55 research outputs found

    Developing a framework of non-fatal occupational injury surveillance for risk control in palm oil mills

    Get PDF
    Non-fatal occupational injury (NFOI) and its risk factors have become a current global concern. The need of research towards the relationship between occupational injury and its risk factor is essential, to fulfil the purpose and setting the priority of implementing safety preventive approaches at workplace. This research intended to develop a framework of NFOI surveillance by using epidemiological data, noise exposure data and NFOI data among palm oil mills’ workers. A total of 420 respondents who assigned in operation and processing areas (OP) (n=333) and general or office workers (n=87) had voluntary participated in this research. A questionnaire session with respondents was held to obtain epidemiological data and NFOI information via validated questionnaire. Noise hazard monitoring was executed by using Sound Level Meter (SLM) for environmental noise monitoring and Personal Sound Dosimeter for personal noise monitoring. Gathered data were analysed in quantitative method by using statistical software IBM SPSS Statistic version 21 and a risk matrix table for injury risk rating evaluation. It was discovered that high noise exposure level (≥ 85 dB[A]) was significantly associated with non-fatal occupational injury among OP workers (φ=0.123, p<0.05) with OR=1.87 (95% CI, 1.080-3.235, p<0.05). Risk rating for reported NFOI was at moderate level, with minor cuts and scratches were the dominant type of injury (42.6%). Analysis of logistic regression indicated that working in shift, not wearing protective gloves, health problems such as shortness of breath and ringing in ears, and excessive noise level (≥ 85 dB[A]) were the risk factors of NFOI in palm oil mills among OP workers. A framework of nonfatal injury surveillance in palm oil mills was developed based on the findings with integration of risk management process and injury prevention principles. This framework is anticipated to help the management in decision making for preventive actions and early detection of occupational health effects among workers

    Trade-off and Design optimization of the Notch filter for ultralow power ECG application

    Get PDF
    ECG acquisition, several leads combined with signals from different body parts (i.e., from the right wrist and the left ankle) are utilized to trace the electric activity of the heart. ECG acquisition board translates the body signal to six leads and processes the signal using a low-pass filter (LPF) and SAR ADC. The acquisition board is composed of: an instrumentation amplifier, a high-pass filter, a 60-Hz notch filter, and a common-level adjuster. But miniaturization or need of portable devices for measuring Bio-Potential parameters has led to design of IC’s for biomedical application with ultra-low power Because of miniaturization i.e. use of lower technology nodes has led to non-idealities which reduces the attenuation of Common Mode to differential component i.e. not CMRR. Because of this demerit the power line interference signal can’t be assumed as a common mode signal. Hence we need to design a power line interference filter to avoid the contamination of the signal

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Low Power Analog Front End for ExG Acquisition with Automatic Gain Control and Analog Classification

    Get PDF
    Cardiovascular diseases have been known to cause large number of deaths globally. For prevention and early detection of these diseases, continuous monitoring of ecg signals is required. With recent advances in IC technology, implantable ICs have seen the light of the day. Considering the im-plantable devices, power consumed by the system needs to be as less as possible without sacrificing the performance of the readout circuit

    Analog Front-End Circuits for Massive Parallel 3-D Neural Microsystems.

    Full text link
    Understanding dynamics of the brain has tremendously improved due to the progress in neural recording techniques over the past five decades. The number of simultaneously recorded channels has actually doubled every 7 years, which implies that a recording system with a few thousand channels should be available in the next two decades. Nonetheless, a leap in the number of simultaneous channels has remained an unmet need due to many limitations, especially in the front-end recording integrated circuits (IC). This research has focused on increasing the number of simultaneously recorded channels and providing modular design approaches to improve the integration and expansion of 3-D recording microsystems. Three analog front-ends (AFE) have been developed using extremely low-power and small-area circuit techniques on both the circuit and system levels. The three prototypes have investigated some critical circuit challenges in power, area, interface, and modularity. The first AFE (16-channels) has optimized energy efficiency using techniques such as moderate inversion, minimized asynchronous interface for data acquisition, power-scalable sampling operation, and a wide configuration range of gain and bandwidth. Circuits in this part were designed in a 0.25μm CMOS process using a 0.9-V single supply and feature a power consumption of 4μW/channel and an energy-area efficiency of 7.51x10^15 in units of J^-1Vrms^-1mm^-2. The second AFE (128-channels) provides the next level of scaling using dc-coupled analog compression techniques to reject the electrode offset and reduce the implementation area further. Signal processing techniques were also explored to transfer some computational power outside the brain. Circuits in this part were designed in a 180nm CMOS process using a 0.5-V single supply and feature a power consumption of 2.5μW/channel, and energy-area efficiency of 30.2x10^15 J^-1Vrms^-1mm^-2. The last AFE (128-channels) shows another leap in neural recording using monolithic integration of recording circuits on the shanks of neural probes. Monolithic integration may be the most effective approach to allow simultaneous recording of more than 1,024 channels. The probe and circuits in this part were designed in a 150 nm SOI CMOS process using a 0.5-V single supply and feature a power consumption of only 1.4μW/channel and energy-area efficiency of 36.4x10^15 J^-1Vrms^-1mm^-2.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98070/1/ashmouny_1.pd

