
The Effect of an Optical Network
On-Chip on the Performance of Chip

Multiprocessors

Anouk VAN LAER

A thesis submitted to the University College London (UCL) for the
degree of Doctor of Philosophy

Optical Networks Group
Department of Electronic and Electrical Engineering

University College London (UCL)

August 2016

I, Anouk Van Laer, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated.

2

To my father Patrick Van Laer
– The kindest and smartest man I knew

3

Abstract

OPTICAL networks on-chip (ONoC) have been proposed to reduce power con-
sumption and increase bandwidth density in high performance chip multi-
processors (CMP), compared to electrical NoCs. However, as buffering in

an ONoC is not viable, the end-to-end message path needs to be acquired in advance
during which the message is buffered at the network ingress. This waiting latency is
therefore a combination of path setup latency and contention and forms a significant
part of the total message latency.

Many proposed ONoCs, such as Single Writer, Multiple Reader (SWMR), avoid
path setup latency at the expense of increased optical components. In contrast, this
thesis investigates a simple circuit-switched ONoC with lower component count where
nodes need to request a channel before transmission. To hide the path setup latency, a
coherence-based message predictor is proposed, to setup circuits before message arrival.

Firstly, the effect of latency and bandwidth on application performance is thoroughly
investigated using full-system simulations of shared memory CMPs. It is shown that the
latency of an ideal NoC affects the CMP performance more than the NoC bandwidth.
Increasing the number of wavelengths per channel decreases the serialisation latency
and improves the performance of both ONoC types. With 2 or more wavelengths
modulating at 25 Gbit/s , the ONoCs will outperform a conventional electrical mesh
(maximal speedup of 20%). The SWMR ONoC outperforms the circuit-switched
ONoC.

Next coherence-based prediction techniques are proposed to reduce the waiting
latency. The ideal coherence-based predictor reduces the waiting latency by 42%. A
more streamlined predictor (smaller than a L1 cache) reduces the waiting latency by
31%. Without prediction, the message latency in the circuit-switched ONoC is 11%
larger than in the SWMR ONoC. Applying the realistic predictor reverses this: the
message latency in the SWMR ONoC is now 18% larger than the predictive circuit-
switched ONoC.

4

Acknowledgements

NOW comes the hardest part of this thesis to write because how can I properly I
thank everybody who supported and helped me throughout these years? Most
of all though I want to thank my supervisor Dr Philip Watts . I have learned

so much from him and his continuous support meant the world to me. He taught me so
much, not only about the subject but also on being a good researcher and pushed me
when I needed it most. It was an honour and a pleasure being his first PhD student. I
also would like to thank Dr Timothy Jones at the University of Cambridge, without
whom I would not have been able to tackle the gem5 simulator. He never hesitated when
I needed help, be it with gem5 or more conceptual issues. It was a pleasure working
with Ridwan Madarbux and discussing networks on-chip together. Every single person
in the ONG group made my time in London a wonderful experience and supported
me in various ways during the difficult months at the end of my PhD. I would also
like to thank Dr Jose Mendinueta for the thesis template. I especially want to thank
Professor Polina Bayvel for her kind words when I needed it most. They were truly
appreciated. I would also like to thank my friends for keeping me (more or less) sane
during my time as a PhD student. I would neither be where I am right now, be as content
where I am right now or be the person I am right now, without my boyfriend Federico.
He continuously encourages me to reach for more than I initially aim for and supports
me in whatever I do. I would also be nowhere without my grandparents, aunts, uncles
and cousins. They have always supported me from afar and were always ready to throw
family parties whenever I went back home to Belgium.

Above all, I want to thank my sister, my mom and my dad. Their love is everything
to me. They never batted an eyelid when I said I would go on exchange to Sweden or
move to London for my PhD. I know I can run, just like in kindergarten, because they
are always there to catch me with open arms when I return.

I never imagined I would write these acknowledgements without my dad being there
to read them. This thesis is for him.

5

Contents

Abstract 4

Acknowledgements 5

List of Figures 8

List of Tables 10

Acronyms & Abbreviations 11

1 Introduction 13
1.1 Thesis overview . 15
1.2 Original contributions . 16
1.3 List of publications . 17

2 Background 18
2.1 Introduction to Chip Multiprocessors 18

2.1.1 Transition from uniprocessors to chip multiprocessor 18
2.1.2 Chip multiprocessors . 21
2.1.3 Caches . 23
2.1.4 Cache coherence protocol 24
2.1.5 Industrial and academic chip multiprocessors 30

2.2 Introduction to Networks On-Chip 32
2.2.1 Transition to networks on-chip 33
2.2.2 Motivation behind optical networks on-chip 38
2.2.3 Optical networks on-chip . 47
2.2.4 Holistic proposals for network on-chip optimisation 60

2.3 System Under Study . 62
2.3.1 System architecture . 63
2.3.2 Network on-chip architecture 64

2.4 Conclusion . 67

3 Figure of Merit 69
3.1 Performance Evaluation . 69

3.1.1 Single-threaded workloads 69
3.1.2 Multithreaded workloads . 70
3.1.3 Conclusion . 72

3.2 Performance Measurement . 72
3.2.1 Benchmark choice . 72
3.2.2 Simulator choice . 83

6

3.2.3 Need for full-system simulations 86

4 Effect of Latency on Performance 88
4.1 Effect of Latency and Bandwidth on Performance 88

4.1.1 Effect of latency on performance 89
4.1.2 Effect of bandwidth on performance 90
4.1.3 Conclusion . 92

4.2 Effect of Latency in an Optical Network On-Chip on Performance . . 93
4.2.1 Electrical mesh as comparison network on-chip 95
4.2.2 Simulation model of the optical networks on-chip 96
4.2.3 Effect of reduced latency in an optical network on-chip 98

4.3 Conclusion . 107

5 Use of Prediction in Switched Optical Networks On-Chip 113
5.1 Trace-Based Methodology . 114
5.2 Use of Speculative Circuits in Switched Networks On-Chip 116

5.2.1 Implementation . 118
5.2.2 Results . 119

5.3 Use of Predictive Circuits in Switched Networks On-Chip 121
5.3.1 Coherence transactions . 121
5.3.2 Coherence-based prediction 121
5.3.3 Implementation details . 124
5.3.4 Results . 126

5.4 Realistic Use of Predictive circuits in Switched Networks On-Chip . . 128
5.4.1 Realistic implementation of the predictor 128
5.4.2 Use of partial tags . 132

5.5 Conclusion . 141

6 Conclusion 143
6.1 Thesis Summary . 143
6.2 Future Research . 147

7 Appendix 164
7.1 Coherence predictor - header file . 164
7.2 Coherence predictor - code file . 171

7

List of Figures

2.1 Performance plateau leading to the use of multiprocessors 20
2.2 Memory architectures of CMPs . 22
2.3 Tile in a distributed shared memory architecture 24
2.4 Example of a cache coherence transaction 29
2.5 Router microarchitecture . 35
2.6 Common topologies for NoCs . 37
2.7 Schematic view of an RC line . 39
2.8 Distance crossable in a single clock cycle 40
2.9 Propagation delay of electrical and optical interconnects 42
2.10 Standard deviation on the delay of electrical and optical interconnects 43
2.11 Wavelength striping . 45
2.12 Optical partition length . 46
2.13 Schematic representation of a photonic link 48
2.14 SEM picture of microring resonator 50
2.15 Schematic view of microring resonators 51
2.16 SWMR scheme . 53
2.17 Macrochip scheme . 54
2.18 TDM scheme . 55
2.19 MWSR scheme . 56
2.20 Optical folded torus topology . 57
2.21 SPINet scheme . 58
2.22 Optical Clos . 59
2.23 Cache and memory architecture . 64
2.24 System diagram of circuit-switched optical NoC 67

3.1 Variability thread scheduling canneal 71
3.2 Cache miss rates in the PARSEC benchmark suite 76
3.3 Operational intensity of PARSEC benchmark suite 78
3.4 Injection rates of PARSEC benchmark suite 79
3.5 Message injection rates of PARSEC benchmark suite 79
3.6 Injection rates in PARSEC benchmark suite 81
3.7 Sharing behaviour of read requests 82
3.8 Sharing behaviour of write requests 82
3.9 Average number of sharers . 83
3.10 Algorithm used to add variability to the link latency 85
3.11 Performance dependence on given message latency 87

4.1 Effect of latency on speedup . 91
4.2 Effect of changing latency on speedup for streamcluster 92

8

4.3 Speedup plotted against operational intensity 92
4.4 Effect of bandwidth on speedup . 93
4.5 Normalised effect of latency and bandwidth on speedup 94
4.6 Schematic overview of gem5 optical NoC 96
4.7 Timing diagrams . 99
4.8 Flow diagram depicting the decision process in the network interface . 100
4.9 Effect of increased number of wavelengths 102
4.10 Effect of increased number of wavelengths on speedup 103
4.11 Message latency distribution in optical NoC 104
4.12 Effect of number of wavelengths on maximum latency 105
4.13 Effect of multiple channels on performance 107
4.14 Effect of multiple channels on speedup 108
4.15 Message latency in an optical NoC with multiple transmitters 109
4.16 Performance of an optimised mesh network 110
4.17 Comparison of optimised mesh and optical NoCs 111

5.1 Variation in injection rates across simulations 116
5.2 Variation across source and destination traffic 117
5.3 Structure of a 32-bit memory address 118
5.4 Effect of speculative circuits . 120
5.5 Coherence transactions . 122
5.6 Coherence-based prediction system 125
5.7 Phases of the path prediction process 126
5.8 Prediction hit rate of ideal coherence-based predictor 126
5.9 Effect of ideal coherence-based predictor 128
5.10 Effect of indexing function . 129
5.11 Effect of various indexing functions 130
5.12 Effect of predictor LUT size . 131
5.13 Effect of timing gap on predictive circuit usage 132
5.14 Encoding of a message on 8 wavelengths 133
5.15 Effect of partial tag on system characteristics 134
5.16 Effect of tag length on prediction & circuit hit rate 137
5.17 Effect of tag length on prediction entries 138
5.18 Effect of tag length on prediction information 138
5.19 Effect of tag length on circuit hit rate & latency savings 139
5.20 Effect of tag length on latency savings 140
5.21 Latency savings per path setup strategy 141

6.1 Difference in waiting latency between non-switched and circuit-switched
optical NoCs . 146

6.2 Latency savings per path setup strategy normalised to non-switched NoC146

9

List of Tables

2.1 Message types . 27
2.2 CMP examples . 32
2.3 Optical loss parameters in the literature 51
2.4 Comparison main proposals for optical networks on-chip 60
2.5 System parameters . 65
2.6 Parameters for electrical comparison network 65
2.7 Component count per network scheme 66
2.8 Parameters for optical networks . 67

3.1 Workloads in the PARSEC benchmark suite 74

4.1 Parameters for electrical comparison network 110

5.1 Parameters for tracing setup . 114
5.2 Total message latency in non-switched optical NoC 115
5.3 Parameters for predictive optical networks 118
5.4 Size of a LUT with 8192 entries . 130
5.5 Optimal number of LUT entries for a 4-way associative LUT 131

10

Acronyms & Abbreviations

CMOS Complementary Metal Oxide Semiconductor logic

CMP Chip Multiprocessor

CPI Cycles per Instruction

CPU Centralised Processing Unit

DVFS Dynamic Voltage and Frequency Scaling

DRAM Dynamic Random Access Memory

FLOP Floating Point Operation

FSM Finite State Machine

I Number of Useful Instructions

ILP Instruction Level Parallelism

IPC Instructions per Cycle

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Silicon

L1 First Level Cache

L2 Second Level Cache

L3 Third Level Cache

LLC Last Level Cache

LUT Look-up Table

LRU Least Recently Used

MESI Modified Exclusive Shared Invalid

MESIF Modified Exclusive Shared Invalid Forward

MMI Multi Mode Interference

MOESI Modified Owner Exclusive Shared Invalid

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MWSR Multiple Writer, Single Reader

11

N Number of Cores per CMP

NACK Negative Acknowledgement

NoC Network On-Chip

NUMA Non-Uniform Memory Access

OCIN On-Chip Interconnection Network

OCN On-Chip Network

OOK On-Off Keying

Pt2Pt Point-to-Point

QoS Quality of Service

SEM Scanning Electron Microscopy

SERDES Serialisation/Deserialisation

SOI Silicon-on-Insulator

SRAM Static Random Access Memory

SWMR Single Writer, Multiple Reader

TDM Time Division Multiplexing

TDP Thermal Design Power

TLP Thread Level Parallelism

UMA Uniform Memory Access

VLSI Very Large Scale Integration

WDM Wavelength Division Multiplexing

12

1
Introduction

T HE ever increasing computational power we have at our disposal fueled the
incredible scientific progress we have seen in the last decades. We are now able
to send rovers to Mars, communicate instantly with people at the other side of

the globe and track a single molecule moving in a living cell using image processing. If
the transport industry would have improved at the same rate as the computing industry,
it would be possible to travel from London to New York in about a second and would
cost less than a dollar [1]. This analogy is limited but it does illustrate the impressive
growth in computational performance.

This growth in computational power has been sustained by a steady increase in
the performance of microprocessors over the last decades, as a result of continuous
research and development in this area. Until 2000 when IBM released the first on-chip
multiprocessor [2, Chapter 4.2], microprocessors consisted of a single processor core.
As there were growing concerns about the power density in these microprocessors
known as uniprocessors and a diminishing return in performance, there was a paradigm
shift towards multiprocessors: systems where multiple processor cores work jointly on a
program. Because of the continuous scaling down of the dimensions of Complementary
Metal Oxide Semiconductor logic (CMOS) technology, it was possible to increase the
number of processor cores on a single die, leading to the birth of the Chip Multiprocessor
(CMP).

The core count in CMPs has been increasing ever since. Bohnenstiel et al. presented

13

the first 1000 core processor array in June 2016 [3] and the highest core count in
commercially available CMPs is 72 processor cores. Intel will release the Xeon Phi
series later this year, containing 72 cores [4] and Tilera1 released the Tile-Gx72 in
2013 which also contains 72 cores [5]. The rise in core count puts more pressure on
the communication fabric which facilitates the communication between the various
processor cores, the cache hierarchy and main memory. Initially communication was
handled by bus-based systems but as they do not scale well, the use of a Network
On-Chip (NoC) was proposed. The most commonly used NoCs are meshes (as is the
case in the Tile-Gx72 [5]), crossbars (SPARC T5 [6]) and rings (for example, Xeon Phi
[7]). Of these three network types, the mesh network is seen as the most viable option
at high core counts.

The NoC is a vital part of the CMP as it handles all communication between the
processor cores. The links in the NoC span the complete chip (global interconnect)
and are conventionally formed by electrical wires. However there has been debate on
the efficacy of electrical signalling on these global interconnects. The use of optics
has been proposed as they could offer lower power consumption and higher bit rates
[8]–[10]. However, the effect of an optical NoC on the computational performance of
the CMP has never been quantified whilst this is an essential factor to consider before
moving to optical NoCs. This thesis will, therefore, look at how an optical NoC affects
the performance of a CMP, from the perspective of the programmer. This forms the
first part of this study: can an optical NoC outperform an electrical mesh?

Maximising the power consumption and latency benefits of optical NoCs requires
uninterrupted source to destination transmission: compact optical buffers are not viable
and buffering in the electrical domain is not efficient2. This is in stark contrast to
electrical NoCs which largely rely on intermediate buffering. In the the absence of
optical buffers, the complete path from source to destination has to be setup before
the actual message transmission can start. This path setup process has an associated
latency. The message latency in an optical NoC therefore consists, broadly speaking,
of the serialisation latency and the path setup latency. Various optical NoC types have
been proposed to avoid the path setup latency, the most viable of them being the Single
Writer, Multiple Reader (SWMR) scheme. In a SWMR network, every node writes
to a dedicated channel which is broadcast to all other nodes. This completely avoids
path setup at the cost of a high number of optical components. This thesis, however,
proposes the use of a circuit-switched optical NoC in which messages have to request
an optical path before transmission can start. This NoC has a lower component count,
at the cost of an increased message latency due to the path setup process. However, I

1Tilera was acquired by EZchip Semiconductor in 2014, which in its turn has been acquired by
Mellanox Tecnologies in 2016.

2These and other assumptions in this introduction will be discussed in more detail in Section 2.2.3

14

1.1. Thesis overview

will argue that this simpler NoC can outperform the more complex SWMR network by
using message prediction techniques. Messages in the NoC are not random as they are
determined by the coherence protocol, which is the set of rules designed to keep the view
of memory coherent and consistent across all processor cores. By using knowledge of
the coherence protocol, the proposed techniques attempt to predict upcoming messages
and use that knowledge to set up the required optical paths in advance, thereby hiding
the path setup latency. This is the second question to be answered by this thesis: can
the use of coherence-based techniques help lower the latency of a circuit-switched NoC
to that of a SWMR NoC?

1.1 Thesis overview

Chapter 2 will further sketch the background of this thesis. Section 2.1 will discuss
CMPs in more detail, with a focus on the cache hierarchy and coherence protocol as
these affect the traffic in the NoC. In Section 2.2.1 the evolution from bus-based systems
to electrical NoCs will be described, followed by the motivation behind optical NoCs
in Section 2.2.2. The existing proposals for optical NoCs and the optical components
will be discussed in Section 2.2.3. This chapter will then continue with an overview of
holistic methods used for NoC optimisation in Section 2.2.4, after which the the system
architecture and NoCs, as assumed in this thesis, will be illuminated in Section 2.3.1
and Section 2.3.2 respectively. At the end of this chapter the research questions that this
thesis aims at answering will be discussed in more detail in Section 2.4.

As the research questions revolve around the concept of performance of a CMP,
Chapter 3 will discuss how the performance of a CMP should be measured. Section 3.1
will give an overview on how performance can be evaluated for multithreaded workloads.
Following that, Section 3.2 will discuss what is needed to actually measure performance:
the workloads used in the thesis will be discussed and assessed (Section 3.2.1), as will
the simulator of choice (Section 3.2.2). Full-system simulations as used in this thesis
are costly in terms of implementation time and simulation time. Therefore, the need for
full-system simulations will be justified in Section 3.2.3.

Chapter 4 will then compare the performance of electrical and optical networks
in the context of CMPs. This chapter will start in Section 4.1 by assessing the effects
of the latency and bandwidth of an ideal NoC on the overall performance in order to
better understand the impact of an optical NoC. After describing the implementation
of the electrical mesh and optical NoCs in the simulator (Section 4.2.1–Section 4.2.2),
the effect of an optical NoC on performance compared to an electrical mesh will be
quantified and discussed in Section 4.2.3.

Chapter 5 will then propose various methods that can be used to improve the
performance of switched optical networks. The methodology will be highlighted in

15

1.2. Original contributions

Section 5.1. A first speculative technique will be introduced and its results quantified
in Section 5.2. The same will be done in Section 5.3 for an ideal coherence-based
predictor. Section 5.4 will then discuss various ways of making the ideal predictor more
realistic.

Chapter 6 will then conclude this thesis and discuss the future work.

1.2 Original contributions

The main original contributions in this thesis are summarised as follows:

• Demonstration of the effect of the link latency and bandwidth of links in the NoC
on overall performance using the full-system, cycle accurate simulator gem5. By
adding non-determinism to these simulations, the effect of space-variability (see
Section 3.1.2) on performance was also demonstrated. These experiments are
described in Section 4.1.

• Demonstration of the need for full-system cycle-accurate simulation to accurately
determine the effect of changes to the NoC. These experiments are described in
Section 3.2.3.

• Demonstration of the effect of an optical NoC on the overall performance of CMP
using full-system cycle accurate simulations.

• This was achieved by implementing a model representing an optical crossbar-
based network in the existing simulator gem5. The model is described in
Section 4.2.2. This resulted in, to the best of my knowledge, the first
publication of a full-system, cycle accurate simulation of the effect of an
optical NoC on performance by Van Laer et al. [11] .

• This work was extended by implementing a model for a SWMR based
optical NoC, a commonly proposed topology in the optical NoC topology.
The model is described in Section 4.2.2. This allows for a comparison in
terms of CMP performance between the optical crossbar used in this thesis
and the SWMR network. This is discussed in Section 4.2.

• Demonstration on how the use of prediction techniques that are based on know-
ledge of the coherence protocol can be used to reduce the latency of a switched
NoC (be it optical or electrical). These techniques are discussed in Chapter 5 and
were published by Van Laer et al. [12] .

16

1.3. List of publications

1.3 List of publications

The following list gives a chronological overview of the publications that originated
from the work described in this document:

• M. Madarbux, A. Van Laer, P. M. Watts and T. Jones, "Energy Efficient And Low
Latency Interconnection Network For Multicast Invalidates In Shared Memory
Systems" in Proceedings of the 1st International Workshop on Advanced Inter-

connect Solutions and Technologies for Emerging Computing Systems at HIPEAC

2016, HiPEAC, Prague, Czech Republic, pg 1 – 6, 2016

• A. Van Laer, C. Ellawala, M. Madarbux, P. M Watts, T. M. Jones, "Coherence
Based Message Prediction for Optically Interconnected Chip Multiprocessors"
in Proceedings of the 2015 Design, Automation & Test in Europe Conference &

Exhibition, EDAA, Grenoble, France, pg 613–616, 2015

• M. Madarbux, A. Van Laer, P. M. Watts and T. Jones, "Towards Zero Latency
Photonic Switching in Shared Memory Networks" in Concurrency and Computa-

tion: Practice and Experience, Vol. 26, pg 2551 – 2566, 2014

• A. Van Laer, M. Madarbux, P. M. Watts and T. Jones, "Towards Zero Latency
Photonic Switching in Shared Memory Networks" in Workshop on Silicon Photon-

ics at HIPEAC 2014, HiPEAC, Vienna, Austria, pg 1 – 8, 2014

• M. Madarbux, A. Van Laer and P. M. Watts, "Low Latency Scheduling Al-
gorithm for Shared Memory Communication over Optical Networks" in High-

Performance Interconnects (HOTI), 2013 IEEE 21th Annual Symposium on,, San
Jose, USA, IEEE, 2013

• A. Van Laer, T. Jones and P. M. Watts, "Full System Simulation of Optically In-
terconnected Chip Multiprocessors using gem5" in Optical Fiber Communication

Conference/National Fiber Optic Engineers Conference 2013, Anaheim, USA,
Optical Society of America, 2013

17

2
Background

THIS chapter aims at describing the system being studied in this thesis, with a fo-
cus on all components that will affect in one way or another the communication
between the processor cores.

Firstly, in Section 2.1, the evolution to chip multiprocessors will be sketched. This
will allow for a better understanding of the communication requirements of a Chip Mul-
tiprocessor (CMP). Secondly, this chapter will take a closer look at the communication
fabric of a CMP in Section 2.2 and describe the need for a Network On-Chip (NoC)
to connect all nodes on a CMP. Section 2.2.2 will compare electrical and optical
interconnect. After discussing the various optical components needed in an optical
NoC, the most prominent optical NoC proposals will be reviewed. The last section of
this chapter, Section 2.2.4 will review some holistic methods aimed at improving the
NoC performance and/or efficiency by using information from components technically
unrelated to the NoC such as the coherence protocol.

2.1 Introduction to Chip Multiprocessors

2.1.1 The transition from uniprocessors to chip multiprocessors

Microprocessors initially consisted of a single Centralised Processing Unit (CPU),
working on one single stream of instructions and retrieving data from a single monolithic
memory (Von Neumann programming model) [13, Chapter 1]. One way of improving

18

2.1. Introduction to Chip Multiprocessors

performance employed was reducing the memory access time. The latency of accessing
Dynamic Random Access Memory (DRAM) main memory (10 ns to 100 ns) [14] is
high compared to the average processor clock cycle (≤1 ns). This increasing gap
between processor speed and memory access time is also known as the memory wall
[15]. To circumvent this high main memory access time, a memory hierarchy is installed.
Memory operations in the CPU are performed on words, a chunk of data which is 64
bits long (in a 64-bit processor). Every word is located in a specific place in the memory
and as such has a memory address associated. Frequently used memory addresses
should be kept close to the CPU instead of fetching them from memory every time.

However, faster memory technologies such as Static Random Access Memory
(SRAM) are expensive, both in terms of actual cost and area. To give an estimate of
the price difference, in 2008, the price of SRAM was around $2000 – $5000 per GB.
DRAM on the other hand was only $20 – $75 per GB [1, Chapter 5.1]. The area cost
of SRAM is higher as the density of DRAM is 10–20 greater and as such, DRAM can
store more bits per cm2 [16].

To circumvent these issues, a memory hierarchy with different levels was installed -
the closer to the core, the faster and smaller the memory. The organisation of these
caches is of utmost importance. To make handling and transferring words more efficient,
multiple words are grouped into one cache block (also called cache line). Cache lines
are efficient, not only because they reduce the handling overhead, but also because of
spatial locality. When the CPU requests a memory address, it will very likely perform
some operations on nearby addresses as well. This phenomena is called spatial locality.
Because a cache line contains neighbouring addresses, the first request to a memory
address will bring in memory addresses that will, in all likelihood, be referenced as
well. These subsequent accesses will therefore have a much lower latency (cache access
latency versus main memory latency)1.

Another method of improving performance is exploiting the parallelism between
instructions by means of Instruction Level Parallelism (ILP). One kind of processor
capable of this is called a superscalar. The instruction stream is constantly being scanned
for instructions that can be executed in parallel, using multiple parallel functional
units [1, Chapter 4.10]. Another method of increasing performance is increasing the
throughput. Throughput is defined as the number of instructions issued per clock cycle.
This can be done by pipelining the instructions. Instead of executing the instruction
in one cycle, it will be split up in multiple smaller and simpler operations. This way
the clock rate can be increased as every stage takes less time. Both pipelining and
exploiting ILP cannot be pursued indefinitely. If the pipeline becomes too long, every
stage becomes so short that it barely does anything meaningful as even adding two

1Another type of locality is temporal locality: a memory address currently in use will most likely be
used again in the nearby future. This principle is used in cache replacement policies.

19

2.1. Introduction to Chip Multiprocessors

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

Year

P
er
fo
rm
an
ce
/C
yc
le

Figure 2.1: Intel processor normalised performance per cycle over time is showed. It shows how
performance stays constant before ILP is pursued, followed by an improvement in performance
by executing parallel instructions simultaneously. The performance then levels off when the
available parallelism has been extracted. Figure taken from [13, Chapter 1]

integers becomes difficult [17]. The additional circuitry needed to find ILP in the
instruction stream has to be compensated for by an increase in performance.

There is only a limited amount of ILP to be extracted (between 4 and 10 instructions
per cycle [18]), making the logic needed to find it more and more intricate as the
complexity of the extraction logic is approximately proportional to the square of the
number of instructions that can be executed in parallel [13, Chapter 1], leading to
diminishing returns. The resulting processor core becomes so complex that the design
and verification of such processor cores becomes increasingly difficult. These issues
caused a plateau to be reached in processor performance as shown in Figure 2.1.

However, the change from uniprocessor to multiprocessor came about because
of the limited on-chip power dissipation. Although individual transistors are using
less power because of scaling, more and more transistors were placed on a chip to
accommodate for ILP exploitation and pipelining, leading to an overall increase in
power consumption. The increase in clock frequency also contributed to the rising
power consumption [17]. Cooling a chip can be done by installing heat sinks, dedicated
fans to increase the airflow or liquid cooling. However, these types of cooling systems
come at an economical cost and the best cooling solutions are only justified for high
end computing systems. This growing power problem combined with the performance
plateau led to the advent of a new type of processors: multiprocessors.

In a multiprocessor architecture, multiple processor cores work together. Each
processor core is simpler and smaller than the previously used superscalars. The
overall throughput will be higher than the throughput of one complex superscalar as
the processor work in parallel. The exact increase in throughput will depend on the

20

2.1. Introduction to Chip Multiprocessors

application [13, Chapter 1.3]. Parallel applications allow the CMP to exploit this, whilst
as superscalar processor is limited to ILP present. Because of the growing interest in
data-intensive server applications such as design of drugs in the pharmaceutical sector
and weather modelling, multiprocessors became more appealing [19, Chapter 1.1.1].
Most of these scientific and engineering applications also require result visualisation,
itself an interesting parallel application. Because of continued scaling it became possible
to place multiple processor cores on a single die, leading to the advent of the CMP.

2.1.2 Chip multiprocessors

Advantages of CMPs

CMPs have multiple advantages [13, Chapter 1.1]. First of all, as each individual
processor core is an exact copy of other cores on the CMP, only one core needs to be
designed and can then simply be replicated. This is a big difference with the highly
complex design of a superscalar.

The second advantage lies in the type of parallelism they can exploit. As previously
stated, superscalars can only exploit parallelism across a few instructions. As the
cores on a CMP each have their own instruction and data stream, a CMP can exploit
Thread Level Parallelism (TLP), alongside ILP. The processor cores are visible
to the programmer as individual entities that can work in parallel. A program can
be subdivided into processes and threads. The various processes in a program are
completely independent. Far more interesting, from a CMP point of view, are threads.
Threads share parts of the code and parts of the memory address space. Threads work in
parallel and to exploit this TLP, each one is assigned to a different processor core2. To
make efficient use of a CMP with N cores, the program running on it needs to be split
up in at least N threads. This change in programming model will put an extra burden
on the shoulders of programmers as they need to recognise TLP and set up the program
accordingly. While the exploitation of TLP can definitely increase performance, doing
so increases complexity significantly [1, Chapter 7.1]. A thread scheduler is needed to
schedule the threads and possible migrate them across cores in order to ensure a proper
load balance across the processor cores [20, Chapter 7.1]. The different threads also
need to be synchronised which can introduce race conditions etc. [20, Chapter 3.4.2].

The third advantage is the fact that the processor cores share some resources, such
as I/O devices and one or more levels of the cache hierarchy, to make more efficient use
of them. By sharing parts of the cache hierarchy, the storage space that is available on
chip is used more efficiently as the data will not be replicated.

2One processor core can also host multiple threads. When one thread is stalled (because of a memory
reference for example), the next thread will take over. This is called coarse-grained multithreading [2,
Chapter 3.5] and will not be explored in this work.

21

2.1. Introduction to Chip Multiprocessors

Processor
core

Processor
core

Processor
core

Processor
core

Cache
hierarchy

Cache
hierarchy

Cache
hierarchy

Cache
hierarchy

Main memory I/O devices

(a)

Main
memory

I/O devices

Processor
core

Cache
hierarchy

Processor
core

Cache
hierarchy

Main
memory

I/O devices

Main
memory

I/O devices

Processor
core

Cache
hierarchy

Processor
core

Cache
hierarchy

Main
memory

I/O devices

Interconnection network

(b)

Figure 2.2: Shared memory architectures (after [2, Chapter 4.1]) Centralised shared memory
architecture and (b) Distributed shared memory architecture

Classification of CMPs

CMPs can be divided into two classes based upon their memory organisation [2,
Chapter 4.1]. In a centralised shared memory architecture (Figure 2.2a), all pro-
cessor cores share a single centralised memory. Because this creates a bottleneck,
this model is only sustainable for a limited number of processor cores [2, Chapter 4.1].
Because all processor cores have the same distance to the memory, this is often called
a symmetric shared memory multiprocessor. It can also be classified as an Uniform
Memory Access (UMA) architecture because the memory latency is independent from
the memory address or requesting processor core. The memory bottleneck can be
alleviated by physically distributing the memory across the CMP, thereby creating a
distributed-memory multiprocessor (Figure 2.2b). A high bandwidth interconnection
network is often used to interconnect all these nodes. The latency to a local memory
node will be lower, making a distributed-memory architecture more attractive in terms
of memory latencies as well. The communication between the processor cores becomes
more complex for reasons discussed later on. In this work, only distributed-memory
multiprocessors will be considered.

Processor cores in a distributed-memory CMP can communicate in two manners.
Communication can occur through the use of one shared address space. Although the
memory is physically distributed, it will act as one memory logically. This implies
that processor cores can communicate by writing and reading to the same memory
locations. This architecture is also called a distributed shared memory architecture.
The memory latency will depend on the distance between a processor core and the part
of the memory being addressed, creating a Non-Uniform Memory Access (NUMA).
The second possibility is that the distributed memories are logically disjointed as well.
There is no common shared address space anymore, every processor core can access a
private address space, not accessible to a remote processor core. Communication occurs

22

2.1. Introduction to Chip Multiprocessors

by explicit message passing. When using a message passing model, the programmer
needs to foresee this communication between processor cores, making programming
more difficult. This is the advantage of the distributed shared memory architecture.
Communication happens implicitly, by writing and reading to and from the same
memory addresses, making it easier for the programmer to write parallel code. In this
work, only distributed shared memory CMPs will be considered for this reason. When
a processor core needs to access a word in a remote part of the memory, this handled in
hardware by the coherence protocol. Section 2.1.4 will talk more about the coherence
protocol. It is also possible to create one communication model in software and run it
on top of hardware supporting the other communication model. Supporting message
passing on shared memory hardware is much easier and has less of a penalty than the
other way around [2, Appendix H.2], making the shared memory model more general.

As mentioned in the previous section, some levels of the cache hierarchy will be
shared among the processor cores. Such a cache could potentially become a bottleneck,
as it will be addressed by all processor cores. To prevent this, a shared cache can be
logically shared, physically distributed. Every processor core gets grouped together
with its private cache levels and a slice of the distributed shared cache levels. This
forms a tile. This also means only one such tile needs to be designed, for it to then be
repeated across the CMP. Tiled architectures thus only need a short design cycle [21].
An example of a tile is given in Figure 2.3. In this thesis, the CMP consists of such
tiles. Every processor core has a private first level cache, the First Level Cache (L1).
The L1 will be subdivided into two units: one to store instructions (L1-I) and the other
one for the storage of data (L1-D). All processor cores share the second level cache
(Second Level Cache (L2)). To physically distribute the L2, every L2 bank3Caches
can be divided into banks or slices, which can be simultaneous accessed, rather than a
monolithic cache which can only handle one access at a time [2, Chapter 5.1] will be
assigned to a tile. A tile therefore consists of a processor core, connected to its private
L1 and one bank of the shared L2. Both the L1 and the L2 share a network interface.
This network interface is used to communicate with other parts of the cache hierarchy.

2.1.3 Introduction to cache organisation

The organisation of the caches will affect the amount of traffic being directed to the
NoC. This is not explored further in this thesis. Concepts used in the organisation
and more specifically the indexing of the caches will be used in Chapter 5 and will
therefore be introduced here. In a direct-mapped cache every cache line has its own
dedicated block frame in the cache [2, Appendix C]. In a cache which is organised in
a set-associative manner [2, Appendix C], multiple cache lines can map onto a set of

3.

23

2.1. Introduction to Chip Multiprocessors

Shared
L2 bank

L1 I/D Processor core

Network interface

Figure 2.3: A tile in a distributed shared memory architecture (after [22, Chapter 2])

block frame . The lookup process in a set-associative cache therefore consists of two
steps. First, after determining the cache line to which this memory address belongs,
a subset of the cache line address bits (called the index) is used to determine the set
onto which this cache line maps. A cache line can reside everywhere in the set so in the
second step all entries in the set need to be checked to see if the cache line is already
present in the cache. This is done by comparing the remaining address bits (called
the tag) with the tags of the cache entries. A set-associative cache will therefore be
larger in storage size than a direct-mapped cache (with the same number of entries) as
it needs to keep the tags of all cache lines as meta-data. A X-way associative cache is a
set-associative cache where every set contains X cache block frames. When increasing
the associativity X , the cache increases in size (longer tag as there are less sets) and
becomes slower (X slots need to be checked during the lookup phase) but the mapping
process becomes more effective (less conflicts).

A fully-associative cache is an extreme form of a X-way associative cache in which
X is equal to the number of cache block frames, making the complete cache one single
set [2, Appendix C]. Therefore, it does not suffer from conflicts (in which addresses
map onto the same set and cause frequent evictions in this set, whilst other sets are
underutilised) but is infeasible in practice. As a cache line can now reside anywhere
in the cache, all entries in the cache need to be checked during every lookup. The size
of the cache also increases because of the tags that need to be kept; as there is only a
single set, the tag is equal to the complete cache line address.

2.1.4 Introduction to cache coherence protocols

In shared memory CMPs, the caches contain data that is shared among all processors.
The communication between a processor core and memory will occur through the data

24

2.1. Introduction to Chip Multiprocessors

in the caches. If no precautions are taken, two different processor cores might see
different values of the same data block. The job of a cache coherence protocol is to
prevent such incoherencies.

There are two main types of coherence protocols: snooping protocols and directory-
based protocols. In the case of snooping protocols, all actions in a cache that change
the value of a cache line (i.e. writes), need to broadcast to all other caches. All caches
listen in or snoop to a bus-like communication fabric and discard any local copies when
they receive such a message. Whilst this is a very simple concept, it does not scale well
with increasing processor core count. As the number of processor cores increases, the
number of private and shared caches will increase as well, making it harder to broadcast
efficiently.

The directory-based protocols have a higher implementation overhead but scale
better than the snooping protocols. In a directory-based protocol, all information about
the state of cache blocks present in the on-chip memory hierarchy is kept in a directory.
It keeps track of which caches have a copy of the block, whether the block has been
written since it was fetched from main memory (making the block ’dirty’) etc. To
prevent the directory from becoming a bottleneck, it is distributed along the processor
cores in a similar manner as the memory. The implementation of the directory is very
important to keep it as fast and small as possible. The part of the directory where the
information about a certain cache block is kept is called the home node. A node that
makes a request for a certain block is called the local node. If copies of the block are
present in multiple caches, they are called remote nodes or sharers.

It has been assumed that coherence (regardless of the exact type of protocol) is
hard to maintain when increasing the number of processor cores per chip. Coherence
protocols are thought to scale badly because of multiple concerns over the amount of
traffic generated, the storage needed to keep track of sharers, the latency of requests that
need to be communicated to remote nodes and the incurred power cost. However, this
has been refuted recently by Martin et al. [23]. The authors discuss the scalability of the
directories, where they classify a directory architecture to be scalable if the associated
overheads grow slower than the number of sharers in the system. By means of amortised
analysis they show the traffic growth per will at most be 20%, compared to a system
with caches but no coherence. The second problem with regards to directories is the
associated storage, however, the use of hierarchical systems4 can help. The increased
latency of directory-based systems forms a third disadvantage, because of indirection
via the directory: a cache miss first needs to be pass by the directory before further
action can be taken. However, the latency of these 3 hop misses does not depend on the

4In a hierarchical system, the lower level caches (e.g. L1s) are grouped into clusters. The top level
directory tracks which clusters hold a copy of the cache line but does not know exactly which caches in
the cluster share the data. It falls to the per-cluster directory to track the individual sharers inside the
cluster.

25

2.1. Introduction to Chip Multiprocessors

amount of nodes in the system.
In this work, a Modified Exclusive Shared Invalid (MESI) directory protocol is used

[24]. In this protocol, there are 4 basic states.

• I - Invalid : the cache line is not present in this cache.

• E - Exclusive : the cache line is present in only one cache and has not been
written to and as such, is consistent with the next level of the cache hierarchy (e.g.
the L2 cache or main memory)

• M - Modified : the cache line is present in only one cache and has been written
to and as such, is no longer consistent with the next level of the cache hierarchy.

• S - Shared : the cache line is present in multiple caches and as such, cannot be
written to

There are also many more transient states. Every coherence protocol has a set of rules
determining the transitions between all states, resulting in a Finite State Machine (FSM).
The FSM can then get implemented in hardware, resulting in a coherence controller.
The exact number of states and the exact transitions depend on the level in the cache
hierarchy, resulting in different coherence controllers per level in the cache hierarchy.
Every cache has an associated coherence controller, keeping track of the cache line
this cache holds. What follows is a small example to illustrate how a cache coherent
system works. Imagine processor A wishing to write to a location in cache block À

(Figure 2.4). This block is present in nodes B and C (À is in the Shared state). Processor
A will first send out a request to its local cache. Because it is not present there (À is in
the Invalid state in cache A), a request will be send out to the directory. The request
states that processor A requests a copy cache block À to write to it. Once this request
arrives at the home directory, the information on block À will be checked (Figure 2.4a).
Considering there are remote nodes caching the block, the directory will need to ensure
they invalidate the block. It does so by transmitting an invalidation request to all sharers
whilst sending a message to the requester which contains the data and the number of
sharers that need to invalidate their copy before cache A is allowed to write to the block
(Figure 2.4b). After nodes B and C have acknowledged the invalidation of À to A
(Figure 2.4c), node A will then be the exclusive owner of this block and communicates
this to the directory (Figure 2.4d). The reason the remote copies need to be invalidated
first, is to keep the view of the memory coherent. If processor A were allowed to write
À without first invalidating all remote copies of À , remote nodes might read the value
of À and see an incorrect value. After À has been written to, the state of the cache line
changes to the Modified state.

In this thesis, messages are described by their source, type and kind. The source is a
L1 cache, the L2 cache, or memory. The type is either a request or response. Finally,

26

2.1. Introduction to Chip Multiprocessors

Source Type Size Functionality

L1 REQ Control Start of transaction after L1 miss

L1 REQ Data Writeback after L1 eviction

L1 RES Control Acknowledgment

L1 RES Data Ack containing data

L1 UNB Ack upon receipt of exclusive line

L2 REQ Control Invalidation request

L2 REQ Data Writeback after L2 eviction

L2 RES Control Writeback ack, upgrade ack

L2 RES Data L2 response

MEM RES Control Writeback after ack

MEM RES Data Memory response

Table 2.1: Message types

the kind is either control (a short 8 B message) or data (a 64 B cache line). For example,
L1 REQ C is a short control request leaving a L1-cache controller, and this type of
message typically signifies the start of a transaction. Table 2.1 contains all message
types occurring in a MESI-based system.

The short example in Figure 2.4 gives some more information on the type of traffic
that is to be expected on-chip. Most messages will not be messages carrying data, but
short messages that keep the caches coherent such as the invalidation messages or just
simple request messages. These type of messages are called control messages and are
around 8 B long as they just contain the request, the memory address concerned and
the requesting node. Messages carrying cache blocks are called data messages and are
much less frequent. They are generally 72 B to 264 B long, depending on the cache line
size. Increasing the cache line size will initially increase the hit rate because of spatial
locality but will lead to diminishing returns as less cache lines will fit in the cache. The
optimal cache line size depends on the cache organisation (size, associativity) and the
workload used. The most commonly used cache line size is 64 B, which is also used
in this thesis. Nevertheless, there are architectures which use different cache line sizes
across the different cache levels: the SPARC T5 for example has a 32 B cache line size
for the L1 and L2 whereas the Third Level Cache (L3) has a 64 B cache line size [6].

The directory tracks all cache lines present in the on-chip cache hierarchy. It does so
by tracking all these cache line addresses and some meta-information associated with
each address like the sharers etc. If the Last Level Cache (LLC) (the cache level closest
to the main memory) is inclusive 5 a copy of all cache lines present in the on-chip cache

5In an inclusive LLC, all cache lines present in the caches closer to the processor cores need to be
present. An exclusive LLC cannot hold a copy of a cache line that is also present in a lower level cache.
A non-inclusive cache enforces neither inclusion nor exclusion [14, Chapter 4.3.4].

27

2.1. Introduction to Chip Multiprocessors

hierarchy need to be kept in the LLC. When a cache has a copy of a cache line, it also
needs to hold meta-information like cache line address and state. The meta-information
kept by an inclusive LLC and the directory overlaps quite a bit: they both store the
cache line address and the cache line state. Data replication can be avoided by merging
the directory and LLC [25, Chapter 8.6.2]. In this thesis, when referring to the L2
controller or directory controller, they refer to the same controller.

28

Processor
core A

Cache
hierarchy

Processor
core B

Directory

Cache
hierarchy Directory

1

Processor
core C

Cache
hierarchy

Processor
core D

Directory

Cache
hierarchy Directory

1

1

Interconnection network

(a)

Processor
core A

Cache
hierarchy

Processor
core B

Directory

Cache
hierarchy Directory

1

Processor
core C

Cache
hierarchy

Processor
core D

Directory

Cache
hierarchy Directory

1

1

Interconnection network

(b)

Processor
core A

Cache
hierarchy

Processor
core B

Directory

Cache
hierarchy Directory

Processor
core C

Cache
hierarchy

Processor
core D

Directory

Cache
hierarchy Directory

1

Interconnection network

1

(c)

Processor
core A

Cache
hierarchy

Processor
core B

Directory

Cache
hierarchy Directory

Processor
core C

Cache
hierarchy

Processor
core D

Directory

Cache
hierarchy Directory

1

Interconnection network

1

(d)

Figure 2.4: Example of a cache coherence transaction. Processor core A wishes to write to cache
block a. D is the home node for a. B and C, which are caching a, are remote nodes. a is in the
Shared state at the start of this example for B and C and is in the Modified state for A at the end
of the example.

2.1. Introduction to Chip Multiprocessors

2.1.5 Industrial and academic examples of chip multiprocessors
Many CMP architectures have been proposed and in this section some notable cases
will be discussed. Not all of the following examples are pure CMPs according to the
definition (multiple CPUs on the same chip). This list is not meant to be exhaustive but
to give an idea of how the individual characteristics of the system architecture, which
will be used in this thesis, exist in real-life systems.

SGI Origin (publication in 1997)

The SGI Origin system [26] consisted of two processor cores per node. Up to 512 nodes
could be connected in a complete system, resulting in a 1024 core system. As these
cores were not on the same die, this is not a real CMP. However, the SGI Origin system
did employ a distributed shared memory, leading to the use of a MESI-type directory
coherence protocol. To make the directory scheme scalable to 1024 cores, the directory
dynamically switches between a normal sharers vector and a coarse sharers vector6. To
connect all nodes in the system in-house NUMALinks7 were used: point-to-point links
connected in a fat hierarchical hypercube topology.

Raw (publication in 2002)

The Raw architecture proposed by MIT [27] was one of the first proposals using a tiled
organisation. The authors also designed a specific Instruction Set Architecture (ISA)),
to take advantage of this layout. Every system contains 16 tiles in which each tile
accommodates a simple MIPS-style processor core, 3 routers, a floating-point unit, a
data cache and a software managed instruction cache. All tiles are connected using
four mesh networks, two of which are static whilst the other two are dynamic. The
interesting feature of this architecture is the fact that the networks are an integral part of
the Raw-ISA. To start transmission of a word8 on one of the networks, the word simply
needs to be written to the corresponding register. In the case of the static networks, the
routing is determined at compile time. When the program uses the static networks to
transmit data between tiles, the connection between those tiles needs to be set as well.
The dynamic networks function like conventional mesh networks as will be described
in more detail in Section 2.2.1.

TILE64 (publication in 2007)

The Tilera system [28] is a commercial product, inspired by the RAW architecture and
shares a lot of features with this system. Every processor core has a private L1, but can
share its L2 with other tiles, thereby creating a shared L3. No details are given, however,
on how these are kept coherent. The interconnect infrastructure [29] in particular is a
clear follow-up from the Raw architecture. There are now five mesh networks, each
with a single purpose. The memory dynamic network for example handles the traffic
between the LLC and the main memory.

6A coarse sharers vector with N entries can track up to N sharers exactly. If there are more than N
sharers, the region of sharers is tracked.

7These are also known as CrayLinks.
8A word being the most common size of a data access and indicates for most architectures the register

size [1].

30

2.1. Introduction to Chip Multiprocessors

Nehalem (publication in 2009)

The Nehalem microarchitecture proposed by Intel in 2009 [30] is not a complete CMP
but rather a concept that was reused in multiple subsequent CMPs. Nehalem was
designed to provide scalability both at runtime (via Dynamic Voltage and Frequency
Scaling (DVFS) 29 for example) and design time (via a modular design). Every processor
core has a private L1 and L2 cache. Multiple processor cores share an inclusive L3
cache. The inclusivity prevents unneeded snoops. This architecture formed the base of
multiple chip multiprocessors, with the number of processor cores ranging from 1 to 16,
depending on the target market. The view of memory is kept coherent using a snooping
Modified Exclusive Shared Invalid Forward (MESIF) coherence protocol [31].

Single-Chip Cloud Computer (publication in 2010)

The Single-Chip Cloud Computer (SCC) by Intel [32] is a research CMP containing 48
processor cores and is seen as the follow-up of the Tera-Scale Research Processor [33].
The Tera-Scale Research Processor contained 80 processing engines, unlike the SCC
Computer which contains 24 tiles, each holding two Pentium processor cores. Every
processor core has access to a private L1 and L2 on the tile. The processor cores in
the SCC have access to three address spaces (1) private address space, only accessible
from this core. These addresses can be cached, in both the L1 and L2. (2) shared
address space, accessible by all cores and, hence, non-cacheable (3) shared address
space, cacheable in special message passing buffers and kept coherent by the software
using message passing. The NoC is a conventional mesh network.

SPARC series (publication in 2013)

The SPARC series by Oracle [6] is based upon the Niagara processor by Sun [34]. The
latest version, the SPARC T5 features 16 cores, each able to run eight threads. Each
processor core has access to a private L1 and L2. The L3, however, is shared among
all processor cores and is divided into eight cache banks. These banks can be accessed
via a high bandwidth crossbar. The architecture supports up to 8 SPARC T5 chips to
be combined into one shared memory system, connected via direct links. One of the
interesting features of the SPARC T5 is the hierarchical coherence protocol: the L2 are
kept coherent using a MESI protocol. The L3 is kept coherent across all nodes using a
Modified Owner Exclusive Shared Invalid (MOESI) directory protocol.

All the previous examples have identical processor cores, repeated multiple times
per chip. One body of research is focusing on heterogeneous computing in which
different processor cores, with the same ISA, are combined, allowing for a better match
between software and hardware. However, these types of systems are not discussed in
this thesis. Table 2.2 contains a summary of all previously discussed CMPs.

This thesis focuses on a distributed shared memory system where the view of
memory is kept coherent using a directory coherence protocol. The CMP uses a tiled
layout. While the individual characteristics of such a system exist in real-life systems
(for example, the tile concept as presented in Tilera series and directory protocol as
used in the SGI Origin series), a system with these characteristics does not yet exist as
a commercial product.

In the remainder of this work, when talking about a CMP, it is implied this is a
distributed shared memory CMP where the processor cores share the LLC and the view

31

2.2. Introduction to Networks On-Chip

Name
Cores/
Nodes

Intra-chip
interconnect

Cache
organisation

Coherence Ref.

SGI Origin 2/512 Router
Distributed

shared
MESI-like
directory

[26]

RAW
16/

Not app.
Mesh

Private
& shared

Unclear [27]

TILE64
64/

Not app.
Mesh

Private
& shared

Unclear [28]

Nehalem
4/

Variable
Bus

Private
& shared

MESIF-snooping [30]

SCC
48/

Not app.
Mesh Private Message passing [32]

SPARC T5
16/
8

Crossbar
Private

& shared
MESI & MOESI

directory
[6]

Table 2.2: Example of CMP systems and proposals

of the memory is kept coherent and consistent using a directory protocol. The details of
the CMP used in this thesis are summarised in Table 2.5.

As the number of processor cores increases, the importance of communication
increases. For example, one of the latest CMPs by Oracle, the SPARC M7 contains
32 cores and features an actual NoC, rather than a crossbar [35]. The NoC in the M7
consists of 3 networks, each responsible for a message type. The request messages
are transmitted on a ring NoC, the responses use a Point-to-Point (Pt2Pt) network and
finally, there is a mesh NoC to route the data. The same trend can be seen in the Tilera
CMPs where the NoC is an integral part of the CMP. The following sentiment, lifted
verbatim from [36] when discussing the Tera-Scale Research by Intel, confirms this and
brings us to the next section in this chapter;

"Intel is not designing a processor core. It’s designing a network on a chip;
... "

2.2 Introduction to Networks On-Chip
The increasing core count in CMPs puts more pressure on the communication fabric
between the various processor cores, the cache hierarchy and main memory. In Sec-
tion 2.2.1 the evolution from a simple bus-based communication system to a NoC will
be sketched. Conventionally the NoC consist of electrical links but as will be detailed
in Section 2.2.2, electrical links might no longer suffice and I will argue for the use of
optical links in the NoC. Section 2.2.3 will review the various components in an optical
NoC and discuss the most important optical NoC proposals. This will be followed by a
discussion on various holistic methods that can be used to improve the performance of
the NoC (be it an electrical NoC or optical NoC) in Section 2.2.4.

32

2.2. Introduction to Networks On-Chip

2.2.1 Transition to networks on-chip
As the previous section made clear, the different nodes on a CMP (processor cores,
various parts of the memory hierarchy, I/O devices) need to be able to communicate.
The pressure on this communication fabric will only increase with increasing core
count.

End of bus-based systems

Initially communication was handled by bus-based systems [22, Chapter 1]. The
architecture of a bus is quite simple: all nodes are connected to one shared medium,
the bus. When a node wishes to communicate, it makes a request to the central arbiter.
Once the request is granted, the message is broadcast to all nodes on the bus and only
the destination node will further process the message. Unfortunately, buses do not scale.
The first disadvantage is formed by the arbitration process. The delay of a centralised
arbiter increases with increasing node count. As most buses were formed using long
electrical links, they face the same issues commonly faced by electrical interconnect,
which will be elaborated on in Section 2.2.2. In short, every new node on the bus
will add a parasitic capacitance. Not only will this increase the power consumption
of the bus, it will slow down the switching speed of the bus as well. A bus is also
not power efficient as messages are broadcast to all nodes. Only a limited number of
messages in a shared memory architecture are true broadcasts: most of the messages
are either unicast or multicast messages (depending on the coherence protocol used).
Increasing the number of nodes will not only increase the power needed to charge and
discharge the capacitance of the bus but also the power wastage as even more nodes
are addressed unnecessarily. The last disadvantage is formed by the fact the bus is a
shared medium. No parallel transactions are possible on a bus meaning that if one node
is communicating, all other requests need to be stalled. The chance that at least one
node is communicating increases with the number of nodes, making contention and
saturation rise.

