

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

Kwaliteitsgedreven beheer van videodiensten
in segmentgebaseerde cachenetwerken

Quality-Driven Management of Video Streaming Services
in Segment-Based Cache Networks

Maxim Claeys

ISBN 978-90-8578-981-9
NUR 986, 988
Wettelijk depot: D/2017/10.500/16

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur

QoE-beheer van HTTP-gebaseerde adaptieve videodiensten

QoE Management of HTTP Adaptive Streaming Services

Niels Bouten

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Promotoren: prof. dr. ir. F. De Turck, prof. dr. S. Latré
Proefschrift ingediend tot het behalen van de graden van

Doctor in de ingenieurswetenschappen: computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen: informatica (Universiteit Antwerpen)

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur

QoE-beheer van HTTP-gebaseerde adaptieve videodiensten

QoE Management of HTTP Adaptive Streaming Services

Niels Bouten

Departement Wiskunde en Informatica
Voorzitter: prof. dr. C. Blondia

Faculteit Wetenschappen

Academiejaar 2016 - 2017

Universiteit Antwerpen
Faculteit Wetenschappen

Departement Wiskunde en Informatica

Leden van de examencommissie:
prof. dr. ir. Filip De Turck (promotor)

Universiteit Gent - imec
prof. dr. Steven Latré (promotor)

Universiteit Antwerpen - imec

prof. dr. ir. Rik Van de Walle (voorzitter)
Universiteit Gent - imec

prof. dr. Chris Blondia (co-voorzitter)
Universiteit Antwerpen - imec

prof. dr. Peter Lambert (secretaris)
Universiteit Gent - imec

ir. Werner Van Leekwijck
Nokia Bell Labs

dr. ir. Daphné Tuncer
University College London

prof. dr. Tobias Hoßfeld
Universität Duisburg-Essen

prof. dr. ir. Danny De Vleeschauwer
Nokia Bell Labs - Universiteit Gent

Dit werk kwam tot stand in het kader van een
specialisatiebeurs van het IWT-Vlaanderen

(Instituut voor de aanmoediging van Innovatie door
Wetenschap en Technologie in Vlaanderen)

Proefschrift tot het behalen van de graden van
Doctor in de ingenieurswetenschappen:

computerwetenschappen (Universiteit Gent) en
Doctor in de wetenschappen:

informatica (Universiteit Antwerpen)
Academiejaar 2016-2017

Dankwoord

Woensdag 1 augustus 2012. Ik herinner me mijn eerste werkdag bij IBCN alsof het
gisteren was. Met een klein hartje aankomen in de Zuiderpoort, de laptop ophalen
bij de admins en wat bedeesd kennis maken met de nieuwe collega’s van bureau
2.21. Het is nauwelijks te bevatten dat we ondertussen zowat 4,5 jaar verder zijn
en dat de tijd is aangebroken om een van mijn laatste taken als doctorandus aan
te vatten: het schrijven van het dankwoord van mijn doctoraatsboek. Ik ben dan
ook erg dankbaar te kunnen terugblikken op een fantastisch avontuur waarbij ik
heel wat heb bijgeleerd, niet alleen op wetenschappelijk vlak, maar zeker ook op
persoonlijk vlak.

Eerst en vooral wil ik Filip De Turck hiervoor bedanken. Zonder hem was
ik hoogstwaarschijnlijk nooit aan dit doctoraat begonnen. Bedankt Filip voor alle
kansen en de tonnen vertrouwen die je me hebt gegeven. Bedankt voor je open deur
wanneer ik nog maar eens de inhoud van een paper wou bespreken of wanneer een
nieuwe onderzoeksrichting moest worden bepaald. De invalshoeken die je telkens
opnieuw bood waren een verrijking voor dit doctoraatsonderzoek en ik heb er door
de jaren heen erg veel uit geleerd. Ik had het geluk om op mijn eerste dag bij
IBCN onder de vleugels van Steven Latré terecht te komen. Wanneer ik terugkijk
op die eerste maanden, besef ik dat mij begeleiden voor hem meer dan een full-
time job moet geweest zijn. Ik kan het dan ook goed begrijpen dat hij na anderhalf
jaar naar Antwerpen is gevlucht. In deze context wil ik zeker ook Jeroen Famaey
bedanken om deze leegte in eerste instantie op uitmuntende wijze in te vullen (om
kort daarna weliswaar dezelfde vluchtroute te volgen). Bedankt Steven om me zo
intensief te begeleiden tijdens mijn eerste stappen in de onderzoekswereld en om
ook na je ontsnappingspoging nog steeds tijd vrij te maken in je drukke agenda om
feedback te geven op elke paper of revisie. Bedankt Filip en Steven voor de vele
interessante besprekingen, maar zeker ook voor de talrijke informele babbels. Het
was een echte eer om ruim 4 jaar lang intensief te mogen samenwerken met twee
top-promotoren zoals jullie.

Het spreekt voor zich dat bij een doctoraat heel wat meer komt kijken dan
onderzoek alleen. De omkadering binnen IBCN is er echter een waar veel onder-
zoeksgroepen ongetwijfeld een puntje kunnen aan zuigen. Veel bewondering gaat
dan ook uit naar Piet Demeester om een forse onderzoeksgroep als deze op uitste-
kende wijze te leiden. Het kloppend hart van IBCN bevindt zich zonder twijfel in
het secretariaat bij Martine en Davinia. Bedankt om elke vraag met de glimlach
te beantwoorden en me steeds bij te staan met raad en daad voor elke administra-
tieve beslommering. Maar bovenal bedankt voor de vele gezellige praatjes om

ii

de dag steeds goed mee te beginnen. Jullie zijn van goudwaarde voor deze onder-
zoeksgroep! Ook op vlak van financiële administratie en technische ondersteuning
worden we steeds in de watten gelegd door Bernadette, Joke en het A-team (Joeri,
Bert, Simon, Vicent en Brecht). Ook een dikke merci aan Sabrina om onze dage-
lijkse werkomgeving proper te houden en voor de warme begroeting elke ochtend.
Naast alle mensen bij IBCN wil ik ook graag het instituut voor de aanmoediging
van Innovatie door Wetenschap en Technologie in Vlaanderen (IWT) bedanken
om 4 jaar lang in mij te investeren. Dit liet me toe om mijn onderzoek uit te voeren
zonder me zorgen te moeten maken over contractverlengingen of andere financiële
rompslomp.

De warme collegiale sfeer binnen IBCN werd reeds in talloze voorgaande
dankwoorden geroemd, maar ook voor mij zorgde die ervoor dat ik elke dag met
plezier naar de Zuiderpoort of iGent kwam en dat work-at-home absoluut niks
voor mij was. In de eerste plaats wil ik daarvoor de (ex-)bureaugenoten van 2.21 en
200.012 bedanken. Bedankt Bram, Jeroen S, Kristof, Leandro, Merlijn, Niels, Oli-
vier, Philip, Piet, Sander, Stefano, Steven B, Steven VC, Thijs, Thomas V, Tim V
en Wim om van onze bureau een toffe werkplek te maken met een juiste balans
tussen de nodige job-ernst, informele babbels en grappen en grollen. Bedankt
om al die tijd te kunnen leven met mijn fratsen, voor de gezellige lunchpauzes
en de sporadische activiteiten buiten de kantooruren. Het doet me veel plezier te
zien dat je ook na enkele reorganisaties op vlak van bureauindeling op je collega’s
kan rekenen. Bedankt Tim V en Steven B om jullie robots even aan de kant te
laten staan om mij te helpen met moeilijke leesverslagen. Fijne collega’s vind
je natuurlijk ook over de bureaugrenzen heen. Bedankt Bart, Bruno, Femke en
Femke, Jeroen vdH, Pieter, Pieter-Jan, Stijn, Thomas D, Tim W en Wannes voor
de vlotte samenwerking tijdens verschillende project of onderwijsactiviteiten en
voor de luchtige babbels aan de koffiemachine.

Na verloop van tijd leer je ook de mens achter je collega’s kennen. Het doet
dan ook plezier dat sommigen onder hen zonder dat je het merkt uitgroeien van
collega’s tot vrienden. Bedankt Jeroen S voor het memorabele avondje uit in het
exotisch Maldegem. Bedankt Thomas V voor de vele geslaagde edities van To-
morrowland die we samen achter de rug hebben en voor de ontelbare andere top-
momenten die we mochten beleven. Bedankt dat ik altijd op jou kon terugvallen,
ook tijdens je drukke Qrama verhaal.

Ook al heb ik ontelbare mooie momenten meegemaakt op de Zuiderpoort en
in iGent, de mooiste herinneringen van een doctorandus worden gemaakt tijdens
internationale conferenties of projectmeetings. Bedankt aan de zowat vaste reisge-
zellen Filip, Hendrik, Jeroen F, Niels, Pieter-Jan, Stefano en Steven L. Ik zal nog
vaak met plezier terugdenken aan het Oktoberfest in Munchen, de match in het le-
gandarische Maracanã in Rio de Janeiro, de wanhopige masseuses op Barceloneta,
de heerlijke midnight-snack in Krakow, de onverwachte regenbui tijdens de wan-
deling (of was het een survival-tocht?) in Algonquin provincial park in Canada,
de ontmoeting met de enige echte Doo Doo The Clown in Ottawa, de hopeloze
zoektocht naar een bar in het “bruisende” Montreal, de biertram in Brno, en ga zo
maar door. Het waren stuk voor stuk ervaringen die ik nooit zal vergeten.

iii

In elk van bovenstaande passages kon ik Niels Bouten vermeld hebben, maar
sommige mensen verdienen nu eenmaal een eigen paragraaf. Het is geen toeval
dat een groot deel van de bovenstaande herinneringen ook in jouw dankwoord
stonden vermeld, want sinds de eerste dag dat we samen op het MISTRAL project
mochten werken, werden we snel twee handen op één buik. Ik leerde je kennen als
een top-onderzoeker, maar ik zal me je altijd herinneren als een top-vriend. Be-
dankt voor de buitengewone samenwerking tijdens onze vele gemeenschappelijke
projecten, bedankt voor de ontelbare mooie herinneringen op conferentie, bedankt
voor de peptalk wanneer het even nodig was, maar bovenal bedankt om elke dag
opnieuw met de glimlach naar mijn zever te luisteren. Ik heb aan dit doctoraat een
fantastische vriend overgehouden, en dat alleen al maakte het meer dan de moeite
waard.

Het leven bestaat uiteraard uit meer dan doctoraatsonderzoek alleen. Daarom
wil ik graag mijn familie en schoonfamilie bedanken. Bedankt meter, meme en
pepe, Thomas, Katrien en Dirk, Erna en Armand, Céline en Glenn voor alle warme
familiemomenten waarbij alle zorgen die nu en dan bij een doctoraat komen kijken
even vergeten kunnen worden. Dat er zo nog veel mogen volgen! In het bijzonder
bedankt aan mijn lieve ouders voor de warme thuis, voor alle kansen die jullie
me hebben geboden en nog steeds bieden. Bedankt om altijd in mij te geloven,
ook wanneer ik dat zelf niet deed. Geluk schuilt vaak in kleine dingen: dankjewel
voor de kilo’s verse fruitsla tijdens ‘den blok’ en de motiverende schouderklop
wanneer het even nodig was. Zonder jullie onvoorwaardelijke steun had ik hier nu
niet gestaan. Bedankt Yaël voor de hilarische sing-alongs op weg van of naar het
station en om elke examenperiode opnieuw een motivatie geweest te zijn. Ik kijk
meer op naar mijn kleine zus dan je zou denken. Met jullie drieën hebben jullie
van het ouderlijk huis steeds een warme thuis gemaakt. Bedankt lieve kleine Noé
voor de motiverende ‘dikke duim’ voor de interne verdediging.

Tot slot wil ik de grootste liefde in mijn leven bedanken. Liefste Eva, tijdens
de afgelopen 4,5 jaar zijn vele zaken veranderd, maar de onafscheidelijke band die
we hebben is daar geen van. Bedankt om me te steunen in alles wat ik doe en er
altijd voor mij te zijn. Bedankt mollie om me elke dag opnieuw gelukkig te maken
en me te tonen wat echt belangrijk is in het leven. Ik ben ontzettend dankbaar dat
ik elke dag van dit doctoraat met jou heb kunnen delen. 2017 mag dan wel het
einde betekenen van dit avontuur, het betekent ook het begin van het belangrijkste
en allermooiste verhaal uit ons leven. Binnen enkele maanden mag ik je eindelijk
mijn vrouw noemen en dat vervult mijn hart met trots. Ik kan niet wachten om de
rest van mijn leven met jou door te brengen. Lieve schat, ik hou van jou.

Gent, februari 2017
Maxim Claeys

Table of Contents

Dankwoord i

Samenvatting xxi

Summary xxv

1 Introduction 1
1.1 The Internet video streaming evolution 1
1.2 Problem statement . 4
1.3 Dissertation outline . 7
1.4 Research contributions . 9
1.5 Publications . 11

1.5.1 A1: Journal publications indexed by the ISI Web of Sci-
ence “Science Citation Index Expanded” 11

1.5.2 P1: Proceedings included in the ISI Web of Science “Con-
ference Proceedings Citation Index - Science” 12

1.5.3 C1: Other publications in international conferences 14
References . 16

2 Design and Optimization of a (FA)Q-Learning-based HTTP Adaptive
Streaming Client 19
2.1 Introduction . 20
2.2 HTTP Adaptive Streaming . 21
2.3 Related work . 22

2.3.1 HAS client algorithms 22
2.3.2 Learning in adaptive streaming 23
2.3.3 Learning in QoS/QoE optimization 24

2.4 Reinforcement learning-based HAS client 24
2.4.1 Approach . 24
2.4.2 Q-Learning . 25
2.4.3 Frequency Adjusted Q-Learning 25
2.4.4 Exploration policy . 26
2.4.5 State & reward definition 27
2.4.6 Action definition . 28

2.5 Initial Q-value estimation . 28

vi

2.5.1 Rationale . 28
2.5.2 Estimation algorithm . 28

2.6 Performance evaluation . 30
2.6.1 Experimental setup . 30
2.6.2 Evaluation metrics . 32
2.6.3 Results discussion . 33

2.6.3.1 Parameter analysis 33
2.6.3.2 Frequency Adjusted Q-Learning 35
2.6.3.3 Initial Q-value estimation 39
2.6.3.4 Results summary 41

2.7 Conclusions . 41
References . 43

3 Hybrid Multi-tenant Cache Management for Virtualized ISP Networks 47
3.1 Introduction . 48
3.2 Related work . 50
3.3 Experiment description . 51

3.3.1 Caching scenario . 51
3.3.2 VoD trace characteristics 53
3.3.3 Request prediction . 53
3.3.4 Popularity prediction limitations 57

3.4 Hybrid cache management . 57
3.4.1 General notations . 58
3.4.2 Cache division . 60
3.4.3 Proactive placement . 60

3.4.3.1 Input values 61
3.4.3.2 Decision variables 61
3.4.3.3 Objective function 61
3.4.3.4 Constraints . 62

3.5 Evaluation setup . 63
3.6 Evaluation results . 65

3.6.1 Influence of the system parameters 65
3.6.1.1 Proactive placement frequency 65
3.6.1.2 Overhead-aware placement 67
3.6.1.3 Blockbuster movie knowledge 69
3.6.1.4 Hybrid cache division 70
3.6.1.5 Reactive ratio adaptation 71
3.6.1.6 Number of tenants 73
3.6.1.7 Server link weight 74
3.6.1.8 Capacity limitations 75

3.6.2 Performance comparison 76
3.7 Conclusions . 77
References . 80

vii

4 Cooperative Announcement-based Caching for VoD Streaming 83
4.1 Introduction . 84
4.2 Related work . 86

4.2.1 Cache replacement strategies 86
4.2.2 Cache coordination strategies 88

4.3 Client messaging behavior . 89
4.3.1 Session announcements 90
4.3.2 Session initiations . 90
4.3.3 Session expiration . 91

4.4 Session-aware cache replacement 91
4.4.1 Threshold-based caching strategy 91

4.4.1.1 Message handling 92
4.4.1.2 Replacement strategy 93

4.4.2 Election-based caching strategy 95
4.4.2.1 Message handling 95
4.4.2.2 Replacement strategy 97

4.5 Scenario description . 98
4.5.1 VoD trace characteristics 98

4.5.1.1 Content type 98
4.5.1.2 Content characteristics 99
4.5.1.3 Binge watching behavior 99
4.5.1.4 Global content popularity 99
4.5.1.5 Geographical distribution of requests 100
4.5.1.6 Request pattern 100

4.5.2 Session duration . 102
4.5.3 Network topology . 102

4.6 Evaluation results . 104
4.6.1 Influence of the session acceptance threshold α 104
4.6.2 Influence of the relative announcement delay β 105
4.6.3 Distribution of accepted sessions 107
4.6.4 Performance comparison 110

4.6.4.1 Tree topology 110
4.6.4.2 General topology 111

4.7 Conclusions . 112
4.8 Addendum: GÉANT-based topology graphs 114
References . 118

5 Deadline-aware TCP Congestion Control for Video Streaming 123
5.1 Introduction . 124
5.2 Related work . 125
5.3 Feasibility study . 126

5.3.1 Parametrized congestion avoidance 126
5.3.2 Parameter influence . 127

5.4 Algorithm . 129
5.5 Evaluation . 133

viii

5.5.1 Conceptual demonstration 134
5.5.2 Larger scale evaluations 135

5.5.2.1 VoD-only scenarios 135
5.5.2.2 General scenarios 138

5.6 Conclusions . 140
References . 142

6 Conclusions and Perspectives 145
6.1 Review of problem statements 145
6.2 Future perspectives . 148

6.2.1 Mobile video streaming 148
6.2.2 QoE fairness between HAS clients 148
6.2.3 Network protocol evolutions 149
6.2.4 Network virtualization and SDN 149

References . 151

A Controlling the AIMD Behavior of Deadline-aware TCP Congestion
Control Algorithms in HAS 153
A.1 Introduction . 154
A.2 Algorithm . 154
A.3 Scenario description . 158
A.4 Evaluation results . 160

A.4.1 Parameter analysis . 160
A.4.2 Influence of scenario characteristics 163

A.5 Conclusions . 166
References . 167

List of Figures

1.1 Forecast of the global consumer Internet traffic between 2015 and
2020 [2]. 2

1.2 Overview of the binge watching behavior according to Conviva [14]. 7
1.3 Overview of this PhD dissertation. 8

2.1 Schematic overview of the HAS concept. 22
2.2 Overview of the simulated topology. 31
2.3 Analysis of parameter influence. 34
2.4 Convergence of the self-learning client performance, relative to the

traditional MSS client. 35
2.5 Relative performance of the FAQ-Learning and default Q-Learning

approach compared to the traditional MSS client. 36
2.6 Reward performance of the FAQ-Learning and default Q-Learning

approach compared to the traditional MSS client. 37
2.7 Behavior comparison of the MSS, Q-Learning and FAQ-Learning

HAS clients in episode 375 of the variable bandwidth scenario. . . 38
2.8 Performance comparison of the traditional MSS client and the self-

learning client using default and calculated initial Q-Tables in the
learning and converged phase. 40

3.1 Overview of the telco-Content Delivery Network (telco-CDN) ser-
vice operated by the Internet Service Provider (ISP). 52

3.2 Popularity curve of the considered Video-on-Demand (VoD) trace. 54
3.3 Request pattern and number of daily unique content items in the

considered VoD trace. 54
3.4 Analysis of the prediction accuracy for the VoD trace. 56
3.5 Average popularity shifting probabilities in the considered VoD

trace (∗NR: Not Requested). 58
3.6 Evaluated GÉANT-based topology. 64
3.7 Influence of the proactive placement frequency in a purely proac-

tive scenario using the basic objective function without blockbuster
movie knowledge. 66

3.8 Influence of the proactive placement frequency on the average time
needed to solve the Integer Linear Program (ILP). 67

x

3.9 Influence of overhead-awareness in proactive content placement
on different evaluation criteria. 68

3.10 Influence of blockbuster movie knowledge on the performance in
terms of hit ratio. 69

3.11 Influence of the reactive ratio λ on the performance of the hybrid
caching approach. 70

3.12 Influence of the reactive ratio λ on the average deviation from the
optimum. 72

3.13 Optimal reactive ratio λ over time. 72
3.14 Relative hit ratio with λ = 0.41 compared to an adaptive reactive

ratio. 73
3.15 Influence of the number of content providers on the performance

of the hybrid caching approach. 74
3.16 Influence of the server link weight α on the performance of the

hybrid caching approach. 75
3.17 Relative performance of the proposed approach in a scenario with

limited capacity compared to the scenario with over-provisioned
capacity. 76

3.18 Relative performance of the proposed approach compared to a
purely reactive approach when no blockbuster knowledge is avail-
able. 77

