
Big Data-backed Video Distribution in the
Telecom Cloud

M. Ruiz1, M. Germán1, L. M. Contreras2, and L. Velasco1*

1Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
2Telefónica Investigación y Desarrollo (TID), Madrid, Spain.

*Corresponding author: lvelasco@ac.upc.edu

Abstract—Telecom operators are starting the deployment of Content Delivery Networks (CDN) to better control and
manage video contents injected into the network. Cache nodes placed close to end users can manage contents and adapt
them to users’ devices, while reducing video traffic in the core. By adopting the standardized MPEG-DASH technique,
video contents can be delivered over HTTP. Thus, HTTP servers can be used to serve contents, while packagers running
as software can prepare live contents. This paves the way for virtualizing the CDN function. In this paper, a CDN
manager is proposed to adapt the virtualized CDN function to current and future demand. A Big Data architecture,
fulfilling the ETSI NFV guidelines, allows controlling virtualized components while collecting and pre-processing data.
Optimization problems minimize CDN costs while ensuring the highest quality. Re-optimization is triggered based on
threshold violations; data stream mining sketches transform collected into modelled data and statistical linear regression
and machine learning techniques are proposed to produce estimation of future scenarios. Exhaustive simulation over a
realistic scenario reveal remarkable costs reduction by dynamically reconfiguring the CDN.

Index Terms—Telecom CDN, Cloud CDN, Big Data.

I. INTRODUCTION
Live-TV and Video on Demand (VoD) distribution is in the portfolio of many telecom operators aiming at

entering into competition with on-line, over-the-top broadcasters, such as Netflix. To this end, a Content Delivery
Network (CDN) is being considered as a suitable option to be deployed by telecom operators internally within their
network infrastructure by placing cache nodes in geographically distributed locations covering a territory [1], [2].
Forecasts show that 79% of the global IP traffic will be related to video traffic by 2018 [3] thus managing its own
CDN allows the network operator to better control and manage the video content injected into the network through
predictable traffic sources strategically placed according to a careful network planning to maximize capacity
savings. Cloud-based CDNs provide CDN functionalities using cloud resources. Nonetheless, the introduction of
cloud impose additional challenges that have to be addressed. Authors in [4] present a survey on available cloud-
based CDNs and identify the open challenges.

In fact, the telecom infrastructure is undergoing a huge transformation since telecom operators are deploying their
own cloud infrastructure [5] to prove cloud services and enabling Software Defined Networking (SDN) [6] and
Network Functions Virtualization (NFV) [7]. The resulting infrastructure is referred to as the telecom cloud [8].
NFV decouples network functions (e.g., caching) from proprietary hardware appliances, so they can be implemented
in software and deployed on virtual machines (VM) running on commercial off-the-shelf computing hardware. A
Virtualized Network Function (VNF) can be functionally decomposed into one or more components and different
VNF instances can be placed in geographically distributed locations and communicate among them.

Regarding video delivery, the standardized MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) [9]
technique enables media content to be delivered over the Internet. MPEG-DASH requires from a HTTP web server
infrastructure to allow users’ devices (e.g., Internet-connected televisions, desktop computers, smart phones and
tablets, etc.) to consume multimedia content. MPEG-DASH divides contents into a sequence of small file segments,
each containing a short interval of the content. At the start of a streaming session, the MPEG-DASH client
downloads a Media Presentation Description (MPD) file with the resource identifiers (HTTP-URLs) for content’s
segments. A variety of different qualities (e.g., by changing bitrate and resolution) is made available for each
content; while a content is being played back, the MPEG-DASH client automatically selects the segment with the
highest quality possible that can be downloaded in time thus, dealing with variable Internet conditions. In addition,
client buffer size can be adjusted to ensure a given probability of video re-buffering [10].

MPEG-DASH enables CDN virtualization, where cache nodes are virtualized and be placed in datacenters (DC)
(see use case in [7]). Virtualizing caching capabilities facilitates rapid distribution and/or scaling of cache nodes in a

ruben pocull
Texto escrito a máquina
©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina
 http://dx.doi.org/10.1016/j.comcom.2016.03.026

ruben pocull
Texto escrito a máquina

ruben pocull
Texto escrito a máquina

cost-efficient and scalable manner. For instance, as a result of using MPEG-DASH for delivery, multimedia contents
can be served by HTTP servers. Another cache component must be in charge of generating DASH segments in
several qualities and the related MPD files. However, the component that requires more computational effort is
video transcoding / transrating, although it can be implemented in software and performed in real-time (see [11] for
available software implementations).

To reduce traffic in the core network, cache nodes can be placed as close as possible to the end users. Authors in
[12] presented a configurable, efficient and transparent in-network caching service to improve the VoD distribution
efficiency by caching video contents as close to the end-user as possible. The solution leverages SDN technology
improve network utilization and increasing the Quality of Experience for the end-user. Related to this, authors in
[13] proposed a hierarchical telecom CDN and a caching algorithm to decide which objects to cache and a cache
collaboration strategy to determine how cacheable items are propagated throughout the telecom CDN. In [14]
authors studied the performance of distributing caches and the impact of its size and the cache update logic for VoD
services, e.g. catch-up programs and movies. They concluded that placing caches in the aggregation network
improves the percentage of requested content found in the cache (Hit Ratio, HR); in contrast, placing the cache in
the access reduces the amount of traffic.

Apart from their right placement, cache nodes are typically dimensioned for peak demand and therefore, greatly
underutilized at other times. Aiming at elastically adapt the allocated resources to the current service needs, authors
in [15], [16] proposed to leverage on the resources of cloud providers to increase capacity when required.

Analyzing video sessions, authors in [17] concluded that a centralized controller could improve user experience,
while authors in [18] introduced presented a centralized algorithm for live video optimization providing real-time,
fine-grained control. In addition, placing new cache nodes to accommodate spikes in demand and consolidate
workload in few cache nodes when the load decreases can also bring benefits. Apart from classical optimization
algorithms on conventional content distribution problems, the usage of cloud resources offers a new dimension for
optimization that is the IT resource cost (i.e., storage, CPU, etc.) Commercial cloud infrastructure for CDN
deployment was reported in [19]. While the concept is applicable to the idea of virtualized CDN, the proposed
architecture does not fit to network operator scenarios.

Regarding the interconnection network, connection capacity adaptation is not trivial when it is based on optical
technology. Authors in [20], [21] proposed a cross-stratum orchestrator architecture to coordinate DC and network
elastically.