To mitigate these effects, the concept of a NoC was proposed [37],[38],[39]. It
needs to be noted that it is possible to improve the power, area, cost and performance
of a bus-based system by choosing an adequate bus topology such as a split bus in
which multiple shorter buses are used, which are in turn connected using tri-state buffers
or a partial crossbar bus which is a hybrid between a full point-to-point scheme and
a conventional bus [40, Chapter 2.4]. In a way these topologies can be seen as an
intermediate step between bus-based interconnects and NoCs. NoCs are also known as
On-Chip Network (OCN) or On-Chip Interconnection Network (OCIN). In this work,
the term NoC is used.

Characteristics of networks on-chip

NoCs offer some advantages over traditional buses [41],[38]. First of all, they are
scalable to higher node counts for several reasons. There is (in general) no dependency
on centralised arbitration. The components that make up a network, routers and the
connecting links, react better to technology scaling than long dedicated wiring (elabor-
ated in Section 2.2.2). Secondly, wires are used more efficiently as multiple data flows
use the same wiring. Not all communication flows are frequent so if dedicated wiring
were to be used, those wires will rarely toggle. But they still need to be designed to

33

2.2. Introduction to Networks On-Chip

cater for peak moments, leading to an over-provisioned channel. The third advantage
is that NoCs offer modularity. The network architecture consists of links and routers.
The design effort can be focused on the design of a link or router which can then be
replicated multiple times across the NoC. This is similar to the argument made for
CMPs. Modularity also offers advantages in terms of ease of testing of components.
While NoCs and larger scale networks share characteristics, they do differ [41]. For
example, the traffic patterns are different, both in terms of message distribution [41] and
message size. Before discussing specific NoC architectures, some network terminology
will be introduced.

A NoC design can be subdivided into different components [42, Chapter 1]. The
topology of network specifies how the various nodes, routers and links are connected
and can be seen as the floorplan of a network. How messages travel the network is
determined by the routing algorithm. A routing algorithm should balance the traffic
as evenly as possible, to prevent the formation of hotspots and avoid contention. It
affects network performance as the message latency depends on the number of hops
a message makes to cross the network and the number of hops is determined by the
routing algorithm. Flow control determines how resources such as buffering and link
bandwidth are allocated to the various messages that are travelling the network.

Most networks need allocation or arbitration of some form. An arbiter handles
requests from n requesters, all vying for one single resources. An allocator on the other
hand oversees requests from n requesters for m different resources. A n×m allocator
can be created by using m n×1 arbiters9.

Networks can be packet-switched or circuit-switched [22, Chap. 5.2] [42, Chap. 12.3].
In a circuit-switched network, messages travel the network using resources that have
been assigned before message transmission started. Messages therefore get access to a
contention free path but there is a certain latency associated as transmission can only
start after the path or circuit has been setup. Circuit-switching tends to be favourable for
long lived data flows. However, the use of the term circuit does not mean multiple mes-
sages use the path or circuit that has been setup. Ideally, to improve the utilisation and
reduce the path setup overhead, multiple messages will use the same path but this does
not have to be the case. Packet-switched networks on the other hand allow messages
to be transmitted across the network and acquire resources on the go. Packet-switched
networks can also work at a smaller granularity as messages can subdivided into packets
which are then transmitted across the network. Packet-switching avoids the need for
central arbitration, making this a more scalable network model.

Non-blocking networks can accommodate all path requests that are permutation
of inputs and outputs i.e. an unused input can always be connected to a yet unused
output. A strictly non-blocking networks goes even further and such a circuit can be
setup, without having to rearrange existing connections.

Commonly used network topologies

The most commonly used NoC topologies are crossbars, meshes and rings.
Crossbars

A m×n crossbar connects n inputs to m outputs (Figure 2.6a). The main advantage of
a crossbar lies in its strictly non-blocking property and as such can provide a higher

9In this thesis, the term arbiter and allocator are used intermingled. However, when taking about an
arbiter in a circuit-switched NoC strictly speaking an allocator is meant.

34

2.2. Introduction to Networks On-Chip

Route
computation

VC
allocator
Switch

allocator

VC 0
VC 1
VC 2
VC 3

Input buffers

In 0

In 1

In 2

In 3

Local in

Out 0

Out 1

Out 2

Out 3

Local out

Credit in Credit out

Figure 2.5: Microarchitecture of a credit-based virtual channel router based on [22, Chapter 6]

throughput than buses. However, crossbars do not scale well because there is still need
for centralised allocation. An electronic crossbar also has a large area footprint and
associated power consumption [42, Chapter 6.2] as the cost of a n×n crossbar increases
with n2 (the same holds for the allocator). Added to that come the connections from
the network interfaces to the actual crossbar. Crossing long lines on a chip can take
more than one clock cycle in modern technology nodes: it has been projected that at
70 nm, with a very conservative clock speed, only 20% of the chip can be reached in one
clock cycle [17]. To counter this, intermediate buffers are placed on these long links.
This is similar to the use of inverters as repeaters on long electrical links as will be
discussed in Section 2.2.2. Nevertheless, crossbars should not be excluded from use in
high-radix NoCs as careful design can improve their scaling characteristics, both in the
actual crossbar switch [43] and the centralised allocator [44][45]. One of the examples
of a commercial product using a crossbar is the SPARC-T series [6], as discussed in
Section 2.1.5.

Meshes
However, the most commonly used topology for CMPs with high core counts is a
mesh network. It consists of a grid of routers, each connected to its neighbours using
bidirectional links (Figure 2.6b). The algorithms that take care of routing and flow
control are implemented in the routers (Figure 2.5). A router generally consists of the
following units: input buffers, routing logic, allocators and a crossbar that acts as a
switch. They are often pipelined to improve throughput. The latency of a router is
very important as all messages pass through multiple routers and as such have a major
impact on network latency. The links are generally short interconnects. A lot of the
design effort will be focused on the design of these routers and links as they will be
replicated throughout the network. Banerjee et al. [46] compare multiple router designs
and shows the main source of power dissipation lies in the routers, not the links. It is
argued that the wide data paths in the routers, compared to the control paths, have a
higher energy consumption, mainly because of the use of buffers. This is an argument
for the use of more complex router control planes as has been proposed in by Mullins et
al. [47], in which speculation is used to reduce the router latency to only 1 clock cycle.

Meshes can be described in two ways. First of all, a mesh is a type of torus network
and can therefore be described using terminology borrow from torus networks. Torus
networks are characterised using two parameters: n and k. A k-ary, n-cube network
connects N = kn nodes where the nodes are arranged along a n-dimensional cube, with

35

2.2. Introduction to Networks On-Chip

k nodes in each dimension and links between neighbouring nodes10. The mesh depicted
in Figure 2.6b can therefore, using this terminology, be described as a 3-ary, 2-mesh.
For it to be a 3-ary, 2-torus, direct links would have to be provided between the left-most
and right-most column of the grid for example. However, mesh topologies will more
commonly be described to as a m×n mesh where m stands for the number of rows and
n for the number of columns.

Meshes have various attractive properties, making them very suitable NoC topo-
logies. First of all, links in this topology are identical and short, avoiding one of the
main disadvantages of electrical interconnect as will be discussed in more detail in
Section 2.2.2. Long lines that cross the chip need to be buffered or pipelined and
a router (and by extension, mesh networks) can be seen as the natural successor of
these buffers. Secondly, because a mesh is a very regular 2D topology, it is extremely
suited for a Very Large Scale Integration (VLSI) environment. Routers and links can
be designed once and repeated across the design multiple times. In general, every tile
in the CMP will have its own router functioning as interface to the network. Finally,
mesh networks provide path diversity. A message can take multiple, equally possible
routes to travel from its source to its destination. This allows for the routing algorithm
to perform load balancing and increases the reliability of the NoC. Unfortunately, the
major disadvantage of mesh networks lies in the latency of a message travelling the
network. This latency is determined by the number of hops it needs to make to reach
its destination. Reducing the hops by reducing the number of routers in the network
can reduce latency. To reduce the number of routers, concentration is used: multiple
tiles will share one router. This has the additional advantage that it reduces the silicon
footprint of the network.

The latency of a mesh network strongly depends on the dimensions of the net-
work. The latency T of a message traversing a network is made up of two parts [42,
Chapter 3.3.2]: the time it takes the head of the message TH to travel the network and
the time TS it takes the rest of the message to catch up.

T = TH +TS (2.1)

The serialisation latency TS is determined by the bandwidth characteristics of the
network. The header latency on the other hand is determined by the average hop count
Hmin which directly depends on the number of nodes in the network. Tr is the latency
experienced when passing through a router, Tl is the link traversal latency.

TH = HminTR +(Hmin−1)Tl (2.2)

Hmin is determined by Equation (2.3)[42, Chapter 5.2.2].

Hmin =

nk
3 if k is even

n
(k

3 −
1
3k

)
if k is odd

(2.3)

In this equation n stands for the number of dimensions and k for the number of nodes
per dimensions, as defined previously. This shows the number of hops will increase

10Neighbouring nodes in this case are defined as nodes which only differ in one address digit. An
address is based on the coordinates, in a n× k dimensional space

36

2.2. Introduction to Networks On-Chip

Central allocator

(a)

(b) (c)

Figure 2.6: The most common NoC topologies (a) Crossbar connecting 4 nodes. The cross-
bar consists of four 3× 1 multiplexers, controlled by a central allocator (b) Mesh topology
connecting 16 nodes as a 4×4 mesh (c) Ring topology connecting 16 nodes

when the network increases in size. To limit the effect on the overall network latency,
the router latency needs to be kept to a minimum. The link traversal latency will be
fixed and equal to a clock cycle in most cases.

Mesh networks are mostly used for CMPs with a high core count, as the advantages
outweigh the increased latency. If threads that frequently communicate are mapped
onto neighbouring processor cores, the communication latency can be quite low as the
number of hops will be minimal. However, for this to happen, the thread scheduler,
which handles the mapping of threads onto processor cores also needs to have access
to information on the communication latencies between the various processor cores.
Thread migration, in which threads migrate between processor cores to, for example,
minimise communication latency, however, is a research area by itself [48]. Examples
of existing mesh architectures are the TILE64 and SCC systems. The Tilera TILE64
processor connects all tiles using five individual 8×8 meshes, where every mesh carries
a different type of traffic. The Intel SCC also employs mesh networks.

Rings
Rings are another type of torus networks, where the number of dimensions n is equal to
1 and k, the number of nodes per dimension, is equal to the number of nodes in the NoC.
They form a compromise between the traditional buses and complex packet-switched
networks like meshes. Commercial examples of CMPs using ring networks are the Cell
processor by IBM [49] and the Xeon Phi by Intel [4].

37

2.2. Introduction to Networks On-Chip

Low latency networks on-chip

The NoC is an integral part of the CMP. It connects the processor cores with various
parts of the memory hierarchy and every message on the network is the consequence
of a memory reference made by a processor core11. This means that a processor
core is waiting for the outcome of these network transactions and that the design
and performance of the on-chip network will have an indirect impact on the overall
performance of the CMP. The latency of the NoC will, therefore, have a significant
impact on overall performance (this will be discussed and measured in Section 4.1) and
as such, there has been research focused on low latency NoCs.

There are multiple avenues to explore when trying to minimise network latency.
Firstly, the message latency can be reduced by minimising the number of hops a
message needs to take. This can be achieved by, for example, allowing messages to
bypass routers. The work by Kumar et al. propose the use of express channels in a mesh
network, in which messages are allowed to take express lanes until they got closer to
the destination, after which they take the normal lanes [50]. This reduces the amount of
hops a message needs to take. Using high radix routers can also reduce the number of
hops a message needs to take, as the network diameter is reduced. For example, Kim et
al. proposed a flattened butterfly [51]. A butterfly is an indirect network which consists
of a number of terminal nodes and intermediate nodes, which while it provides a low
hop count, also has no path diversity which can be disadvantageous12 [22, Chapter 3.3].
By providing high radix routers to create a flattened butterfly, the authors provide better
path diversity. Another possibility is, for example, remapping cache lines to caches
closer to the CPU using those cache lines [52, Chapter 2.1]. A second body of work
focuses on reducing the link latency to reduce the overall message latency. Chen et
al. proposed the SMART NoC in which low-swing, repeated links allow messages to
potentially travel multiple hops in a single clock cycle, in the absence of contention
in the routers [53]. Muralimanohar et al. investigated the effect of the wire type on
performance [54] as the type of wire (e.g. metal layer, wire width etc.) affects the link
latency. Thirdly, the overall message latency can be reduced by reducing the time spent
in the routers. The work discussed earlier on speculative routers [47], is one example
which reduces overall network latency by reducing the router latency. Li et al. propose
the runahead NoC which allows for lossy transmission in the runahead layer of the
NoC. Messages are dropped when contention occurs in the runahead routers, thereby
allowing for single cycle hops [55]. This work also uses the critical word scheme to
their advantage as the critical word is sent via the lossy layer, while the complete cache
line follows on the normal layer. This allows for a low latency delivery of the critical
word, whilst the non-lossy layer guarantees the delivery of the complete cache line.

2.2.2 Motivation behind optical networks on-chip
In this section, I will argue that the electrical connections that make up the NoC have
reached a performance plateau and motivate the choice for a transition towards an
optics-based NoC. On-chip interconnect, which connects devices on the same chip, can

11One could argue a prefetch is also a consequence of an earlier memory reference made by a processor
core.

12Path diversity is the possibility for a message to take multiple routes from source to destination. This
allows for better load balancing.

38

2.2. Introduction to Networks On-Chip

l A

Figure 2.7: Schematic view of a RC line. The area A includes the spacing in between adjacent
wires (after [9]).

be subdivided into two classes based upon their length. Interconnects with a length
on the order of the size of the chip (like the NoC) are called global interconnects,
in contrast to local interconnects. The use of electrical links to create these global
interconnections might not suffice anymore. One of the alternatives being proposed is
the use of optical communication [8]–[10], [56]. There are four reasons why electrical
links can no longer meet the demands of NoCs. These four reasons all have to do with
the continuous signal loss because of the capacitance and resistance of the wire, an
effect that (at the computer system scale) does not exist in optics. In this section, these
effects will be discussed and compared with the optical case.

Dependence on aspect ratio

The delay and attainable bandwidth of an electrical link depend on the length and area
of the link. Conventionally electrical connections on-chip are formed by copper wires,
surrounded by a low k dielectric. It is the rise time that determines the maximal bitrate
on the line: if pulses are transmitted too close together in time, the finite fall and rise
times will make them overlap, resulting in errors at the output. The rise time also
determines the signal delay.

Most on-chip lines are resistive-capacitive lines (RC) because of their small cross-
section13. An example of such a line is shown in Figure 2.7. A is the effective total
cross-section and includes the spacing in between lines needed to reduce crosstalk14.
The total length of the line is l. The rise time in a RC line is limited by its RC time
constant which is equal to RlCll2 where Rl and Cl are respectively the resistance and
capacitance per length unit. Some approximations can be made regarding the RC
constant [9]. Rl can be approximated as ∼ 1/A. Cl is constant and depends on the
design of the line. This makes the RC constant approximate ∼ l2/A.

The bitrate B of a RC limited line is ∼ 1/RC making B∼ A/l2. Assuming copper
as conducting material, well-designed lines and reasonable requirements for the eye
diagrams the bitrate of an RC limited line will be limited to [9];

B∼= 1016 A
l2 bits/s (2.4)

13Transmission lines, which have lower latency and higher signal integrity, cannot be considered for on
chip links. The resistance of such a line needs to be negligible which implies a large cross-sectional area.
This cannot be achieved while supporting the bandwidth density requirements of modern Complementary
Metal Oxide Semiconductor logic (CMOS) chips.

14Switching a wire will affect neighbouring wires through capacitive coupling. Crosstalk can cause
noise on the neighbouring lines or depending on the switching activity, change the rise times of the
neighbouring lines[16, Chapter 6.3.3].

39

2.2. Introduction to Networks On-Chip

1 2 3 4 5
Clock frequency [GHz]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
op

or
tio

n
of

 g
lo

ba
l l

in
k

re
ac

ha
bl

e
 in

 o
ne

 c
lo

ck
 c

yc
le

Quad-core CMP
8-core CMP
16-core CMP

Figure 2.8: The proportion of a global interconnect line crossable in less than one clock cycle
at a 45 nm technology node. The die size of the (Intel) 16-core (green line), 8-core (blue line)
and quad-core (red line) is respectively 661 mm2, 684 mm2 and 263 mm2.

The bitrate across an electrical link is therefore limited by the aspect ratio of the line,
the ratio of the length and the cross-sectional area of the line. Global lines on-chip have
a fixed l and so the upper limit on A is given by the number of metal layers available for
global interconnects. Once all available metal layers are occupied by wiring, the width
of the wire cannot be increased further and it is not possible to increase the bitrate. This
puts an upper limit on the total bandwidth of the network. The propagation delay is
also a function of the RC time constant and it follows from the above discussion that it
increases quadratically with distance. Figure 2.8 shows the fraction of a global link that
can be crossed in less than one clock cycle, assuming a 45 nm technology node. There
are multiple metal layers present in a VLSI design: global interconnect will be using
the M8 metal layer. The results are shown for three Intel CMPs: a 16-core, 8-core and a
quad-core CMPs which differ in die size. Only when the quad-core would be clocked at
500 MHz would it be possible to cross the global interconnect lines in less than a clock
cycle.

There are multiple possibilities to reduce the impact of the aspect ratio: equalisation
of the lines15, using multilevel signalling or the use of repeaters [58],[16]. Repeaters
divide the link into shorter segments, each driven by a CMOS inverter. This reduces
the RC time constant per line segment. The RC constant of the total line is therefore ∼
N×RlCl(

l
N)

2
. Assuming the number of segments N is proportional to the total length

l, the total RC time constant is now linearly dependent on the distance (compared to
the quadratic dependence of an unrepeated line). The exact number of repeaters per
line is a trade-off: the delay per segment decreases with increasing number of repeaters
while the delay due to the repeaters increases with increasing repeater count. Whereas
repeaters are advantageous in terms of signal delay and bitrate, they come with multiple
disadvantages. The exact number of segments needs to be optimised for the desired
bitrate and link length. Any change to the bitrate for example will imply a redesign of

15An equalised signal has been compensated for the effect of the channel transfer function, resulting in
a higher data rate at the cost of higher signal to noise ratio [57].

40

2.2. Introduction to Networks On-Chip

the repeated lines (if the number of repeaters is chosen to supply up to the requested
bitrate). Repeaters also increase the energy consumption per bit. When designing the
repeated line for minimum delay, there is an 87% increase in energy per bit compared to
the unrepeated line [16]. To prevent signal inversion, one has to either provide an even
number of repeaters on the line or use buffered repeaters (flip-flops) which are easier to
work with but come with slight increase in delay, area and energy consumption. The
CMOS inverters also need to be connected to the metal layers providing the global
interconnect, resulting in an increase in the number of vias.

Optical interconnect on the other hand does not suffer from a dependence on the
aspect ratio of the link [9]. Signal degradation in electrical links and optical links differ
radically, at the link lengths used in this work. Simply put, one could say a signal on an
electrical link degrades continuously, all across the link. In an optical link, however, the
highest losses are more localised. A bend in a waveguide for example will be a source
of signal loss. In Section 2.2.3 the different components in an optical link and the losses
they incur, will be discussed in more detail. The loss of a Silicon-on-Insulator (SOI)
waveguide ranges from 0.1 dB per cm to 3.6 dB per cm (Table 2.3). The loss of a
polymer waveguide is lower in general and ranges around 0.03 dB per cm -0.04 dB
per cm [59]. Individual components on the optical path, however, can add significant
losses. However, passing by a microring resonator used as modulator can incur between
0.1 dB to 1.5 dB (Table 2.3). To compare these values, when assuming the quad-core
die size used in Figure 2.8, the total loss of an optical link crossing the complete die is
equal to approximately 0.006 dB, assuming the lossiest type of waveguide is used.

Optical signals, in contrast to electrical signals, have no frequency dependent losses
for up to tens of GHz, at the scale of computer systems. This is due to the fact that the
optical carrier frequency is so high (in the order of THz) that any changes modulation
frequency are negligible, relative to the carrier frequency [60]. This is also means an
optical link (with the exception of the devices driving and receiving the signal) does
not need to be redesigned when changing the modulation frequency in contrast to a
repeated link, for which the optimal placement of the repeaters depends on the bitrate
on the link.

The signal delay on an optical link consists of two major parts: the conversion from
the electrical to the optical domain (also known as the serialisation latency) and the time
of flight of the signal in the waveguide. The time of flight of the signal is determined by
the speed of light in the waveguide material and as such, is very short. An optical signal
in a silicon waveguide with refractive index n = 3.4 will travel at ∼11 ps per mm. In a
polymer waveguide, with n = 1.6 this comes down to ∼5 ps per mm. Haurylau et al.
note that the propagation delay of an electrical signal will remain fixed around 20 ps
per mm, assuming the widest wire pitch [61]. Figure 2.9 plots the propagation delay of
electrical and optical interconnect. Most of the latency of an optical signals originates
from the serialisation process in the transmitter as the data needs to be modulated
serially onto the light stream. The serialisation latency can be reduced by increasing
the number of wavelengths available or increasing the modulation frequency. The O/E
conversion latency at the receiving end is negligible as it lies in the ps range[62].

It needs to be noted though that the delay of a signal, be it electrical or optical, as
discussed here only looks at the link itself and does not look at the delay of scheduling
transmission across that link, which might be problematic for optical links, which will
be discussed in more detail in Section 2.2.3.

41

2.2. Introduction to Networks On-Chip

Figure 2.9: Propagation delay of electrical interconnect compared to the propagation delay of
polymer and silicon waveguides (from [61]).

Scaling

The scalability limits of electrical links are the second reason they are less suited for use
in NoCs. A major driving force behind the progress in microprocessors has been the
continuous scaling of CMOS technology. Improved fabrication techniques have allowed
Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) to be steadily reduced
in size since the 1960s. However, MOSFETs and electrical links react differently to
technology scaling. Scaling the dimensions of a MOSFET with an arbitrary factor S
(while keeping the electrical field constant), decreases the switching latency with a
factor S. At every new technology node, transistors become faster. This is not the
case for electrical interconnects. Scaling a wire in all dimensions will increase the
resistance per unit length Rl because the cross-section decreases. But because the
length will decrease as well, the total RC time constant of line does not change. Only
local interconnect will scale in length, global interconnects are unaffected as the chip
dimensions do not change significantly [17]. Therefore the latency of global links that
make up the NoC will increase [9].

Another unwanted side-effect of scaling is the increase in the parameter variability.
Any uncertainty on the delay of a component or link will lead to increased timing
margins which lower the clock frequency. This is because even though signals are
clocked, the following clock edge can only come when all signals have arrived at the
next stage. There is an increased uncertainty in propagation delay across electrical
wires when scaling: first of all, any process variations16 can lead to changes in wire
width and therefore a variation in the RC time constant. As the resistance of copper
is temperature dependent, variations in temperature across the chip (e.g. proximity
to a very active processor core) can lead to delay variations, again because of the
change of the RC constant. The repeaters are CMOS inverters and as they are subject to
increased variability due to scaling, their contribution to the link propagation delay will
be increasingly variable. As the number of repeaters per link is expected to increase, this
effect will be reinforced even more [63] . The capacitance of a line will also be affected
by switching activity on nearby wires due to the Miller effect17. All this means that

16Process variations are caused during fabrication whereas environmental variations occur during the
lifetime of a chip.

17Wires have a parasitic capacitance with their neighbours. This capacitance will also affect the delay

42

2.2. Introduction to Networks On-Chip

2004 2007 2010 2013 2016
0

5

10

15

20

25

Year

S
ta

nd
ar

d
de

vi
at

io
n

(p
s)

Electical

Optical Polymer

90 nm 65 nm 45 nm 32 nm 22 nm

Technology node

Figure 2.10: Expected standard deviation of the delays of optical and electrical interconnects
(from [62]).

the delay uncertainty of electrical interconnections will increase in future technology
nodes.

Scaling the width and height of interconnect also introduces reliability issues:
scaling down electrical connections will also lead to an increase in electromigration18

which results in a lower reliability [56]. It is possible to avoid electromigration (e.g. by
applying a surface coating [64]) or reduce its effects on reliability (e.g. by inserting
reservoirs of interconnect material at points where electromigration will lead to failure
[64]) but electromigration is an important effect to consider in electrical interconnect.
In contrast, optical interconnects do not suffer from scaling significantly. Any variability
of the delay of an optical signal (be it on the same device or between devices) will be
coming from the electronic transmitter and receiver circuits but the overall variability
will still be lower than the electrical case as shown in Figure 2.10. Geometric variations
of the waveguide are possible and the effect of sidewall roughness will increase with
scaling but any delay uncertainty caused by the waveguide is small in comparison to
other factors [62]. This would make optical signals very useful for the clock delivery for
example. In the case of off-chip signals, this can remove the need for resynchronisation
at the receiver. This frees up both area and power budget.

Bandwidth density

Bandwidth density can give an idea about how efficiently an interconnect technology
uses the available chip area. It therefore should be as high as possible as the perimeter
around every processor core is limited [65]. The literature looks at this issue in two
manners: Miller quantifies the bandwidth density of an electrical link as Gbit/s per µm2

where the cross-sectional area is seen as defined previously in Equation (2.4) [60].

of that line. The size of the parasitic capacitance will depend on the signal on the neighbouring lines,
being maximal when they both switch in an opposite direction. This leads to the delay of a line becoming
data dependent.

18Electromigration is gradual movement of conductor atoms, because of constant electron bombard-
ments i.e. the slow displacement of Cu atoms because of the current the wire is conducting.

43

2.2. Introduction to Networks On-Chip

In this equation the achievable bitrate is determined by A
l2 . Both A and l are fixed

quantities: the link l length remains constant across technology nodes in the case
global interconnects. The available area A is determined by the available metal layers.
Once these are exhausted, the bandwidth density can no longer be increased without
employing repeaters for example.

Koo et al. [65] and Chen et al. [63] quantify bandwidth density as Gbit/s per µm
to simplify the comparison between electrical and optical links. Chip area is, in these
papers, interpreted as circuit area: link length multiplied by link width. Considering the
link length of optical and electrical links is the same (both providing global interconnect),
only the link width will be included when quantifying bandwidth density. The advantage
of optical interconnect over electrical interconnect in terms of bandwidth density is
less clear because of the presence of transmitter and receiver circuitry in the optical
links and the small wire pitch of the electrical wires [9],[62]. For local interconnect,
electronics will outperform optics for this reason. For longer distances, this is not
the case as the bandwidth of an optical signal can quite easily be increased by using
Wavelength Division Multiplexing (WDM). Using WDM it is possible to send multiple
data streams down one waveguide. This allows to increase the bandwidth even further.

The overall advantage of optical interconnects over electrical interconnects in terms
of bandwidth density will most likely continue in the future as the bandwidth of an
optical link can easily be increased by adding more wavelengths by means of WDM.
Increasing the number of wavelengths decreases the channel spacing, incurring higher
signal losses, requiring more power to be injected per channel. This in turn increases
the aggregate power in the link, which is limited by non-linear waveguide losses and
instabilities in the microring resonators due to heating [66]. The upper limit imposed
on aggregate power due to non-linear waveguide losses can be mitigated by changing
the waveguide material to silicon nitride which suffers less from these effects. However,
the integration of this material remains challenging [67]. Both electrical and optical
interconnect could make use of more complicated modulation and coding formats to
increase the bandwidth, which has not been considered in any of the works discussed
previously ([63][60][65]).

By using wavelength striping [68], WDM also can be employed to reduce the
latency. Figure 2.11 compares the conventional use of WDM with wavelength striping.
Wavelength striping allows to decrease the serialisation latency by increasing the
bandwidth. By modulating the first part of the message first, this part of the message
will arrive first at the receiver. This is especially important for data messages in a
memory hierarchy. As mentioned in Section 2.1.4, a cache line consists out of multiple
data words, which are grouped together for efficiency reasons. A processor core,
however, will only request one single word to work on. The other words in the cache
line are not used immediately. Therefore, the critical word first scheme is employed
[2, Chapter 5]. When a data message containing a cache line is travelling the memory
hierarchy, the word that was requested will be placed in the first part of the message.
When the message arrives at the L1, the word can then immediately be given to the
processor core while the rest of the message, containing the other words in the cache
line, is still arriving (or in the case of an optical network, still deserialising). Using
wavelength striping, it is possible to do this.

44

2.2. Introduction to Networks On-Chip

AEIM

BFJN

CGKO

DHLP

Time

λ

(a)

ABCD

EFGH

iJKL

MNOP

Time

λ

(b)

Figure 2.11: Comparison of the use of wavelength striped and conventional WDM in a NoC.
The message to be transmitted is the alphabet. The letters are used to show the order of bits in a
message (a) when using wavelength striping, the first part of the message will be modulated first
(b) conventional use of WDM. In this case the 4 different wavelengths could also be used to
transmit 4 different messages.

Power consumption

The last disadvantage of electrical interconnects is their power consumption. Power
consumed on-chip has to be dissipated as heat. This puts an upper limit on the allowable
on-chip power dissipation. The International Technology Roadmap for Silicon (ITRS)
[69] has stated in 2007 that the amount of heat that can be removed from chip will most
likely level around 200 W making power management a very important issue [60]. To
place this into context: the quad-core shown in Figure 2.8 for example, was released in
2009 and had a Thermal Design Power (TDP)19 of 130 W [70]. The 16-core shown in
the same figure was released in 2015 and has a TDP of 165 W [71]. Power consumed in
the interconnect consists of dynamic power and static power. Part of the static power in
electrical connections comes from leakage power which increases when scaling down
transistors. The most important part of the power consumption, however, is dynamic
power consumption. Dynamic power consumption is determined by the capacitance of
the line, C, the switching frequency f and the switching voltage Vs.

Pdyn =CV 2
s f (2.5)

By not using rail-to-rail signalling the voltage swing can be reduced thereby lowering
the power consumption. However, the capacitance of a wire is determined by design
and cannot be reduced. Added to this comes the power consumed in the repeaters.

The possibility of lower power consumption when using optical interconnects forms
another advantage [60]. The static power consumption is determined by the power of
the laser source. The best location of the laser source will be discussed in Section 2.2.3.
The dynamic power, however, is not determined by distance, a significant advantage
over electrical interconnect. The only switching activity (resulting in dynamic power

19The Thermal Design Power is defined by Intel as "the average power, in watts, the processor
dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity
workload".

45

2.2. Introduction to Networks On-Chip

Table 1: Parallel Bits & Convergence Point for Most Energy Efficient Configuration Based on Link Utilization

160Gbps 320Gbps 640Gbps
Tech Point 8µm 20µm 8µm 20µm 8µm 20µm

32nm “Best” 8 <8.7%> 16 8 <17%> 16 8 <1.7%> 16 8 <4.9%> 16 16 <31%> 32 16

22nm “Best” 8 <20%> 16 8 <85%> 16 8 <3.9%> 16 8 <21%> 16 16 16

16nm “Best” 8 <41%> 16 8 8 <9.1%> 16 8 16 16

32nm “Worst” 8 <11%> 16 8 8 <2.0%> 16 8 <47%> 16 16 16

22nm “Worst” 8 <39%> 16 8 8 <7.2%> 16 8 16 8

16nm “Worst” 8 8 8 <24%> 16 8 16 8

(a) Link Length 3mm (b) Link Length 15mm (c) Link Length 35mm

Figure 10: Energy Efficiency (fJ/b) vs Link Utilization using 16nm and 640Gbs for short (a), medium (b), and long distance (c). When the
link length is short electrical links are more efficient until the link utilization rate becomes approximately 8% (the crossover point).

For medium length links, the crossover point is approximately 1%, and for long links it is 0.5%.

0%#

20%#

40%#

60%#

80%#

100%#

0# 5# 10# 15# 20# 25# 30# 35#

Li
nk

%U
'l
iz
a'

on
%

Link%Length%(mm)%

Op-cal#
Tech#Dep#
Electrical#

Figure 11: Transition point where optical and electrical link costs
are the same. In the upper right part of the figure optical

is the most efficient, in the lower left electrical is.

We have also shown that the architect should decide on
the choice of technology (electrical vs photonic) based on
the anticipated amount of communication, the distance, the
technology point, and the amount of delay that can be tolerated.
Looking at Figure 10, for example, it is clear that if the link
distance is small, the architect may not want to use a photonic
link even if the utilization is high, because the energy saved
is small. And if the utilization is very low and the latency
does not matter, the architect may choose to use an electrical
link even if the distance is large. However, we also show
that for medium distances, a photonic link can be an order of

Figure 12: Electrical Latencies as Link Length changes. Most
Efficient indicates delay when electronics sized to

minimize power, Least efficient indicates delay when
electronics sized to minimize delay.

magnitude more efficient at a lower link utilization than might
have been expected (only 12%, for example).

The fact that the electrical interface to the optics has to fan
out and then fan back in (relatively) great distances is a big
problem, which is only going to get worse as we move deeper
into nanoscale technology points. The use of 3D stacking
to create a stack of single bit networks to avoid the scaling
problem would reduce the length of wiring laterally, but the
thickness of each layer is likely to be greater than the assumed

10

Figure 2.12: Transition point at which optical interconnect becomes more energy-efficient than
electrical interconnect, depending on both link length and link utilisation, which captures how
often the link is actually in use to transmit data (directly taken from [72]).

consumption) in optical links is coming from the receiver and the transmitter circuits.

Conclusion

All of the previous factors make it increasingly difficult to use electrical links to provide
global on-chip connectivity. Various techniques to improve electrical signalling have
been proposed but none of these solve the underlying physical problems limiting the
performance of electrical interconnect [73]. For example, the length of connections
can be reduced by using 3D integration [74] but the heat dissipation of such a system
will be challenging. A second approach would be the use of additional cooling (e.g. li-
quid cooling) to reduce the intrinsic resistance of copper. The cost of such cooling
systems, however, is only justified for chips aimed at the supercomputing market [9].
A third option would be to increase the amount of wiring available for global on-chip
communication: the number of available metal layers could be increased or off-chip
connection could be used for on-chip communication [9]. A last alternative would be a
transition from copper-based interconnects to carbon nanotubes (CNT) [65] which have
a lower resistance. These four alternatives would improve the current performance of
copper-based electrical interconnect but the physical properties that limit performance
are still present.

The use of transmission lines to reduce latency and energy consumption has also
been proposed, for example by Carpenter et al. [75]. They argue the use of transmission
line-based buses will remove the need for packet-switched NoCs which incur non-
negligible energy overheads due to routing, packet transmission and switching. However,
the scalability of this system is limited and the bandwidth density of transmission lines
in general is smaller than that of optical interconnect [76]. The advantage of optical
interconnect over transmission lines in terms of energy efficiency will, however, depend
on both the link length and whether or not the laser is on-chip [76].

Because of all these reasons, optical interconnect might be a viable alternative
for electrical interconnect. Apart from the advantages discussed previously, optical
interconnect might result in design simplifications [9]. First of all, optical links are
bitrate transparent and do not need to be redesigned when the clock frequency is changed
(in contrast to electrical links). The second simplification is that fact that, at these scales,
there is no distance dependence for optical signals so there is no difference in behaviour
and design of on-chip and off-chip interconnects (in contrast to the high inductance

46

2.2. Introduction to Networks On-Chip

off-chip pins). Thirdly, because of the low latency of optics they might allow for the
use of larger synchronous zones on-chip. The last simplification is the voltage isolation
between the communicating nodes provided by optical links.

Overall, the advantages of optical interconnects over electrical interconnects increase
with increasing link length. This is due to the fact that optical interconnects have
a relatively distance-independent latency and power consumption, while both these
properties degrade with increasing distance in the case of electrical interconnects.
However, because of the fixed costs (both in terms of latency and power) associated
with optics, there is a critical length for interconnects, known as the partition length [77]
beyond which optical interconnects outperform their electrical counterparts. When
looking at the energy efficiency of optical interconnects, it is important to take link
utilisation into account to assess the partition length as for optical interconnects the static
power is quite high. Figure 2.12 shows the transition point between electrical and optical
interconnects, depending on both the length of the link and the link utilisation [72].
The link utilisation captures how often the link is actually in use to transmit data For
very short links, electrical interconnect will be more energy-efficient. However, the
longer the link becomes, the more efficient optical links are. There is a dark zone on
the plot where the exact transition point is unclear, because it will depend on the exact
technology used. Overall though, this figure confirms optical interconnects can be a
more energy-efficient option for NoCs.

However, the use of optical interconnect in the NoC is not without challenges: the
technology is relatively immature, especially compared to electrical interconnect. An-
other technical challenge is the temperature dependence of various optical components.
This will be discussed in more detail in the next section.

2.2.3 Optical networks on-chip
Optical interconnects can be seen as a natural extension of the use of optics for long-
haul transmission [78] and were first proposed by Goodman et al. in 1984 [56]. More
publications, by Miller [8], [9] and [10] followed in the early 2000s.

In this section the various components needed for an optical NoC will be discussed,
followed by a review of the most important optical NoC proposals. This review will
allow me to compare these optical NoCs with the system proposed in this thesis.

Components in an optical network on-chip

Optical on-chip links require optical components which satisfy two requirements. First
of all, they need to be small enough to fit in the area of chip designated for the NoC20.
Secondly, their total power consumption should not exceed the total power the NoC
is allowed to consume. These two upper limits depend on the actual CMP but they
indicate the need for energy and area efficient components. In the following section
the components needed for an optical NoC will be discussed. This discussion will be

20In a 3D integrated system, it would be possible to place the photonics in a designated layer as
proposed by Udipi et al. [79]. However, as previously mentioned, the power dissipation of a 3D
integrated system is challenging. Considering the thermal stability needed by some optical components
(as will be discussed later on), this might not be the optimal solution. It would also be possible to place
the photonics on a silicon interposer, so called 2.5D integration [80]. However, the preference for small
photonic components would remain.

47

2.2. Introduction to Networks On-Chip

Laser source Modulator

Receiver

Waveguide Switch

Switch

Data

Data

Transmitter
Waveguide

Receiver

Optical link

Figure 2.13: Schematic representation of a photonic link.

brief as the physical implementation of an optical NoC is not the aim of this thesis.
Figure 2.13 shows the various parts of an optical link. The link consists of three parts:
the transmitter, the transmission medium and the receiver.

General
Microring resonators can be used in multiple parts of an optical link. They are suitable
for use in an NoC as they are area-efficient (in the µm range) and energy-efficient (in the
fJ per bit range)[60]. They are formed by building a SOI waveguide in the shape of a
ring, in the vicinity of a waveguide transporting the signal as can be seen in Figure 2.14
[81]. The exact circuitry surrounding them determines their final use but the basic
principle is always the same. When the optical path inside the ring is equal to an integer
number of wavelengths, the optical signal on this wavelength will be coupled into the
ring [81]:

λres =
ne f f L

m
m = 1,2,3....

=
ne f f 2πr

m

(2.6)

The optical path inside the ring depends on the refractive index ne f f as can be seen in
Equation (2.6). By changing the refractive index of the material, the resonant frequency
λres can be shifted. Changing the refractive index can be done by adjusting the carrier
density which can be achieved by changing the voltage across the ring. This will
shift the resonant frequency towards the blue. As the refractive index of a material is
temperature dependent, the temperature of these devices needs to be strictly controlled
to guarantee reliability: the resonant frequency of a ring will shift by 0.09nm/◦C [82].
This is one of the major disadvantages of microring resonators as tuning can be quite
power consuming: 130µW/nm for a shift to the blue by means of a current injection
and 240µW/nm for a shift to the red by means of heating [83]. Microring resonators
can be used as modulators, switches and detectors.

Transmitter
The start of an optical link is formed by the transmitter , where the conversion from
the electrical to the optical domain takes place. This is done by means of a modulator

48

2.2. Introduction to Networks On-Chip

which modulates the data onto a stream of light.
The unmodulated light will be generated by a laser. The light can be generated

on-chip or off-chip. Whilst off-chip lasers are highly efficient in terms of light-emitting
and do not add to the temperature instability on-chip (thereby affecting the microring
resonators that make up the modulators and switches less), the coupling to the silicon
chip is very lossy and packaging will more strenuous [84]. On-chip lasers could
exhibit better energy efficiency and higher integration intensity, but the limited heat
dissipation on-chip might be problematic. The research into on-chip lasers is still
very active [84], [85]. Generating light in silicon is difficult as silicon is an indirect
band gap material: the recombination of a hole and electron will generate both a
photon and a phonon. This makes silicon a less efficient material for stimulated
emission.Nevertheless, there is a body of work focusing on the demonstration of a silicon
laser [85]. A recent review by Zhou et al. [84] lists three types of light sources that are
based on other materials besides silicon: erbium-related, germanium-on-silicon and
III-V materials based. It is important that these materials are compatible with existing
CMOS fabrication techniques. Quantum dot lasers are one example of on-chip lasers
using III-V materials and were first demonstrated by Liu et al. in 2011 [86]. External
lasers could provide the additional advantage [82] that one central laser could provide
optical power to the complete chip or even multiple chips. The light beam of an off-chip
laser does need to be coupled onto the chip, at the cost of additional coupling losses
which can range between 0.9dB [59] and 3dB [87], depending on the type of waveguide
used. There are multiple possibilities for the exact implementation of the modulating
device itself. The most common type proposed for future integrated electronic/photonic
systems is the microring resonator due its small size, high modulation speeds (10 GHz to
25 GHz [81]) and the lowest modulation energy per bit [81]21. It can act as a modulator
by placing it next to a passing waveguide (Figure 2.15a). By changing the refractive
index of the ring, On-Off Keying (OOK) is possible. When using WDM, multiple
rings will be used, each tuned to one wavelength in the stripe. There are two main
challenges associated with the use of microring resonators as modulators. Firstly, there
is the thermal tuning power discussed previously. The second challenge is the loss an
optical signal experiences when passing by a microring resonator. When the microring
is off-resonance (i.e. not tuned to the wavelength passing by), this loss can range from
0.0001 dB to 0.1 dB in the literature [82]. The on-resonance loss is reported to vary from
1 dB to 3 dB [82]. The on-resonance loss cannot be avoided but the off-resonance loss
can incur a high penalty in systems with a large number of wavelengths per waveguide
(a high WDM factor).

Waveguides, switches and splitters
After the signal has been modulated onto the stream of light, the stream will then travel
the optical links. Optical links consist of waveguides and switches. The waveguide
confines and guides the light. There are two main candidates [62]: SOI can be used for
short and dense connections as it allows for a smaller pitch whereas low-loss polymer
could be used for longer paths. Waveguides introduce propagation loss, intersection loss
and bending loss. Light can be coupled from a waveguide in one plane to a waveguide
in another plane which induces a loss as well. The coupling can be done by means of
grating coupler or mirrored surfaces [89] .The parameters for the loss factors again

21Mach-Zehnder interferometers could also be used as modulators. Whilst they offer a larger bandwidth
than microring resonators, their extinction ratio is lower, meaning the output power in the OFF state is
non-zero [88]

49

2.2. Introduction to Networks On-Chip

Figure 2.14: SEM picture of switch microring resonator. This picture also shows the difference
between the electrical components (in the form of a buffer) and photonic components (from
[82]).

vary quite significantly across the literature as shown in Table 2.3. Optical switches are
used to change the direction of the light. These can be implemented using microring
resonators [90], with the same challenges with regard to tuning power and losses as
discussed previously. A schematic view is shown in Figure 2.15b. There are two types
of networks when using WDM. If the wavelength of a signal determines its path in
the network, passive microrings are used. These rings are always in resonance with
that signal. Active rings on the other hand switch between the off-resonance and on-
resonance state, thereby at runtime determining where the signal goes exactly. Active
rings can be used to create optical crossbars [90], which logically function exactly
like their electrical counterparts. Broadband splitters are used to split the incoming
optical signal across multiple waveguides. Splitters can be implemented in multiple
different ways [88]: Y-branch splitters, which split the power in half [91], or Multi
Mode Interference (MMI)-based structures which can split the power across multiple
branches (≥ 2) [92]). Splitters introduce another loss to the optical signal: Y-branch
splitters for example are associated with 0.1 dB to 0.2 dB loss[91].

Receiver
The last device in an optical link is the receiver. The receiver stage consists of three
parts: a microring resonator functioning as a filter guiding the selected wavelength to
the photodetector. The most commonly proposed photodetector is the P-I-N diode [87].
The photodetector responsivity, which relates the incident optical power with the output
current, determines the maximum allowable path attenuation. The optical power in the
signal at the beginning of the path (i.e. when it is generated off-chip) will be attenuated
by all the lossy elements encountered (e.g. coupling loss, microring resonators etc.) but
enough optical power needs to reach the photodetector in order for an output current
to be generated. In the receiver unit, the integration of the photodetector is vital as a
low input capacitance is needed to keep the receiver as small and power effective as
possible. If the physical capacitance of the receiver and the connection to the amplifier
are small, they will give larger input signals to the amplifier, resulting in less stages and
better noise immunity. A small RC time constant will also ensure the receiver has an
acceptable bandwidth (similar to the RC time constant of an electrical link). Another
option (still speculative though) would be for the receiver to be receiverless [60]. In
this case the photodetector would be able to directly drive a logic level voltage swing
that can be routed to the logic circuits. Overall, the receiver is not seen as the main
challenge [60].

The losses associated with each component in an optical NoC will determine the

50

2.2. Introduction to Networks On-Chip

λ0 λ1 λ2

Input waveguide Through

Drop

(a)

λ0
Input waveguide

Through

Drop

(b)

Figure 2.15: Schematic depiction of the various functions a microring resonator can fulfil (a)
Microring resonator as modulator (b) Microring resonator as switching element.

Component Description Minimum Mode Maximum

Waveguide
Propagation

0.1 dB/cm
[93]

1 dB/cm
[85], [94], [95]

3.6 dB/cm
[96]

Intersection
0.05 dB

[97], [98]
0.05 dB

[97], [98]
0.2 dB
[93]

90° bend 0.00215 dB22 0.5 dB
[87]

Microring
resonators

On-resonance
0.1 dB
[94]

1.0 dB
[87], [93]

1.5 dB
[93], [98]

Off-resonance
0.0001 dB

[98]
0.001 dB
[94], [97]

0.1 dB
[93]

Coupler
Layer-layer

(via)
1 dB
[87]

3 dB
[93]

Fibre-to-chip
1 dB

[85], [94], [95], [97]
1 dB

[85], [94], [95], [97]
3 dB
[87]

Photodetector Loss
0.1 dB
[97]

3 dB
[94], [95]

3 dB
[94], [95]

Splitter Loss
0.1 dB

[94], [95]
0.2 dB

[87], [97], [98]
0.2 dB

[87], [97], [98]

Table 2.3: Optical loss parameters in the literature, taken from [82]. Only the values for silicon
waveguides are included because of their smaller pitch.

overall power consumption. However, the values reported in the literature can vary
quite a lot. This variation can be due to differences in technology used or methodology
used (analytical versus experimental). This makes it hard to quantitatively assess power
consumption figures across proposed topologies. Table 2.3 integrally taken over from
[82], shows the variation of various parameters.

22This value is said to come from a reference to Vlasov et al. [99] in Koch et al. [100]

51

2.2. Introduction to Networks On-Chip

Proposed optical networks on-chip

Optical and electrical interconnection networks differ greatly. The major difference is
the fact that there is no practical optical memory available which can easily be integrated
on-chip to be used as intermediate buffering23. Electrical interconnects depend heavily
on buffering, either in buffered repeaters or in routers. This implies messages can travel
the network in multiple hops and while the message is safely stored in intermediate
buffers, the resources for the next part of the route can be obtained (packet-switched
approach). This is impossible in optical networks, as there is no optical memory . For
a message to be buffered in an optical network, it has to be converted from the optical
domain into the electrical domain, buffered and converted again into the optical domain,
which is costly as discussed previously. Most optical networks will therefore be circuit-
switching networks (i.e. the end-to-end path is acquired before message transmission)
to avoid this intermediate buffering. To make optimal use of a circuit-switched network,
the number of messages per circuit should be maximised to reduce the circuit setup
overhead. However, this is not a given as circuits can be setup for a single message
and be torn down immediately if the circuit resources are needed elsewhere. Packet-
switching is possible in optical networks on-chip, but as the messages acquire (such as
optical links or wavelengths for example) resources whilst they travel the network, they
might need intermediate buffering during this arbitration process.

In either network type, the arbitration process is important and will be a very
important difference between the various optical network on-chip proposals. Arbitration
can be global (circuit-switched) or distributed (packet-switched). However, centralised
arbitration can form a bottleneck at high loads24. High loads are not very likely in an
on-chip environment however25 More importantly, any form of arbitration adds latency.
Before the transmission of a message, a request of some sort needs to be made for
the resources needed, followed by arbitration over all incoming requests and a grant
of some sort needs to return. A grant is a short message from the allocator to tell the
original requester that the resource requested has now been granted. This arbitration
latency will have an impact on the overall network performance.

Many optical network on-chip incorporate some form of message transmission in the
electrical domain. For example, there could be a second, electrical network in parallel
that routes certain message types. Many proposals also use electrical links to connect
the processor cores etc. to the actual optical network in order to reduce the number
of optical nodes. Part of the message journey will then be in the electrical domain.
However, in the following overview, this part of the network will not be discussed as
this is just a form of network concentration [22, Chapter 3.6].

Whilst optics have been in use for a long time in long-haul communication [82],
the requirements are very different, leading to very different network proposals. In
long-haul optics for example, it is possible to use optical burst switching [105]. In this
scheme, packets are collected at the network edge until a large enough burst is collected.

23Optical memory has been proposed in the form of delay lines [101][102] and bistable microring
lasers [103]. Neither of these are particularly suited for on-chip operation as they do not function like
electrical buffers in which the data can be held for an indefinite amount of time.

24For one of the most used allocation algorithms, the iSLIP algorithm [104] the curve of the load-
latency relationship will change and become steeper around the 60% mark. The exact saturation point
however, will depend on the traffic offered,the exact algorithm used and to a lesser degree the number of
ports.

25This assumption will be confirmed in Section 3.2.1.

52

2.2. Introduction to Networks On-Chip

Tx%

Rx%

Node 0

Tx%

Rx%

Node 2

Tx%

R
x%

Node 1
Tx

%

Rx
%

Power waveguide

Signal waveguide

Multiple λ input
light beam

Node 3

Figure 2.16: Schematic depiction of a SWMR scheme as employed in Firefly [96]. Every node
has a dedicated wavelength to write to and from to which all other nodes read. Arbitration is not
needed.

This burst is then transmitted across the network, thereby reducing the arbitration
overhead. However, this would be impractical in a CMP environment, where every
message is an (indirect) consequence of a pending memory request from a processor
core. Buffering messages at the edges of the NoC would lead to an unacceptable delay
of the memory requests. Another difference lies in the use of modulation formats in
long-haul optical network. These increase the information transmitted by increasing the
number of bits/symbol. Using OOK, only 1 bit is sent per symbol. However, there are
no proposals yet incorporating complicated modulation formats in an optical NoC.

The proposals discussed below are grouped according to how resources needed by a
message are allocated. In packet-switched networks, these resources are allocated on the
go, whilst the message travels the network. In circuit-switched networks, the resources
are allocated before transmission. I distinguish between two types of circuit-switched
networks. First, there is the classic circuit-switching, resources are allocated at runtime,
before message transmission. The second type are networks in which the resources
are allocated during design time, by setting up un-arbitrated direct links between all
nodes for example. As in this type no circuits are setup at runtime, I will refer to these
as non-switching architectures.

Non-switching: Firefly
In the Firefly architecture proposed by Pan et al. [96] the Single Writer, Multiple

Reader (SWMR) scheme is used. Each optical network node has a dedicated wavelength
to modulate its data on, which is received by all other nodes. All receivers need to be
continuously on, making this type of broadcasting quite power consuming. Therefore,
some changes are made to the scheme. All receivers are turned off by default. When a
node wishes to start transmission, it will make a reservation using a dedicated reservation
channel. The reservation message contains which receivers need to be activated and
the duration of the message to come. This reduces power consumption. The advantage
of an SWMR scheme is that it eliminates arbitration and the resulting latency as all
nodes have a dedicated channel to write to, assuming no reservation scheme. In the
case of Firefly, the reservation scheme will introduce a small amount of latency. Some

53

2.2. Introduction to Networks On-Chip

A B C A B C

Node 0

Node 3

Node 2

Node 4

Node 7

Node 5

Node 8

Node 1

Power waveguide

A C B

Node 6

Figure 2.17: The macrochip scheme as proposed by Krishnamoorthy et al. [89] for a 3× 3
network. This scheme is a combination of space-division multiplexing across waveguides and
optical planes and WDM inside waveguides. Only the Tx structures of node 0, node 1 and
6 are depicted for clarity. WDM demuxing happens in layer-to-layer couplers in the column
waveguides.

sort of flow control is still needed to prevent overflowing buffers at the destination.
Every node needs to be able to simultaneously receive a message from all other nodes
(N−1 receivers per node). This scheme therefore results in N× (N−1) receivers with
the associated buffers in total. These receivers not only consume area but increase
the optical power needed as well. Figure 2.16 shows a schematic view of a SWMR
network.

