211 research outputs found

    Cognitive Video Streaming

    Get PDF
    Video-on-demand (VoD) streaming services are becoming increasingly popular due to their flexibility to allow users to access their favorite video contents anytime, anywhere from a wide range of access devices such as smart phones, computers and TV. The content providers rely on highly satisfied subscribers for revenue generation and there has been significant efforts in developing approaches to “estimate” the quality of experience (QoE) of VoD subscribers. But a key issue is that QoE is not defined, appropriate proxies needs to be found for QoE, via the streaming metrics (the quality of service (QoS) metrics) that are largely based on initial startup time, buffering delays, average bit rate and average throughput and other relevant factors such as the video content and user behavior and other external factors. The ultimate objective of the content provider is to elevate the QoE of all the subscribers at the cost of minimal network resources, such as hardware resources and bandwidth. We propose a cognitive video streaming strategy in order to ensure the QoE of subscribers while utilizing minimal network resources. The proposed cognitive video streaming architecture consists of an estimation module, a prediction module and an adaptation module. Then, we demonstrate the prediction module of the cognitive video streaming architecture through a play time prediction tool. For this purpose, the applicability of different machine learning algorithms such as k-nearest neighbor, neural network regression and survival models are experimented with; then, we develop an approach to identify the most relevant factors that contributed to the prediction. The proposed approaches are tested on data set provided by Comcast Cable

    Quality-driven management of video streaming services in segment-based cache networks

    Get PDF

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Challenges to support edge-as-a-service

    Get PDF
    A new era in telecommunications is emerging. Virtualized networking functions and resources will offer network operators a way to shift the balance of expenditure from capital to operational, opening up networks to new and innovative services. This article introduces the concept of edge as a service (EaaS), a means of harnessing the flexibility of virtualized network functions and resources to enable network operators to break the tightly coupled relationship they have with their infrastructure and enable more effective ways of generating revenue. To achieve this vision, we envisage a virtualized service access interface that can be used to programmatically alter access network functions and resources available to service providers in an elastic fashion. EaaS has many technically and economically difficult challenges that must be addressed before it can become a reality; the main challenges are summarized in this article

    Big Data-backed video distribution in the telecom cloud

    Get PDF
    Telecom operators are starting the deployment of Content Delivery Networks (CDN) to better control and manage video contents injected into the network. Cache nodes placed close to end users can manage contents and adapt them to users' devices, while reducing video traffic in the core. By adopting the standardized MPEG-DASH technique, video contents can be delivered over HTTP. Thus, HTTP servers can be used to serve contents, while packagers running as software can prepare live contents. This paves the way for virtualizing the CDN function. In this paper, a CDN manager is proposed to adapt the virtualized CDN function to current and future demand. A Big Data architecture, fulfilling the ETSI NFV guide lines, allows controlling virtualized components while collecting and pre-processing data. Optimization problems minimize CDN costs while ensuring the highest quality. Re-optimization is triggered based on threshold violations; data stream mining sketches transform collected into modeled data and statistical linear regression and machine learning techniques are proposed to produce estimation of future scenarios. Exhaustive simulation over a realistic scenario reveals remarkable costs reduction by dynamically reconfiguring the CDN.Peer ReviewedPostprint (author's final draft

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Anableps: Adapting Bitrate for Real-Time Communication Using VBR-encoded Video

    Full text link
    Content providers increasingly replace traditional constant bitrate with variable bitrate (VBR) encoding in real-time video communication systems for better video quality. However, VBR encoding often leads to large and frequent bitrate fluctuation, inevitably deteriorating the efficiency of existing adaptive bitrate (ABR) methods. To tackle it, we propose the Anableps to consider the network dynamics and VBR-encoding-induced video bitrate fluctuations jointly for deploying the best ABR policy. With this aim, Anableps uses sender-side information from the past to predict the video bitrate range of upcoming frames. Such bitrate range is then combined with the receiver-side observations to set the proper bitrate target for video encoding using a reinforcement-learning-based ABR model. As revealed by extensive experiments on a real-world trace-driven testbed, our Anableps outperforms the GCC with significant improvement of quality of experience, e.g., 1.88x video quality, 57% less bitrate consumption, 85% less stalling, and 74% shorter interaction delay.Comment: This paper will be presented at IEEE ICME 202

    Video Caching, Analytics and Delivery at the Wireless Edge: A Survey and Future Directions

    Get PDF
    Future wireless networks will provide high bandwidth, low-latency, and ultra-reliable Internet connectivity to meet the requirements of different applications, ranging from mobile broadband to the Internet of Things. To this aim, mobile edge caching, computing, and communication (edge-C3) have emerged to bring network resources (i.e., bandwidth, storage, and computing) closer to end users. Edge-C3 allows improving the network resource utilization as well as the quality of experience (QoE) of end users. Recently, several video-oriented mobile applications (e.g., live content sharing, gaming, and augmented reality) have leveraged edge-C3 in diverse scenarios involving video streaming in both the downlink and the uplink. Hence, a large number of recent works have studied the implications of video analysis and streaming through edge-C3. This article presents an in-depth survey on video edge-C3 challenges and state-of-the-art solutions in next-generation wireless and mobile networks. Specifically, it includes: a tutorial on video streaming in mobile networks (e.g., video encoding and adaptive bitrate streaming); an overview of mobile network architectures, enabling technologies, and applications for video edge-C3; video edge computing and analytics in uplink scenarios (e.g., architectures, analytics, and applications); and video edge caching, computing and communication methods in downlink scenarios (e.g., collaborative, popularity-based, and context-aware). A new taxonomy for video edge-C3 is proposed and the major contributions of recent studies are first highlighted and then systematically compared. Finally, several open problems and key challenges for future research are outlined
    corecore