To detect when resources have to be added or released, the performance and load of cache nodes need to be
monitored. Monitoring a variety of network elements, servers and applications entails collecting huge volumes of
data that needs to be transferred and stored assessing validity, as well as being analyzed and processed fast to
achieve near real-time performance. Therefore, Big Data techniques for data collection, pre-processing, and analysis
and visualization should be applied. In [22], the ITU-T Study Group 13 proposes a classification of the roles in a Big
Data ecosystem. Among the identified roles, the Big Data application provider executes a specific set of data life-
cycle to meet the requirements of data analysis and visualization as well as the security and privacy requirements. It
utilizes the resources from a cloud provider for data analysis and provides analysis result to the Big Data service
user. Another role is that of the Big Data infrastructure provider, which establishes a computing fabric
(computation, storage, and networking resources as well as platforms and processing frameworks) in which certain
transformation applications are executed, while protecting the privacy and integrity of data.

A telecom company can take advantage of all the above when deploying its own CDN to provide VoD and live-
TV services. In this paper, we assume the hierarchical CDN architecture presented in section II that includes: i) a
Big Data CDN Manager that detects opportunities to minimize operational costs and dynamically serves users from
the most proper cache node, while adapting the CDN to the current load by reconfiguring cache nodes (i.e., scaling
them by adding new resources), adding and releasing cache nodes, and managing connectivity; ii) the CDN
Admission and Control module responsible for controlling content access and deciding from which cache every user
will be served; and iii) the virtualized leaf cache node with a number of HTTP servers, packagers, storage and a
cache manager. Specifically, the contributions of this paper are the following:
1) A Big Data CDN Manager responsible for adapting the CDN to the current and future load as well as its internal

components is presented in section II, including: i) a prediction module to forecast likely scenarios; ii) a decision
maker module to select the most appropriate reconfiguration; and iii) an optimizer in charge of computing the
optimal configuration of the CDN.

2) To facilitate CDN optimization, three incremental optimization problems are proposed in section III; i) single
cache node optimization; ii) users re-allocation among caches and connectivity re-configuration; and iii) global

CDN re-configuration. Integer Linear Program (ILP) formulations are proposed and heuristic algorithms to solve
the problems in real time are devised.

3) Section IV targets at making decisions from collected data: i) data stream mining sketches conveniently
summarize collected data into modelled data; ii) a prediction module based on machine learning techniques
predicts likely scenarios; and iii) a simple decision maker module based on threshold violations triggers the most
appropriate optimization problem.

The discussion is supported by the results from exhaustive simulation over a realistic scenario in section V.

II. TELECOM CDN
A. CDN Architecture

A virtualized hierarchical CDN infrastructure can be deployed in the telecom cloud with some (few) central
Intermediate Cache Nodes receiving contents from several sources and a number of Leaf Cache Nodes placed close
to end users (Fig. 1). A centralized CDN Admission and Control module implements CDN access policies and
redirects users’ requests, e.g., based on their geographical location, to the (intermediate or leaf) cache node that will
serve them.

Intermediate cache nodes and leaf cache nodes distribute two kind of contents: VoD and live-TV. VoD contents
are prepared in intermediate cache nodes and stored in leaf caches based on its popularity (see e.g., [13]).
Nonetheless, in line with [23], live-TV is distributed from intermediate cache nodes and locally prepared in those
leaf cache nodes delivering every specific TV channel to the users.

Video-on-demand

StoragePackager

Datacenter

Leaf Cache Node

Intermediate
Cache Node

Interconnection
Network

End Users

HTTP
Server

Cache
Manager

CDN
Admission
and Control

Live-TV

Fig. 1. Cache architecture and cache node main components.

A virtualized leaf cache node would consist of the following components running as software inside VMs
deployed in the same DC. The packager is in charge of live-TV preparation, including stream transcoding/
transrating, segmentation and MPD generation. The HTTP server component serves end users’ segment requests.
The Cache Manager is the entry point of the cache node; it receives users’ requests, identifies which contents will
be locally stored, and redirects users’ requests to the appropriate HTTP server. Each component usually consists of a
pool of resources for load balancing and redundancy purposes.

We assume that the location for all intermediate cache nodes and those for leaf cache nodes distributing both,
VoD and live-TV contents were selected during a pre-planning phase, based on the available connectivity, covered
population, etc. Notwithstanding, the amount of resources in every resource pool can be dynamically adapted as a
function of the load. In addition, new leaf cache nodes to deliver specific live-TV contents can be dynamically
created and released in response to spikes in demand, e.g. a sports event.
B. Big Data CDN Manager

A CDN Manager is responsible for adapting the CDN to the current and future load. However, an architecture
supporting the CDN Manager is needed to control virtualized components and data collection and pre-processing
functionalities. Fig. 2 presents the proposed architecture, which is aligned with the ETSI NFV architectural
guidelines [24].

A Big Data application provider offering Big Data processing to provide data analysis and visualization is shown
on the top. The architecture of the Big Data infrastructure manager includes a Virtual Infrastructure Manager (VIM)

and a Big Data Analytics Engine. The VIM architecture includes an orchestrator module, which is the common entry
point for services and performs an overall coordination of cloud and networking resources. The Big Data analytics
engine includes data collection, pre-processing, and storage and allows applications to monitor and manage
allocated resources, while protecting the privacy and integrity of data. Each computing, network, and application
node generates logging records that are collected and sent to one of multiple instances of the analytics node, which
collate and store the information in a horizontally scalable database. Hence, the performance and load of a CDN can
be monitored to elastically adapt its resources to current service needs. Data collected from the Big Data
infrastructure manager is analyzed using services from the Big Data application provider.

A configuration manager is in charge of interfacing the VIM to request and release resources and of properly
configuring each cache node. A more detailed view of the proposed CDN Manager is presented in Fig. 3. After
processing collected data from the analytics engine, it can be used to predict likely scenarios, thus anticipating future
demand load distribution. A prediction module (PROMPTER) based on machine learning and time series modelling
is proposed to that end.

Interconnection Network
Datacenter Datacenter

Big Data Infrastructure Manager

Orchestrator

Cloud Resource Manager

Monitoring Configuration

Big Data Analytics Engine Virtual Infrastructure Manager

Networking Functions

Transport Network Orchestrator

Big Data Application Provider

Configuration
Manager

Data
Collector

Big Data
CDN

Manager

Data Collector

Query
Engine

NoSQL
DB

Cache Node

Data Stream
Mining

CDN Admission
and Control

Fig. 2. Architecture supporting the Big Data CDN Manager.

