 

4.2.4 Execution Time Using (PP) 

 

If you want to test the performance of two multi-core architecture systems and compare the 

results, the execution time is the most important parameter, so we use the same 

multithreaded program (pp) in order to get comparable results. The time command runs the 

specified program command with the given arguments. When command finishes, time 
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writes a message giving timing statistics about this program. One of this statistics is CPU 

real time between invocation and termination the program which is the execution time. 

This program runs in both simulators as the following: 

time valgrind --tool=callgrind --multicore=n ./pp.o         ,n chang 1:8 AMD 

time valgrind --tool=callgrind --newmulticore=n ./pp.o  ,n chang 1:8 proposed multi-core 

 When looking at all the results as we explain in Appendix B, results can be summarized as 

in figure 4.4. It is possible to say, that the new design multi-core system works well 

compared to AMD multi-core.  When looking at the results concerning the execution time 

obviously it needs less time to complete the same program. 

Number of core AMD multi-core time  

in second 

New proposed multi-core time 

in second 

one 16.2 16.2 

two 10.1 9.8 

three 8.43 6.8 

four 7.16 6.1 

eight 4.98 3.13 

 

 

 

 

 

 

 

Figure 4.4: Execution Time in Second (pp) Program. 
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4.3 Result Analysis 

4.3.1 Number of Instructions per Core 

 

 

 

 

Figure 4.5 displays the number of instructions per cores. When using more cores, this 

means that more instructions are required in order to do synchronization between all cores. 

As we show in figure 4.5 the number of instructions in one core is about 129.2 million of 

instructions (MI), after we use two cores the number of instructions equal about 6.529 MI 

per core, or about 130.39 MI for both cores and so on, when we increase the number of 

cores, the instructions that required for program to run is also increased. In our design it is 

expected to decrease this synchronization and the instruction required to execute the 

program become what about 64.6 MI are scheduled for each core. So there is no need for 

synchronization between cores.  
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Figure 4.5: Number of Instruction per Core 
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4.3.2   Cache L2 (Shared Variable) Misses 

 

 

 

Figure 4.6 presents the L2 miss ratio on both AMD and new proposed multi-core simulator 

(Appendix B display the count number of this miss). In dual cores when we looking at the 

L2 miss, about one million misses occur when reading and writing variable which equal 

1.6% miss rate. While in our proposed design the number of misses about 1.8 thousand 

which is near 0.00288% miss rate.  In eight cores the number of misses in AMD simulator 

is about 1.8 million which equal 2.4% miss rate. But in our proposed design the number of 

misses about 3.1 thousand which is near 0.00413% miss rate. This result because in AMD 

L2 of caches when any core need to access shared variable it must access this variable 

through interconnection networks where the bottlenecks and cache coherency miss appear, 

While in our proposed the crossbar embedded DPCAM there is no bottlenecks and no 

Coherency Miss in shared variable caches so the miss rate in L2 of caches will drop 

because most variable where cached in embedded DPCAM. In our design the cache miss 
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Figure 4.6: Shard L2 Miss Ratio 
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occurs only if the data is not produced yet (scheduling problem). If produced all versions 

will be available and the operand Fetch unit can read the specified version. So, if the 

scheduling observes the dependency correctly, there will be no cache misses or cache 

invalidation problems.   

4.3.3 Number of Invalidation Access the Shared Variable  

 

 

 

Figure 4.7 depicts the number of invalidation when any core wants to access the shared 

variable through interconnection networks. In AMD multi-core when looking at the dual-

core simulation, it can be seen, that about one million invalidations occur, in three cores 

about 3 million invalidation, in four cores about 3.2 millions invalidation and in eight cores 

about 3-6 million invalidation. While in our proposed multi-core system dual-core 

simulation, it can be seen, that about 44 invalidations occur, in three core about 80 

invalidation, in four cores about 105 invalidation and in eight cores about 216 million 

invalidation, these invalidations invalidate when any core needs to access variable 

produced from other cores. 
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Figure 4.7: Invalidation Number per Core 
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We can analyze this result as the bandwidth of the interconnection networks in crossbar 

switch which is used in AMD that can’t serve all requests when more than one core want 

to broadcast shared variable to all caches then bottlenecks happens. Also the cache 

coherence consistency produces additional problem so more variables become invalid. But 

in crossbar embedded DPCAM there is no bottlenecks and no need for cache coherence 

protocol, so the crossbar embedded DPCAM can serve all requests, the only invalid 

variable happens when there is no core produced this variable. 

4.3.4   Execution Time  

 

 

 

As we know the main goal of multiprocessor system is to increase the processing power 

processor so logically when we increase the number of processors from one to two, the 

execution time of any program is reduced to half. But the major problems which appear in 

multiprocessor system, we focused on the most important communication, synchronization 

between PEs. These problems prevent the execution time from decreasing regularly.  

Figure 4.8 shows the execution time in second versus number of cores. When we compare 
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Figure 4.8: (pp) Execution Time in Multi-core 
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between execution time in AMD and new design multi-core system as summarized in 

figure 4.4, we conclude that the new embedded DPCAM network and its improvement in 

communication between PES and synchronization between shared variable in caches 

reflects positively on the speed of execution time.   