A similar scheme is employed in the ATAC architecture, proposed by Kurian et
al. [106]. The main optical network is in essence the same as Firefly, as it functions
as a SWMR network. However, to reduce the number of optical nodes, concentration
is used: multiple processor cores share an optical node. Messages coming from the
optical network, will be broadcast to all processor cores in such a cluster. The most
interesting part about this proposal is the interplay between the design of the coherence
protocol and the network design. The ATAC architecture makes use of a limited pointer
directory scheme [25, Chapter 8.5.2]. To reduce the number of bits required in each
directory entry, only K sharers can accurately be recorded. If a request from the K+1th
sharer arrives in the directory, the global bit is set for the entry, indicating that from now
on, rather than recording which cores share this entry, the total number of sharers is
recorded. This results in an increased number of broadcasts, which is an easy operation
in this scheme, making this type of directory organisation well suited to the ATAC
architecture.

Non-switching: Macrochip
Krishnamoorthy et al. proposed the macrochip [89] which is interconnected using

a Pt2Pt network. Routing is done by static WDM. By combining WDM inside one
waveguide and space division multiplexing across multiple waveguides, a unique link
between any two nodes in the network can be established (Figure 2.17). For example,
node 0 can communicate with node 8 by modulating on the blue wavelength, in wave-

54

2.2. Introduction to Networks On-Chip

Time

Slot 0

Slot 1

Slot 2

Slot 3

Figure 2.18: Schematic view of TDM arbitrated 4×4 network as proposed by Hendry et al.
[107], showing the circuits setup in the first three slots. In total 6 slots will be needed to provide
all-to-all connectivity. The hatched squares denote unnecessary connections.

guide A. The waveguide determines the column, the wavelength determines the row.
The result is a network that is non-blocking and needs no arbitration. Because of the
low number of optical components in a link, the optical losses in a Pt2Pt network are
small. The disadvantage lies in the serialisation delay which depends on the number of
wavelengths per link and as such might be quite long. Assuming one wavelength per
channel, the serialisation latency will be high. When using multiple wavelengths per
channel, there will be a rise in the number of components needed. One of the major
disadvantages of this scheme lies in the fact that the network does not adapt to the
traffic. Regardless of the amount of traffic, only a fixed number of channels is available
per source-destination pair, as determined at design time. Other channels might be idle
but cannot be used. Another disadvantage is the high component count: the scheme
requires N× (N−1) receivers and N× (N−1) transmitters.

Non-switching: Time Division Multiplexing
Hendry et al. proposed an optical network [108] and further refined it in follow-up work

which completely avoids arbitration all together [107]. All processor cores have their
own unique router and the routers are connected using a 2D mesh network . To avoid
arbitration, TDM is used. During a time slot, the routers in the network are configured
to allow communication between specific source-destination pairs. The duration of such
a time slot is determined by the setup time, the transmission time and the worst case
propagation latency. After a certain amount of slots (called a time frame), all nodes
have been able to communicate. The advantage of this is simplicity. The connections
during every slot are determined during the NoC design phase, by a genetic algorithm
which optimises the connection pattern as to reduce the length of the time frame. At
runtime, all routers just need to follow the clock: knowing which time slot they are in
suffices to know which connections to setup. No arbitration is needed. In [107] the
number of time slots that make up a time frame is reduced by avoiding to connect all
nodes directly during a time frame. Messages will be transmitted along the X dimension
first, converted back to the electrical domain and buffered. In the second stage, they

55

2.2. Introduction to Networks On-Chip

Tx%

Rx%

Node 0

Tx%

Rx%

Node 2

Tx%

R
x%

Node 1
Tx

%

Rx
%

Power waveguide

Signal waveguide

Multiple λ input
light beam

Node 3

Figure 2.19: Schematic depiction of a MWSR scheme as employed in Corona [109]. Every
node has a dedicated wavelength to read from to which all other nodes can write. Arbitration is
needed to determine which node can write to a certain wavelength.

will be transmitted optically in the Y direction to the final destination. In this case, the
architecture becomes packet-switched. The control matrix of this scheme is shown in
Figure 2.18. In this TDM scheme, arbitration is avoided by determining the connections
per time slot statically. This results in a very simple scheme which is advantageous
in terms of area and power but the network does not adapt itself to the needs of the
traffic. If two nodes are communicating heavily, for example, this will be spread out
over different time frames. To make the time frames as short as possible, intermediate
buffering in the electrical domain is used which is not very power nor latency efficient.

Circuit-switching: Corona
The Corona architecture which was proposed by Vantrease et al. is an example of an
all-optical network[109]. The logical network topology is a 64×64 crossbar but it is
physically implemented as a serpentine, i.e. the network nodes are laid out in a grid and
the waveguide forms a winding ring, passing by all nodes. The network is organised as
a MWSR scheme (Figure 2.19). Every node can write onto a given channel26 but only
one node can read from this channel. There will be contention when two nodes wish
to write to the same channel so global arbitration is needed. To reduce the arbitration
latency, this is done using an optical token message which is constantly circulating
on a dedicated wavelength. Whenever a node wishes to write to a channel, it will
grab the associated token and release it again when transmission is over. The authors
later optimised the arbitration schemes [110]. The advantage of a MWSR scheme as
employed in Corona lies in its ability to efficiently handle multicasts and broadcasts
as every node can transmit on multiple channels simultaneously. Every node needs to
be able to transmit on all channels so N× (N−1) transmitters are needed where N is
the number of nodes. The number of receivers needed is equal to N as every node only
reads its own channel.

26In this thesis a channel is defined as one or more wavelengths, across one or more waveguides which
connect a source and destination at a given moment in time. Channels can be fixed or changed at runtime.

56

2.2. Introduction to Networks On-Chip

Gateway
Optical switch
Ejection switch
Injection switch

Signal waveguide

Entry and exit waveguide

Figure 2.20: Schematic view of the optical torus topology as proposed by Hendry et al. [111].
Path setup is done via an electronic network, superimposed on the network depicted here. The
electrical setup message reserves resources on the way and configures all necessary switches
(injection, path switches and the ejection switch).

Circuit-switching: FlexiShare
Both the SWMR (Firefly) and MWSR (Corona) scheme suffer from the fact that not
all bandwidth available at a node (either to read from or to write to) will be utilised
if the network load is unbalanced. In the FlexiShare architecture, proposed by Pan et
al. (the same authors who proposed Firefly) a solution is proposed by decoupling the
number of channels from the network radix [97]. On the sender side, to gain access to a
channel, a MWSR scheme is used. The arbitration is done using an optical token. On
the receiver side, a SWMR scheme is used: a channel can be received by all receivers.
To minimise power consumption, a reservation scheme similar to that of Firefly is used.
The FlexiShare architecture is more efficient in terms of component count than ’pure’
SWMR/MWSR schemes as can be seen in Table 2.7.

Circuit-switching: Optical torus
Hendry et al. proposed a circuit-switched, hybrid network [111]. The overall network
consists of an optical data layer and an electrical control layer (Figure 2.20). Both
layers have a folded torus topology. The transmission of data on the optical network
takes place in three phases. During the first phase, an electronic setup message travels
on the electrical layer to obtain the resources needed. When the electrical message
reaches the destination, an electrical acknowledgement message will be transmitted
back to the source after which the source can start data transmission. The break down
phase starts when all data is transmitted and a message travels the network to release
the optical resources again. The path setup latency will only be amortised for long
messages. Only selected messages will therefore be transmitted on the optical network.
Short messages will be transmitted on the electrical control network which has a dual
function now. This proposal is not viable for shared memory architectures because
the long setup time will not be amortised for the short messages transmitted. In this
proposal the arbitration process is decentralised: the electrical setup message still needs
to acquire various optical resources along the path. This removes the central bottleneck

57

2.2. Introduction to Networks On-Chip

Node 0

Node 1

Node 2

Node 3

Node 4

Node 6

Node 5

Node 7

Node 0

Node 1

Node 2

Node 3

Node 4

Node 6

Node 5

Node 7

Figure 2.21: The SPINet scheme for an 8×8 network. The grey hexagons denote the switches
present in a conventional Omega topology, the hatched hexagons denote the scattering nodes.To
reduce the number of messages that are dropped, scattering nodes are added which will be
inserted before some switching nodes. When the scattering node detects that two message will
contend for the same output port in the switching node, it will deflect one of the message to a
neighbouring node [113].

but the problems regarding arbitration latency still persist.
Packet-switching: SPINet

Shacham et al. proposed a time slotted network called SPINet [112]. The network has
an Omega topology 27 and consists out of intermediate switches and network nodes
(Figure 2.21). To avoid centralised arbitration, speculative transmission is used in
combination with distributed arbitration. Messages are transmitted without obtaining an
end-to-end path beforehand. All source nodes start transmitting simultaneously. Mes-
sages travel the network hop-by-hop, from switch to switch. A dedicated wavelength
header contains the message destination and is used at the switches to make routing
decisions (distributed arbitration). To prevent buffering of the messages, the message
headers must be seen ahead of the actual messages so the switch arbiter reaches a
decision before the message arrives. If two messages in a switch contend for the same
output port, one of them will be dropped. At low loads this scheme is very effective
as there will be very little contention in the network. The authors improve on the
traditional Omega network and add deflecting nodes as shown in Figure 2.21. If two
messages contend for the same output port in these nodes, one of the messages will be
deflected to a neighbouring node. This is also known as deflection routing or hot potato
routing. Once a message reaches its destination node, an acknowledgement will be
sent back, using the same path. Source nodes that did not receive an acknowledgement
at the end of the time slot will retransmit the message in the next slot. At high loads,
these retransmissions will have an adverse effect on overall throughput. Silicon area is
expensive on-chip so an indirect topology like an Omega network (especially with the
deflection nodes to reduce the number of dropped messages) is probably not optimal.
Watts et al. compared speculative and scheduled transmission schemes, for chip-to-chip
communications and showed the network latency of uniform traffic can be reduced by
the use of speculative transmission [45].

27The Omega topology is indirect and for N network nodes consists of log2 N stages. Every stage
holds N

2 intermediate 2×2 switches. The intermediate stages are connected in a shuffle pattern [112].

58

2.2. Introduction to Networks On-Chip

Tx

Tx

Tx

Tx

Node
0

Node
1

Node
2

Node
3

Rx

Rx

Rx

Rx

Node
0

Node
1

Node
2

Node
3

R20

R21

R00

R01

Input stage Middle stage

R10

R11

Output stage

Rx

Rx

Rx

Rx

Tx

Tx

Tx

Tx

Figure 2.22: An optical Clos network [98]. There is an intermediate O/E/O conversion in the
middle stage routers. If node 0 wishes to communicate with node 3, it will use the yellow
wavelength to reach the R11 (the lower middle stage router). The message will be buffered and
then transmitted to R21 on the blue wavelength.

Packet-switching: Optical Clos network
A Clos network is a three stage network in which the first and last stage connect

the network ingresses and egresses to the middle stage [22, Chapter 3.3]. Joshi et al.
proposed a Clos network to decouple the number of transmitters and receivers from
the number of processor cores [98]. When the middle stage routers are electrical as
depicted in Figure 2.22, this is a packet-switched network. The intermediate O/E/O
conversion in the middle stage will be disadvantageous in terms of latency and power
consumption.

Packet-switching: Phastlane
The Phastlane network as proposed by Cianchetti et al. is a speculative packet-switched
network [114] . The routers are laid out in a mesh and messages are send to the next
router without knowing whether or not the necessary resources will be available. The
architecture uses dimension-ordering routing 28 making the complete route known in
advance. The setup of each router on the path can therefore be encoded and optically
transmitted, in parallel to the message, using two separate waveguides. Every router
reads out its designated setup bits and assesses the request. There are three possible
outcomes. If the requested output port is free, the switch in the router is setup ac-
cordingly and the message continues on (without buffering). The path is kept open
in case the message is dropped further down the path. If the requested output port is
contended and there is a free buffer, the message is converted to the electrical domain
and buffered, making this router becomes responsible for the final message delivery.
If the requested output port is contended and there is no free buffer, the message is
dropped and a Negative Acknowledgement (NACK) is sent back, using the return path.
Once the NACK reaches the router where the message was last buffered (either source
router or intermediate router), this router will start retransmission. This scheme would

28Dimension-ordered routing is a deterministic routing algorithm in which messages first travel the
network in one dimension, before they travel in another dimension [22, Chapter 4]. For example. in the
case of XY routing, messages travel in the X-dimension until they have reached the X-coordinate of the
destination, followed by the same process in the Y-direction.

59

2.2. Introduction to Networks On-Chip

Name
Type of

switching
Arbitration Disadvantages Ref.

Firefly
(SWMR)

No switching Not needed
Flow control

and serialisation
[96]

Macrochip No switching Not needed
Flow control

and serialisation
[89]

TDM
No switching

(packet)
Not needed

(Intermediate O/E/O)
[107]

Corona
(MWSR)

Circuit Optical token Serialisation [109]

FlexiShare Circuit Optical token [97]

Optical torus Circuit
Electrical

setup packet
[111]

SPINet Packet Electrical by router Area [113]

Optical Clos Packet Electrical by router Intermediate O/E/O [98]

Phastlane Packet Electrical by router Speculative [114]

Table 2.4: General comparison of the most important academic proposals for optical NoCs

be very cumbersome if the latency of a hop (link and router traversal) would be high
as the message would need to buffered until a NACK could return. However, as the
architecture name alludes to, multiple hops can be traversed in less than one clock cycle
and so a NACK will either not be needed or return in less than a clock cycle.

Conclusion
All the arbitration schemes come with their advantages and disadvantages. Each
arbitration approach favours certain types of traffic. Circuit-switched networks might
work for large messages (as incurred by message passing CMPs) because the setup
latency is amortised by the message size. SWMR schemes allow nodes to address
multiple destinations simultaneously. Speculative transmission schemes are more
suited for low load traffic.

A short summary of all these optical NoC proposals has been given in Table 2.4.
In the case of hybrid or hierarchical networks only details on the optical network are
included in this table.

Table 2.4 shows most optical NoC proposals focus on avoiding arbitration all
together, at the cost of high serialisation latency. Almost all proposals focus on circuit-
switched networks if one sees a non-switched network like Firefly for example as a
circuit-switched network in which the circuits are setup at design time. When arbitration
does take place for the circuit-switched networks, it is either in the optical domain using
tokens (e.g. Corona) or distributed (e.g. electrical setup packet in the optical torus).

2.2.4 Holistic proposals for network on-chip optimisation
There are various ways of improving the performance of the NoC, be it electrical
or optical. It is possible to improve the latency or power-efficiency of individual

60

2.2. Introduction to Networks On-Chip

components in the network. For example, the router latency can be targeted by reducing
the number of stages [115] or improve the energy-efficiency of a link by applying
Dynamic Voltage and Frequency Scaling (DVFS)29 In this section, the use of holistic
methods will be discussed. These are methods that draw on knowledge of different
aspects of the NoC to improve the overall NoC performance. Such holistic methods
could be used to reduce the impact of arbitration on the circuit-switched optical NoC
being proposed in this thesis. One example of a holistic method is the co-design of
the NoC and coherence protocol proposed by Jerger et al. [116]. Das et al. proposed
the concept of slack (a metric indicating how the delay of a message would affect the
performance of the application) to prioritise messages during the arbitration stage [117].
The methods discussed below are subdivided into predictive methods and methods that
employ knowledge of the coherence protocol. This boundary, however, is not very
strict as there are predictive methods that use coherence knowledge.

Use of prediction in the network on-chip

Prediction can be used to improve the performance of the NoC.
Adi et al. use prediction to reduce the path setup latency of a hybrid NoC [118] .

The data plane is an optical, circuit-switched torus network. The optical routers are
configured by an electrical mesh network. To set up an optical path, a packet travels the
electrical control plane, acquiring resources along the way. The path setup latency is
reduced by using channel prediction in the electrical routers (based upon the work by
Matsutani et al. [115]) in combination with lookahead routing. A predictive structure
in each input channel will predict the output channel and send a speculative request to
crossbar arbiter in the router.

Ogras et al. achieve flow control by predicting congestion in the network and using
these predictions to control the injection rate at the network ingresses [119].

DVFS29 is a method used to reduce the power consumption of a NoC . Hesse et al.
use predictions of future communication to steer DVFS [120]. These predictions are
made by collecting communication sets in every node (i.e. nodes with which this node
will communicate), based upon information in the coherence controller. At the end of
every epoch, this information is sent out to all the receiving nodes. The nodes aggregate
all the incoming information and make a DVFS decision for the upcoming epoch.

Huang et al. apply a similar principle: traffic is predicted in the TILE64 CMP
and then used to calculate future link utilisation which is used to control the DVFS
unit [121].

Wen et al. propose to use reuse distance to setup circuits in optical networks [122].
Reuse distance is a concept borrowed from cache optimisation and the authors adapt to
capture the number of different circuit requests made in between two uses of the same
circuit. This information can then be used to setup circuits before they are requested.

29DVFS adapts the frequency and voltage of a voltage/frequency island to the requirements of the
overall system e.g., reduce voltage/frequency when the island is idle, increase voltage/frequency to
increase performance. An island can be one or more routers, one or more processor cores, a complete
system etc. [16, Chapter 5.2.3.2].

61

2.3. System Under Study

Use of knowledge about the coherence protocol in the network on-chip

There are various ways of avoiding or reducing the latency of memory requests by
predicting certain memory transactions. Whilst these do not change the NoC as such,
they are mentioned in this section as they do improve performance by streamlining
communication.

Acacio et al. alleviated the cost of cache-to-cache transfers by using prediction [123].
The need for cache-to-cache transfers is predicted based upon the program counter, while
caches holding copies of the requested data are predicted using both the program counter
and the requested memory address. Kaxiras et al. used prediction to forward memory
addresses to future readers, thus avoiding L1 misses and sending their associated
messages to the directory [124]. Martin et al. proposed a cache coherence protocol
in which other caches sharing a cache line are predicted [125]. Coherence control
messages can then be forwarded to this predicted list of sharers, to avoid indirection via
the directory which makes this protocol a hybrid between a snooping and a directory
protocol. While these proposals decrease the latency of memory requests by avoiding
unnecessary network transactions, they do not speed up the messages that still need to
travel the NoC.

Abousamra et al. proposed a path setup scheme proposed which makes use of very
general knowledge of the coherence protocol [126]. As soon as a cache hit is detected
in the LLC, a circuit reservation is sent to the NoC. This ensures the circuit is ready as
soon as the message arrives at the network ingress. This scheme relies on the latency of
reading out a cache line and preparing the message.

Demir et al. proposed prediction to reduce the laser power consumption in an optical
NoC [127]. The communication fabric is subdivided into a part carrying the control
information in a message (e.g. the memory address) and the part carrying the actual data.
The data slice is predictively activated, only for messages which will carry data. Control
messages which do not carry a cache line, will not need the data slice. Multicast
messages and the subsequent many-to-one messages are quite frequent in most directory
coherence protocols (for example, an invalidation request to all sharers, which will then
acknowledge the invalidation to the original requester). However, a mesh network is
very ineffective at handling these. Ma et al. proposed a logical multicast tree in which
multicast messages fan out, like in a tree [128]. When the many-to-one messages return,
they recombine, again in tree-like fashion so ideally only one message arrives at the
original requester, carrying the acknowledgements of all sharers.

There is a lot to be said for a black-box approach, in which the NoC would be treated
as an independent unit by itself which does not influence the design of the coherence
protocol, caches etc. and in its turn, will not be be influenced by these things. However,
in this thesis, I wish to argue for a more holistic approach in which the NoC design is
guided by the overall memory hierarchy design. The proposals discussed in this section
are an example of this.

2.3 System Under Study
This section will discuss the system architecture and parameters, as used in this thesis.
If any parameters of the system would be different than listed in this section, it will
be explicitly mentioned. The first subsection will discuss the system architecture,
which remains constant throughout the thesis. The second subsection will discuss the

62

2.3. System Under Study

NoCs used in this thesis. The workloads and simulator used to compare the different
architectures will be discussed in Section 3.2.1 and Section 3.2.2 respectively.

2.3.1 System architecture

Core architecture

In this thesis, I assume a CMP with 16 in-order Intel X86 cores. The choice for X86
cores is motivated by their dominance in the desktop and server market [129], which
is also the segment where a change to optical NoCs would make sense [78]. From
a purely practical point of view, it is one the ISAs used in gem5 that can be used in
conjunction with Ruby, which is needed to accurately simulate the cache hierarchy
and coherence protocol (see Section 3.2.2). The number of cores in the architecture
was a trade-off between the number of cores of high performance CMPs and a realistic
simulation time, where 16 cores was chosen as a good balance. The CPUs execute
instructions in-order. Out-of-order cores, in which instructions can be executed in a
different order than the program order [1, Chapter 4.10], partially hide the latency of
memory requests as another instruction can be executed whilst waiting for the memory
request to be completed. In this work in-order cores are used as they ease reasoning
about changes in the NoC. However, in a realistic system, out-of-order core would be
used which presumably would gain less (in terms of computational performance) from
a change in the network architecture as a cache miss affects performance to a lesser
degree than in-order cores.

Cache and memory architecture

Figure 2.23 gives a schematic depiction of the cache and memory hierarchy. Each
CPU has a private L1 cache. The L2 and directory are logically shared, but physically
distributed into banks to prevent the formation of a bottleneck. The mapping of the
cache lines onto the 16 L2 and directory banks is static and based upon the cache line
address. Cache line interleaving is used to prevent an uneven distribution of requests
to the slices. In this thesis set-interleaving is used, where cache lines belonging to
consecutive sets are mapped onto different banks [52, Chapter 2]. This is achieved
by using the address bits right after the block offset to calculate the L2 and directory
slice the address is supposed to map onto. This technique will be discussed in more
detail in Section 5.2. The choice for a two level cache hierarchy was motivated in part
by the restrictions in terms of the coherence protocols available in gem5 which were
compatible with the setup used in this thesis. However, some existing CMPs, like the
Intel Single-Chip Cloud Computer (Section 2.1.5), also have a two level hierarchy so
this is not an unrealistic choice. Multiple works in the literature assume a memory
interface per tile (e.g. Corona [109]) as recent advances in technology such as 3D
stacking make this possible. Using a memory interface per tile also avoids any effects
of suboptimal memory interface placement as investigated by Abts et al. [130]. This
cache and memory architecture will always be the same, regardless of the NoC.

30The DRAM latencies assumed in this work are the default values as assumed in gem5. The DRAM
controllers are based upon work by Hansson et al. [150]. The frontend latency represents the latency
incurred by the pipeline stages of the DRAM controller, the backend latency is based on the DRAM

63

2.3. System Under Study

CPU
1

L2/
directory

Memory
controller

Tile 1

NI 1

L1
1

CPU
15

L2/
directory

Memory
controller

Tile 15

NI 15

L1
15

CPU
14

L2/
directory

Memory
controller

Tile 14

NI 14

L1
14

Network interface
0 Network interface

0 Network On-Chip

…

DRAM

DRAM DRAM

DRAM

CPU
0

L2/
directory

Memory
controller

Tile 0

Network interface 0

L1
0

Figure 2.23: Cache and memory architecture under study. The L1 caches are private, all other
parts of the cache hierarchy are physically distributed but, logically shared.

2.3.2 Network on-chip architecture
The simulator gem5 used in this thesis, uses the concept of virtual networks. These
networks are used to separate the different message types to prevent protocol-level
deadlock from occurring31. Each virtual network has its own set of physical resources,
to prevent the formation of a blocking dependency between the various message classes.
The exact classification of message class to virtual network, depends on the coherence
protocol. In the coherence protocol used in this work, there are 3 virtual networks. The
first network carries request messages, the second network transmits responses and the
third networks is responsible for unblock messages. The networks that already existed
in gem5 use these virtual networks. The optical networks I implemented, only have
virtual networks and their associated separate resources (such as buffers) when entering
and leaving the network. The optical NoCs itself only has a single virtual network layer,
routing all message types.

Electrical mesh networks

The most commonly used topology for large NoCs is the mesh network. Table 2.6
contains the parameters assumed in this thesis. These will be discussed in more detail
in Section 4.2.1.

interconnect latency.
31Protocol-level deadlock takes place when there is cyclic dependence between messages from different

message classes that are vying for the same physical resources in the network.[22, Chapter 2.3.1]

64

2.3. System Under Study

CPU 16, in-order X86 cores

Clock frequency 2 GHz

L1-I cache organisation Private, 4-way associative, 32 kB

L1-I controller latency 2 clock cycles to CPU / 1 clock cycle to L2

L1-I cache latency 2 clock cycles

L1-D cache organisation Private, 4-way associative, 32 kB

L1-D controller latency 2 clock cycles to CPU / 1 clock cycle to L2

L1-D cache latency 2 clock cycles

L2 cache organisation Distributed shared, 32-way associative, 16 × 256 kB

L2 controller latency 2 clock cycles/ 1 clock cycle to L1

L2 cache latency 15 clock cycles

Coherence protocol Directory MESI Two Level

Number of memory controllers 16

Memory controller latency 6 clock cycles

DRAM latency 30 10 ns (frontend/backend latency)

Table 2.5: Parameters of the system architecture i.e. the core architecture and memory hierarchy.
These parameters remain constant, while the NoC parameters vary.

Network frequency 2 GHz

Number of nodes 16

Topology Mesh

Number of rows in mesh 4

Terminal nodes per network interface 3 (tiled architecture)

Routing algoritm Deterministic, dimension ordering

Link latency 1 clock cycle

Link bandwidth 8 B

Router pipeline stages 5

Buffer size 1 (control) / 4 (data)

Virtual channels 4 per virtual network

Table 2.6: Parameters used for the electrical network with which the optical proposals will be
compared.

Optical networks

The existing optical NoC proposals focus mostly on reducing arbitration latency by
avoiding switching and, hence, removing the need for arbitration, resulting in rigid
schemes. The NoCs that do need arbitration such as MWSR aim at reducing the
associated latency by doing arbitration in the optical domain (for example with optical
tokens in the case of Corona [110]). In this thesis, I propose the use of a circuit-
switched optical NoC with centralised arbitration (Figure 2.24) in which the arbitration

65

2.3. System Under Study

Scheme # Tx # Rx Total Tx/Rx
Switching

elements

MWSR N× [(N−1)m] N×m N2×m 0

SWMR N×m N× [(N−1)m] N2×m 0

Pt2Pt N× [(N−1)m] N× [(N−1)m] 2×m×N× (N−1) 0

Crossbar N×m N×m 2N×m N× [(N−1)m]

Table 2.7: Number of transmitters and receivers per network scheme, where N is the number of
network nodes and m the number of channels

latency will be hidden by the use of holistic message prediction methods (these will be
discussed in more detail in Section 2.2.4).

The central circuit-switch would be an optical crossbar. In the remainder of this
thesis, both the term circuit-switch and crossbar will be used. The term optical crossbar
can be problematic as in a lot of publications the NoC is referred to as an optical crossbar
while in reality, it is logically a crossbar but not physically (e.g. FlexiShare [97]). Optical
crossbars can be constructed using Mach-Zehnder interferometer switches [131] or
microring resonators [132]. In this work, it is assumed the crossbar is constructed using
microring resonators, organised as a matrix switch, as can been seen in Figure 2.24. The
allocator used is electrical. In the system as is, communication to and from the allocator
is assumed to be in the electrical domain. However, the communication medium to and
from the allocator does not affect the concept as proposed here.

The main advantage of such a system is the simplicity. Almost all proposals
discussed previously use multiple logic network layers, increasing the complexity of the
flow control system for example. Flow control in a system with a centralised allocator
is easier: as the allocator organises all communication it knows when all buffers of
a receiving node will be taken. The simplicity of this system can also been found in
the low number of transmitter and receiver units, compared to the two main schemes.
As Table 2.7 shows both the MWSR and SWMR show a quadratic dependency on
the number of nodes in the network, whereas for the crossbar scheme, this is linear.
However, Table 2.7 also shows the crossbar scheme needs switching elements compared
to the other schemes. However, the exact cost of these switching elements (both in
area and power consumption) will depend on the exact physical implementation of
the crossbar and as such, outside of the scope of this work. Another advantage is the
efficient use of the channels available. When node A wishes to communicate with node
B, it can use all the channels at its disposal. This is in the contrast to a MWSR scheme,
where node A can only use the channel read by node B, even if all other channels are
unused.

The disadvantage of the crossbar scheme as shown in Figure 2.24 is arbitration
latency. Especially for short messages 8 B, the arbitration overhead will be significant.
The aim of this thesis is therefore, to investigate whether it is possible to implement
a system that is able to reduce the arbitration latency by means of prediction in a
circuit-switch scheme. Is it possible for a simple NoC like a crossbar with arbitration to
outperform an non-arbitrated scheme like SWMR?

66

2.4. Conclusion

Switched NoC Non-switched NoC
Network frequency 2 GHz 2 GHz

Number of nodes 16 16

Topology Crossbar SWMR

Terminal nodes per network interface 3 (tiled architecture) 3 (tiled architecture)

Modulation frequency 25 Gbit/s 25 Gbit/s

Allocation latency 2 clock cycles Not applicable

Electrical signalling latency 1 clock cycle Not applicable

Time of flight 1 clock cycle 1 clock cycle

WDM wavelengths available 1-32 1-32

Table 2.8: Parameters used for the optical networks in this thesis.

L1

L2 + DIR

CPU
Tx controller

Tx

Rx

Tx

Optical crossbar

Path request Path grant

Tile 1

Tile 2

Tile 4

Tile 0

Figure 2.24: Diagram of the type of circuit-switched optical NoC used in this thesis, for a
CMP with four tiles. Every tile has a network interface, consisting of a transmitter, receiver and
transmitter controller. The Tx controller requests an optical path by means of an (electrically
transmitted) path request to the central allocator. Once the requested path has been setup, a
path grant is sent back to the Tx controller which then starts transmission. In this figure, tile 0
is transmitting to tile 2. The microring resonators are controlled by the central allocator. For
clarity, only the connection to the first row of microring resonators is shown.

2.4 Conclusion
This chapter set the scene for the remainder of this thesis. The system used is a shared
distributed memory CMP, where the view of the memory is kept coherent by means
of directory protocol. As a result, the messages on-chip will be short (8 B to 72 B)

67

2.4. Conclusion

and latency sensitive. Therefore, the NoC needs to be able to provide low-latency
interconnect with very little overhead. Optical interconnect has been proposed, because
of the limitations of electrical interconnect. The question is two-fold: first, this thesis
wishes to investigate whether the use of an optical NoC (be it a a crossbar as pictured
in Figure 2.24 or a SWMR as pictured in Figure 2.16) and defined in Table 2.8 will
provide better performance than an electrical NoC (Table 2.6). Secondly, the optical
crossbar we propose has an inherent arbitration latency and, hence, overhead. I wish to
investigate whether this optical crossbar can outperform a non-switched optical NoC,
when applying holistic methods. Both questions involve quantifying an architecture. In
the next chapter possible figures of merit and measurement methods will be discussed.

68

3
Figure of Merit

THE two main questions in this thesis revolve around the concept of performance:
can an optical Network On-Chip (NoC) outperform an electrical NoC? Can
a circuit-switched optical NoC with centralised arbitration outperform a non-

switched optical NoC? Evaluating and comparing different computer architectures is
not a trivial task, however. Setting up a good experiment consists of three steps [133].
In the first step, one should decide upon the metric to be used in the comparison, the
figure of merit. The second step decides on how to obtain this figure of merit, by means
of an analytical model or a simulation. The third step in the setup process is the decision
for a workload.

In Section 3.1 the choice for a figure of merit will be discussed. Subsequently, Sec-
tion 3.2 will discuss the measurement of this figure of merit in more detail: Section 3.2.1
discusses the workloads to be used, followed by a discussion on the simulator to be used
in Section 3.2.2. Afterwards Section 3.2.3 will justify the use of full-system simulators,
compared to analytical modelling.

3.1 Performance Evaluation

3.1.1 Performance evaluation of single-threaded workloads
The performance of an architecture running using a single-threaded workload can be
characterised using a single metric: the total runtime T [133].

T = I×CPI× 1
f

(3.1)

69

3.1. Performance Evaluation

Equation (3.1) [134] shows how the total runtime T can be related to I, the total
number of useful instructions, Cycles per Instruction (CPI) and the clock frequency f . I
captures the total amount of useful work and therefore excludes any instructions caused
by branch mispredictions etc. The amount of work I is determined by the interplay
between the Instruction Set Architecture (ISA) and the compiler. The second factor,
CPI, depends on the memory system, the micro-architecture and the implementation
of that architecture. The last factor, f , depends on the system-implementation and the
technology node. This equation is also known as the Iron Law of Performance as it
relates ISA, micro-architecture and technology node [135, Chapter 1.3.1]. Assuming
the amount of work done I and the frequency f are kept constant, CPI is a good metric
for the comparison between different architectures. The inverse metric, Instructions per
Cycle (IPC) is often used as well as it is quite intuitive. The higher the IPC, the better
the design performs.

Speedup is a metric to compare two architectures, using IPC. The speedup s is
defined as IPCA

IPCB
and indicates the performance of architecture A is s× that of architecture

B.

3.1.2 Performance evaluation of multithreaded workloads
Whilst IPC is a good metric for single-threaded application, IPC by itself is not suitable
for multithreaded workloads [133] and can lead to wrong conclusions as discussed
by Alameldeen et al. [136], [137]. The interplay between the various threads in
multithreaded workloads can lead to different execution paths being taken in different
simulations (of the same system!). This effect is also known as space variability [136]:
small differences in timing might lead to different scheduling decisions by the thread
scheduler and, hence, lead to different execution paths. This effect also exists in
real applications [136] but the different scheduling decisions level out over the global
runtime of long programs. However, because of the short runtime of benchmarks, as
noted in Table 3.1, a small variation in execution path will have a non-negligible effect
on IPC.

I have visualised this effect as well in the system setup used in this thesis (see
Table 2.5 for more details on the memory hierarchy). In these simulations, the NoC is a
Point-to-Point (Pt2Pt) network, connecting all parts of the memory hierarchy directly
(i.e. instead of providing one network node per tile, every First Level Cache (L1),
Second Level Cache (L2) slice and memory controller had an individual network node)
to make the NoC as ideal as possible. Figure 3.1a shows the thread scheduling across the
processor cores for canneal. The y-axis denotes time, measured in epochs, the x-axis
denotes the processor core number. A blue square indicates the thread on that processor
core was suspended during an epoch, whilst a yellow square indicates a running thread.
The figure shows CPU-5 is idle for a significant amount of time. CPU-14 on the other
hand is, compared to the other processor cores, very active. When a small perturbation
was added to the simulation i.e. the latency of a link was varied randomly at runtime1,
the thread scheduling differs significantly as shown in Figure 3.1b. The behaviour
across processor cores is much more uniform in Figure 3.1b compared to Figure 3.1a.
Both simulations were run to completion. However, the overall runtime differed as
the number of epochs per run differs, as can be seen in Figure 3.1. It seems in the

1See Section 3.2.2 for more details on the exact implementation

70

3.1. Performance Evaluation

Randomized latency results [canneal, latency = 4]

2 4 6 8 10 12 14 16
CPU

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Ti
m

e

Deterministic latency results [canneal, latency = 4]

2 4 6 8 10 12 14 16
CPU

500

1000

1500

2000

2500

3000

Ti
m

e

Suspended thread

Running thread

(a) Deterministic run

Randomized latency results [canneal, latency = 4]

2 4 6 8 10 12 14 16
CPU

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Ti
m

e

Deterministic latency results [canneal, latency = 4]

2 4 6 8 10 12 14 16
CPU

500

1000

1500

2000

2500

3000

Ti
m

e

Suspended thread

Running thread

(b) Randomised run

Figure 3.1: Variability in thread scheduling for canneal when running on a CMP with a Pt2Pt
network. Blue squares denote a suspended thread, yellow squares denote a running thread (a)
Deterministic run (b) Randomised run – the link latency is increased/decreased at random

deterministic case CPU-14 is not releasing a lock for a significant amount of time,
thereby blocking CPU-5.

This example shows that only using a single data point per architecture evaluation
can lead to wrong conclusions as that one data point is the combination of both the archi-
tecture and the execution path taken in that particular simulation. It is also important to
note that the amount of space variability depends on the workload as well [136]. There-
fore it is necessary to take multiple data points per architecture evaluation. Alameldeen
at al. propose the use of confidence intervals to cope with space variability [136]. A
confidence interval indicates the range of values that are expected to hold the true
population parameter (Equation (3.2)). Confidence intervals are useful for two reasons:
first of all, they indicate the spread between the data points obtained. Secondly, if
the experiment is aimed at comparing two architectures and their confidence intervals
overlap, it is very likely a wrong conclusion will be drawn. The values can lie any-
where within the interval so also within the overlapping region, making it impossible to
conclusively compare both values. The confidence interval of the mean (assuming a
normal distribution) is given by Equation (3.2) [136]

confidence interval = µ± tσ√
N

(3.2)

In this equation µ and σ stand for the sampled mean and standard deviation respectively,
t stands for the normal deviate determined by the desired confidence interval and N
stands for the sample size2. The value of t can be found in statistical tables. Increasing

2N has previously been used in this thesis to indicate the number of core per CMP but in this chapter

71

3.2. Performance Measurement

N will decrease the confidence interval. Equation (3.3) [136] gives the sample size
needed to obtain the desired confidence interval.

Nideal =

(
tσ
rµ

)2

(3.3)

In this equation, µ and σ stand for the population mean and standard deviation respect-
ively and r for the desired relative error of the sampled mean to the population mean.
As the population mean and standard deviation are unknown, their sampled counterparts
can be used.

3.1.3 Conclusion
This thesis, where possible, will aim at obtaining the mean with a 95% confidence
interval, with relative error between the true mean and experimental mean of 5%.
However, this can be computationally very expensive as every data point equates to
several hours of simulation time so it might be unmanageable to obtain Nideal . In any
case, error bars will be added to indicate the space variability of the experiment.

In this thesis computational performance, measured as IPC, is used to compare
various architectures. However, it should not be forgotten there are other metrics
needed to provide a fully rounded comparison. Architectures should be tested for their
reliability, power consumption, energy-efficiency, design complexity etc. However, in
the limited scope of this thesis when comparing network organisations computational
performance is the metric of choice. When optimising an architecture, certain aspects
affecting design complexity will be taken into account as well.

3.2 Performance Measurement
The previous section discussed the figure of merit to be used in the evaluation of
multithreaded architectures and decided upon the use of computational performance in
this thesis. This section will discuss the next steps in an experiment: which workloads
should be used to measure performance? How can this the performance be measured
i.e. via the use of a simulator or by means of analytical evaluation? The final section
will argue for the use of full-system simulations rather than analytical modelling.

3.2.1 Choice of workloads
As mentioned previously, one of the steps in the setup of an experiment is the choice
of the workloads to be used. The set of workloads to be used should satisfy two
requirements. First of all, they should give a good representation of the applications
which would be running on the architecture under investigation. Secondly, the various
benchmarks in the suite should show a variety of computation oriented workloads and
more communication oriented workloads, traffic patterns, data sharing etc. This section
will first discuss all benchmarks in the PARSEC benchmark suite. Subsequently the

the sample size will also be indicated by N as the letter N is often used in a statistical context to indicate
the number of samples

72

3.2. Performance Measurement

whole suite will be reviewed and behaviour such as the ratio of communication to
computation and data sharing will be quantified. These results are achieved using the
system architecture described in Section 2.3, using the simulator gem5 which will be
discussed in more detail in Section 3.2.2.

PARSEC benchmark suite

In this thesis the PARSEC benchmark suite is used [138]. PARSEC aims to include
multithreaded workloads, based on emerging workloads without a focus on high-
performance computing.

Table 3.1 gives an overview of the benchmarks present in the PARSEC suite. As
can be seen in the table, 8 out of the 13 benchmarks function correctly in the simulator.
The exact simulator will be discussed in Section 3.2.2. The remaining 5 benchmarks
show problematic behaviour such as segfaults in the simulated workload etc. There are
6 different types of input sets for the benchmarks of which only simsmall, simmedium
and simlarge are of interest as they can be used for micro-architectural exploration. In
this thesis the simmedium input set is used.

blackscholes
This is a financial application used to analytically calculate the price of a portfolio of
stock options. It does so by evaluating the Black-Scholes partial differential equation.
The threading model is data-parallel meaning the work is divided into chunks whereby
each chunk is assigned to a thread. While blackscholes shows quite a lot of sharing,
the data is only shared between two threads [138]. At the start of the parallel phase of
the benchmark, one thread divides the work among other threads. Therefore the data
representing the stock portfolio is shared between the worker threads and the original
thread but there is no communication between the worker threads. As a result, there are
very few communicating reads and writes [139]3.

canneal
The canneal benchmark is based on the simulated annealing method, which is used for
optimisation problems in which there is a very large discrete configuration space and
the desired global extremum can be hidden among local extrema [140, Chapter 10.9] 4.
In the case of canneal, the annealing method is used to minimise the routing distances
of a digital design during the place-and-route phase of a chip design. It has a very
large working set and will therefore use the caches very ineffectively. This means
that even though the threads communicate heavily via shared data, this is not visible
when tracking the number of sharers per cache line in the Last Level Cache (LLC)
as the chance that more than one thread will access the data before it is evicted to
make space for another cache line is negligible [138]. It has the second highest amount
of communication with main memory, following streamcluster. canneal uses a data-
parallel thread organisation. Compared with the other benchmarks in the suite canneal
has the most sharers per communicating write. This might have an impact on the
coherence traffic.

3A communicating write is the writing of a value which will be read by another processor core than
the writer. A communicating read occurs when the value read was produced by another processor core
and the value has never been read before. [139]

4In essence, the simulated annealing method calculates the cost of various configurations and moves
towards configurations with a lower cost. However, at random times, the cost is allowed to increase to
escape a local minimum.

73

3.2. Performance Measurement

Name
Application

domain

Correct
function
in gem5

Runtime
in gem5

Operational
intensity
in instr

byte

LD to ST
ratio
in %

blackscholes
Financial
analysis

X
0.243 s

(σ = 0.01 s)
27
26

88.57
(σ≈ 0)

bodytrack
Computer

vision

canneal Engineering X
0.271 s

(σ = 0.023 s)
1

59
73.20

(σ≈ 0)

dedup
Enterprise

storage
X

1.813 s
(σ = 0.137 s)

5
78

71.08
(σ = 0.06)

facesim Animation

ferret
Similarity

Search

fluidanimate Animation X
1.047 s

(σ = 0.027 s)
23
80

79.30
(σ = 0.03)

freqmine
Data

mining
X

33.347 s
(σ = 0.506 s)

1
5

80.33
(σ = 0.18)

raytrace Rendering X
47.687 s

(σ = 0.886 s)
77
94

95.10
(σ = 0.01)

streamcluster
Data

mining
X

1.981 s
(σ = 0.127 s)

7
96

81.79
(σ = 0.01)

swaptions
Financial
analysis

vips
Media

processing

x264
Media

processing
X

0.717 s
(σ = 0.038 s)

1
32

95.93
(σ = 0.02)

Table 3.1: Workloads in the PARSEC benchmark suite

dedup
The dedup benchmark compresses data by a process called deduplication: it detects
redundancy in a data stream and removes these blocks. The processed stream is then
compressed. Deduplication is a data compression technique used by cloud storage
applications for example. The threads in dedup are organised in a pipeline, there
are 5 stages in the application and each stage has a pool of threads associated. The
stages (and therefore the associated threads) pass on information. The three middle
stages of the application run in parallel which means that at a given moment in time
threads with completely different characteristics and behaviour can be running. The
pipeline-threading model makes that this benchmark exhibits a lot of sharing.

74

3.2. Performance Measurement

fluidanimate
fluidanimate is used to simulate non-compressible fluids using the Navier-Stokes
equation for use in interactive animations such as computer games. fluidanimate has
the highest parallelisation overhead of all PARSEC benchmarks. Its working set is
relatively large and exhibits streaming behaviour. The threads are organised in a data-
parallel thread manner. There is very little data sharing among the threads but quite a
lot of communication, possibly due to the high number of locks present 5.

freqmine
The freqmine benchmark identifies the most frequent patterns in a database and rep-
resents data mining applications. It has a very large input set and the threads work
according to the data-parallel model. It has an average amount of sharing.

raytrace
In the second version of the PARSEC benchmark suite raytrace was added to include a
rendering benchmark in the suite [141]. raytrace creates a realistic image by reversing
the path of the light in the scene. The working sets are large as they hold the complete
scene. The threads are working in parallel resulting a lot of data sharing (the scene is
shared) but relatively little actual data exchange.

streamcluster
streamcluster is another data mining benchmark which calculates the optimal clustering
of a given set of multidimensional data points. The data points are streamed as many
clustering applications need real-time responses. The data points are streamed, which
explains the high amount of communication with main memory in streamcluster.
streamcluster has a high amount of read-only sharing: one processor core writes the
data and various other processor cores read it. The streamcluster benchmark also
exhibits a lot of false sharing: processor cores share a cache line, but not the exact
memory addresses [142].

x264
The final benchmark used is x264 which is a video encoder based upon the frequently
used ITU-T H.264 standard. The threads are organised in a pipeline-like manner: every
input frame gets assigned to a thread. Each frame is categorised as an I, P or B frame.
I-frames are independent and encoded on themselves, without information from other
frames. P-frames contain the parts of the frame which have changed since the previous
I or P-frame. B-frames use the same concept but are encoded using the next and the
previous I or P-frame. This organisation ensures there is a lot of inter-thread data
exchange, resulting in a large number of reads and writes to shared data locations. The
number of threads involved is quite low though as each thread only needs to exchange
information with a couple of reference frames. This makes x264 quite communication
intensive and therefore interesting from a NoC point of view.

Assessment of the PARSEC benchmark suite

A set of benchmarks used in architectural exploration, as done in this thesis, should
show varied behaviour. For example, if all the benchmarks exhibit the same traffic

5To ensure the correct execution of the workload, it is important that threads execute their instructions
in the correct order. This can be enforced by protecting parts of the code with locks for example. Before
a thread can access a commonly shared variable (e.g. a shared counter), it needs to gain access to the
lock. While the thread holds the lock, no other thread can grab the lock and therefore access the protected
variable. Once the thread has finished working on the variable, it releases the lock, so other threads can
try grabbing it [20].

75

3.2. Performance Measurement

ca
nnea

l
x2

64

str
ea

mclu
ste

r
ded

up

fre
qmine

flu
idan

im
ate

blac
ksc

hole
s

ray
tra

ce

Benchmarks

0.0

0.5

1.0

1.5

2.0

M
is

s
ra

te
 [

%
]

L1 miss rate

(a)

flu
idan

im
ate

ca
nnea

l

ray
tra

ce
x2

64

fre
qmine

str
ea

mclu
ste

r
ded

up

blac
ksc

hole
s

Benchmarks

0

10

20

30

40

50

60

M
is

s
ra

te
 [

%
]

L2 miss rate

(b)

Figure 3.2: Cache miss rates of the various PARSEC benchmarks (a) L1 miss rate (combined
L1-D and L1-D rates) (b) L2 miss rate

pattern, a network architecture that plays into this exact pattern might be very positively
judged, even though the architecture might not work for other traffic patterns. In this
section, multiple characteristics which were mentioned in the discussion of the PARSEC
benchmark are quantified. The reason for this is twofold: first of all, it allows to check
for variation across the benchmarks. Secondly, the effect of every characteristic on the
NoC will be discussed. The measurement is done for an architecture as described in ??,
when using an ideal NoC6. These characteristics are summarised in Table 3.1.

Cache miss rates
The cache miss rate is defined as the ratio between all the requests a cache receives
and those requests it cannot immediately satisfy (misses). It is important to note that a
miss does not necessarily mean the cache line is not present in the cache, as it could be
present but not in the correct coherence state. Figure 3.2a shows the L1 miss rates of the
various PARSEC benchmarks. Benchmarks with a higher L1 miss rate (like canneal
and x264) can, therefore, stress the network more as the L1 needs to forward the misses
to their respective directories, via the NoC. Of course miss rate is a relative number
and as such, the exact amount of traffic a L1 cache incurs on the NoC depends on the
absolute number of requests it actually receives. The consequences of a high L2 miss
rate (as depicted in Figure 3.2b) are slightly more complicated. If the cache line is
simply not present in the L2 cache, the request will be forwarded to main memory. This
type of traffic will be routed via the memory controller and will not pass by the NoC.
However, if the cache line is present in the L2 cache but in a wrong coherence state
(e.g. a write request to a cache line shared by multiple L1 caches), the request will be
forwarded to the sharers (L1 caches holding a copy of the cache line) via the NoC. A
high L2 miss rate can therefore be due to either a large working set (e.g. fluidanimate),
a lot of sharing (e.g. raytrace) or a combination of both. It is also interesting to note
that benchmarks with a high L1 miss rate do not necessarily have a high L2 miss rate
and vice versa. Overall though, the miss rates of the PARSEC benchmarks used in the
thesis show a lot of variation.

6A Pt2Pt NoC where every coherence controller has a network interface and the link latency is equal
to 1 clock cycle

76

3.2. Performance Measurement

Operational intensity
In this thesis, a concept from the roofline model is used to assess the ratio of commu-
nication to computation. The roofline model is an analytical model used to provide
insights in the design of CMPs by relating the performance of the processor cores with
the off-chip memory traffic [143] and is similar in concept to the program/machine
balance model [144]. The roofline model uses a metric called operational intensity (I)
which relates the work done by a workload (W) with the amount of memory traffic
generated by the workload (Q) as shown in Equation (3.4).

I =
W
Q

(3.4)

W is usually measured in Floating Point Operations (FLOPs) but can be measured in
any type of operations, depending on the workload. Q is most commonly measured
as the amount of traffic to the Dynamic Random Access Memory (DRAM) but the
metric can be changed to only include the traffic to the LLC for example [143]. The
unit used for operational intensity is FLOP per byte. Therefore, a workload with a
high operational intensity is more oriented towards computation, whereas a workload
with a low operational intensity is more communication-heavy. The work done by
a benchmark will be measured both in FLOP and total number of instructions. The
memory traffic Q is adapted to account for the fact that this thesis focuses on NoC
optimisation and will, therefore, measure all traffic on the NoC (in byte).

Figure 3.3 shows the operational intensities of all PARSEC benchmarks. The figure
shows operational intensity, both in instructions per byte and FLOP per byte. In the
previous section x264 was described as communication intensive. When looking at the
operational intensity of x264 and expressing the value as a fraction, this assumption is
confirmed. The operational intensity of x264 is equal to 1

32 meaning every instruction
will incur 32 B on the NoC. In the case of blackscholes however, the operational
intensity has increased to 27

26 . One instruction will, approximately, only generate one byte
of traffic on the NoC. Ideally, the set of workloads used should represent a spectrum of
workloads, ranging from computationally heavy towards more communication oriented
and should therefore have a large variation in terms of operational intensities, which is
confirmed in Figure 3.3.

77

3.2. Performance Measurement

blac
ksc

hole
s

ray
tra

ce

flu
idan

im
ate

fre
qmine

str
ea

mclu
ste

r
ded

up
x2

64

ca
nnea

l0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
pe

ra
ti

on
al

 in
te

ns
it

y
[i

ns
tr

/b
yt

e]

0

1

2

3

4

5

6

O
pe

ra
ti

on
al

 in
te

ns
it

y
[F

LO
P/

by
te

]

Figure 3.3: Operational intensities of the benchmarks in the PARSEC suite. The operational
intensity is give in both instructions per B (blue) and FLOP per B (red) as the benchmarks differ
greatly in the number of floating point operations.

Network load
Whilst operational intensity gives information about the type of workload (commu-
nication or computation), it does not give any information with regard to the amount
of actual traffic on the NoC. Figure 3.4 shows the injection rates of the PARSEC
benchmarks. The injection rate as shown is averaged over the complete runtime: the
total number of bytes transmitted across the NoC divided by the runtime (in clock
cycles). The red bars show the traffic to and from main memory. This is significantly
lower than the injection rate on-chip. The reason for this is two-fold: first of all, the
LLC acts as a filter, not all memory references that miss the L1 will miss the L2 and
need to go to main memory. Secondly, the coherence transactions on the NoC are more
complicated and consist of more messages, incurring more traffic. When a memory
reference misses in the LLC, the resulting transaction via the memory controllers is
quite simple: the cache line will be directly fetched from main memory. However,
when a memory reference misses in the L1, the requested cache line can be in any of
the L1 caches which can result in complicated coherence transactions (Section 5.3.1).
The lower memory injection rate might seem at odds with the higher L2 miss rate as
depicted in Figure 3.2b but it is important to remember that a miss in the L2 does not
inevitably leads to a memory request and again, L2 miss rate is a relative number.

Whilst Figure 3.4 already gives an indication of the low network loads that can
be expected in the NoC, Figure 3.5 confirms this. The figure plots injection rate, not
in bytes per clock cycle but in messages per clock cycle. Again, canneal has the
highest injection rate but even so, less than one message is injected every three clock
cycles. Both in Figure 3.4 and Figure 3.5 the benchmarks are sorted in descending
order. However, whilst x264 and streamcluster have similar injection rates when
measured in bytes per clock cycle, streamcluster incurs more messages. This indicates
the proportion of small control messages being sent in streamcluster is higher, resulting
in more traffic but less bytes. Overall though, the load on the NoC is low.

78

3.2. Performance Measurement

can
neal x264

stre
am

clu
ste

r
dedup

flu
idanim

ate

blac
ksch

oles

fre
qmine

ray
tra

ce

Benchmarks

0

1

2

3

4

5

6

7

8

9

In
je

ct
io

n
ra

te
 [b

yt
es

/c
lo

ck
 c

yc
le

]

NoC traffic

0.00

0.05

0.10

0.15

0.20

0.25

In
je

ct
io

n
ra

te
 [b

yt
es

/c
lo

ck
 c

yc
le

]

Main memory traffic

Figure 3.4: Injection rates in the PARSEC suite.

can
neal

stre
am

clu
ste

r
x264

dedup

flu
idanim

ate

blac
ksch

oles

fre
qmine

ray
tra

ce

Benchmarks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
je

ct
io

n
ra

te
 [m

es
sa

ge
/c

lo
ck

 c
yc

le
]

Figure 3.5: Message injection rates in the PARSEC suite.