Configuration Manager

Decision Maker

CDN Optimizer
(CHOIR)

Inter-cache
and cache to
access
configuration

Leaf cache node
configuration

Virtual Infrastructure
ManagerBig Data Analytics Engine

Prediction

Data Collector

Modelled
data

Opt. data

Big Data CDN Manager

CDN
Admission
and ControlCache Node

CDN
configuration

CDN User
Reallocation

(CDN_USHER)Leaf Cache
Node Optimizer
(CHORISTER)

Data
Stream
Mining

NoSQL
DB

Optimizer

Infrastructure
status

Fig. 3. Components of the Big Data CDN Manager.

Based on current and future load, the CDN can be optimized to minimize total costs while serving contents to the
end users ensuring the highest Quality of Service (QoS) level. To that aim, three optimization problems have been
devised: i) the Global CDN Optimization (CHOIR) problem targets at serving users with the highest QoS level from
leaf cache nodes with the minimum cost; ii) the CDN User Reallocation (CDN_USHER) problem focuses on

reallocating users among leaf cache nodes, just updating connections between cache nodes and metro areas; and iii)
the Leaf Cache Node Optimizer (CHORISTER) problem that scales a cache node down.

Analyzing current and predicted load distribution, a decision maker module (TUNER) is responsible of triggering
the most appropriate optimization problem as well as selecting meaningful input data for its solving.

III. CDN OPTIMIZATION
As anticipated in the previous section, we face the CDN optimization problem by dividing it into three sub-

problems. The CHOIR problem performs a global CDN optimization by re-dimensioning existing leaf cache nodes
and creating and releasing leaf cache nodes to deliver live-TV according to the load, while ensuring that end users
are served with the highest video quality. In addition, the CHOIR problem decides the connectivity needed between
intermediate and leaf cache nodes and between leaf caches and metro areas.

For the sake of simplicity, we configure each cache component as follows: i) a different VM flavor is defined for
cache managers, packagers, and HTTP servers; ii) two cache managers are configured in each cache for load
balancing and redundancy purposes; iii) every packager works on a single live-TV channel; iv) every HTTP server
in the pool can serve any content. Cache managers use a round-robin policy to select the server for every incoming
request; v) the size of the storage is preconfigured according to the target HR.

Globally optimizing the CDN might entail a large number of re-configurations. However, in some situations just
reallocating users between cache nodes will balance load of cache nodes, thus reducing the load of those running
close to its currently allocated capacity. For this very reason, we propose the CDN_USHER problem that performs
such reallocations, managing the connectivity between leaf cache nodes and metro areas. In addition, the
CHORISTER problem focuses on releasing unused resources of a given cache node. HTTP servers are the only
component which load really varies as a function of the number of users being served. However, the limiting factor
is not the CPU but the use of bandwidth, so we use that parameter to decide whether the number of HTTP servers
could be reduced.

A. Global CDN Optimization (CHOIR) problem

The problem can be formally stated as follows:
Given:
• A set IC of intermediate cache nodes.
• A set of cache node types: {void, TV, VoD+TV}.
• A set LC of locations where leaf cache nodes are deployed and the allowable cache node types.
• A set A of metro areas with users consuming contents.
• The set O of contents being consumed. Contents include VoD and live-TV channels.
• A set U of user groups. Each group u contains all users inside a metro area that are currently playing a specific

content with a specific device.
Output:
• Configuration of every l ∈ LC, including creating or releasing leaf cache nodes,
• Assignment (u, l) for every u ∈ U,
• Connections to be created/released/reconfigured.
Objective: minimize the CDN cost from setting up resources in leaf caches and the needed connections.

The following sets and parameters have been defined:
IC Set of intermediate caches, index i.
LC Set of leaf cache locations, index l.
U Set of user groups, index u.
A Set of metro areas, index a.
O Set of contents, index o.
OTV Subset of O with live-TV contents.
E Set of links, index e. Each link can be supported by a number of individual connections.
EIC-LC Subset of links connecting intermediate to leaf caches.
ELC-A Subset of links connecting leaf caches to metro areas.
δoi 1 if content o is available in intermediate cache i.
δuo 1 if user group u requests content o.
δua 1 if user group u is in metro area a.
δl 1 if a leaf cache node is currently installed in location l.

γl 1 if a leaf cache node in location l can be released.
δul 1 if user group u can be served from location l. This is computed based on transmission delay and policy

rules.
δol 1 if content o can be served from location l.
δil 1 if location l can be served from intermediate cache i.
hu Fraction of HTTP server in terms of bandwidth required to serve user group u with the best video quality

supported by their device.
bu Bitrate needed to serve user group u with the best video quality supported by their device.
boil Bitrate needed to convey content o from intermediate cache i to leaf cache l.
hrl Hit ratio of leaf cache node l, e.g. 70%.
be Bitrate of each connection supporting link e, e.g. 1Gb/s, 10Gb/s, etc.
maxl Maximum amount of VMs available in leaf cache l.
maxe Maximum capacity of link e.
cHTTP Cost per HTTP server to be allocated.
cTV Cost per packager component to be allocated.
cl Fixed cost for creating a new leaf cache, coming from VMs for cache managers, storage, and connections.
ce Cost per connection supporting link e.

The decision variables are:
xul Binary, 1 if user group u is served from location l; 0 otherwise.
xl Non-negative integer with the number of HTTP servers to be configured in location l.
yol Binary, 1 if content o is required at leaf cache location l; 0 otherwise.
yoil Binary, 1 if content o in leaf cache location l is provided from intermediate cache node i; 0 otherwise.
we Non-negative integer with the number of connections supporting link e.
zl

+ Binary, 1 if leaf cache node l is created; 0 otherwise.
zl

- Binary, 1 if leaf cache node l is released; 0 otherwise.
The formulation of the CHOIR problem is as follows:

() ∑∑ ∑
∈∈

−+

∈

⋅+

−⋅+⋅+⋅

Ee
ee

LCl
lll

Oo
olTVlHTTP wczzcycxc

TV

min (1)

subject to:
Uux

LCl
ulul ∈∀=⋅∑

∈

1δ
(2)

LClxhx
Uu

ulul ∈∀⋅≥ ∑
∈

(3)

OoLCly olol ∈∈∀≤ ,δ (4)