3.19 Relative performance of the proposed approach compared to a
purely proactive approach when no blockbuster knowledge is avail-
able. 78

4.1 Illustration of the session announcement handling process in the
threshold-based caching strategy. 92

4.2 Illustration of the session announcement handling process in the
election-based caching strategy. 96

4.3 Distribution of the duration of binge watching sessions as reported
by Conviva [2]. 100

4.4 Relative distribution of the weekly requests starting from Monday
00h00min (day 0) up to Sunday 23h59min (day 7). 101

4.5 Evaluated tree topology. 103
4.6 Evaluated GÉANT-based topology. 103
4.7 Impact of the session acceptance threshold α on the hit ratio of

the threshold-based caching strategy in the tree topology when all
announcements are made without delay. 105

4.8 Impact of the session acceptance threshold α on the session accep-
tance in the network for the threshold-based caching strategy in the
tree topology when all announcements are made without delay and
with a total capacity of 5% of the catalog size. 106

4.9 Impact of the relative announcement delay β on the relative num-
ber of false announcements and its theoretical trend. 107

xi

4.10 Impact of the relative announcement delay β on the hit ratio of
the proposed caching strategies in the tree topology with a total
caching capacity of 5% of the catalog size. 108

4.11 Session acceptance ratio for both of the proposed caching strate-
gies in the tree topology for different amounts of caching capacity. 109

4.12 Distribution of accepted sessions in the tree topology for the threshold-
based caching strategy. 109

4.13 Distribution of accepted sessions in the tree topology for the election-
based caching strategy. 110

4.14 Performance comparison in terms of hit ratio in the tree topology. 111
4.15 Performance comparison in terms of hit ratio in the GÉANT-based

topology. 113
4.16 Impact of the session acceptance threshold α on the hit ratio of the

threshold-based caching strategy in the GÉANT-based topology
when all announcements are made without delay. 115

4.17 Impact of the session acceptance threshold α on the session ac-
ceptance in the network for the threshold-based caching strategy
in the GÉANT-based topology when all announcements are made
without delay and with a total capacity of 5% of the catalog size. . 115

4.18 Impact of the relative announcement delay β on the hit ratio of the
proposed caching strategies in the GÉANT-based topology with a
total caching capacity of 5% of the catalog size. 116

4.19 Session acceptance ratio for both of the proposed caching strate-
gies in the GÉANT-based topology for different amounts of caching
capacity. 116

4.20 Distribution of accepted sessions in the GÉANT-based topology
for the threshold-based caching strategy. 117

4.21 Distribution of accepted sessions in the GÉANT-based topology
for the election-based caching strategy. 117

5.1 Influence of the AIMD parameter α on the average achieved rel-
ative throughput on the contended link. The areas represent the
95% confidence interval. 128

5.2 Influence of the AIMD parameterα on the total throughput achieved
on the contended link, relative to the throughput achieved with
TCP New Reno congestion control. 129

5.3 Influence of the AIMD parameter β on the average achieved rel-
ative throughput on the contended link. The areas represent the
95% confidence interval. 130

5.4 Influence of the AIMD parameter β on the total throughput achieved
on the contended link, relative to the throughput achieved with
TCP New Reno congestion control. 130

5.5 Graphical illustration of the rationale behind the proposed approach.133

xii

5.6 Conceptual demonstration of the proposed deadline-aware conges-
tion control mechanism in a scenario with two VoD streaming ses-
sions. 134

5.7 Performance of the deadline-aware congestion control mechanism
by dynamically adapting the value of α for multiple parameter
configurations in a VoD-only scenario. 137

5.8 Performance of the deadline-aware congestion control mechanism
by dynamically adapting the value of β for multiple parameter
configurations in a VoD-only scenario. 138

5.9 Relative performance of the deadline-aware congestion control by
dynamically adapting α for ml=5s, mu=20s and multiple initial
deadline margins m0 in a VoD-only scenario. 139

5.10 Relative performance of the deadline-aware congestion control by
dynamically adapting α for ml=5s, mu=20s and multiple initial
deadline margins m0 in a general traffic scenario. 140

5.11 Impact of the deadline-aware congestion control mechanism by
dynamically adapting α for ml=5s, mu=20s on the performance
of non-deadline-aware traffic in a general traffic scenario. 141

A.1 Conceptual demonstration of the delayed influence of adjusting β. 155
A.2 Example of the shaped sigmoid function ssigm, used to calculate

the urgency factor, for 4 different values of σ. 157
A.3 Evaluated tree-based topology. 158
A.4 Average performance of the margin-based congestion control al-

gorithm for different parameter configurations. 161
A.5 Average performance of the congestion-aware congestion control

algorithm for different parameter configurations. 162
A.6 Average performance of the margin-based congestion control al-

gorithm using optimal parameter configurations in tree topology 1
for multiple activation levels and client buffer sizes. 162

A.7 Average performance of the margin-based congestion control al-
gorithm using optimal parameter configurations in tree topology 2
for multiple activation levels and client buffer sizes. 163

A.8 Average performance of the congestion-aware congestion control
algorithm using optimal parameter configurations in tree topology
1 for multiple activation levels and client buffer sizes. 164

A.9 Average performance of the congestion-aware congestion control
algorithm using optimal parameter configurations in tree topology
2 for multiple activation levels and client buffer sizes. 165

List of Tables

2.1 Proposed environmental state definition. 27
2.2 Quality levels and corresponding bit rates. 31
2.3 Overview of evaluated parameter configurations. 33
2.4 Performance comparison of the MSS, Q-Learning and FAQ-Learning

client in terms of MOS and freeze time. 36
2.5 Reward components of the MSS, Q-Learning and FAQ-Learning

clients in episode 375 of the variable bandwidth scenario. 39
2.6 Statistical significance of average MOS differences using calcu-

lated initial Q-Tables. Significance results are obtained by two-tail
paired t-testing with significance level 0.05. 40

2.7 Performance comparison of the Q-Learning-based client using de-
fault and calculated initial Q-Tables in terms of average MOS and
total freeze time for the variable bandwidth configuration. 41

2.8 Performance summary of the self-learning approaches in the vari-
able bandwidth configuration, compared to the traditional MSS
client, in terms of the quality components. 42

3.1 Summary of the general notations. 59
3.2 Summary of the algorithm-specific notations. 63
3.3 Stability of the content popularity. 68

4.1 Summary of resulting VoD trace characteristics. 101
4.2 Impact of the relative announcement delay β on the average hop

count and the average total bandwidth usage in the tree topology
with a total caching capacity of 5% of the catalog size. 107

4.3 Performance comparison in the tree topology. 112
4.4 Performance comparison in the general topology. 113

5.1 Evaluated parameter configurations. 136

A.1 Notation summary for deadline-aware congestion control. 155
A.2 Notation summary for deadline-aware congestion control. 159
A.3 Considered parameter configurations for the margin-based algo-

rithm. 159

xiv

A.4 Considered parameter configurations for the congestion-aware al-
gorithm. 160

A.5 Average performance gain of the margin-based (MB) and congestion-
aware (CA) algorithm compared to TCP New Reno in a scenario
with high activation levels of 80%. 166

List of Acronyms

0-9

3GPP 3rd Generation Partnership Project

A

AIMD Additive Increase/Multiplicative Decrease

ARC Adaptive Replacement Cache

C

CAPEX Capital Expenditures

CCN Content-Centric Networking

CDN Content Delivery Network

CDNI Content Delivery Network Interconnection

D

DASH Dynamic Adaptive Streaming over HTTP

DVD Digital Versatile Disc

E

ECN Explicit Congestion Notification

EDF Earliest Deadline First

xvi

eMOS estimated Mean Opinion Score

EWMA Exponentially Weighted Moving Average

F

FAQ-Learning Frequency Adjusted Q-Learning

G

GPS Global Positioning System

H

HAS HTTP Adaptive Streaming

HLS HTTP Live Streaming

HTTP Hypertext Transfer Protocol

I

ICN Information-Centric Networking

IETF Internet Engineering Task Force

ILP Integer Linear Program

IP Internet Protocol

IPTV Internet Protocol television

ISP Internet Service Provider

L

LCE Leave Copy Everywhere

LFU Least Frequently Used

LFU-DA Least Frequently Used (LFU) Dynamic Aging

LRU Least Recently Used

xvii

M

MOS Mean Opinion Score

MPEG Moving Picture Experts Group

MSS Microsoft ISS Smooth Streaming

N

NFV Network Function Virtualization

O

OTT Over-The-Top

P

P2P Peer-to-Peer

PoP Point of Presence

Q

QoE Quality of Experience

QoS Quality of Service

QUIC Quick UDP Internet Connections

R

RED Random Early Detection

RL Reinforcement Learning

RTP Real-time Transport Protocol

RTCP RTP Control Protocol

xviii

RTSP Real-Time Streaming Protocol

RTT Round-Trip Time

S

SCAP Shared Content Addressing Protocol

SDN Software-Defined Networking

T

telco-CDN telco-Content Delivery Network

TCP Transmission Control Protocol

TLS Transport Layer Security

U

UDP User Datagram Protocol

V

VDBE Value-Difference Based Exploration

VDBES Value-Difference Based Exploration with Softmax action selection

VoD Video-on-Demand

VoIP Voice over IP

W

WWW World Wide Web

Samenvatting
– Summary in Dutch –

Tijdens de afgelopen decennia is het internet geëvolueerd van een onderzoeks-
netwerk met enkele honderden knopen tot een netwerk dat miljarden gebruikers
over de hele wereld met elkaar verbindt. Deze verbluffende evolutie werd aan-
gestuurd door een onafgebroken vooruitgang op vlak van aangeboden diensten,
gebruikte technologie en gebruikersverwachtingen. Waar het internet in de begin-
dagen hoofdzakelijk gebruikt werd voor statische diensten zoals e-mail en surfen
op het web, wordt vandaag een brede waaier van hoofdzakelijk multimediadien-
sten aangeboden. Zo vertegenwoordigen videodiensten momenteel meer dan 70%
van het wereldwijde internetverkeer. Bovendien wordt verwacht dat de populari-
teit van deze diensten de komende jaren alleen maar zal toenemen. Niet alleen het
dienstenaanbod is sterk uitgebreid, maar tegenwoordig worden ook uiteenlopende
toestellen gebruikt om deze diensten te gebruiken, gaande van desktop computers
en laptops tot slimme televisies, smartphones en tablet computers. Daarbovenop
nemen de gebruikersverwachtingen over de aangeboden diensten, bijvoorbeeld op
vlak van beeldkwaliteit en reactiesnelheid, voortdurend toe. De sleutel tot het suc-
ces van videodiensten schuilt dan ook in het efficiënt invullen van deze hoge ver-
wachtingen. Daarom is de zogenaamde Quality of Experience (QoE), een maatstaf
voor de gebruikerservaring, een belangrijke waardemeter bij het beheer van multi-
mediadiensten.

Ook de technologieën die worden gebruikt om videodiensten af te leveren zijn
doorheen de tijd sterk geëvolueerd. Terwijl oorspronkelijk gespecialiseerde proto-
collen werden aangewend, hebben Hypertext Transfer Protocol (HTTP)-gebaseerde
technieken de laatste jaren heel wat aan populariteit gewonnen. Deze technie-
ken hebben enkele onmiskenbare voordelen zoals de betrouwbare aflevering over
Transmission Control Protocol (TCP), de mogelijkheid tot hergebruik van stan-
daard caches en de moeiteloze integratie met firewalls. Om in te spelen op dynami-
sche netwerkomstandigheden werd HTTP Adaptive Streaming (HAS) voorgesteld.
In HAS wordt de video opgesplitst in verschillende segmenten van enkele secon-
den. Bovendien wordt elk van deze segmenten in verschillende kwaliteitsniveaus
aangeboden. In de videospeler wordt een heuristiek voorzien die voor elk segment
het meest geschikte kwaliteitsniveau selecteert op basis van de waargenomen net-
werkomstandigheden en de huidige buffervulling. De laatste jaren is HAS de de
facto standaard geworden voor Over-The-Top (OTT) videodiensten. Gezien de
vele voordelen van deze techniek geniet HAS recent ook steeds meer aandacht in

xxii SAMENVATTING

scenario’s waarbij het netwerk wordt beheerd door de operator. Ondanks de adap-
tiviteit van HAS kunnen kwaliteitsschommelingen en onderbrekingen in de video
nog steeds voorkomen. Dit heeft vanzelfsprekend een negatieve invloed op de ge-
bruikerservaring. In het verleden werden kwaliteitsdegradaties voorkomen door
het netwerk sterk te overdimensioneren. Gezien de hoge populariteit van video-
diensten en de toenemende gebruikersverwachtingen is dit economisch niet langer
haalbaar. Daarom is het efficiënt beheren van videodiensten van essentieel belang
geworden om aan de hoge kwaliteitsvereisten te kunnen voldoen en tegelijkertijd
de druk op de onderliggende netwerkinfrastructuur onder controle te houden. In
deze thesis worden dan ook verschillende beheersoplossingen voorgesteld die de
aflevering van HTTP-gebaseerde videodiensten optimaliseren. Deze optimalisa-
ties richten zich zowel op de serverzijde, de gebruikerszijde als op aanpassingen
in het netwerk.

Een eerste manier om de geleverde diensten te verbeteren is het optimaliseren
van de kwaliteitsselectie in de videospeler. Ook al werden de HAS-protocollen
gestandaardiseerd door MPEG Dynamic Adaptive Streaming over HTTP (DASH),
toch is een grote hoeveelheid aan commerciële kwaliteitsselectieheuristieken be-
schikbaar. De huidige implementaties zijn echter deterministisch en toegespitst
op specifieke netwerkomstandigheden. Hierdoor zijn ze minder geschikt om met
een brede waaier aan dynamische netwerkomstandigheden om te gaan. De hui-
dige kwaliteitsselecties zijn dan ook vaak niet optimaal waardoor een aanzienlijk
deel van de videostromen invloed ondervindt van lage kwaliteit en onderbrekin-
gen. Daarom werd een zelflerende heuristiek ontwikkeld. Door gebruik te maken
van een techniek gebaseerd op Reinforcement Learning (RL) zal de videospeler
zijn gedrag voortdurend aanpassen aan de waargenomen netwerkomstandigheden
en de huidige buffervulling. In deze thesis wordt aangetoond dat deze heuristiek
huidige deterministische algoritmes sterk kan overtreffen op vlak van QoE in dy-
namische netwerkomstandigheden.

Naast aanpassingen aan de videospeler kunnen ook optimalisaties in het net-
werk worden toegepast om de aflevering van videodiensten efficiënter te maken en
de druk op de netwerkinfrastructuur te verminderen. Daarom zijn Internet Service
Providers (ISPs) recentelijk begonnen met het uitrollen van zogenaamde telco-
Content Delivery Networks (telco-CDNs). Dit biedt hen meer controle over hun
infrastructuur door de videos in hun eigen netwerk dichter bij de eindgebruiker te
kunnen cachen. Bovendien stelt de huidige vooruitgang op vlak van netwerkvirtu-
alisatie hen in staat om hun telco-CDN infrastructuur te virtualiseren. Dit laat hen
toe om op een dynamische manier virtuele opslag- en afleveringsdiensten aan te
bieden aan verschillende partijen. Gebaseerd op dit scenario werd een hybride ca-
ching strategie voorgesteld die de allocatie van opslagcapaciteit, het plaatsen van
data en het selecteren van een server optimaliseert over deze verschillende partijen
heen. Door het periodiek proactief plaatsen op basis van populariteitsvoorspellin-
gen te combineren met klassieke reactieve caching, kan de druk op het ISP netwerk
sterk worden verlicht. Tegelijkertijd worden de videos dichter bij de eindgebruiker
gebracht, wat dan weer de QoE ten goede komt.

De prestatie van een reactieve caching aanpak is sterk afhankelijk van de ge-

SUMMARY IN DUTCH xxiii

bruikte vervangingsstrategie. Aangezien de videosegmenten met HAS worden af-
geleverd via HTTP kunnen traditionele algoritmes, gebruikt bij web caching, een-
voudig worden hergebruikt. De eigenschappen van gesegmenteerde video kunnen
echter worden aangewend om de prestaties van de caches sterk te verbeteren. Er
werden dan ook algoritmes ontwikkeld die de temporele structuur in een geseg-
menteerde video in rekening brengen bij cachevervangingen. In deze thesis werd
hier op verder gebouwd door rekening te houden met het feit dat steeds meer ge-
bruikers van videodiensten verschillende afleveringen van dezelfde serie na elkaar
bekijken. Naar dit fenomeen wordt vaak verwezen onder de noemer binge wat-
ching. Gebaseerd op deze trend werd een strategie ontwikkeld die aanneemt dat
wanneer een gebruiker een aflevering van een bepaalde serie bekijkt, hij vervol-
gens de daaropvolgende aflevering zal bekijken. Door deze informatie in rekening
te brengen kan de efficiëntie van de cachenetwerken sterk verhoogd worden, wat
leidt tot een vermindering van de druk op de onderliggende netwerkinfrastructuur.

Als laatste optimalisatie werd voorgesteld om deadlines geassocieerd met vi-
deodiensten in rekening te brengen in de transportlaag van het netwerk. Aangezien
ze worden afgeleverd over TCP, concurreren HTTP-gebaseerde videodiensten om
de beschikbare bandbreedte met andere diensten met uiteenlopende karakteristie-
ken. Elke byte in een videostroom kan echter worden geassocieerd met een im-
pliciete deadline. Wanneer het videosegment niet wordt afgeleverd vooraleer het
moet worden afgespeeld, zal een onderbreking optreden. Aangezien dit een nega-
tieve invloed heeft op de gebruikerservaring werd een deadline-gebaseerd adapta-
tiealgoritme voorgesteld op basis van een geparametriseerde versie van TCP New
Reno. Deze aanpak vereist op de transportlaag enkel aanpassingen aan de server-
zijde en is dan ook volledig transparant voor de rest van het netwerk. Er werd
aangetoond dat de QoE van een HAS videodienst sterk verbeterd kan worden door
het dynamisch aanpassen van de aggressiviteit van een TCP videostroom.

De oplossingen die worden voorgesteld in deze thesis behandelen enkele be-
langrijke uitdagingen die momenteel optreden in HTTP-gebaseerde gesegmen-
teerde videodiensten door de gebruikerservaring te verbeteren en tegelijkertijd de
druk op de netwerkinfrastructuur te beperken. Verder onderzoek kan hierop ver-
derbouwen door te blijven focussen op nieuwe evoluties, zowel op technologisch
vlak als op vlak van gebruikersverwachtingen. Zo biedt de huidige interesse in
nieuwe protocollen zoals HTTP/2 bijvoorbeeld een aantal nieuwe mogelijkheden.
Door de toenemende tendens van dergelijke protocollen richting in-netwerk en-
cryptie gaat dit echter ook gepaard met een aantal belangrijke uitdagingen op vlak
van in-netwerk optimalisaties. Bovendien zorgen de sterke diversificatie van ge-
bruikerstoestellen en hun verhoogde mobiliteit voor toenemende gebruikersver-
wachtingen. Tenslotte introduceren nieuwe netwerkstrategieën zoals Software-
Defined Networking (SDN) en Network Function Virtualization (NFV) een aantal
nieuwe scenario’s die de flexibiliteit van videodiensten sterk kunnen doen toene-
men. De sterke interactie tussen dergelijke dynamische netwerkbeslissingen en de
efficiëntie van strategieën zoals proactieve plaatsing van data zorgt er echter voor
dat dit een uitdagende opdracht wordt.

Summary

Over the last decades, the Internet has evolved from a research network connect-
ing a couple of hundred nodes to a system connecting billions of users around
the globe. This astonishing evolution has been driven by a continuous innovation,
both in terms of technology, service offering and user requirements. While in the
early days the Internet was mainly used for static services such as e-mail and web
browsing, a wide variety of rich services is offered today, mostly focusing on mul-
timedia delivery. More specifically, video streaming services are dominating the
Internet today, representing over 70% of the total consumer Internet traffic world-
wide. Furthermore, this popularity increase is projected to continue in the years to
come. Not only the number of services has grown, but nowadays a wide variety
of devices are used to access these services as well, ranging from desktop com-
puters and laptops to connected TVs, smartphones and tablets. Furthermore, the
end-user requirements are continuously increasing in terms of minimum resolu-
tion, response time, etc. The key for a video streaming service to be successful is
to meet these stringent quality requirements. Therefore, the quality as experienced
by the end-user, denoted as Quality of Experience (QoE), is an important metric
when it comes to the management of multimedia delivery services.