    Optimized PET module for both pixelated and monolithic scintillator crystals

    Get PDF
    [eng] Time-of-Flight Positron Emission Tomography (TOF-PET) scanners demand fast and efficient photo-sensors and scintillators coupled to fast readout electronics. Nowadays, there are two main configurations regarding the scintillator crystal geometry: the segmented or pixelated and the monolithic approach. Depending on the cost, spatial resolution and time requirements of the PET module, one can choose between one or another. The pixelated crystal is the most extensive configuration on TOF-PET scanners as the coincidence time resolution is better compared to the monolithic. On the contrary, monolithic scintillator crystals for Time-of-Flight Positron Emission Tomography (ToF-PET) are increasing in popularity this last years due to their performance potential and price in front of the commonly used segmented crystals. On one hand, monolithic blocks allows to determine 3D information of the gamma-ray interaction inside the crystal, which enables the possibility to correct the parallax error (radial astigmatism) at off-center positions within a PET scanner, resulting in an improvement of the spatial resolution of the device. On the other hand, due to the simplicity during the crystal manufacturing process as well as for the detector design, the price is reduced compared to a regular pixelated detector. The thesis starts with the use of HRFlexToT, an ASIC developed in this group, as the readout electronics for measurements with single pixelated crystals coupled to different SiPMs. These measurements show an energy linearity error of 3% and an energy resolution below 10% of the 511 keV photopeak. Single Photon Time Resolution (SPTR) measurements performed using an FBK SiPM NUV-HD (4 mm x 4 mm pixel size) and a Hamamatsu SiPM S13360-3050CS gave a 141 ps and 167 ps FWHM respectively. Coincidence Time Resolution (CTR) measurements with small cross-section pixelated crystals (LFS crystal, 3 m x 3 mm x 20 mm ) coupled to a single Hamamatsu SiPM S13360-3050CS provides a CTR of 180 ps FWHM. Shorter crystals (LSO:Ce Ca 0.4%) coupled to a Hamamatsu S13360-3050CS SiPM or FBK-NUVHD yields a CTR of 117 ps and 119 ps respectively. Then, the results with different monolithic crystals and SiPM sensors using HRFlexToT ASIC will be presented. A Lutetium Fine Silicate (LFS) of 25 mm x 25 mm x 20 mm, a small LSO:Ce Ca 0.2% of 8 mm x 8 mm x 5 mm and a Lutetium-Yttrium Oxyorthosilicate (LYSO) of 25 mm x 25 mm x 10 mm has been experimentally tested. After subtracting the TDC contribution (82 ps FWHM), a coincidence time resolution of 244 ps FWHM for the small LFS crystal and 333 ps FWHM for the largest LFS one is reported. Additionally, a novel time calibration correction method for CTR improvement that involves a pico-second pulsed laser will be detailed. In the last part of the dissertation, a new developed simulation framework that will enable the cross-optimization of the whole PET system will be explained. It takes into consideration the photon physics interaction in the scintillator crystal, the sensor response (sensor size, pixel pitch, dead area, capacitance) and the readout electronics behavior (input impedance, noise, bandwidth, summation). This framework has allowed us to study a new promising approach that will help reducing the CTR parameter by segmenting a large area SiPM into "m" smaller SiPMs and then summing them to recover all the signal spread along these smaller sensors. A 15% improvement on time resolution is expected by segmenting a 4 mm x 4 mm single sensor into 9 sensors of 1.3 mm x 1.3 mm with respect to the case where no segmentation is applied.[cat] Aquesta tesi tenia com a objectiu la fabricació i avaluació d'un prototip per a detecció de fotons gamma en aplicació per imatge mèdica, més concretament en Tomografia per Emissió de Positrons amb mesura de temps de vol (TOF-PET). L'avaluació del mòdul va començar fent una caracterització completa del chip (ASIC) anomenat HRFlexToT, una versió nova i millorada de l'antic chip FlexToT, desenvolupat i fabricat pel grup de la Unitat Tecnològica del ICC de la Universitat de Barcelona. Aquesta avaluació inicial del chip compren des de la comprovació de les funcionalitats bàsiques fins a la generació d'un test automàtic per generar les gràfiques de linealitat corresponents durant el test elèctric. Un cop donat per bo, es va muntar en una placa demostrada, també ideada per l'equip d'enginyers del grup, i ja quedava llesta per realitzar les mesures pertinents. Tot seguit, es varen realitzar les mesures òptiques, que incloïa mesures de Singe Photon Time Resolution (SPTR) i de Coincidence Time Resolution (CTR). Aquest valors actuen com a figures de mèrit a l'hora de comparar les prestacions amb d'altres ASICs competidors del HRFlexToT. Es van obtenir valors de 60 ps de resposta pel que respecta al SPTR i de 115 ps de CTR en cristalls segmentats, una millora entorn del 20-30% respecte a la versió predecessora del chip. Aquests valors mostren ser el límit de l'estat de l'art actual i amb aquesta idea es van començar a fer altres mesures, en aquest cas amb cristall monolítics, blocs grans llegits per diversos fotosensors de les empreses Hamamatsu i FBK. Per altra banda, es va provar el funcionament del ASIC en configuració anomenada monolítica, on el cristall centellejador s'utilitza en blocs grans en coptes d’emprar cristalls segmentats, això abarateix el cost total del detector. Aquesta configuració degrada les propietats de CTR, un paràmetre crític a l'hora de tenir un producte bo i eficient. S’han obtingut mesures de 250 ps de CTR amb aquesta configuració, d’on es pot dir que l’HRFlexToT es trobar a l’estat de l’art de la tecnologia electrònica dedicada a TOF-PET amb cristalls segmentats i monolítics. Finalment, es va desenvolupar una nova eina simulació que consisteix en un sistema híbrid entre un simulador físic i un electrònic per tal de tenir una idea del comportament complet del mòdul detector. Una solució que ningú havia provat fins ara o que no es pot trobar en la literatura

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure
    corecore