OoLClyUx ol
Uu

uluo ∈∈∀⋅≤⋅∑
∈

,δ
(5)

OoLClyy ol
ICi

oiloiil ∈∈∀≥⋅⋅∑
∈

,δδ
(6)

OoLCly
ICi

oil ∈∈∀≤∑
∈

,1
(7)

LClxzmax llll ∈∀⋅−≥⋅ +)1(δ (8)

LClmaxzzyx lll
Oo

oll
TV

∈∀⋅−≤⋅++ −+

∈
∑)1(2

(9)

LClz lll ∈∀⋅≤− γδ (10)

()eLCleICiEeybhrybwb LCIC
OOo

oiloill
Oo

oiloilee
TVTV

==∈∀⋅⋅−+⋅≥⋅ −
∈∈
∑∑),(,)1(

\

(11)

()eLCleAaEexbwb ALC
Uu

uluuaee ==∈∀⋅⋅≥⋅ −
∈
∑),(,δ

(12)

Eemaxwb eee ∈∀≤⋅ (13)

The objective function (1) minimizes the CDN cost from setting up resources in leaf cache nodes and from the
needed connections.

Constraint (2) guarantees that every user group will be served from one leaf cache location. Constraint (3)
accounts for the number of HTTP servers that need to be set up in each location. Constraint (4) ensures that each
cache location contains only allowed contents, e.g. it prevents from creating new leaf cache nodes serving VoD
contents. Constraint (5) computes the contents required at each leaf cache location and, for each of them, constraint
(6) assigns as source an intermediate cache node containing that content. Constraint (7) ensures that only one
content source is selected.

Constraints (8)-(10) decide whether a leaf cache node is created or released. Constraint (8) computes whether a
cache is created. Constraint (9) guarantees that the number of VMs to be configured in l does not exceeds a given
maximum and releases the cache if no VMs are configured, while constraint (10) ensures that only designated cache
nodes can be released.

Constraints (11)-(13) deal with the capacity of the interconnection network. Constraint (11) computes the amount
of connections to support links between intermediate and leaf cache nodes and constraint (12) computes those for
the links between leaf cache nodes and metro areas. Finally, constraint (13) guarantees that the requested bitrate for
every link does not exceeds a given maximum.

Note that different solutions can be obtained depending on the values for parameters maxl and maxe. Those
parameters provide differentiated limits for every l and every e and need to be fixed every time the problem is to be
solved; values can be obtained from the VIM to reflect the current resource availability, technology constraints, as
well as operator policies. For instance, an operator might want to guarantee that maximum capacity of links
connecting intermediate to leaf caches is 10Gb/s, whereas that of the links connecting leaf caches to metro areas is
1Gb/s, as a result of technology constraints. Moreover, the operator can also partition resources and reserve some
amount of servers for the CDN service, while the rest of the servers are reserved for other services in its portfolio.

The CHOIR problem can be considered NP-hard since it is based on the unsplittable capacitated assignment
problem that has been proved to be NP-hard ([25]). Regarding its size, it entails O(|LC|·(|U|+|O|·|IC|) + |E|) variables
and O(|U| + |O|·|LC| + |E|) constraints. As an example, taking into account the instances presented in section V, the
problem size raises to 7∙106 variables and 7∙104 constraints.

Since the CHOIR problem needs to be solved on-line, its exact solution is impractical. As a result, we propose the
heuristic algorithm in Table I to obtain near optimal solutions in short computation times (e.g., hundreds of ms). The
algorithm is an iterative randomized procedure that builds a solution by assigning user groups to cache locations and
computing the cost of using and increasing (or releasing) cache and network resources. At each iteration, user
groups are randomly sorted and assigned to a cache location with the minimum cost. After processing all users,
unused resources are removed (if allowed) and the cost of the solution is computed. The best solution is returned
upon exiting the algorithm.

Table I. CHOIR Heuristic Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

bestS ← ∅
for i=1..maxIter do

ResetResources(); S ← ∅
sort UVoD and UTV randomly
U ← concatenate(UVoD, UTV)
for each u in U do

l* ← 0; cost ← ∞
for each l in LC do

if δul = 0 then continue
if ComputeCost(u, l) < cost then

l*← l; cost ← ComputeCost(u, l)
if l* = 0 then return INFEASIBLE
S ← S U {(u, l*)}
UpdateResources (u, l*)

RemoveUnusedResources()
if evaluate (S) < evaluate (bestS) then bestS ← S

return bestS

B. CDN User Reallocation (CDN_USHER)

The problem can be formally stated as:
Given:
• A set LC of locations where leaf caches are currently deployed.
• A set O of contents currently being served.
• A set A of metro areas with users consuming contents.
• A set U of user groups. Each group u contains all users inside a metro area that are currently playing a specific

content with a specific device.
Output:
• Assignment (u, l) for every u ∈ U,
• Connections to be created/released/reconfigured.
Objective: minimize the cost from the new connections to be established and the total number of users reallocated.

The following sets and parameters have been (re)defined:
δul 1 if user group u can be served from location l. The definition has been extended to cover also whether the

contents requested by user group u are available at l.
γul 1 if user group u is currently being served from l.
hl Current number of HTTP servers running in location l.
ge Current number of connections supporting link e.
cu Cost of reallocating user group u. Based on its size and other policies.

A new decision variable is defined:
xu Binary, 1 if user group u is reallocated; 0 otherwise.

The ILP formulation is as follows:
() ∑∑

∈∈

⋅+−⋅
− Uu

uu
Ee

eee xcgwc
ALC

min
(14)

subject to:
Uux

LCl
ulul ∈∀=⋅∑

∈

1δ
(15)

LClhxh l
Uu

ulu ∈∀≤⋅∑
∈

(16)

LClUuxx ululu ∈∈∀−≥ ,γ (17)

()eLCleAaEexbwb ALC
Uu

uluuaee ==∈∀⋅⋅≥⋅ −
∈
∑),(,δ

(18)

ALCeee Eemaxwb −∈∀≤⋅ (19)

The objective function (14) minimizes the cost of establishing new connections and reallocating users.
Constraint (15) guarantees that every user group will be served from one leaf cache location. Constraint (16)

limits the demand served in each location to the capacity currently installed in each location. Constraint (17) stores
whether a user group has been reallocated. Constraints (18)-(19) deal with the capacity of the links between leaf
cache nodes and metro areas. Constraint (18) computes the amount of connections supporting each link and
constraint (19) assures that the requested bitrate does not exceeds a given maximum.