We used other dependency multithreaded benchmark program to compare the execution 

time between our model and AMD model when the threads of cores dependent each other, 

so we used  benchmark program that multiply two matrices and calculate the determinant 

for the result matrix. Figure 4.9 displays the results of execution time when we run this 

program in two simulators.  

 

 

 

In conclusion we can say that also in dependency programs the new embedded DPCAM 

architecture improve the speed of execution time.    
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Figure 4.9: Dependency Program Execution Time in Multi-core 
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Chapter 5 

Conclusion and Future Work 

 

5.1 Conclusion 

 

Expanding a multiprocessor in computer system is not as straightforward as it appears. 

There are many issues usually have to be resolved; the communication among the PEs of 

the system and its overhead, the scheduling policy and the Synchronization of cache 

coherence of the system processors. These three issues were thoroughly investigated in the 

last years. This thesis proposed a new architecture to solve these problems. This thesis 

consists of two parts: First, redesigned new shared cache and using it in designing 

interconnection networks for multi-core systems. The interconnection networks which 

connect between cores in multi-core systems are still suffering from a bottleneck problem. 

The new interconnection networks have been called crossbar embedded DPCAM, the 

bottleneck has been totally eliminated. So all the cores of the system can write to and read 

from the shard memory simultaneously. We have presented the simulation results of the 

crossbar embedded DPCAM using VHDL. Results have shown that there are no 

bottlenecks, no arbitration, and hence no additional latency, A latency is about five 

nanoseconds per shared variable access.  

In the second part we simulated the crossbar embedded DPCAM network as a part of the 

multi-core architecture system, then we compared the performance of our design with 



 

 

 

59 

AMD multi-core system using different type of micro benchmarking program. The results 

of this architecture have shown less invalidation, miss ratio when access shared cache 

memory, and better execution time achieved, than in AMD multi-core system.   

5.2 Future Work 

 

The scalability of multiprocessor (multi-core) systems is a very important issue. In fact 

multiprocessor systems represent a great hope for computing if we can build a 

multiprocessor with large number of processors without paying heavy penalty of queuing 

and delay. The system we proposed in this thesis is a non blocking one. It is contention 

free, with no queuing, no arbitration and no delay. The big question is: can we expand this 

system further and keep its feature at the same time?  

For scaling this system up with minimum penalty we propose the following work for 

future. In our proposed architecture, Assume that a block of n core processor on a chip is 

technologically feasible, and its cost is C. Assume also that the latency in accessing a 

shared variable is t. then the system can be expanded to include n blocks (       ) at a 

cost of nC and latency 1.5 t in accessing a shared variable. 
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Figure 5.1: Connecting to Cores in Two Different Blocks via the Perfect Conjugate Shuffle 

 

In this system, in the block j, the ith core is a client of block i, and in block i the jth core is 

a client of block j. obviously any core in the block is capable of accessing any shared 

variable. So, if a shared variable is produced in block j and needed by block i, then the 

operand fetch unit of core-ij of block i can take over the operand fetch unit of core-ji and 

fetches the shared variable, uses it and store (using the store back unit) it in the multi-port 

CAM i as shown in figure 5.1. Example, if 32 core block is feasible at cost 100$ and 

latency 6 ns, then the system can be expanded to 32 blocks (1024 cores) at cost 3200$ and 

9 ns latency in shared variable access. Intuitively, only two cores will be competing for the 

shared variable and this in average gives 1.5t latency. Also, no arbitration or 

synchronization is needed. In future work the simulation of this system with large number 

of cores paves the way for producing many core processor systems. 
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Glossary 

 

 

MP: Multiple Processors 

CPUs: Central Processing Units 

MIMD: Multiple Instruction Stream Multiple Data Stream 

PEs: Processing Elements 

IC: Integrated Circuit  

SoC: System on a Chip 

DTM: Dynamic Thermal managements  

L1: Level one of caches  

L1D: Level one for Data cache 

L1I: Level one for Instruction cache 

LL: Last level of cache 

LRU: Least Recently Used algorithm 

CAM: Content Addressable Memory 

DPCAM: Dual Port CAM 

MPCAM: Multi Port CAM 

OCM: On Chip Multiprocessor 

SSM: Symmetric Shared Memory 

DSM: Distributed Shared Memory 

MESI: Modified, Exclusive, Shared , Invalid. Cache coherence protocol 

MSI: Modified, Shared, Invalid. Cache coherence protocol 

ESI: Exclusive, Shared, Invalid. Cache coherence protocol 
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NoC: Network on a Chip 

SMM: Shared Memory Module 

CBF: Critical Internal Buffer first 

IQ: Input Queued 

IBC: Internally Buffered Crossbar 

MINs: Multistage Interconnection Networks 

FPGA: Field Programmable Gate Array 

RAM: Random Access memory 

PCB: Printed Circuit Board 

SB: Store Back. Pipeline stages 

OF: Operand Fetch. Pipeline stages 

VHDL: Verilog Hardware Description Language 

QPI: Quick path interconnection 
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 سريعة للمعالجات متعددة النوىهيكلية غير صادة تتضمن شبكة وذاكرة : الموضوع