The injection rates shown in Figure 3.5 show the average injection rate. In Figure 3.6
the injection rates are shown over time (per epoch). These results were obtained in a
slightly different manner, using traces that contain every message transmitted on the
NoC, with its timestamp7. An epoch is defined as 1 million clock cycles. These plots
also only show one single run, whereas the other results are averaged out over multiple
runs. These plots are only used to show that even benchmarks with a quite similar
average injection rate like streamcluster and x264 can exhibit different behaviour over

7More details about this can be found in chapter Section 5.1.

79

3.2. Performance Measurement

time.
Sharing

Sharing is a difficult concept to quantify, partially because the term is so vague. A
concise definition of sharing could be two or more threads using the same data. Using
data can mean multiple things: the threads could only be reading the same data (e.g.
shared information), one thread could write to the data, which other threads then read
(e.g. information exchange) or all threads could be attempting to write the data (e.g.
lock). It is not straightforward to extrapolate whether operations on a cache line are
actually aimed at the same memory address (i.e. the same data structure), because
multiple memory addresses are grouped in the same cache line. The aim of this section
is to quantify the type of sharing behaviour that will affect the NoC traffic. To do this,
requests to the L2 cache are recorded and categorised according to the state of the
requested cache line. Figure 3.7 shows the proportion of read requests (also referred
to as load (LD) requests) that arrive at the L2 cache for cache lines currently held by
multiple L1 caches (red bars) or cache lines that are currently held exclusively by a
L1 cache (blue bars). These states correspond to the ’Shared’ and ’Exclusive’ state
respectively (Section 2.1.4). In blackscholes a lot of information is shared but not
exchanged which is confirmed here by the large number of read requests to cache lines
also present in other L1 caches. The same holds for raytrace. streamcluster shows
the most reads to cache lines in the Exclusive state (7.1%). There is no significant
difference with fluidanimate though (6.7%). The amount of cache line sharing for
write requests (store (ST) requests) is generally lower as can be seen in Figure 3.8, with
the exception of raytrace. streamcluster exhibits the second highest amount of sharing
(when combining both states) which might be attributed to the large amount of false
sharing present. However, it needs to be noted that these again are relative numbers
as they are calculated by dividing the number of read/write requests to a certain state
by the total number of read/write requests. For example, raytrace has a large amount
of sharing relatively speaking but it has a very low L1 miss rate meaning that less
requests need to be sent on to the directory. This is confirmed by the low injection rate
of raytrace Figure 3.5.

Another way of quantifying sharing is looking at the number of sharers per cache
line upon invalidation. An invalidation occurs when the directory orders one or more
L1 caches to invalidate their copy of a cache line. This can be because the L2 cache
is replacing the cache line and, hence, the cache line can no longer be present in any
of the L1 caches (inclusive L2 cache) or because the directory received a write request
to a shared cache line. The number of sharers per cache line is approximated here
by dividing the number of invalidation messages received by all L1 caches with the
number of invalidations executed by the directories. This gives approximately the
number of L1 caches that need to be addressed per invalidation round and, hence, the
number of destinations in the resulting multicast message placed on the NoC. This
can be important as certain network architectures struggle with multicasts. Figure 3.9
shows raytrace having the highest number of sharers, on average (blue bar). However,
raytrace has the lowest probability of an invalidation actually occurring (red bars).

Again, the benchmarks used in this thesis show a lot of variation in terms of sharing
behaviour. The characteristics discussed in this section are summarised in Table 3.1, in
case the metric is not clear on the corresponding figure.

80

Epochs
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) blackscholes
Epochs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) canneal

Epochs
0 20 40 60 80 100 120 140

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c) dedup

Epochs
0 20 40 60 80

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(d) fluidanimate

Epochs
0 500 1000 1500 2000 2500

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(e) freqmine

Epochs
0 500 1000 1500 2000 2500 3000 3500

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(f) raytrace

Epochs
0 20 40 60 80 100 120 140 160

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(g) streamcluster
Epochs

0 20 40 60

In
je

ct
io

n
ra

te

 [m
es

sa
ge

s/c
lo

ck
 c

yc
le

]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(h) x264

Figure 3.6: Injection rates of the PARSEC benchmarks, plotted over time

blac
ksch

oles

ray
tra

ce

can
neal x264

stre
am

clu
ste

r

fre
qmine

dedup

flu
idanim

ate

Benchmarks

0

10

20

30

40

50

60

Pr
op

or
tio

n
of

 a
ll

L
D

 r
eq

ue
st

s [
%

]

Line is shared (S)
Line is held exclusively by a L1 (E)

Figure 3.7: Sharing behaviour of read requests that reach the L2 for the different PARSEC
benchmarks.

ray
tra

ce

stre
am

clu
ste

r

flu
idanim

ate

fre
qmine

dedup

blac
ksch

oles x264

can
neal

Benchmarks

0

10

20

30

40

50

60

Pr
op

or
tio

n
of

 a
ll

ST
 r

eq
ue

st
s [

%
]

Line is shared (S)
Line is held exclusively by a L1 (E)

Figure 3.8: Sharing behaviour of write requests that reach the L2 for the different PARSEC
benchmarks.

3.2. Performance Measurement

ray
tra

ce

fre
qmine

ca
nnea

l

blac
ksc

hole
s

str
ea

mclu
ste

r

flu
idan

im
ate

ded
up

x2
64

Benchmarks

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 s

ha
re

rs

 p
er

 in
va

lid
at

io
n

Number of sharers

0.0

0.5

1.0

1.5

2.0

N
um

be
r

of
 in

va
lid

at
io

ns

 p
er

 1
00

0
cl

oc
k

cy
cl

es

Number of invalidations

Figure 3.9: Average number of sharers involved in an invalidation (blue bar) and the prob-
ability of an invalidation actually occurring (red bar) for the different PARSEC benchmarks.
Invalidations happen after a replacement in the L2 cache or a write request to a shared cache
line.

3.2.2 Simulator choice
The next step in the setup of an experiment is the choice of type of modelling used to
test the target architecture. Analytical modelling is fast and can give high-level and
fundamental insights but lacks the accuracy of simulators because of the complexity of
the complete system and its interactions [133]. As the interaction between the NoC,
processor cores and memory hierarchy is extremely complex, full-system simulation
is used in this thesis. This decision will be justified in Section 3.2.3. After discussing
the simulator of choice in this thesis, the evaluation methods used in other optical NoC
related work will be reviewed.

Choice of the gem5 simulator

In this work a full-system, cycle-accurate simulator called gem5 is used [145]. Full-
system simulators are micro-architectural simulators which allow the complete software
stack to be run on the simulator [133]. This gives more reliable results when running
multithreaded workloads as the operating system handles the thread scheduling. There
are challenges associated with full-system simulators: their development is far from
easy, simulations take a long time and non-determinism is introduced as discussed in
Section 3.1.2. Cycle-accurate simulators emulate the behaviour of the target architecture
on a cycle-by-cycle base. The advantage is correct timing behaviour at the cost of longer
development and simulation time.

The simulator used in this work combines the best aspect of two earlier simulators,
M5 [146] and GEMS [147] which were both focused on different parts of the computer
architecture. gem5 is an open-source simulator, written in C++ and supported by
both academia (University of Wisconsin-Madison, University of Michigan etc.) and
industry (e.g. ARM, AMD, etc.). The simulator is very flexible as it contains various

83

3.2. Performance Measurement

ISAs (ARM, x86, Alpha etc.), various CPU models (simple, aggressive out-of-order),
different system modes8 and various memory systems.

There are two memory system models in gem5. The classic memory system, taken
from M5, is the simplest and fastest model. It models a bus-based memory system with
an abstract Modified Owner Exclusive Shared Invalid (MOESI) snooping protocol 9.
The second model, the Ruby model (from GEMS), is more flexible and provides more
accurate simulations at the cost of additional developing complexity and simulation
time. The Ruby model allows simulation of a memory hierarchy using an arbitrary
cache coherence protocol and an arbitrary NoC. When researching a novel NoC concept
it will most likely not be present in the gem5 repository, if not it has been investigated
by other researchers. Therefore, the developing cost of the Ruby model, has to be paid
every time a new concept is investigated. In this work the Ruby model is used, which I
extended with a new optical network model to simulate the behaviour of various optical
NoCs.

Various papers have assessed the accuracy of the gem5 simulator. Butko et al.
compared the real-life dual core ARM system with its gem5-simulated counterpart,
using various workloads [149]. The authors found the accuracy varied, based upon the
amount of memory traffic generated by the workload. This was found to stem from a
simplified DRAM model. Since then the DRAM model has been updated [150]. Overall,
the authors found the accuracy (which ranges between 1.4% and 17.9% depending on
memory traffic) satisfactory. Gutierrez et al. also investigated the accuracy of the gem5
simulator by comparing the runtime statistics and micro-architectural statistics with an
existing hardware platform [151]. They found the runtime error of gem5 in combination
with the PARSEC benchmarks to be less than 20%. The micro-architectural statistics
were found to be within an error margin of 20% as well.

Introduction of variability in gem5

As mentioned in Section 3.1.2 it is necessary to account for different execution paths in
multithreaded simulations by running multiple simulations. To ensure these different
simulations take different execution paths it is necessary to introduce non-determinism.

To achieve non-determinism in the simulations, random variation was added to
the latency of the NoC links (irrespective of the network type). It is important to
note that the non-determinism bears no resemblance to fabrication tolerances etc. The
random variation in latency is needed to nudge the different runs to take different thread
scheduling decisions and thereby to follow different execution paths. The unperturbed
link latency is calculated first. The exact calculation depends on the NoC type. After
this, it is decided at random whether or not the link should be perturbed. Perturbations
occur with a probability ρrand . If the link will be perturbed, the only thing left to do is
choose the direction of the perturbation as the size of the perturbation is fixed and equal
to ϑrand . The perturbation is then added to the original link latency. The pseudo-code
used for this can be found in Figure 3.10. There are three system wide variables which
need to be set at the start of the simulation.

8gem5 also has syscall-emulation mode in which the system level effects like for example interrupts
are emulated by the simulator. This mode is not used in this thesis.

9The MOESI protocol was proposed by Sweazey and Smith [148]. It resembles the Modified
Exclusive Shared Invalid (MESI) protocol (Section 2.1.4) but has an additional coherence state for shared
cache lines: the Owned state.

84

3.2. Performance Measurement

1 link latency← Calculation of unperturbed link latency (∼ NoC type) ;
2 int pertubation = 0 ;
3 unsigned pert← generate random number between 0 and ρprecision ;
4 if pert < ρrand then
5 perturbation = ϑrand ;
6 bool up← generate randomly with 50/50 distribution ;
7 if not up then
8 if link latency - ϑrand ≥ 0 then
9 perturbation = perturbation * (-1)

10 end
11 end
12 end
13 link latency += perturbation

Figure 3.10: Algorithm used to add variability to the link latency

• ρrand: The probability of a perturbation i.e. the probability the link latency will
be changed (default = 0.05)
• ρprecision: The precision of ρrand
• ϑrand: The perturbation introduced i.e. the number of clock cycles with which

the link latency will be increased or decreased (default = 1 clock cycle)
The average link latency will not be affected by these perturbations as line 6 in Fig-
ure 3.10 ensures the latency gets increased and decreased an equal amount of time.
These small perturbations can cause the simulations to follow different execution paths,
as shown in Figure 3.1.

Performance evaluation of other optical NoC proposals

Most of the proposals for optical NoCs discussed in Section 2.2.3 were evaluated
in terms of performance by using synthetic traffic and/or real application traces in
a network simulator. This was the case for the macrochip [89], the hybrid optical
torus [118], SPINet [112], the Time Division Multiplexing (TDM) network [107],
Firefly [96] and Corona [109]. The network simulators were either in-house simulators,
PhoenixSim [152] or booksim [42].

The only exception is the ATAC architecture [106] which is simulated using the
Graphite simulator [153]. The Graphite simulator is an open-source multiprocessor
simulator. A simulation consists of a target multicore architecture, defined by models in
the simulator, on which an application is running. To decrease the simulation time, the
different tiles in the multicore architecture are decoupled and simulated in parallel. At
predefined times, the events on different tiles will be synchronized. The strictness of the
synchronization determines the simulation time. This makes Graphite, by default, not
cycle-accurate. This makes it hard to accurately simulate contention. The contention
for common resources is determined using statistics.

Network simulators, using application traces, will report correct numbers in terms

85

3.2. Performance Measurement

of characteristics and performance metrics of the NoC by itself but give no definite
answers on how the CMP as a whole will react to a change in the interconnection
network. This is due to the fact that these type of simulations do not capture the intricate
interplay between the NoC, memory hierarchy and processor cores as there is no or
limited feedback between the NoC simulation and the application level. The Graphite
simulator does simulate the application level but is not cycle-accurate and is not able to
accurately model the contention in the network, a very important parameter of networks.

To the best of my knowledge, the work discussed in Chapter 4, which draws upon
a publication by Van Laer et al. [11] was the first work to measure the performance
benefits gained from an optical NoC using full-system, cycle-accurate simulations10.

3.2.3 Need for full-system simulations
Full-system simulations are time consuming in both simulation time and development
time. In this section I want to show why they are invaluable, nevertheless, by means of
an experiment.

There are three message classes in the MESI protocol used in gem5. Request
messages carry requests from one coherence controller to another, response messages
carry responses whilst unblock messages indicate the end of a coherence transaction. A
coherence transaction consists of an arbitrary number of messages from these classes,
depending on the exact type of transaction. These types will be discussed in more detail
in Section 5.3.1. This experiment aims at investigating the relationship between the
latency of a certain type of message and the overall CMP performance. The NoC is a
Pt2Pt network, in which every coherence controller has an individual network interface.
It is possible to show the effect of slowing down or speeding up one message class on
the overall performance, by varying the latency of a certain class, whilst keeping the
latency of all the other messages classes constant.

Figures 3.11a and 3.11b show the effect of changing the latency of various message
classes for blackscholes and x264. The x-axis shows the latency of the message class
under investigation whilst the y-axis shows performance in IPC. The red lines denote
the cases in which the latency of the request messages is varied whilst the latency of the
other messages is kept constant and equal to one clock cycle. The blue lines denote the
same but for the response messages. Both Figures 3.11a and 3.11b shows performance
going down when increasing message latency, which is not an unexpected result. It
also shows increasing the latency of unblock messages does not affect performance
which again, is not unexpected. Unblock messages signal the end of a transaction
when a L1 cache controller signals to the directory it has received the requested cache
line. Holding up unblock messages by increasing their latency will, therefore, not
slowdown outstanding requests in the L1 cache and, hence, have little effect on overall
performance.

However, Figures 3.11c and 3.11d show the same results but now the x-axis denotes
the average message latency which is calculated by multiplying the number of mes-
sages per message class with the associated latency. The given latency (as shown in
Figures 3.11a and 3.11b) only captures the latency of a single message class, whilst the
average latency (as shown in Figures 3.11c and 3.11d) shows the effect of a change in
given latency on the latency across all message classes. The average message latency

10The work on an optical hierarchical ring NoC by Bartolini et al. [154] was published in the autumn
of 2013, whilst the work by Van Laer et al. [11] was published in the spring of 2013.

86

3.2. Performance Measurement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Given message latency [cycles]

0.2277

0.2278

0.2279

0.2280

0.2281

0.2282

0.2283

0.2284

Pe
rf

or
m

an
ce

 [I
PC

]

Request
Response
Unblock

(a) blackscholes - given latency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Given message latency [cycles]

0.0815

0.0820

0.0825

0.0830

0.0835

0.0840

0.0845

0.0850

Pe
rf

or
m

an
ce

 [I
PC

]

Request
Response
Unblock

(b) x264 - given latency

1 2 3 4 5 6 7
Average message latency [cycles]

0.2277

0.2278

0.2279

0.2280

0.2281

0.2282

0.2283

0.2284

Pe
rf

or
m

an
ce

 [I
PC

]

Request
Response
Unblock

(c) blackscholes - average latency

1 2 3 4 5 6 7 8
Average message latency [cycles]

0.0815

0.0820

0.0825

0.0830

0.0835

0.0840

0.0845

0.0850

Pe
rf

or
m

an
ce

 [I
PC

]

Request
Response
Unblock

(d) x264 - average latency

Figure 3.11: Effect of changing latency per message class on performance, shown by plotting
IPC versus message latency. (a) and (b) show performance versus given message latency for
blackscholes and x264 respectively. (c) and (d) show the IPC versus resulting average message
latency for these benchmarks.

will also vary across runs as the exact number of messages will vary. Error bars denoting
the variation have been applied in Figures 3.11c and 3.11d but the variation is so small
they are not visible. Increasing the latency of requests and response messages has the
largest effect on the average message latency as they are more frequent.

These figures make the need for full-system simulations clear: the average latency
of a system in which requests are slowed down (red line) versus a system in which
unblock messages are slowed down (green line) might be very similar but the effect on
the overall performance will be quite different. Average message latency is a useful
metric when comparing NoCs. However, to measure the effect of a NoC on the overall
CMP performance full-system simulation is needed as individual messages will affect
performance in different ways.

87

4
Effect of Latency on Performance

THE two previous chapters defined the concepts that were needed to answer the first
research question posed in this thesis: can an optical Network On-Chip (NoC)
outperform an electrical NoC? Firstly, the different types of optical NoCs were

discussed in Section 2.2.3, followed by a discussion on how performance should be
measured exactly in Chapter 3. As the concepts needed to define the question are
defined now, this chapter will aim at actually answering this question.

Firstly, the effect of link latency and link bandwidth in an ideal NoC will be
investigated in Section 4.1. Isolating the effects of latency and bandwidth makes it
easier to understand the effect of an optical NoC in which latency and bandwidth are
intertwined. This section will also confirm some general assumptions about operational
intensity and network loads. Secondly, Section 4.2 will then look at three NoC types:
an electrical mesh, a crossbar-based circuit-switched optical NoC and a Single Writer,
Multiple Reader (SWMR)-based non-switched optical NoC. Their implementation in
the gem5 simulator will be discussed (Section 4.2.1 and Section 4.2.2). Characteristics
of an optical NoC such as the number of wavelengths per channel and the number of
channels per tile determine its performance. An increase in wavelength or channel
count increases both the complexity and power consumption of an optical NoC. In
order to find the most optimal optical NoC setup, a sweep will be performed for both
these characteristics in Section 4.2.3. This will be be followed by a discussion and
comparison between the two optical NoC types in Section 4.3.

4.1 Effect of Latency and Bandwidth on Performance
The first question this thesis aims at answering is the effect an optical NoC has on the
overall performance. An optical crossbar in particular has very different characteristics

88

4.1. Effect of Latency and Bandwidth on Performance

than an electrical mesh. To allow for a better understanding of the effects of an optical
NoC on performance, this section will look at the isolated effects of both latency and
bandwidth on performance. To the best of my knowledge, there is no such work in
the literature. Similar, yet quite different work was done by Sanchez et al. [155], in
which three different network topologies (mesh, flattened butterfly and fat tree) are
tested on 128-core Chip Multiprocessor (CMP), using a combination of an in-house
simulator for the cores and a predecessor of gem5 for the cache and memory hierarchy.
The system setup clearly differs from the one used in this thesis1 but the authors reach
similar conclusions about latency and bandwidth.

To explore the effects of latency and bandwidth, an ideal NoC is used. All coherence
controllers are directly connected to a Point-to-Point (Pt2Pt) network, this in contrast to
the tiled organisation depicted in Figure 2.23, where three coherence controllers (First
Level Cache (L1), Second Level Cache (L2) slice and memory controller) share a single
network interface. Giving each coherence controller direct access to the network by
means of a private network interface, allows for a clearer analysis of the effects of NoC
latency and bandwidth as it removes the effects of contention in the shared network
interface. In these simulations, latency and bandwidth are completely decoupled. The
latency of a link (given in clock cycles) is the time taken by a complete message to
traverse the link. A message travelling a link with a latency of 5 clock cycles will appear
in the destination buffers exactly 5 clock cycles later. The bandwidth of a link (given
in B per clock cycle) determines the time a message will occupy the link whilst the
message is being transmitted i.e. the time it takes before another message can use the
same link. A control message (8 B) passing a link with a bandwidth of 8 B will therefore
only occupy the link for 1 clock cycle. However, if a data message (72 B) passes by the
same link, the link will remain occupied for 9 clock cycles. In a real system, however,
latency and bandwidth are intertwined characteristics. A data message passing by a
link with a bandwidth of 8 B and a latency of 1 clock cycle, will arrive completely at
the destination after 10 clock cycles, as the message will be divided into 9 separate 8 B
flits and it will take 1 clock cycle for the head flit to cross the link2. This artificial
dissociation between latency and bandwidth, however, allows to completely separate
the effects of latency and bandwidth.

4.1.1 Effect of latency on performance
Figure 4.1 shows the effect of increasing latency on performance. The x-axis shows the
latency which varies from 1 clock cycle to 30 clock cycles. The y-axis on the other hand
shows performance. Performance is shown in speedup, to ease comparisons across the
benchmarks. To calculate speedup, the performance (in Instructions per Cycle (IPC)) is
normalised to the maximal performance (in IPC) reached when the latency is equal to 1
clock cycle. The simulations per latency value have been repeated until the sample size
(i.e. the number of simulations for this latency value) is larger than the ideal sample size

1The authors investigate a CMP with 128 in-order, 2-way multithreaded X86 cores and use the PAR-
SEC [138], SPLASH-2 [156] and BioParallel [157] workloads. This differs from our setup (Section 2.3)
in the numbers of cores (16 versus 128), the type of cores (single-threaded versus 2-way multithreaded),
the workloads (only PARSEC versus 3 suites), the protocol (MESI versus MOESI) and the simulator
setup (gem5 versus in-house + GEMS. However, broadly speaking, the type of system is similar to ours
(a tiled, directory-based coherent system with distributed caches).

2Messages can be subdivided into flits where a flit is at the granularity of the flow control mechanism,
which in most case is for example the channel width [22, Chapter 5.1].

89

4.1. Effect of Latency and Bandwidth on Performance

(as per Equation (3.3)). The figures also show the maximal and minimal performance
obtained for that specific latency value (red and green dots respectively). This again
indicates the need for multiple runs, as completely different conclusions could be drawn
when only using one run per latency value. For example in the case of canneal, if only
one run was performed it could seem the benchmark reacts especially bad to a link
latency of 4 clock cycles.

Overall, it is clear all benchmarks react negatively to an increase in the link latency.
The exact impact, however, differs per benchmark. When increasing the latency to 30
clock cycles, the performance when running canneal has dropped by approximately
20%. blackscholes on the other hand barely loses performance when the latency is
increased from 1 clock cycle to 30 clock cycles.

However, Figure 4.1 also shows there are some simulation artefacts present. In the
case of canneal (Figure 4.1b), it seems a link latency of four clock cycles is detrimental
to performance. The red data points represent the maximal performance obtained in this
set of samples. Therefore, one could say these represent the run with the most optimal
scheduling decisions. When only looking at the red data points, there is no drop when
the link latency is equal to four clock cycles. In the case of streamcluster, it seems
the performance loss tails off at increasing latency, or even increases. Simulations
of higher latencies (depicted in Figure 4.2) show though this is a local increase and,
hence, a simulation artefact. The results of the latency sweep for raytrace on the
other hand are quite random and I was not able to conclusively find the cause of this
inconsistent behaviour. It was impossible to plot raytrace on the same scale as the other
benchmarks as that range would not capture all data points. The raytrace benchmark
will be excluded from the remainder of this chapter, because of the long simulation time
of raytrace (2 days per data point) and what most likely are simulation artefacts.

To compare the effect of latency on the various benchmarks in a more general way,
the concept of operational intensity is used again (Section 3.2.1). Benchmarks with a
high operational intensity (such as blackscholes) are more computation-oriented, rather
than communication-oriented. This would mean they are less affected by changes in the
NoC. Figure 4.3 shows speedup versus operational intensity. The lowest and highest
latencies are marked by the ? marker and the � marker respectively. The latency sweep
of a benchmark depicted in Figure 4.1 can be traced on this overview figure by going
from the � marker to the ? marker. The more spread out these markers are, the more
effect an increase in latency has on performance. This figure confirms that, generally
speaking, benchmarks with a low operational intensity (e.g. x264 and canneal) are
more affected by a change in the NoC than workloads with a high operational intensity
(e.g. fluidanimate and blackscholes). The figure also shows these 4 benchmarks, at
either end of the operational intensity spectrum, capture the behaviour of the PARSEC
benchmark suite as a whole quite well. Therefore, in the remainder of this chapter only
results for these 4 benchmarks will be shown.

4.1.2 Effect of bandwidth on performance
Figure 4.4 shows the effect of bandwidth on speedup. The bandwidth decreases from left
to right and the link latency is kept constant at 6 clock cycles. The smallest bandwidth
is 4 B per clock cycle: a control message (8 B) will therefore occupy the link for 2
clock cycles and a data message (72 B) for 18 clock cycles. This means that for the
subsequent 2 to 18 clock cycles no other messages can use this link. However, because

90

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

blackscholes

(a)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

canneal

(b)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

dedup

(c)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

fluidanimate

(d)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

freqmine

(e)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

raytrace

(f)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

streamcluster

(g)

1 2 4 6 8 10 12 14 16 18 20 26 30
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

x264

(h)

Figure 4.1: Effect of changing latency on speedup.

4.1. Effect of Latency and Bandwidth on Performance

12 4 6 8 10 12 14 16 18 20 26 30 35
Link latency [clock cycles]

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

streamcluster

Figure 4.2: Effect of changing latency on speedup for streamcluster. By increasing the latency
above 30 clock cycles, it becomes clear the increase in Figure 4.2 around 30 clock cycles is only
a local increase.

0.800.850.900.951.00
Speedup

10-1

100

O
pe

ra
ti

on
al

 in
te

ns
it

y
[i

ns
tr

/b
yt

e]

blackscholes
fluidanimate
freqmine
streamcluster
dedup
x264
canneal

Figure 4.3: Decrease in speedup due to increasing latency, plotted against operational intensity.
The � marker represents speedup at the lowest latency, the ? marker represents the speedup at
the maximal latency.

of the low injection rates in the NoC, this is not a problem. The associated decrease in
speedup is minimal. Even the least operationally intensive benchmarks (i.e. canneal
and x264) which are most affected by changes to the NoC, only lose between 2% and
5% performance.

4.1.3 Conclusion
Figure 4.4 and Figure 4.1 seem to suggest an increased link latency has more effect
than a decreased link bandwidth, which is in line with the results reported by Sanchez
et al. [155]. In Figure 4.5, both these latency and bandwidth sweeps are plotted. The
baseline is a NoC with a link latency of 6 clock cycles and a link bandwidth of 72 B. To

92

4.2. Effect of Latency in an Optical Network On-Chip on Performance

48162472
108

144
180

216

Link bandwidth [bytes]

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

blackscholes

(a)

48162472
108

144
180

216

Link bandwidth [bytes]

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

fluidanimate

(b)

48162472
108

144
180

216

Link bandwidth [bytes]

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

x264

(c)

48162472
108

144
180

216

Link bandwidth [bytes]

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Sp
ee

du
p

Average performance
Maximum performance
Minimum performance
LSQ line
Standard deviation

canneal

(d)

Figure 4.4: Effect of changing bandwidth on speedup.

normalise latency, this baseline latency is divided by the latency of a data point. For
example, a normalised value of 6 on this axis indicates a link latency of 1 clock cycle.
To normalise the bandwidth, the bandwidth of a data point is divided by the baseline
bandwidth. For example, a normalised value of 3 on this axis indicates a link bandwidth
of 216 B. This normalisation is applied to make the figure more enlightening. Going
from the left to right on the x-axis indicates, both for the latency and bandwidth sweep,
an improvement in NoC performance: the link latency decreases and the link bandwidth
increases. Only the results for blackscholes and x264 are shown as they suffered the
least from simulation artefacts both the latency and bandwidth sweep, making the
general comparison more comprehensible. Both for blackscholes (Figure 4.5a) and
x264 (Figure 4.5b) the performance of the CMP as a whole is more affected by the
latency of the NoC, than the offered bandwidth.

4.2 Effect of Latency in an Optical Network On-Chip
on Performance

This section looks at the effect of an optical NoC on the performance of a CMP. Two
types of optical NoCs are compared: a non-switched NoC and a circuit-switched NoC.
In the case of the circuit-switched NoC, optical circuits need to be setup before message

93

0.056
0.111 0.2

0.222 0.3
0.333

0.375
0.4290.5 0.6

0.75 1 1.5 2 2.5 3 6

Improvement in latency and bandwidth

0.992

0.994

0.996

0.998

1.000
Sp

ee
du

p
Latency sweep
Bandwidth sweep

blackscholes

(a)

0.056
0.111 0.2

0.222 0.3
0.333

0.375
0.4290.5 0.6

0.75 1 1.5 2 2.5 3 6

Improvement in latency and bandwidth

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Sp
ee

du
p

Latency sweep
Bandwidth sweep

x264

(b)

Figure 4.5: Effect of both latency and bandwidth normalised to an architecture with a link
latency of 6 clock cycles and a link bandwidth of 72 B.

4.2. Effect of Latency in an Optical Network On-Chip on Performance

transmission can start, incurring a path setup latency. In this work, it is assumed the
central switch is an optical crossbar but the exact optical layout of the switch is not
important in this and subsequent chapters. The non-switched NoC on the other hand
use a Single Writer, Multiple Reader to avoid the latency associated with the setup of
the optical circuits. These networks were discussed in more detail in Section 2.3.

The NoCs (the optical NoCs and the electrical mesh) used in this section differ from
the ideal Pt2Pt network used previously. First of all, a tiled structured (as depicted
in Figure 2.23 is used: a L1 cache controller, a L2 cache/directory controller and
memory controller share a router. This means there will be less traffic on the NoC
as intra-tile traffic does not enter the NoC. Coherence controllers that share a router
can directly communicate with each other e.g. a memory request from the L2 cache
can travel straight to its memory controller, provided they are on the same tile. The
second difference lies in the effect bandwidth has on latency. In the previous section,
latency and bandwidth were two isolated characteristics. However, in a real system (as
simulated here) the bandwidth of a link affects the latency a message experiences. The
time taken by a message to completely cross a link (i.e. the link latency) is the sum of the
actual transmission time (also known as the time of flight) and the serialisation latency.
The serialisation latency which is the time needed to place the complete message on the
link depends on the link bandwidth.

The first two sections elaborate on the simulation of the NoCs in gem5. First, the
existing implementation of an electrical mesh is reviewed as it will function as the
baseline NoC to compare the optical NoCs with (Section 4.2.1). This is followed by a
discussion on the implementation of the optical NoCs in gem5 (Section 4.2.2). These
models are then used to simulate the various ways in which the latency of an optical
NoC can be changed, allowing us to compare the electrical mesh network with the
non-switched and circuit-switched optical NoCs in Section 4.2.3.

4.2.1 Electrical mesh as comparison network on-chip
Electrical mesh networks are seen as the most viable NoC for CMPs with high core
count (Section 2.2.1). Therefore, this will be used as a baseline NoC, to compare the
optical NoCs with.

The gem5 simulator already contains an implementation of mesh network, called
garnet [158]. There are two flavours of garnet which differ in the way the router is
modelled. In the first model, the fixed-pipeline model, the router being simulated is a
5-stage virtual channel router with credit-based flow control. The second model, the
flexible-pipeline, is more flexible and allows to change the number of pipeline stages in
a router. In this work, the fixed-pipeline model is used. The links in the mesh network
are set to have a latency of 1 clock cycle and to be 8 B wide. The mesh parameters
are summarised in Table 2.6. This is a very basic mesh network, which is not very
competitive, especially in terms of latency, as the router is not optimised at all. The
bandwidth of the mesh is quite similar to the optical networks: the bisection bandwidth
of this mesh is equal to 512 Gbit/s where the optical crossbar, with 16 wavelengths, has
a bisection bandwidth of 512 Gbit/s. However, I will discuss how the change to a more
optimised mesh network will affect the comparison in Section 4.3.

The randomisation of these networks is done in a slightly different manner as
described in Section 3.2.2. As the garnet network is an extensive piece of code, it
was prohibitive to implement the variability inside the code representing the links. To

95

4.2. Effect of Latency in an Optical Network On-Chip on Performance

Tr
an

sl
at

io
n

un
it

Network
interface

Optical
fabric

Allocator

1

2

3
4

5

6

Optical router

FromNetQ

ToNetQ

waiting_msgs

transmitting_msgs
grants

Figure 4.6: Schematic overview of the optical NoC as implemented in gem5.

introduce variability across simulations, the fixed latency of a link is randomised at the
start of a simulation. Five links are chosen at random to have a higher or lower latency
than their original latency. As the links chosen for randomisation differ per simulation,
each simulation will follow a different scheduler path.

4.2.2 Simulation model of the optical networks on-chip
The main gem5 repository does not contain an optical NoC model. For this thesis, I
implemented two models: a switched, non-blocking optical NoC and SWMR NoC.
This section will mostly elaborate on how the switched optical NoC is implemented.
The non-switched NoC is quite similar to the switched case, albeit less complex.

Figure 4.6 gives a general overview of an optical NoC as implemented in gem5.
The Allocator for example will not be present in a non-switched network. As gem5 is
C++ based, all the modules represent C++ objects. All the objects together functionally
emulate an optical NoC. Whilst the individual objects in the network bear resemblance
to the structures of an optical NoC, they only emulate the behaviour of those structures.
They should not be seen as hardware descriptions of those structures.

In both the non-switched (SWMR) and switched network (crossbar) a message
will cross the network as follows. The FromNetQ contains the buffers that connect the
coherence controllers with the NoC À. There are three sets of three buffers as each tile
connects three coherence controllers to the NoC (L1 cache controller, L2 cache con-
troller and memory controller). gem5 uses three virtual networks to prevent coherence
deadlock which is why there are three buffers coming from each coherence controller.
The Translation unit moves the incoming messages to the NetworkInterface Á.
The NetworkInterface will request an optical path for the message, in the case of a
switched NoC Â. The Allocator will reply with a grant Ã. Once the message is ready
for transmission i.e. after a grant has been received or immediately in the case of a
non-switched NoC, the message will be transmitted optically using the OpticalFabric
Ä. After the message has travelled the optical NoC, the Translation unit again will
move the message from the optical NoC to the FromNetQ Å, which connect the NoC

96

4.2. Effect of Latency in an Optical Network On-Chip on Performance

with the coherence controllers.
An overview of the message flow in the NetworkInterface is given in Figure 4.8.
Optical fabric

The optical fabric represents message transmission in the optical domain. The optical
fabric is responsible for emulating the timing of message transmission in an optical
NoC. It buffers a message until the complete transmission time has passed and will then
deliver the message straight to the destination optical router. The transmission time
represents the time taken to serialise the message and transmit it across an optical link.
The exact delays added by the optical fabric depend on the NoC type. The optical fabric
is also responsible for the randomisation as described in Figure 3.10. Again it needs to
be stressed that the optical fabric is an abstract concept used for optical NoC emulation
and is not a faithful representation of the physical implementation of an optical NoC.

Translation unit
As the name implies, the translation unit is responsible for the translation between the
ingresses and egresses of the NoC and the optical parts of the NoC. First of all, it filters
incoming messages. It moves intra-tile messages straight from the incoming network
queues to the outgoing network queues, without passing the network interface. Inter-tile
messages on the other hand are moved to the network interface. It is also important to
note that the translation unit converts multicast messages into unicast messages as the
optical fabric, as implemented here, cannot handle multicast messages. Lastly, it moves
messages from the optical fabric to the desired outgoing network queue.

Network interface
The network interface represents the conversion from the optical to the electrical domain.
The exact implementation of the network interface depends on the network type but
both types share two important structures as can be seen in Figure 4.6. The first one is a
message buffer, called m_waiting_msgs in Figure 4.6 which holds messages that are
not yet transmitted. This could be because no transmitter is available, or in the case of a
switched NoC, the requested circuit has not yet been established. The second structure,
m_transmitting_msgs is responsible for tracking the occupation of the transmitter. In
a real NoC, messages will be buffered until the end of the serialisation. However, in the
simulation, messages are moved to the optical fabric as soon as soon as transmission
starts. These structures represent the buffers in a real optical NoC.

Allocator
The allocator is only present in the switched NoC. It receives requests and circuit
updates from the network interfaces. These updates inform the allocator about messages
transmitted on speculative circuits. The allocator uses round-robin allocation: the
requester that was serviced last, will have the lowest priority in the next round of
allocation [22, Chapter 6.5.1]. Following an allocation round, the allocator informs
the network interfaces of the newly established circuits using grants. There are two
types of grants: positive grants carry information about a newly established circuit,
negative grants inform the network interfaces of a circuit being torn down. Whilst the
grants are being transmitted, the crossbar is reconfigured thereby completely hiding the
reconfiguration time. The allocator is pipelined, meaning new requests can come in and
their allocation process can begin, even when older requests are still being allocated.

Figure 4.7 shows how the latency encountered by a message in an optical NoC is
emulated by the different C++ objects discussed previously. Figure 4.7a and Figure 4.7b
show the timings of a control and data message respectively in a switched NoC. Fig-
ure 4.7c shows the timings of a control message in the case no path arbitration is needed

97

4.2. Effect of Latency in an Optical Network On-Chip on Performance

i.e. in a non-switched NoC or when a message in the switched NoC can make use of an
existing circuit. It needs to be noted that the timings shown are the minimum possible,
they can increase in case of congestion. For example, the allocation latency experienced
by a message will be doubled if the associated circuit request can only be allocated in
the second allocation round. The non-switched NoC can also suffer from increased
latencies if a previous message is still being serialised.

4.2.3 Effect of reduced latency in an optical network on-chip
The message latencies as depicted in Figure 4.7 all consist of two parts: a fixed latency,
determined by the message size (serialisation latency) and the time of flight and a
variable latency. The variable latency is not determined by the message itself but
by the state of the NoC. This becomes clearer when looking at Figure 4.8, which
depicts the decision process once a message has been injected in the network interface.
This decision process is similar for both the switched and non-switched NoC, with
the exception that in the non-switched case, there will always be a circuit to the
destination (SWMR). The time between the injection of a message in the network
interface and the start of serialisation can be seen as the waiting latency as the message
is being buffered in anticipation of message transmission. This waiting latency is
variable: as long as the transmitter is busy for example, the message is waiting. This
variability is due to other messages in the system: the transmitter could be busy or the
requested circuit cannot be immediately granted due to destination congestion.

Section 4.1 showed the positive effect of reducing the message latency. To reduce
the message latency in optical NoC, there are two avenues: either the fixed latency is
reduced (by reducing the serialisation latency) or the waiting latency can be reduced. In
this section, these two possibilities are explored for both network types.

Effect of reduced serialisation latency

The work in this section is an extension of the work presented by Van Laer et al. [11].
The serialisation latency in an optical NoC is the time needed by the transmitter to
convert a message from the electrical domain to the optical domain. The serialisation
latency is given by the following equation (keeping in mind that channel is defined as a
connection between source and destination):

serialisation latency =
message size

modulation speed×# wavelengths per channel
(4.1)

Equation (4.1) shows the serialisation latency can be increased by increasing the
modulation speed or by increasing the number of wavelengths per channel. In the next
section the effect of an increasing number of wavelengths will be investigated, both for
the switched NoC and the non-switched SWMR NoC. The effect of increased modula-
tion speed will be, in essence, the same as an increase in the number of wavelengths and
not be investigated. Currently, the modulation speed is limited by the electrical circuitry
driving the transmitter but this could change in the future. The number of wavelengths
per channel on the other hand is a characteristic of the optical NoC as a whole.

The number of wavelengths per channel will affect multiple characteristics of the

98

Trans
0

NI
0

Trans
1

Opt
fabric Alloc

v
v

v
v v

v

Router latency
Request (E)

Allocation

Serialisation
Time of flight

v

v
v

v
v v

v
v

Grant (E)

vv
v

vv
vv

vv

Router latency
Request (E)

Allocation

Serialisation

Time of flight

Grant (E)

Serialisation
Time of flight

Router latency

Time

(a)

Trans
0

NI
0

Trans
1

Opt
fabric Alloc

v
v

v
v v

v

Router latency
Request (E)

Allocation

Serialisation
Time of flight

v

v
v

v
v v

v
v

Grant (E)

vv
v

vv
vv

vv

Router latency
Request (E)

Allocation

Serialisation

Time of flight

Grant (E)

Serialisation
Time of flight

Router latency

Time

(b)

Trans
0

NI
0

Trans
1

Opt
fabric Alloc

v
v

v
v v

v

Router latency
Request (E)

Allocation

Serialisation
Time of flight

v

v
v

v
v v

v
v

Grant (E)

vv
v

vv
vv

vv

Router latency
Request (E)

Allocation

Serialisation

Time of flight

Grant (E)

Serialisation
Time of flight

Router latency

Time

(c)

Figure 4.7: Timing diagrams depicting the latency a message encounters in an optical NoC
and how they are emulated in gem5. Time is depicted on the y-axis, whereas the x-axis depicts
the various elements in the emulation of the optical NoC. Diagram assumes 8 wavelengths in
the stripe (a) transmission of a control message in a switched NoC (b) transmission of a data
message in a switched NoC (c) transmission of a control message in a SWMR NoC.

4.2. Effect of Latency in an Optical Network On-Chip on Performance

Check buffer containing
waiting messages

 Circuit to
destination

?

Tx free?

Start message
serialisation

Send circuit request to
allocator

Yes

Yes

No

No

Inject message

Waiting latency

Figure 4.8: Flow diagram depicting the decision process in the network interface

transmitter and the optical crossbar (in the case of the switched NoC). First of all, an
increase in the number of wavelengths per channel will increase the required optical
signal power. In the transmitter for example, the optical signal will pass by w− 1
passive microrings where w is the number of wavelengths in the channel. Each of
these rings adds between 0.0001 dB and 0.1 dB loss to the optical path, depending on
the state of the microring (off-resonance or on-resonance, respectively) (Table 2.3).
The optical path loss in the crossbar (in case of a switched NoC) will also increase
with increasing number of wavelengths, the extent of which is determined by the
exact crossbar layout. Secondly, the electrical power consumed by the transmitter
will also increase when increasing the number of wavelengths. The total electrical
power of the transmitter is the sum of the trimming power, the signal modulation
power, the Serialisation/Deserialisation (SERDES) power and local transport power
[72]. Trimming is needed to correct for the temperature dependence of silicon as to
keep the resonant frequency of a microring resonator stable (Section 2.2.3). The power
associated with this is shown to be non-linear [83]. Nitta et al. investigated the effect
of the modulation speed and the number of wavelengths per channel, when aiming
to minimise power consumption and to keep the target bandwidth constant [72][159].
Increasing the number of wavelengths per channel is a more efficient option, in terms
of modulation power and SERDES power, than an increase in modulation speed as
the latter options leads to an increase in switching activity which, in turn, will lead to
an increase in dynamic power. However, only increasing the number of wavelengths
whilst keeping the modulation speed constant (thereby increasing the link bandwidth)
will lead to an increase in modulation and SERDES power. The transport power is the
power required to carry the electrical signals that drive the microring resonators from
the router control unit to the actual location of the microrings. This should be included
in the total power consumption as these links can be relatively large (due the difference
in scale between the microring resonators and the electronics, see Figure 2.14). An
increase in number of wavelengths per channel increase the length of this link and,
hence, the power consumption, even more so when repeaters are needed. Because of
the impact on power consumption, the number of wavelengths per channel should be

100

4.2. Effect of Latency in an Optical Network On-Chip on Performance

kept as low as possible and not be over-designed.
Figure 4.9 shows the effect of increased wavelengths for both network types. Fig-

ure 4.9a to Figure 4.9d show the performance (in IPC), averaged over multiple runs.
These figures also show the confidence intervals for every wavelength value. In order to
correctly assess the effect of the switched and the non-switched NoC, their respective
confidence intervals should not overlap. First of all, it is clear canneal behaves oddly.
This might be due to its aggressive synchronisation strategy which depends on data race
recovery3 [138]. The average values as shown in Figure 4.9b are the results of more than
25 runs per wavelength value for each network type (to satisfy the sample size requests
given by Equation (3.3)). The variation across this set of runs is due to different sched-
uler decisions. One can, therefore, assume the run with the highest performance (for a
certain wavelength value) had the most optimal scheduler decisions. By only comparing
the runs with optimal thread scheduling, one can argue the effect of the scheduling
is removed and only the NoC differences are compared4. By replotting performance
using the highest obtained IPC (rather than average IPC), the results for canneal are
completely in line with the other benchmarks as shown in Figure 4.9f. There are some
conclusions that can be drawn from these figures. First of all, the optical NoCs always
outperform the electrical mesh network, as long as the optical NoCs provide 2 or more
wavelengths per channel. Secondly, the effect of an increasing number of wavelengths
per channel levels off after 16 or more wavelengths. This can be explained by the
fact that the majority of all messages are control messages. The serialisation latency
of a control message reaches the lowest possible value (a single clock cycle) once 8
wavelengths are provided. Any additional wavelengths above 8 wavelengths therefore
only add bandwidth to the NoC, which does not affect performance significantly which
confirms the findings in Section 4.1.3. The non-switched NoC also outperforms the
switched NoC when both NoCs provide the same number of wavelengths per channel.

To get a more general view on how the optical NoCs compare, Figure 4.10 shows
the performance in terms of speedup, against the bisection bandwidth. The speedup is
calculated using the average performance, with the exception of canneal in which case
the highest performance is used5. The bisection bandwidth is defined as the minimum
bandwidth between two partitions in the NoC, assuming there is an equal number of
network nodes in each partition [42, Chapter 3.1]. As the optical NoCs are symmetrical,
the bisection bandwidth is given by the following equation:

bisection bandwidth = nC×bandwidth per channel

= nC×modulation speed×# wavelengths per channel
(4.2)

where nC is the number of channels across the partition. In a SWMR network nC is
equal to 2× (N−1) where N is the number of network nodes. In the switched, crossbar-
based network nC is equal to N

2 . The SWMR network will therefore have a higher
bisection bandwidth than the crossbar, when both have the same bandwidth per channel.
Figure 4.10 shows that at lower bisection bandwidths, the switched NoC outperforms

3A data race occurs when two threads try to access the same memory location concurrently and at
least one of the accesses is a write. There is no synchronisation mechanism in place to prevent the race
from occurring and a data race can change the program flow [1, Chapter 2.11].

4This does not necessarily mean the optimal scheduler decisions are the same for each wavelength
value. The optimal decisions most likely depend on the state of the NoC.

5This is done to exclude the effect of thread scheduling, see Section 4.1.1

101

1 2 4 8 16 32
Number of wavelengths per channel

0.2255

0.2260

0.2265

0.2270

0.2275

0.2280

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

blackscholes

(a)

1 2 4 8 16 32
Number of wavelengths per channel

0.105

0.110

0.115

0.120

0.125

0.130

0.135

0.140

0.145

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

canneal

(b)

1 2 4 8 16 32
Number of wavelengths per channel

0.188

0.190

0.192

0.194

0.196

0.198

0.200

0.202

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

fluidanimate

(c)

1 2 4 8 16 32
Number of wavelengths per channel

0.068

0.070

0.072

0.074

0.076

0.078

0.080

0.082

0.084

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

x264

(d)

1 2 4 8 16 32
Number of wavelengths per channel

0.2255

0.2260

0.2265

0.2270

0.2275

0.2280

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

blackscholes

(e)

1 2 4 8 16 32
Number of wavelengths per channel

0.115

0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

canneal

(f)

1 2 4 8 16 32
Number of wavelengths per channel

0.190

0.192

0.194

0.196

0.198

0.200

0.202

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

fluidanimate

(g)

1 2 4 8 16 32
Number of wavelengths per channel

0.068

0.070

0.072

0.074

0.076

0.078

0.080

0.082

0.084

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar SWMR Mesh

x264

(h)

Figure 4.9: Effect of increased number of wavelengths for a crossbar-based NoC and a SWMR
NoC with one transmitter per tile, compared to an electrical mesh. (a) - (d) show the average
performance (in IPC), where the brackets indicate the confidence intervals. (e) -(h) show the
best possible performance (in IPC).

4.2. Effect of Latency in an Optical Network On-Chip on Performance

103 104

Bisection bandwidth [Gbps]

1.000

1.005

1.010

1.015

Sp
ee

du
p

XBar SWMR Mesh

blackscholes

(a)

103 104

Bisection bandwidth [Gbps]

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

XBar SWMR Mesh

canneal

(b)

103 104

Bisection bandwidth [Gbps]

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Sp
ee

du
p

XBar SWMR Mesh

fluidanimate

(c)

103 104

Bisection bandwidth [Gbps]

0.90

0.95

1.00

1.05

1.10

Sp
ee

du
p

XBar SWMR Mesh

x264

(d)

Figure 4.10: Effect of increased number of wavelengths for a crossbar-based NoC and a SWMR
NoC with one transmitter per tile, normalised to an electrical mesh, plotted against bisection
bandwidth. Brackets indicate the confidence intervals. The y-axes of the various plots differ as
the effect on speedup differ significantly across benchmarks.

the non-switched NoC because it provides more bandwidth per channel. Again, the
better performance is not due to the higher channel bandwidth in itself but because a
higher channel bandwidth provides a lower serialisation latency. However, at increased
bisection bandwidths, the non-switched NoC outperforms the switched NoC: both have
high channel bandwidths and, hence, low serialisation latencies so the non-switched
NoC provides the advantage that there is no path setup required. Figure 4.10 also
confirms again benchmarks with a low operational intensity (canneal and x264) are
more affected by a change in the NoC. This becomes clear when looking at the scale
of y-axes across the various benchmarks: the speedup in the case of canneal varies
between 0.9 and 1.2, whereas the range in blackscholes is significantly smaller (0.995
to 1.010). All benchmarks have a slowdown rather than speedup compared to the
electrical mesh at the lowest bisection bandwidth. However, canneal and x264 suffer
more from this (more than 5% slowdown). The gain to be had from an optical NoC
is also much higher for these benchmarks: around 20% (speedup of 1.2) for canneal
compared to less than 1% (speedup of 1.01) for blackscholes.

As explained at the beginning of this section, there are two components in the

103

1 8 10 20 30 40 49 50
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

blackscholes - 1 wavelengths

1 5 10 20 26 30 40 50
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

2 wav

1 4 10 14 20 30 40 50
Latency [clock cycles]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

4 wav

XBar
SWMR
Min lat control
Min lat data

(a)

1 8 10 20 30 40 49 50
0.0
0.1
0.2
0.3
0.4
0.5

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

canneal - 1 wavelengths

1 5 10 20 26 30 40 50
0.0
0.1
0.2
0.3
0.4
0.5

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

2 wav

1 4 10 14 20 30 40 50
Latency [clock cycles]

0.0
0.1
0.2
0.3
0.4
0.5

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

4 wav

XBar
SWMR
Min lat control
Min lat data

(b)

Figure 4.11: Message latency distribution in optical NoC with one transmitter per tile. Increas-
ing number of wavelengths removes the tail composed of messages with a very high waiting
latency due to contention. Only blackscholes and canneal are shown for brevity.

4.2. Effect of Latency in an Optical Network On-Chip on Performance

1 2 4 8 16 32
Number of wavelengths per channel

101

102

103

M
ax

im
um

 m
es

sa
ge

 la
te

nc
y

 [
cl

oc
k

cy
cl

es
]

XBar
SWMR

(a)

1 2 4 8 16 32
Number of wavelengths per channel

101

102

103

104

M
ax

im
um

 m
es

sa
ge

 la
te

nc
y

 [
cl

oc
k

cy
cl

es
]

XBar
SWMR

(b)

Figure 4.12: Maximum message latency for a crossbar-based NoC and a SWMR NoC with one
transmitter per tile for (a) blackscholes and (b) canneal.

message latency: the fixed component (serialisation latency) and the variable component
(the waiting latency). Figure 4.11 shows the distribution of the message latency for
optical NoCs with 1, 2 and 4 wavelengths. The green lines denote the minimum message
latency of control and data messages i.e. when the message did not have to wait before
transmission. Let’s first look at the SWMR case. The highest peak for the SWMR NoCs
(blue bars in Figure 4.11) corresponds to control messages that could be transmitted
immediately after they were injected in the NoC (dotted green line). The height of this
peak differs slightly between blackscholes (Figure 4.11a) and canneal (Figure 4.11b)
because of differences in the traffic patterns and the overall ratio of control to data
messages varies slightly across benchmarks6 . The second highest peak on the other
hand corresponds to the data messages with the minimum latency. There are smaller
peaks which correspond to messages that were queued. For example, in the single
wavelength case there is a peak around 16 clock cycles: these are control messages that
had to wait for the serialisation of an earlier control message to finish. The switched
NoC (red bars) show similar behaviour, with the difference that there are additional
peaks corresponding to messages that had to go through allocation, for example the
peak at 12 clock cycles in Figure 4.11a.

However, it is interesting to look at the last peak of the distribution for both cases.
This peak corresponds to all messages with a higher latency than 50 clock cycles.
Especially in the single wavelength case these peaks (for both NoC types) are quite
pronounced. In the case of the switched NoC, this is partially due to data messages that
had to undergo allocation before message transmission could start. However, the length
of the tail of the distribution should not be underestimated. As shown in Figure 4.12
the maximum message latency encountered can be quite high at a low number of
wavelengths per channel. The high message latency is due to a high waiting latency:
messages had to wait until the transmitter became available and/or until the circuit had
been setup. At a low number of wavelengths per channel, the transmitters are occupied
for a long period of time due to the low serialisation speed. The maximum latencies
encountered are consistently higher in the case of the the switched NoC where messages
both have to ensure both the availability of a transmitter and a circuit to the destination
(as shown in Figure 4.8). Considering the effect of the waiting latency on the maximum

6The data to control message ratio lies around ∼30% for all PARSEC benchmarks.