Note that after solving the CDN_USHER problem, a post-process for scaling down (see the CHORISTER
problem), and even releasing, leaf caches is needed.

Similarly as for the CHOIR problem, the CDN_USHER problem can be considered NP-hard since it is based on
the unsplittable capacitated assignment problem. The size of the problem is O(|U|·|LC| + |ELC-A|) variables and
O(|U|·|LC| + |ELC-A|) constraints. The problem size raises to 7∙106 for both, variables and constraints, thereby making
impractical its exact solution. Thus, aiming at obtaining near optimal solutions in short computation times, a
heuristic algorithm similar to that presented in Table I, with the specific constraints of this problem, was developed;
specifically, resources updating in lines 14 and 15 in Table I are constrained to network connections in the
CDN_USHER problem.

C. Leaf Cache Node Optimizer (CHORISTER)

The CHORISTER problem can be formally stated as:
Given:
• The current size of the HTTP servers’ pool (scur) and its current bandwidth utilization kcur (in %).
• A target bandwidth utilization (thl), e.g. 60%.
Output:
• Target size (stgt) of the HTTP servers’ pool.
Objective: minimize the size of the HTTP servers’ pool.

The CHORISTER problem can be solved using eq. (20).

⋅=

l

cur
curtgt

th
kss (20)

IV. COLLECTING DATA AND MAKING DECISIONS
As previously introduced, each computing, network, and application node generates monitoring data that are

collected and sent to the analytics engine. To preserve privacy, however, the CDN manager can only access data
related to the CDN service. Monitored variables include: i) bandwidth utilization of HTTP servers and links in ELC-A,
generated from network nodes; and ii) A video quality metric generated by cache managers that measures whether
the video quality provided to users from each cache node is the one requested.

Following a predefined time period, e.g. every minute, the CDN manager collects monitored data from the
analytics engine. A time series is retrieved for each monitored point and average values are stored using the Big
Data Application Provider facilities. Therefore, up to 60 consecutive observations are available every hour for each
collected variable. Data stream mining sketches conveniently summarize collected data from every monitored point
into modelled data representing the current state of a cache node. The following modelled variables have been
defined:
ql

min Minimum average video quality metric provided to users by cache node l ∈ LC.
ql

cur Current average video quality metric provided to users by cache node l ∈ LC.
kl

max Maximum average bandwidth utilization (in %) of interfaces in VMs running HTTP servers in cache l.
kl

cur Current average bandwidth utilization (in %) of interfaces in VMs running HTTP servers in cache l.
ke

max Maximum average bandwidth utilization (in %) of link e ∈ ELC-A.
ke

cur Current average bandwidth utilization (in %) of link e ∈ ELC-A.
To select which of the optimization problems defined in section III needs to be solved, we propose a simple

decision maker module (TUNER) based on threshold violations. TUNER compares the evolution of modelled
variables against a low threshold (th(·)). In brief, the CDN-USHER problem is solved to reassign groups of users in
the case that the quality of the video being served from some cache nodes starts degrading, whereas the capacity of
some other cache nodes is underutilized. In the case that a more in depth CDN reconfiguration is needed, the
CHOIR problem needs to be solved. Finally, the CHORISTER problem is solved to scale underutilized cache nodes
down. Table II summarizes the TUNER algorithm.

Table II. Tuner Decision Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

UnderuL, UnderuE ← false
for each l in LC do

if stgt < scur then UnderuL ← true
for each e in ELC-A do

if kemax < the then UnderuE ← true
for each l in LC do

if qlmin < thq AND (UnderuL OR UnderuE) then
if CDN_USHER (input data) = FEASIBLE then

return
for each l in LC do

if qlmin < thq then
CHOIR (input data); return

for each l in LC do
if stgt < scur then CHORISTER (input data)

An important decision to be made is regarding the values of input data to solve the optimization problems. This is
specifically relevant for user load, i.e. parameter hu. When input data estimation is based on the observations in the
collected data, we are making decisions following a reactive strategy, trying to update the CDN to changes in the
demand after those changes have actually been detected (Fig. 4 top). Nonetheless, some prediction in the input data
estimation could be introduced trying to anticipate those changes. To that end, the predictive strategy (Fig. 4 bottom)
includes a prediction module, named as PROMPTER, able to produce estimation of future scenarios. The
PROMPTER module estimates the value of modelled variables for the next period as well as other input data needed
for solving optimization problems (e.g., hu values). We refer to any of those variables to be estimated as a response
variable, and will be in general denoted by Y. For such prediction, we use a methodology that combines statistical
linear regression and time series prediction based on machine learning techniques [26].

Let us denote Y(t) as the value of Y at time t. m explanatory variables, denoted as Xi(t), are defined for each t,
where each Xi(t) can be deterministically and independently computed from the response variable. Three
explanatory variables are considered in this work: i) the time of the day (X1), ii) the capacity of the current CDN
resources in terms of the potential amount of users that could be served (X2), and iii) a popularity measure of the
available live-TV and VoD contents at t, computed from historic audience ratings. It is worth noting that these
explanatory variables are strongly correlated to response variables. For instance, if the popularity of contents is
expected to be high at prime time but the potential capacity of CDN is limited, then it is likely that a large expected
number of users will be accessing to those contents and, consequently, they will experience poor video quality (i.e.,
low ql

min and ql
cur) due to over utilized CDN resources (i.e., high kl

max and kl
cur).

Decision Maker
(TUNER)

t

Data Stream Mining

Collected
Data

+Modelled
Data

t-1t0 tt0

Prediction
(PROMPTER)

• Machine Learning
• Time Series Modelling

t, t+1

Modelled
Data

Optimizer

Data Stream Mining

t

Modelled
Data

Reactive Strategy

Predictive Strategy

Decision Maker
(TUNER)

601

Fig. 4. From collected data to making decisions.

Starting from an initial data set with collected data for response and explanatory variables, the methodology
consists of two phases. Response variables are first transformed to eliminate their correlation to explanatory
variables; Y(t) is transformed into Z(t) by solving the multivariate linear model:

() () ()∑
=

⋅−=
mi

ii tXtYtZ
..1
β

(21)

where βi represents the coefficient of variable Xi. Note that Z(t) is the error of estimating Y(t) with the linear model
depending on Xi(t) variables. The optimal values of βi coefficients can be estimated by ordinary least squares fitting
applied to the initial data set.