 علام ربحي محمد ابومويس:إعداد

 عبدالكريم عياد.د: إشراف

 الملخص

تعاني انظمة الحاسبات متعددة المعالجات المبنية على لوحات مطبوعة أو المبنية على شريحة سيلكون متكاملة وتدعى  

. والذاكرة المشتركة( نوىالم)بين المعالجات من مشكلة عنق الزجاجة في الاتصال ( Multi-Core()نوىمتعددة ال)

يتم قبول طلب خدمة واحدة فقط اذا كانت الطلبات  (Crossbar Switch()مفاتيح التقاطع)ففي افضل انواع الشبكات 

ويجري رفض الباقي حيث يقوم جهاز التحكيم بجدولة خدماتها في ( Memory Module)متجهة لنفس وحدة الذاكرة 

يؤدي الى تعويق عمل المعالجات بانتظار خدمة طلباتها من الذاكرة المشتركة وبالتالي يطيل مدة  هذا.دورات لاحقة

ويضيف الى هذا بشكل حاد في عملية تنسيق وتحديث المتغيرات المشتركة في الذاكرة . معالجة النظام للبرنامج

 .المشتركة حيث تضاف كطلبات اضافية الى الشبكة

تم اعادة تصميم وحدات الذاكرة السريعة   نوىمعالج متعدد ال هالرسالة المتضمن تصميم وتشبيوكجزء من مشروع هذه 

بحيث يكون لها بناء من ميناءين واحد للكتابة واخر للقراءة وتم زراعتها , من النوع الذي يعنون فية المحتوى لجزء منه

هذه الذاكرة . كرة معنونة بالمحتوى متعدد الموانئعلى تقاطعات شبكة مفاتيح التقاطع بدل المفاتيح فكانت النتيجة ذا

حيث تستطيع جميع ( النوى)كيم ولا تعويق لعمل المعالجات ازالت عنق الزجاجة من النظام ولم يعد هناك تنافس ولا تح

ع كما ان طبيعة الكتابة الى هذه الذاكرة تضمن وجود جمي. المعالجات الوصول الى المعلومة بالتوازي في نفس الوقت

  .النسخ من المعلومة وبالتالي لا حاجة لعملية تنسيق وتحديث المتغيرات وهذا ازال عبئاً معوقاً اضافياً 

وبوقت  نوىوبكلفة تنمو خطياً مع عدد الم نوىواخيراً تم اقتراح نظام لتوسيع هذا النظام بحيث يحتوي عدد كبير من ال

 . ول الى المتغير في هذه الذاكرة متعددة الموانئوصول ثابت وصغير جداً لا يتجاوز مرة ونصف زمن الوص
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Appendices  

 

Appendix A 

Appendix A-1: date program benchmarking 

A-1: 1.1 AMD simulator eight cores   

==2583== Number of simulated cores: 8 

==2583== I   refs:      305,033 

==2583== I1  misses:      1,361 

==2583== L2i misses:      1,308 

==2583== I1  miss rate:    0.44% 

==2583== L2i miss rate:    0.42% 

==2583==  

==2583== D   refs:      153,947  (108,429 rd + 45,518 wr) 

==2583== D1  misses:      2,557  (  2,130 rd +    427 wr) 

==2583== L2d misses:      1,834  (  1,471 rd +    363 wr) 

==2583== D1  miss rate:     1.6% (    1.9%   +    0.9%  ) 

==2583== L2d miss rate:     1.1% (    1.3%   +    0.7%  ) 

==2583==  

==2583== L2 refs:         3,918  (  3,491 rd +    427 wr) 

==2583== L2 misses:       3,142  (  2,779 rd +    363 wr) 

==2583== L2 miss rate:      0.6% (    0.6%   +    0.7%  ) 

==2583==  

==2583== Multicore Cache Simulator 

==2583== Thread Stats: Instructions 

==2583== Thread 0:305033 

==2583== Thread 1:0 

==2583== Thread 2:0 

==2583== Thread 3:0 

==2583== Thread 4:0 

==2583== Thread 5:0 

==2583== Thread 6:0 

==2583== Thread 7:0 

 

 

A-1: 1.2 new proposed simulator eight cores   

==2601== Number of simulated cores: 8 

==2601== I   refs:      304,917 

==2601== I1  misses:      1,359 

==2601== L2i misses:      1,307 

==2601== I1  miss rate:    0.44% 

==2601== L2i miss rate:    0.42% 

==2601==  

==2601== D   refs:      153,870  (108,382 rd + 45,488 wr) 

==2601== D1  misses:      2,557  (  2,130 rd +    427 wr) 
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==2601== L2d misses:      1,834  (  1,471 rd +    363 wr) 

==2601== D1  miss rate:     1.6% (    1.9%   +    0.9%  ) 

==2601== L2d miss rate:     1.1% (    1.3%   +    0.7%  ) 

==2601==  

==2601== L2 refs:         3,916  (  3,489 rd +    427 wr) 

==2601== L2 misses:       3,141  (  2,778 rd +    363 wr) 

==2601== L2 miss rate:      0.6% (    0.6%   +    0.7%  ) 