Over time, the technologies used to deliver video streaming services have been
subjected to change as well. While originally dedicated streaming protocols have
been used, Hypertext Transfer Protocol (HTTP)-based streaming methods have
gained a lot of popularity over the last years. This delivery type comes with sev-
eral important advantages, such as the reliable transmission over the Transmission
Control Protocol (TCP), the reuse of standard proxies and caches and the seam-
less integration with firewalls. To cope with dynamic network conditions, HTTP
Adaptive Streaming (HAS) has been proposed. In HAS, the video is temporally
split in multiple segments, each of which are encoded at different quality lev-
els. At the client side, a rate adaption heuristic is applied to change the requested
quality level based on, for example, the perceived network conditions, the buffer
filling level and the device characteristics. In latest years, HAS has become the
de facto standard for Over-The-Top (OTT) video streaming. Given the strong ad-
vantages of this approach, recently a lot of interest is gained in managed delivery
scenarios as well. Despite the adaptive capabilities of HAS, due to the best ef-
fort nature of the delivery, quality oscillations and video freezes can still occur,
negatively impacting the QoE. Historically, network resources have been strongly
over-provisioned to avoid quality degradations. However, given the popularity of
video streaming services and the increasingly stringent quality requirements, this

xxvi SUMMARY

is no longer economically viable. Therefore, efficiently managing the delivery of
video streaming services becomes of utmost importance to provide high QoE to
the end-users while simultaneously keeping the strain imposed on the underlying
network resources under control. In this dissertation, multiple management solu-
tions are proposed to optimize the end-to-end delivery of HTTP-based streaming
services, both in terms of QoE and resource efficiency. The proposed approaches
include server side, user side as well as in-network optimizations.

A first way to improve the delivered service quality is to optimize the qual-
ity selection process at the client side. Even though the interfaces and proto-
col data of HAS are standardized in MPEG Dynamic Adaptive Streaming over
HTTP (DASH), a vast amount of commercial rate adaptation heuristics exist.
However, state-of-the-art implementations are deterministic and hardwired to spe-
cific network configurations, making them unable to cope with a vast range of
highly dynamic network environments. As a result, current rate adaptation deci-
sions are often sub-optimal, regularly causing HAS streaming sessions to suffer
from video freezing and low resolution video. Therefore, in this thesis, a self-
learning quality selection heuristic is proposed. By using a Reinforcement Learn-
ing (RL)-based technique, the HAS client continuously adapts its behavior based
on the perceived network characteristics and buffer filling level. It is shown in this
dissertation that this self-learning approach can significantly outperform current
deterministic algorithms in terms of QoE in dynamic network environments.

Besides client side approaches, in-network optimizations can be applied to in-
crease the efficiency of the service delivery and to reduce the load on the under-
lying network resources. To restrain the pressure exerted on their networks by
current delivery strategies, Internet Service Providers (ISPs) have started to de-
ploy so-called telco-Content Delivery Networks (telco-CDNs). This gives them
more control over their resources by allowing content to be cached deep inside the
ISP network. Furthermore, current advances in network virtualization enable ISPs
to virtualize their telco-CDN infrastructure, allowing them to dynamically offer
virtual storage and content delivery services to multiple third parties. Based on
this scenario, a hybrid cache management strategy has been proposed, optimizing
the capacity allocation, content placement and server selection across multiple ten-
ants. By combining periodical proactive content placements based on popularity
predictions with reactive caching capacity, the load on the ISP network can be re-
duced while simultaneously bringing the content closer to the end-user, positively
influencing the QoE.

The performance of a reactive caching approach strongly depends on the de-
sign of the cache replacement algorithms. As in HAS the video segments are deliv-
ered over HTTP, regular web caching algorithms can easily be reused. However,
the characteristics of segmented video contain important information that can be
exploited to improve the performance of the cache network. Therefore, cache re-
placement algorithms have been proposed, taking into account the temporal struc-
ture of a segmented video stream. This dissertation builds on this work by consid-
ering the fact that recently, a significant amount of users frequently watch multiple
consecutive episodes of the same series in one sitting. This phenomenon is com-

SUMMARY xxvii

monly referred to as binge watching. Based on this trend, an announcement-based
caching strategy is proposed. By assuming that when a user is watching episodic
content, the following episode will be streamed after the current one, the hit ratio
of the caching network can be significantly increased, resulting in a reduced load
on the underlying network resources.

A final optimization approach proposed in this dissertation focuses on bringing
deadline-awareness to the transport layer. Being delivered over TCP, HTTP-based
streaming services compete for bandwidth with other types of services with dif-
ferent characteristics, following the fair-share paradigm. However, every byte in a
video stream has an implicit strict deadline. If the data is not delivered to the client
before it is needed to be played out, the video freezes, detrimentally impacting the
QoE. Therefore, a deadline-based adaptation algorithm is proposed, based on a
parametrized version of TCP New Reno congestion control. This approach only
requires server-side adaptations at the transport layer and consequently is fully
transparent for the rest of the network. It was shown that by taking into account
the deadline information at the transport layer to dynamically adapt the aggressive-
ness of the TCP video stream, the QoE can significantly be increased in an HAS
Video-on-Demand (VoD) scenario.

The proposed approaches address important challenges currently perceived in
segment-based video streaming services over HTTP by improving the quality de-
livered to the end-user while simultaneously restraining the load exposed on the
underlying network infrastructure. Future research can build on this work by fur-
ther focusing on new evolutions, both in terms of technology and user require-
ments. For example, the current adoption of new protocols such as HTTP/2 and
their trend towards in-network encryption offers some interesting opportunities as
well as important challenges when it comes to in-network service optimizations.
Furthermore, the diversification of client devices and the increasing mobility of
the end-users add to the requirements for video streaming services. Finally, novel
networking paradigms such as Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) open up some new scenarios to add flexibility to
the service delivery. However, the strong interplay between dynamic networking
decisions and application layer approaches such as content placement and caching
make this a challenging task.

1
Introduction

“Quality is never an accident. It is always the result of intelligent effort.”

–John Ruskin (1819 - 1900)

1.1 The Internet video streaming evolution
October 29, 1969, 10:30PM. UCLA student Charley Kline sends the first success-
ful message over a packet switched network between the University of California
in Los Angeles and Stanford University in Palo Alto [1]. ARPANET was born.
In the years to follow, ARPANET grew slow but steady to a network with over
200 host computers by the early 80s. With the introduction of the World Wide
Web (WWW) in 1990, Tim Berners-Lee triggered an astonishing evolution that
brought the Internet to what it is today, connecting over 3.6 billion users world-
wide. Over the past decades, this evolution was driven by a continuous introduc-
tion of new services.

While originally the Internet was mainly used for e-mail and web browsing,
a wide variety of rich services is offered today, ranging from social media (e.g.,
Facebook, Twitter) to video streaming services (e.g., YouTube, Netflix). This shift
towards multimedia delivery started with the introduction of Peer-to-Peer (P2P)
file sharing services such as Napster, Gnutella and Kazaa in the late 90s, allow-
ing users to easily share large files. Even though Microsoft and RealNetworks
pioneered in streaming technologies over packet networks as early as the mid
90s, multimedia was usually delivered over non-streaming channels (i.e. large

2 CHAPTER 1

Figure 1.1: Forecast of the global consumer Internet traffic between 2015 and 2020 [2].

file transfers) due to the limited network capacities at that time. When connec-
tion speeds significantly increased in the early 2000s, streaming services gained
popularity, demonstrated by the success of YouTube, initiated in 2005. While
YouTube targeted users sharing short home-made videos, other players such as
content providers and telecommunication companies gained interest in Internet
video streaming technologies as well. As an example, Netflix originally started
in the DVD by mail business, but soon introduced their Video-on-Demand (VoD)
streaming service in February 2007, offering movies and series in high quality,
which is now their dominant service offering. The popularity of video streaming
services skyrocketed and has been dominating the Internet market since 2010. As
shown in Figure 1.1, this trend is projected to continue in the years to come, with
Internet video expected to represent more than 80% of the global consumer Inter-
net traffic by 2020 [2]. Furthermore, the quality requirements for video streaming
services are continuously increasing as well. While in the early days of YouTube
very low quality videos were commonly accepted, less than high definition video
is no longer sufficient to satisfy the end-user today.

Video streaming services can generally be subdivided in two categories: In-
ternet Protocol television (IPTV) and Over-The-Top (OTT). IPTV services are
commonly offered by network operators in combination with telephony and Inter-
net access. The delivered content mostly covers live television broadcast as well as
a limited VoD catalog. As the video streams are delivered over their managed net-
works, operators can provide delivery guarantees, hence ensuring a minimum level
of quality. However, this commonly limits the delivery to the customer premises

INTRODUCTION 3

through a set-top box. On the contrary, OTT video streaming is delivered over
the traditional Internet, allowing the content to be consumed on a wide variety of
devices at any location with Internet connectivity. On the downside, due to the
best-effort nature of the Internet, no hard delivery guarantees can be offered, often
leading to quality degradations as well. Nevertheless, the increasing popularity of
OTT video streaming services has put operators under increasing pressure to of-
fer additional services to their customers, allowing them to access supplementary
content or from different locations and other devices than the set-top box. For this
purpose, traditional IPTV providers have started to deploy OTT technologies as
well [3].

Obviously, the technologies used to deliver OTT streaming services have been
subjected to an evolutionary process as well. Traditionally, Real-time Transport
Protocol (RTP) in conjunction with RTP Control Protocol (RTCP) has been com-
monly used as an application layer streaming protocol. While the media itself
is transported using RTP over User Datagram Protocol (UDP), RTCP is used to
monitor transmission statistics. Real-Time Streaming Protocol (RTSP) was often
used on top to control the media sessions between client and server. However, as
this is a stateful protocol, the scalability is strongly impacted. For several years,
the video streaming industry is steadily shifting away from these classic streaming
protocols, back to Hypertext Transfer Protocol (HTTP) over Transmission Control
Protocol (TCP). This trend was mostly initiated by the fact that classic streaming
protocols often have difficulty getting around firewalls. Using plain HTTP, such
problems do not occur. Furthermore, HTTP-based streaming services are delivered
reliably over TCP and can reuse standard proxies and caches.

In the most basic form of video delivery over HTTP, the multimedia file is
treated as a regular file and downloaded over HTTP. As this requires the entire
video file to be downloaded before it can be played, this results in a significant
startup delay. Therefore, HTTP progressive download was quickly introduced.
With progressive download, the video file is temporally split into multiple seg-
ments containing a couple of seconds of video each. At the server side, a meta
data file is used to link the different segments into a single video. Based on this in-
formation, the client progressively downloads the subsequent segments, allowing
the playback to start as soon as a couple of segments are available. However, when
the download speed is not sufficient to stay ahead of the playback, continuous
buffering occurs, negatively impacting the user experience. For this reason, HTTP
Adaptive Streaming (HAS) has been proposed to cope with dynamic network con-
ditions. In HAS, the video is not only temporally segmented, but also qualitatively,
all segments are encoded at different quality levels. At the client side, the network
statistics and the buffer filling level are monitored. Based on this information, the
requested quality for each segment can be defined. In this way, HAS can avoid
buffer depletions by reducing the video quality when the available bandwidth is

4 CHAPTER 1

limited. As this rate adaptation logic is fully distributed at the client side, regular
stateless HTTP servers can be used, strongly benefiting scalability. Several large
industrial players have commercial implementations of the HAS concept, includ-
ing Microsoft ISS Smooth Streaming (MSS) [4], HTTP Live Streaming (HLS) by
Apple [5] and Adobe’s HTTP Dynamic Streaming [6]. In 2011, the Moving Pic-
ture Experts Group (MPEG) tried to find common ground between the vast amount
of commercial implementations by standardizing the interfaces and protocol data
in Dynamic Adaptive Streaming over HTTP (DASH) [7]. In the latest years, HAS
has been adopted by important players such as YouTube and Netflix, and quickly
became the de facto standard for video streaming, representing more than 60% of
the consumer Internet traffic in North America [8].

To efficiently deliver streaming services to a broad audience, globally dis-
tributed networks of proxy servers, called Content Delivery Networks (CDNs),
are commonly used. CDN nodes are usually deployed in multiple data centers
spread across different locations to increase the global availability of the content.
By doing so, the load on the origin server is significantly decreased and the con-
tent is brought closer to the end-user, positively impacting the user experience.
Furthermore, content providers started to build their own CDNs by collaborating
with Internet Service Providers (ISPs) to optimize the delivery of their services
by placing dedicated servers inside the providers’ networks (e.g., Netflix Open-
Connect [9]). Doing so, content providers can benefit from their knowledge about
the usage of their service to optimize content management decisions. However,
these content management operations are usually performed with no or very lim-
ited information about the ISP networks (e.g., topology, resource utilization, etc.)
they are interacting with. This lack of knowledge can lead to inefficient resource
allocation, exerting an immense strain on the ISP’s resources and exposing them
to large Capital Expenditures (CAPEX) [10]. To address this issue, ISPs started
to deploy so called telco-Content Delivery Networks (telco-CDNs), increasing the
control over their network resources while simultaneously optimizing the delivered
quality to their end-users [11].

1.2 Problem statement

As presented in the previous section, the differences between the technologies used
to deliver managed and OTT services are fading away, both shifting to HTTP-
based techniques. However, alongside the technological evolutions, the quality
expectations imposed by the end-users of video streaming services continuously
increase as well (e.g., 4K video, 3D video, different camera angles, time-shifting,
etc.). As a result, the providers of both managed and OTT video streaming ser-
vices are faced with the important challenge to provide high Quality of Experi-
ence (QoE) to the end-users while simultaneously keeping the strain imposed on

INTRODUCTION 5

the underlying network resources under control. Given the excessive popularity
of video streaming services, in the future this can no longer be achieved by over-
provisioning the network as was done in the latest decades. Therefore, efficiently
managing the delivery of video streaming services becomes of utmost importance.
In this dissertation, multiple management solutions are proposed, optimizing the
service delivery at the client side, at the server side, as well as in the network in
between. More specifically, the following problems are identified and tackled in
this thesis:

1. Existing HAS rate adaptation heuristics are tailored to specific network con-
figurations. As introduced in the previous section, HAS techniques have
gained a lot of popularity thanks to their ability to cope with bandwidth
fluctuations and network congestion. A client side rate adaptation heuris-
tic is used to monitor the current device and network characteristics and to
adapt the downloaded video quality appropriately. While MPEG, in col-
laboration with other standard groups, such as 3rd Generation Partnership
Project (3GPP), standardized the HAS interfaces in DASH in 2011, the
adaptation heuristics are still implementation specific. Given the increasing
popularity of mobile devices for video streaming services, these heuristics
are commonly used with different access technologies and corresponding
network characteristics. However, state-of-the-art quality selection heuris-
tics are deterministic and tailored to specific network configurations. There-
fore, they are unable to cope with a vast range of highly dynamic network
environments. As a result, current rate adaptation decisions and correspond-
ing QoE are often sub-optimal. This claim is supported by Conviva, showing
that in 2014, 28.8% and 58.4% of the HAS streaming sessions suffered from
video freezing and low resolution video, respectively [12].

2. Current video delivery over CDNs exerts a lot of pressure on ISP networks.
In latest years, video streaming services heavily rely on CDNs to deliver
the content in a scalable way. Furthermore, large content providers such
as Netflix started to deploy their own CDN infrastructure. To meet the in-
creasingly stringent quality requirements, CDN providers currently aim at
bringing the content even closer to the end-users in order to reduce both the
latency and the bandwidth consumption. A common way to achieve this
goal is to physically place dedicated servers inside the ISP network or con-
nect them to a nearby Internet exchange point, through manually-negotiated
contractual agreements. However, this delivery strategy exerts an immense
strain on the underlying ISP network resources. As an example, with the
introduction of Netflix in Belgium in September 2014, Telenet reported that
the video streaming service accounted for 10% of the total Internet traffic
during the opening weekend. Similar claims have been made by other ISPs

6 CHAPTER 1

in other countries, with every new Netflix launch. As this results in increas-
ing operating costs and decreasing revenues for the ISPs, they have started
to explore alternative business models and service offerings. This has lead
to the deployment of telco-CDNs which allow content to be cached deep
inside the ISP network. Even though this gives ISPs more control over their
resources, current content placement algorithms are not optimized for multi-
tenant scenarios with dynamic capacity allocations.

3. The management of video streaming services does not fully take into ac-
count the changing user behavior. Over the last decades, not only the video
streaming technology has changed, but the way these services are used has
evolved as well. While with the introduction of YouTube the main focus
of VoD streaming was on short home-made videos, VoD services like Net-
flix and Hulu are now commonly used to stream entire movies and series.
These services make it easy for the end-users to watch as much as they want,
whenever they want, stimulating the consumers’ desire to organize their own
schedule, rather than following a fixed timetable as with linear television.
This has lead to the phenomenon of binge watching, where users consecu-
tively watch multiple episodes of the same series in one sitting, to become
the everyday behavior. A study on user behavior by Nielsen has shown that
in 2013, respectively 88% and 70% of Netflix and Hulu Plus users regularly
stream three or more episodes of the same TV show consecutively [13]. A
survey on binge watching, performed by Conviva in 2015, has shown that
on average, 2.3 episodes of a series are watched in a single sitting [14]. Fur-
thermore, as presented in Figure 1.2, the results from this survey show that
users commonly binge-watch multiple series simultaneously. These user be-
havior trends contain valuable information that could potentially be used to
optimize the service delivery by anticipating expected video requests. How-
ever, current streaming solutions focus on single stream delivery, without
considering dependencies between consecutive streams.

4. Fair bandwidth sharing introduced by TCP is far from minimizing the num-
ber of deadline misses. The popularity of HTTP-based streaming techniques
is mainly due to the reliable delivery over TCP and the seamless interaction
with existing network equipment such as firewall. As multiple flows com-
pete for bandwidth, TCP uses a congestion control strategy to avoid conges-
tive collapse. It was shown that by using such congestion control strategy,
multiple flows competing for bandwidth in comparable environments even-
tually converge to using equal amounts of a contended link. However, a
wide variety of services with different characteristics and requirements are
delivered over TCP. For example, each byte in a video stream has an im-
plicit strict deadline. If the data is not delivered at the client before this

INTRODUCTION 7

Figure 1.2: Overview of the binge watching behavior according to Conviva [14].

deadline, the video playout is interrupted, detrimentally impacting the QoE.
Other types of services (e.g., email, filetransfer, ...) have no strict timing
constraints. It is clear that fair bandwidth sharing between flows with dif-
ferent requirements might not be optimal. Even though HAS offers a lot of
advantages, the delivery over TCP using current congestion control strate-
gies is not well suited to guarantee a continuous video stream.

1.3 Dissertation outline

This dissertation is composed of a number of publications that were obtained
within the scope of this PhD. These selected publications provide an integral and
consistent overview of the realized work. The different research contributions are
detailed in Section 1.4, while Section 1.5 presents the complete list of publications
that resulted from this work. In this section, an overview of the remainder of this
dissertation is presented. Figure 1.3 gives an overview of the different contribu-
tions that are presented in each chapter to optimize the video streaming service
delivery at different locations in the network.

Chapter 2 focuses on the client-side optimization of OTT video delivery by
introducing a self-learning HAS client. As opposed to state-of-the art quality se-
lection heuristics, which are deterministic and tailored to specific network config-
urations, this Reinforcement Learning (RL)-based adaptation algorithm is able to
dynamically adapt its behavior to the perceived networking environment in order
to optimize the QoE. Furthermore, extensions to the basic self-learning client are
proposed to significantly decrease the learning time and to strongly improve the
performance in variable environments. Thorough evaluations showed that using
this approach, the QoE can be significantly increased compared to state-of-the-art

8 CHAPTER 1

Figure 1.3: Overview of this PhD dissertation.

heuristics in a wide variety of network environments.
In-network optimizations are presented in Chapter 3 and Chapter 4. Chap-

ter 3 considers the scenario where ISPs deploy telco-CDNs to reduce the load on
their network resources. Virtualization of storage and networking resources can
enable the ISP to simultaneously lease its telco-CDN infrastructure to multiple
third parties, opening up new business models and revenue streams. A hybrid
cache management approach is proposed where proactive content placement and
traditional reactive cache replacement are combined. A proactive algorithm opti-
mizes the allocation of storage capacity and the content placement decisions based
on predicted content popularity and the geographical distribution of requests. By
simultaneously allocating caching capacity applying reactive cache replacement
strategy strategies, reactivity to unexpected changes in the request pattern is pro-
vided. It was shown that this cache management strategy can significantly reduce
the bandwidth usage inside the ISP network while simultaneously bringing the
content closer to the end-user, positively influencing the QoE.