105

4.2. Effect of Latency in an Optical Network On-Chip on Performance

latency, the next section will look into one possible way of reducing the waiting latency,
namely by providing multiple transmitters per tile.

Effect of reduced waiting latency

As shown in Figure 4.8, the waiting latency will be (partially) determined by the
availability of a channel. In this section, the effect of 2 channels per tile will be
investigated. The second channel should reduce the amount of source contention where
the source has multiple messages to transmit, each to a different destination. This occurs
for example in the case of multicast messages. In a system with two channels per tile,
each tile can now setup two independent lines of communication: two connections to
two different destinations. The amount of outgoing channels per tile and number of
incoming channels per tile is chosen to be identical in this work. This is done to prevent
destination contention and to keep the network symmetric. Adding a second outgoing
channel to each tile will therefore affect the total number of transmitters and receivers
twice (Table 2.7).

Adding such a second network layer will increase the complexity of the NoC
significantly. A network layer in this case is defined as the set of channels that allows
each transmitter to setup one connection. For example, the schematic depictions of
the SWMR scheme and the crossbar scheme as shown in Figure 2.16 and Figure 2.24
respectively, depict one network layer. In the case of the switched NoC, the allocation
process will be more complex as the allocator now oversees multiple network layers.
These network layers are logically identical but when assessing a request, the allocator
now needs to loop over all layers to find a suitable circuit.

The exact physical implementation of a second network layer is not investigated
in this work. It could be done, for example, by placing a second optical layer. It could
also be done by assigning a subset of the wavelengths to each network layer. So, for
example, in the single channel system, each channel would consist of 8 wavelengths. In
the dual-channel system, each channel would consist of only 4 wavelengths but each
tile has two independent channels at its disposal.

Figure 4.13 shows the addition of a second channel to each tile does increase per-
formance but only for the non-switched NoC. This makes sense as a second transmitter
per tile will reduce the waiting latency by increasing the chance a transmitter is available.
However, in the case of switched NoC the waiting latency is affected by the allocation
process as well, not only the availability of a transmitter. When looking at Figure 4.13,
it is indeed hard to judge the effect of a second channel on the switched NoC as the
confidence intervals overlap in almost all cases. The effect is also more pronounced for
low numbers of wavelengths per channel, where the channels are occupied for longer
stretches of time due to higher serialisation latency.

Figure 4.14 shows the speedup plotted against the bisection bandwidth. Both the
single and dual-channel system have the same number of wavelengths per channel. In
the case of the two-channel system, this doubles the bisection bandwidth according to
Equation (4.2) as nC, the number of channels crossing the partition doubles. Figure 4.14
shows the increase in bisection bandwidth (and associated network complexity) voids
the performance benefits provided by the second channel.

The addition of a second channel does reduce the waiting latency as evidenced by
Figure 4.15 (only the results of canneal are shown for brevity). First of all, the last
peaks corresponding to messages with a high message latency decrease. The effect

106

4.3. Conclusion

1 2 4 8 16 32
Number of wavelengths per channel

0.2255

0.2260

0.2265

0.2270

0.2275

0.2280

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar - 1 channel
XBar - 2 channels
Mesh

SWMR - 1 channel
SWMR - 2 channels

blackscholes

(a)

1 2 4 8 16 32
Number of wavelengths per channel

0.115

0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar - 1 channel
XBar - 2 channels
Mesh

SWMR - 1 channel
SWMR - 2 channels

canneal

(b)

1 2 4 8 16 32
Number of wavelengths per channel

0.188

0.190

0.192

0.194

0.196

0.198

0.200

0.202

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar - 1 channel
XBar - 2 channels
Mesh

SWMR - 1 channel
SWMR - 2 channels

fluidanimate

(c)

1 2 4 8 16 32
Number of wavelengths per channel

0.068

0.070

0.072

0.074

0.076

0.078

0.080

0.082

0.084

Pe
rf

or
m

an
ce

 [
IP

C
]

XBar - 1 channel
XBar - 2 channels
Mesh

SWMR - 1 channel
SWMR - 2 channels

x264

(d)

Figure 4.13: Effect of multiple channels on performance (in IPC) for a crossbar-based NoC
and a SWMR NoC. Only the best performance is given for canneal in (b)

on the SWMR NoC is also more pronounced (blue bars). A peak at 16 clock cycles
in a system with 1 wavelength for example corresponds to a control message waiting
until the previous control message has been serialised. This blue peak is present in
the single channel system (Figure 4.11b) but has almost vanished in the dual-channel
system (Figure 4.11b) The maximum message latency encountered in the system is also
reduced by the addition of a second channel as shown in Figure 4.15b.

However, overall, it can be concluded that multiple channels per tile do not provide
a gain in performance that would outweigh the increased complexity of the NoC as a
whole.

4.3 Conclusion
In this chapter, I set out the answer the first research question of this thesis: can an
optical NoC outperform an electrical NoC? The answer is yes, provided the serialisation
latency of the optical NoC is kept at bay by providing enough wavelengths per channel.
In the systems compared in this thesis, a mesh NoC (consisting of 5-stage routers and
links which are 8 B wide and have a link latency of a single clock cycle) is outperformed
by optical NoCs with one channel per tile and at least 2 wavelengths per channel.
The exact crossover point will be determined by the interplay between the CMP, the

107

4.3. Conclusion

103 104

Bisection bandwidth [Gbps]

1.000

1.005

1.010

1.015

Sp
ee

du
p

XBar - 1 channel
XBar - 2 channels

SWMR - 1 channel
SWMR - 2 channels

blackscholes

(a)

103 104

Bisection bandwidth [Gbps]

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

XBar - 1 channel
XBar - 2 channels

SWMR - 1 channel
SWMR - 2 channels

canneal

(b)

103 104

Bisection bandwidth [Gbps]

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Sp
ee

du
p

XBar - 1 channel
XBar - 2 channels

SWMR - 1 channel
SWMR - 2 channels

fluidanimate

(c)

103 104

Bisection bandwidth [Gbps]

0.90

0.95

1.00

1.05

1.10

Sp
ee

du
p

XBar - 1 channel
XBar - 2 channels

SWMR - 1 channel
SWMR - 2 channels

x264

(d)

Figure 4.14: Effect of multiple channels per tile for a crossbar-based NoC and a SWMR NoC
on speedup, normalised to an electrical mesh, plotted against bisection bandwidth. Brackets
indicate the confidence intervals. Only the best performance is given for canneal.

electrical mesh and optical network characteristics. An earlier version of this work [11]
for example, compared an 8-core CMP connected via a mesh network in which the links
were 16 B wide with the same CMP interconnected using an optical crossbar-based
NoC. In this case, 4 or more wavelengths per channel were needed. The crossover point
in terms of wavelengths per channel was higher in this case as the disadvantageous effect
of hop count on message latency is less pronounced for a 8-node mesh than for a 16-
node mesh. The mesh network (Table 2.6) which was used as the comparison network
in this chapter was a very standard mesh network: the links were fast (1 clock cycle)
but have a relatively small bandwidth (8 B). The routers were also not optimised and
had 5 pipeline stages, whereas there is a significant body of work focused on reducing
the number of pipeline stages [47], [115], [116]. To investigate the effect of a more
competitive network, the mesh network was optimised by first reducing the number of
pipeline stages (by changing to the flexible garnet network in gem5), increasing the
link bandwidth and increasing the buffer size. Table 4.1 holds the parameters of the
optimised meshes, where the red font is used to indicate differences with the original
mesh network. The optimised mesh uses the flexible garnet work. In Figure 4.16 the
effect of these optimisations on performance is shown. Optimising the mesh networks
speeds up the benchmarks, where the improvement for canneal is most significant. An
optimised mesh network will also push the crossover point to the right: the optical NoCs
need to provide more wavelengths to outperform the mesh network. This is shown

108

4.3. Conclusion

1 8 10 20 30 40 49 50
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

canneal - 1 wavelengths

1 5 10 20 26 30 40 50
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

2 wav

1 4 10 14 20 30 40 50
Latency [clock cycles]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Pr
op

or
ti

on

 o
f

m
es

sa
ge

s

4 wav

XBar
SWMR
Min lat control
Min lat data

(a)

1 2 4 8 16 32
Number of wavelengths per channel

101

102

103

104

M
ax

im
um

 m
es

sa
ge

 la
te

nc
y

 [
cl

oc
k

cy
cl

es
]

XBar
SWMR

(b)

Figure 4.15: Effect of multiple transmitters per tile on message latency (a) Message latency
distribution (b) Maximum message latency. Only canneal is shown for brevity.

in Figure 4.17, in which it becomes clear at least 8 or more wavelengths need to be
provided for the optical NoCs to outperform the optimised mesh network, whereas, in
the case of an unoptimised mesh network only 2 wavelengths had to be provided.

Secondly, the effect the number of wavelengths per channel in an optical NoC has
on performance confirms the findings of the first section in this chapter: the latency of
an optical NoC will affect performance to a higher degree than its bandwidth. Whilst
increasing the number of wavelengths per channel does increase the channel bandwidth,
it also decreases the serialisation latency. Providing more than 16 wavelengths per
channel does not affect performance significantly showing that an increase in channel
bandwidth is only useful when it comes with a decrease in serialisation latency. The
serialisation latency of control messages, which form the majority of the network traffic,
reaches its minimum value of a single clock cycle once each channel consists of 8

109

4.3. Conclusion

Network frequency 2 GHz

Number of nodes 16

Topology Mesh

Number of rows in mesh 4

Terminal nodes per network interface 3 (tiled architecture)

Routing algoritm Deterministic, dimension ordering

Link latency 1 clock cycle

Link bandwidth 8 B

Router pipeline stages 1

Buffer size Infinite

Virtual channels 4 per virtual network

Table 4.1: Parameters used for the optimised electrical network (Flex+) with which the optical
proposals will be compared.

blac
ksc

hole
s

ca
nnea

l
ded

up

flu
idan

im
ate

fre
qmine

str
ea

mclu
ste

r
x2

64

Benchmarks

0.8

0.9

1.0

1.1

1.2

Sp
ee

du
p

Fixed Flex+

Figure 4.16: Effect of optimising a mesh network by increasing the bandwidth and reducing
the router latency. The parameters of the mesh networks can be found in Table 4.1.

wavelengths. This also ties in with the finding that increasing the number of channels
per tile does not affect performance significantly. Increasing the number of channels,
whilst keeping the number wavelengths per channel constant, increases the bandwidth of
the network. Providing two channels per tile was done to reduce the waiting latency of
a message. However, the trade-off between channel count versus waiting latency yields
far less improvement in terms of performance than the trade-off between wavelength
count versus serialisation latency. The latter is completely deterministic: increasing
the wavelength count will lead to a lower serialisation latency (assuming the minimum
is not yet reached). However, the effect of the first trade-off is far less clear cut as

110

4.3. Conclusion

103 104

Bisection bandwidth [Gbps]

0.990

0.995

1.000

1.005

1.010

Sp
ee

du
p

XBar SWMR Mesh - Flex+

blackscholes

(a)

103 104

Bisection bandwidth [Gbps]

0.80

0.85

0.90

0.95

1.00

1.05

Sp
ee

du
p

XBar SWMR Mesh - Flex+

canneal

(b)

103 104

Bisection bandwidth [Gbps]

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

Sp
ee

du
p

XBar SWMR Mesh - Flex+

fluidanimate

(c)

103 104

Bisection bandwidth [Gbps]

0.80

0.85

0.90

0.95

1.00

Sp
ee

du
p

XBar SWMR Mesh - Flex+

x264

(d)

Figure 4.17: Effect of increased number of wavelengths for a crossbar-based NoC and a SWMR
NoC with one transmitter per tile, normalised to an optimised electrical mesh, plotted against
number of wavelengths per channel. Brackets indicate the confidence intervals. The y-axes of
the various plots differ as the effect on speedup differ significantly across benchmarks.

it depends on the traffic: the second channel will only be used if the first is already
occupied by another message.

This chapter also compared a non-switched optical NoC (SWMR) with a switched
optical NoC (crossbar). When both networks have the same number of wavelengths
per channel, the non-switched NoC leads to a better performance. This is because
whilst the serialisation latency in both networks is the same, the waiting latency is not.
Messages in the switched NoC need to go through a path setup phase, thereby, spending
more time in the buffers. However, when both network types have the same bisection
bandwidth, the switched NoC performs better as for the same bisection bandwidth it
can provide more wavelengths per channel, thereby, lowering it serialisation latency.
The bisection bandwidth can be seen as a substitution for the complexity of the optical
routers. A higher bisection bandwidth will lead to more wavelengths per channel.
An increased number of wavelengths leads to a higher number of transmitters and
receivers in the routers which will affect the power consumption. However, it needs to
be noted that in the future, when higher modulation speeds might be more attainable,
this might no longer hold as at high bisection bandwidths the SWMR outperforms
the crossbar. Therefore, in general, the crossbar-based NoC outperforms the SWMR

111

4.3. Conclusion

NoC if both have the same number of transmitters and receivers in the optical routers.
The switched NoC in this thesis is based on an optical crossbar. The exact number of
microrings in the crossbar can differ per implementation but depends on the number of
wavelengths per channel and should not be neglected. The microrings in crossbar will
need trimming, just like the transmitting and receiving rings, which is a power hungry
process. However, the resonant frequency of the crossbar rings needs to be shifted far
less frequently , in comparison to the transmitter rings which constantly shift in and out
resonance to modulate the signal. The power consumption of the crossbar, therefore,
will also depends on the number of wavelengths per channel, but to a lesser degree
than the transmitter structures. The exact dependency though will be determined by the
implementation, which is out of the scope of this thesis.

The non-switched NoC performs better (at higher bisection bandwidths) because
it has a lower waiting latency than the switched NoC. The messages in a switched
NoC are buffered whilst the optical path is being setup. The next chapter will look at
techniques that draw from knowledge of the coherence protocol, to setup paths before
messages arrive, therefore, lowering the waiting latency of messages in a switched NoC.

112

5
Use of Prediction in Switched Optical

Networks On-Chip

IN the previous chapter it was shown that the latency a message experiences in an
optical Network On-Chip (NoC) consists of two parts. The serialisation latency
and time of flight form the first part. This part of the message latency is fixed

and determined at design time. The second part of the message latency is the waiting
latency which is variable. This is the time a message spends in the buffers, awaiting
transmission. The waiting latency in a non-switched NoC is generally lower as there
is no lengthy path setup process to go through as is the case in switched NoCs. This
chapter investigates whether it is possible to reduce the waiting latency of a switched
NoC to that of non-switched NoC by using message prediction methods that draw on
knowledge of the coherence protocol.

Even though this thesis is focused on optical NoCs, the methods proposed in this
chapter can be used in any type of switched NoC in which there is a centralised allocation
process. Most works assume electrical crossbars are not scalable (Section 2.2.1).
However, by carefully designing the crossbar and allocator, some works (for example
by Passas et al. [160]) have pushed the node count of electrical crossbars beyond 100
nodes. The techniques presented in this chapter are equally applicable to an electrical
crossbar.

Section 5.1 will first discuss the methodology used in this chapter which differs
from the one used in the previous chapter. Once the methodology has been established,
Section 5.2 will look at a simple path setup strategy in which paths are not immediately
broken down after usage. Section 5.3 introduces a coherence-based predictor, which is
optimised in Section 5.4. In Section 5.5 the waiting latencies that can be obtained by
using these strategies in an optical crossbar-based NoC are then compared with those of
a Single Writer, Multiple Reader (SWMR)-based NoC.

113

5.1. Trace-Based Methodology

Network frequency 2 GHz

Number of nodes 16×3

Topology Pt2Pt

Terminal nodes per network interface 1

Link latency 15 clock cycle

Link bandwidth 72 B

Table 5.1: Parameters used for creating the trace

The work in this chapter is an extension of the work presented by Van Laer et al.
[12].

5.1 Trace-Based Methodology
The metric used to study the efficiency of various path setup strategies, is the waiting
latency (as introduced in Section 4.2.3). The optimal path setup strategy will reduce
the waiting latency as much as possible. The waiting latency is the only part of the
total message latency that will be affected by the path setup strategy which is why this
the preferred figure of merit in this chapter. I will investigate the various path setup
strategies using a trace-based NoC simulator. The traces are obtained by running the
PARSEC benchmarks on a Chip Multiprocessor (CMP) with an ideal NoC: a Point-
to-Point (Pt2Pt) network, which directly connects all coherence controllers to avoid
interference of the topology on the traces. The links have a link latency of 15 clock
cycles and a bandwidth of 72 B. The system architecture remains exactly the same as
summarised in Table 2.5 but the NoC parameters are summarised in Table 5.1.

This latency is in line with the average message latency in a non-switched optical
NoC with 8 wavelengths per channel when simulated in gem5, as can be seen in
Table 5.2, albeit slightly higher to account for the fact that the traces will also be used
for a switched NoC simulation, which has a higher message latency. The link latency
also aims at making the NoC as neutral as possible so the traffic captured in the trace
is as realistic as possible. If the NoC is too efficient (low latency - high bandwidth),
the traces might, in essence, contain the traffic of a CMP without a NoC. A simulation
using such a trace might report stress on the network as there is no delay (bar the
controller latencies) between coherence messages in a coherence transaction, which
is unrealistic. If the NoC were to have a high latency and low bandwidth, the traffic
captured by the traces might be that of a CMP in which the NoC actively hinders the
coherence controllers. The trace will then not stress the simulator at all, as the delays
between the messages are too long. To avoid these corner cases, an ideal NoC with
middling latency and bandwidth is used. The traces are taken over the complete parallel
phase of computation (region of interest) and capture all messages travelling in the
NoC during that time. These traces were then fed to a C++ based network simulator
which simulates the life of a message in an optical NoC, from its arrival at the source
node until the actual start of transmission. To do this, the same model as presented in
Section 4.2.2 was used. As gem5 is based on C++, the code is mostly identical. When
investigating the predictive path setup methods, described in Section 5.3, the predictor
setup containing the predictor itself and the interception structure as depicted in green

114

5.1. Trace-Based Methodology

Benchmark
Average message latency

(clock cycles)
Standard deviation
of message latency

blackscholes 10.06 2.60

canneal 11.22 2.66

dedup 10.95 2.66

fluidanimate 10.91 2.44

freqmine 11.05 3.06

streamcluster 11.39 2.68

x264 10.24 2.29

Table 5.2: Total message latency in non-switched optical NoC with 8 wavelengths per channel
when simulated in gem5

in Figure 5.6 is added to the model.
Every benchmark is represented by a single trace, which holds all inter-tile traffic

generated during a single simulation. This seems to contradict Section 3.1.2 where it
was argued multiple simulations per architecture are needed to account for the effect of
space variability. However, even though multiple runs can result in completely different
performance results (as shown in Figure 4.1), the traffic offered to the NoC does not
seem to change significantly across runs as will be shown by discussing the injection
rate and the source & destination traffic across multiple runs (Figure 5.1 and Figure 5.2
respectively). The cases with the highest variation in performance as seen in Figure 4.1
are those representing a CMP with an ideal NoC with a link latency equal to 4 and 18
clock cycles, running canneal and dedup respectively. If the traffic varies significantly
across simulations, it should be most visible in these cases. The traffic offered to the
NoC is compared in terms of injection rate, the proportion of messages transmitted by
each tile and the proportion of messages received by each tile.

Figure 5.1 shows the injection rate normalised to the average injection rate across
all runs. The brackets indicate the standard deviation across the different runs. Even in
the cases where the performance varies with approximately 45% and 15% (canneal &
4 clock cycles and dedup & 18 clock cycles respectively), the standard deviation on the
injection rate is only around 1%.

Figure 5.2a and Figure 5.2b show the proportion of the total number of messages
transmitted per tile for canneal and dedup. The red bars indicate the traffic in a NoC
with link latency equal to 4 clock cycles, whereas the blue bars represent traffic in a
NoC with link latency equal to 18 clock cycles. The number of messages transmitted
by a tile can differ across architectures (red bars versus blue bars) but the standard
deviation across runs is again around 1% at most. The same holds for the amount of
traffic received per tile (Figure 5.2c and Figure 5.2d).

A single trace will sufficiently represent the traffic behaviour of a benchmark for
the measurement of waiting latency, because of the low amount of variation in injection
rate and traffic patterns across multiple runs for the same architecture.

The choice for a trace-based model is purely practical as it cannot replace full-
system simulations. gem5 is a very complex simulator which makes adding a predictor
to the optical NoC a daunting task. Therefore I first wanted to ascertain whether the use
of speculative and predictive path setup strategies would give positive results using a

115

5.2. Use of Speculative Circuits in Switched Networks On-Chip

blac
ksc

hole
s

ca
nnea

l
ded

up

flu
idan

im
ate

fre
qmine

ray
tra

ce

str
ea

mclu
ste

r
x2

64

Benchmarks

0.96

0.98

1.00

1.02

1.04

N
or

m
al

is
ed

 in
je

ct
io

n
ra

te

Ideal NoC (latency = 4 CC)
Ideal NoC (latency = 18 CC)

Figure 5.1: Variation in injection rate across multiple simulations of a CMP with an ideal NoC
with link latency of 4 clock cycles and 18 cycles respectively. The number of simulations varies
between 5-17 runs, depending on the benchmark.

simple trace-based simulator. The actual effect of prediction on the overall performance
of the CMP can only be measured using full-system simulations. The results in this
chapter therefore should not be seen as absolute improvements in performance but
rather as a proof of concept, showing various path setup strategies can (positively) affect
the NoC.

5.2 Use of Speculative Circuits in Switched Networks
On-Chip

In the baseline path setup scheme, there is a one-on-one relationship between a cir-
cuit and a message. When a message arrives at the network interface, a path will be
requested and set up which the allocator signals to the requesting network interface
using a positive grant. After message transmission, the circuit gets torn down immedi-
ately. The advantage of the baseline scheme lies in its simplicity: when requesting a
circuit, the size of the message and as such, the time at which the circuit can be torn
down, is known. After the grant signalling the setup of a circuit, there needs to be no
further communication between the allocator and the network interface. The latencies
associated with the path setup process differ slightly from the previous chapters and
are summarised in Table 5.3. The latency associated with path setup is assumed to be 8
clock cycles in this chapter. The electrical transmission of the requests and grants takes
2 clock cycles. Assuming the die size is around 263 mm2, the allocator is in the middle
of the chip and the M8 metal layer is used (see Figure 2.8), this is a valid assumption.
However, for larger die sizes such as the Haswell series by Intel which can hold 16

116

5.2. Use of Speculative Circuits in Switched Networks On-Chip

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Source

0

1

2

3

4

5

6

7

8

Pr
op

or
ti

on
 o

f
to

ta
l t

ra
ff

ic
 [

%
]

Ideal NoC (latency = 4 CC)
Ideal NoC (latency = 18 CC)

canneal

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Source

0

1

2

3

4

5

6

7

8

Pr
op

or
ti

on
 o

f
to

ta
l t

ra
ff

ic
 [

%
]

Ideal NoC (latency = 4 CC)
Ideal NoC (latency = 18 CC)

dedup

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Destination

0

1

2

3

4

5

6

7

8

Pr
op

or
ti

on
 o

f
to

ta
l t

ra
ff

ic
 [

%
]

Ideal NoC (latency = 4 CC)
Ideal NoC (latency = 18 CC)

canneal

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Destination

0

1

2

3

4

5

6

7

8

Pr
op

or
ti

on
 o

f
to

ta
l t

ra
ff

ic
 [

%
]

Ideal NoC (latency = 4 CC)
Ideal NoC (latency = 18 CC)

dedup

(d)

Figure 5.2: Variation in traffic per source and destination tile across multiple simulations of
the same system. Only canneal and dedup are shown as they show the largest variation in
Figure 4.1. The number of simulations varies between 5-17 runs, depending on the benchmark.

Xeon cores and has a die size of 661 mm2, this electrical latency will take up to 4 clock
cycles. The electrical transmission latency assumed might therefore be on the low side.
The allocation decision process is assumed to take 4 clock cycles. The exact delay of
the round-robin allocator used here can only be determined by synthesising the allocator.
However, looking at the literature the delay of similar allocators (round-robin, 16×16
system) ranges from 3.66 ns to 1.79 ns (in 180 nm technology) [161] to approximately
1 ns (in 90 nm technology)[160]. An allocation latency of 4 clock cycles lies within the
range of values mentioned in the literature, but is definitely not that of an optimised
allocator.

Keeping a circuit open after transmission has the advantage that any subsequent
messages from the same source to the same destination will not have to go through
the grant-request cycle, which will have a positive effect on the waiting latency. The
circuit will only be broken when any of resources it is using (i.e. transmitter or receiver)
is needed by another circuit. This strategy will only work if there is a relatively high
probability of circuit re-use. However, because of the interplay between cache indexing
and Second Level Cache (L2) mapping, circuit reuse is common in this type of CMP
architecture. This is because address interleaving is used to determine which slice of
the L2/directory a cache line belongs to [162]. By using the address bits to the left of
the block offset, neighbouring cache lines will be assigned to different L2/directory
slices. This prevents the formation of bottlenecks. In our specific case, bits 6 to 9 will

117

5.2. Use of Speculative Circuits in Switched Networks On-Chip

Switched NoC Non-switched NoC
Network frequency 2 GHz 2 GHz

Number of nodes 16 16

Topology Crossbar SWMR

Terminal nodes per network interface 3 (tiled architecture) 3 (tiled architecture)

Modulation frequency 25 Gbit/s 25 Gbit/s

Allocation latency 4 clock cycles Not applicable

Electrical signalling latency 1 clock cycle Not applicable

Time of flight 1 clock cycle 1 clock cycle

WDM wavelengths available 1-32 1-32

Table 5.3: Parameters used for the optical networks in this thesis. Values in red differ from
Table 2.8.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Block Offset Index

L2

Tag

Figure 5.3: 32-bit address structure used in our system architecture. Bits 6-9 determine the L2
slice which each block is mapped to.

be used for L2 mapping as shown in figure 5.3. These bits coincide with the bits used
for set indexing in the First Level Cache (L1) cache, as again the lower-order bits are
used as index bits (in our L1 setup, bits 6 to 17). Basically this means that all cache
lines mapped onto the same set will be mapped onto the same L2/directory slice. If a
L1 request results in an eviction, both the newly requested address and the victim cache
line belong to the same L2/directory slice.

Eviction of an exclusive or dirty line from the L1 will result in a writeback message
to the L2 (Section 2.1.4). In the Modified Exclusive Shared Invalid (MESI) protocol
(as implemented in gem5), the message carrying the new request and the writeback
message will leave the L1 controller at the same time. These two messages can use
the same circuit: either the request or writeback message opens the circuit after which
the subsequent message reuses the circuit. Assuming the ratio of L1 writebacks to L1
misses is relatively high, this simple path setup strategy should result in savings in the
waiting latency.

5.2.1 Implementation
Keeping circuits open after usage introduces speculative circuits: circuits which are kept
open without an explicit request. These speculative circuits also increase the complexity
of the allocator and the network interfaces.

First of all, the complexity of the allocator increases as there now are two types of
circuits: firm circuits and speculative circuits. A firm circuit has either been requested
by a network interface or was a speculative circuit which is currently in use and has

118

5.2. Use of Speculative Circuits in Switched Networks On-Chip

been upgraded to a firm circuit. A firm circuit will be downgraded to a speculative
circuit after message transmission.

The second increase in complexity is due to the allocator needing to be able to
determine which speculative circuits are in use. This could be achieved by making the
network interface signal all transmissions to the allocator. Another option is the use of
an interceptor structure: before the optical signals enter the crossbar, a small part of the
power is tapped off and used to inform the allocator of a circuit in use. This is similar
to the structure depicted in Figure 5.6, albeit it simpler in this case, as only the fact that
the circuit is being used needs to be detected.

Thirdly, a new type of grant which is used to signal the removal of a circuit is needed.
When the allocator receives a firm request which needs resources (i.e., a transmitter or
receiver) which are currently used by a speculative circuit, it sends out a negative grant
to the transmitting network interface to signal end of the speculative circuit. In practice,
this adds one extra bit to the grant connections to signal the type of grant.

Finally, the use of speculative circuits also increases the buffering complexity on
the transmitter side. When a network interface receives a positive grant, it will assume
the connection is intact until further notice and will keep on transmitting messages
across the circuit. However, as there is a communication delay between the network
interfaces and the allocator, it might be that the circuit is being torn down while the
network interface is transmitting. When the network interface receives a negative grant,
it immediately cancels the transmission. However, to prevent message loss, messages
need to be to kept in the network interface buffers until this uncertainty period has
passed, which consists of the time of flight and the electrical communication delay.

5.2.2 Results
Figure 5.4 shows the savings in waiting latency, compared to the baseline case, that
can be obtained by keeping circuits open after usage. The benchmarks are ordered
by latency savings (red bars). blackscholes has the highest latency savings, freqmine
the lowest. The number of evictions per L1 miss is plotted as well, showing that in
general a higher ratio of evictions per L1 miss favours this scheme. There are three
exceptions to this rule: blackscholes, canneal and freqmine. This is due to the waiting
latency of a system being determined by various factors, such as the injection rate and
traffic patterns. In the case of blackscholes, the discrepancy can be explained by its
higher proportion of messages carrying a L1 request compared to the overall number
of messages. It generates fewer writeback messages per L1 request message but the
proportion of L1 request messages to the total number of messages is the highest (28%
of all messages in blackscholes are carrying a L1 request, compared to the PARSEC
average of 23%). On the other hand, canneal has the highest injection rate of all
PARSEC benchmarks, which negatively affects waiting latency, making it harder to
make any latency savings. The injection rate of canneal is 150× that of the lowest
injection rate in the PARSEC benchmark suite. Finally, in the case of freqmine, the
discrepancy is due to the traffic pattern it creates. We find that there are a couple
of tiles transmitting to all tiles and, in return, all tiles transmit to these sender-tiles.
This hinders circuit re-use as the sender-tiles break up circuits so they can transmit to
multiple destinations, and the many receiver-tiles respond to many sender-tiles. Overall,
keeping circuits open after transmission is a relatively effective strategy and reduces
the waiting latency by 15% on average. When the path setup process is more costly in

119

5.2. Use of Speculative Circuits in Switched Networks On-Chip

blac
ksc

hole
s

ded
up

flu
idan

im
ate x2

64

str
ea

mclu
ste

r

ray
tra

ce

ca
nnea

l

fre
qmine

Benchmarks

0

5

10

15

20

25

La
te

nc
y

sa
vi

ng
s

[%
]

Latency savings

0.0

0.2

0.4

0.6

0.8

Ev
ic

ti
on

s
pe

r
L1

 m
is

s

Evictions per L1 miss

Figure 5.4: Savings in waiting latency by using speculative circuits in a switched NoC.

terms of latency, using speculative circuits is more beneficial. If the path setup process
takes 16 clock cycles, the latency savings increase to 16%. The effect on performance
is less certain as these results seem to indicate the savings are due to to a more efficient
path setup for eviction messages. However, as evictions do not lie on the critical path of
a memory transaction so the effect on the average latency of a memory transaction as a
whole will be less pronounced.

The use of speculative circuits increases the complexity of the system as collisions
might occur. However, collisions very rarely occur: the proportion of messages that will
collide lies below 1%, for all benchmarks. The added buffering in the network interfaces
will therefore rarely be needed. However, as messages cannot be dropped in this setup,
these buffers are necessary. Speculation as used here is less complex than the work
done by Wen et al. [122] in which circuit reuse distance is used to predict upcoming
circuits by tracking past circuits and their probability over time (Section 2.2.4) The
speculative work presented here is similar to the work done by Abousamra et al. [126]
(Section 2.2.4) in which a similar principle is used: when a message comes by, the
return path is automatically set up, as they argue a request message will most likely
cause a corresponding response message will need to be transmitted back to the original
source. They also discuss the use of cache events to start path setup early, for example,
as soon as a cache hit is detected, a signal could be transmitted to network to start
path setup as there is a delay between hit detection and the read-out of the completely
cacheline. In comparison, the speculative scheme is less complex than both these
works, as it only keeps existing circuits open.

120

5.3. Use of Predictive Circuits in Switched Networks On-Chip

5.3 Use of Predictive Circuits in Switched Networks
On-Chip

The use of speculative circuits reduces the waiting latency. Larger latency savings can
be obtained by recognising that messages in a shared memory CMP are not randomly
injected into the network: they are part of a coherence transaction following a memory
request by one of the processor cores. In this section, the various types of coherence
transactions are discussed to see how this knowledge can be exploited to predict the
optical paths that will be required later on. This discussion centres around MESI-
based coherence controllers connected using an optical crossbar-based NoC but the
concepts presented here are applicable to any type of switched NoC running any type
of directory-based coherence protocol.

5.3.1 Coherence transactions
Figure 5.5 show coherence transactions for a system running the MESI cache coherence
protocol following a write request to memory address À by the processor core.

Figure 5.5a show a read access to memory address À which is already present in
the L2. The coherence transaction is straight forward as the L2/directory can directly
respond to the request by returning a copy of the requested cache line. Figure 5.5b
depicts a subsequent write access to memory address À which results in far lengthier
coherence transaction. The address is already present in the L1 cache, but with read-
only permission. The cacheline needs to be upgraded to the exclusive state, which
requires the invalidation of all copies of À in other L1 caches. All other sharers need to
acknowledge their invalidation of the address to the originating L1 before the upgrade
can complete. The length of the upgrade transaction therefore depends on the number
of sharers. In this example, the L1 sends the upgrade request to the L2 directory, which
sends out a response to the original L1 and an invalidation request to the other sharer.
This sharer responds directly to the original L1 once it has invalidated its copy of the
memory address. Finally, the original L1 sends an unblock message to the directory
to inform it that the upgrade is complete. In Figure 5.5c the L1 performs a write to
memory address À which is not yet present in the on-chip cache hierarchy, so needs to
be retrieved from main memory. It makes a request to the L2, which has no record of
it, so in turn makes a request to the memory controller which retrieves the value from
Dynamic Random Access Memory (DRAM). This sends a response back to the L2,
which can then send another response back to the L1. Finally, once the L1 has received
the data, it can unblock the L2.

5.3.2 Coherence-based prediction
The previous examples can be generalised: when a processor core requests a memory
address, the resulting coherence transaction and its associated messages seen by the
network are a combination of the type of access requested and the current state of
the requested address. For example, in the case of the upgrade transaction depicted
in Figure 5.5b, by combining knowledge about the request (the L1 REQ C tells us
this is an upgrade for address À) and the current state of À (cached in L1’), the exact

121

Allocation Serialisation ToF

 Legend

L1

L2/DIR

L1 REQ C

L2 RES D

L1

Time

(a)

L1

L2/DIR

L1

L2/DIR

L1’

L1 REQ C

L2 RES C

UNB

L1 RES C

L1

L2 REQ C

Time

(b)

L1

L2/DIR

Memory

L1
L1 REQ C

L2 REQ C

MEM RES D

L2 RES D UNB

L2/DIR L2/DIR

(c)
Normal path request arrival at allocator

L1 REQ C L2 REQ C MEM RES D L2 RES D UNB

Path request arrival using predictor

L1 REQ C

L2 REQ C

MEM RES D

L2 RES D UNB

State
0

State
1

State
1

State
2

State
3

State
3

(d)

Figure 5.5: Examples of memory transactions and the messages generated by the coherence
protocol. The timescales in this figure only show the relative order of events and not the duration
of these events. (a) read access to an address present in L2 cache (b) a L1 upgrade transaction
(c) a write access to an address not present in the on-chip cache hierarchy. Below the messages,
their corresponding stages in the network are depicted: path allocation, serialisation and time of
flight (ToF). (d) Resulting transitions in the predictor FSM. For explanation about the different
message types, see Section 2.1.4)

5.3. Use of Predictive Circuits in Switched Networks On-Chip

coherence transaction can be determined. Once the coherence transaction is known, the
next messages can be predicted with high accuracy based upon the previous message.

This type of prediction naturally lends itself to an FSM implementation. In order to
evaluate the upper bound on performance of this kind of coherence-based prediction,
a predictor structure is implemented using a 5-state FSM for each memory address,
with the state transitions based upon all possible coherence transactions. The FSM
is designed for the MESI protocol but could be easily modified for other coherence
schemes. At runtime, every message travelling the network is intercepted and used
to make the state transitions within the predictor table. This allows the prediction of
future messages by looking at the new state and the last observed message. There are 6
possible states:

State 0 Block is not present anywhere in the on-chip cache hierarchy (Start state)

State 1 Block is not present in the on-chip cache hierarchy, but has been requested
by the directory/L2

State 2 Block is only present in the L2

State 3 Block is only present in one L1 cache

State 4 Block is present in multiple L1 caches

State 5 Transient state, block is in the midst of being evicted

Figure 5.5d shows the state machine transitions for the write request depicted in
Figure 5.5c. In the conventional case, all 5 messages in the transaction are delayed by
the path setup latency before transmission as path setup only starts after the controllers
have handled the previous message. Using the predictor, as soon as a message is
intercepted, a prediction can be made to setup the path for the next message while the
message is still being handled by the cache/directory controller. Only the first message
in the transaction is delayed by the path setup latency. Section 7.1 and Section 7.2
contain the code representing prediction FSM.

The predictor consists of combinational logic and a Look-up Table (LUT) in which
every entry is associated with one unique address. Every entry has 5 fields:

1: Valid bit;

2: Current FSM state (3 bits, but the valid bit could be combined into this field
as another state);

3: Sharers list in which a processor is seen as a sharer if it holds a copy of the
cache line in its L1 cache (N bits for a N-core CMP) ;

4: The type of transaction (3 bits for 5 possibilities: load, store, upgrade, L1
eviction and L2 eviction);

5: The L1 cache currently upgrading or evicting a cacheline (log2(N) bits).

The LUT is located next to the central allocator. The address of the intercepted
message is used as an index into the LUT which (if needed) issues a predictive path
request to the allocator. Firm path requests will be prioritised over predictive requests
by the allocation algorithm. If the predictive request wins a path, the corresponding

123

5.3. Use of Predictive Circuits in Switched Networks On-Chip

source node will be notified of the path that has been set up. If the predictor did not
predict the correct path, the future message that should have used this path will go
through the normal request-grant cycle, without any additional penalties. Considering
the low injection rates in the NoC, as depicted in Figure 3.5, unused predictive requests
are unlikely to overload the allocator. To prevent predictive requests from immediately
tearing down recently established (and as yet unused) predictive circuits, every predictive
circuit gets assigned a countdown timer. Once the countdown timer has expired, the
priority of the circuit is lowered so the circuit can be broken down to accommodate
another predictive request1.

The holistic proposals discussed in Section 2.2.4 also use knowledge of the co-
herence protocol to decrease the latency of a memory request as a whole, by using
sharer prediction, for example, to avoid unnecessary network transactions. These
proposals, however, do not speed up the messages that still need to travel the NoC.
The coherence-based predictor in this work aims at speeding up message transmission,
rather than message avoidance.

5.3.3 Implementation details
Implementing such a coherence-based predictor requires changes to the optical NoC
and allocator. Firstly, the changes that need to be made to the NoC and allocator will
be discussed followed by an overview of the timings of the prediction process.

Changes to the NoC

To allow coherence-based prediction, additional components need to be added to the
NoC. Figure 5.6 shows the new system setup. A small optical splitter gets added to
every waveguide entering the crossbar, so the messages can be intercepted. Reading
these intercepted messages requires additional receivers leading to a modest increase in
the number of active components and power consumption. However, not all wavelengths
need to be read. The trade-off involved in choosing the number of interceptor receivers
is discussed in more detail in Section 5.4.2. The predictor itself is centrally located and
has a 2×log2(N)-bit wide connection to the allocator to transmit predictive requests
containing the source and destination of the predicted circuit where N is the number of
tiles on the CMP. The power consumption and complexity of this ideal predictor are
discussed in more detail in Section 5.4.

Changes to the allocator

Using a predictive path setup policy, in conjunction with the previously discussed open
circuit policy, will introduce some changes to the allocator. A circuit can exist in four
states:

Firm circuit A circuit either currently in use or a circuit established because of
firm request coming from a network interface

Predictive circuit A circuit established because of a predictive request coming
from the predictor

1The countdown timer was set to 1 clock cycle as experiments (not shown in this thesis) showed a
higher value had little effect on the overall prediction hit rate

124

5.3. Use of Predictive Circuits in Switched Networks On-Chip

Firm
requests

Grants

L1

L2 + DIR

λ1 λ2 λ3 λn
Rx

λ1 λ2 λ3 λn
Tx

CPU

Tx controller

λ1 λ2 λ3 λm Rx

Prediction FSM

Speculative
requests

Network interface Allocator

Broadband

switch

Entry in the FSM LUT

Valid Sharers
(N)

L1 currently
evicting/

upgrading

FSM
state

Transaction
type

Figure 5.6: Schematic overview of the system setup when using coherence-bath path prediction.
Note the number of wavelengths intercepted by the predictor structure does not have to be equal
to the number of wavelengths in the stripe. Only the connections between a single tile and the
central switch are shown. All other tiles are connected in an identical way.

Expired predictive circuit A circuit established because of a predictive request
coming from the predictor of which the countdown timer has expired

Speculative circuit A previously existing circuit is kept open after usage

These 3 circuit types each have a different priority, with a firm circuit having the
highest priority. Firm circuits are downgraded to speculative circuits after usage. Both
speculative and predictive circuits are upgraded to firm circuits once they are in use. If
a request arrives for an existing circuit and the request priority is higher than the circuit
priority, the circuit gets upgraded e.g. a speculative circuit can become a predictive
circuit if a predictive request arrives. When a request arrives at the allocator and the
required circuit is not set up, its priority is compared with the current circuit priority
to reach a decision on how to proceed. If the request priority is higher than the circuit
priority, the circuit will be broken, to free the resources needed by the incoming request.

Timing

Figure 5.7 shows the 4 stages in the overall prediction process. The first stage À is
message interception in which the information needed to make a prediction is tapped off
from a message currently travelling the NoC. Interception can only start after a period
∆, discussed in more detail in Section 5.4.2. During the second stage Á, the prediction
information is extracted from the LUT using the intercepted address. This results in
a prediction entry as previously discussed, which will be combined with the current
message information in the third process step Â when the actual prediction is made and
a predictive request is sent to the allocator. The allocator takes care of the final step Ã:
setting up the actual path. All of these stages need to have finished before the coherence
controller has handled the message so the path is setup before the next message in the
coherence transaction (the predicted message) arrives at one of the network ingresses.

125

5.3. Use of Predictive Circuits in Switched Networks On-Chip

λ1 λ2 λ3 λn Rx

Prediction
LUT

Index

Message info Predictive request

Time

Main waveguide

Tag

Combinational
logic

Allocator

Crossbar

Switch
configuration

Serialisation ToF Coherence controller
handling message

Message
interception

LUT
lookup Prediction Allocation

1 2

3

4

Δ

Figure 5.7: The phases of path prediction. (1) Message being intercepted on the main waveguide.
Message interception can only start after ∆ as the prediction info needs to be serialised (2)
Prediction info is accessed in the LUT using the intercepted address (3) Prediction is determined
using an FSM (4) Predicted path is being setup. Path needs to be ready before the coherence
controller finishes handling the message.

blac
ksc

hole
s

fre
qmine

x2
64

flu
idan

im
ate

ded
up

ca
nnea

l

ray
tra

ce

str
ea

mclu
ste

r

Benchmarks

0

10

20

30

40

50

60

Pr
ed

ic
ti

on
 h

it
 r

at
e

[%
]

Prediction hit rate

0

20

40

60

80

100

Pr
op

or
ti

on
 o

f
to

ta
l c

ac
he

lin
es

 [
%

]Cachelines accessed by more than one L1 cache

Figure 5.8: Prediction hit rates of an ideal prediction schemes compared to the number of
sharers per cache line.

5.3.4 Results
The reduction in waiting latency that can be obtained by using the ideal predictor is
affected by various factors. First of all, the predictions need to be correct. In principle,
perfect prediction of all messages, excluding those that signal the start of a transaction,
is possible if the predictor is accurately designed whereupon it basically becomes a
directory controller without the actual caching. However, in the scheme proposed here
the predictor can only track a single transaction so multiple transactions for the same

126

5.3. Use of Predictive Circuits in Switched Networks On-Chip

address starting around the same time will not be predicted correctly. The directory
controller handles concurrent transactions by means of blocking and transient states.
The directory controller as defined in the MESI protocol in gem5 has 17 states in total,
of which 13 are either transient or blocking. Tracking concurrent transactions in the
predictor would reduce the prediction miss rate but would increase the complexity of
the predictor. First of all, the size of an entry in the LUT would increase due to the
increase in number of states. Secondly, the combinational logic used to determine the
transitions between the states would become slightly more complex as the possible
number of transitions will increase. As the predictor will not discern between different
concurrent transactions involving the same cache line, the information in the prediction
LUT will be a muddled combination of all these transactions. Therefore the prediction
algorithm might not be able to combine the intercepted message and the associated
LUT entry to create a predictive request. If the observed message would not lead to a
valid state transaction from the current state held in the LUT, the predictor will simple
make no prediction.

To measure concurrency a histogram containing the number of L1 caches that
have accessed every individual cache line is kept over the complete ROI. This is an
approximation for concurrency 2 as cache lines requested by multiple caches during
their lifetime will most likely also be involved in concurrent transactions e.g. being
requested by multiple L1s at the same time. In Figure 5.8 the benchmarks are ordered
by prediction hit rate (red bar). The second bar (blue bar) shows the proportion of
cache lines that have more than 1 sharer. The benchmarks with a higher prediction
hit rate have a lower number of sharers than the benchmarks with a higher number of
sharers. In the four most predictable benchmarks (blackscholes, freqmine, x264 and
fluidanimate), on average, 25.4% of the cache lines have more than 1 sharer. For the
least predictable benchmarks (dedup, canneal,raytrace and streamcluster), 85.7% of
the cache lines are shared. The chance of concurrent transactions is much higher for
these benchmarks, resulting in less predictable behaviour. Figure 5.8 seems to indeed
suggest that the degree concurrency affects the prediction hit rate. However, tracking
more concurrent transactions to increase the prediction hit rate is not a good trade-off
because of the increased complexity and development time. Especially so as the
prediction hit rate is already quite high when taking the proportion of unpredictable
messages into account. The coherence-based predictor cannot predict messages that
signal the start of a transaction (L1 REQ C) as they are the direct result of a L1 miss. The
same holds for L1 eviction messages. Combined these message classes are responsible
for between 42.2% and 33.6% of all messages, depending on the benchmark. Taking
this into account, the prediction hit rate as shown in Figure 5.8 is acceptable 3.

The second factor to consider is the fact that while a prediction might be correct, the
effect it has on waiting latency is less straight forward. Figure 5.9 shows the benchmarks,
again ordered by prediction hit rate. The second curve, denoting the latency savings to
the baseline case, follows the same trend but the prediction hit rate will not automatically

2In this context concurrency stands for coherence transactions that take place at the same time and
involve the same cache line but originate from different processors.

3This is not to say predicting L1 misses (and, hence, the start of a coherence transaction) is impossible.
[163] presented a predictor based upon a 2-bit saturating counter which uses the memory address of a
memory reference, in parallel to the associated L1 access to predict whether or not the reference would
miss in the L2 (if it were to miss in the L1). The same concept could be used to predict L1 misses (and
probably also L1 evictions). The idea was not pursued further as such a predictor would have to be able
to work faster than the L1 cache.

127

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

blac
ksc

hole
s

fre
qmine

x2
64

flu
idan

im
ate

ded
up

ca
nnea

l

ray
tra

ce

str
ea

mclu
ste

r

Benchmarks

0

10

20

30

40

50

60

Pr
ed

ic
ti

on
 h

it
 r

at
e

[%
]

Prediction hit rate

0

10

20

30

40

50

60

La
te

nc
y

sa
vi

ng
s

[%
]

Latency savings

Figure 5.9: Waiting latency savings of an ideal prediction scheme compared with the prediction
hit rate.

lead to exactly the same amount of latency savings. These discrepancies are hard to
explain as they depend on various factors such as traffic patterns, injection rates, abrupt
peaks in the injection rate etc.

Overall, though, the use of an ideal coherence-based predictor in a system with a
path setup latency of 8 clock cycles will, averaged over all benchmarks, reduce the
waiting latency by 42.6% (σ=11.3%), in contrast to the speculative technique discussed
in Section 5.2 which reduced the waiting latency latency by 14.5% (σ=6%).

5.4 Realistic Use of Predictive circuits in Switched Net-
works On-Chip

The previous section evaluated an idealised LUT in which every address had a dedicated
entry, which would be infeasible to implement in practice. However, the working set of
an application is small at any point in time, so the predictor can be organised like the
branch target buffer in a processor core where multiple addresses map to the same entry
in the LUT, to then be used for prediction. The same principle is also used in cache
organisation (Section 2.1.3). This section develops a realistic version of the predictor
with acceptable overheads in size and complexity.

5.4.1 Realistic implementation of the predictor
The most obvious method for creating an implementable predictor is to re-organise
the LUT. Multiple addresses can now map onto the same entry in the LUT. This
reduces the size of the LUT compared to the ideal predictor where every address has
its own dedicated entry in the LUT. Organising the LUT as a set-associative structure
(borrowing concepts from Section 2.1.3) helps avoid collisions when multiple addresses

128

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

27 22 20 18 16 14 12 7
Start bit

25

30

35

40

45

La
te

nc
y

sa
vi

ng
s

[%
]

2-way
4-way

8-way
Fully associative

(a)

27 22 20 18 16 14 12 7
Start bit

15

16

17

18

19

20

La
te

nc
y

sa
vi

ng
s

[%
]

2-way
4-way

8-way
Fully associative

(b)

Figure 5.10: Effect of indexing function on latency savings for (a) blackscholes and (b)
streamcluster. Only these benchmarks are shown as they react the best and worst to prediction
respectively.

map to the same entry. A Least Recently Used (LRU) replacement policy is used to
evict entries out of the predictor LUT when required, but with slight modifications,
as to reduce the number of evictions of addresses with a pending transaction. The
replacement policy implemented to achieve this consists of two stages. First, only
entries in the set which are in state 2 or lower are considered for replacement. These are
entries for addresses only present in the L2, or currently being requested by the L2. Of
this subset, the LRU entry is chosen. In case none of the entries in the set are in state 2
or lower, a pure LRU replacement policy is used.

To investigate the effect of sharing entries, a fully-associative LUT (Section 2.1.3)
is used which provides an upper bound on the LUT hit rate, since it does not suffer from
mapping conflicts. Although impractical, it is useful for comparison purposes.

Effect of LUT associativity

In the ideal prediction scheme, the complete memory address (with the exception of the
block offset) is used as an index to lookup the associated prediction information in the
LUT. The same principle holds for the fully associative LUT. In the realistic predictor
that is not the case and a subset of the address bits will be used as the index to map
onto a set in the LUT. The remaining address bits will be used as tag. The length of
the index is determined by the number of sets in the LUT and decreases therefore with
increasing associativity. The start of the index is important as it determines how efficient
the mapping will be as shown in Figure 5.10. Only blackscholes and streamcluster are
shown as they react the best and worst to prediction respectively. The effect is more
pronounced for blackscholes (Figure 5.10a) than for streamcluster(Figure 5.10b) but
it is clear the most optimal bits for the index mask were found to be the most significant
bits near the block offset, as they show the most variation and will therefore lead
to a better mapping. This figure also shows that by using optimal indexing bits the
performance of the realistic indexing functions is comparable to the upper limit case of
the fully-associative LUT in which there are no mapping conflicts.

Figure 5.11 gives an overview of the latency savings for all PARSEC benchmarks,
when using the optimal indexing function. Overall, increasing the associativity increases

129

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

blac
ksc

hole
s

ca
nnea

l
ded

up

flu
idan

im
ate

fre
qmine

ray
tra

ce

str
ea

mclu
ste

r
x2

64

Benchmarks

0

10

20

30

40

50

60

La
te

nc
y

sa
vi

ng
s

[%
]

2-way
4-way

8-way
Fully associative

Ideal

Figure 5.11: Latency savings for various indexing functions for a predictor with a LUT with
8192 entries.

2-way associative 40 kB

4-way associative 41 kB

8-way associative 42 kB

L1 (32 kB, 4-way) 32.88 kB

Table 5.4: Size of a LUT with 8192 entries

the latency savings as the number of conflicts decreases. An increase in the associativity
will have an effect on the predictor complexity. Prediction can only start after the
prediction information has been retrieved from the LUT making serially accessing the
ways in a set not desirable. A 4-way associative LUT would provide a compromise
between speed, added complexity and prediction accuracy. When comparing the latency
savings of the ideal predictor with the set-associative predictor, the loss in performance
becomes clear. However, the ideal predictor would be larger than the actual byte-
addressable physical memory and is not implementable in practice.

An entry in a N-way associative LUT will be larger than its counterpart in the
directly mapped LUT as the entry now also needs to contain the tag and the bits used
by the LRU replacement algorithm, but this is offset by the decrease in number of
entries. As the size of the tag depends on the associativity of the LUT, the total LUT
size increases slightly when increasing the associativity. The LUT sizes can be found in
Table 5.4 and are in the same order of magnitude as a L1 cache demonstrating that the
LUT will be fast and will not significantly increase the area of the overall CMP.

Effect of LUT size

The effect of the number of entries on prediction accuracy was investigated by sweep-
ing the number of entries in the LUT from 1K to 16K, for a 4-way associative LUT.