==2601==  

==2601== New Multicore Simulator 

==2601== Thread Stats: Instructions 

==2601== Thread 0:304917 

==2601== Thread 1:0 

==2601== Thread 2:0 

==2601== Thread 3:0 

==2601== Thread 4:0 

==2601== Thread 5:0 

==2601== Thread 6:0 

==2601== Thread 7:0 

 

A-1: 2.1 AMD simulator four cores   

==2586== Number of simulated cores: 4 

==2586== I   refs:      304,917 

==2586== I1  misses:      1,359 

==2586== L2i misses:      1,307 

==2586== I1  miss rate:    0.44% 

==2586== L2i miss rate:    0.42% 

==2586==  

==2586== D   refs:      153,870  (108,382 rd + 45,488 wr) 

==2586== D1  misses:      2,557  (  2,130 rd +    427 wr) 

==2586== L2d misses:      1,834  (  1,471 rd +    363 wr) 

==2586== D1  miss rate:     1.6% (    1.9%   +    0.9%  ) 

==2586== L2d miss rate:     1.1% (    1.3%   +    0.7%  ) 

==2586==  

==2586== L2 refs:         3,916  (  3,489 rd +    427 wr) 

==2586== L2 misses:       3,141  (  2,778 rd +    363 wr) 

==2586== L2 miss rate:      0.6% (    0.6%   +    0.7%  ) 

==2586==  

==2586== Multicore Cache Simulator 

==2586== Thread Stats: Instructions 

==2586== Thread 0:304917 

==2586== Thread 1:0 

==2586== Thread 2:0 

==2586== Thread 3:0 

 

 

A-1: 2.2 new proposed simulator four cores   

==2610== Number of simulated cores: 4 

==2610== I   refs:      304,917 

==2610== I1  misses:      1,359 

==2610== L2i misses:      1,307 

==2610== I1  miss rate:    0.44% 

==2610== L2i miss rate:    0.42% 

==2610==  
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==2610== D   refs:      153,870  (108,382 rd + 45,488 wr) 

==2610== D1  misses:      2,557  (  2,130 rd +    427 wr) 

==2610== L2d misses:      1,834  (  1,471 rd +    363 wr) 

==2610== D1  miss rate:     1.6% (    1.9%   +    0.9%  ) 

==2610== L2d miss rate:     1.1% (    1.3%   +    0.7%  ) 

==2610==  

==2610== L2 refs:         3,916  (  3,489 rd +    427 wr) 

==2610== L2 misses:       3,141  (  2,778 rd +    363 wr) 

==2610== L2 miss rate:      0.6% (    0.6%   +    0.7%  ) 

==2610==  

==2610== New Multicore Simulator 

==2610== Thread Stats: Instructions 

==2610== Thread 0:304917 

==2610== Thread 1:0 

==2610== Thread 2:0 

==2610== Thread 3:0 

 

 

A-1: 3.1 AMD simulator two cores   

==2589== Number of simulated cores: 2 

==2589== I   refs:      304,917 

==2589== I1  misses:      1,359 

==2589== L2i misses:      1,307 

==2589== I1  miss rate:    0.44% 

==2589== L2i miss rate:    0.42% 

==2589==  

==2589== D   refs:      153,870  (108,382 rd + 45,488 wr) 

==2589== D1  misses:      2,557  (  2,130 rd +    427 wr) 

==2589== L2d misses:      1,834  (  1,471 rd +    363 wr) 

==2589== D1  miss rate:     1.6% (    1.9%   +    0.9%  ) 

==2589== L2d miss rate:     1.1% (    1.3%   +    0.7%  ) 

==2589==  

==2589== L2 refs:         3,916  (  3,489 rd +    427 wr) 

==2589== L2 misses:       3,141  (  2,778 rd +    363 wr) 

==2589== L2 miss rate:      0.6% (    0.6%   +    0.7%  ) 

==2589==  

==2589== Multicore Cache Simulator 

==2589== Thread Stats: Instructions 

==2589== Thread 0:304917 

==2589== Thread 1:0 

 

A-1: 3.2 new proposed simulator two cores   

==2615== Number of simulated cores: 2 

==2615== I   refs:      304,917 

==2615== I1  misses:      1,359 

==2615== L2i misses:      1,307 

==2615== I1  miss rate:    0.44% 

==2615== L2i miss rate:    0.42% 

==2615==  

==2615== D   refs:      153,870  (108,382 rd + 45,488 wr) 

==2615== D1  misses:      2,557  (  2,130 rd +    427 wr) 

==2615== L2d misses:      1,834  (  1,471 rd +    363 wr) 

==2615== D1  miss rate:     1.6% (    1.9%   +    0.9%  ) 
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==2615== L2d miss rate:     1.1% (    1.3%   +    0.7%  ) 

==2615==  

==2615== L2 refs:         3,916  (  3,489 rd +    427 wr) 

==2615== L2 misses:       3,141  (  2,778 rd +    363 wr) 

==2615== L2 miss rate:      0.6% (    0.6%   +    0.7%  ) 

==2615==  

==2615== New Multicore Simulator 

==2615== Thread Stats: Instructions 

==2615== Thread 0:304917 

==2615== Thread 1:0 

 