When reactive caching is considered, designing appropriate replacement strate-
gies is of utmost importance to achieve high caching efficiency and effectively re-
duce the network load. Therefore, algorithms have been introduced to optimize
caching of segmented video by taking into account the temporal structure of the
video. In Chapter 4, two cache replacement strategies are proposed to additionally
take advantage of the binge watching phenomenon to further reduce the network
load. Given this phenomenon, when a user watches an episode of a specific se-
ries, it can be assumed that the next episode will be requested subsequently. Using
this additional information, future reuse times of the segmented content can be

INTRODUCTION 9

estimated for consecutive episodes. In this way, the caching efficiency can be sig-
nificantly increased compared to algorithms only applying reuse time predictions
based on the structure of a single segmented video. The two proposed approaches
differ in the level of cooperation inside the caching network. While a first approach
applies a simple threshold-based cascading strategy to provide a basic level of co-
ordination, the second proposal relies on a more advanced election-based coordi-
nation strategy.

In a video stream, hard deadlines are associated with each packet. In general,
client applications are aware of the deadlines associated with the requested con-
tent. We show that multimedia delivery can be strongly optimized by prioritizing
specific flows when these deadlines are introduced in the network. In Chapter 5, a
deadline-aware TCP congestion control strategy is proposed, taking into account
the deadline information to change the aggressiveness of a stream. This proposal
only requires changes at the server side and reduces to standard TCP congestion
control when no deadline information is available. Therefore, this approach is fully
transparent to the network. Evaluations have shown that using the proposed con-
gestion control strategy can significantly reduce the bottleneck bandwidth required
to deliver TCP-based video streams without video freezes. Appendix A elaborates
on this approach and provides evaluations in a VoD HAS scenario, allowing to
assess the impact on the QoE.

1.4 Research contributions
This dissertation aims to reduce the strain imposed on network resources while
simultaneously improving the QoE of HTTP-based segmented video streaming
services. The main contributions made in this area can be identified as follows:

1. A self-learning rate adaptation heuristic to deal with a wide variety of net-
work configurations. (Chapter 2)

� Design of a Q-learning-based HAS rate adaptation heuristic to dynam-
ically learn the best actions corresponding to the actual network envi-
ronment.

� A Frequency Adjusted Q-Learning (FAQ-Learning) extension of the
self-learning algorithm to increase the performance when operating in
strongly variable environments.

� An estimation algorithm to incorporate HAS domain knowledge into
the initial Q-tables in order to boost the client performance during the
learning phase.

� A QoE estimation model, combining state-of-the-art estimation mod-
els for different quality aspects such as average video quality, switch-
ing behavior and video freezing.

10 CHAPTER 1

� Thorough evaluations using an NS-3-based simulation framework, de-
monstrating the increased QoE in variable bandwidth configurations
compared to the MSS algorithm.

2. A hybrid cache management strategy for virtualized telco-CDNs to reduce
the load on ISP network resources. (Chapter 3)

� An Integer Linear Program (ILP) formulation of the multi-tenant con-
tent placement and server selection problem, taking into account the
content migration overhead.

� A basic popularity prediction strategy for VoD requests, combining
short- and long-term historical data.

� Design of a cache division strategy, balancing proactive content place-
ment and reactive cache replacement.

� Thorough evaluations using a real request trace of the VoD service
of a major European ISP, showing the performance of the proposed
approach in terms of both network and caching metrics.

� Analysis of the achievable performance increase when augmenting the
popularity prediction with exogenous information about the future re-
quest pattern, e.g., based on trends in social media.

3. An announcement-based cache replacement strategy taking advantage of the
binge watching user behavior to reduce the load on the network resources.
(Chapter 4)

� Design of a cache replacement algorithm taking advantage of knowl-
edge about future segment requests when streaming segmented video
and additionally exploiting the added knowledge about expected future
episode requests.

� Two coordination strategies within the caching network. The first ap-
proach applies a simple threshold-based cascading strategy while the
second proposal adds a more advanced election-based strategy.

� A detailed analysis of the influence of user behavior in terms of video
interruptions on both the proposed and state-of-the-art caching strate-
gies.

� Thorough evaluations in a distributed caching scenario on multiple
topologies to assess the performance of the proposed approaches, both
in terms of network and caching metrics.

4. A deadline-aware TCP congestion control strategy, optimizing video stream-
ing delivery. (Chapter 5 & Appendix A)

INTRODUCTION 11

� A parametrization of the congestion avoidance phase of the TCP New
Reno congestion control mechanism.

� A feasibility study of prioritizing TCP flows by changing the configu-
ration of these parameters.

� Design of algorithms to dynamically adapt the parameter configuration
of streams to change the aggressiveness based on the deadline informa-
tion.

� Thorough evaluations using large scale packet-based simulation in NS-
3, showing the possible bottleneck bandwidth reduction for TCP-based
video streaming.

� Analysis of the impact on the QoE in an HAS VoD scenario using large
scale simulations in NS-3.

1.5 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.5.1 A1: Journal publications indexed by the ISI Web of Sci-
ence “Science Citation Index Expanded”

1. Daphne Tuncer, Vasilis Sourlas, Marinos Charalambides, Maxim Claeys,
Jeroen Famaey, George Pavlou, Filip De Turck. Scalable Cache Manage-
ment for ISP-operated Content Delivery Services. Published in Journal
of Selected Areas in Communications (JSAC), IEEE, Volume 34, Issue 8,
Pages 2063-2076, August 2016. doi:10.1109/jsac.2016.2577319.

2. Maxim Claeys, Daphne Tuncer, Jeroen Famaey, Marinos Charalambides,
Steven Latré, George Pavlou, Filip De Turck. Hybrid Multi-tenant Cache
Management for Virtualized ISP Networks. Published in Journal of Net-
work and Computer Applications (JNCA), Elsevier, Volume 68, Pages 28-
41, June 2016. doi:10.1016/j.jnca.2016.04.004.

3. Maxim Claeys, Niels Bouten, Danny De Vleeschauwer, Werner Van Leek-
wijck, Steven Latré, Filip De Turck. Cooperative Announcement-based
Caching for Video-on-Demand Streaming. Published in Transactions on
Network and Service Management (TNSM), IEEE, Volume 13, Issue 2,
Pages 308-321, June 2016. doi:10.1109/tnsm.2016.2546459.

12 CHAPTER 1

4. Stefano Petrangeli, Jeroen Famaey, Maxim Claeys, Filip De Turck, Steven
Latré. QoE-driven Rate Adaptation Heuristic for Fair Adaptive Video
Streaming. Published in Transactions on Multimedia Computing, Commu-
nications and Applications (TOMM), ACM, Volume 12, Issue 2, Pages 28:1-
28:24, March 2016. doi:10.1145/2818361.

5. Nicolas Staelens, Jonas De Meulenaere, Maxim Claeys, Glenn Van Wal-
lendael, Wendy Van den Broeck, Jan De Cock, Filip De Turck, Rik Van de
Walle, Piet Demeester. Subjective Quality Assessment of Longer Duration
Video Sequences Delivered over HTTP Adaptive Streaming to Tablet De-
vices. Published in Transactions on Broadcasting, IEEE, Volume 60, Issue
4, Pages 707-714, December 2014. doi:10.1109/tbc.2014.2359255.

6. Maxim Claeys, Steven Latré, Jeroen Famaey, Filip De Turck. Design and
Evaluation of a Self-Learning HTTP Adaptive Video Streaming Client. Pub-
lished in Communications Letters, IEEE, Volume 18, Issue 4, Pages 716-
719, April 2014. doi:10.1109/lcomm.2014.020414.132649.

7. Maxim Claeys, Steven Latré, Jeroen Famaey, Tingyao Wu, Werner Van
Leekwijck, Filip De Turck. Design and Optimization of a (FA)Q-Learning-
based HTTP Adaptive Streaming Client. Published in Connection Sci-
ence, Taylor & Francis, Volume 26, Issue 1, Pages 25-43, March 2014.
doi:10.1080/09540091.2014.885273.

8. Femke Ongenae, Maxim Claeys, Wannes Kerckhove, Thomas Dupont, Piet
Verhoeve, Filip De Turck. A Self-learning Nurse Call System. Published in
Computers in Biology and Medicine, Elsevier, Volume 44, Pages 110-123,
January 2014. doi:10.1016/j.compbiomed.2013.10.014.

9. Femke Ongenae, Maxim Claeys, Thomas Dupont, Wannes Kerckhove, Piet
Verhoeve, Tom Dhaene, Filip De Turck. A Probabilistic Ontology-based
Platform for Self-learning Context-aware Healthcare Applications. Pub-
lished in Expert Systems with Applications, Elsevier, Volume 40, Issue 18,
Pages 7629-7646, December 2013. doi:10.1016/j.eswa.2013.07.038.

1.5.2 P1: Proceedings included in the ISI Web of Science “Con-
ference Proceedings Citation Index - Science”

1. Niels Bouten, Maxim Claeys, Rashid Mijumbi, Joan Serrat, Jeroen Famaey,
Steven Latré. Semantic Validation of Affinity Constrained Service Func-
tion Chain Requests. In proceedings of the IEEE Conference on Net-
work Softwarization (NetSoft), Seoul, Korea, Pages 202-210, June 2016.
doi:10.1109/netsoft.2016.7502414.

INTRODUCTION 13

2. Maxim Claeys, Niels Bouten, Danny De Vleeschauwer, Werner Van Leek-
wijck, Steven Latré, Filip De Turck. An Announcement-based Caching Ap-
proach for Video-on-Demand Streaming. In proceedings of the International
Conference on Network and Service Management (CNSM), Barcelona,
Spain, Pages 310-317, November 2015. doi:10.1109/cnsm.2015.7367376.

3. Stefano Petrangeli, Niels Bouten, Maxim Claeys, Filip De Turck. To-
wards SVC-based Adaptive Streaming in Information-centric Networks.
In proceedings of the IEEE International Conference on Multimedia
& Expo Workshops (ICMEW), Torino, Italy, Pages 1-6, July 2015.
doi:10.1109/icmew.2015.7169859.

4. Jeroen van der Hooft, Stefano Petrangeli, Maxim Claeys, Jeroen Famaey,
Filip De Turck. A Learning-based Algorithm for Improved Bandwidth
Awareness of Adaptive Streaming Clients. In proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management (IM), Ottawa,
Canada, Pages 131-138, May 2015. doi:10.1109/inm.2015.7140285.

5. Maxim Claeys, Daphne Tuncer, Jeroen Famaey, Marinos Charalam-
bides, Steven Latré, George Pavlou, Filip De Turck. Proactive Multi-
tenant Cache Management for Virtualized ISP Networks. In proceed-
ings of the International Conference on Network and Service Manage-
ment (CNSM), Rio de Janeiro, Brazil, Pages 82-90, November 2014.
doi:10.1109/cnsm.2014.7014144.

6. Maxim Claeys, Daphne Tuncer, Jeroen Famaey, Marinos Charalambides,
Steven Latré, Filip De Turck, George Pavlou. Towards Multi-tenant Cache
Management for ISP Networks. In proceedings of the European Confer-
ence on Networks and Communications (EuCNC), Bologna, Italy, Pages
1-5, June 2014. doi:10.1109/eucnc.2014.6882692.

7. Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Jeroen
Famaey, Filip De Turck. Neural Network-based Autonomous Allocation of
Resources in Virtual Networks. In proceedings of the European Confer-
ence on Networks and Communications (EuCNC), Bologna, Italy, Pages
1-6, June 2014. doi:10.1109/eucnc.2014.6882668.

8. Maxim Claeys, Steven Latré, Filip De Turck. Efficient Management of
Virtualized Information-Centric Networks. In proceedings of the Interna-
tional Conference on Autonomous Infrastructure, Management and Security
(AIMS), Brno, Czech Republic, Pages 42-46, June 2014. doi:10.1007/978-
3-662-43862-6_4.

9. Niels Bouten, Maxim Claeys, Robin Bailleul, David Lou, Jeroen Famaey,
Steven Latré, Jan De Cock, Filip De Turck, Werner Van Leekwijck.

14 CHAPTER 1

Improved Delivery of Live SVC-based HTTP Adaptive Streaming Con-
tent. In proceedings of the IEEE Network Operations and Manage-
ment Symposium (NOMS), Krakow, Poland, Pages 1-2, May 2014.
doi:10.1109/noms.2014.6838269.

10. Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Maxim Claeys, Filip De
Turck, Steven Latré. Design and Evaluation of Learning Algorithms for
Dynamic Resource Management in Virtual Networks. In proceedings of the
IEEE Network Operations and Management Symposium (NOMS), Krakow,
Poland, Pages 1-9, May 2014. doi:10.1109/noms.2014.6838258.

11. Stefano Petrangeli, Maxim Claeys, Steven Latré, Jeroen Famaey, Filip De
Turck. A Multi-Agent Q-Learning-based Framework for Achieving Fairness
in HTTP Adaptive Streaming. In proceedings of the IEEE Network Oper-
ations and Management Symposium (NOMS), Krakow, Poland, Pages 1-9,
May 2014. doi:10.1109/noms.2014.6838245.

12. Niels Bouten, Maxim Claeys, Steven Latré, Jeroen Famaey, Werner Van
Leekwijck, Filip De Turck. Deadline-based Approach for Improving Deliv-
ery of SVC-based HTTP Adaptive Streaming Content. In proceedings of the
IEEE Network Operations and Management Symposium (NOMS), Krakow,
Poland, Pages 1-7, May 2014. doi:10.1109/noms.2014.6838402.

13. Sebastiaan Laga, Thomas Van Cleemput, Filip Van Raemdonk, Felix Van-
houtte, Niels Bouten, Maxim Claeys, Filip De Turck. Optimizing Scalable
Video Delivery Through OpenFlow Layer-based Routing. In proceedings
of the IEEE Network Operations and Management Symposium (NOMS),
Krakow, Poland, Pages 1-4, May 2014. doi:10.1109/noms.2014.6838378.

1.5.3 C1: Other publications in international conferences

1. Maxim Claeys, Niels Bouten, Danny De Vleeschauwer, Koen De Schep-
per, Werner Van Leekwijck, Steven Latré, Filip De Turck. Deadline-
aware TCP Congestion Control for Video Streaming Services. In pro-
ceedings of the International Conference on Network and Service Man-
agement (CNSM), Montreal, Canada, Pages 100-108, October 2016.
doi:10.1109/cnsm.2016.7818405.

2. Niels Bouten, Maxim Claeys, Bert Van Poecke, Steven Latré, Filip De
Turck. Dynamic Server Selection Strategy for Multi-server HTTP Adaptive
Streaming Services. In proceedings of the International Conference on Net-
work and Service Management (CNSM), Montreal, Canada, Pages 82-90,
October 2016. doi:10.1109/cnsm.2016.7818403.

INTRODUCTION 15

3. Stefano Petrangeli, Maxim Claeys, Filip De Turck, Tim Wauters, Patrick
Van Staey. Energy-aware Quality Adaptation for Mobile Video Stream-
ing. In proceedings of the International Conference on Network and Service
Management (CNSM), Montreal, Canada, Pages 253-257, October 2016.
doi:10.1109/cnsm.2016.7818427.

4. Maxim Claeys, Steven Latré, Jeroen Famaey, Tingyao Wu, Werner Van
Leekwijck, Filip De Turck. Design of a Q-Learning-based Client Quality
Selection Algorithm for HTTP Adaptive Video Streaming. In proceedings of
the Workshop on Adaptive and Learning Agents (ALA), Saint Paul (MN),
USA, Pages 30-37, May 2013.

16 CHAPTER 1

References

[1] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch, J. Postel,
L. Roberts, and S. Wolff. Brief History of the Internet. ACM SIGCOMM
Computer Communication Review, 39(5):22–31, 2009.

[2] Cisco. Cisco Visual Networking Index: Forecast and methodology, 2015-
2020. Technical report, Cisco, 2016.

[3] DASH-FI. Survey of European broadcasters on MPEG-DASH. Technical
report, DASH Industry Forum, 2013.

[4] Microsoft. Smooth Streaming: The Official Microsoft IIS Site, 2008. Avail-
able from: https://www.iis.net/downloads/microsoft/smooth-streaming.

[5] Apple. HTTP Live Streaming, 2016. Available from: https://tools.ietf.org/
html/draft-pantos-http-live-streaming-20.

[6] Adobe. HTTP Dynamic Streaming, 2009. Available from: http://www.adobe.
com/products/hds-dynamic-streaming.html.

[7] T. Stockhammer. Dynamic adaptive streaming over HTTP: Standards and
design principles. In Proceedings of the ACM International Conference on
Multimedia Systems, pages 133–144, 2011.

[8] Sandvine. Global Internet Phenomena. Technical report, Sandvine - Intelli-
gent Broadband Networks, 2016.

[9] Netflix. How Netflix Works With ISPs Around the Globe to
Deliver a Great Viewing Experience, 2016. Available from:
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-
around-the-globe-to-deliver-a-great-viewing-experience.

[10] CellularNews. Overall telecom CAPEX to rise in 2011 due to video, 3G, LTE
investments, 2010. Available from: http://www.cellular-news.com/story/
46986.php.

[11] D. Tuncer, M. Charalambides, R. Landa, and G. Pavlou. More control over
network resources: an ISP caching perspective. In Proceedings of the Inter-
national Conference on Network and Service Management (CNSM), pages
26–33, 2013.

[12] Conviva. 2015 viewer experience report. Technical report, Conviva, 2015.

[13] Nielsen. ”Binging” is the new viewing for over-the-top streamers. Technical
report, Nielsen, 2013.

https://www.iis.net/downloads/microsoft/smooth-streaming
https://tools.ietf.org/html/draft-pantos-http-live-streaming-20
https://tools.ietf.org/html/draft-pantos-http-live-streaming-20
http://www.adobe.com/products/hds-dynamic-streaming.html
http://www.adobe.com/products/hds-dynamic-streaming.html
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
https://media.netflix.com/en/company-blog/how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-experience
http://www.cellular-news.com/story/46986.php
http://www.cellular-news.com/story/46986.php

INTRODUCTION 17

[14] Conviva. Binge watching: the new currency of video economics. Technical
report, Conviva, 2015.

2
Design and Optimization of a

(FA)Q-Learning-based HTTP Adaptive
Streaming Client

M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck and
F. De Turck.

Published in Connection Science, March 2014.

? ? ?

This chapter focuses on the problem that current HTTP Adaptive Stream-
ing (HAS) rate adaptation heuristics are hardwired to fit specific network config-
uration. Therefore, they are less flexible to fit a vast range of network conditions.
To tackle this problem, a (Frequency Adjusted)Q-Learning HAS client is proposed.
In contrast to existing heuristics, the proposed HAS client dynamically learns the
optimal behavior corresponding to the current network environment in order to
optimize the Quality of Experience (QoE). Furthermore, the client has been op-
timized both in terms of global performance and convergence speed. Thorough
evaluations show that the proposed client can outperform deterministic algorithms
by 11% to 18% in terms of Mean Opinion Score (MOS) in a wide range of network
configurations.

20 CHAPTER 2

2.1 Introduction

Over the past decades, multimedia services have gained a lot of popularity. This
growth is largely due to video streaming services. These services can gener-
ally be divided into Internet Protocol television (IPTV), offered by a network
provider and managed through resource reservation, and Over-The-Top (OTT) ser-
vices, streamed over a network provider’s network without his intervention (e.g.
YouTube1 and Netflix2). HTTP Adaptive Streaming (HAS) techniques are becom-
ing the de-facto standard for OTT video streaming. Large industrial players such
as Microsoft, Apple and Adobe have commercial implementations of the HAS
concept available. These HTTP-based techniques split video content into small
segments of typically 2s to 10s, encoded at multiple quality levels. This approach
allows video clients to dynamically adapt the requested video quality to fit the per-
ceived network state. Based on the perceived characteristics, such as delay and
throughput, a quality selection heuristic is used at the client side to determine the
quality level to request for the next segment, in order to maximize the Quality of
Experience (QoE).