130

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

1K 2K 4K 8K
16K

32K

Number of entries in LUT

20

25

30

35

40

45

50

55

La
te

nc
y

sa
vi

ng
s

[%
]

Latency savings

0.000

0.001

0.002

0.003

0.004

0.005

0.006

 la
te

nc
y

sa
vi

ng
s

/
 s

iz
e

 latency savings / size

(a)

1K 2K 4K 8K
16K

32K

Number of entries in LUT

20

25

30

35

40

45

50

55

La
te

nc
y

sa
vi

ng
s

[%
]

Latency savings

0.000

0.001

0.002

0.003

0.004

0.005

0.006

 la
te

nc
y

sa
vi

ng
s

/
 s

iz
e

 latency savings / size

(b)

Figure 5.12: Latency savings when increasing the number of entries in a 4-way associative
LUT for (a) blackscholes and (b) streamcluster.

Optimal number
of LUT entries

LUT size Benchmarks

2K 10.75 kB freqmine, raytrace

4K 21 kB fluidanimate

8K 41 kB blackscholes, canneal, x264

32K 156 kB dedup, streamcluster

Table 5.5: Optimal number of LUT entries for a 4-way associative LUT.

Figure 5.12 shows the effect of increasing the LUT size on the latency savings for
blackscholes and streamcluster. Increasing the number of entries increases the latency
savings (red line) as can be expected. The size, however, increases faster than the
latency saved. Looking at the gain in latency savings over the increased LUT size for
blackscholes in Figure 5.12a, shows that the return on investment (blue line) decreases
when increasing the number of entries in the LUT above 8K. In the case of stream-
cluster, the optimal number of entries in the LUT is 32K as shown in Figure 5.12b
(assuming the allowed LUT size ranges from 2K entries to 32K entries) . However,
the actual latency savings that can be obtained for streamcluster with a 32K LUT
are smaller than those for blackscholes with a 4K LUT. Table 5.5 shows the optimal
number of entries in the LUT per benchmark. The predictor setup needs to be able to
adequately handle all benchmarks so a LUT with 8K entries seems most optimal.

Effect of timing

As soon as the predictor generates the predictive requests, they are transmitted to
the allocator, which handles them as soon as possible. However, this might not be
optimal as the message for which the predictive circuit is intended, might not arrive
immediately. Depending on contention in the coherence controller, there might be a
significant amount of time between the setup of the predictive circuit and the message
arrival. During this gap, the predictive circuit might be torn down to use the resources
for other circuits.

Figure 5.13 shows the effect of this timing gap. The red bars depict the proportion

131

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

flu
idan

im
ate

ca
nnea

l
ded

up

ray
tra

ce

blac
ksc

hole
s

fre
qmine

str
ea

mclu
ste

r
x2

64

Benchmarks

0

5

10

15

20

25

30

35

Pr
op

or
ti

on
 o

f
pr

ed
ic

ti
ve

 c
ir

cu
it

s
[%

]

Unused predictive ciruits Re-requested predictive circuits

Figure 5.13: Effect of the timing gap between the predictive circuit and a possible corresponding
message.

of predictive circuits which are torn down before they are used, over the total number of
predictive circuits. The blue bars show the proportion of these unused circuits which
will later on be requested again, by their corresponding message, again over the total
number of predictive circuits. Due to constraints on simulation time, the traces were only
run for 1,000,000 messages. However, these results show that while a non-negligible
proportion of the predictive circuits are never used, the proportion of these circuits that
then are requested again is quite small, which indicates the timing gap is not necessarily
a problem.

5.4.2 Use of partial tags
The speed at which the predictor works will determine its efficiency. As shown in
Figure 5.7, the actual prediction can only start after the message interception phase and
the LUT lookup. A shorter tag length used in the LUT will decrease both the delay after
which message interception can start (∆ in Figure 5.7) and the duration of the actual
interception. Another positive side-effect of a shorter tag is a smaller LUT as the size of
every entry decreases. The use of a partial tag has been proposed in the past to reduce
the complexity of cache lookup [164].

Message interception delay

Figure 5.14a shows how a message is modulated on the 8 wavelengths in the stripe.
With a modulation speed of 25 Gbit/s and a clock frequency of 2 GHz, 12.5 bits can be
modulated on every wavelength per clock cycle. Every block in Figure 5.14 therefore
represents 12 bits. The control info in a coherence message (C) is 8 B long and will need
6 blocks. If the messages carries data, the critical byte (D*)4 will also be modulated

4The processor core requests data from memory on a word granularity. By placing this critical word
first in the response message and transmitting the word to processor core immediately upon arrival in
the cache, the miss latency as perceived by the processor core can be minimised [2, Chapter 2.2]. Some
architectures can make memory references on a byte granularity, making the requested byte the critical
byte.

132

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

λ0

λ1

λ2

λ3

λ4

λ5

λ6

λ7

3

D

D

D

D

D

D

D

D
2
D

D

D

D

D

D

D

D

Clock cycle 0
C

C

C

C

C

C

D*

D

1
D

D

D

D

D

D

D

D

4

D

D

D

D

D

D

D

D

(a)

λ0

λ1

λ2

λ3

λ4

λ5

λ6

λ7

4

D

D

D

D

D

D

D

P
2
P

D

D

D

D

D

D

D

Clock cycle 0

C

C

C

C

C

C

D*

D

1
P

D

D

D

D

D

D

D

3

D

D

D

D

D

D

D

P

Δ Message interception delay

(b)

Figure 5.14: Encoding of the a message on 8 wavelengths. C denotes the control info, D*
stands for the critical byte, D for data and P represents the prediction info. Only the first 5 clock
cycles are shown for clarity.

in the first clock cycle, immediately after the control information, and only takes one
block. The remainder of the data will take 41 additional blocks, resulting in a total
serialisation time of 6 clock cycles for a data message. The addition of the predictor
should not interrupt the normal organisation of message transmission, so specific
prediction information (P) is added to the message, which will be transmitted after the
first clock cycle. These blocks contain the destination of the message (log2(N) bits),
the message type (11 possibilities so 4 bits), the request type (5 possibilities resulting 3
bits), the destination type (1 bit) and the complete address (26 bits as this is the cache
line address minus the block offset). This amounts to 38 bits, for which 4 blocks are
needed.

In Figure 5.14b these 4 blocks are encoded on 1 wavelength. In this case, only 1
wavelength needs to be intercepted thus decreasing the number of receivers required
at the crossbar but the LUT lookup can only start after 5 clock cycles. To reduce this
latency we could increase the number of wavelengths used to modulate P or reduce the
size of P where the latter is the most optimal solution. P can be reduced by lowering the
overhead of the address information. The LUT needs the index and the tag of a memory
address. By only using a part of the tag in the LUT, the size of P can be reduced as
this lowers the overhead of the address information. A reduced tag length will decrease
the accuracy of the LUT: two distinct address with the same index and partial tag will
be seen by the LUT as identical and therefore be mapped onto the same entry. The
prediction information held in an entry in a LUT that uses partial tags is therefore based
on the coherence transactions of multiple distinct addresses.

The number of intercepted wavelengths will affect the power consumption of the
predictor receiver. This effect can be quantified, albeit in a simplified manner by only
including ring heating [165] and power per individual receiver [166]. Figure 5.15 shows
the effect of decreasing the tag length on both the latency and the power consumption of
the message interception stage. If the latency of message interception needs to be below
1 clock cycle, 4 wavelengths in total need to be intercepted. However, when using a tag
length of only 2 bits, this can be achieved using only 2 wavelengths. This results in a
2× decrease in power consumption.

133

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

1 2 3 4 5 6
Number of wavelengths to intercept

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
te

rc
ep

ti
on

 la
te

nc
y

[c
lo

ck
 c

yc
le

s] Full tag
Partial tag length of 10

Partial tag length of 2

50

100

150

200

250

Po
w

er
 [

m
W

]

Interception power

Figure 5.15: Effect of reduction in tag length on the latency and power consumption of the
message interception stage, assuming a 4-way indexing scheme for a LUT with 8192 entries.

Results

It would seem that varying the size of the tag length would lead to a trade-off between
power and latency savings where a short tag would lead to reduced power and inter-
ception latency at the cost of a less efficient predictor. However, this is not always the
case.

In Figure 5.16 - Figure 5.19, the use of speculative circuits is disabled to only show
the effects of partial tag prediction. This means every circuit (based upon a predictive
or a firm request) will be torn down immediately after it has been used or, in the case of
a predictive circuit, when the resources are needed elsewhere.

Figure 5.16 shows the effect of the tag length on the prediction hit rate (red line)
and the circuit hit rate (blue line). The prediction hit rate is measured by checking the
prediction LUT for the last prediction for this address when the message comes by. The
circuit hit rate, however, is measured at the network ingress: a circuit hit occurs when a
message arrives at the network ingress with a circuit set up. It is important to note in this
case that an existing circuit can be the result of a prediction for a completely different
address (and, hence, message) which is why the circuit hit rate can be higher than the
prediction hit rate. This is because messages can piggyback on predictive circuits set up
for other addresses. For example, imagine two concurrent coherence transactions, one
for address A© and the other for address B©. Both addresses are completely unrelated and
map onto different entries in the LUT. The first message in the coherence transaction for
A© results in a predictive circuit from node 0 to 1. The first message in the transaction
for B© then comes by, for which no prediction could been made as it is the first message
in the transaction. However, because this message incidentally travels from 0 to 1, it
can use the predictive circuit set up for A©. This will not be counted as a prediction hit
(because the circuit was predicted for a message for A©, not B©) but it will be counted
as a circuit hit (the circuit was established when the message arrived). However, if
the second message in the coherence transaction for A© comes by and uses the circuit
from 0 to 1, this will counted as both a prediction hit and a circuit hit. Therefore, the
circuit hit rate can be higher than the prediction hit rate. This mechanism can occur

134

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

more frequently in the case of a partial tag as multiple distinct addresses are mapped
onto a single entry in the LUT, thereby making it more difficult to make a prediction.
As the prediction algorithm will simply make no prediction if it cannot combine the
prediction info in the LUT and the intercepted message into a prediction, there is no
chance of prediction hit occurring but a circuit hit can still occur. The prediction hit
rate decreases with decreasing tag length for all benchmarks. This can be explained by
the fact that the predictions become less precise because multiple distinct addresses are
mapped onto a single entry in the LUT. However, more surprisingly, some benchmarks
(e.g. blackscholes (Figure 5.16a) or x264 (Figure 5.16h)) have an increasing circuit
hit rate when the tag length decreases. New terminology is now introduced to reason
about this behaviour: a bucket is the unique combination of a tag and index. A bucket
is the same as an entry in the LUT, but by using the concept of a bucket, it is clearer
that this behaviour is independent of the LUT organisation. When decreasing the
tag length, there are less unique buckets but more distinct addresses map onto each
bucket.Figure 5.17a shows the number of buckets does indeed decrease with decreasing
tag length, thereby increasing the number of addresses mapping onto each bucket as
shown in Figure 5.17b. The exact numbers differ between the benchmarks, as they have
different memory access patterns.

The prediction hit rate is affected by the similarity between the addresses mapping
onto a bucket: if the distinct addresses that map onto this bucket behave very similar, the
resulting prediction will be better than when the addresses behave completely differently,
muddling the prediction information and algorithm. The latter effect is at play here, in
Figure 5.16: the addresses mapping onto each bucket behave dissimilar, leading to a
lower prediction hit rate with decreasing tag length. The circuit hit rate on the other
hand is influenced by the similarity across the different buckets: bucket A might make a
prediction, resulting in a circuit used by a message mapping onto bucket B. This would
not count as prediction hit but will be seen as a circuit hit. This might explain why some
benchmarks have an increasing circuit hit rate with decreasing tag length. In the case
of benchmarks with stable average traffic patterns, because of the increased number of
addresses mapping onto each bucket , the prediction information in each bucket will
start approaching the average prediction information, across all buckets. This will lead
to predictive circuits that might not be used by the message it was intended for, but by
another message from another bucket. This averaging behaviour will not occur for all
benchmarks, as benchmarks with quickly changing traffic patterns for example will not
have an ’average’ behaviour. This could explain the differences in circuit hit rates across
benchmarks. An experiment was carried out to check if this averaging effect actual
occurs. The circuits used by all messages mapping onto a bucket i.e. the average traffic
pattern per bucket was used as an approximate for prediction information per bucket.
This was done by creating a vector per bucket in which each entry in a vector stands for
a circuit e.g the first entry in the vector stands for a circuit from node 0 to node 1. Every
time this circuit is used by a message mapping onto this bucket, this increases a counter.
The circuit vectors per bucket were built up over the complete runtime. At the end
of the run, all vectors were normalised. The normalised circuits vectors belonging to
different buckets were then compared. Ideally, all buckets would be compared. As this
would be infeasible in practice because of the large number of comparisons, 10% of all
buckets were randomly picked and compared by taking the absolute difference between
their corresponding normalised traffic vectors. The results of this experiment are shown
in Figure 5.18. This plot shows that on average, the difference in traffic patterns

135

5.4. Realistic Use of Predictive circuits in Switched Networks On-Chip

across all buckets (as a sort of representation of prediction information) decreases with
decreasing tag length. The random jumps for some benchmarks could be due to the
fact that only 10% of all buckets are compared. While Figure 5.18 could indeed be
seen as a suggestion that the averaging behaviour across buckets plays a role in the
increasing circuit hit rate of some benchmarks, is it by no means conclusive, if only
because traffic patterns do not equal prediction information. The relationship between
buckets, prediction information in a bucket, the prediction and an eventual circuit is
not linear at all. There are so many effects at play (for example, the prediction itself
is a complicated FSM based upon the prediction information where the prediction
information is combination of sharers and current transaction), making it not straight
forward to reason about this. The benchmarks differ as well in terms of distinct memory
addresses, number of resulting buckets etcetera. As shown in Figure 5.19 the changes
in latency savings closely follow the circuit hit rate behaviour.

Overall, reducing the tag length, thereby decreasing the power and latency of the
predictor structure, has a mixed effect on the latency savings. Figure 5.16 -Figure 5.19
showed the effects of prediction without speculative circuits, to remove the interplay
between speculation and prediction. However, the actual predictor would use speculative
circuits. Speculation does not alter the effect of decreasing tag length, only increases
the circuit hit rate equally for all tag lengths. Figure 5.20 shows the effect of decreasing
tag length for all PARSEC benchmarks by subtracting the latency savings for the full
tag from those of a particular tag length. When the line dips below zero, it is no longer
beneficial (from a performance point of view) to decrease the tag length. The negative
effect of a decreased tag length (e.g canneal) is smaller than the positive effect on most
benchmarks (e.g dedup). The most optimal tag length across all benchmarks in terms
of latency savings, would be 10 bits as there there are no negative consequences yet at
that point.

136

245101520
Partial tag length

35

40

45

50

55

60

R
at

es
 [

%
]

blackscholes

Prediction hit rate Circuit hit rate

(a)

245101520
Partial tag length

0

10

20

30

40

50

60

R
at

es
 [

%
]

canneal

Prediction hit rate Circuit hit rate

(b)

245101520
Partial tag length

0

10

20

30

40

50

60

R
at

es
 [

%
]

dedup

Prediction hit rate Circuit hit rate

(c)

245101520
Partial tag length

0

10

20

30

40

50

60

R
at

es
 [

%
]

fluidanimate

Prediction hit rate Circuit hit rate

(d)

245101520
Partial tag length

25

30

35

40

45

50

55

60

R
at

es
 [

%
]

freqmine

Prediction hit rate Circuit hit rate

(e)

245101520
Partial tag length

0

10

20

30

40

50

60

R
at

es
 [

%
]

raytrace

Prediction hit rate Circuit hit rate

(f)

245101520
Partial tag length

0

10

20

30

40

50

60

R
at

es
 [

%
]

streamcluster

Prediction hit rate Circuit hit rate

(g)

245101520
Partial tag length

0

10

20

30

40

50

60

R
at

es
 [

%
]

x264

Prediction hit rate Circuit hit rate

(h)

Figure 5.16: Effect of tag length on prediction & circuit hit rate

2451015
Partial tag length

200000

400000

600000

800000

1000000

1200000

#
 U

ni
qu

e
ta

g
&

 in
de

x
co

m
bi

na
ti

on
s

blackscholes
canneal
dedup

fluidanimate
freqmine
streamcluster

raytrace
x264

(a)

2451015
Partial tag length

100

200

300

400

500

600

#
 A

dd
re

ss
es

 p
er

 b
uc

ke
t

blackscholes
canneal
dedup

fluidanimate
freqmine
streamcluster

raytrace
x264

(b)

Figure 5.17: Effect of tag length on (a) the number of buckets where a bucket is the unique
combination of tag and index and (b) the number of distinct addresses mapped onto each bucket,

2451015
Partial tag length

1.75

1.80

1.85

1.90

1.95

2.00

2.05

Tr
af

fi
c

di
ff

er
en

ce

blackscholes
canneal
dedup

fluidanimate
freqmine
streamcluster

raytrace
x264

Figure 5.18: Effect of tag length on the difference in prediction information per bucket, where
difference in prediction information is approximated by difference in traffic patterns

245101520
Tag length

10

5

0

5

10

La
te

nc
y

sa
vi

ng
s

co
m

pa
re

d
to

 f
ul

l t
ag

 [
%

]

blackscholes
canneal

dedup
fluidanimate

freqmine
raytrace

streamcluster
x264

Figure 5.19: Effect of tag length of latency savings for the various PARSEC benchmarks.

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

blackscholes

Latency savings Circuit hit rate

(a)

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

canneal

Latency savings Circuit hit rate

(b)

245101520
Tag length

5

10

15

20

25

30

35

40

45

50

%

dedup

Latency savings Circuit hit rate

(c)

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

fluidanimate

Latency savings Circuit hit rate

(d)

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

freqmine

Latency savings Circuit hit rate

(e)

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

raytrace

Latency savings Circuit hit rate

(f)

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

streamcluster

Latency savings Circuit hit rate

(g)

245101520
Tag length

10

15

20

25

30

35

40

45

50

%

x264

Latency savings Circuit hit rate

(h)

Figure 5.20: Effect of tag length on circuit hit rate & latency savings

245101520
Tag length

10

5

0

5

10

La
te

nc
y

sa
vi

ng
s

co
m

pa
re

d
to

 f
ul

l t
ag

 [
%

]

blackscholes
canneal

dedup
fluidanimate

freqmine
raytrace

streamcluster
x264

Figure 5.21: Effect of tag length of latency savings for the various PARSEC benchmarks.

5.5. Conclusion

Speculation Ideal
prediction

Set-associative
predictor

Set-associative
predictor

with partial tag
Path setup strategy

10

20

30

40

50

60

La
te

nc
y

sa
vi

ng
s

[%
]

Figure 5.22: Waiting latency savings of the various path setup strategies, averaged over the
PARSEC benchmarks. The error bars denote the variation across the benchmarks.

5.5 Conclusion
This chapter quantified how different path setup strategies can affect the waiting latency
a message experiences in a switched optical NoC. Although a switched optical NoC
with 8 wavelengths per channel was used in this chapter, the concepts presented here
can be used in any type of NoC (be it electrical or optical) which needs centralised path
setup. Figure 5.21 gives an overview of the savings in waiting latency per strategy, when
compared to the baseline switched NoC. The error bars denote the variation across
the PARSEC benchmarks. The first strategy consisted of keeping circuits open after
transmission. This reduced the waiting latency by 15% on average. This strategy is
most efficient for benchmarks with a high proportion of evictions per L1 miss as both
the requested cache line and the victim cache line are mapped onto the same L2 slice
and as such, can use the same circuit. However, by seeing messages in a NoC as part
of a coherence transaction, the waiting latency can be reduced even further by using a
coherence-based predictor. The maximal obtainable waiting latency saving was found
by investigating an ideal predictor scheme, in which every address gets a dedicated
entry in the LUT holding the prediction information. As the proposed predictor cannot
handle concurrent transactions for the same address, benchmarks with a lower number
of sharers per cache line react better to prediction. On average, the saving in waiting
latency is reduced by 42%. To investigate the effect a realistically sized predictor could
have, the size of the predictor LUT is reduced, in combination with set-associative
indexing methods. Such a coherence-based predictor with a LUT of 40 kB can reduce
the waiting latency by 15% on average. The predictor needs to intercept all messages
transmitted on the NoC to predict upcoming circuits. The amount of information to
be intercepted will affect both the latency of the interception operation (and thus the
prediction delay) and the size of the predictor LUT. This leads to the third strategy
which makes use of a partial tag scheme. Reducing the tag length will reduce the
number of messages to be intercepted and reduce the interception delay to two clock

141

5.5. Conclusion

cycles, whilst reducing the LUT size to 27 kB, smaller than a L1 cache. Reducing the
tag length diminishes the prediction hit rate but as the open circuit policy takes over
when less predictions arrive, the overall result is a increase in latency savings. Using
a set-associative coherence-based prediction scheme with a partial tag decreases the
waiting latency by 31% on average. The error bars in Figure 5.21 denote the variation
across the PARSEC benchmarks, as the various benchmarks react differently to these
methods. The speculative methods exhibits the least amount of variation as it is the
simplest method. The effect of prediction on waiting latency will be affected by factors
such as prediction hit rate, concurrency, traffic pattern and injection rate. These factors
differ between all benchmarks resulting in a larger spread for predictive methods.

142

6
Conclusion

THE Network On-Chip (NoC) is a vital part of any Chip Multiprocessor (CMP) as it
routes all the traffic between the different coherence controllers. Every message
on the network is a direct or indirect consequence of a memory reference and,

therefore, has the possibility of stalling the processor core. This work focussed on how
the use of optics in the NoC can affect the performance of the CMP as a whole.

6.1 Thesis Summary
Optical NoCs have been proposed as an alternative to the currently accepted electrical
NoCs as they offer a lower power consumption and higher bit rates. As optical buffers
are not a viable option on-chip, the optical NoCs being proposed differ significantly
from the electrical NoCs currently in use. In an optical NoC end-to-end paths need
to be set up in advance (in the absence of buffering). In electrical NoCs on the other
hand, messages are mostly transmitted on a hop-by-hop basis, using intermediate
buffering. The total message latency in an optical NoC therefore, consists of two major
parts: the serialisation latency and the waiting latency as was shown in Figure 4.7.
The waiting latency is the time a message spends in the ingress buffers, awaiting
transmission. The waiting latency is basically equal to the path setup latency as there
is very little contention in NoCs as was shown in Figure 3.5. Existing optical NoC
proposals therefore focus on minimising this path setup latency. One of the most
viable of these proposals is the Single Writer, Multiple Reader (SWMR) scheme as
discussed in Section 2.2.3. No path setup is needed as every node has a dedicated
channel to which it writes whilst all other nodes read from this channel (broadcast). The
disadvantage of this scheme is the high number of transmitters and receivers, which
increases quadratically with node count (Table 2.7). In this thesis I proposed to use

143

6.1. Thesis Summary

a circuit-switched NoC to keep the number of transmitters and receivers down and
avoid paying the path setup latency by means of coherence-based message prediction.
The crossbar-based optical NoC assumed in this thesis (see Figure 2.24) only depends
linearly on the node count as was shown in Table 2.7.

This thesis can therefore be summarised by the following two questions; can an
optical NoC lead to better overall CMP performance than the same CMP using an
electrical mesh? And; can one get away with an optical NoC which is inherently slower
by using holistic techniques i.e. can an optical circuit-switched crossbar in combination
with a coherence-based predictor perform better than a SWMR-based optical NoC?

Can an optical NoC outperform an electrical mesh?

The first question was answered in Section 4.2 using full-system, cycle-accurate sim-
ulations. The electrical mesh as assumed in this thesis has links with a latency of 1
clock cycle, a router with 5 pipeline stages and a bandwidth of 8 B. The optical NoCs
as defined in this thesis will modulate data on the wavelengths at a modulation speed
of 25 Gbit/s . In this setup, a CMP with an optical NoC (be it circuit-switched or
SWMR) will perform better than the same CMP with an electrical mesh once every
channel has 2 or more wavelengths. The exact crossover point will depend on the
system setup: a lower optical modulation speed or more efficient electrical mesh will
move this crossover point to a higher number of wavelengths, as was discussed in
Section 4.3. Figure 4.10 also showed how the different benchmarks reacted differently
to the addition of an optical NoC, with the less operationally intensive benchmarks
reacting more strongly. The maximal achievable speedup of blackscholes for example
lies around 1% whilst the maximal achievable speedup of canneal lies around 20%.

The effect of an increasing number of wavelengths per channel also levels off
for both NoC types. Most benchmarks reach this point around 8–16 wavelengths.
This confirms the findings of Figure 4.5: the bandwidth of a NoC does not have the
same impact as latency. Once 8 wavelengths are provided, the majority of messages
(i.e. control messages) will have a serialisation latency of a single clock cycle. Any
additional wavelengths will provide additional bandwidth to the NoC and decrease the
serialisation latency of data messages (only 30% of all on-chip messages). Neither of
these will affect the overall performance significantly.

Can a circuit-switched optical NoC outperform a SWMR based NoC?

Figure 4.9 also allows to compare the performance of the circuit-switched NoC without
prediction with that of the SWMR-based NoC. When both NoC types have the same
serialisation latency (i.e. the same number of wavelengths per channel), the SWMR
scheme leads to better performance than the crossbar-based NoC: the overall latency
will be lower as there is no path setup latency.

However, for a fairer comparison both NoC types should have the same bisection
bandwidth (defined in Equation (4.2)) as this can be seen as a proxy for NoC complexity.
The bisection bandwidth of the non-switched NoC is significantly larger when both
NoCs have the same serialisation latency. In this case it can be calculated that the
bisection bandwidth of the SWMR NoC is 3.75× that of the crossbar-based NoC in a
system with 16 tiles. At low bisection bandwidths Figure 4.10 shows the crossbar-based
NoC performs better than the SWMR NoC as it can provide more wavelengths per

144

6.1. Thesis Summary

channel and, hence, a lower serialisation latency. However, there is a crossover point:
once the SWMR NoC provides around 8 wavelengths per channel, it outperforms the
circuit-switched NoC. This is due to the fact that for both NoC types the serialisation
latency is quite low at that point (1 clock cycle for control messages) and the SWMR
NoC can offer the additional benefit of the absence of any path setup.

To gauge the impact of prediction, the effect of the path setup process was exacer-
bated by increasing the path setup latency from 4 clock cycles (in Chapter 4) to 8
clock cycles (in Chapter 5). As the serialisation latency of both NoCs is identical, only
waiting latency needs to be considered. Figure 6.1 shows the difference in waiting
latency between the circuit-switched NoC and non-switched NoC without predictive
methods when both optical NoCs have 8 wavelengths per channel. Averaged over all
benchmarks, the waiting latency of the non-switched NoC is almost 10 clock cycles
lower than that of the switched NoC. The highest reduction in waiting latency these
holistic path setup methods can offer is the path setup latency itself, which is equal to 8
clock cycles and denoted by the black line. If the difference between the NoC types
(determined by subtracting the latency of the non-switched NoC of the latency of the
switched NoC) is larger than this value, the holistic methods simply cannot improve
the performance of the switched NoC. For most benchmarks, this is the case: the gap
in waiting latency between the SWMR and the crossbar scheme is too large for the
predictive path setup methods to bridge it. Especially when considering that avoiding
path setup for all messages is semi-impossible as the predictor is not geared at predicting
all messages (e.g. L1 REQ). Figure 6.1 also shows the side-effects of a change of
non-switched to switched NoC are not straightforward. The waiting latency a message
experiences in a switched NoC is not the sum of the waiting latency of a message in a
non-switched NoC and the path setup latency. The waiting latency is the result of the
interplay between the traffic and the NoC type. This observation will make it hard to
make generalised conclusions about the effect of holistic path setup methods on the
waiting latency e.g. which path setup latency can be tolerated in a circuit-switched NoC,
using prediction, so it could outperform a non-switched NoC.

However, if both NoC types have the same bisection bandwidth (and, hence, com-
plexity), a circuit-switched NoC can actually outperform the non-switched NoC by
using predictive path setup methods. Figure 6.2 shows the savings in average message
latency when comparing a circuit-switched NoC with 8 wavelengths per channel to a
non-switched NoC with 2 wavelengths per channel. These NoCs have approximately the
same bisection bandwidth. To compare these two NoCs, total message latency is used
rather than waiting latency. When both NoCs have the same number of wavelengths
per channel, waiting latency can be used as a metric as the serialisation latency of both
NoCs will be identical. However, a crossbar-based NoC with 8 wavelengths will have a
significantly lower serialisation latency than the SWMR NoC with only 2 wavelengths
per channel, making it necessary to use total message latency rather than waiting
latency1. The baseline switched NoC will, in this configuration, perform slightly worse
than the SWMR as can be seen in Figure 6.2. On average, the message latency in
the circuit-switched NoC will be 11% larger than in the non-switched NoC, leading

1Both NoC types will differ in terms of complexity and layout. However, by setting the number
of wavelengths per channel to 2 and 8 for the SWMR and crossbar respectively, the total number of
transmitters will be relatively similar: the SWMR scheme will have 2×162 transmitters and receivers,
the crossbar scheme on the other hand will have 162 transmitters and receivers, slightly less (Table 2.7. It
would be difficult to exactly compare both network types in terms on complexity and component count
without doing the physical implementation of the networks, which is outside of the scope of this thesis.

145

6.1. Thesis Summary

blac
ksc

hole
s

ca
nnea

l
ded

up

flu
idan

im
ate

fre
qmine

ray
tra

ce

str
ea

mclu
ste

r
x2

64

AVERAGE

Benchmarks

0

2

4

6

8

10

12

14

W
ai

ti
ng

 la
te

nc
y

[c
lo

ck
 c

yc
le

s]

Absolute difference between SWMR and XBar
Maximal prediction gain

Figure 6.1: Difference in waiting latency between the the non-switched and switched optical
NoCs. This difference is calculate by subtracting the non-switched latency of the switched
latency and is marked as the absolute difference to indicate there is no normalisation done. The
black line denotes the maximal achievable saving in waiting latency prediction can provide.

Baseline Speculation Ideal
prediction

Set-associative
predictor

Set-associative
predictor

with partial tag
Path setup strategy

20

10

0

10

20

30

40

La
te

nc
y

sa
vi

ng
s

[%
]

Figure 6.2: The effect of path setup strategies in switched NoC (crossbar) with 8 wavelengths
per channel, normalised to non-switched (SWMR with the same bisection bandwidth. The error
bars denote the variation across the benchmarks.

to negative latency savings. This result, in which the SWMR scheme outperforms the
crossbar-based NoC might seem at odds with Figure 4.10 in which a crossbar with
8 wavelengths outperforms the SWMR scheme with 2 wavelengths. However, in the
system depicted in Figure 4.10 the path setup latency is only 4 clock cycles whereas in
this chapter path setup is assumed to take 8 clock cycles. The second bar in Figure 6.2
shows using speculative circuits in a circuit-switched NoC will, on average, lead to 3%

146

6.2. Future Research

latency savings compared to the non-switched NoC. The use of an ideal predictor will
reduce the latency even further to 28% on average. A more realistically sized predictor
will have more modest latency savings of around 13%. By reducing the tag length, the
predictor will not only become smaller and faster, the latency savings increases to 18%
on average. The error bars in Figure 6.2 are larger than those in Figure 5.21 indicating
more variation between the benchmarks. This is due to the fact that each bar in Fig-
ure 6.2 holds the comparison between two different NoC topologies and organisations.
In Figure 5.21 on the other hand compares path setup methods, in the same NoC. A
change in NoC topology will affect the latency to a higher degree than the addition of a
speculative or predictive path setup method, resulting in a larger variation between the
benchmarks. Again, it needs to be noted that even though Chapter 5 focussed on using
these predictive path setup methods in optical crossbar-based NoC, they are applicable
in any type of NoC with centralised arbitration.

6.2 Future Research
Whilst the two research questions at the centre of this thesis were answered, there are
still avenues to be explored. First of all, the effect of the speculative and predictive
techniques proposed in Chapter 5 has only been explored using traces. Whilst this is
a good tool for initial exploration, the true extent of the effect of prediction can only
be gauged by means of full-system simulation. Fundamentally, this is not a challenge.
The predictor is already implemented in C++ and can collaborate with the allocator
without a problem. The main issue lies in extracting the prediction information from the
messages at runtime: I was not able to extract coherence information directly from the
messages in gem5. Chapter 5 used traces containing prediction information but these
traces were created in two steps: traces containing all messages and all activity in the
caches were captured in gem5, followed by post-processing offline which combined the
information gleaned from the caches with the messages to create messages containing
the prediction information. However, this is no a fundamental limit and I am certain it
can be solved.

Whilst the results presented in this thesis confirm the positive effects an optical
NoC could have on the performance of a 16-core CMP, the move towards the actual
use of optics in the NoC would be a very big shift. Complementary Metal Oxide
Semiconductor logic (CMOS) technology used for conventional electrical interconnects
is a mature technology whilst the integration of the various optical components on-chip
is still in its infancy (Section 2.2.3). The performance improvements in Chapter 4 can
already be seen as an argument for the use of optics in the NoC, but, nevertheless, I
believe this argument can be strengthened in two ways. First of all, the core count
could be increased. Optical NoCs will most likely be used for server chips, running
scientific, financial and engineering workloads. These chips will contain more than
16 processor cores, as was assumed in this work. The simulation structure as is can
handle such an increase in processor cores, the only hindrance is the wall clock time
of the simulations: the larger the number of processor cores simulated in gem5, the
lengthier the simulations become. A second way of strengthening the case for the use of
optics could be made if the inclusion of optics could be expanded beyond the NoC. The
macrochip as shown Figure 2.17 also proposed the topology could be used to connect
multiple chips. The work by Beamer et al. for example propose the use of optics in the

147

6.2. Future Research

Dynamic Random Access Memory (DRAM) chips [167].
A network that incorporates both the DRAM chips and all on-chip coherence

controllers by using optics could level out the distinction between on-chip and off-chip
communication. Such a comprehensive solution could possibly ease the step towards
the use of optics on-chip. The integration of the DRAM chips in the optical NoC
would lead to interesting questions. First of all, should a DRAM controller be a full
node in the network? For example in the Modified Exclusive Shared Invalid (MESI)
protocol as used in this thesis, the memory controllers only communicate with the
Second Level Cache (L2)/directory. From this point of view, such a memory controller
should not be a full and equal node in the network, as this allows for communication
with every other node in the network and a memory controller would never use this
functionality. On the other hand, if the memory controller were to be a full node in the
network, some interesting setups could be investigated. Maybe it would be possible
for the memory controllers to send a response directly to the First Level Cache (L1)
that originally requested the cache line, in parallel to placing the cache line in the
Last Level Cache (LLC). This would require changes to the coherence protocol but it
would allow for a co-design of coherence protocol and network as done in the ATAC
work (Section 2.2.3). The NoC as discussed in this thesis is completely symmetric:
every node has the same number of channels and same number of wavelengths per
channel. Maybe the case could be made for some asymmetry in the network as the
nodes connecting the memory controllers might require a higher bandwidth and, hence,
more channels and/or more wavelengths per channel. All this could be investigated in
gem5 as it also contains detailed models of the memory controllers.

Another possibility would be to explore the use of more complicated modulation
formats than On-Off Keying (OOK). Adding higher order modulation formats would
allow for a trade-off to be made. As shown in Figure 4.10 the effect of a decreasing
serialisation latency levels off at a certain wavelength count. In this thesis, the serialisa-
tion latency was decreased by adding more wavelengths to each channel. However, the
serialisation latency could also be reduced by increasing the modulation speed which
can be achieved by increasing the symbol rate. Using a more complicated modulation
format would increase the complexity and power budget of the transmitter and receivers,
but in turn the number of wavelengths per channel could be reduced. The number
of wavelengths determines the number of optical components such as microrings to
transmit, receive and guide (in the case of the crossbar switch). This would be an
interesting compromise to investigate: optical complexity versus electrical complexity.
The crossover point of this trade-off would most likely also differ between on-chip links
and off-chip links to the memory controllers as the type of communication differs. The
effect of a higher modulation format could be simulated in gem5 as it only emulates the
higher bit rate and any additional encoding and decoding latencies. To determine the
effect on electrical and optical complexity, a lower level investigation of the physical
implementation of both the transmitters/receiver in the nodes and the optical NoC would
be needed.

Overall this thesis has shown the benefits of a holistic approach: by knowing the
functionality of the messages being transmitted, the NoC can be optimised. Some of the
previously discussed ideas for future work are also system-wide approaches: co-design
of the coherence protocol and the optical network incorporating the coherence and
memory controllers, selective use of higher order modulation formats etc. It would also
be interesting to investigate whether messages could be prioritised to obtain a form

148

6.2. Future Research

of Quality of Service (QoS) control. For example, eviction messages are transmitted
at the same time as the corresponding L1 request but the eviction most likely does
not lie on the critical path. An eviction by a L1 just needs to be acknowledged by the
L2/directory whereas the L1 request might need to go to memory or needs invalidations
from other L1 caches. Therefore, the priority of evictions could be lowered. Maybe
QoS could even be applied at a higher level by slowing down or speeding down traffic
on a thread-level. This could be done by assigning priorities or turning wavelengths on
or off. Again, these proposals could be investigated in gem5.

149

References

[1] D. A. Patterson and J. L. Hennessy 2008, Computer Organization and Design,
Fourth Edition, Fourth Edition: The Hardware/Software Interface (The Morgan
Kaufmann Series in Computer Architecture and Design), 4th. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[2] J. L. Hennessy and D. A. Patterson 2007, Computer Architecture, A Quantitative
Approach, 4th. San Francisco, CA, USA: Morgan Kaufmann, 2007.

[3] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E.
Adeagbo and B. Baas Jun. 2016, “A 5.8pJ/Op 115 Billion Ops/sec, to 1.78
Trillion Ops/sec 32nm 1000-Processor Array”, in Symposium on VLSI Circuits,
Honulu, USA: IEEE, Jun. 2016.

[4] Intel Corporation 2016, Intel Xeon Phi Processor 7290, 2016. [Online]. Avail-
able: http : / / ark . intel . com / products / 95830 / Intel - Xeon - Phi -
Processor - 7290 - 16GB - 1 % 7B % 5C _ %7D50 - GHz - 72 - core (visited on
22/08/2016).

[5] Mellanox Technologies 2016, TILE-Gx72 Processor, 2016. [Online]. Available:
http://www.mellanox.com/related-docs/prod%7B%5C_%7Dmulti%7B%
5C_%7Dcore/PB%7B%5C_%7DTILE-Gx72.pdf (visited on 22/08/2016).

[6] J. Feehrer, S. Jairath, P. Loewenstein, R. Sivaramakrishnan, D. Smentek, S.
Turullols and A. Vahidsafa Mar. 2013, “The Oracle Sparc T5 16-Core Processor
Scales to Eight Sockets”, English, IEEE Micro, vol. 33, no. 2, pp. 48–57, Mar.
2013.

[7] G. Chrysos 2012, “Intel Xeon Phi Coprocessor - the Architecture”, in Proceed-
ings of the 24th Hot Chips Symposium, Cupertino, USA, 2012.

[8] D. A. B. Miller 1997, “Physical Reasons for Optical Interconnection”, Interna-
tional Journal for Optoelectronics, vol. 11, pp. 155–168, 1997.

[9] D. A. B. Miller Jun. 2000, “Rationale and Challenges for Optical Interconnects
to Electronic Chips”, Proceedings of the IEEE, vol. 88, no. 6, pp. 728–749, Jun.
2000.

[10] I. O’Connor 2004, “Optical Solutions for System-level Interconnect”, in Pro-
ceedings of the 2004 International Workshop on System Level Interconnect
Prediction, ser. SLIP ’04, New York, NY, USA: ACM, 2004, pp. 79–88.

[11] A. Van Laer, T. Jones and P. M. Watts 2013, “Full System Simulation of
Optically Interconnected Chip Multiprocessors using gem5”, in Optical Fiber
Communication Conference/National Fiber Optic Engineers Conference 2013,
Optical Society of America, 2013, OTh1A.2.

150

http://ark.intel.com/products/95830/Intel-Xeon-Phi-Processor-7290-16GB-1%7B%5C_%7D50-GHz-72-core
http://ark.intel.com/products/95830/Intel-Xeon-Phi-Processor-7290-16GB-1%7B%5C_%7D50-GHz-72-core
http://www.mellanox.com/related-docs/prod%7B%5C_%7Dmulti%7B%5C_%7Dcore/PB%7B%5C_%7DTILE-Gx72.pdf
http://www.mellanox.com/related-docs/prod%7B%5C_%7Dmulti%7B%5C_%7Dcore/PB%7B%5C_%7DTILE-Gx72.pdf

References

[12] A. Van Laer, C. Ellawala, M. R. Madarbux, P. M. Watts and T. M. Jones Mar.
2015, “Coherence Based Message Prediction for Optically Interconnected Chip
Multiprocessors”, in Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, Grenoble, France: EDA Consortium, Mar.
2015, pp. 613–616.

[13] K. Olukotun, L. Hammond and J. Laudon 2007, “Chip Multiprocessor Archi-
tecture: Techniques to Improve Throughput and Latency”, Synthesis Lectures
on Computer Architecture, vol. 2, no. 1, pp. 1–145, 2007.

[14] B. Jacob, S. Ng and D. Wang 2007, Memory Systems: Cache, DRAM, Disk. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[15] S. A. McKee 2004, “Reflections on the Memory Wall”, in Proceedings of the 1st
Conference on Computing Frontiers, ser. CF ’04, New York, NY, USA: ACM,
2004, pp. 162–167.

[16] N. Weste and D. Harris 2010, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th. Boston, USA: Addison-Wesley Publishing Company, 2010.

[17] V. Agarwal, M. S. Hrishikesh, S. W. Keckler and D. Burger 2000, “Clock Rate
versus IPC: The End of the Road for Conventional Microarchitectures”, in
Computer Architecture, 2000. Proceedings of the 27th International Symposium
on, 2000, pp. 248–259.

[18] D. W. Wall 1991, “Limits of Instruction-Level Parallelism”, in Proceedings of
the fourth international conference on Architectural support for programming
languages and operating systems, ser. ASPLOS IV, New York, NY, USA: ACM,
1991, pp. 176–188.

[19] D. E. Culler, J. P. Sing and A. Gupta 1999, Parallel Computer Architecture: A
hardware/software approach. San Francisco, CA, USA: Morgan Kaufmann,
1999.

[20] M. L. Scott Jun. 2013, “Shared-Memory Synchronization”, en, Synthesis Lec-
tures on Computer Architecture, vol. 8, no. 2, pp. 1–221, Jun. 2013.

[21] Y. Hoskote, S. Vangal, A. Singh, N. Borkar and S. Borkar Sep. 2007, “A 5-
GHz Mesh Interconnect for a Teraflops Processor”, IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep. 2007.

[22] N. E. Jerger and L.-S. Peh 2009, “On-Chip Networks”, Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–141, 2009.

[23] M. M. K. Martin, M. D. Hill and D. J. Sorin Jul. 2012, “Why On-Chip Cache
Coherence is Here to Stay”, Communications of the ACM, vol. 55, pp. 78–89,
Jul. 2012.

[24] M. S. Papamarcos and J. H. Patel 1984, “A Low-Overhead Coherence Solution
for Multiprocessors with Private Cache Memories”, in Proceedings of the 11th
annual international symposium on Computer architecture, ser. ISCA ’84, New
York, NY, USA: ACM, 1984, pp. 348–354.

[25] D. J. Sorin, M. D. Hill and D. A. Wood 2011, “A Primer on Memory Consistency
and Cache Coherence”, Synthesis Lectures on Computer Architecture, vol. 6,
no. 3, pp. 1–212, 2011.

151

References

[26] J. Laudon and D. Lenoski 1997, “The SGI Origin: A ccNUMA Highly Scalable
Server”, in Proceedings of the 24th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’97, New York, NY, USA: ACM, 1997, pp. 241–
251.

[27] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H.
Hoffman, P. Johnson, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe and A. Agarwal Mar. 2002, “The Raw
Microprocessor: a Computational Fabric for Software Circuits and General-
Purpose Programs”, IEEE Micro, vol. 22, no. 2, pp. 25–35, Mar. 2002.

[28] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W.
Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney and J.
Zook Feb. 2008, “TILE64 Processor: A 64-Core SoC with Mesh Interconnect”,
in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers, IEEE, Feb. 2008, pp. 88–598.

[29] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M.
Mattina, C.-C. Miao, J. F. Brown III and A. Agarwal Sep. 2007, “On-Chip
Interconnection Architecture of the Tile Processor”, IEEE Micro, vol. 27, no. 5,
pp. 15–31, Sep. 2007.

[30] J. Casazza 2009, “First the Tick , Now the Tock : Next Generation Intel Mi-
croarchitecture (Nehalem)”, Intel Corporation, pp. 1–9, 2009.

[31] D. Hackenberg, D. Molka and W. E. Nagel 2009, “Comparing Cache Archi-
tectures and Coherency Protocols on x86-64 Multicore SMP Systems”, in
Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, 2009, pp. 413–422.

[32] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H.
Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,
M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De,
R. V. D. Wijngaart and T. Mattson Feb. 2010, “A 48-Core IA-32 Message-
Passing Processor with DVFS in 45nm CMOS”, in 2010 IEEE International
Solid-State Circuits Conference - (ISSCC), IEEE, Feb. 2010, pp. 108–109.

[33] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P.
Iyer, A. Singh, T. Jacob et al. 2007, “An 80-tile 1.28 TFLOPS Network-on-Chip
in 65nm CMOS”, in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest
of Technical Papers. IEEE International, 2007, pp. 98–589.

[34] P. Kongetira, K. Aingaran and K. Olukotun Mar. 2005, “Niagara: A 32-Way
Multithreaded SPARC Processor”, IEEE Micro, vol. 25, no. 2, pp. 21–29, Mar.
2005.

[35] K. Aingaran, S. Jairath, G. Konstadinidis, S. Leung, P. Loewenstein, C. McAl-
lister, S. Phillips, Z. Radovic, R. Sivaramakrishnan, D. Smentek and T. Wicki
Mar. 2015, “M7: Oracle’s Next-Generation Sparc Processor”, English, IEEE
Micro, vol. 35, no. 2, pp. 36–45, Mar. 2015.

[36] M. Baron 2010, “The Single-Chip Cloud Computer”, Microprocessor Report,
April, 2010.

152

References

[37] W. J. Dally and B. Towles 2001, “Route Packets, Not Wires: On-Chip Inter-
connection Networks”, in Design Automation Conference, 2001. Proceedings,
2001, pp. 684–689.

[38] P. Guerrier and A. Greiner 2000, “A Generic Architecture for On-Chip Packet-
Switched Interconnections”, in Design, Automation and Test in Europe Confer-
ence and Exhibition 2000. Proceedings, 2000, pp. 250–256.

[39] L. Benini and G. De Micheli 2001, “Powering Networks On Chips”, in System
Synthesis, 2001. Proceedings. The 14th International Symposium on, 2001,
pp. 33–38.

[40] S. Pasricha and N. Dutt 2010, On-Chip Communication Architectures: System
on Chip Interconnect, ser. Systems on Silicon. Boston, USA: Morgan Kaufmann
Publishers, 2010, p. 544.

[41] J. Henkel, W. Wolf and S. Chakradhar 2004, “On-Chip Networks: a Scalable,
Communication-Centric Embedded System Design Paradigm”, in VLSI Design,
2004. Proceedings. 17th International Conference on, 2004, pp. 845–851.

[42] W. Dally and B. Towles 2003, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[43] G. Passas, M. Katevenis and D. Pnevmatikatos 2010, “A 128 x 128 x 24Gb/s
Crossbar Interconnecting 128 Tiles in a Single Hop and Occupying 6 % of Their
Area”, in Proceedings of the 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip, 2010, pp. 87–95.

[44] G. Passas, M. Katevenis and D. Pnevmatikatos 2011, “VLSI Micro-Architectures
for High-Radix Crossbar Schedulers”, in Proceedings of the Fifth ACM/IEEE
International Symposium on Networks-on-Chip - NOCS ’11, New York City,
NY: ACM Press, 2011, pp. 217–224.

[45] P. M. Watts, S. W. Moore and A. W. Moore 2012, “Energy Implications of
Photonic Networks with Speculative Transmission”, Optical Communications
and Networking, IEEE/OSA Journal of, vol. 4, no. 6, pp. 503–513, 2012.

[46] A. Banerjee, P. T. Wolkotte, R. D. Mullins, S. W. Moore and G. J. M. Smit
Mar. 2009, “An Energy and Performance Exploration of Network-on-Chip
Architectures”, Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 17, no. 3, pp. 319–329, Mar. 2009.

[47] R. Mullins, A. West and S. Moore Jan. 2006, “The Design and Implementation
of a Low-Latency On-Chip Network”, in Design Automation, 2006. Asia and
South Pacific Conference on, Jan. 2006, pp. 164–169.

[48] M. Kandemir, O. Ozturk and S. P. Muralidhara 2009, “Dynamic Thread and
Data Mapping for NoC Based CMPs”, in Proceedings of the 46th Annual
Design Automation Conference, ser. DAC ’09, New York, NY, USA: ACM,
2009, pp. 852–857.

[49] C. R. Johns and D. A. Brokenshire Sep. 2007, “Introduction to the Cell Broad-
band Engine Architecture”, IBM Journal of Research and Development, vol. 51,
no. 5, pp. 503–519, Sep. 2007.

153

References

[50] A. Kumar, L.-S. Peh, P. Kundu and N. K. Jha 2007, “Express Virtual Channels:
Towards the Ideal Interconnection Fabric”, in Proceedings of the 34th Annual
International Symposium on Computer Architecture, ser. ISCA ’07, New York,
NY, USA: ACM, 2007, pp. 150–161.

[51] J. Kim, W. J. Dally and D. Abts Jun. 2007, “Flattened Butterfly: A Cost-efficient
Topology for High-radix Networks”, SIGARCH Comput. Archit. News, vol. 35,
no. 2, pp. 126–137, Jun. 2007.

[52] R. Balasubramonian, N. P. Jouppi and N. Muralimanohar 2011, “Multi-Core
Cache Hierarchies”, Synthesis Lectures on Computer Architecture, vol. 6, no. 3,
pp. 1–153, 2011.

[53] C. H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chandrakasan and
L. S. Peh Mar. 2013, “SMART: A single-cycle reconfigurable NoC for SoC
applications”, in 2013 Design, Automation Test in Europe Conference Exhibition
(DATE), Mar. 2013, pp. 338–343.

[54] N. Muralimanohar and R. Balasubramonian Jun. 2007, “Interconnect Design
Considerations for Large NUCA Caches”, SIGARCH Comput. Archit. News,
vol. 35, no. 2, pp. 369–380, Jun. 2007.

[55] Z. Li, J. S. Miguel and N. E. Jerger Mar. 2016, “The runahead network-on-
chip”, in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), IEEE, Mar. 2016, pp. 333–344.

[56] J. W. Goodman, F. J. Leonberger, S.-Y. Kung and R. A. Athale Jul. 1984,
“Optical Interconnection for VLSI Systems”, Proceedings of the IEEE, vol. 72,
pp. 850–866, Jul. 1984.

[57] M. Horowitz, C.-K. K. Yang and S. Sidiropoulos Jan. 1998, “High-Speed
Electrical Signaling: Overview and Limitations”, IEEE Micro, vol. 18, no. 1,
pp. 12–24, Jan. 1998.

[58] R. Ho, K. W. Mai and M. A. Horowitz 2001, “The Future of Wires”, Proceedings
of the IEEE, vol. 89, no. 4, pp. 490–504, 2001.

[59] I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon and D. Milward Aug.
2008, “Low-Cost, Precision, Self-Alignment Technique for Coupling Laser and
Photodiode Arrays to Polymer Waveguide Arrays on Multilayer PCBs”, IEEE
Transactions on Advanced Packaging, vol. 31, no. 3, pp. 502–511, Aug. 2008.

[60] D. A. B. Miller 2009, “Device Requirements for Optical Interconnects to Silicon
Chips”, Proceedings of the IEEE, vol. 97, no. 7, pp. 1166–1185, 2009.

[61] M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi,
E. G. Friedman and P. M. Fauchet Nov. 2006, “On-Chip Optical Interconnect
Roadmap: Challenges and Critical Directions”, IEEE Journal of Selected Topics
in Quantum Electronics, vol. 12, no. 6, pp. 1699–1705, Nov. 2006.

[62] G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet
and E. G. Friedman 2007, “Predictions of CMOS Compatible On-Chip Optical
Interconnect”, Integration, the VLSI Journal, vol. 40, no. 4, pp. 434–446, 2007.

154

References

[63] G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet
and E. G. Friedman Jun. 2006, “On-Chip Copper-Based vs. Optical Intercon-
nects: Delay Uncertainty, Latency, Power, and Bandwidth Density Comparative
Predictions”, in Interconnect Technology Conference, 2006 International, Jun.
2006, pp. 39–41.

[64] J. Lienig 2013, “Electromigration and Its Impact on Physical Design in Future
Technologies”, in Proceedings of the 2013 ACM International Symposium on
International Symposium on Physical Design, ser. ISPD ’13, New York, NY,
USA: ACM, 2013, pp. 33–40.

[65] K.-H. Koo, H. Cho, P. Kapur and K. C. Saraswat 2007, “Performance Comparis-
ons Between Carbon Nanotubes, Optical, and Cu for Future High-Performance
On-Chip Interconnect Applications”, Electron Devices, IEEE Transactions on,
vol. 54, no. 12, pp. 3206–3215, 2007.

[66] Q. Li, N. Ophir, L. Xu, K. Padmaraju, L. Chen, M. Lipson and K. Bergman
May 2012, “Experimental characterization of the optical-power upper bound in
a silicon microring modulator”, in 2012 Optical Interconnects Conference, May
2012, pp. 38–39.

[67] N. Ophir, C. Mineo, D. Mountain and K. Bergman Jan. 2013, “Silicon Photonic
Microring Links for High-Bandwidth-Density, Low-Power Chip I/O”, IEEE
Micro, vol. 33, no. 1, pp. 54–67, Jan. 2013.