 

Appendix A-2: df program benchmarking 

 

A-2: 1.1 AMD simulator eight cores   

==2594== Number of simulated cores: 8 

==2594== I   refs:      398,496 

==2594== I1  misses:      1,630 

==2594== L2i misses:      1,478 

==2594== I1  miss rate:    0.40% 

==2594== L2i miss rate:    0.37% 

==2594==  

==2594== D   refs:      193,321  (133,782 rd + 59,539 wr) 

==2594== D1  misses:      2,213  (  1,837 rd +    376 wr) 

==2594== L2d misses:      1,691  (  1,370 rd +    321 wr) 

==2594== D1  miss rate:     1.1% (    1.3%   +    0.6%  ) 

==2594== L2d miss rate:     0.8% (    1.0%   +    0.5%  ) 

==2594==  

==2594== L2 refs:         3,843  (  3,467 rd +    376 wr) 

==2594== L2 misses:       3,169  (  2,848 rd +    321 wr) 

==2594== L2 miss rate:      0.5% (    0.5%   +    0.5%  ) 

==2594==  

==2594== Multicore Cache Simulator 

==2594== Thread Stats: Instructions 

==2594== Thread 0:398496 

==2594== Thread 1:0 

==2594== Thread 2:0 

==2594== Thread 3:0 

==2594== Thread 4:0 

==2594== Thread 5:0 

==2594== Thread 6:0 

==2594== Thread 7:0 
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A-2: 1.2 new proposed simulator two cores   

==2622== Number of simulated cores: 8 

==2622== I   refs:      398,496 

==2622== I1  misses:      1,630 

==2622== L2i misses:      1,478 

==2622== I1  miss rate:    0.40% 

==2622== L2i miss rate:    0.37% 

==2622==  

==2622== D   refs:      193,321  (133,782 rd + 59,539 wr) 

==2622== D1  misses:      2,213  (  1,837 rd +    376 wr) 

==2622== L2d misses:      1,691  (  1,370 rd +    321 wr) 

==2622== D1  miss rate:     1.1% (    1.3%   +    0.6%  ) 

==2622== L2d miss rate:     0.8% (    1.0%   +    0.5%  ) 

==2622==  

==2622== L2 refs:         3,843  (  3,467 rd +    376 wr) 

==2622== L2 misses:       3,169  (  2,848 rd +    321 wr) 

==2622== L2 miss rate:      0.5% (    0.5%   +    0.5%  ) 

==2622==  

==2622== New Multicore Simulator 

==2622== Thread Stats: Instructions 

==2622== Thread 0:398496 

==2622== Thread 1:0 

==2622== Thread 2:0 

==2622== Thread 3:0 

==2622== Thread 4:0 

==2622== Thread 5:0 

==2622== Thread 6:0 

==2622== Thread 7:0 

 

 

A-2: 2.1 AMD simulator four cores   

==2596== Number of simulated cores: 4 

==2596== I   refs:      398,496 

==2596== I1  misses:      1,630 

==2596== L2i misses:      1,478 

==2596== I1  miss rate:    0.40% 

==2596== L2i miss rate:    0.37% 

==2596==  

==2596== D   refs:      193,321  (133,782 rd + 59,539 wr) 

==2596== D1  misses:      2,213  (  1,837 rd +    376 wr) 

==2596== L2d misses:      1,691  (  1,370 rd +    321 wr) 

==2596== D1  miss rate:     1.1% (    1.3%   +    0.6%  ) 

==2596== L2d miss rate:     0.8% (    1.0%   +    0.5%  ) 

==2596==  

==2596== L2 refs:         3,843  (  3,467 rd +    376 wr) 

==2596== L2 misses:       3,169  (  2,848 rd +    321 wr) 

==2596== L2 miss rate:      0.5% (    0.5%   +    0.5%  ) 

==2596==  

==2596== Multicore Cache Simulator 

==2596== Thread Stats: Instructions 

==2596== Thread 0:398496 

==2596== Thread 1:0 

==2596== Thread 2:0 
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==2596== Thread 3:0 

 

 

A-2: 2.2 new proposed simulator four cores   

==2627== Number of simulated cores: 4 

==2627== I   refs:      398,496 

==2627== I1  misses:      1,630 

==2627== L2i misses:      1,478 

==2627== I1  miss rate:    0.40% 

==2627== L2i miss rate:    0.37% 

==2627==  

==2627== D   refs:      193,321  (133,782 rd + 59,539 wr) 

==2627== D1  misses:      2,213  (  1,837 rd +    376 wr) 

==2627== L2d misses:      1,691  (  1,370 rd +    321 wr) 

==2627== D1  miss rate:     1.1% (    1.3%   +    0.6%  ) 

==2627== L2d miss rate:     0.8% (    1.0%   +    0.5%  ) 

==2627==  

==2627== L2 refs:         3,843  (  3,467 rd +    376 wr) 

==2627== L2 misses:       3,169  (  2,848 rd +    321 wr) 

==2627== L2 miss rate:      0.5% (    0.5%   +    0.5%  ) 