HAS comes with important advantages. Not only is the video content delivered
reliably over HTTP, HAS also allows seamless interaction through firewalls. On
the downside, delivery over the best-effort Internet makes these techniques prone
to network congestion and large bandwidth fluctuations due to cross traffic, which
can be detrimental for the QoE, the quality as perceived by the end-users. HAS
client behavior is therefore a crucial factor for the streaming service to be beneficial
and to ensure a sufficient level of QoE for the end-user.

Current HAS client heuristics are however hard-coded to fit specific network
configurations. This makes current approaches less flexible to deal with a vast
range of network setups and corresponding bandwidth variations. Even though
they are well suited for a specific network configuration, these deterministic ap-
proaches yield unsatisfactory results when the environment changes. This chapter
proposes a Reinforcement Learning (RL) based HAS client, allowing dynamic ad-
justment of streaming behavior to the perceived network state. RL is a machine
learning technique, designed to operate in situations in which an agent only has
limited knowledge about the environment, leading to a high degree of uncertainty
concerning how the environment will react to the performed actions. However,
interaction with the environment is the only way for the agent to learn. At each
state in the environment, the agent perceives a numerical reward, providing feed-
back to the agent’s actions. The agent’s goal is to learn which action to take in
a given state of the environment, in order to maximize the cumulative numerical
reward [1]. Mapping this RL principle to the HAS scenario, the agent learns which

1http://www.youtube.com
2http://www.netflix.com

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 21

quality level to request in the perceived network state.
The contributions of this chapter are three-fold. First, a Q-Learning-based

HAS client has been designed. This approach, in contrast to traditional heuristics,
allows the client to dynamically learn the best actions corresponding to the actual
network environment. Second, a Frequency Adjusted Q-Learning (FAQ-Learning)
approach is proposed to increase the client performance in strongly variable envi-
ronments. Third, an estimation algorithm is presented to incorporate HAS domain
knowledge into the initial Q-Tables in order to boost the client performance dur-
ing the learning phase. All of the presented approaches are thoroughly evaluated
using a network-based video streaming simulation framework. The simulation re-
sults allow comparison with the Microsoft ISS Smooth Streaming algorithm, of
which the original source code is available.

The remainder of this chapter is structured as follows. First, the basic HAS
principle is discussed in Section 2.2. Next, Section 2.3 gives an overview of related
work, both on HAS and RL. Section 2.4 elaborates on the design of the proposed
self-learning HAS client. Next to a general overview, this section presents the ap-
plied RL techniques, exploration policies and the constructed environmental state
and reward function. Furthermore, in Section 2.5, the initial Q-Table estimation
algorithm is proposed. The evaluations of the presented self-learning HAS client
are described in Section 2.6. Finally, Section 2.7 presents some final conclusions.

2.2 HTTP Adaptive Streaming

HAS is the third generation of HTTP based streaming and is increasingly being
used in OTT video delivery. Several large industrial players have commercial
implementations of the HAS concept, including Microsoft ISS Smooth Stream-
ing (MSS)3, HTTP Live Streaming (HLS) by Apple4 and Adobe’s HTTP Dynamic
Streaming5. In 2011, MPEG established the common ground between the vast
amount of commercial implementations by standardizing the interfaces and pro-
tocol data in Dynamic Adaptive Streaming over HTTP (DASH) [2]. The bit rate
adaptation heuristics are, however, not standardized, and thus implementation spe-
cific.

Regardless of heuristic details, all of these implementations follow the general
HAS concept, shown in Figure 2.1. In HAS, a video consists of multiple segments
with a typical length of 2s to 10s, encoded at multiple quality levels. At the client
side, a manifest file, containing information about the segments and quality levels,
is used to link the different segments into a single video stream. Based on the
information in the manifest file, the HAS client sequentially requests the next seg-

3http://www.iis.net/downloads/microsoft/smooth-streaming
4http://tools.ietf.org/html/draft-pantos-http-live-streaming-10
5http://www.adobe.com/products/hds-dynamic-streaming.html

22 CHAPTER 2

Figure 2.1: Schematic overview of the HAS concept.

ment upon arrival of the previous segment. Based on the network state, perceived
while downloading previous segments, a quality selection heuristic dynamically
adapts the requested quality level in order to optimize the QoE. Each segment is
downloaded in a progressive manner, while a buffer at the client side is used to take
care of temporary anomalies such as a late arrival of a video segment. Finally, the
video segments, stored in the buffer, are played back as a single continuous video
stream. Current quality adaptation algorithms for HAS are deterministic and tai-
lored to specific network configurations, hampering the ability to react to a vast
range of highly dynamic network settings. On the contrary, this chapter proposes
a self-learning HAS client to autonomously react to changing network conditions,
as will be discussed in Section 2.4.

2.3 Related work

2.3.1 HAS client algorithms

As described in Section 2.2, multiple proprietary HAS algorithms are available.
Akhshabi et al. compare several commercial and open source HAS clients and
identify their inefficiencies, such as excessive quality switching. Recently, several
new client approaches have been described in literature [3]. Liu et al. propose a
client heuristic to handle parallel HTTP connections, based on the segment down-
load time [4]. By comparing the perceived segment download time with the ex-
pected segment download time, bandwidth fluctuations can be estimated appropri-
ately. The opportunities of HAS in the domain of live streaming services are inves-
tigated by Lohmar et al. [5]. The work focuses on the influence of client buffering
on the end-to-end delay. Many recent research topics focus on the applicability of
HAS in mobile environments by exploiting additional information. The heuristic
described by Riiser et al. uses Global Positioning System (GPS) information to
obtain more accurate information on the available bandwidth [6]. Furthermore,

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 23

Adzic et al. have proposed content-aware heuristics [7]. These approaches require
meta-data to be embedded in the video description. The additional consequences
of quality selection in mobile environments have been shown by Trestian et al. [8].
The research shows that lowering the requested quality can significantly reduce
energy consumption of Android devices. Jarnikov et al. discuss several guidelines
on configuring robust HAS clients with regard to changing network conditions [9].
The authors model the quality selection problem as a Markov Decision Process
(MDP) which is solved offline. The performance is only guaranteed when the re-
sulting strategy is applied in the same network environment as was modeled in
the MDP. The same rationale holds for the dynamic programming approach, pro-
posed by Xiang et al., where the bandwidth transition probabilities are needed to
calculate the client policy offline [10].

In contrast to the above described approaches, we focus on an increased adap-
tivity and self-learning behavior of the client heuristic through the design of a
RL-based client approach. An initial approach to the application of a self-learning
agent for HAS has been presented in previous work [11]. Even though the pre-
sented approach showed promising results, further experiments have shown that
the performance in a variable networking environment was unsatisfactory. There-
fore, the client has been thoroughly redesigned from the ground by reducing the
environmental state space and reward definition. Furthermore, this chapter presents
several techniques to further boost the performance and multiple network config-
urations have been evaluated. The use of a RL agent in HAS clients has also
been proposed by Menkovski et al., applying the SARSA(λ) technique [12]. Even
though convergence of the learning agent is shown, a general evaluation of the
client is infeasible since no comparison to existing approaches is provided.

2.3.2 Learning in adaptive streaming

Even though learning has not been applied frequently in the area of HAS, mul-
tiple RL-based adaptive streaming techniques have been proposed in the litera-
ture. Where our self-learning HAS approach is focused on the client side, existing
RL-based adaptive streaming techniques target server or network side solutions
to Quality of Service (QoS) provisioning for adaptive streaming systems. Fei et
al. formulate call admission control and bandwidth adaptation for adaptive multi-
media delivery in mobile communication networks as a Markov Decision Problem
(MDP), which they solve using Q-Learning [13]. RL is applied by Charvillat et al.
to create a dynamic adaptation agent, considering both user behavior and context
information. Furthermore, this generic approach is applied to solve a ubiquitous
streaming problem [14]. Artificial neural networks are used by McClary et al. to
dynamically adapt the audio transmission rate in mobile ad-hoc networks, consid-
ering available throughput, end-to-end delay and jitter [15].

24 CHAPTER 2

2.3.3 Learning in QoS/QoE optimization

Reinforcement Learning (RL) has previously been successfully applied to vari-
ous network management problems. Cao proposes an agent-based network fault
diagnosis model in which the agent uses RL to improve its fault diagnosis perfor-
mance [16]. Their research shows this approach can outperform traditional fault
diagnosis models. Bagnasco et al. propose the application of RL to dynami-
cally adapt a hierarchical policy model to perform autonomous network manage-
ment [17]. They argue that an autonomic system must have a degree of flexibility
to adapt to changes in goals or resources, which is hard to achieve by means of
static policies. In the area of resource allocation, successful applications of RL
can be found. Vengerov presents a general framework for adaptive reconfigura-
tion of distributed systems using a combination of RL and fuzzy rule-bases [18].
Dynamic resource allocation of entities sharing a set of resources is used as an ex-
ample. On the other hand, Tesauro et al. propose a hybrid approach, gaining per-
formance in the combination of RL and deterministic queuing models for resource
allocation [19]. In this hybrid system, RL is used to train offline on collected
data, hereby avoiding possible performance loss during the online training phase.
Furthermore, multiple approaches have been proposed, focusing on the resource
allocation aspect in wireless mesh networks [20, 21]. Another area of network
management where RL has been applied previously is QoS routing. Especially
in wireless sensor networks, the network topology may change frequently, yield-
ing inherently imprecise state information, which impedes QoS routing. Ouferhat
et al. propose a Q-Learning based formalism to optimize QoS scheduling [22].
Parakh et al. propose a decentralized bandwidth allocation for video streams in
wireless systems, based on game theory [23]. In this system, users are charged for
bandwidth resources proportionally to the requested bit-rate. Mastronarde et al.
apply RL to the problem of energy-efficient point-to-point transmission of delay-
sensitive (multimedia)data over a wireless communication channel [24].

2.4 Reinforcement learning-based HAS client

2.4.1 Approach

As discussed in Section 2.2, current deterministic HAS clients only have limited
abilities to react to a vast range of dynamic network settings. We propose the usage
of a learning agent to enable the HAS client to adapt its behavior by interacting
with the network environment. In this way, the client will be able to react to
network conditions that were not under consideration when designing the typical
deterministic quality selection algorithms.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 25

2.4.2 Q-Learning

A commonly used RL algorithm is Q-Learning [25]. Using Q-Learning, knowl-
edge regarding both reward prospects and environmental state transitions are ob-
tained through interaction with the environment. In Q-Learning, Q-values Q(s, a)

are used to measure the “Quality” of taking a specific action a in a certain state
s, based on the perceived rewards. By applying eligibility traces [25], current
rewards are not only credited to taking the last action, but also to actions taken
further in the past. Therefore, additional variables e(s, a) are introduced for every
state-action pair (s, a), indicating the degree to which taking action a in state s is
eligible for undergoing learning changes when a new reward is perceived.

Equations (2.1) and (2.2) respectively show how the eligibility traces and the
Q-values are updated when action a is taken in state s, yielding a reward r and
new state s′. In these equations, (s, a) is the state-action pair and α ∈ [0; 1] and
γ ∈ [0; 1] are the learning rate and the discount factor respectively. The parameter
λ is referred to as the trace-decay parameter. Ixy denotes an identity indicator
function, equal to 1 if x = y and 0 otherwise.

e(x, y) = Ixs · Iya +

{
λγe(x, y) : Q(s, a) = maxbQ(s, b)

0 : else
(2.1)

Q(s, a) = Q(s, a) + αe(s, a)

[
r + γmax

b
Q(s′, b)−Q(s, a)

]
(2.2)

The action to be performed in a specific state is selected based on the learned Q-
values. The specific selection tactic depends on the used policy (see Section 2.4.4).

2.4.3 Frequency Adjusted Q-Learning
One problem that occurred using Q-Learning in preliminary simulations is the
slow reaction to changes in the environment. When an action has a significantly
lower Q-value than another action for a specific state, it has very low probability
to be selected. When the environment changes, the new information on the quality
of the action is only obtained very slowly because the action is unlikely to be
selected and the Q-values are only adapted slowly, especially when using a small
learning rate. To address this issue, we investigated a variant of the FAQ-Learning
technique, proposed by Kaisers et al. for multi-agent RL [26]. In the proposed
technique, the Q-values are updated as defined by Equation (2.3) where P (s, a) is
the probability of taking action a in state s.

Q(s, a) = Q(s, a) + min

(
α

P (s, a)
, 1

)
e(s, a)

[
r + γmax

b
Q(s′, b)−Q(s, a)

]
(2.3)

Using this update rule, updates are percolated faster when an action has low se-
lection probability. The cut-off at 1 is needed to avoid overflow of Q-values.

26 CHAPTER 2

2.4.4 Exploration policy

One of the most challenging tasks in RL can be found in balancing between explo-
ration and exploitation [27]. An often used approach to this tradeoff is the ε-greedy
method [28]. Using this method, exploration comes down to random action selec-
tion and is performed with probability ε. The best action with respect to current
estimates is thus exploited with probability 1− ε. Since the optimal configuration
of the ε-parameter is very application dependent, rigorous tuning is required to
obtain desirable results.

Another commonly used exploration method is Softmax [25]. In contrast to the
ε-greedy method, with Softmax, action-selection is always performed in a proba-
bilistic way. A Boltzmann distribution is used to rank the learned Q-values, based
on which selection probabilities P (s, a) are calculated using Equation (2.4) for
every state-action pair (s, a). The positive parameter β is called the inverse tem-
perature. As with the ε-greedy method, the parameter has to be tuned to balance
the exploration rate for the specific application.

P (s, a) =
eβQ(s,a)∑
b e
βQ(s,b)

(2.4)

Tokic et al. propose the Value-Difference Based Exploration with Softmax action
selection (VDBES) policy [27, 29]. With VDBES, the ε-greedy and the Softmax
policy are combined in a way that exploration is performed, using the Softmax
probabilities defined in Equation (2.4), with probability ε. Greedy action selection
is executed with probability 1 − ε. Furthermore, a state-dependent exploration
probability ε(s) is used instead of defining a global parameter. The ε(s) values are
updated in every learning step, based on the difference in Q-values before and af-
ter that step, denoted as ∆. In this way, the agent is guided to be more explorative
when knowledge about the environment is uncertain, indicated by large fluctu-
ations in Q-values. When the agent’s knowledge becomes certain however, the
amount of exploration should be reduced. This behavior is achieved by updating
the ε(s) values according to Equation (2.5).

ε(s) = δ
1− e

−|∆|
σ

1 + e
−|∆|
σ

+ (1− δ)ε(s) (2.5)

In this equation, the inverse sensitivity σ influences the exploration in a way that
higher values of σ allow high levels of exploration only when the Q-value changes
are large. Lower σ-values allow exploration even at smaller Q-value changes. The
parameter δ ∈ [0; 1] defines the relative weight of the selected action on the state-
dependent exploration probability. A commonly used value for δ is the inverse of
the number of actions since all actions should contribute equally to ε(s).

The proposed HAS client has been evaluated using both the Softmax and the
VDBES exploration policy.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 27

Table 2.1: Proposed environmental state definition.

State element Range Levels
Buffer filling [0 ; Bmax]sec Bmax

Tseg
+ 1

Bandwidth [0 ; BWmax]bps N + 1

2.4.5 State & reward definition

In our initial approach to a self-learning HAS client [11], we proposed an envi-
ronment model with six state variables, yielding over 2.5 million discrete states in
the evaluated scenario. Using this large state definition, convergence issues arose,
making the client inapplicable in situations with variable bandwidth. Based on this
experience, the proposed learning agent uses a state definition, constructed of only
two parameters: the current client buffer filling level and the available bandwidth
perceived by the client. Both elements are continuous values and thus need to be
discretized in order to apply the previously presented RL algorithms. The specific
value ranges and number of discretization levels are shown in Table 2.1. In this
table, Bmax and Tseg respectively denote the maximum client buffer size and the
segment duration in seconds. The number of quality levels and the highest possi-
ble throughput, e.g. the physical link capacity, are represented by N and BWmax

respectively. In the considered scenario with a maximum client buffer size of 20s
and a video stream with segments of 2s, available at 7 quality levels, this yields an
environment model with 88 states.

Since the reward function is the fundamental guide for the RL agent to learn
the desired policy, we want the reward function to be a measure for the QoE. For
the construction of this reward function, three aspects of quality are considered, as
identified by Mok et al. [30]: (i) the current video quality level, (ii) the switching in
quality levels during the video playout and (iii) buffer starvations, leading to video
freezes. The reward components for each of these aspects are constructed as shown
in Equations (2.6), (2.7) and (2.8). For the quality level and switching components,
a linear function is used. The buffer filling component has been modeled using a
linear function for a non-empty buffer as well, but a large punishment of -100 is
given when the buffer is empty to avoid video freezes.

Rquality = QLi −N (2.6)

Rswitches = −1.0 ∗ |QLi −QLi−1| (2.7)

Rbufferfilling =

{
−100 : Bi = 0

Bi −Bmax : Bi > 0
(2.8)

28 CHAPTER 2

As shown in Equation (2.9), the total reward function is defined as the sum of these
components.

R = Rquality + Rswitches + Rbufferfilling (2.9)

2.4.6 Action definition

The agent’s action is to select which quality level to download for every video
segment. As described in Section 2.2, a HAS client selects the quality level for the
next segment upon arrival of the previous segment. The set of available actions
corresponds to the available quality levels of the video sequence and is therefore
static throughout the playout of a video sequence. The concrete number of actions
depends on the video sequence. The quality levels of the video sequence used in
this work are described in Section 2.6.1.

2.5 Initial Q-value estimation

2.5.1 Rationale

When learning starts, the agent has no knowledge about the environment and the
quality of the actions. Therefore, the Q-values Q(s, a) are initialized at a de-
fault value, regularly Q(s, a) = 0. Since the reward function, described in Sec-
tion 2.4.5, produces negative values, unexplored state-action combinations will
always be favored by the exploration policy since they have the highest Q-values.
Using strong negative default values would have the opposite effect, favoring pre-
viously used actions.

For the client to be able to react to new, unseen states in an acceptable way, do-
main knowledge can be incorporated into the initial Q-Tables. However, care has
to be given to the magnitude of the Q-values in order not to fully restrict learning
steps. When the initial Q-values magnitude is too high, the level of exploration
is too limited, hampering the ability to find an acceptable solution. The goal is to
design an initial Q-Table that allows to achieve higher performance when learning
in unseen states, while reaching similar results as with standard Q-Learning in the
converged state.

2.5.2 Estimation algorithm

Algorithm 2.1 estimates the average reward for every state-action pair, to be used
as initial Q-values. The algorithm works as follows. First, for every state-action
pair, the quality and buffer reward component are estimated. Based on the aver-
age bandwidth in the discrete bandwidth level bw and the average segment size
for quality level ql, the estimated download duration expectedDur is calculated.
However, the actual bandwidth, available when downloading the next segment,

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 29

Output: Matrix estimates with estimated Q-values
1: Initialize value estimate matrix estimates
2: for all Discrete buffer filling level buf do
3: for all Discrete bandwidth level bw do
4: . Estimate quality and buffer reward
5: for all Quality level ql do
6: expectedDur ← bitrate[ql]∗segmentDur

averageBW [bw]

7: changeProb← expectedDur
300

8: totReward← 0.0
9: for all Discrete bandwidth level nextBw do

10: transProb←
{

1.0− changeProb : bw = nextBw
changeProb
numBWs−1

: else

11: duration← bitrate[ql]∗segmentDur
averageBW [nextBw]

12: if duration < segmentDur then
13: expectedChange← b segmentDur

duration
c

14: else
15: expectedChange← −1 ∗ d duration

segmentDur
e

16: end if
17: newBuf ← buf + expectedChange
18: reward← (ql−maxQl)+((newBuf ∗segmentDur)−maxBuf)
19: totReward← totReward+ (transProb ∗ reward)
20: end for
21: estimates[buf][bw][ql]← totReward
22: end for
23: . Estimate the average selected quality level
24: avgQl← 0.0
25: for all Quality level ql do
26: prob← probability of taking action ql in the specified state
27: avgQl← avgQl + (prob ∗ ql)
28: end for
29: . Estimate switch reward
30: for all Quality level ql do
31: reward← estimates[buf][bw][ql]
32: switchReward← −1 ∗ |ql − avgQl|
33: estimates[buf][bw][ql]← reward+ switchReward
34: end for
35: end for
36: end for

Algorithm 2.1: Initial Q-value calculation algorithm.