[68] B. G. Lee, B. A. Small, Q. Xu, M. Lipson and K. Bergman 2007, “Charac-
terization of a 4x4 Gb/s Parallel Electronic Bus to WDM Optical Link Sil-
icon Photonic Translator”, Photonics Technology Letters, IEEE, vol. 19, no. 7,
pp. 456–458, 2007.

[69] International Technology Roadmap for Semiconductors, http://www.itrs2.net/itrs-
reports.html, 2007. (visited on 22/08/2016).

[70] Intel Corporation 2009, Intel Xeon Processor W3580, 2009. [Online]. Available:
http://ark.intel.com/products/39723/Intel- Xeon- Processor-
W3580-8M-Cache-3%7B%5C_%7D33-GHz-6%7B%5C_%7D40-GTs-Intel-QPI
(visited on 22/08/2016).

[71] Intel Corporation 2015, Intel Xeon Processor E7-8867 v3, 2015. [Online]. Avail-
able: http://ark.intel.com/products/84681/Intel-Xeon-Processor-
E7-8867-v3-45M-Cache-2%7B%5C_%7D50-GHz (visited on 23/08/2016).

[72] C. Nitta, M. Farrens and V. Akella 2012, “Evaluating the Energy Efficiency
of Microring Resonator-based On-chip Photonic Interconnects”, University of
California, Davis, Tech. Rep., 2012.

[73] J. D. Meindl 2003, “Interconnect Opportunities for Gigascale Integration”,
Micro, IEEE, vol. 23, no. 3, pp. 28–35, 2003.

[74] J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante,
C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M.
Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb and
S. L. Wright 2008, “Three-Dimensional Silicon Integration”, IBM Journal of
Research and Development, vol. 52, no. 6, pp. 553–569, 2008.

155

http://ark.intel.com/products/39723/Intel-Xeon-Processor-W3580-8M-Cache-3%7B%5C_%7D33-GHz-6%7B%5C_%7D40-GTs-Intel-QPI
http://ark.intel.com/products/39723/Intel-Xeon-Processor-W3580-8M-Cache-3%7B%5C_%7D33-GHz-6%7B%5C_%7D40-GTs-Intel-QPI
http://ark.intel.com/products/84681/Intel-Xeon-Processor-E7-8867-v3-45M-Cache-2%7B%5C_%7D50-GHz
http://ark.intel.com/products/84681/Intel-Xeon-Processor-E7-8867-v3-45M-Cache-2%7B%5C_%7D50-GHz

References

[75] A. Carpenter, J. Hu, O. Kocabas, M. Huang and H. Wu Jun. 2012, “Enhancing
effective throughput for transmission line-based bus”, in Computer Architecture
(ISCA), 2012 39th Annual International Symposium on, Jun. 2012, pp. 165–176.

[76] M. Stucchi, S. Cosemans, J. Van Campenhout, Z. Tokei and G. Beyer Dec.
2013, “On-chip optical interconnects versus electrical interconnects for high-
performance applications”, Microelectronic Engineering, vol. 112, pp. 84–91,
Dec. 2013.

[77] A. Naeemi, J. Xu, A. V. Mule’, T. K. Gaylord and J. D. Meindl Apr. 2004,
“Optical and Electrical Interconnect Partition Length Based on Chip-to-Chip
Bandwidth Maximization”, Photonics Technology Letters, IEEE, vol. 16, no. 4,
pp. 1221–1223, Apr. 2004.

[78] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta and M. B. Ritter Jul.
2005, “Exploitation of optical interconnects in future server architectures”, IBM
Journal of Research and Development, vol. 49, no. 4.5, pp. 755–775, Jul. 2005.

[79] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis and N. P. Jouppi
Jun. 2011, “Combining memory and a controller with photonics through 3D-
stacking to enable scalable and energy-efficient systems”, in Computer Ar-
chitecture (ISCA), 2011 38th Annual International Symposium on, Jun. 2011,
pp. 425–436.

[80] P. Grani, R. Proietti and S. J. B. Yoo May 2016, “Scalable and Energy-Efficient
AWGR-based Computing Node : Performance under PARSEC Benchmark
Workload”, 2016 IEEE Optical Interconnects Conference (OI), pp. 3–4, May
2016.

[81] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T.
Claes, P. Dumon, P. Bienstman, D. Van Thourhout and R. Baets 2012, “Silicon
Microring Resonators”, Laser & Photonics Reviews, vol. 6, no. 1, pp. 47–73,
2012.

[82] C. J. Nitta, M. K. Farrens and V. Akella Nov. 2013, “On-Chip Photonic In-
terconnects: A Computer Architect’s Perspective”, en, Synthesis Lectures on
Computer Architecture, vol. 8, no. 5, pp. 1–111, Nov. 2013.

[83] C. Nitta, M. Farrens and V. Akella Feb. 2011, “Addressing System-Level
Trimming Issues in On-Chip Nanophotonic Networks”, in High Performance
Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on,
Feb. 2011, pp. 122–131.

[84] Z. Zhou, B. Yin and J. Michel Nov. 2015, “On-chip light sources for silicon
photonics”, Light: Science & Applications, vol. 4, no. 11, e358, Nov. 2015.

[85] M. Lipson Dec. 2005, “Guiding, Modulating, and Emitting Light on Silicon -
Challenges and Opportunities”, Lightwave Technology, Journal of, vol. 23, no.
12, pp. 4222–4238, Dec. 2005.

[86] H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi and A. Seeds Jul. 2011,
“Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown
on Ge substrate”, Nat Photon, vol. 5, no. 7, pp. 416–419, Jul. 2011.

156

References

[87] N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A.
Watkins, D. H. Albonesi, A. B. Apsel, M. A. Watkins and D. H. Albonesi
Dec. 2006, “Leveraging Optical Technology in Future Bus-based Chip Multi-
processors”, in Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, IEEE Computer Society, Dec. 2006, pp. 492–503.

[88] H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong and R. T.
Chen Feb. 2015, “Recent advances in silicon-based passive and active optical
interconnects”, Opt. Express, vol. 23, no. 3, pp. 2487–2511, Feb. 2015.

[89] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka,
G. Li, I. Shubin and J. E. Cunningham Jul. 2009, “Computer Systems Based
on Silicon Photonic Interconnects”, Proceedings of the IEEE, vol. 97, no. 7,
pp. 1337–1361, Jul. 2009.

[90] A. W. Poon, X. Luo, F. Xu and H. Chen 2009, “Cascaded Microresonator-Based
Matrix Switch for Silicon On-Chip Optical Interconnection”, Proceedings of
the IEEE, vol. 97, no. 7, pp. 1216–1238, 2009.

[91] Q. Wang, J. Lu and S. He Dec. 2002, “Optimal Design Method of a Low-Loss
Broadband Y Branch with a Multimode Waveguide Section”, EN, Applied
Optics, vol. 41, no. 36, p. 7644, Dec. 2002.

[92] J. Z. Huang, R. Scarmozzino and R. M. Osgood Sep. 1998, “A new design
approach to large input/output number multimode interference couplers and
its application to low-crosstalk WDM routers”, IEEE Photonics Technology
Letters, vol. 10, no. 9, pp. 1292–1294, Sep. 1998.

[93] P. Koka, M. O. McCracken, H. Schwetman, C.-H. Chen, X. Zheng, R. Ho,
K. Raj and A. V. Krishnamoorthy 2012, “A Micro-Architectural Analysis of
Switched Photonic Multi-Chip Interconnects”, in Computer Architecture (ISCA),
2012 39th Annual International Symposium on, 2012, pp. 153–164.

[94] D. Vantrease 2010, “Optical Tokens in Many-Core Processors”, Ph.D. Disser-
tation (supervisor: Mikko Lipasti), University of Wisconsin-Madison, 2010,
p. 122.

[95] J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P.
Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Van-
trease and Q. Xu 2009, “Devices and Architectures for Photonic Chip-Scale
Integration”, Applied Physics A, vol. 95, no. 4, pp. 989–997, 2009.

[96] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang and A. Choudhary 2009, “Fire-
fly”, in Proceedings of the 36th Annual International Symposium on Computer
Architecture, New York, New York, USA: ACM Press, 2009, pp. 429–440.

[97] Y. Pan, J. Kim and G. Memik Jan. 2010, “FlexiShare: Channel Sharing for
an Energy-Efficient Nanophotonic Crossbar”, in High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on, Jan. 2010,
pp. 1–12.

[98] A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic and V.
Stojanovic May 2009, “Silicon-Photonic Clos Networks for Global On-Chip
Communication”, in Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE
International Symposium on, May 2009, pp. 124–133.

157

References

[99] Y. A. Vlasov and S. J. McNab Apr. 2004, “Losses in Single-Mode Silicon-on-
Insulator Strip Waveguides and Bends”, Opt. Express, vol. 12, no. 8, pp. 1622–
1631, Apr. 2004.

[100] T. L. Koch Oct. 2006, “Opportunities and Challenges in Silicon Photonics”, in
Lasers and Electro-Optics Society, 2006. LEOS 2006. 19th Annual Meeting of
the IEEE, Oct. 2006, pp. 677–678.

[101] F. Xia, L. Sekaric and Y. Vlasov 2007, “Ultracompact Optical Buffers on a
Silicon Chip”, Nature Photonics, vol. 1, pp. 65–71, 2007.

[102] Z. Yu, X. Jin, J. Chen, G. Wang and D. R. Selviah Aug. 2015, “Microring-based
tunable optical delay lines for optical time-division multiplexers”, in Lasers and
Electro-Optics Pacific Rim (CLEO-PR), 2015 11th Conference on, vol. 3, Aug.
2015, pp. 1–2.

[103] M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten,
E. Smalbrugge, Y. S. Oei, J. J. M. Binsma, G. D. Khoe and M. K. Smit 2004,
“A Fast Low-Power Optical Memory based on Coupled Micro-Ring Lasers”,
Nature, vol. 432, pp. 206–209, 2004.

[104] N. McKeown Apr. 1999, “The iSLIP Scheduling Algorithm for Input-queued
Switches”, IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr. 1999.

[105] M. Duser and P. Bayvel 2002, “Analysis of a Dynamically Wavelength-Routed
optical Burst Switched Network Architecture”, Journal of Lightwave Techno-
logy, vol. 20, no. 4, pp. 574–585, 2002.

[106] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimerling
and A. Agarwal 2010, “ATAC: a 1000-Core Cache-Coherent Processor with
On-Chip Optical Network”, in Proceedings of the 19th international conference
on Parallel architectures and compilation techniques, ser. PACT ’10, New York,
NY, USA: ACM, 2010, pp. 477–488.

[107] G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L. P. Carloni, N. Bliss and K. Berg-
man 2011, “Time-Division-Multiplexed Arbitration in Silicon Nanophotonic
Networks-on-Chip for High-Performance Chip Multiprocessors”, Journal of
Parallel and Distributed Computing, vol. 71, no. 5, pp. 641–650, 2011.

[108] G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L. P. Carloni and K. Bergman
2010, “Silicon Nanophotonic Network-on-Chip Using TDM Arbitration”, in
High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium
on, 2010, pp. 88–95.

[109] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M.
Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil and J. H. Ahn Jun. 2008,
“Corona: System Implications of Emerging Nanophotonic Technology”, in
Computer Architecture, 2008. ISCA 2008. 35th International Symposium on,
Jun. 2008, pp. 153–164.

[110] D. Vantrease, N. Binkert, R. Schreiber and M. M. H. Lipasti 2009, “Light Speed
Arbitration and Flow Control for Nanophotonic Interconnects”, in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture -
Micro-42, New York, New York, USA: ACM Press, 2009, pp. 304–315.

158

References

[111] G. Hendry, S. Kamil, A. Biberman, J. Chan, B. G. Lee, M. Mohiyuddin, A.
Jain, K. Bergman, L. P. Carloni, J. Kubiatowicz, L. Oliker and J. Shalf May
2009, “Analysis of Photonic Networks for a Chip Multiprocessor using Sci-
entific Applications”, in Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE
International Symposium on, May 2009, pp. 104–113.

[112] A. Shacham and K. Bergman 2007, “Building Ultralow-Latency Interconnection
Networks Using Photonic Integration”, Micro, IEEE, vol. 27, no. 4, pp. 6–20,
2007.

[113] A. Shacham, B. G. Lee and K. Bergman 2005, “A Scalable, Self-Routed,
Terabit Capacity, Photonic Interconnection Network”, in High Performance
Interconnects, 2005. Proceedings. 13th Symposium on, 2005, pp. 147–150.

[114] M. J. Cianchetti, J. C. Kerekes and D. H. Albonesi 2009, “Phastlane: A Rapid
Transit Optical Routing Network”, in Proceedings of the 36th Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA 2009, New York, NY,
USA: ACM, 2009, pp. 441–450.

[115] H. Matsutani, M. Koibuchi, H. Amano and T. Yoshinaga Feb. 2009, “Prediction
Router: Yet Another Low Latency On-Chip Router Architecture”, in High Per-
formance Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on, Feb. 2009, pp. 367–378.

[116] N. E. Jerger, M. Lipasti and L.-S. Peh 2007, “Circuit-Switched Coherence”,
Computer Architecture Letters, vol. 6, no. 1, pp. 5–8, 2007.

[117] R. Das, O. Mutlu, T. Moscibroda and C. R. Das 2010, “Aérgia: Exploiting
Packet Latency Slack in On-Chip Networks”, in ACM SIGARCH computer
architecture news, ACM, vol. 38, 2010, pp. 106–116.

[118] C. A. D. Adi, H. Matsutani, M. Koibuchi, H. Irie, T. Miyoshi and T. Yoshinaga
2010, “An Efficient Path Setup for a Photonic Network-on-Chip”, in Networking
and Computing (ICNC), 2010 First International Conference on, 2010, pp. 156–
161.

[119] U. Y. Ogras and R. Marculescu 2006, “Prediction-Based Flow Control for
Network-on-Chip Traffic”, in Design Automation Conference, 2006 43rd
ACM/IEEE, 2006, pp. 839–844.

[120] R. Hesse and N. Enright Jerger 2015, “Improving DVFS in NoCs with Coher-
ence Prediction”, in Proceedings of the International Symposium on Networks
on Chip, ser. NOCS ’15, New York, NY, USA: ACM, 2015, 24:1–24:8.

[121] Y. S.-C. Huang, K. C.-K. Chou and C.-T. King 2012, “Application-Driven
End-to-End Traffic Predictions for Low Power NoC Design”, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–10,
2012.

[122] K. Wen, D. Calhoun, S. Rumley, X. Zhu, Y. Liu, L. W. Luo, R. Ding, T. B. Jones,
M. Hochberg, M. Lipson and K. Bergman Aug. 2014, “Reuse Distance Based
Circuit Replacement in Silicon Photonic Interconnection Networks for HPC”,
in 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects,
Aug. 2014, pp. 49–56.

159

References

[123] M. E. Acacio, J. Gonzalez, J. M. Garcia and J. Duato 2002, “Owner Prediction
for Accelerating Cache-to-Cache Transfer Misses in a cc-NUMA Architecture”,
in Supercomputing, ACM/IEEE 2002 Conference, 2002, pp. 49–61.

[124] S. Kaxiras and C. Young 2000, “Coherence Communication Prediction in
Shared-Memory Multiprocessors”, in High-Performance Computer Architec-
ture, 2000. HPCA-6. Proceedings. Sixth International Symposium on, 2000,
pp. 156–167.

[125] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill and D. A. Wood 2003,
“Using Destination-Set Prediction to Improve the Latency/Bandwidth Tradeoff
in Shared-Memory Multiprocessors”, in Computer Architecture, 2003. Proceed-
ings. 30th Annual International Symposium on, 2003, pp. 206–217.

[126] A. K. Abousamra, R. G. Melhem and A. K. Jones May 2012, “Deja-Vu Switch-
ing for Multiplane NoCs”, in Networks on Chip (NoCS), 2012 Sixth IEEE/ACM
International Symposium on, May 2012, pp. 11–18.

[127] Y. Demir and N. Hardavellas Apr. 2015, “Towards Energy-Efficient Photonic
Interconnects”, in SPIE OPTO, H. Schröder and R. T. Chen, Eds., International
Society for Optics and Photonics, Apr. 2015, 93680T.

[128] S. Ma, N. E. Jerger and Z. Wang Feb. 2012, “Supporting Efficient Collect-
ive Communication in NoCs”, in IEEE International Symposium on High-
Performance Comp Architecture, IEEE, Feb. 2012, pp. 1–12.

[129] E. Blem, J. Menon and K. Sankaralingam 2013, “Power Struggles: Revisiting
the RISC vs. CISC Debate on Contemporary ARM and x86 Architectures”, in
Proceedings of the 2013 IEEE 19th International Symposium on High Perform-
ance Computer Architecture (HPCA), Washington, DC, USA: IEEE Computer
Society, 2013, pp. 1–12.

[130] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson and M. H. Lipasti 2009,
“Achieving Predictable Performance Through Better Memory Controller Place-
ment in Many-core CMPs”, in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09, New York, NY, USA:
ACM, 2009, pp. 451–461.

[131] B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-
Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra,
S. M. Shank, C. L. Schow and Y. A. Vlasov Feb. 2014, “Monolithic Silicon
Integration of Scaled Photonic Switch Fabrics, CMOS Logic, and Device Driver
Circuits”, J. Lightwave Technol., vol. 32, no. 4, pp. 743–751, Feb. 2014.

[132] A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy,
H. Wang, M. Lipson and K. Bergman 2011, “CMOS-Compatible Scalable
Photonic Switch Architecture Using 3D-Integrated Deposited Silicon Materials
for High-Performance Data Center Networks”, in Optical Fiber Communication
Conference/National Fiber Optic Engineers Conference 2011, Optical Society
of America, 2011, OMM2.

[133] L. Eeckhout 2010, “Computer Architecture Performance Evaluation Methods”,
Synthesis Lectures on Computer Architecture, Synthesis lectures in computer
architecture, vol. 5, no. 1, pp. 1–145, 2010.

160

References

[134] J. S. Emer and D. W. Clark 1998, “A Characterization of Processor Performance
in the VAX-11/780”, in 25 Years of the International Symposia on Computer
Architecture (Selected Papers), ser. ISCA ’98, New York, NY, USA: ACM,
1998, pp. 274–283.

[135] J. P. Shen and M. H. Lipasti 2013, Modern Processor Design: Fundamentals of
Superscalar Processors. Long Grove, IL, USA: Waveland Press, 2013.

[136] A. R. Alameldeen and D. A. Wood Feb. 2003, “Variability in Architectural
Simulations of Multi-Threaded Workloads”, in High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International Sym-
posium on, Anaheim, CA, USA: IEEE Computer Society, Feb. 2003, pp. 7–
18.

[137] A. R. Alameldeen and D. A. Wood Jul. 2006, “IPC Considered Harmful for
Multiprocessor Workloads”, Micro, IEEE, vol. 26, no. 4, pp. 8–17, Jul. 2006.

[138] C. Bienia, S. Kumar, J. P. Singh and K. Li Jan. 2008, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications”, Princeton University,
Tech. Rep. TR-811-08, Jan. 2008.

[139] N. Barrow-Williams, C. Fensch and S. Moore 2009, “A Communication Charac-
terisation of Splash-2 and Parsec”, in Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on, 2009, pp. 86–97.

[140] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery 1992, Numer-
ical recipes in C: the Art of Scientific Computing. Cambridge, UK: Cambridge
University Press, 1992.

[141] C. Bienia and K. Li 2009, “PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors”, Princeton, NJ, Tech. Rep., 2009, pp. 1–9.

[142] A. Van Laer, W. Wang and C. Emmons Oct. 2015, “Inefficiencies in the Cache
Hierarchy: A Sensitivity Study of Cacheline Size with Mobile Workloads”,
in Proceedings of the 2015 International Symposium on Memory Systems -
MEMSYS ’15, New York, New York, USA: ACM Press, Oct. 2015, pp. 235–
245.

[143] S. Williams, A. Waterman and D. Patterson Apr. 2009, “Roofline”, Communic-
ations of the ACM, vol. 52, no. 4, p. 65, Apr. 2009.

[144] K. Ding, Chen and Kennedy 2000, “The Memory of Bandwidth Bottleneck
and its Amelioration by a Compiler”, in Parallel and Distributed Processing
Symposium, 2000. IPDPS 2000. Proceedings. 14th International, 2000, pp. 181–
189.

[145] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill and D. A. Wood Aug. 2011, “The gem5 Simulator”,
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[146] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi and S. K.
Reinhardt 2006, “The M5 simulator: Modeling Networked Systems”, IEEE
Micro, vol. 26, pp. 52–60, 2006.

161

References

[147] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill and D. A. Wood 2005, “Multifacets Gen-
eral Execution-Driven Multiprocessor Simulator (gems) Toolset”, SIGARCH
Comput. Archit. News, vol. 33, pp. 1–8, 2005.

[148] P. Sweazey and A. J. Smith 1986, “A Class of Compatible Cache Consistency
Protocols and Their Support by the IEEE Futurebus”, in Proceedings of the
13th Annual International Symposium on Computer Architecture, ser. ISCA ’86,
Los Alamitos, CA, USA: IEEE Computer Society Press, 1986, pp. 414–423.

[149] A. Butko, R. Garibotti, L. Ost and G. Sassatelli Jul. 2012, “Accuracy Evalu-
ation of GEM5 Simulator System”, in Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, Jul. 2012,
pp. 1–7.

[150] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch and A. N. Udipi Mar. 2014,
“Simulating DRAM controllers for Future System Architecture Exploration”, in
Performance Analysis of Systems and Software (ISPASS), 2014 IEEE Interna-
tional Symposium on, Mar. 2014, pp. 201–210.

[151] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga and N. Paver Mar. 2014, “Sources of Error in Full-
System Simulation”, in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), IEEE, Mar. 2014, pp. 13–22.

[152] J. Chan, G. Hendry, A. Biberman, K. Bergman and L. P. Carloni Mar. 2010,
“PhoenixSim: A Simulator for Physical-Layer Analysis of Chip-Scale Photonic
Interconnection Networks”, in Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, Mar. 2010, pp. 691–696.

[153] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep and A. Agarwal 2010, “Graphite: A Distributed Parallel Simulator for
Multicores”, in High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, 2010, pp. 1–12.

[154] S. Bartolini, L. Lusnig and E. Martinelli Sep. 2013, “Olympic: A Hierarchical
All-Optical Photonic Network for Low-Power Chip Multiprocessors”, in Digital
System Design (DSD), 2013 Euromicro Conference on, Sep. 2013, pp. 56–59.

[155] D. Sanchez, G. Michelogiannakis and C. Kozyrakis May 2010, “An Analysis
of On-chip Interconnection Networks for Large-scale Chip Multiprocessors”,
ACM Trans. Archit. Code Optim., vol. 7, no. 1, 4:1–4:28, May 2010.

[156] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta 1995, “The SPLASH-2
Programs: Characterization and Methodological Considerations”, in Proceed-
ings of the 22Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’95, New York, NY, USA: ACM, 1995, pp. 24–36.

[157] A. Jaleel, M. Mattina and B. Jacob Feb. 2006, “Last level cache (LLC) perform-
ance of data mining workloads on a CMP - a case study of parallel bioinformat-
ics workloads”, in The Twelfth International Symposium on High-Performance
Computer Architecture, 2006., Feb. 2006, pp. 88–98.

162

References

[158] N. Agarwal, T. Krishna, L. S. Peh and N. K. Jha Apr. 2009, “GARNET: A
Detailed On-Chip Network Model inside a Full-System Simulator”, in Perform-
ance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on, Apr. 2009, pp. 33–42.

[159] C. Nitta 2012, “Design and Analysis of Large Scale Nanophotonic On-Chip
Networks”, Ph.D. Dissertation (supervisor: Matthew Farrens), University of
California Davis, 2012, pp. 1–145.

[160] G. Passas, M. Katevenis and D. Pnevmatikatos Apr. 2012, “Crossbar NoCs Are
Scalable Beyond 100 Nodes”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 31, no. 4, pp. 573–585, Apr. 2012.

[161] P. Surapong and M. Glesner May 2011, “On-chip Efficient Round-Robin Sched-
uler for High-Speed Interconnection”, in 2011 22nd IEEE International Sym-
posium on Rapid System Prototyping, May 2011, pp. 199–202.

[162] C. Kim, D. Burger and S. W. Keckler Dec. 2002, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches”, ACM SIGOPS
Operating Systems Review, vol. 36, no. 5, pp. 211–222, Dec. 2002.

[163] A. Van Laer, M. R. Madarbux, P. M. Watts and T. M. Jones 2014, “Towards
Zero Latency Photonic Switching in Shared Memory Networks”, in Workshop
on SiPhotonics at HIPEAC, 2014, pp. 1–8.

[164] R. E. Kessler, R. Jooss, A. Lebeck and M. D. Hill Apr. 1989, “Inexpensive
Implementations of Set-Associativity”, SIGARCH Comput. Archit. News, vol.
17, no. 3, pp. 131–139, Apr. 1989.

[165] J. Chan, G. Hendry, K. Bergman and L. P. Carloni 2011, “Physical-Layer
Modeling and System-Level Design of Chip-Scale Photonic Interconnection
Networks”, Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 30, no. 10, pp. 1507–1520, 2011.

[166] X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao,
K. Raj, R. Ho, J. E. Cunningham and A. V. Krishnamoorthy 2011, “Ultra-Low
Power Arrayed CMOS Silicon Photonic Transceivers for an 80 Gbps WDM
Optical Link”, in Proc. and the National Fiber Optic Engineers Conf. Optical
Fiber Communication Conf. and Exposition (OFC/NFOEC), 2011, pp. 1–3.

[167] S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanović and K.
Asanović Jun. 2010, “Re-Architecting DRAM Memory Systems with Monolith-
ically Integrated Silicon Photonics”, ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 129–140, Jun. 2010.

163

7
Appendix

7.1 Coherence predictor - header file

#ifndef GENERALPREDICTOR_H
#define GENERALPREDICTOR_H

#include <assert.h>
#include <vector >
#include <string >
#include <stdint.h>
#include <unordered_map >
#include "EntropyCounter.hh"

class GeneralPredictor {

// Properties
private:
unsigned NumTiles; // Number of nodes in the

network
unsigned AddressLength; // Number of bits

in the address
unsigned StartBit; // First bit of the address -

chunk that will be used to do the LUT indexing
unsigned EndBit; // Last bit of that address -

chunk
uint32_t IndexMask; // Bit mask to

extract the bits used to do the
indexing

uint32_t MSBTagMask; // Bit mask to extract the
most significant bits of the tag

164

7.1. Coherence predictor - header file

uint32_t LSBTagMask; // Bit mask to
extract the least significant bits of
the tag

bool PartialTag; // Bool to indicate
whether or not we extract a partial
tag mask

uint32_t PartialTagMask; // Actual
partial tag bit mask

unsigned PartialStartBit; // Start bit
for partial tag mask to create the
partial tag

unsigned PartialEndBit; // End bit for
partial tag mask to create the partial
tag

unsigned ValidBit;// Location of the
valid bit

unsigned SequenceBit;// Location of the sequence
bit

unsigned SharerBit;// Location of the start of
the sharersList

unsigned DirectoryBit;// Location of the
directory bit

unsigned RequestTypeBit;// Current type of access
to this block - LD/ST/IFETCH/EVICT

unsigned PredictedSourceBit;// Prediction
unsigned PredictedDestinationBit;// Prediction

unsigned ValidPredictionBit; // Indicates
whether the prediction was actually

valid
unsigned TimeStampBit; // Used to create

an arrival time distribution
unsigned EntryLength;

// LUT
struct SetEntry {

std::string Address; // Tag
std::vector <uint64_t >

PredictionInfo; // Actual
prediction info

SetEntry* Previous; // Pointer to
previous entry

SetEntry* Next; // Pointer to
next entry

};
struct Set {

std::unordered_map <uint32_t ,
SetEntry*> Entries; // Actual
container which holds the

165

7.1. Coherence predictor - header file

SetEntries --> key = tag,
value = set_entry

SetEntry* Head; // Head and tail
are the book -ends of the
actual container and are only
used as pointers , not to hold
actual info

SetEntry* Tail;
};
std::unordered_map <uint32_t , Set> LUT; //

LUT containing the entries used for
path setup KEY = index (uint32_t),
VALUE = Set

unsigned Granularity;
unsigned Associativity; // If this is

zero , this is a directly mapped LUT

std::string PredictorType; // Predictor
organization

std::string ReplacementPolicy; //
Replacement policy used , right now
only two types --> FIFO and LRU

// Associative setup specific
unsigned EntriesPerSet;
unsigned TagBit;
unsigned LUTSize;

unsigned NumberSets;

// Statistics about inter -arrival time of
messages

std::unordered_map <uint64_t , uint32_t >
StatsMessageInterArrivalTimes; //
Distribution of message arrival time

uint32_t StatsArrivedMessages; // Number
of messages used in the distribution

uint64_t StatsMaxInterArrivalTime; //
Maximal inter -arrival time

// Statistics about the cache indexing
std::vector <uint32_t > StatsNumberUsesPerSet;
std::vector <uint32_t > StatsNumberConflictsPerSet;

uint32_t StatsEntryHits; // Number of
accesses to the LUT that hit

uint32_t StatsEntriesTouched; // Number
of LUT accesses

166

7.1. Coherence predictor - header file

// Stats about the partial tag
characteristics

uint32_t StatsEqTagDiffAddr; // Number of
entries that had the same tag but a

different address

//Stats about the type of predictions
being made KEY = pred type (str) VALUE
= occurrence

std::unordered_map <std::string , uint32_t >
StatsPredictionType;

// Verbosity
bool Verbosity;
bool VerbosityPrintErrors;

enum SharerBitValues
{

SB_noSharer = 0,
SB_normalSharer , // used to ’1’
SB_currentEvictor , // ’3’ -->

evicting copy of address
SB_receivedInv , // ’5’ --> has

been requested to invalidate a
copy of address

SB_upgrader // ’7’ --> upgrading
own copy of address

};

enum StateBitValues
{

State_noRecording = 0, // ’0’
State_requestedByLLC , // ’1’
State_presentInLLC , // ’2’
State_presentInOneL1 , // ’3’
State_presentInMultL1 , // ’4’
State_eviction // ’5’

};

enum RequestType
{

RT_LD = 1,
RT_IFETCH , // ’2’
RT_ST , // ’3’
RT_EVICT , //’4’
RT_UPGRADE , // ’5’
RT_L2_EVICT , // ’6’
RT_null

};

167

7.1. Coherence predictor - header file

// Real -time adaptive bitmask
EntropyCounter* entropyCounter;
bool FindOptimalBitMask; // Do we try and

find an optimal bitmask?

public:

// Functions
public:

GeneralPredictor(unsigned num_tiles ,
unsigned start_bit ,unsigned LUT_size ,
unsigned associativity , unsigned
granularity , bool verbosity , std::
string predictor_type , std::string
replacement_pol);

void setPartialTagMask(unsigned
p_start_bit , unsigned p_end_bit);

void resetStats();
void recordMessage(std::string address ,

unsigned source , unsigned destination ,
uint64_t time);

std::pair <bool , bool > checkPrediction(
unsigned source_tile , unsigned
destination_tile ,std::string address);

std::pair <int, int>
predictOpticalConnection(std::string
address , unsigned source , unsigned
destination , uint64_t time ,std::string
previous_message);

uint32_t changeSequenceType(std::string
address , std::string message_type , std
::string request_type , unsigned
source_node);

void changeVerbosity (bool new_verbosity)
{

Verbosity = new_verbosity;
VerbosityPrintErrors =

new_verbosity;
}
void startTrackingBitMask() {

FindOptimalBitMask = true; }
std::vector <uint32_t > getUsesPerSet() {

return StatsNumberUsesPerSet; }
std::vector <uint32_t > getConflictsPerSet

() { return StatsNumberConflictsPerSet
; }

uint32_t getEntryHits() { return

168

7.1. Coherence predictor - header file

StatsEntryHits; }
uint32_t getEntriesTouched() { return

StatsEntriesTouched; }
uint32_t getEntriesEqTagDiffAddr() {

return StatsEqTagDiffAddr; }
uint32_t getReplacements();
std::unordered_map <std::string , uint32_t >

getPredTypes() { return
StatsPredictionType; }

// Message inter -arrival time
distribution functions

void printDistributionToFile(std::string
file_name);

void resetTimings(uint64_t current_time);
// To be called when the

TimeStampBits need to be reset , after
fast forwarding

void resetTimeStamp(std::string address ,
uint64_t current_time);

void addToDistribution(std::string
address , uint64_t time);

std::string getPredProperties();
std::string getPartialTagProperties();
// Information functions
const unsigned getAssociativity() {

return Associativity; }
const unsigned getStartBit() { return

StartBit; }
const bool usesPartialTag() { return

PartialTag; }
const unsigned getPartialTagLength()
{

assert(PartialTag);
return (PartialStartBit -

PartialEndBit);
}
const unsigned getPartialTagStartBit()
{

assert(PartialTag);
return PartialStartBit;

}

private:
// LUT addressing related functions
void findEntry(std::string address);
void makeNewSet(uint32_t set_number);
bool isEntryPresentInSet(std::string

address , uint32_t set_number , uint32_t

169

7.1. Coherence predictor - header file

tag);
bool isEntryPresent(std::string address);
bool spaceInSet(uint32_t set_number);
void addEntryToSet(std::string address ,

uint32_t set_number , uint32_t tag);
std::string findVictim(uint32_t

set_number);
void clearVictim(uint32_t set_number , std

::string victim_address);
long unsigned convertHexToInt(std::string

address);
uint32_t extractIndex(std::string address

);
uint32_t extractTag(std::string address);
uint32_t getSetNumber(uint32_t index);
// Actual recording of functions
void recordSharers(uint32_t source_tile ,

uint32_t destination_tile , unsigned
source , unsigned destination , uint64_t
time , std::string address);

// Helper functions
uint32_t convertNodeID(unsigned node_id);
uint32_t returnDirectory(std::string

address , uint32_t set_number , uint32_t
tag);

int returnUniqueSharer(std::string
address , uint32_t set_number , uint32_t
tag);

std::vector <unsigned > returnSharers(std::
string address , uint32_t set_number ,
uint32_t tag);

unsigned getNumSharers(std::string
address , uint32_t set_number , uint32_t
tag);

void removeSharer(std::string address ,
uint32_t set_number , uint32_t tag,
unsigned sharer);

int returnEvictor(std::string address ,
uint32_t set_number , uint32_t tag);

void setAsEvictor(std::string address ,
uint32_t set_number , uint32_t tag,
unsigned source_node);

void hasReceivedInv(std::string address ,
uint32_t set_number , uint32_t tag,
unsigned node);

int getNextSharerToInv(std::string
address , uint32_t set_number , uint32_t

170

7.2. Coherence predictor - code file

tag);
int getNextSharerToInvAck(std::string

address , uint32_t set_number , uint32_t
tag);

unsigned getNumSharersToInv(std::string
address , uint32_t set_number , uint32_t
tag);

void setUpgrader(std::string address ,
uint32_t set_number , uint32_t tag,
unsigned node);

int getUpgrader(std::string address ,
uint32_t set_number , uint32_t tag);

void setUpgraderAsNormalSharer(std::
string address , uint32_t set_number ,
uint32_t tag,unsigned node);

uint32_t convertAccessType(std::string
type);

};

#endif // GENERALPREDICTOR_H

7.2 Coherence predictor - code file

#include "GeneralPredictor.hh"
#include <stdlib.h> /* strtol */
#include <math.h> /* for ceil , floor */
#include <stdio.h>
#include <algorithm >
#include <fstream > /* for print */
#include <sstream > /* for string stream */

// Constructor
GeneralPredictor::GeneralPredictor(unsigned num_tiles ,

unsigned start_bit , unsigned LUT_size , unsigned
associativity , unsigned granularity , bool verbosity ,
std::string predictor_type , std::string
replacement_pol)

{
// Setup which bits correspond to which

information in the LUT entries
NumTiles = num_tiles;
Associativity = associativity;
TagBit = 0;
SequenceBit = TagBit + 1;
SharerBit = SequenceBit + 1;
ValidBit = SharerBit + NumTiles;

171

7.2. Coherence predictor - code file

DirectoryBit = ValidBit + 1;
TimeStampBit = DirectoryBit + 1;
RequestTypeBit = TimeStampBit + 1;
PredictedSourceBit = RequestTypeBit + 1;
PredictedDestinationBit = PredictedSourceBit + 1;
ValidPredictionBit = PredictedDestinationBit + 1;

// Setup the LUT
EntryLength = ValidPredictionBit + 1; // Size is

one extra
LUTSize = LUT_size;

// Set some options depending on whether or not
this is set-associative LUT or directly
mapped one

if (predictor_type == "directly_mapped"){
NumberSets = LUTSize;
EntriesPerSet = 1;
float gran = log(LUT_size)/log(2);
Granularity = floor(gran);

} else if (predictor_type == "fully_associative")
{

NumberSets = 1;
EntriesPerSet = LUTSize;
Granularity = granularity;

} else if (predictor_type == "set_associative"){
NumberSets = LUTSize / associativity;
EntriesPerSet = associativity;
Granularity = granularity;

} else {
printf("Not a valid LUT organization");
exit(1);

}
PredictorType = predictor_type;
ReplacementPolicy = replacement_pol;

// Decide upon the address -chunk to be used for
the index

AddressLength = 32;
assert(start_bit <= 32);
StartBit = AddressLength - start_bit;
int possible_end_bit = StartBit - Granularity +

1; // + 1 to include the EndBit as well
EndBit = std::max(0, possible_end_bit);
IndexMask = 0;
MSBTagMask = 0;
LSBTagMask = 0;
printf("Start bit %u and end bit %u, possible end

172

7.2. Coherence predictor - code file

bit %i (granularity %u) \n", StartBit , EndBit
, possible_end_bit , Granularity);

// Going from MSB to LSB
for (unsigned i = (AddressLength -1); (int) i >= 0

; i--) {
if ((i <= StartBit) && (i >= EndBit)) {

// Part of the index
IndexMask += pow(2,i); // Set

this bit to 1
} else {

// Part of the tag
if (i < EndBit) {

LSBTagMask += pow(2,i);
// Set this bit to 1

} else {
assert(i > EndBit);
MSBTagMask += pow(2,i);

}
}

}
// Partial tag mask setting --> need to be set

via specific function
PartialTag = false;
PartialTagMask = 1;
PartialStartBit = 0;
PartialEndBit = 0;
// Verbosity levels
Verbosity = verbosity;
VerbosityPrintErrors = verbosity;

// Make entropy counter but do not use it
unsigned saturation_counters = 4;
unsigned saturation_messages = 10000;
FindOptimalBitMask = false;
if (FindOptimalBitMask) {

entropyCounter = new EntropyCounter(
AddressLength ,saturation_counters ,
saturation_messages , Granularity ,
StartBit , Verbosity);

} else {
entropyCounter = NULL;

}
printf("Made a %s LUT (replacement policy %s)

with %i entries , %i fields per entry \n",
predictor_type.c_str(),ReplacementPolicy.c_str
(),LUT_size , EntryLength);

printf("Bitmask used for indexing is %u (start
bit %u, granularity %u) \n", IndexMask ,

173

7.2. Coherence predictor - code file

StartBit , StartBit - EndBit);
printf("Tag mask for MSB = %u, tag mask for LSB =

%u \n", MSBTagMask , LSBTagMask);

resetStats();
}

void
GeneralPredictor::setPartialTagMask(unsigned p_start_bit ,

unsigned p_end_bit)
{

PartialTag = true;
PartialTagMask = 0;
PartialStartBit = p_start_bit;
PartialEndBit = p_end_bit;
unsigned tag_length = AddressLength - (StartBit -

EndBit);
for (unsigned i = (tag_length - 1); (int) i >= 0;

i--) {
if ((i <= PartialStartBit) && (i >=

PartialEndBit)) {
PartialTagMask += pow(2,i);

}
}
printf("Partial mask = %u, partial start bit = %u

& partial end bit = %u, tag length = %u \n",
PartialTagMask , PartialStartBit , PartialEndBit
, tag_length);

}
void
GeneralPredictor::resetStats()
{

StatsNumberUsesPerSet.clear();
StatsNumberUsesPerSet.resize(NumberSets , 0);
StatsNumberConflictsPerSet.clear();
StatsNumberConflictsPerSet.resize(NumberSets , 0);
StatsEntryHits = 0;
StatsEntriesTouched = 0;
StatsMessageInterArrivalTimes.clear();
StatsArrivedMessages = 0;
StatsMaxInterArrivalTime = 0;
StatsEqTagDiffAddr = 0;
StatsPredictionType.clear();

}

//
// BASIC HELPER FUNCTION TO FIND ENTRY IN LUT
///

174

7.2. Coherence predictor - code file

void
GeneralPredictor::findEntry(std::string address)
{

// Get set number
uint32_t index = extractIndex(address);
uint32_t set_number = getSetNumber(index);
uint32_t tag = extractTag(address);

if (Verbosity) {
printf("LUT: Finding an entry for address

%s (index %u, set %u, tag %u) \n",
address.c_str(), index , set_number ,
tag);

}

// Is this entry present in the LUT?
bool set_present = LUT.count(set_number) > 0 ?

true : false;
bool entry_present = false;
if (set_present) {

entry_present = isEntryPresentInSet(
address , set_number , tag);

}

if (entry_present) {
// Entry is present , do nothing
if (Verbosity) {

printf("LUT: Address was already
present in LUT -- nothing
needed to be done \n");

}
StatsEntryHits++;
if (FindOptimalBitMask) {

// Update the cycle count in the
entropy counter --> no new
address

entropyCounter ->updateCycleCount
();

}
} else {

// Is the set present?
if (set_present) {

// Make new entry or find victim
if (spaceInSet(set_number)) {

if (Verbosity) {
printf("LUT: Set

was present

175

7.2. Coherence predictor - code file

and stil space
in set \n");

}
// There is still space

in set
// Add entry to Set
addEntryToSet(address ,

set_number , tag);
} else {

if (Verbosity) {
printf("LUT: Set

was present
but no space
in set (%zi
entries) --
need to find
victim \n",LUT
[set_number].
Entries.size()
);

}
// Find and clear the

victim
std::string

victim_address =
findVictim(set_number)
;

clearVictim(set_number ,
victim_address);

// Update statistics
StatsNumberConflictsPerSet

[set_number]++;
// Add entry to Set
addEntryToSet(address ,

set_number , tag);
}

} else {
// Not even the set is present
// Make the Set
if (Verbosity) {

printf("LUT: Set not yet
present , so need to
make set \n");

}
makeNewSet(set_number);
addEntryToSet(address , set_number

, tag);
assert(LUT.size() <= NumberSets);

176

7.2. Coherence predictor - code file

// No more sets than there is
space

}

if (FindOptimalBitMask) {
// Update the entropy counter as

this a new entry
entropyCounter ->updateCounters(

address);
}

}

// If partial tag -- update the address in the
entry

if (PartialTag) {
// Considering multiple addresses can

have the same partial tag we need to
update the address in setEntry

// @TODO add stats
if (LUT[set_number].Entries[tag]->Address

!= address) {
StatsEqTagDiffAddr++;

}
LUT[set_number].Entries[tag]->Address =

address;
}
// Entry has either been added or has been

touched so now it is time to do replacement
admin

if (ReplacementPolicy == "LRU") {
// This address was the LRU so needs to

become closest the new head
// Downgrade the previous sub-head
assert(LUT[set_number].Entries.count(tag)

> 0);
if (Verbosity) {

printf("REPL: Original situation
in set %u (%zi entries) (from
head to tail): Tail -> ",
set_number , LUT[set_number].
Entries.size());

SetEntry* looking_at = LUT[
set_number].Tail ->Previous;

while (looking_at ->Address != LUT
[set_number].Head ->Address) {

printf(" Addr %s ->",
looking_at ->Address.
c_str());

177

7.2. Coherence predictor - code file

SetEntry* prev =
looking_at ->Previous;

looking_at = prev;
}
printf("Head \n");

}

SetEntry* previous_sub_head = LUT[
set_number].Head ->Next;

SetEntry* new_sub_head = LUT[set_number].
Entries[tag];

if (Verbosity) {
printf("addr %s Prev subhead = %s

, new subhead = %s \n",
address.c_str(),
previous_sub_head ->Address.
c_str(), new_sub_head ->Address
.c_str());

}
if (previous_sub_head ->Address == address

) {
// Not changing LRU state
if (Verbosity) {

printf("REPL: Address %s
was already most LRU
in set %u (next = %s,
previous %s) \n",
address.c_str(),
set_number ,
previous_sub_head ->
Next ->Address.c_str(),
previous_sub_head ->

Previous ->Address.
c_str());

}
} else {

if (entry_present) {
// The entry was already

present in the LUT
// So first the existing

connections need to be
broken

SetEntry*
above_new_sub_head =
new_sub_head ->Previous
;

SetEntry*
under_next_sub_head =

178

7.2. Coherence predictor - code file

new_sub_head ->Next;
above_new_sub_head ->Next

= under_next_sub_head;
under_next_sub_head ->

Previous =
above_new_sub_head;

if (Verbosity) {
printf("REPL: new

sub head was
already
present so
broke all
connections \n
");

}
}
// Make the new entry the sub-

head
previous_sub_head ->Previous =

new_sub_head; // Previous of
sub-head WAS the head , but
will now become the new entry

new_sub_head ->Previous = LUT[
set_number].Head;

LUT[set_number].Head ->Next =
new_sub_head;

new_sub_head ->Next =
previous_sub_head;

if (Verbosity) {
printf("REPL: Address %s

has been marked as
most recently used in
set %u (%s was
previous sub-head) \n"
,address.c_str(),
set_number ,
previous_sub_head ->
Address.c_str());

}
}
if (Verbosity) {

printf("REPL: New situation in
set %u (%zi entries) (from
tail to head): Tail -> ",
set_number , LUT[set_number].
Entries.size());

SetEntry* looking_at = LUT[
set_number].Tail ->Previous;

179

7.2. Coherence predictor - code file

while (looking_at ->Address != LUT
[set_number].Head ->Address) {

printf(" Addr %s ->",
looking_at ->Address.
c_str());

SetEntry* prev =
looking_at ->Previous;

looking_at = prev;
}
printf("Head \n");

}

} else if (ReplacementPolicy == "FIFO") {
// The entry only needs to become the sub

-head IF it was new
if (!entry_present) {

// Downgrade the previous sub-
head

SetEntry* previous_sub_head = LUT
[set_number].Head ->Next;

assert(LUT[set_number].Entries.
count(tag) > 0);

assert(previous_sub_head != NULL)
;

assert(previous_sub_head ->
Previous != NULL);

previous_sub_head ->Previous = LUT
[set_number].Entries.at(tag);
// Previous of sub-head WAS
the head , but will now become
the new entry

// Make the new entry the sub-
head

LUT[set_number].Entries[tag]->
Previous = LUT[set_number].
Head;

LUT[set_number].Head ->Next = LUT[
set_number].Entries[tag];

LUT[set_number].Entries[tag]->
Next = previous_sub_head;

if (Verbosity) {
printf("REPL: Address %s

(tag %u) has been
marked as last
addition in set %u \n"
,address.c_str(),tag,
set_number);

180

7.2. Coherence predictor - code file

}
}

} else {
printf("No replacement policy specified")

;
exit(EXIT_FAILURE);

}
// Update the stats
StatsNumberUsesPerSet[set_number]++;
StatsEntriesTouched++;

}

// Function to make new set
void
GeneralPredictor::makeNewSet(uint32_t set_number)
{

// Make the set
Set new_set;
SetEntry* head = new SetEntry;
SetEntry* tail = new SetEntry;
head ->Previous = NULL;
head ->Next = tail;
head ->Address = "HEAD";
tail ->Next = NULL;
tail ->Previous = head;
tail ->Address = "TAIL";
new_set.Head = head;
new_set.Tail = tail;

// Push the set back into the LUT
LUT.insert(std::make_pair(set_number ,new_set));
if (Verbosity) {

printf("LUT: Created new set with set
number %u \n", set_number);

}
}

// Function to check a specific set for an address
bool
GeneralPredictor::isEntryPresentInSet(std::string address

, uint32_t set_number , uint32_t tag)
{

bool entry_present = LUT[set_number].Entries.
count(tag) > 0 ? true : false;

return entry_present;
}

// Function to check whether an address has an entry in

181

7.2. Coherence predictor - code file

the LUT
bool
GeneralPredictor::isEntryPresent(std::string address)
{

uint32_t set_number = getSetNumber(extractIndex(
address));

bool set_present = LUT.count(set_number) > 0 ?
true : false;

bool entry_present = false;
int32_t tag = extractTag(address);
if (set_present) {

entry_present = isEntryPresentInSet(
address , set_number , tag);

}
if (Verbosity) {

printf("LUT: Address %s (index %u, set
number %u, tag %u) --> set present: %s
entry present: %s \n", address.c_str

(), extractIndex(address), set_number ,
tag, set_present ? "YES": "NO",

entry_present ? "YES" : "NO");
}
return entry_present;

}

// Fuction to check whether there is space in the set for
a new entry

bool
GeneralPredictor::spaceInSet(uint32_t set_number)
{

bool space_in_set = LUT[set_number].Entries.size
() < EntriesPerSet ? true : false;

return space_in_set;
}

// Function to add a new entry to a set
void
GeneralPredictor::addEntryToSet(std::string address ,

uint32_t set_number , uint32_t tag)
{

SetEntry* set_entry = new SetEntry;
set_entry ->Address = address; // We still just

store the complete address , easier
set_entry ->PredictionInfo = std::vector <uint64_t >

(EntryLength , 0);
set_entry ->Next = NULL;
set_entry ->Previous = NULL;
LUT[set_number].Entries.insert(std::make_pair(tag

182

7.2. Coherence predictor - code file

, set_entry));
if (Verbosity) {

printf("LUT: Added new entry for address
%s to set %u (still empty) \n",
address.c_str(), set_number);

}
}

// Function to find a victim
std::string
GeneralPredictor::findVictim(uint32_t set_number)
{

assert(LUT[set_number].Entries.size() ==
EntriesPerSet);

// Tail -entry is the one up for removal
std::string victim_address = LUT[set_number].Tail

->Previous ->Address;
if (Verbosity) {

printf("REPL: Victim in set %u is %s \n",
set_number , victim_address.c_str());

}
assert(LUT[set_number].Tail ->Previous != LUT[

set_number].Head);
return victim_address;

}

// Function to remove a victim from the set
void
GeneralPredictor::clearVictim(uint32_t set_number , std::

string victim_address)
{

uint32_t victim_tag = extractTag(victim_address);
SetEntry* victim = LUT[set_number].Entries[

victim_tag];
if (Verbosity) {

printf("REPL: Removing the links from the
victim %s (tag %u) \n",

victim_address.c_str(), victim_tag);
}
assert(victim ->Next == LUT[set_number].Tail);
// Connect the previous and next pointers
assert(victim != NULL);
assert(victim ->Previous != NULL);
assert(victim ->Previous ->Next != NULL);
assert(victim ->Next != NULL);
if (Verbosity) {

printf("REPL: Victim’s previous = %s
victim’s next = %s \n", victim ->

183

7.2. Coherence predictor - code file

Previous ->Address.c_str(), victim ->
Next ->Address.c_str());

}
SetEntry* head_side_victim = victim ->Previous;
SetEntry* tail_side_victim = victim ->Next;
head_side_victim ->Next = tail_side_victim;
tail_side_victim ->Previous = head_side_victim;
victim ->Previous = NULL;
victim ->Next = NULL;
victim ->Address = "null";
victim ->PredictionInfo.clear();
// Erase the entry
delete victim;
LUT[set_number].Entries.erase(victim_tag);
assert(LUT[set_number].Tail ->Previous ==

head_side_victim);
}

// Function to convert a string containing a hex number
to a long int

long unsigned
GeneralPredictor::convertHexToInt(std::string address)
{

long unsigned address_unsigned = std::stoul(
address.c_str(), NULL , 16);

return address_unsigned;
}

// Function to extract the index
uint32_t
GeneralPredictor::extractIndex(std::string address)
{

uint32_t address_unsigned = (uint32_t)
convertHexToInt(address);

uint32_t index = IndexMask & address_unsigned;
index >>= EndBit;
if (Verbosity) {

printf("IND: Address %s gives index %u (%
u & %u) \n", address.c_str(), index ,
IndexMask , address_unsigned);

}
return index;

}

// Function to extract the tag
uint32_t
GeneralPredictor::extractTag(std::string address)
{

184

7.2. Coherence predictor - code file

uint32_t address_unsigned = (uint32_t)
convertHexToInt(address);

// MSB part of the tag
uint32_t ms_tag = MSBTagMask & address_unsigned;
unsigned actual_granularity = StartBit - EndBit;
ms_tag >>= actual_granularity; // Shift to the

right , to close the ’index -gap’
// LSB part of the tag
uint32_t ls_tag = LSBTagMask & address_unsigned;
uint32_t tag = ms_tag | ls_tag;
if (Verbosity) {

printf("TAG: Address %s give tag %u (
ms_tag %u and ls_tag %u) \n", address.
c_str(), tag, ms_tag , ls_tag);

}
if (PartialTag) {

tag &= PartialTagMask;
tag >>= PartialEndBit;
if (Verbosity) {

printf("TAG: shortened tag to %u
\n", tag);

}
}
return tag;

}

// Function to get set number
uint32_t
GeneralPredictor::getSetNumber(uint32_t index)
{

//uint32_t set_number = floor(index/EntriesPerSet
);

uint32_t set_number = index;
if (PredictorType == "fully_associative") {

set_number = 0;
}
return set_number;