Eq. (21) predicts Y(t) from explanatory variables observed at time t; however, the effect of past periods is not
collected in this model. For this very reason, a second phase consisting in modelling variable Z(t) based on previous
observations is needed. We apply an Artificial Neural Network (ANN) model [27] due to its inherent capability of
adapting to changes in a non-supervised manner, in contrast to auto-regressive models to fit continuous time series.
Assuming an ANN with one hidden layer, the notation p:s:1 indicates an ANN with p inputs, s neurons in the hidden
layer, and 1 output. In our model, the inputs represent the last p observations before observation in t, i.e., Z(t-p),…,
Z(t-1), whist the output returns the observation Z(t). The Levenberg-Marquardt backpropagation algorithm [27] can
be applied for training the ANN from the initial data set. Hence, predicting Y(t+1) from current and stored
observations is made by first estimating Z(t+1) from previous observations using the ANN model and second

transforming Z(t+1) into Y(t+1) using eq. (21).
Once models have been obtained, refitting is applied to adapt models to changes in explanatory variables. To that

end, the relative error between predictions and real observations is monitored and models are refitted when a
threshold (e.g., 10%) is reached. A fixed sliding window allows limiting fitting to new observations.

Finally, note that the TUNER module for the predictive strategy receives two values for each modelled variable
(e.g., ql

min(t) and ql
min(t+1)) (Fig. 4). In that regard, we use the value that would result in the best service.

V. SIMULATION RESULTS
This section presents exhaustive simulation results evaluating the proposed CDN architecture and management

algorithms over the realistic scenario 180-node Telefonica’s optical national network, with 5 regional 30-node
domains connected through an express 30-node core network. We assume a telecom cloud, where small datacenters
are deployed in each node location with resources available to deploy leaf cache nodes. Two leaf cache nodes per
region have been deployed providing both live-TV and VoD services (Fig. 5). In addition, new leaf cache nodes can
be deployed on demand on any regional location to serve exclusively live-TV contents.

Fig. 5. Telefonica’s scenario with five regions. Details of regional nodes in Catalonia-Aragon region.

We assume a video distribution service with 500,000 subscribers geographically distributed among 150 metro
areas, i.e., each area is connected to a regional node. 35 national and 15 regional TV channels are available per
region with live and VoD contents. In line with recent studies [28], we assume a contents share of 65% for live and
35% for VoD contents.

Realistic time-varying demand is generated following a uniform random distribution centered on a typical hourly
pattern with three demand peaks at morning, afternoon, and evening. Hot events targeting potential audience ranging
from 40% to 80% subscribers are additionally generated with an inter-arrival time following a Poisson random
distribution. VoD contents are requested according to a popularity metric following the model in [29]; after a period
of time, e.g. 10 days, contents are taken off the service.

Table III summarizes the considered video qualities adoption scenarios for the years to come, based on [3]; total
bandwidth in the network can be easily computed by multiplying the number of active users and the average bitrate
for every adoption scenario. The quality actually served to users can be reduced up to 2 levels (e.g., from 4K to Full
HD or even to HD) in case that not enough resources (HTTP servers) are available in a cache. We define the video
quality metric using a three-level scale: a value of 3 is obtained when the served video quality equals the one
requested, a value of 2 when the video quality is degraded to the immediately lower quality, etc.

Table III. Adoption Scenarios for the Years to Come (%)
Quality (Mb/s) 2016 2017 2018 2019
SD (2.1) 28.6 22.0 13.6 7.0
HD (4) 38.6 34.3 28.2 23.7
Full HD (10) 27.1 37.7 42.3 47.3
4K UHD (25) 5.7 6.0 15.9 22.0

We implemented a simulator in Matlab with the following main elements: i) a user demand generator following
the model above described; ii) a CDN monitor that evaluates the state of the system and provides collected data to

the CDN manager; iii) the CDN manager including the data collector, TUNER and PROMPTER modules, as well as
the algorithms for solving the proposed optimization problems; and iv) the Big Data application provider in charge
of processing collected into modelled data.

The ILP formulations presented in section III were implemented using the CPLEX’s Matlab API and integrated in
the simulator. The performance of the proposed heuristics were compare against that of solving the ILPs in terms of
quality of the solutions (optimality gap was set to 1%) and computation time. After solving more than one hundred
problem instances, we concluded that heuristic provides quasi-optimal solutions with a gap between heuristic and
ILP solutions as low as 0.5% in the worst case. Regarding computation time, solving the ILPs took more than 2 h for
some instances compared to 1 s in the case of the heuristic.

Besides the reactive and predictive strategies introduced in section IV, a static strategy is also defined for
comparison purposes, where cache and network resources are statically configured; CDN is off-line planned and two
leaf cache nodes per regional domain are deployed with a configuration, in terms of number of packagers and HTTP
servers, to ensure enough video quality.

Let us first assume that leaf caches can be scaled adding/removing HTTP servers, but no new cache nodes can be
created. We also assume that physical machines in the DCs are equipped with a 10 Gb/s network interface and the
VM flavor for HTTP servers define a 10Gb/s network interface; thus, one single VM instance can be placed per
server.

Initial datasets to train prediction models were obtained by simulation and concluded that ANNs with 5 inputs and
10 neurons provide a goodness-of-fit higher than 95% for all response variables. Graphs in Fig. 6 plot CDN
performance metrics as a function of the hour of the day for the 2016 scenario. Specifically, Fig. 6a plots the video
quality metric under the different strategies under study; the number of users is also included for reference. When
the load is under some value, all three strategies provide the best video quality metric value, i.e., the served video
quality equals the one requested. However, when the load goes beyond some point, video quality metric values
decrease; the best video quality metric is provided by the static strategy, while the reactive strategy provides the
worst one. Interestingly, the predictive strategy performs better that the reactive one. In fact, the effectiveness of the
PROMPTER module is validated since it allows improving the served video quality metric up to 45% with respect
to the predictive strategy. This is as a result of anticipating video quality metric degradation and scaling the CDN
accordingly.

0

100

200

300

400

1

2

3

04 06 08 10 12 14 16 18 20 22 24 02

reactive
predictive
static
users

0

50

100

150

200

250

300

04 06 08 10 12 14 16 18 20 22 24 02

reactive - avg
predictive - avg
reactive - max
predictive - max
static

0.0

0.5

1.0

1.5

2.0

2.5

04 06 08 10 12 14 16 18 20 22 24 02

reactive - avg
predictive - avg
reactive - max
predictive - max
static

Vi
de

o
Q

ua
lit

y
M

et
ric

U

se
rs

 (x
10

00
)

H

TT
P

Se
rv

er
s

Hour of the day Hour of the day Hour of the day

B
an

dw
id

th
 (T

b/
s)

a)

b)

c)

Fig. 6. Results vs. of hour of the day: served video quality metric (a), number of HTTP servers (b), and total bandwidth (c).