30 CHAPTER 2

could vary. Therefore, we calculate the probability changeProb that the available
bandwidth level will change in the next expectedDur seconds. To calculate this
probability, we make the assumption that the available bandwidth remains stable
for a uniform distributed amount of time between 1s and 300s. With probability
1 − changeProb, the bandwidth level will stay the same, while any other band-
width level has an equal probability changeProb

numBWs−1 to occur. For every bandwidth
level nextBw, the average download duration duration is calculated. Based on
this duration and the segment duration segmentDur, the expected buffer change
and new buffer filling level newBuf can be calculated. Using this information,
the quality and buffer filling reward components when the actual bandwidth is
nextBw are estimated. The influence of this value on the total reward is weighted
by the probability transProb that the available bandwidth level will be nextBw.

The next step in the algorithm is to estimate the average switch reward for every
state-action pair. Therefore, the average quality level, selected in the specified state
is calculated. In this calculation, the probability of taking an action in a certain
state is given by the Softmax action-selection probability, defined in Equation 2.4.
Knowing the average selected quality level avgQl, the average switch depth when
selecting quality level ql can be estimated as |ql − avgQl|. Using this value, the
estimated switch reward and the resulting total reward is calculated.

It is important to note that this algorithm is based on some assumptions and
approximations. For example, a model for the available bandwidth is assumed
when calculating the bandwidth shifting probability and averages are used when
estimating the download duration. Therefore, the resulting values are only initial
estimates and the self-learning client is needed to adapt the behavior to the actual
network environment. The complexity of the algorithm is linear in the number
of discrete buffer filling levels and quality levels, and quadratic in the number of
discrete bandwidth levels. Given the limited state-action space and the fact that the
initial Q-values are only calculated once offline, the execution time is negligible.

2.6 Performance evaluation

2.6.1 Experimental setup

The experiments have been performed using the NS-36 based simulation frame-
work described by Bouten et al. [31]. A network topology, shown in Figure 2.2,
has been modeled, consisting of a single HAS client and server. This topology
corresponds to a typical DSL access network scenario. On the last link on the path
between the server and the client, a bandwidth capacity of 4Mbps is available for
video delivery. At the client side, a maximum of 20s can be buffered.

6http://www.nsnam.org

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 31

50 Mbit/sServer HAS Client4 Mbit/s

HAS traffic
Cross traffic

Figure 2.2: Overview of the simulated topology.

Table 2.2: Quality levels and corresponding bit rates.

Quality level Bit rate
1 300kbps
2 427kbps
3 608kbps
4 866kbps
5 1233kbps
6 1636kbps
7 2436kbps

Since the goal of the self-learning HAS client is to be able to deal with variable
network environments, a highly variable bandwidth trace has been constructed by
simulating cross traffic over a 3Mbps link and measuring the available throughput
at the client side. The generated cross traffic is a sequence of bandwidth bursts,
normally distributed between 0kbps and 2640kbps with a granularity of 264kbps.
Each burst persisted for a uniformly distributed amount of time ranging from 1s to
300s. Using the resulting bandwidth trace not only yields high variability within
an episode, but also across the episodes.

On this topology, the Big Buck Bunny video trace was streamed. A single
episode of the video trace consists of 299 segments, each with a fixed length of 2s.
Each segment has been encoded at 7 different quality levels, with bit rates ranging
from 300kbps to 2436kbps, as shown in Table 2.2. To ensure the learning agent
has time to converge, 400 episodes of the video trace are simulated.

The traditional Microsoft ISS Smooth Streaming (MSS) algorithm7 is used to
compare the behavior of the learning client to current deterministic HAS algo-
rithms. Using MSS, three buffer thresholds should be tuned to configure the client
behavior. For the panic, lower and upper buffer thresholds, the values of 25%,
40% and 80%, empirically determined by Famaey et al. [32], have been used in
our experiments.

7Original source code available from:
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming

https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming

32 CHAPTER 2

To be able to draw meaningful conclusions when comparing the performance
of the different clients, paired t-tests have been performed. Using paired t-tests,
the significance of the difference between two approaches, applied in the same
environment, can be shown. Furthermore, the comparison graphs in Section 2.6.3
contain error bars, visualizing the standard deviation of the plotted averages.

2.6.2 Evaluation metrics

The reward function, described in Section 2.4.5, has been constructed to be a mea-
sure of the quality of a decision on a single segment quality level. To evaluate the
different approaches however, a measure of the total video playout quality has to
be used. The QoE can only be estimated, either by subjective evaluation by a test
panel or using an objective model of the users’ perception. QoE of HAS video is
still an active research topic and only a limited number of objective metrics are
available. De Vriendt et al. define the QoE of HAS video to be dependent on the
average segment quality and the standard deviation of the segment quality [33].
The parameters of the proposed quality level model were tuned based on the re-
sults of a small subjective test.

Next to the average quality level and the switching behavior, video freezes
are also considered to heavily impact the QoE of video delivery. However, video
freezes are not considered in the model proposed by De Vriendt et al. [33]. The
influence of video freezes depends both on the number and the average length of
freezes [30]. The calculation, proposed by Mok et al., uses only three discrete
levels of freeze frequency and length [30]. Based on an interpolation of these
levels, a continuous function has been constructed to measure the impact of video
freezes on QoE. The resulting function is shown in Equation (2.10), where Ffreq
and FTavg represent the freeze frequency and the average freeze time respectively.
Given that this function evaluates to 0 when no freezing occurs, the Mean Opinion
Score (MOS) calculation proposed by De Vriendt et al. remains valid in a scenario
without freezes [33].

φ =
7

8
∗max

(
ln(Ffreq)

6
+ 1, 0

)
+

1

8
∗
(

min(FTavg, 15)

15

)
(2.10)

Combining the quality level, switching and video freezing aspects, the estimated
MOS for the playout of a HAS video, consisting of K segments, playing quality
level QLk for segment k, can be calculated using Equation (2.11). In this equa-
tion, the average played quality level and its standard deviation are respectively

represented by µ =
∑K
k=1 QLk
K and σ =

√∑K
k=1 (QLk−µ)2

K . One can verify that
the theoretical range of this metric in a scenario with seven quality levels [1; 7] is
[0.00; 5.84]. During the simulations however, a practical metric range [0.00; 5.06]

was observed, which corresponds to the typical levels of a MOS.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 33

Table 2.3: Overview of evaluated parameter configurations.

Parameter Evaluated values
α Learning rate 0.1 , 0.3 , 0.5 , 0.7 , 0.9
γ Discount factor 0.1 , 0.3 , 0.5 , 0.7 , 0.9
λ Eligibility trace-decay 0.1 , 0.5 , 0.6 , 0.7 , 0.9
β Softmax inverse temperature 0.1 , 0.5 , 1.0 , 5.0

MOSest = max (0.81 ∗ µ− 0.96 ∗ σ − 4.95 ∗ φ+ 0.17, 0) (2.11)

2.6.3 Results discussion
2.6.3.1 Parameter analysis

As described in Section 2.4, both the Q-Learning algorithm and the exploration
policies contain multiple parameters that can be tuned to optimize the behavior.
Given the continuous nature of the parameters and the mutual influence between
them, it is unfeasible to evaluate all configurations to find the optimum. There-
fore, a subset of 500 configurations has been evaluated for both the Softmax and
the VDBES policy using the Q-Learning algorithm with default initial Q-values.
Based on preliminary experiments, the VDBES inverse sensitivity parameter has
been fixed to σ = 1.0. Using these configurations, the influence of every parame-
ter can be analyzed and an acceptable configuration can be selected. An overview
of the evaluated parameter values can be found in Table 2.3. For the learning rate
and discount factor, an evenly spaced selection of the value range was taken. The
evaluated values for the eligibility trace-decay were centered around 0.6, empiri-
cally found to be a good performing configuration. For the selection of Softmax
inverse temperature values, preliminary experiments have shown that the influence
of the parameter fades out for values above 1.0.

To consider the converged state, for every configuration, the MOS has been
calculated over the last 50 of 400 episodes. For each parameter, the average MOS
of the best 5 configurations for every evaluated value of that parameter has been
calculated. The results are shown in Figure 2.3. It is clear that each of the pa-
rameters has similar influence for both exploration policies. While a clear trend
is shown for the learning rate, discount factor and Softmax inverse temperature,
the system is rather insensitive to the eligibility trace-decay value. This behavior
can be explained by the strong preference of the system to low discount factors,
strongly accelerating the decay, as defined by Equation (2.1). Since the VDBES
approach only applies the Softmax formula when exploring, the VDBES approach
is less sensitive to the value of the Softmax inverse temperature β. Finally, a wide
range of parameters is shown to outperform the deterministic MSS algorithm.

34 CHAPTER 2

0.0 0.2 0.4 0.6 0.8 1.0
Learning rate α

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 M

O
S

Softmax
VDBE-Softmax
MSS

(a) Learning rate α

0.0 0.2 0.4 0.6 0.8 1.0
Discount factor γ

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 M

O
S

Softmax
VDBE-Softmax
MSS

(b) Discount factor γ

0.0 0.2 0.4 0.6 0.8 1.0
Eligibility trace-decay λ

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 M

O
S

Softmax
VDBE-Softmax
MSS

(c) Eligibility trace-decay λ

0 1 2 3 4 5
Softmax inverse temperature

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 M

O
S

Softmax
VDBE-Softmax
MSS

(d) Softmax inverse temperature β

Figure 2.3: Analysis of parameter influence.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 35

0 50 100 150 200 250 300 350 400 450
Episode number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

RL Client
MSS Client
RL Client Q-value change

20

40

60

80

100

120

140

160

Q
-v

a
lu

e
 c

h
a
n
g
e

Figure 2.4: Convergence of the self-learning client performance, relative to the traditional
MSS client.

Based on the analysis, the best configuration is determined to be α = 0.1,
γ = 0.1, λ = 0.6 and β = 5.0 using the Softmax exploration policy. Figure 2.4
shows the relative performance of the self-learning HAS client using this configu-
ration compared to the traditional MSS client on the left axis. A moving average of
the metric values of the last 50 episodes is presented in order to observe the general
trend over the variable bandwidth episodes. The figure shows that after about 100
learning episodes, the client is able to achieve the same level of performance as
the MSS client. The increasing trend stabilizes after about 200 episodes. The con-
vergence of the learning agent can also be seen in the flattening out of the Q-value
changes, plotted on the right axis. In the converged state, the self-learning HAS
client is able to outperform the traditional MSS client with on average 10.31% in
terms of average MOS in the last 50 episodes in a highly dynamic bandwidth en-
vironment. The performance increase is statistically significant with significance
level 0.05 (two-tail paired t-test: t = 8.5425, tc = 2.0096). With respect to the
individual MOS factors, the MSS client is outperformed by 0.85%, 19.54% and
11.76% in terms of average quality level, average quality standard deviation and
total freeze time respectively.

2.6.3.2 Frequency Adjusted Q-Learning

In Section 2.4.3, we argued that FAQ-Learning could possibly increase the per-
formance of standard Q-Learning in strongly variable environments. To allow fair
comparison between the performance of the FAQ-Learning and the standard Q-
Learning client, both techniques have been applied in a highly dynamic bandwidth
environment, using the parameter configuration selected in the previous section.

36 CHAPTER 2

0 50 100 150 200 250 300 350 400 450
Episode number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

Q-Learning
FAQ-Learning
MSS

Figure 2.5: Relative performance of the FAQ-Learning and default Q-Learning approach
compared to the traditional MSS client.

Table 2.4: Performance comparison of the MSS, Q-Learning and FAQ-Learning client in
terms of MOS and freeze time.

Client Average
σMOS

MOS Total Freeze
MOS Change∗ Freeze Change∗

MSS 2.94986 0.65923 – 13.975s –
Q-Learning 3.25403 0.63482 +10.31% 12.332s -11.75%

FAQ-Learning 3.35369 0.59948 +13.69% 4.667s -66.60%
∗Compared to the traditional MSS client.

In these simulations, again default initial Q-values have been used.
Figure 2.5 shows the relative performance of both clients compared to the tra-

ditional MSS client. The proposed FAQ-Learning approach clearly outperforms
default Q-Learning, both in terms of convergence speed and absolute values. The
performance increase is largely due to the smaller amount of freeze time. In Ta-
ble 2.4, the performance of the FAQ-Learning client in the last 50 episodes is com-
pared to the standard Q-Learning and MSS client in terms of average MOS and
total freeze time. Using the proposed FAQ-Learning technique, the self-learning
HAS client is able to outperform the traditional MSS client by 13.69% in terms
of average MOS. This performance increase is statistically significant with sig-
nificance level 0.05 (two-tail paired t-test: t = 11.7688, tc = 2.0096). For the
average quality level, average quality standard deviation and total freeze time, the
achieved gain amounts 0.23%, 26.41% and 66.60% respectively.

Compared to the approach using standard Q-Learning, a statistically significant
(two-tail paired t-test: t = 3.6382, tc = 2.0096) average MOS increase of 3.06%

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 37

0 50 100 150 200 250 300 350 400 450
Episode number

14

12

10

8

6
A

v
e
ra

g
e
 r

e
w

a
rd

MSS
Q-Learning
FAQ-Learning

Figure 2.6: Reward performance of the FAQ-Learning and default Q-Learning approach
compared to the traditional MSS client.

is obtained when applying FAQ-Learning. Despite of the performance gain in
terms of QoE, the learning behavior in terms of reward values is inferior to the
approach using standard Q-Learning. As shown in Figure 2.6, lower reward values
are obtained when applying FAQ-Learning, compared to the default Q-Learning
approach. The explanation for these conflicting results can be found by analyzing
the resulting quality selection behavior of the three clients.

The quality selection behavior of the MSS, Q-Learning and FAQ-Learning
clients in episode 375 is illustrated in Figure 2.7. The resulting average reward
component values for this episode are shown in Table 2.5. Both Figure 2.7 and
Table 2.5 show that even though the MSS client is able to reach higher quality
levels at some points, the Q-Learning client achieves overall higher average qual-
ity, lower standard deviation of quality level and higher average buffer filling. The
Q-Learning client thus results in more stable behavior. Moreover, it can be seen
that using the FAQ-Learning client further increases the average quality level and
decreases the quality level standard deviation. However, this comes at the cost
of a lower buffer filling level, resulting in an overall lower reward value. Since
buffer filling level is not directly influencing the QoE, the resulting MOS is not af-
fected as long as the buffer is not fully depleted. As previously shown in Table 2.4,
the lower buffer filling level does not introduce additional freezing time. Since the
MOS is the aspect we aim to optimize in this use-case, the FAQ-Learning approach
is preferred over the Q-Learning approach, despite of the lower average reward.

38 CHAPTER 2

0 100 200 300 400 500 600
Time [s]

0

500

1000

1500

2000

2500

3000

B
it

ra
te

 [
kb

p
s]

Available bandwidth
Selected quality

(a) Microsoft ISS Smooth Streaming

0 100 200 300 400 500 600
Time [s]

0

500

1000

1500

2000

2500

3000

B
it

ra
te

 [
kb

p
s]

Available bandwidth
Selected quality

(b) Q-Learning

0 100 200 300 400 500 600
Time [s]

0

500

1000

1500

2000

2500

3000

B
it

ra
te

 [
kb

p
s]

Available bandwidth
Selected quality

(c) FAQ-Learning

Figure 2.7: Behavior comparison of the MSS, Q-Learning and FAQ-Learning HAS clients
in episode 375 of the variable bandwidth scenario.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 39

Table 2.5: Reward components of the MSS, Q-Learning and FAQ-Learning clients in
episode 375 of the variable bandwidth scenario.

Client Reward component
Quality Switches Buffer filling Total

MSS -1.826 -0.365 -5.438 -7.629
Q-Learning -1.632 -0.318 -4.294 -6.244

FAQ-Learning -1.512 -0.278 -6.916 -7.950

2.6.3.3 Initial Q-value estimation

In Section 2.5, we proposed an algorithm to incorporate HAS domain knowledge
into the initial Q-Table. Using this Q-Table, we target to drastically improve the
client performance in the learning phase while maintaining a similar performance
level as with default Q-Tables in the converged state. The use of pre-calculated
Q-Tables has been evaluated on four bandwidth traces with different levels of vari-
ability, using the Q-Learning technique.

• Fixed: throughout the entire simulation, a fixed bandwidth level of 2Mbps
is maintained.

• Sinus: the bandwidth level is modeled by a sine function with a period of
600s and a co-domain of [1Mbps;2Mbps].

• Stepfunction: every 20s, the bandwidth level switches between 1Mbps and
2Mbps.

• Variable: the highly variable bandwidth trace, as described in Section 2.6.1.

Figure 2.8 shows the performance of both approaches and the MSS client in
the learning and converged state for each of the four bandwidth configurations. As
in the rest of this chapter, we refer to the converged state as the last 50 episodes
of the simulation of 400 episodes. The learning phase is defined as the first 50
episodes. In each of the bandwidth configurations, the self-learning client is shown
to benefit from using the calculated Q-Tables in the learning phase. The statistical
significance of the average MOS changes is presented in Table 2.6. The slight per-
formance decrease in the converged state is caused by the reduced learning pos-
sibilities, introduced by the domain knowledge. However, the converged results
are comparable to the performance when using default Q-Tables. Furthermore, the
figure shows that the self-learning client, once converged, is able to outperform the
deterministic MSS client on average by 11.18% (for the variable bandwidth con-
figuration) to 18.89% (for the sinus bandwidth configuration) in terms of average
MOS, depending on the bandwidth configuration. For the variable network con-
figuration, the average quality level, average quality standard deviation and total
freeze time have gained 1.52%, 20.38% and 5.45% respectively.

40 CHAPTER 2

 0

 1

 2

 3

 4

 5

Fixed Sinus Stepfunction Variable

A
v
e
ra

g
e
 M

O
S

Bandwidth configuration

Learning Converged
MSS

Calculated Q-Table
Default Q-Table

Figure 2.8: Performance comparison of the traditional MSS client and the self-learning
client using default and calculated initial Q-Tables in the learning and converged
phase.

Table 2.6: Statistical significance of average MOS differences using calculated initial Q-
Tables. Significance results are obtained by two-tail paired t-testing with signifi-
cance level 0.05.

Bandwidth Phase Default Calculated T-test Stat.
Configuration Q-Table Q-Table Result Sign.∗

Fixed Learninga 4.21272 4.21582 0.1362
Conv.b 4.69312 4.64692 83.4822 3

Sinus Learninga 3.00777 3.2242 2.8279 3

Conv.b 3.76258 3.68460 7.6924 3

Stepfunction Learninga 3.23553 3.42564 2.8127 3

Conv.b 4.06532 4.00774 6.3059 3

Variable Learninga 2.20202 2.66074 4.7204 3

Conv.b 3.25403 3.27974 0.9528
∗Critical t-value: tc = 2.0096.

aFirst 50 of 400 episodes.
bLast 50 of 400 episodes.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 41

Table 2.7: Performance comparison of the Q-Learning-based client using default and cal-
culated initial Q-Tables in terms of average MOS and total freeze time for the
variable bandwidth configuration.

Phase Initial Avg.
σMOS

MOS Total Freeze
Q-Table MOS Change∗ Freeze Change∗

Learn.a Default 2.20202 1.30955 – 526.075s –
Calc. 2.66074 1.15649 +20.83% 252.460s -52.01%

Conv.b
Default 3.25403 0.63482 – 12.332s –
Calc. 3.27974 0.65199 +0.79% 13.214s +7.15%
∗Compared to the client using default Q-Tables.

aFirst 50 of 400 episodes.
bLast 50 of 400 episodes.

Besides from increasing the performance in terms of average MOS, compared
to default initial Q-Tables, incorporating domain-knowledge in the initial Q-Tables
strongly decreases the total freeze time in the learning phase. A comparison in
terms of both MOS and total freeze time is given in Table 2.7 for the variable band-
width configuration. The table shows that using pre-calculated initial Q-Tables
compared to default values strongly boosts the client performance in the learning
phase while reaching a similar performance level when converged. Even though
an additional freeze time of about 900ms is introduced in the converged state, the
overall MOS, incorporating the freezes, is not affected. The increased freeze time
is compensated by higher average quality level and lower quality standard devia-
tion.

2.6.3.4 Results summary

Table 2.8 summarizes the results of the self-learning client approaches, compared
to the traditional Microsoft ISS Smooth Streaming (MSS) client, in terms of both
the average MOS and the individual quality components. It is shown that a Q-
Learning based HAS client outperforms the deterministic MSS client for each of
the quality aspects. Using the proposed Frequency Adjusted Q-Learning (FAQ-
Learning) technique, further improvement is obtained. Furthermore, the use of
pre-calculated initial Q-Tables strongly boosts the performance in the learning
phase and reaches similar results as with default Q-Tables in the converged state.