==2627==  

==2627== New Multicore Simulator 

==2627== Thread Stats: Instructions 

==2627== Thread 0:398496 

==2627== Thread 1:0 

==2627== Thread 2:0 

==2627== Thread 3:0 

 

 

A-2: 3.1 AMD simulator two cores   

==2598== Number of simulated cores: 2 

==2598== I   refs:      398,496 

==2598== I1  misses:      1,630 

==2598== L2i misses:      1,478 

==2598== I1  miss rate:    0.40% 

==2598== L2i miss rate:    0.37% 

==2598==  

==2598== D   refs:      193,321  (133,782 rd + 59,539 wr) 

==2598== D1  misses:      2,213  (  1,837 rd +    376 wr) 

==2598== L2d misses:      1,691  (  1,370 rd +    321 wr) 

==2598== D1  miss rate:     1.1% (    1.3%   +    0.6%  ) 

==2598== L2d miss rate:     0.8% (    1.0%   +    0.5%  ) 

==2598==  

==2598== L2 refs:         3,843  (  3,467 rd +    376 wr) 

==2598== L2 misses:       3,169  (  2,848 rd +    321 wr) 

==2598== L2 miss rate:      0.5% (    0.5%   +    0.5%  ) 

==2598==  

==2598== Multicore Cache Simulator 

==2598== Thread Stats: Instructions 

==2598== Thread 0:398496 

==2598== Thread 1:0 
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A-2: 3.2 new proposed simulator two cores   

==2627== Number of simulated cores: 4 

==2627== I   refs:      398,496 

==2627== I1  misses:      1,630 

==2627== L2i misses:      1,478 

==2627== I1  miss rate:    0.40% 

==2627== L2i miss rate:    0.37% 

==2627==  

==2627== D   refs:      193,321  (133,782 rd + 59,539 wr) 

==2627== D1  misses:      2,213  (  1,837 rd +    376 wr) 

==2627== L2d misses:      1,691  (  1,370 rd +    321 wr) 

==2627== D1  miss rate:     1.1% (    1.3%   +    0.6%  ) 

==2627== L2d miss rate:     0.8% (    1.0%   +    0.5%  ) 

==2627==  

==2627== L2 refs:         3,843  (  3,467 rd +    376 wr) 

==2627== L2 misses:       3,169  (  2,848 rd +    321 wr) 

==2627== L2 miss rate:      0.5% (    0.5%   +    0.5%  ) 

==2627==  

==2627== New Multicore Simulator 

==2627== Thread Stats: Instructions 

==2627== Thread 0:398496 

==2627== Thread 1:0 
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Appendix B 

Appendix B: (pp) program benchmarking 

B: 1.1 AMD simulator two cores   

==2664== Number of simulated cores: 2 

==2664== I   refs:      130,293,891 

==2664== I1  misses:          1,126 

==2664== L2i misses:          1,106 

==2664== I1  miss rate:         0.0% 

==2664== L2i miss rate:         0.0% 

==2664==  

==2664== D   refs:       60,696,770  (70,103,936 rd + 20,044,724 wr) 

==2664== D1  misses:     2,508,981   (1,007,305 rd +   1,501,676 wr) 

==2664== L2d misses:     1,004,927   (1,004,802 rd +         842 wr) 

==2664== D1  miss rate:         4.1% (       3.0%   +        5.5%  ) 

==2664== L2d miss rate:         1.6% (       2.9%   +        0.0%  ) 

==2664==  

==2664== L2  refs:     2,510,156     ( 1,008,480 rd +  1,501,676 wr) 

==2664== L2 misses:    1,006,044     ( 1,005,202 rd +        842 wr) 

==2664== L2 miss rate:          0.5% (        0.6%   +        0.0% )  

==2664== Multicore Cache Simulator 

==2664== Thread Stats: Instructions 

==2664== Thread 0:65290662 

==2664== Thread 1:65003229 

==2664== Bus Transactions: 

==2664== Thread 0: Reads:146185; Writes: 10044084; Shared Reads: 

859012; Invalidation: 1141244 

==2664== Thread 1: Reads: 859031; Writes: 10000642; Shared Reads: 

141013; Invalidation: 1359245 

==2664== Summary:  Reads: 1005216; Writes: 20044726;Shared 

Reads:1000025; Invalidation: 2500489 

==2664==  

==2664== Number of invalidations per write access 

==2664== 1;2;<5;>4 

==2664== Thread 0: 1359245,0,0,0 

==2664== Thread 1: 1141244,0,0,0 

==2664== Thread 2: 0,0,0,0 

==2664== Thread 3: 0,0,0,0 

==2664== Thread 4: 0,0,0,0 

==2664== Thread 5: 0,0,0,0 

==2664== Thread 6: 0,0,0,0 

 

B: 1.2 new proposed simulator two cores   

==2654== Number of simulated cores: 2 

==2654== I   refs:      130,293,891 

==2654== I1  misses:          1,126 

==2654== L2i misses:          1,106 

==2654== I1  miss rate:         0.0% 

==2654== L2i miss rate:         0.0% 

==2654==  

==2654== D   refs:       60,696,770  (70,103,936 rd + 20,044,724 wr) 
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==2654== D1  misses:           2,608 (     2,080 rd +        528 wr) 