Fig. 6b focuses on the number of active HTTP servers; average and maximum values are plotted for reactive and
predictive strategies. In general, the number of HTTP servers allocated by the predictive strategy is slightly higher
on average. Notwithstanding, the maximum number of servers for the highest load is requested by the reactive
strategy. Aiming at fairly comparing strategies, we computed the area under the plots expressed in server-hour. The
static strategy is dimensioned according to the maximum number of servers needed by the reactive strategy. 6,960
servers-hour are required under the static strategy in contrast to 1,147 required by the reactive one (a reduction of
83.5%). The predictive strategy needs 1,593 servers- hour, 39% more than the reactive.

Finally, Fig. 6c presents average and maximum total bandwidth allocated by each strategy. Similarly as for HTTP
servers, the reactive strategy requires less bandwidth than the predictive one on average, although peak values are
higher for the former. It is now clear that adapting CDN resources leads to enormous savings in terms of
computational and network resources while providing virtually the same video quality metric.

Aiming at analyzing the impact of the VM flavor network interface capacity for HTTP servers, we run additional
simulations assuming 1 Gb/s interfaces. We assume that each physical server can be shared by up to 10 of such VM
instances. Table IV summarizes the results comparing flavors with 1 Gb/s and 10 Gb/s interfaces. The VM flavor
with 1 Gb/s interface clearly adds flexibility in the use of resources, resulting in savings in the number of required
physical servers.

Table IV. Number of Servers at Peak Hour

 1 Gb/s 10 Gb/s

Average reactive 70 111
predictive 113 154

Maximum reactive 286 290
predictive 195 245

Fig. 7a and Fig. 7b show the evolution of average and maximum amount of HTTP servers and total bandwidth,
respectively for the adoption scenarios presented in Table III. Although on average values show a quite flat
evolution, maximum values increase significantly and show different slopes; the relative difference for peak values
almost doubles since it increases from 18% to 29% for HTTP servers and from 22% to 51% for total bandwidth.
Thus, the predictive strategy scales the best.

Let us now study whether being able to add and release new leaf cache nodes might bring some benefit. These
new leaf cache nodes can be added to deliver specific live contents, such as a sports event or a concert. Each new
leaf node cache is configured with the minimum resources required for serving the event, i.e., the cache manager,
one packager per live-TV channel, and a number of HTTP servers. Since HTTP servers are required even if the
event is served from fixed caches, the only additional costs rely on the extra amount of managers and packagers. In
contrast, by placing transcoding closer to end users, the amount of traffic through the interconnection network is
reduced, thus reducing network costs. Note, however, that adding new leaf caches entails creating new connections
from intermediate caches to those leaf caches.

0.0

1.0

2.0

3.0

2015 2016 2017 2018

reactive - avg
predictive - avg
reactive - max
predictive - max

0

100

200

300

400

2015 2016 2017 2018

reactive - avg
predictive - avg
reactive - max
predictive - max

H

TT
P

Se
rv

er
s

B
an

dw
id

th
 (T

b/
s)

a) b)

22%

51%

36%28%

18%

29%

25

75

125

175

225

0 5 10 15

10%
25%
50%

c)
N

et
w

or
k

co
st

(c
.u

.)

YearYear # new leaf caches

13%

23%

33%

19%
40%

Fig. 7. Evolution of number of HTTP servers (a) and total bandwidth (b) for the years to come. Network cost vs. new leaf caches for live-TV (c).

Fig. 7c plots network costs, computed as used bandwidth per km, as a result of adding new leaf cache nodes
serving specific live-TV events, for three relative audience sizes with respect to the total amount of subscribers. As
observed, costs savings range from 13% to 33% and are reached when 3, 6, and 7 new caches are added for 10%,
20%, and 50% audience size, respectively.

VI. CONCLUDING REMARKS
A Big Data -backed virtualized CDN architecture to be deployed in the telecom cloud has been proposed in this

paper. The telecom CDN consists of a hierarchy of cache nodes: the centralized intermediate cache nodes receive
live-TV channels and prepare VoD contents, whereas the leaf cache nodes, located close to the end users, manage
VoD contents access and adapt live-TV channels to users’ devices.

Media content can be delivered over HTTP by using the standardized MPEG-DASH technique and therefore, a
virtualized leaf cache node would consist of a number of HTTP servers serving live and stored contents to users. In
addition, packagers are needed for live-TV preparation as well as a cache manager in charge of applying caching
policies to locally stored VoD contents. All these components can run as software inside VMs deployed in the same
DC.

A CDN manager is responsible for adapting the CDN function to current and future load. The CDN manager
needs from an architecture to control virtualized components and data collection and pre-processing functionalities;

the proposed architecture follows the ETSI NFV guidelines.
The CDN manager optimizes the CDN by minimizing total costs, while ensuring that contents are served with the

highest video quality metric level. The optimization problem is divided into: i) the CHOIR problem that manages
resources, i.e. VMs and connectivity, focused on global CDN optimization and assigns users to leaf cache nodes; ii)
the CDN_USHER problem that rebalances the CDN by reassigning users to leaf caches, and iii) the CHORISTER
problem that optimizes the number of VMs of a given leaf cache. ILP formulations were devised and heuristic
algorithms proposed for its real time solving.

Re-optimization is run based on threshold violations. Data stream mining sketches transform collected data into
modelled data representing the state of the CDN. The TUNER module compares current values against predefined
thresholds and decides whether re-optimization need to be performed, which problem should be solved and the input
data for the selected problem. Because updating the CDN to changes in the demand after they have occur might
result in quality degradation, the PROMPTER module to produce estimation of future scenarios was proposed; it
uses statistical linear regression and machine learning techniques to estimate the value of modelled variables for the
next period.

Exhaustive simulation results over a realistic scenario showed that a reduction of 83.5% in the number of
allocated HTTP servers and a similar amount in total bandwidth can be reached when CDN reconfiguration is
performed, while providing equivalent video quality metric to end users. Comparison between the reactive and the
predictive strategies revealed that the reactive strategy uses less resources on average but more resources in the peak
than the predictive one. The effect of allowing adding and releasing new leaf cache nodes was also analyzed;
remarkably network costs reduction as high as 33% can be achieved by placing transcoding close to the end users.