}

////////////////////////////////////
// METHODS USED TO MAKE A PREDICTION
////////////////////////////////////

// Function to simply record a message -- source and
destination are added to the sharersList

void
GeneralPredictor::recordMessage(std::string address ,

185

7.2. Coherence predictor - code file

unsigned source , unsigned destination , uint64_t time)
{

if (Verbosity) {
printf("REC: Recording message from %u to

%u for address %s at time %zu \n",
source , destination , address.c_str(),
time);

}
// Find the entry for this address
findEntry(address);

// Convert source and destination to their
tileIDs

uint32_t source_tile = convertNodeID(source);
uint32_t destination_tile = convertNodeID(

destination);

// Record the sharers
recordSharers(source_tile ,destination_tile ,source

,destination ,time ,address);
}

// Actual recording of the sharers
void
GeneralPredictor::recordSharers(uint32_t source_tile ,

uint32_t destination_tile , unsigned source , unsigned
destination , uint64_t time , std::string address)

{
assert(isEntryPresent(address));
// Get the setNumber and tag
uint32_t set_number = getSetNumber(extractIndex(

address));
uint32_t tag = extractTag(address);

// First message for the L2
uint32_t valid_entry = LUT[set_number].Entries[

tag]->PredictionInfo[ValidBit];
if ((valid_entry == 0) && (destination >=

NumTiles) && (destination < 2*NumTiles)) { //
For directory

LUT[set_number].Entries[tag]->
PredictionInfo[SharerBit + source_tile
]= SB_normalSharer;

LUT[set_number].Entries[tag]->PredictionInfo[
SharerBit + destination_tile] =
SB_normalSharer;

LUT[set_number].Entries[tag]->
PredictionInfo[ValidBit] = 1;

186

7.2. Coherence predictor - code file

LUT[set_number].Entries[tag]->
PredictionInfo[DirectoryBit] =
destination_tile;

} else if ((valid_entry == 0) && !(destination >=
2*NumTiles) && !(destination < 3*NumTiles)) {

if (VerbosityPrintErrors){
printf("Messages coming by not

destined for the directory but
the entry has not been

initialized yet!");
}

} else {
// Check this is not overwriting

the evictor counter + never
write the directory/L2 away as
a sharer

if ((source < NumTiles) && (LUT[
set_number].Entries[tag]->
PredictionInfo[SharerBit + source_tile
] != SB_currentEvictor) && (LUT[
set_number].Entries[tag]->
PredictionInfo[SharerBit + source_tile
] != SB_receivedInv)

&&

(
LUT
[
set_number
].
Entries
[
tag
]->
PredictionInfo
[
SharerBit

+

source_tile
]

!=

SB_upgrader
)
)

187

7.2. Coherence predictor - code file

{

LUT[set_number].Entries[tag]->
PredictionInfo[SharerBit +
source_tile] = SB_normalSharer
;

}

if ((destination < NumTiles) && (LUT[
set_number].Entries[tag]->
PredictionInfo[SharerBit +
destination_tile] != SB_currentEvictor
) && (LUT[set_number].Entries[tag]->
PredictionInfo[SharerBit +
destination_tile] != SB_receivedInv)

&& (
LUT[set_number].Entries[tag]->
PredictionInfo[SharerBit +
destination_tile] != SB_upgrader)) {

LUT[set_number].Entries[tag]->
PredictionInfo[SharerBit +
destination_tile] =
SB_normalSharer;

}

LUT[set_number].Entries[tag]->
PredictionInfo[ValidBit] = 1;

}

LUT[set_number].Entries[tag]->PredictionInfo[
ValidBit] = 1;

LUT[set_number].Entries[tag]->PredictionInfo[
TagBit] = tag;

if (Verbosity) {
printf("REC: Recording sharers %u and %u

at time %zu/%zu \n", source_tile ,
destination_tile , time , LUT[set_number
].Entries[tag]->PredictionInfo[
TimeStampBit]);

}
}

// Function to change the sequence type
uint32_t

188

7.2. Coherence predictor - code file

GeneralPredictor::changeSequenceType(std::string address ,
std::string message_type , std::string request_type ,

unsigned source_node)
{

assert(isEntryPresent(address));

// Get number of the set this address maps on
uint32_t set_number = getSetNumber(extractIndex(

address));
uint32_t tag = extractTag(address);

// Change the sequence type
uint32_t valid_entry = LUT[set_number].Entries[

tag]->PredictionInfo[ValidBit];
uint32_t sequence_bit = LUT[set_number].Entries[

tag]->PredictionInfo[SequenceBit];
unsigned num_sharers = getNumSharers(address ,

set_number , tag);

if (valid_entry == 1) {
// ------------- STATE 0 -------------
if (sequence_bit == State_noRecording) {

// Nothing recorded yet -- change to
only present at directory

if ((message_type == "L1_REQ_C"
) && ((request_type == "LD")
|| (request_type == "ST") || (
request_type == "IFETCH"))) {
// LD 1

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_requestedByLLC;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if (request_type == "EVICT
") {

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_requestedByLLC;
// Eviction

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =

189

7.2. Coherence predictor - code file

convertAccessType(
request_type);

} else {
// This should not be

happening
if (VerbosityPrintErrors)

{
printf("

Unexpected
message type
in sequence
type state 0:
message type %
s, request
type %s from %
u for address
%s \n",
message_type.
c_str(),
request_type.
c_str(),
source_node ,
address.c_str
());

}
}

// ------------- STATE 1 -------------
} else if (sequence_bit ==

State_requestedByLLC) { // Change from
not present in DIR to present in DIR

if (message_type == "L2_REQ_C") {
// LD1/ST1

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_requestedByLLC;

} else if (message_type == "
MEM_RES_D") { // LD1/ST1

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInLLC;

} else {
// This should not be

happening
if (VerbosityPrintErrors)

{
printf("

190

7.2. Coherence predictor - code file

Unexpected
message type
in sequence
type state 1:
message type %
s, request
type %s from %
u for address
%s \n",
message_type.
c_str(),
request_type.
c_str(),
source_node ,
address.c_str
());

}
}

// ------------- STATE 2 -------------
} else if (sequence_bit ==

State_presentInLLC) { // Change from
only present in DIR to only present in
1 L1

if (request_type == "L2_EVICT") {
LUT[set_number].Entries[

tag]->PredictionInfo[
SequenceBit] =
State_eviction;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if (message_type == "
L2_RES_D") { // LD1/ST1/LD4
/ST2

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInOneL1;

} else if (message_type == "
L1_REQ_C") { // LD4/ST2

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInLLC;

LUT[set_number].Entries[
tag]->PredictionInfo[

191

7.2. Coherence predictor - code file

RequestTypeBit] =
convertAccessType(
request_type);

} else {
// This should not be

happening
if (VerbosityPrintErrors)

{
printf("

Unexpected
message type
in sequence
type state 2:
message type %
s, request
type %s from %
u for address
%s \n",
message_type.
c_str(),
request_type.
c_str(),
source_node ,
address.c_str
());

}
}

// ------------- STATE 3 -------------
} else if (sequence_bit ==

State_presentInOneL1) { // Change from
only present in 1 L1 to present in

multiple L1s
if (request_type == "L2_EVICT") {

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_eviction;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if ((message_type == "
L1_REQ_C") && (request_type ==
"LD")) { // LD2

LUT[set_number].Entries[
tag]->PredictionInfo[

192

7.2. Coherence predictor - code file

SequenceBit] =
State_presentInOneL1;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if ((message_type == "
L1_REQ_C") && (request_type ==
"IFETCH")) { // LD2 but for
blocks which can never be
owned exclusively

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if ((message_type == "
L1_REQ_C") && (request_type ==
"ST")) { // ST3

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInOneL1;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if (message_type == "
L2_REQ_C") { //ST3 or LD2

if (LUT[set_number].
Entries[tag]->
PredictionInfo[
RequestTypeBit] ==
RT_ST) {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_presentInOneL1
;

} else if (LUT[set_number

193

7.2. Coherence predictor - code file

].Entries[tag]->
PredictionInfo[
RequestTypeBit] ==
RT_LD || LUT[
set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_IFETCH) { // LD2

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_presentInMultL1
;

}
} else if (message_type == "

L1_RES_D") { // ST3
LUT[set_number].Entries[

tag]->PredictionInfo[
SequenceBit] =
State_presentInOneL1;

removeSharer(address ,
set_number , tag,
source_node);

} else if (request_type == "EVICT
") {

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_eviction;

setAsEvictor(address ,
set_number , tag,
source_node);

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if (message_type == "
L2_RES_D") { // LD2

if (num_sharers == 1) {
LUT[set_number].

Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_presentInOneL1

194

7.2. Coherence predictor - code file

;
} else {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_presentInMultL1
;

}
} else {

// This should not be
happening

if (VerbosityPrintErrors)
{

printf("
Unexpected
message type
in sequence
type state 3:
message type %
s, request
type %s from %
u for address
%s \n",
message_type.
c_str(),
request_type.
c_str(),
source_node ,
address.c_str
());

}
}

// ------------- STATE 4 -------------
} else if (sequence_bit ==

State_presentInMultL1) {
if (request_type == "L2_EVICT") {

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_eviction;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if ((message_type == "

195

7.2. Coherence predictor - code file

L1_REQ_C") && ((request_type
=="LD") ||(request_type == "
IFETCH"))) { // LD3

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

} else if (message_type == "
L2_RES_D") { // LD3/ST4

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

} else if ((message_type =="
L1_REQ_C") && (request_type ==
"ST")) { // ST4

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

setUpgrader(address ,
set_number , tag,
source_node);

} else if ((message_type =="
L1_REQ_C") && (request_type
== "UPGRADE")) { // ST5

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

setUpgrader(address ,
set_number , tag,
source_node);

196

7.2. Coherence predictor - code file

} else if (message_type =="
L2_RES_C") { // ST5

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

} else if (message_type == "
L2_REQ_C") { // ST4/LD2/ST5

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

} else if (message_type == "
L1_RES_D") { // LD2

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_presentInMultL1;

} else if (message_type == "
L1_RES_C") { // ST4/ST5 -
invalidation ack

removeSharer(address ,
set_number , tag,
source_node);

int num_sharers_currently
= getNumSharers(

address , set_number ,
tag);

if (num_sharers_currently
> 1) {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_presentInMultL1
;

if (Verbosity) {
printf("

PRED:
Transition
from

state
4 to 4
after
INV

ACK (%
i num

197

7.2. Coherence predictor - code file

sharers

currently
) \n",
num_sharers_currently
);

}
} else {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_presentInOneL1
;

if (Verbosity) {
printf("

PRED:
Transition
from

state
4 to 3
after
INV

ACK (%
i num
sharers

currently
) \n",
num_sharers_currently
);

}
}

} else if (request_type == "EVICT
") {

LUT[set_number].Entries[
tag]->PredictionInfo[
SequenceBit] =
State_eviction;

setAsEvictor(address ,
set_number , tag,
source_node);

LUT[set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] =
convertAccessType(
request_type);

198

7.2. Coherence predictor - code file

} else {
// This should not be

happening
if (VerbosityPrintErrors)

{
printf("

Unexpected
message type
in sequence
type state 4:
message type %
s, request
type %s from %
u for address
%s \n",
message_type.
c_str(),
request_type.
c_str(),
source_node ,
address.c_str
());

}
}

// ------------- STATE 5 -------------
} else if (sequence_bit == State_eviction

) {
if (LUT[set_number].Entries[tag

]->PredictionInfo[
RequestTypeBit] == RT_EVICT) {
// L1 evict

if (message_type == "
L2_RES_C") {

int
num_sharers_currently
=

getNumSharers(
address ,
set_number ,
tag);

if (
num_sharers_currently
<= 2) {

LUT[
set_number
].
Entries
[tag

199

7.2. Coherence predictor - code file

]->
PredictionInfo
[
SequenceBit
] =
State_presentInLLC
;

if (
Verbosity
) {

printf
(
"
PRED
:

Transition

from

state

5

to

2

after

evict

ACK

(%
i

num

sharers

currently
)

\
n
"
,

200

7.2. Coherence predictor - code file

num_sharers_currently
)
;

}
} else if (

num_sharers_currently
== 3) {

LUT[
set_number
].
Entries
[tag
]->
PredictionInfo
[
SequenceBit
] =
State_presentInOneL1
;

if (
Verbosity
) {

printf
(
"
PRED
:

Transition

from

state

5

to

3

after

evict

ACK

(%

201

7.2. Coherence predictor - code file

i

num

sharers

currently
)

\
n
"
,
num_sharers_currently
)
;

}
} else {

LUT[
set_number
].
Entries
[tag
]->
PredictionInfo
[
SequenceBit
] =
State_presentInMultL1
;

if (
Verbosity
) {

printf
(
"
PRED
:

Transition

from

state

5

202

7.2. Coherence predictor - code file

to

4

after

evict

ACK

(%
i

num

sharers

currently
)

\
n
"
,
num_sharers_currently
)
;

}
}
// Remove evictor

from
sharersList

int evictor =
returnEvictor(
address ,
set_number ,
tag);

if (evictor !=
-1) { // Added
to C++

removeSharer
(
address
,
set_number
, tag,
(

203

7.2. Coherence predictor - code file

unsigned
)
evictor
);

}
} else {

// This should not be happening
if (

VerbosityPrintErrors
) {

printf("
Unexpected

message
type

in
sequence
type

state
5 (L1
evict)
:
message
type

%s,
request
type

%s
from %
i for
address
%s \n

",
message_type
.c_str
(),
request_type
.c_str
(),
source_node
,
address
.c_str
());

}
}

} else if (LUT[set_number].
Entries[tag]->PredictionInfo[

204

7.2. Coherence predictor - code file

RequestTypeBit] == RT_L2_EVICT
) { //L2 evict

if (message_type == "
MEM_RES_C") {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_noRecording
;

} else if ((message_type
== "L1_RES_C") || (

message_type == "
L1_RES_D")) {

removeSharer(
address ,
set_number ,
tag,
source_node);

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_eviction
;

} else if ((message_type
== "L2_RES_C") || (

message_type == "
L2_RES_D")) {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_eviction
;

} else if (message_type
=="L2_REQ_C") {

LUT[set_number].
Entries[tag]->
PredictionInfo
[SequenceBit]
=
State_eviction
; // Inv
messages

205

7.2. Coherence predictor - code file

} else {
if (

VerbosityPrintErrors
) {

printf("
Unexpected

message
type

in
sequence
type

state
5 (L2
evict)
:
message
type

%s,
request
type

%s
from %
i for
address
%s \n

",
message_type
.c_str
(),
request_type
.c_str
(),
source_node
,
address
.c_str
());

}
}

}
}

} else {
// This should not be happening
if (VerbosityPrintErrors) {

printf("Message looking for
connection for non-initialized
address!");

206

7.2. Coherence predictor - code file

}
}
uint32_t new_sequence_bit = LUT[set_number].

Entries[tag]->PredictionInfo[SequenceBit];
if (Verbosity){

printf("PRED: Changing the sequence type
from %u to %u for message_type %s and
request_type %s \n",sequence_bit ,
new_sequence_bit ,message_type.c_str(),
request_type.c_str());

}
return new_sequence_bit;

}

// Function to predict the next optical connection
// Returns a standard pair containing the predicted

source and destination
std::pair <int, int>
GeneralPredictor::predictOpticalConnection(std::string

address ,unsigned source ,unsigned destination ,uint64_t
time ,std::string previous_message)

{
// Find key_dec for this address
assert(isEntryPresent(address));

// Get number of the set this address maps on
uint32_t set_number = getSetNumber(extractIndex(

address));
uint32_t tag = extractTag(address);

// Setup connection
uint32_t valid_entry = LUT[set_number].Entries[

tag]->PredictionInfo[ValidBit];
uint32_t sequence_bit = LUT[set_number].Entries[

tag]->PredictionInfo[SequenceBit];
// Predict from and to which tile the next

message will come and go
uint32_t source_tile = convertNodeID(source);
uint32_t destination_tile = convertNodeID(

destination);

// These variables are integers now, during the
actual prediction they can be set to -1,
indicating there is no valid prediction to be
made

// Predicted source and destination will not be
stored like this , but be used to set the
PredictionValid field

207

7.2. Coherence predictor - code file

int predicted_source = (int) destination_tile; //
The next message will leave from where the

current message is going to
int predicted_destination = -1; // Starts as -1,

will be converted later on

// For statistics only -- to remember type of
predictions made when imperfect predictions
are made eg partial tag

std::string pred_type = "blob";

if (Verbosity) {
printf("PRED: Predicting an optical

connection -- current message [%u -> %
u], sequence bit %u, currently %u
sharers \n",source ,destination ,
sequence_bit ,getNumSharers(address ,
set_number , tag));

}
if ((getNumSharers(address , set_number , tag) <

1) && (valid_entry == 1) && (sequence_bit !=
State_eviction)) {

predicted_source = -1;
pred_type = "single_sharer";
if (Verbosity) {

printf("PRED: Only 1 registered
sharer so no point in setting
up a connection (set_number %u
, state %i) \n",set_number ,
sequence_bit);

}
} else if (valid_entry == 1) {

}
// -------- STATE 1 --------------------
if (sequence_bit == State_requestedByLLC)

{ // Requested by directory
predicted_destination =

returnDirectory(address ,
set_number , tag); // Memory
connection

pred_type = "state1";
if (Verbosity) {

printf("PRED: Requested
by directory so
destination will be
memory controller/
directory -- %i \n",
predicted_destination)

208

7.2. Coherence predictor - code file

;
}

//-------- STATE 2 ---------------------
} else if(sequence_bit ==

State_presentInLLC) { // Requested by
L1 but only present in directory at
the moment

predicted_destination =
returnUniqueSharer(address ,
set_number , tag);

pred_type = "state2";
if (Verbosity) {

printf("PRED: Requested
by L1 so destination
will be only other
registered sharer --
%i \n",
predicted_destination)
;

}
//-------- STATE 3 ---------------------
} else if (sequence_bit ==

State_presentInOneL1) { // Only
present in 1 L1

if ((previous_message == "
L1_REQ_C") && (LUT[set_number
].Entries[tag]->PredictionInfo
[RequestTypeBit] == RT_ST)) {
// ST3

// Next message will be
an invalidation from
directory L2

// to L1" -- choose the
other sharer not this
L1

std::vector <unsigned >
all_sharers =
returnSharers(address ,
set_number , tag);

for (unsigned i = 0; i <
all_sharers.size(); i
++){

if (all_sharers[
i] !=
source_tile) {

predicted_destination
= (

int)

209

7.2. Coherence predictor - code file

all_sharers
[i];

break;
}

}
pred_type = "

state3_ST3_inv";
if (Verbosity) {

printf("PRED:
Next message
will be the
INV to the
other sharer
-- %i \n",
predicted_destination
);

}
} else if ((previous_message ==

"L1_REQ_C") && ((LUT[
set_number].Entries[tag]->
PredictionInfo[RequestTypeBit]
== RT_LD) || (LUT[set_number

].Entries[tag]->PredictionInfo
[RequestTypeBit] == RT_IFETCH)
)) { // LD2

// Next message will be
an invalidation from
directory L2

// to L1" -- choose the
other sharer not this
L1

std::vector <unsigned >
all_sharers =
returnSharers(address ,
set_number , tag);

for (unsigned i = 0; i <
all_sharers.size(); i
++){

if (all_sharers[
i] !=
source_tile) {

predicted_destination
= (

int)
all_sharers
[i];

break;
}

210

7.2. Coherence predictor - code file

}
pred_type = "

state3_LD2_inv";
if (Verbosity) {

printf("PRED:
Next message
will be the
INV to the
other sharer
-- %i \n",
predicted_destination
);

}
} else if (previous_message == "

L2_REQ_C") { // ST3
// Next message will be

the invalidation ACK
std::vector <unsigned >

all_sharers =
returnSharers(address ,
set_number , tag);

for (unsigned i = 0; i <
all_sharers.size(); i
++){

if (all_sharers[
i] !=
destination_tile
) {

predicted_destination
= (

int)
all_sharers
[i];

break;
}

}
pred_type = "

state3_ST3_ack";
if (Verbosity){

printf("PRED:
Next message
will be the
INV ACK to the
original

requestor -- %
i \n",
predicted_destination
);

211

7.2. Coherence predictor - code file

}
} else if (previous_message == "

L1_RES_D") { // ST3
// Next message will be

the UNB
predicted_source =

destination_tile;
predicted_destination = (

int) returnDirectory(
address , set_number ,
tag);

pred_type = "
state3_ST3_unb";

} else if(previous_message == "
L2_RES_D") { // LD1/3/4/ST2

// Next message will be
the UNB

predicted_source =
returnUniqueSharer(
address , set_number ,
tag);

predicted_destination = (
int) returnDirectory(
address , set_number ,
tag);

pred_type = "
state3_ST2_LD1_3_4_unb
";

} else if (previous_message == "
L1_RES_C") { // ST4

// Next message will be
the UNB - set upgrader
as

// normal sharer now
setUpgraderAsNormalSharer

(address , set_number ,
tag,destination_tile);

predicted_source =
returnUniqueSharer(
address , set_number ,
tag);

predicted_destination = (
int) returnDirectory(
address , set_number ,
tag);

pred_type = "
state3_ST4_unb";

} else {

212

7.2. Coherence predictor - code file

predicted_source = -1;
predicted_destination =

-1; // JUST TEMPORARY
HACK

pred_type = "
state3_unkown";

if (VerbosityPrintErrors)
{

printf("PRED: do
not know which
prediction to
make from

state 3 (
previous
message %s
from %i to %i
for address %s
- last

transaction
type %zu) \n",

previous_message
.
c_str
()
,
source
,
destination
,
address
.
c_str
()
,
LUT
[
set_number
].
Entries
[
tag
]->
PredictionInfo
[
RequestTypeBit
])
;

213

7.2. Coherence predictor - code file

}
}

//--------------- STATE 4

} else if (sequence_bit ==
State_presentInMultL1) { // Requested
by a L1 but present in other L1(s)

if (previous_message == "L2_REQ_C
") { // LD2 or ST5/ST4

if ((LUT[set_number].
Entries[tag]->
PredictionInfo[
RequestTypeBit] ==
RT_LD) || (LUT[
set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_IFETCH)) {// LD or
IFETCH

// Next message
will be the
transfer of
the

// exclusive L1"
to the
requestor L1

// Next message
will be the
invalidation
ACK

std::vector <
uint32_t >
all_sharers =
returnSharers(
address ,
set_number ,
tag);

for (unsigned i =
0; i <

all_sharers.
size(); i++) {

if (
all_sharers
[i] !=

destination_tile
) {

214

7.2. Coherence predictor - code file

predicted_destination

=

(
int
)

all_sharers
[
i
];

break
;

}
}
pred_type = "

state4_LD2_data
";

if (Verbosity) {
printf("

PRED:
Next
message
will

be the
data

transfer
to

the
original

requestor
-- %

i \n",
predicted_destination
);

}
} else if ((LUT[

set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_UPGRADE) || (LUT[
set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==

215

7.2. Coherence predictor - code file

RT_ST)) { //ST5/ST4
hasReceivedInv(

address ,
set_number ,
tag,
destination_tile
); // Mark as
having
received an
INV

if (
getNumSharersToInv
(address ,
set_number ,
tag) > 1) { //
There are

more sharers
to invalidate
(> 1 because
the upgrader
does not have
to be
invalidated)

predicted_destination
= (

int)
getNextSharerToInv
(
address
,
set_number
, tag)
;

predicted_source
= (

int)
returnDirectory
(
address
,
set_number
, tag)
;

pred_type
= "

state4_ST4_5_inv
";

if (

216

7.2. Coherence predictor - code file

Verbosity
) {

printf
(
"
PRED
:

Last

message

was

INV

but

more

INV

to

follow

as

there

are

%
u

sharers
,

next

INV

to

%
i

(

217

7.2. Coherence predictor - code file

ST4
/5)

\
n
"
,

getNumSharersToInv
(
address
,

set_number
,

tag
)
,
predicted_destination
)
;

}
} else { // No

more sharers
to invalidate
so next up
will be the
invalidation
count to the
requestor

predicted_destination
= (

int)
getUpgrader
(
address
,
set_number
, tag)
;

predicted_source
= (

int)
returnDirectory
(
address

218

7.2. Coherence predictor - code file

,
set_number
, tag)
;

pred_type
= "

state4_ST4_5_ack
";

if (
Verbosity
) {

printf
(
"
PRED
:

All

sharers

have

been

INV
,

next

will

be

the

INV

ack

from

%
i

(
ST4
/5)

219

7.2. Coherence predictor - code file

\
n
"
,
predicted_destination
)
;

}
}

}
} else if (previous_message == "

L1_RES_D") { // LD2
// If the previous

message was the WB,
next will be

// UNB
if (destination_tile ==

returnDirectory(
address , set_number ,
tag)) {

predicted_destination
= (int)

returnDirectory
(address ,
set_number ,
tag);

pred_type = "
state4_LD2_unb
";

} else { // Next message
will be the WB to the
L2 (predict the second
L1_RES_D)

predicted_destination
= (int)

returnDirectory
(address ,
set_number ,
tag);

predicted_source
= source_tile;

pred_type = "
state4_LD2_writeback
";

if (Verbosity) {
printf("

220

7.2. Coherence predictor - code file

PRED:
Next
message
will

be the

writeback
from

not-
requestor
L1 (%

i) to
the L2
-- %i
\n",

predicted_source
,
predicted_destination
);

}
}

} else if (previous_message == "
L1_REQ_C") { // LD3/ST4/ST5

if (LUT[set_number].
Entries[tag]->
PredictionInfo[
RequestTypeBit] ==
RT_ST) { // ST -- ST4

// Next message
will be the
first
invalidation

predicted_destination
= (int)

getNextSharerToInv
(address ,
set_number ,
tag);

predicted_source
= (int)
returnDirectory
(address ,
set_number ,
tag);

pred_type = "
state4_ST4_inv
";

if (Verbosity) {

221

7.2. Coherence predictor - code file

printf("
PRED:
Next
message
will

be the
first

invalidation
(ST4)
\n");

}
} else if (LUT[set_number

].Entries[tag]->
PredictionInfo[
RequestTypeBit] ==
RT_UPGRADE) { //
UPGRADE -- ST5

// Next message
will be the
first
invalidation

predicted_destination
= (int)

getNextSharerToInv
(address ,
set_number ,
tag);

predicted_source
= (int)
returnDirectory
(address ,
set_number ,
tag);

pred_type = "
state4_ST5_inv
";

if (Verbosity) {
printf("

PRED:
Next
message
will

be the
first

invalidation
(ST5)

222

7.2. Coherence predictor - code file

\n");
}

} else if ((
previous_message == "
L1_REQ_C") && ((LUT[
set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_LD) || (LUT[
set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_IFETCH))) { //
LD3

predicted_destination
= source_tile

;
pred_type = "

state4_LD3_data
";

if (Verbosity) {
printf("

PRED:
Next
message
will

be the
data

transfer
from

the L2
to

the
original

requestor
(LD3)
\n");

}
}

} else if (previous_message == "
L2_RES_D") { // ST4/LD3 -- we
need to distinguish between
them

if (LUT[set_number].
Entries[tag]->
PredictionInfo[
RequestTypeBit] ==

223

7.2. Coherence predictor - code file

RT_ST) { // ST
// Next message

will be the
invalidation

//
acknowledgments

predicted_source
= (int)
getNextSharerToInvAck
(address ,
set_number ,
tag);

predicted_destination
= (int)

getUpgrader(
address ,
set_number ,
tag);

pred_type = "
state4_ST4_ack
";

if (Verbosity) {
printf("

PRED:
Next
message
will

be the
first
INV

request
(ST4)
\n");

}
} else if ((LUT[

set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_LD) || (LUT[
set_number].Entries[
tag]->PredictionInfo[
RequestTypeBit] ==
RT_IFETCH)) { // LD
or IFETCH

// This
was a
LD3 so

224

7.2. Coherence predictor - code file

there
will

be no
next

//
connection

predicted_source
= -1;

pred_type
= "

state4_LD3
";

if (
Verbosity
) {

printf
(
"
PRED
:

previous

message

L2_RES_D
,

access

type

is

LD
/
IFETCH

so

sequence

type

LD3

\

225

7.2. Coherence predictor - code file

n
"
)
;

}
}

} else if (previous_message == "
L1_RES_C") { // ST4/ST5

if (getNumSharers(address
, set_number , tag) ==
0) { // All sharers
have ack"ed their
invalidation so next
up will be the UNB

predicted_source
=
destination_tile
;

predicted_destination
= (int)

returnDirectory
(address ,
set_number ,
tag);

pred_type = "
state4_ST4_5_unb
";

if (Verbosity) {
printf("

PRED:
All
sharers
have

INV
acked
so
next
up is
the
UNB to
%i \n

",
predicted_destination
);

}
} else {

predicted_source

226

7.2. Coherence predictor - code file

= (int)
getNextSharerToInvAck
(address ,
set_number ,
tag);

predicted_destination
= (int)

returnDirectory
(address ,
set_number ,
tag);

pred_type = "
state4_ST4_5_ack
";

if (Verbosity) {
printf("

PRED:
Next
will
be the
INV

ack
from %
i \n",
predicted_destination
);

}
}

} else if (previous_message == "
L2_RES_C") { // ST5

// Next messages will be
the inv acks

predicted_source = (int)
getNextSharerToInvAck(
address , set_number ,
tag);

predicted_destination = (
int) getUpgrader(
address , set_number ,
tag);

if (predicted_destination
== -1) { // Ordinary

eviction by one of the
sharers

pred_type = "
state4_ST5_evict
";

if (Verbosity) {

227

7.2. Coherence predictor - code file

printf("
PRED:
No
next
mesage
, one
of the

sharers

evicted
the

line \
n");

}
} else {

pred_type = "
state4_ST5_ack
";

if (Verbosity) {
printf("

PRED:
Next
message
will

be the
first
INV

request
(ST5)
\n");

}
}

} else {
predicted_source = -1;
predicted_destination =

-1; // JUST TEMPORARY
HACK

pred_type = "
state4_unkown";

if (VerbosityPrintErrors
) {

printf("PRED: do
not know which
prediction to
make from

state 4 (
previous

228

7.2. Coherence predictor - code file

message %s
from %i to %i)
\n",

previous_message
.c_str(),
source ,
destination);

}
}

} else if (sequence_bit == State_eviction
) { // In the midst of an eviction

if (LUT[set_number].Entries[tag
]->PredictionInfo[
RequestTypeBit] == RT_EVICT) {
// L1 eviction

predicted_destination = (
int) returnEvictor(
address , set_number ,
tag);

pred_type = "eviction_L1"
;

} else if (LUT[set_number].
Entries[tag]->PredictionInfo[
RequestTypeBit] == RT_L2_EVICT
) { // L2 eviction

if (previous_message == "
L2_REQ_C") {

hasReceivedInv(
address ,
set_number ,
tag,
destination_tile
); // Mark as
having
received an
INV

}

if ((previous_message ==
"L2_RES_C") || (

previous_message =="
L2_RES_D")){

// Next message
will be the WB

acknowledgment
// from memory

229

7.2. Coherence predictor - code file

predicted_destination
= (int)

returnDirectory
(address ,
set_number ,
tag);

pred_type = "
eviction_L2_wback
";

if (Verbosity) {
printf("

PRED:
Last
message
was

WB,
next
message
will

be the
WB

ack
from %
i \n",
predicted_destination
);

}
} else if ((

previous_message == "
L2_REQ_C")) {

// Previous
message was an
invalidation

request
if (

getNumSharersToInv
(address ,
set_number ,
tag) > 0) { //
There are

more sharers
to invalidate

predicted_destination
= (

int)
getNextSharerToInv
(
address

230

7.2. Coherence predictor - code file

,
set_number
, tag)
;

predicted_source
= (

int)
returnDirectory
(
address
,
set_number
, tag)
;

pred_type
= "

eviction_L2_inv
";

if (
Verbosity
) {

printf
(
"
PRED
:

Last

message

was

INV

but

more

INV

to

follow

as

there

231

7.2. Coherence predictor - code file

are

%
i

sharers
,

next

INV

to

%
i

\
n
"
,

getNumSharersToInv
(
address
,

set_number
,

tag
)
,
predicted_destination
)
;

}
} else { // No

more sharers
to invalidate
so next up
will be the
invalidation
acknowledgments

predicted_source

232

7.2. Coherence predictor - code file

= (
int)
getNextSharerToInvAck
(
address
,
set_number
, tag)
;

predicted_destination
= (

int)
returnDirectory
(
address
,
set_number
, tag)
;

pred_type
= "

eviction_L2_ack
";

if (
Verbosity
) {

printf
(
"
PRED
:

All

sharers

have

been

INV
,

next

will

be

233

7.2. Coherence predictor - code file

the

INV

ack

from

%
i

\
n
"
,
predicted_destination
)
;

}
}

} else if ((
previous_message == "
L1_RES_C") || (
previous_message == "
L1_RES_D")) {

// Previous
message was an
invalidation

ack
if (getNumSharers

(address ,
set_number ,
tag) == 0) {
// All sharers
have ack"ed

their
invalidation
so next up
will be the
writeback

predicted_destination
= (

int)
returnDirectory
(
address

234

7.2. Coherence predictor - code file

,
set_number
, tag)
;

pred_type
= "

eviction_L2_wb
";

if (
Verbosity
) {

printf
(
"
PRED
:

All

sharers

have

INV

acked

so

next

up

is

the

WB

to

%
i

\
n
"
,

235

7.2. Coherence predictor - code file

predicted_destination
)
;

}
} else {

predicted_source
= (

int)
getNextSharerToInvAck
(
address
,
set_number
, tag)
;

predicted_destination
= (

int)
returnDirectory
(
address
,
set_number
, tag)
;

pred_type
= "

eviction_L2_ack
";

if (
Verbosity
) {

printf
(
"
PRED
:

Next

will

be

the

INV

236

7.2. Coherence predictor - code file

ack

from

%
i

\
n
"
,
predicted_destination
)
;

}
}

}

}

} else {
if (VerbosityPrintErrors) {

printf("Message trying to setup
connection for non-initialized
address! \n");

}
predicted_destination = -1;
pred_type = "uninitialised_address";

}

if (Verbosity) {
printf("PRED: Setting up a connection

from %i to %i \n",predicted_source ,
predicted_destination);

}
//speculative_size = 72; // TBD: needs to be

determined by the FSM
//request = Request(predicted_source ,

predicted_destination ,time ,true ,"SPECULATIVE",
address ,speculative_size);

//int request = 0;
// Check whether we can the results away
if ((predicted_source == -1) || (

predicted_destination == -1)) {
LUT[set_number].Entries[tag]->

PredictionInfo[ValidPredictionBit] =

237

7.2. Coherence predictor - code file

0;
// Does not matter what was in the actual

prediction fields because we won’t
look at them

LUT[set_number].Entries[tag]->
PredictionInfo[PredictedSourceBit] =
0;

LUT[set_number].Entries[tag]->
PredictionInfo[PredictedDestinationBit
] = 0;

} else {
LUT[set_number].Entries[tag]->

PredictionInfo[ValidPredictionBit] =
1;

LUT[set_number].Entries[tag]->
PredictionInfo[PredictedSourceBit] =
predicted_source;

LUT[set_number].Entries[tag]->
PredictionInfo[PredictedDestinationBit
] = predicted_destination;

}

// Write away the statistics
if (StatsPredictionType.count(pred_type) > 0) {

StatsPredictionType[pred_type]++;
} else {

StatsPredictionType.insert(std::pair <std
::string , uint32_t > (pred_type , 1)
);

}

std::pair <int,int> connection_info;
connection_info = std::make_pair(predicted_source

, predicted_destination);

return connection_info;
}

///////////////////////////////
// CHECK PREDICTION FUNCTION
///////////////////////////////

// Check a prediction [source_correct ,destination_correct
]

std::pair <bool ,bool >
GeneralPredictor::checkPrediction(unsigned source_tile ,

unsigned destination_tile ,std::string address)
{

238

7.2. Coherence predictor - code file

bool source_correct;
bool destination_correct;
// Find the key for this address
bool entry_present = isEntryPresent(address);
uint32_t set_number = getSetNumber(extractIndex(

address));
uint32_t tag = extractTag(address);

if (!entry_present) { // No entry for this
address

source_correct = false;
destination_correct = false;
if (Verbosity) {

printf("PRED: Checking prediction
, message is from %i to %i, no
entry for this address in LUT
\n",source_tile ,

destination_tile);
}

} else {
if (LUT[set_number].Entries[tag]->

PredictionInfo[ValidPredictionBit] ==
1) {

if ((uint32_t) source_tile == LUT
[set_number].Entries[tag]->
PredictionInfo[
PredictedSourceBit]) {

source_correct = true;
} else {

source_correct = false;
}

if ((uint32_t) destination_tile
== LUT[set_number].Entries[tag
]->PredictionInfo[
PredictedDestinationBit]) {

destination_correct =
true;

} else {
destination_correct =

false;
}
if (Verbosity) {

printf("PRED: Checking
prediction , message is
from %i to %i, was

predicted from %zu to
%zu \n",

239

7.2. Coherence predictor - code file

source_tile
,
destination_tile
,LUT[
set_number
].
Entries
[tag
]->
PredictionInfo
[
PredictedSourceBit
],LUT[
set_number
].
Entries
[tag
]->
PredictionInfo
[
PredictedDestinationBit
]);

}
} else {

source_correct = false;
destination_correct = false;
if (Verbosity) {

printf("PRED: Checking
prediction but no
valid prediction for
this entry \n");

}
}

}
std::pair <bool ,bool > correct_prediction;
correct_prediction = std::make_pair(

source_correct , destination_correct);
return correct_prediction;

}

///////////////////////////
// GENERAL HELPER FUNCTIONS
///////////////////////////

// Convert nodeID to tileID
// Ouput needs to be signed because might be stored in

LUT
uint32_t

240

7.2. Coherence predictor - code file

GeneralPredictor::convertNodeID(unsigned node_id)
{

uint32_t tile;
if (node_id < NumTiles) { // L1

tile = node_id;
} else if((node_id >= NumTiles) && (node_id < 2*

NumTiles)) { // L2
tile = node_id - NumTiles;

} else if((node_id >= 2*NumTiles) && (node_id <
3*NumTiles)) { // Directory

tile = node_id - 2*NumTiles;
} else { // DMA

tile = 0;
}
return tile;

}

// Return the directory for this address
uint32_t
GeneralPredictor::returnDirectory(std::string address ,

uint32_t set_number , uint32_t tag)
{

return LUT[set_number].Entries[tag]->
PredictionInfo[DirectoryBit];

}

// Return the unique sharer for this address
int
GeneralPredictor::returnUniqueSharer(std::string address ,

uint32_t set_number , uint32_t tag)
{

// Return all SharerFields that are not equal to
zero

std::vector <unsigned > possible_destinations;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] != 0) {

possible_destinations.push_back(i
-SharerBit); // This loop
needs to return the tileID’s,
not the LUT ID’s

}
}

uint32_t comp_value = SB_normalSharer;
int sharer = -1;
for (unsigned i= 0; i < possible_destinations.

size(); i++) {

241

7.2. Coherence predictor - code file

unsigned index_in_LUT = SharerBit +
possible_destinations[i];

if (LUT[set_number].Entries[tag]->
PredictionInfo[index_in_LUT] ==
comp_value) {

if (possible_destinations.size()
== 1) { // If there is only 1
tile , this is the unique

sharer and no need to compare
to directory

sharer =
possible_destinations[
i];

break;
} else if (possible_destinations[

i] != (unsigned) LUT[
set_number].Entries[tag]->
PredictionInfo[DirectoryBit])
{

sharer =
possible_destinations[
i];

break;
}

}
}
if (Verbosity) {

printf("HELPER: %i is unique sharer \n",
sharer);

}
return sharer;

}

// Return a list of all sharers for this address
std::vector <unsigned >
GeneralPredictor::returnSharers(std::string address ,

uint32_t set_number , uint32_t tag)
{

// Return all SharerFields that are not equal to
zero

std::vector <unsigned > possible_destinations;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] != 0) {

possible_destinations.push_back(i
-SharerBit); // This loop
needs to return the tileID’s,
not the LUT ID’s

242

7.2. Coherence predictor - code file

}
}

std::vector <unsigned > sharers;
for (unsigned i = 0; i < possible_destinations.

size(); i++) {
unsigned index_in_LUT = SharerBit +

possible_destinations[i];
if (LUT[set_number].Entries[tag]->

PredictionInfo[index_in_LUT] ==
SB_normalSharer) {

sharers.push_back(
possible_destinations[i]);

}
}
assert(sharers.size() <= possible_destinations.

size());
if (Verbosity) {

printf("HELP: %zu possible sharers , only
%zu normal sharers \n",
possible_destinations.size(), sharers.
size());

}
return sharers;

}

// Get the number of sharers for this address
unsigned
GeneralPredictor::getNumSharers(std::string address ,

uint32_t set_number , uint32_t tag)
{

// Return all SharerFields that are not equal to
zero

std::vector <unsigned > possible_destinations;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] != 0) {

possible_destinations.push_back(i
-SharerBit); // This loop
needs to return the tileID’s,
not the LUT ID’s

}
}
return possible_destinations.size();

}

// Remove a sharer
void

243

7.2. Coherence predictor - code file

GeneralPredictor::removeSharer(std::string address ,
uint32_t set_number , uint32_t tag, unsigned sharer)

{
LUT[set_number].Entries[tag]->PredictionInfo[

SharerBit + sharer] = SB_noSharer;
if (Verbosity) {

printf("HELP: Removed %u from the
sharersList for %u \n",sharer ,
set_number);

}
}

// Return the sharer which sent out an eviction message
int
GeneralPredictor::returnEvictor(std::string address ,

uint32_t set_number , uint32_t tag)
{

int evictor = -1;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] == SB_currentEvictor
) {

evictor = i - SharerBit;
break;

}
}
if ((evictor == -1)&& VerbosityPrintErrors) {

printf("Error -- no evictor to be found"
);

}
return evictor;

}

// Set as evictor
void
GeneralPredictor::setAsEvictor(std::string address ,

uint32_t set_number , uint32_t tag, unsigned
source_node)

{
LUT[set_number].Entries[tag]->PredictionInfo[

SharerBit + source_node] = SB_currentEvictor;
if (Verbosity) {

printf("PRED: Marking %i as in the midst
of an eviction for %i \n",source_node ,
set_number);

}
}

244

7.2. Coherence predictor - code file

// Mark as having received an invalidation message
void
GeneralPredictor::hasReceivedInv(std::string address ,

uint32_t set_number , uint32_t tag, unsigned node)
{

LUT[set_number].Entries[tag]->PredictionInfo[
SharerBit + node] = SB_receivedInv;

if (Verbosity) {
printf("PRED: Marking %i as having

received an invalidation for %i \n",
node ,set_number);

}
}

// Get the sharer which will need to receive an inv
message next

int
GeneralPredictor::getNextSharerToInv(std::string address ,

uint32_t set_number , uint32_t tag)
{

int node_to_inv = -1;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if ((LUT[set_number].Entries[tag]->
PredictionInfo[i] != SB_receivedInv)
&& (LUT[set_number].Entries[tag]->
PredictionInfo[i] != SB_noSharer) && (
LUT[set_number].Entries[tag]->
PredictionInfo[i] != SB_upgrader)) {
// This node is a sharer but has not
been invalidated yet and is not the
evictor nor the upgrader

node_to_inv = i - SharerBit;
break;

}
}

if ((node_to_inv == -1) && VerbosityPrintErrors)
{

printf("Error -- no next sharer
to be found to receive an INV"
);

}
return node_to_inv;

}

// Get the sharer which will send out an inv ack next
int
GeneralPredictor::getNextSharerToInvAck(std::string

245

7.2. Coherence predictor - code file

address , uint32_t set_number , uint32_t tag)
{

int node_to_inv = -1;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] == SB_receivedInv){
// This node has not yet acknowledged
its invalidation

node_to_inv = i - SharerBit;
break;

}
}
if ((node_to_inv == -1) && VerbosityPrintErrors)

{
printf("Error -- no next sharer

to be found which will ACK an
INV");

}
return node_to_inv;

}

// Get the number of nodes that still need to receive an
invalidate message

unsigned
GeneralPredictor::getNumSharersToInv(std::string address ,

uint32_t set_number , uint32_t tag)
{

unsigned sharers_received_inv = 0;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] == SB_receivedInv){
// This node has not yet acknowledged
its invalidation

sharers_received_inv++;
}

}
unsigned num_sharers = getNumSharers(address ,

set_number , tag);
unsigned num_nodes_to_inv = num_sharers -

sharers_received_inv;
return num_nodes_to_inv;

}

// Set the upgrader
void
GeneralPredictor::setUpgrader(std::string address ,

uint32_t set_number , uint32_t tag, unsigned node)
{

246

7.2. Coherence predictor - code file

LUT[set_number].Entries[tag]->PredictionInfo[
SharerBit + node] = SB_upgrader;

if (Verbosity) {
printf("PRED: Marking %i as in the midst

of an upgrade for %i \n",node ,
set_number);

}
}

// Return the upgrader
int
GeneralPredictor::getUpgrader(std::string address ,

uint32_t set_number , uint32_t tag)
{

int upgrade_node = -1;
for (unsigned i = SharerBit; i < ValidBit; i++) {

if (LUT[set_number].Entries[tag]->
PredictionInfo[i] == SB_upgrader) {

upgrade_node = i - SharerBit;
break;

}
}

if (upgrade_node == -1) {
if (VerbosityPrintErrors) {

printf("Error -- no upgrader to
be found");

}
}
return upgrade_node;

}

// Change the upgrader node to a normal node
void
GeneralPredictor::setUpgraderAsNormalSharer(std::string

address , uint32_t set_number , uint32_t tag, unsigned
node)

{
LUT[set_number].Entries[tag]->PredictionInfo[

SharerBit + node] = SB_normalSharer;
if (Verbosity) {

printf("PRED: Marking %i completed its
upgrade and normal sharer now for %i \
n",node ,set_number);

}
}

247

7.2. Coherence predictor - code file

// Convert access type to int
uint32_t
GeneralPredictor::convertAccessType(std::string type)
{

uint32_t int_type = RT_null;

if (type == "LD") {
int_type = RT_LD;

} else if (type == "IFETCH") {
int_type = RT_IFETCH;

} else if (type == "ST") {
int_type = RT_ST;

} else if (type == "EVICT") {
int_type = RT_EVICT;

} else if (type == "UPGRADE") {
int_type = RT_UPGRADE;

} else if (type == "L2_EVICT") {
int_type = RT_L2_EVICT;

}
return int_type;

}

////////////////////////////////
// MESSAGE DISTRIBUTION
////////////////////////////////
void
GeneralPredictor::addToDistribution(std::string address ,

uint64_t time)
{

// Get set number
assert(isEntryPresent(address));
uint32_t set_number = getSetNumber(extractIndex(

address));
uint32_t tag = extractTag(address);
uint64_t inter_arrival_time = time - LUT[

set_number].Entries[tag]->PredictionInfo[
TimeStampBit];

assert(time -LUT[set_number].Entries[tag]->
PredictionInfo[TimeStampBit] >= 0);

if (StatsMessageInterArrivalTimes.count(
inter_arrival_time) > 0) {

// We have already seen this value before
, just increase the counter

StatsMessageInterArrivalTimes[

248

7.2. Coherence predictor - code file

inter_arrival_time]++;
} else {

std::pair <uint64_t , uint32_t > key_pair;
key_pair = std::make_pair(

inter_arrival_time , 1);
StatsMessageInterArrivalTimes.insert(

key_pair);
}
if (inter_arrival_time > StatsMaxInterArrivalTime

) {
if (Verbosity) {

printf("PRED: new max = %zu for %
s @ %zu \n",
inter_arrival_time , address.
c_str(), time);

}
StatsMaxInterArrivalTime =

inter_arrival_time;
}

StatsArrivedMessages++;
if (Verbosity) {

printf("PRED: inter -arrival time for %s
is %zu @%zu\n", address.c_str(),
inter_arrival_time , time);

}
// Now update the timestamp bit
// Record the time the last message (this message

) in the sequence was seen
LUT[set_number].Entries[tag]->PredictionInfo[

TimeStampBit] = time;
}

void
GeneralPredictor::printDistributionToFile(std::string

file_name)
{

// Convert the unorder map to a vector
std::vector <uint32_t > inter_arrival_times;
printf("PRED: reserved %zu spaces for vect \n",

StatsMaxInterArrivalTime +1);
inter_arrival_times.resize(

StatsMaxInterArrivalTime +1);
for (auto it = StatsMessageInterArrivalTimes.

begin(); it != StatsMessageInterArrivalTimes.
end(); it++){

uint64_t time_to_record = it->first;
uint32_t occurrence = it->second;

249

7.2. Coherence predictor - code file

if (time_to_record >= inter_arrival_times
.size()) {

inter_arrival_times.resize(
time_to_record + 1, 0);

printf("Should not occur - time=%
zu, occ=%u \n",time_to_record ,
occurrence);

}
inter_arrival_times[time_to_record] =

occurrence;
}
// Print to file
std::ofstream output;
output.open(file_name.c_str(), std::ofstream::app

); // Append to file
// Loop over the distribution
output << "dist = " << StatsArrivedMessages << "

messages" ;
for (unsigned i = 0; i < inter_arrival_times.size

(); i++){
output << ";" << inter_arrival_times[i];

}
output << "\n";
output.close();

}

void
GeneralPredictor::resetTimings(uint64_t current_time)
{

// Loop over all sets
for (auto set_it = LUT.begin(); set_it != LUT.end

(); set_it++) {
// Loop over all entries in the set
for (auto in_set_it = set_it ->second.

Entries.begin(); in_set_it != set_it ->
second.Entries.end(); in_set_it++) {

// Set the TimeStampBit to the
current time

in_set_it ->second ->PredictionInfo
[TimeStampBit] = current_time;

}
}
printf("PRED: Resetting the inter -arrival times \

n");
StatsMessageInterArrivalTimes.clear();
StatsMaxInterArrivalTime = 0;

}

250

7.2. Coherence predictor - code file

void
GeneralPredictor::resetTimeStamp(std::string address ,

uint64_t current_time)
{

assert(isEntryPresent(address));
uint32_t set_number = getSetNumber(extractIndex(

address));
uint32_t tag = extractTag(address);
LUT[set_number].Entries[tag]->PredictionInfo[

TimeStampBit] = current_time;
if (Verbosity) {

printf("PRED: setting timeStampBit of %s
to %zu \n", address.c_str(),
current_time);

}
}

std::string
GeneralPredictor::getPredProperties()
{

std::ostringstream string_stream;
if (PredictorType == "set_associative"){

string_stream << "NW="<< Associativity ;
string_stream << "SB="<< StartBit;

} else {
string_stream << PredictorType;

}
return string_stream.str();

}

std::string
GeneralPredictor::getPartialTagProperties()
{

std::ostringstream string_stream;
if (!PartialTag) {

string_stream << "null";
} else {

string_stream << "PEndBit=" <<
PartialEndBit;

string_stream << ";PStartBit=" <<
PartialStartBit;

}
return string_stream.str();

}

uint32_t
GeneralPredictor::getReplacements()

251

7.2. Coherence predictor - code file

{
uint32_t total_replacements = 0;
for (uint32_t repl_set :

StatsNumberConflictsPerSet) {
total_replacements += repl_set;

}
return total_replacements;

}

252

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms & Abbreviations
	1 Introduction
	1.1 Thesis overview
	1.2 Original contributions
	1.3 List of publications

	2 Background
	2.1 Introduction to Chip Multiprocessors
	2.1.1 Transition from uniprocessors to chip multiprocessor
	2.1.2 Chip multiprocessors
	2.1.3 Caches
	2.1.4 Cache coherence protocol
	2.1.5 Industrial and academic chip multiprocessors

	2.2 Introduction to Networks On-Chip
	2.2.1 Transition to networks on-chip
	2.2.2 Motivation behind optical networks on-chip
	2.2.3 Optical networks on-chip
	2.2.4 Holistic proposals for network on-chip optimisation

	2.3 System Under Study
	2.3.1 System architecture
	2.3.2 Network on-chip architecture

	2.4 Conclusion

	3 Figure of Merit
	3.1 Performance Evaluation
	3.1.1 Single-threaded workloads
	3.1.2 Multithreaded workloads
	3.1.3 Conclusion

	3.2 Performance Measurement
	3.2.1 Benchmark choice
	3.2.2 Simulator choice
	3.2.3 Need for full-system simulations

	4 Effect of Latency on Performance
	4.1 Effect of Latency and Bandwidth on Performance
	4.1.1 Effect of latency on performance
	4.1.2 Effect of bandwidth on performance
	4.1.3 Conclusion

	4.2 Effect of Latency in an Optical Network On-Chip on Performance
	4.2.1 Electrical mesh as comparison network on-chip
	4.2.2 Simulation model of the optical networks on-chip
	4.2.3 Effect of reduced latency in an optical network on-chip

	4.3 Conclusion

	5 Use of Prediction in Switched Optical Networks On-Chip
	5.1 Trace-Based Methodology
	5.2 Use of Speculative Circuits in Switched Networks On-Chip
	5.2.1 Implementation
	5.2.2 Results

	5.3 Use of Predictive Circuits in Switched Networks On-Chip
	5.3.1 Coherence transactions
	5.3.2 Coherence-based prediction
	5.3.3 Implementation details
	5.3.4 Results

	5.4 Realistic Use of Predictive circuits in Switched Networks On-Chip
	5.4.1 Realistic implementation of the predictor
	5.4.2 Use of partial tags

	5.5 Conclusion

	6 Conclusion
	6.1 Thesis Summary
	6.2 Future Research

	7 Appendix
	7.1 Coherence predictor - header file
	7.2 Coherence predictor - code file