2.7 Conclusions

In this chapter, we designed a Reinforcement Learning (RL)-based HTTP Adap-
tive Streaming (HAS) client, dynamically adjusting its behavior to the perceived
networking environment. We presented an extended parameter analysis to fine-

42 CHAPTER 2

Table 2.8: Performance summary of the self-learning approaches in the variable bandwidth
configuration, compared to the traditional MSS client, in terms of the quality
components.

Technique Initial MOS Quality Switching Freeze
Q-Table Change∗ Change∗ Change∗ Change∗

Q-Learning Default +10.31% +0.85% -19.54% -11.76%
FAQ-Learning Default +13.69% +0.23% -26.41% -66.60%

Q-Learning Calc. +11.18% +1.52% -20.38% -5.45%
∗Compared to the traditional MSS client.

tune the client configuration to operate in a dynamic network environment. Next,
we proposed using a Frequency Adjusted Q-Learning (FAQ-Learning) approach to
strongly increase the client performance in variable environments. Furthermore,
we presented an estimation algorithm to incorporate domain knowledge into the
initial Q-Tables. Using these estimations, we were able to drastically improve the
clients performance during its learning phase, both in terms of average Mean Opin-
ion Score (MOS) and total freeze time. The resulting self-learning HAS client is
shown to outperform the deterministic traditional Microsoft ISS Smooth Stream-
ing (MSS) client in terms of average MOS by 11% to 18% in all of the evaluated
bandwidth scenarios with different degrees over variability, while increasing the
performance for each of the identified MOS components.

Acknowledgment
M. Claeys is funded by grant of the Agency for Innovation by Science and Tech-
nology in Flanders (IWT). The research was performed partially within the ICON
MISTRAL project (under grant agreement no. 10838). This work was partly
funded by Flamingo, a Network of Excellence project (318488) supported by the
European Commission under its Seventh Framework Programme. The Alcatel-
Lucent research was performed partially within IWT project 110112.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 43

References

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence, 4(1):237–285, 1996.

[2] T. Stockhammer. Dynamic adaptive streaming over HTTP: Standards and
design principles. In Proceedings of the ACM International Conference on
Multimedia Systems, pages 133–144, 2011.

[3] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental evaluation of rate-
adaptation algorithms in adaptive atreaming over HTTP. In Proceedings of
the ACM International Conference on Multimedia Systems, pages 157–168,
2011.

[4] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel adaptive HTTP media stream-
ing. In Proceedings of International Conference on Computer Communica-
tions and Networks (ICCCN), pages 1–6, 2011. doi:910.

[5] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann. Dynamic
adaptive HTTP streaming of live content. In Proceedings of the IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Net-
works, pages 1–8, 2011.

[6] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Bitrate and video
quality planning for mobile streaming scenarios using a GPS-based band-
width lookup service. In Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME), pages 1–6, 2011.

[7] V. Adzic, H. Kalva, and B. Furht. Optimized adaptive HTTP streaming for
mobile devices. Applications of Digital Image Processing, 8135(1):1–10,
2011.

[8] R. Trestian, A.-N. Moldovan, O. Ormond, and G.-M. Muntean. Energy con-
sumption analysis of video streaming to Android mobile devices. In Pro-
ceedings of the IEEE Network Operations and Management Symposium
(NOMS), pages 444–452, 2012.

[9] D. Jarnikov and T. Özçelebi. Client intelligence for adaptive streaming so-
lutions. In Proceedings of the IEEE International Conference on Multimedia
and Expo (ICME), pages 378–389, 2011.

[10] S. Xiang, L. Cai, and J. Pan. Adaptive scalable video streaming in wireless
networks. In Proceedings of the ACM International Conference on Multime-
dia Systems, pages 167–172, 2012.

44 CHAPTER 2

[11] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck.
Design of a Q-learning-based client quality selection algorithm for HTTP
adaptive video streaming. In Proceedings of the Workshop on Adaptive and
Learning Agents, pages 30–37, 2013.

[12] V. Menkovski and A. Liotta. Intelligent control for adaptive video streaming.
In Proceedings of the IEEE International Conference on Consumer Electron-
ics (ICCE), pages 127–128, 2013.

[13] Y. Fei, V. W. S. Wong, and V. C. M. Leung. Efficient QoS provisioning
for adaptive multimedia in mobile communication networks by reinforcement
learning. Mobile Networks and Applications, 11(1):101–110, 2005.

[14] V. Charvillat and R. Grigora. Reinforcement learning for dynamic multime-
dia adaptation. Journal of Network and Computer Applications (JNCA),
30(3):1034–1058, 2007.

[15] D. W. McClary, V. R. Syrotiuk, and V. Lecuire. Adaptive audio streaming in
mobile ad hoc networks using neural networks. Ad Hoc Networks, 6(4):524–
538, 2008.

[16] J. Cao. Using reinforcement learning for agent-based network fault diagnosis
system. In Proceedings of the IEEE International Conference on Information
and Automation (ICIA), pages 750–754, 2011.

[17] R. Bagnasco and J. Serrat. Multi-agent reinforcement learning in net-
work management. In Proceedings of the International Conference on Au-
tonomous Infrastructure, Management and Security (AIMS), pages 199–202,
2009.

[18] D. Vengerov. A reinforcement learning approach to dynamic resource allo-
cation. Technical report, Sun Microsystems, 2005.

[19] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. On the use of hybrid re-
inforcement learning for autonomic resource allocation. Cluster Computing,
10(1):287–299, 2007.

[20] M. Lee, D. Marconett, X. Ye, and S. J. B. Yoo. Cognitive network manage-
ment with reinforcement learning for wireless mesh networks. IP Operations
and Management, 4786(1):168–179, 2007.

[21] D. Niyato and E. Hossain. A radio resource management framework for
IEEE 802.16-based OFDM/TDD wireless mesh networks. In Proceedings of
the IEEE International Conference on Communications (ICC), pages 3911–
3916, 2006.

(FA)Q-LEARNING-BASED HTTP ADAPTIVE STREAMING CLIENT 45

[22] N. Ouferhat and A. Mellouk. A QoS scheduler packets for wireless sensor
networks. In Proceedings of the IEEE International Conference on Computer
Systems and Applications, pages 211–216, 2007.

[23] S. Parakh and A. Jagannatham. Game theory based dynamic bit-rate adap-
tation for H.264 scalable video transmission in 4G wireless systems. In Pro-
ceedings of the International Conference on Signal Processing and Commu-
nications, pages 1–5, 2012.

[24] N. Mastronarde and M. Van Der Schaar. Fast reinforcement learning for
energy-efficient wireless communication. IEEE Transactions on Signal Pro-
cessing, 59(12):6262–6266, 2011.

[25] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
Reinforcement Learning: An Introduction, 1998.

[26] M. Kaisers and K. Tuyls. Frequency adjusted multi-agent Q-learning. In Pro-
ceedings of the International Conference on Autonomous Agents and Multi-
agent Systems, pages 309–316, 2010.

[27] M. Tokic and G. Palm. Value-difference based exploration: Adaptive control
between epsilon-greedy and softmax. In Proceedings of the Ger, pages 335–
346, 2011.

[28] C. Watkins. Learning from delayed rewards. PhD thesis, University of Cam-
bridge, England, 1989.

[29] M. Tokic. Adaptive ε-greedy exploration in reinforcement learning
based on value differences. In Proceedings of the German Conference on
Advances in Artificial Intelligence, pages 203–210, 2010.

[30] R. Mok, E. Chan, and R. Chang. Measuring the quality of experience of
HTTP video streaming. In Proceedings of the IFIP/IEEE International Sym-
posium on Integrated Network Management (IM), pages 485–492, 2011.

[31] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. De Vleeschauwer, W. Van
Leekwijck, and F. De Turck. QoE optimization through in-network quality
adaptation for HTTP adaptive streaming. In Proceedings of the International
Conference on Network and Service Management (CNSM), pages 336–342,
2012.

[32] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck. On the merits of SVC-based HTTP
adaptive streaming. In Proceedings of the IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), pages 419–426, 2013.

46 CHAPTER 2

[33] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. Model for estimating
QoE of video delivered using HTTP adaptive streaming. In Proceedings of
the IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 1288–1293, 2013.

3
Hybrid Multi-tenant Cache

Management for Virtualized ISP
Networks

M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latré,
G. Pavlou and F. De Turck.

Published in Journal of Network and Computer Applications, June 2016.
? ? ?

While the previous chapter focused on client-side optimization of video deliv-
ery, this chapter proposes in-network optimizations in the scenario where Internet
Service Providers (ISPs) deploy telco-Content Delivery Networks (telco-CDNs)
to reduce the pressure on their network resources. An important trend is virtu-
alization of storage and networking resources, which can open up new business
models by enabling the ISP to simultaneously lease its telco-CDN infrastructure
to multiple third parties. Previous work has shown that multi-tenant proactive re-
source allocation and content placement can significantly reduce the load on the
ISP network. However, the performance of this approach strongly depends on the
prediction accuracy for future content requests. In this chapter, a hybrid cache
management approach is proposed where proactive content placement and tra-
ditional reactive caching strategies are combined. In this way, content placement
and server selection can be optimized across tenants and users, based on predicted
content popularity and the geographical distribution of requests, while simultane-

48 CHAPTER 3

ously providing reactivity to unexpected changes in the request pattern. Based on
a Video-on-Demand (VoD) production request trace, it is shown that the total hit
ratio can be increased by 43% while using 5% less bandwidth compared to the tra-
ditional Least Recently Used (LRU) caching strategy. Furthermore, the proposed
approach requires 39% less migration overhead compared to the proactive place-
ment approach we previously proposed in [1] and achieves a hit ratio increase of
19% and bandwidth usage reduction of 7% in the evaluated VoD scenarios and
topology.

3.1 Introduction

Over the last decade, video streaming services have become the principal con-
sumers of Internet traffic. In 2014, video over Internet Protocol (IP) has been
reported to account for 67% of all IP traffic while this share is predicted to grow
to 80% by 2018 [2]. Furthermore, with the advent of 4K resolution and 3D video,
the quality requirements for these services are becoming more stringent. Today,
the prevalent method to deliver the video to the end-users relies on Content Deliv-
ery Networks (CDNs). In order to meet the growing quality requirements, CDNs
aim at bringing the content closer to the clients to reduce both the latency and the
bandwidth consumption. Currently, a common way for traditional CDNs, such as
Akamai or Netflix, to bring their content to the edge of the network is to physi-
cally place part of their distributed storage infrastructure inside the Internet Service
Provider (ISP) network or to connect it to a nearby Internet exchange point through
manually-negotiated contractual agreements.

However, given that large CDNs control both the placement of the content and
the server selection strategy (i.e., select from which location to satisfy each re-
quest) across their geographically dispersed storage infrastructure with only lim-
ited knowledge about the underlying network, they can put an immense strain on
the resources of ISP networks [3]. This has resulted in increasing operational costs
and decreasing revenues for the ISPs. Therefore, they have started to explore alter-
native business models and service offerings, leading to the deployment of Telco
CDNs. As ISPs have global knowledge about the utilization of their network re-
sources, controlling the storage of content deep inside their network allows them to
reduce the bandwidth demand on their backbone infrastructure while significantly
improving the service quality for the end-users.

Moreover, the advent of cloud computing, Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) technologies have enabled ISPs to
virtualize their telco-Content Delivery Network (telco-CDN) infrastructures. This
allows them to dynamically offer virtual storage and content delivery services at
the edge of the network, redeeming traditional CDN providers from installing ad-
ditional hardware. In previous work, we proposed a proactive cache management

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 49

system for ISP-operated multi-tenant telco-CDNs to optimize the content place-
ment and server selection across tenants and users [1, 4]. The tenants specify the
amount of storage capacity they want to lease, while the management framework
decides on the allocation of the leased capacity across the storage infrastructure,
the content placement and the server selection. Such a scenario allows the tenants
to bring their content closer to the end-user without having to physically deploy
dedicated storage infrastructure inside the ISP network. This reduces the installa-
tion and operational costs for the content provider, while the ISP has better control
over its network resources. All of these decisions are based on the prediction of
content popularity and the geographical distribution of requests, making the per-
formance strongly dependent on the accuracy of the request prediction.

Proactively placing content inside the ISP network has multiple advantages
over reactive cache replacement, for example reduced bandwidth consumption by
performing content migrations during off-peak hours and delivering cache hits on
the first request of popular content. However, given the dynamic nature of content
popularity in a Video-on-Demand (VoD) scenario, the performance of the proac-
tive cache management presented in previous work can significantly fluctuate over
time. To deal with the uncertainties in the future request pattern, this chapter pro-
poses a hybrid cache management system, which combines the benefits of both
proactive and reactive content placement strategies. In the proposed approach, the
total caching space available in the network is divided in such a way that part of
it is reserved to proactively push content in the different caching locations, while
the rest is used to implement reactive caching. As such, content placement and
server selection can be optimized across tenants and users, based on the predicted
content popularity and the geographical distribution of requests, while simulta-
neously providing reactivity to unexpected changes in the request pattern. Fur-
thermore, frequently migrating content to reconfigure the proactive placement can
significantly influence the total bandwidth usage. Therefore, in this chapter, the
migration overhead is taken into account in the placement decisions.

The main contributions of this work are as follows. We redefine the Integer
Linear Program (ILP) model of the multi-tenant content placement and server se-
lection problem proposed in previous work [1, 4] to take into account the overhead
introduced by the frequent content migrations and to reduce the level of detail
required for the request predictions. In contrast to our previous work, which re-
quired predictions of accurate request timestamps, the updated ILP model only
requires predictions of request aggregates. We also investigate the benefits that
can be obtained in terms of performance improvement by augmenting the results
of the content popularity prediction algorithm with exogenous information about
the future request pattern, e.g., based on trends in social media [5]. In addition, we
show how the caching space can be divided between proactive and reactive place-
ment and investigate the added value when considering adaptivity in the proposed

50 CHAPTER 3

hybrid caching approach. We evaluate the performance in terms of both network
and caching metrics based on a real VoD request trace from a major European ISP.
The results show that the proposed hybrid cache management approach can out-
perform both a purely proactive and a purely reactive approach while significantly
reducing the migration overhead compared to our previous work.

The remainder of this chapter is structured as follows. Section 3.2 highlights
related work on cache management in distributed storage infrastructure. Sec-
tion 3.3 presents the proposed management architecture and describes the scenario
under study. Next, the problem is formally modeled as an ILP in Section 3.4 and
the hybrid cache division strategy is described. Section 3.5 introduces the setup
used to evaluate the proposed approach while the evaluation results are detailed in
Section 3.6. Finally, the main conclusions are presented in Section 3.7.

3.2 Related work

Hybrid cache management approaches that partition the storage space available
at each caching location in order to implement different caching strategies were
proposed by Applegate et al. [6] and Sharma et al. [7]. However, the effect of
partitioning was investigated on few performance metrics only (network utilization
and latency) based on arbitrary fixed ratios. Furthermore, in these approaches,
the partitioning is performed on each cache individually. In contrast, this chapter
proposes a network-level partitioning and provides a more systematic analysis as
it relies on a wide range of ratios and highlights the effect based on both network
and caching metrics. In addition, the benefits of updating the partitioning ratio in
an adaptive fashion are also quantitatively evaluated.

In the last few years, there have been significant research efforts towards the
development of proactive cache management approaches. While some of the pro-
posals have focused on content placement strategy only [8–13], others have pro-
posed new mechanisms to manage the redirection of user requests [14, 15]. Opti-
mal solution structures for the combined problem of content placement and server
selection have also been developed [6, 16, 17]. However, all of these consider a
single provider scenario only, which is a subset of the problem we investigate.

One of the most relevant approaches for the problem investigated here is the
work of Laoutaris et al. [18, 19], in which algorithms for the joint optimization
of capacity allocation and object placement decisions under known topological
and user demand information were developed. However, despite the similarity in
terms of problem objectives, the proposed models cannot apply to our scenario
as they disregard per node capacity constraints and assume hierarchical caching
infrastructures only.

In parallel to these management strategies, research efforts have also focused
on the development of new models and frameworks to support the interaction be-

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 51

tween ISPs and CDNs. These range from ISP-centric caching approaches [20, 21],
which exclude CDNs from the delivery chain, to collaborative solutions [3, 15, 22],
defining new models of cooperation between ISPs and CDNs. Another relevant
initiative concerns the Content Delivery Network Interconnection (CDNI) working
group of the Internet Engineering Task Force (IETF) which focuses on standardiz-
ing the communications between CDNs to allow interoperability between different
vendors1. All of these approaches are targeting to improve content delivery per-
formance. Intermediate solutions, such as the one proposed by co-authors of this
chapter [23], have also been considered and rely on providing a limited capacity
CDN service within ISP networks by deploying caches at network edges.

Finally, while this chapter focuses on a VoD service, proactive content place-
ment has recently been investigated in the context of live video streaming [24],
which focuses on the end-to-end optimization of the stream delivery. In contrast to
our approach, this targets very short re-configuration intervals (in the order of mil-
liseconds) and involves changing different parameters (e.g., video stream place-
ment and bit rate encoding selection), which are features specific to this type of
service.

To the best of the authors’ knowledge, this chapter is the first to propose a hy-
brid cache management approach with a network-level cache division and support
for multi-tenant scenarios.

3.3 Experiment description

In this section, the considered experiment is described. Section 3.3.1 introduces
the ISP-based CDN service where capacity is leased to one or multiple content
providers. In Section 3.3.2, the characteristics of the investigated VoD use-case
are presented, based on which the request prediction strategy is introduced in Sec-
tion 3.3.3. Finally, Section 3.3.4 discusses the limitations of popularity prediction
algorithms in the considered use-case.

3.3.1 Caching scenario

In this chapter, a scenario is considered where a large-scale ISP operates a limited
capacity CDN service by deploying caching points within its network, as depicted
in Figure 3.1. However, it is important to note that the applicability of the proposed
approach is not limited to this scenario. For example, the standardization effort in
the CDNI working group of the IETF allows the proposed approach to be used on
a larger scale and to communicate between different CDN vendors.

In the considered scenario, the set of network nodes consists of edge nodes,
which represent access networks connecting multiple users in the same region,

1https://datatracker.ietf.org/wg/cdni

52 CHAPTER 3

C2

C1

C3

C4

E3
E4

E5

E6

E1

E2

S

x1

x2

Request
for x1

Request
for x1

Edge node

Core node

Server node

Cache

Redirected
request for x1

Request for x1

served locally

Server link

Figure 3.1: Overview of the telco-CDN service operated by the ISP.

and core nodes, which interconnect the different access networks. Each network
node is equipped with caching capabilities, enabling a set of content items to be
stored locally. These local caches could be external storage modules attached to
routers or, with the advent of flash drive technology, integrated within routers.

All content requests are received at the edge nodes. If a requested content
item is available in the local cache of the corresponding edge node, it is served
locally. Otherwise, the request is redirected to one of the caches in the network
where the requested item is stored. In case a copy of the item is not available
in the ISP network, the request is served from the origin server outside of the
network, hosted by the content provider. As depicted in Figure 3.1, the request
for content x1 received at edge node E2 is served locally, whereas the request for
content x1 received at edge node E1 is redirected to and served by node E2. In
line with previous related research by Applegate et al. [6], we assume that traffic is
routed over the shortest path, which was shown to be more realistic than arbitrary
routing [25].

In this scenario, the ISP leases the caching space in its network to one or more
content providers. Each content provider specifies the amount of caching capac-
ity it wishes to lease for storing part of its content catalog, while the ISP decides
which content items will be stored and where. The optimal placement of content
in terms of network resource utilization depends on the geographical distribution
of requests, the content popularity and the network topology. To minimize the
resource utilization while simultaneously maximizing the total hit ratio (i.e., re-
ducing the number of requests that have to be served from outside the network),
this chapter proposes a hybrid multi-tenant cache management approach where
the ISP controls the partitioning of the available storage space between the content

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 53

providers. In the proposed hybrid approach, part of the available caching capac-
ity is allocated and managed according to a proactive cache management strategy,
while the rest is controlled through a reactive approach. The proactive placement
algorithm is executed periodically by a central manager to allocate the proactive
part of the capacity across the network based on the predicted value of the con-
tent popularity and its geographical distribution. In contrast, the reactive approach
is applied at each cache independently and serves as a buffer to react locally to
unpredicted popularity changes.