==2654== L2d misses:           1,821 (     1,244 rd +        577 wr) 

==2654== D1  miss rate:         0.0% (       0.0%   +        0.0%  ) 

==2654== L2d miss rate:         0.0% (       0.0%   +        0.0%  ) 

==2654==  

==2654== L2  refs:        2,656      (     2,108 rd +        548 wr) 

==2654== L2 misses:       2,244      (     1,898 rd +        346 wr) 

==2654== L2 miss rate:          0.0% (        0.0%   +        0.0% )  

==2654== New Multicore Simulator 

==2654== Thread Stats: Instructions 

==2654== Thread 0:65290662 

==2654== Thread 1:65003229 

==2654== Bus Transactions: 

==2654== Thread 0: Reads:146185; Writes: 10044084; Shared Reads: 00; 

Invalidation: 22 

==2654== Thread 1: Reads: 859031; Writes: 10000642; Shared Reads: 00; 

Invalidation: 21 

==2654== Summary:  Reads: 1005216; Writes: 20044726; Shared Reads: 

00; Invalidation: 43 

 

B: 2.1 AMD simulator four cores   

==2684== Number of simulated cores: 4 

==2684==  

==2684== I   refs:      130,297,832 

==2684== I1  misses:          1,273 

==2684== L2i misses:          1,253 

==2684== I1  miss rate:         0.0% 

==2684== L2i miss rate:         0.0% 

==2684==  

==2684== D  refs:       68,696,915 (37,987,746 rd + 30,709,169 wr) 

==2684== D1 misses:      3,259,033 ( 1,507,358 rd +  1,751,675 wr) 

==2684== L2d misses:     1,505,020 ( 1,504,130 rd +        890 wr) 

==2684== D1 miss rate:        4.7% (       3.9%   +        5.7%  ) 

==2684== L2d miss rate:       2.1% (       3.9%   +        0.0%  ) 

==2684==   

==2684== L2 refs:        3,260,274 ( 1,508,599 rd +  1,751,675 wr) 

==2684== L2 misses:      1,506,206 ( 1,505,316 rd +        890 wr) 

==2684== L2 miss rate:        0.7% (      0.8%    +        0.0%  ) 

==2684==  

==2684== Multicore Cache Simulator 

==2684== Thread Stats: Instructions 

==2684== Thread 0:32791387 

==2684== Thread 1:32501060 

==2684== Thread 2:32503187 

==2684== Thread 3:32502198 

==2684== Bus Transactions: 

==2684== Thread 0: Reads:196996; Writes: 7764630; Shared Reads: 

597517; 

Invalidation: 807424 

==2684== Thread 1: Reads:435502; Writes: 7650724; Shared Reads: 

554033; 

Invalidation: 813903 

==2684== Thread 2: Reads:436057; Writes: 7651259; Shared Reads: 

551164; 
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Invalidation: 814836 

==2684== Thread 3: Reads:436775; Writes: 7642569; Shared Reads: 

547525; 

Invalidation: 814297 

==2684== Summary: Reads: 1505330; Writes: 30709182; Shared Reads: 

2250239; 

Invalidation: 3250460 

 

B: 2.2 new proposed simulator four cores   

==3507== Number of simulated cores: 4 

==3507==  

==3507== I   refs:      130,297,832 

==3507== I1  misses:          1,273 

==3507== L2i misses:          1,253 

==3507== I1  miss rate:         0.0% 

==3507== L2i miss rate:         0.0% 

==3507==  

==3507== D   refs:       68,696,915  (37,987,764 rd + 30,709,169 wr) 

==3507== D1  misses:          3,052  (     2,467 rd +        585 wr) 

==3507== L2d misses:          2,298  (     1,785 rd +        513 wr) 

==3507== D1  miss rate:         0.0% (       0.0%   +        0.0%  ) 

==3507== L2d miss rate:         0.0% (       0.0%   +        0.0%  ) 

==3507==  

==3507== L2 refs:             4,093  (     3,613 rd +        480 wr) 

==3507== L2 misses:           3,343  (     2,924 rd +        419 wr) 

==3507== L2 miss rate:          0.0% (       0.0%   +        0.0%  ) 

==3507==  

==3507== New Multicore Simulator 

==3507== Thread Stats: Instructions 

==3507== Thread 0:32791387 

==3507== Thread 1:32501060 

==3507== Thread 2:32503187 

==3507== Thread 3:32502198 

==3507== Bus Transactions: 

==3507== Thread 0: Reads:196996; Writes: 7764630; Shared Reads:00; 

Invalidation: 38 

==3507== Thread 1: Reads:435502; Writes: 7650724; Shared Reads:00; 

Invalidation: 18 

==3507== Thread 2: Reads:436057; Writes: 7651259; Shared Reads: 00; 

Invalidation: 25 

==3507== Thread 3: Reads:436775; Writes: 7642569; Shared Reads: 00; 

Invalidation: 24 

==3507== Summary:  Reads: 1505330; Writes: 30709182; Shared Reads: 

00; Invalidation: 105 

 