ACKNOWLEDGMENT
The research leading to these results has received funding from the Spanish MINECO SYNERGY project

(TEC2014-59995-R).

REFERENCES
[1] G. Hasslinger, F. Hartleb, “Content delivery and caching from a network provider’s perspective,” Comp. Networks, vol. 55, pp. 3991-4006,

2011.
[2] N. Kamiyama, T. Mori, R. Kawahara, H. Hasegawa, “Optimally Designing ISP-Operated CDN,” IEICE Transactions of Communications,

vol. E96-B, pp. 790-801, 2013.
[3] Cisco, “Cisco Visual Networking Index,” 2014.
[4] M. Wang et al., “An overview of Cloud based Content Delivery Networks: Research Dimensions and state-of-the-art”, in Transactions on

Large-Scale Data and Knowledge Centered Systems (TLDKS), 2015.
[5] L. M. Contreras, V. Lopez, O. González, A. Tovar, F. Muñoz, A. Azanon, J.P. Fernandez-Palacios, J. Folgueira, “Toward cloud-ready

transport networks,” IEEE Communications Magazine, vol. 50, pp. 48-55 , 2012.
[6] Open Networking Foundation (ONF); www.opennetworking.org. Last visited: 02/2016.
[7] ETSI GS NFV 001, “Network Functions Virtualisation (NFV): Use Cases”, V1.1.1, October 2013.
[8] L. Velasco, L. M. Contreras, G. Ferraris, A. Stavdas, F. Cugini, M. Wiegand, and J. P. Fernández-Palacios, “A Service-Oriented Hybrid

Access Network and Cloud Architecture,” IEEE Communications Magazine, vol. 53, pp. 159-165, 2015.
[9] ISO Standard, “Information technology -- Dynamic adaptive streaming over HTTP (DASH) - Part 1: Media presentation description and

segment formats,” ISO/IEC 23009-1, 2014.
[10] P. Wiśniewski et al., “On delimiting video rebuffering for stream-switching adaptive applications” IEEE ICC 2015.
[11] DASH Industry Forum. Software: http://dashif.org/software/. Last visited: 02/2016.
[12] P. Georgopoulos et al., "Using Software Defined Networking to enhance the delivery of Video-on-Demand," Computer Communications,

vol. 69, pp. 79-87, 2015.
[13] D. Vleeschauwer, D. Robinson, “Optimum caching strategies for a telco CDN,” Bell Labs Technical Journal, vol. 16, pp. 115-132, 2011.
[14] Z. Avramova, D. Vleeschauwer, S. Wittevrongel, H. Bruneel, “Performance Analysis of a Caching Algorithm for a Catch-Up Television

Service,” Multimedia Systems, vol. 17, pp. 5-18, 2011.
[15] A. Blair, G. Parr, P. Morrow, B. Scotney, A. McConnell, S. Appleby, and M. Nilsson, “Cloud based Dynamically Provisioned Multimedia

Delivery: An Elastic Video Endpoint,” in IARIA, International Conference on Cloud Computing, GRIDs and Virtualisation, 2012.
[16] X. Guan, B. Choi, “Push or pull? Toward optimal content delivery using cloud storage,” Elsevier Journal of Network and Computer

Applications, vol. 40, pp. 234-243, 2014.
[17] X. Liu et al., “A case for a coordinated internet video control plane,” In Proc. ACM SIGCOMM, 2012
[18] M. Mukerjee et al., "Practical, Real-time Centralized Control for CDN-based Live Video Delivery," in Proc ACM SIGCOMM 2015.
[19] C. Lin, M. Leu, C. Chang, S. Yuan, “The study and methods for cloud based CDN,” IEEE International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, pp. 469-475, 2011.
[20] L. Velasco, A. Asensio, J. Ll. Berral, A. Castro, V. López, “Towards a Carrier SDN: An example for Elastic Inter-Datacenter Connectivity,”

OSA Optics Express, vol. 22, pp. 55-61, 2014.
[21] L. Velasco, A. Asensio, J. Ll. Berral, V. López, D. Carrera, A. Castro, and J. P. Fernández-Palacios, “Cross-Stratum Orchestration and

Flexgrid Optical Networks for Datacenter Federations,” IEEE Network Magazine, vol. 27, pp. 23-30, 2013.
[22] ITU-T, “Requirements and capabilities for cloud computing based big data,” draft Rec. Y.BigData-reqts, July 2014.

[23] A. Asensio, L. M. Contreras, M. Ruiz, V. Lopez, L. Velasco, “Scalability of Telecom Cloud Architectures for Live-TV Distribution,” in
Proc. IEEE/OSA Optical Fiber Communication Conference (OFC), 2015.

[24] ETSI, “Network Functions Virtualisation (NFV). Architectural Framework,” ETSI GS NFV 002 v1.1.1, 2013.
[25] M. Bateni and M. Hajiaghayi, “Assignment Problem in Content Distribution Networks: Unsplittable Hard-Capacitated Facility Location,”

ACM Transactions on Algorithms, vol. 8, pp. 1-19, 2012.
[26] L. Mora-López, I. Martínez-Marchena, M. Piliougine, M. Sidrach-de-Cardona, “Binding Statistical and Machine Learning Models for

Short-Term Forecasting of Global Solar Radiation,” Advances in Intelligent Data Analysis X, LNCS, vol. 7014, pp. 294-305, 2011.
[27] R. Adhikari, “A neural network based linear ensemble framework for time series forecasting,” Neurocomputing, vol. 157, pp 231-242,

2015.
[28] Ericsson, “ConsumerLab, annual TV & Media report,” 2014.
[29] D. De Vleeschauwer and K. Laevens, “Performance of Caching Algorithms for IPTV On-Demand Services,” IEEE Transactions on

Broadcasting, vol.55, pp.491-501, 2009.

	I. Introduction
	II. Telecom CDN
	A. CDN Architecture
	B. Big Data CDN Manager

	III. CDN Optimization
	A. Global CDN Optimization (CHOIR) problem
	B. CDN User Reallocation (CDN_USHER)
	C. Leaf Cache Node Optimizer (CHORISTER)

	IV. Collecting Data and Making Decisions
	V. Simulation Results
	VI. Concluding Remarks
	Acknowledgment
	References