B: 3.1 AMD simulator four cores   

==2696== Number of simulated cores: 8 

==2696== I   refs:      130,305,664 

==2696== I1  misses:          1,492 

==2696== L2i misses:          1,472 

==2696== I1  miss rate:         0.0% 

==2696== L2i miss rate:         0.0% 
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==2696==  

==2696== D   refs:       72,703,459  (40,241,090 rd  + 32,462,369 wr) 

==2696== D1  misses:      3,634,995  ( 1,757,390 rd  +  1,877,605 wr) 

==2696== L2d misses:      1,755,134  ( 1,754,148 rd  +        986 wr) 

==2696== D1  miss rate:         4.9% (       4.3%    +         57%  ) 

==2696== L2d miss rate:         2.4% (       4.3%    +         0.0% ) 

==2696==   

==2696== L2 refs:         3,636,368  ( 1,758,763 rd  +  1,877,605 wr) 

==2696== L2 misses:       1,756,452  ( 1,755,466 rd  +        986 wr) 

==2696== L2 miss rate:          0.8% (       0.9%    +        0.0%  ) 

==2696==  

==2696== Multicore Cache Simulator 

==2696== Thread Stats: Instructions 

==2696== Thread 0:16544757 

==2696== Thread 1:16251060 

==2696== Thread 2:16252374 

==2696== Thread 3:16251083 

==2696== Thread 4:16251060 

==2696== Thread 5:16253187 

==2696== Thread 6:16251083 

==2696== Thread 7:16251060 

==2696== Bus Transactions: 

==2696== Thread 0: Reads:113223; Writes: 4208223; Shared Reads: 

551199; 

Invalidation: 448046 

==2696== Thread 1: Reads:234511; Writes: 4035640; Shared Reads: 

543774; 

Invalidation: 453595 

==2696== Thread 2: Reads:234674; Writes: 4037809; Shared Reads: 

548067; 

Invalidation: 454361 

==2696== Thread 3: Reads:234758; Writes: 4038131; Shared Reads: 

548596; 

Invalidation: 454495 

==2696== Thread 4: Reads:234279; Writes: 4026468; Shared Reads: 

540909; 

Invalidation: 452352 

==2696== Thread 5: Reads:234670; Writes: 4038398; Shared Reads: 

549506; 

Invalidation: 454428 

==2696== Thread 6: Reads:235007; Writes: 4043821; Shared Reads: 

549973; 

Invalidation: 455544 

==2696== Thread 7: Reads:234358; Writes: 4033884; Shared Reads: 

544045; 

Invalidation: 453488 

==2696== Summary: Reads: 1755480; Writes: 32462374; Shared 

Reads:4376069; 

Invalidation: 3626309 

 

B: 3.2 new proposed simulator four cores   

==2706== Number of simulated cores: 8 

==2706== I   refs:      130,305,664 

==2706== I1  misses:          1,492 
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==2706== L2i misses:          1,472 

==2706== I1  miss rate:         0.0% 

==2706== L2i miss rate:         0.0% 

==2706==  

==2706== D   refs:       72,703,459  (40,241,090 rd  + 32,462,369 wr) 

==2706== D1  misses:          4,432  (     3,269 rd  +      1,136 wr) 

==2706== L2d misses:          3,142  (     2,616 rd  +        526 wr) 

==2706== D1  miss rate:         0.0% (       0.0%    +        0.0%  ) 

==2706== L2d miss rate:         0.0% (       0.0%    +        0.0%  ) 

==2706==  

==2706== L2 refs:             6,298  (     5,413 rd +         885 wr) 

==2706== L2 misses:           4,465  (     3,424 rd +       1,041 wr) 

==2706== L2 miss rate:          0.0% (       0.0%   +         0.0%  ) 

==2706==  

==2706== New Multicore Simulator 

==2706== Thread Stats: Instructions 

==2706== Thread 0:16544757 

==2706== Thread 1:16251060 

==2706== Thread 2:16252374 

==2706== Thread 3:16251083 

==2706== Thread 4:16251060 

==2706== Thread 5:16253187 

==2706== Thread 6:16251083 

==2706== Thread 7:16251060 

==2706== Bus Transactions: 

==2706== Thread 0: Reads:113223; Writes: 4208223; Shared Reads: 00; 

Invalidation: 63 

==2706== Thread 1: Reads:234511; Writes: 4035640; Shared Reads: 00; 

Invalidation: 19 

==2706== Thread 2: Reads:234674; Writes: 4037809; Shared Reads: 00; 

Invalidation: 32 

==2706== Thread 3: Reads:234758; Writes: 4038131; Shared Reads: 00; 

Invalidation: 20 

==2706== Thread 4: Reads:234279; Writes: 4026468; Shared Reads: 00; 

Invalidation: 19 

==2706== Thread 5: Reads:234670; Writes: 4038398; Shared Reads: 00; 

Invalidation: 25 

==2706== Thread 6: Reads:235007; Writes: 4043821; Shared Reads: 00; 

Invalidation: 20 

==2706== Thread 7: Reads:234358; Writes: 4033884; Shared Reads: 00; 

Invalidation: 18 

==2706== Summary:  Reads: 1755480; Writes: 32462374; Shared Reads: 

00; Invalidation: 216 

 

 

 

 

 