3.3.2 VoD trace characteristics

To evaluate the proposed approach, a request trace of the VoD service of a lead-
ing European telecom operator has been used. The trace was collected between
Saturday February 6, 2010 and Sunday March 7, 2010 and contains monitoring in-
formation for a period of 30 days. Due to a failure of the probing nodes, a couple of
hours of monitoring data was missing for both February 12, 2010 and February 19,
2010. These gaps have been filled by considering the request pattern of the same
period in the previous week, mapped on the content popularity of the same period
in the last day. The resulting trace consists of 108,392 requests for 5644 unique
videos, originating from 8825 unique users spread across 12 cities. Figure 3.2
shows the popularity curve of the VoD trace. In this chapter, all movies are consid-
ered to have an equal duration of 90 minutes and a bit rate of 1Mbit/s, resulting in
a size of 675Mbyte for each video. The entire video catalog size thus amounts to
about 3.64Tbyte. Each movie is requested in a segmented way, as is often the case
in modern streaming technologies (e.g., Apple HLS, MPEG DASH), with a fixed
duration of 1 second each. When multi-tenancy is considered, the set of movies in
the VoD trace is uniformly split between the different content providers.

The daily number of requests and unique requested videos in the considered
VoD trace are depicted in Figure 3.3. In this graph, a clear weekly pattern can
be observed. The five peaks in the request pattern correspond to the five week-
ends, with increased activity on Friday, Saturday and Sunday. As only per-day
aggregates are shown for the sake of visibility, the underlying diurnal trend cannot
be observed. For Wednesdays and Sundays, the activity peak is situated between
4:30pm and 6:30pm, while for the other days of the week, the largest number of
requests is reported between 8pm and 10pm. On average, 3613 requests for 1012
unique movies, i.e., about 18% of the total movie catalog, are monitored per day.

3.3.3 Request prediction

To be able to take proactive decisions concerning content placement, predictions
about the content popularity in the considered period have to be made. Content
popularity prediction is a complex issue that is outside the scope of this chapter.

54 CHAPTER 3

0.0 0.2 0.4 0.6 0.8 1.0
Relative number of movies

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 r

e
la

ti
v
e
 n

u
m

b
e
r

o
f

re
q
u
e
st

s

Movie popularity

Figure 3.2: Popularity curve of the considered VoD trace.

0 5 10 15 20 25 30
Time (days)

0

1000

2000

3000

4000

5000

6000

7000

C
o
u
n
t

Requests
Requests trend
Unique content

Figure 3.3: Request pattern and number of daily unique content items in the considered
VoD trace.

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 55

Therefore, in this chapter we apply a simple request prediction strategy based on
the characteristics of the VoD trace described in the previous section.

The request pattern consists of multiple types of information: (i) the request
intensity, i.e., the total number of requests in the network, over time, (ii) the geo-
graphical distribution of the requests, and (iii) the relative content popularity, i.e.,
the distribution of the requests amongst all the content items. As shown in Fig-
ure 3.3, a clear weekly pattern can be identified for the request intensity of the
VoD trace. Based on this observation, the request intensity and the geographical
distribution of requests of the same period of the previous week are used for pre-
dicting the request pattern in a specific period. However, given the highly dynamic
nature of video popularity, such an approach cannot be used to predict content
popularity. Although some request intensity trends can be identified for each day
of the week, it is more likely that the change in popularity of a given content item
will be more significant over a week than between two consecutive days. Based
on the results reported in our previous work [1], we use the content popularity of
the last 3 days to predict the popularity of specific content items as it was shown
to result in the highest prediction accuracy.

To estimate the quality of the prediction, we define an accuracy metric as fol-
lows. When the total amount of leased capacity is equal to the combined size of
y videos, the accuracy of the y most popular content items in the request predic-
tion is crucial for the performance of the system, as these items are most likely
to be cached. Therefore, we define the prediction accuracy in a specific period as
the ratio between the relative number of requests for the predicted y most popular
videos, denoted as rpred, and for the actual y most popular videos, denoted as ract,
over that period. For example, we consider a total amount of leased capacity of
y =100 videos. If the set of 100 videos that are predicted to be the most popular
accounts for rpred=50% of all requests in the considered period while the actual
100 most popular videos during that period amount for ract=65% of the requests,
the accuracy of the popularity prediction is said to be 76.92% (= rpred

ract
= 50%

65%).

Figure 3.4a shows the average prediction accuracy for different amounts of
leased capacity (expressed relatively to the total catalog size), in terms of the length
of the predicted period. It can be observed that the prediction accuracy increases
with the predicted period length, up to a length of 24h. This can be explained by
the characteristics of the content popularity. Typically, requests for popular content
are spread over the day while less popular content is only requested a few times
a day at specific points in time. As the considered period of time decreases, the
number of unique requested videos decreases and the steepness of the popularity
curve significantly reduces. Therefore, the shorter the time period, the harder the
content popularity prediction. In addition, due to the highly dynamic nature of
the content popularity and the relatively short popularity lifetime of video content,
the prediction accuracy degrades when the predicted period length exceeds 24h.

56 CHAPTER 3

0 10 20 30 40 50
Pred. period length (hours)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
v
g
.
p
re

d
.
a
cc

u
ra

cy
 (

%
)

Leased capacity

2.5%
5%
10%

(a) Influence of the predicted pe-
riod length on the average pre-
diction accuracy with a history
length of 3 days for different
amounts of leased capacity.

0 5 10 15 20
Num. of inf. blockbuster movies

0.60

0.65

0.70

0.75

0.80

A
v
g
.
p
re

d
.
a
cc

u
ra

cy
 (

%
)

Prediction interval

6h
12h

24h
48h

(b) Influence of the knowledge
about blockbuster movies on
the average prediction accu-
racy with a history length of 3
days and a leased capacity of
5%.

0 5 10 15 20
Num. of inf. blockbuster movies

0.00

0.05

0.10

0.15

0.20

0.25

P
re

d
.
a
cc

u
ra

cy
 s

td
e
v Prediction interval

6h
12h

24h
48h

(c) Influence of the knowledge
about blockbuster movies on
the standard deviation of the
prediction accuracy with a his-
tory length of 3 days and a
leased capacity of 5%.

Figure 3.4: Analysis of the prediction accuracy for the VoD trace.

Furthermore, it can be seen that the prediction accuracy is rather insensitive to the
amount of leased capacity. However, this does not mean that the popularity of
less popular content is as easy to predict as for more popular content. Because of
the steep popularity curve of the considered VoD trace, shown in Figure 3.2, the
vast majority of cache hits is for the most popular content, making these content
items the decisive factor in the accuracy metric (which is based on cache hits).
Therefore, the decreasing accuracy of predicting less popular content does not
have a significant influence on the total prediction accuracy.

In the considered VoD request trace, a significant part of daily requests (17.92%
on average) is for videos that were not requested in the recent history of 3 days.
Even when longer history windows of up to one week are used, about 15% of the
requests remains for unseen content. None of these requests can be predicted us-
ing pure history-based prediction techniques. The prediction of requests for new
content is an active research area and previous research efforts have proposed to
extract information about future blockbuster movies, for example based on activity
trends on social media [5], using collaborative filtering models [26] or relying on
life span patterns of video popularity [27, 28]. In this work, we assume that we are
informed about a short list of the most popular blockbuster movies on a daily basis,
regardless of the technique used to extract this information (i.e., a limited number
of the most popular movies are assumed to be known by the system in advance,
based on external information). Figure 3.4b and 3.4c show the influence of the
number of informed blockbuster movies on the average prediction accuracy and
its standard deviation, respectively. It can be seen that, for example in a scenario
where predictions are made every 24h, even with a limited amount of 10 informed
blockbuster movies (about 1% of the requested movies per day on average), the
average prediction accuracy is increased by 5% while its standard deviation is de-
creased by 41% compared to the pure history-based prediction. This shows that

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 57

besides increasing the average prediction accuracy, using knowledge about block-
buster movies significantly stabilizes the prediction accuracy over time. For exam-
ple, information about 10 blockbuster movies lowers the difference between the
highest and the lowest prediction accuracy over time from 28% to 18%.

3.3.4 Popularity prediction limitations

As described in the previous section, exogenous information can be used to pre-
dict blockbuster movies. However, this can only be done for a small fraction of
popular content. A significant part of new content remains unpredicted. In addi-
tion, Figure 3.5 shows the average shifting probabilities in the VoD trace. The plot
shows the percentage of content items that shifts from a given popularity category
to another category on average. It is important to note that while the different pop-
ularity categories are unevenly sized in terms of number of contents, each category
accounts for a similar number of requests. For example, the 2.5% most popular
content items on a given day account for 29% of the requests on average, while
the 80% least popular content items (i.e., category 100% in Figure 3.5) account
for 33% of the requests on average. It can be observed that the content popular-
ity in the considered trace is very volatile. For example, on average, 24.60% of
the 2.5% to 5% most popular movies on a given day are not requested at all the
next day. Furthermore, it can be deduced from Figure 3.5 that on average more
than 13% of the top 2.5% most popular content was not requested the day before2.
These findings strongly limit the possibilities of popularity prediction techniques.
When considering time periods shorter than 24h, the fluctuation in content pop-
ularity becomes even more significant, resulting in a lower prediction accuracy.
Additionally, it can be observed from Figure 3.5 that the fluctuation in popularity
grows for less popular content. Therefore, when less popular content is cached, it
is more likely to be replaced in the next reconfiguration phase, resulting in addi-
tional migration overhead.

3.4 Hybrid cache management

As shown in previous work, proactive content placement can result in more ef-
ficient resource usage, compared to reactive cache management [1]. However, it
was shown that the achievable performance gain strongly depends on the accu-
racy of the popularity prediction. As described in Section 3.3.4, the characteristics
of the VoD trace limit the accuracy of the request prediction. To deal with these
limitations, a hybrid caching approach is proposed, applying both proactive and

2On average, 82.07% of all content is not requested on a single day, 0.40% of which is in the 2.5%
most popular content the next day. This amounts to 0.33% of the total content catalog, or 13.2% of the
2.5% most popular content.

58 CHAPTER 3

2.5% 5% 10% 20% 100% NR
Popularity on next day

2.5%

5%

10%

20%

100%

NR

P
o
p
u
la

ri
ty

 o
n
 c

u
rr

e
n
t

d
a
y

61.28% 17.66% 9.48% 4.88% 0.05% 6.65%

14.26% 21.62% 23.70% 15.36% 0.46% 24.60%

3.64% 10.72% 19.42% 17.16% 0.93% 48.13%

1.24% 4.32% 10.92% 18.80% 1.07% 63.64%

0.17% 2.85% 8.56% 14.93% 7.05% 66.44%

0.40% 0.79% 2.86% 5.70% 0.37% 89.87%

10
-2

10
-1

10
0

Figure 3.5: Average popularity shifting probabilities in the considered VoD trace (∗NR: Not
Requested).

reactive caching techniques. A proactive content placement is performed period-
ically, based on a prediction of the content popularity, while part of the capacity
is used for reactive caching in order to react to unexpected popularity fluctuations.
It is important to note that even though the performance of both the proactive ap-
proach and the hybrid approach will be influenced by the quality of the request
prediction, the hybrid approach will always benefit from the reactive caching part
to deal with new popular content that will inevitably be missed by the request pre-
diction strategy, as discussed in Section 3.3.4. Therefore, even though the optimal
cache division might change, the hybrid approach will always outperform both the
proactive and reactive caching approaches, or at least perform equally as good as
the best of the two approaches.

First, some general notations are introduced in Section 3.4.1. Next, the hy-
brid cache division strategy is presented in Section 3.4.2. Finally, Section 3.4.3
describes the proactive placement algorithm.

3.4.1 General notations

To support the description of the algorithm, we first introduce some general nota-
tions used to represent the characteristics of the considered scenario. The notations
are summarized in Table 3.1. The network topology is modeled as a directed graph
G = (N,L) with N and L representing the set of nodes and links, respectively.

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 59

Table 3.1: Summary of the general notations.

Notation Description
N Set of network nodes.

S ∈ N Server node.
NISP ⊂ N Set of ISP-managed nodes.
NC ⊂ NISP Set of core nodes.
NE ⊂ NISP Set of edge nodes.

L Set of network links.
LS ⊂ L Set of ingress links.
LISP ⊂ L Set of ISP-managed links.
cn ∈ N+ Storage capacity of node n ∈ N .
In ⊆ L Set of incoming links of node n ∈ N .
On ⊆ L Set of outgoing links of node n ∈ N .
cl ∈ N+ Bandwidth capacity of link l ∈ L.
Rs,d ⊆ L Routing path from s ∈ N to d ∈ N .

P Set of content providers.
dp ∈ N+ Caching space leased by p ∈ P .
Op Content items offered by p ∈ P .

O =
⋃
p∈P O

p Total set of offered content items.
so ∈ N+ Size of content item o ∈ O.
bo ∈ N+ Bit rate of content item o ∈ O.

The set of nodes contains both the nodes NISP , belonging to the ISP network,
and an external server node S, logically representing the Internet, containing all
content of all providers. NISP can further be divided in a set of core nodes NC
and edge nodes NE . The links L can be divided into a set of links, LS , con-
nected to the external server (i.e., the ingress links), and ISP-managed links LISP ,
connecting core and edge nodes. For each node n ∈ N , we define a caching ca-
pacity cn ∈ N+ and a set of incoming and outgoing links, denoted by In ⊆ L and
On ⊆ L, respectively. For every link l ∈ L, the available bandwidth capacity is
denoted by cl ∈ N+. The routing strategy applied in the network is represented by
a forwarding path Rs,d ⊆ L, for every source-destination pair (s, d) ∈ N × N .
The forwarding path can be divided into a set of server links RSs,d ⊆ LS , contain-
ing the links in the forwarding path connected to the external server node S, and
a set RISPs,d ⊆ LISP containing the other links in the forwarding path, inside the
ISP network.

A set of content providers P lease caching space from the ISP. For each content
provider p ∈ P , the leased amount of caching space and the set of offered content
items are denoted by dp ∈ N+ and Op, respectively. O =

⋃
p∈P O

p represents
the entire set of offered content. Every content item o ∈ O has an associated size
so ∈ N+ and bit rate bo ∈ N+.

60 CHAPTER 3

3.4.2 Cache division

In the proposed hybrid caching approach, a relative part λ ∈ [0; 1] of the leased
capacity for each provider is used as a reactive cache, for example applying the
Least Recently Used (LRU) replacement strategy. The remaining part (1 − λ) of
the leased capacity is used for proactive placement. The value of λ is called the
reactive ratio of the hybrid caching system. When a provider p ∈ P leases a
capacity of dp bytes, then λ × dp bytes are used for reactive caching, while the
remaining (1− λ)× dp bytes are used for proactive placement.

Instead of using a fixed reactive ratio on every node, the reactive part of the
leased capacity is uniformly distributed across the entire topology, proportional
to the storage capacity of the nodes. In this way, the entire network is provided
with reactive caching capacity to deal with unexpected popularity fluctuations,
independently of the geographical distribution of the predicted request pattern.
When λ × dp bytes are used for reactive caching for provider p ∈ P , on every
node n ∈ NISP , the number of bytes allocated for reactive caching for provider p
can be calculated using equation (3.1).

cn ×
λ× dp∑
n′∈NISP cn′

(3.1)

The remaining leased capacity of (1−λ)×dp bytes are used for proactive place-
ment. The allocation of this capacity, spread across the network, is based on the
ILP model, described in Section 3.4.3. For each node n ∈ NISP , the total capacity
available for proactive placement cpron can be calculated using equation (3.2).

cpron = cn −
cn × λ×

∑
p∈P dp∑

n′∈NISP cn′
(3.2)

Using this hybrid approach, the geographical distribution of the allocation of
proactive caching capacity is based on the predicted request pattern, allocating
more capacity where more requests are expected. However, by uniformly distribut-
ing the reactive capacity, every area in the network is provided with some backup
capacity to deal with possible errors in the request prediction or rapid popularity
fluctuations.

3.4.3 Proactive placement

The ILP, used to model the considered problem, is a modified version of the ILP
described in our previous work [1]. The modifications handle the difficulty in
accurately predicting the exact time points at which a request will be sent. There-
fore, while the ILP model in our previous work required the prediction of specific
time points of requests, the modified ILP requires more realistic aggregated re-
quest predictions (i.e., the total number of predicted requests over the considered

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 61

period instead of exact timing information of each request). Furthermore, the cur-
rent placement configuration is taken into account in order to limit the migration
overhead.

In the remainder of this section, the input values, the decision variables, the
objective functions and the constraints of the ILP are presented.

3.4.3.1 Input values

The objective of the proposed approach is to periodically compute a new caching
configuration based on the estimation of content popularity and geographical dis-
tribution of requests for the next provisioning interval. As such, besides the char-
acteristics of the network topology, the content catalog and the leased capacity for
each provider, a prediction of the request pattern for the considered time interval
is required by the algorithm at each reconfiguration step to determine a new con-
tent placement and server selection strategy. In addition to the general notations
introduced in the previous section, we note ro,d ∈ N as the predicted number of
requests for content o ∈ O, originating from edge node d ∈ NE in the considered
provisioning interval. No ⊆ NE represents the set of edge nodes requesting con-
tent o ∈ O in the considered interval. To be able to take into account the current
placement configuration, an additional notation Xn ⊆ O is introduced for each
node n ∈ N , representing the set of content items that are currently stored at node
n.

3.4.3.2 Decision variables

A solution to the content placement problem is translated into binary decision
variables xn,o ∈ {0, 1} defining if a node n ∈ N is used to store content o ∈ O. In
addition, auxiliary decision variables zn,o,d ∈ {0, 1} are introduced to represent
the server selection strategy. These variables define if a node n ∈ N is used to
store content o ∈ O to be delivered to edge node d ∈ NE .

3.4.3.3 Objective function

Different optimization criteria have been considered in the literature [6, 7, 9]. Even
though other metrics such as delivery delay minimization or link load minimization
can easily be integrated in the problem formulation, in this chapter we focus on
reducing the ISP network resource usage. As such, we define the optimal solution
to the problem as the one minimizing the bandwidth usage inside the ISP network.
While calculating the bandwidth usage, a weighting factor α ∈ [0; 1] can be used
to define the importance of ingress link usage. In this way, the objective function
can be tuned to purely optimize bandwidth usage or to focus on optimizing the hit
ratio. Low values of α steer the ILP to minimize the bandwidth usage within the
ISP network. In contrast, higher values of α result in minimizing the bandwidth

62 CHAPTER 3

usage on the ingress link, yielding a maximization of the hit ratio. In this work,
we focus on optimizing the total bandwidth usage, considering both the server
link usage and the bandwidth usage inside the ISP network. Therefore, a value of
α = 0.5 is used, unless otherwise stated. The link weight ωl of a link l ∈ L is
shown in equation (3.3).

ωl =

{
α if l ∈ LS

1− α if l ∈ LISP
(3.3)

In order to minimize the total bandwidth usage in the ISP network, the band-
width usage incurred by the video streaming sessions is modeled in the basic ob-
jective function (3.4). However, besides the video streaming sessions, the periodic
content migrations significantly influence the total bandwidth usage. Therefore,
this migration overhead can be taken into consideration in the objective function
as well, based on the current storage configuration as shown in equation (3.5).
Content that has to be placed at a specific node is fetched from the server node S.
In the overhead-aware objective function, shown in equation (3.6), both the video
streaming bandwidth and the migration overhead are taken into account. It can be
seen that only the streaming bandwidth objective function (3.4) depends on pre-
dicted values (i.e., the predicted request intensities ro,d). All remaining variables
have known values. In the remainder of this chapter, we will refer to (3.4) and
(3.6) as the basic objective function and the overhead-aware objective function,
respectively, both of which are subject to minimization in the considered ILP.

BWstr =
∑
n∈N

∑
o∈O

∑
d∈No

∑
l∈Rn,d

ωl × ro,d × so × zn,o,d (3.4)

BWmig =
∑
n∈N

∑
o∈O\Xn

∑
l∈RS,n

ωl × so × xn,o (3.5)

BW = BWstr +BWmig (3.6)

3.4.3.4 Constraints

Multiple constraints are considered to define the set of valid solutions to the con-
sidered optimization problem. First of all, auxiliary constraints are introduced to
formalize the relationship between the x and z decision variables. The constraints
presented in equation (3.7) and equation (3.8) specify that content o ∈ O is stored
at node n ∈ N if and only if at least one edge node d ∈ NE requests o from n.

∀n ∈ N, ∀o ∈ O,∀d ∈ NE : zn,o,d ≤ xn,o (3.7)

∀n ∈ N, ∀o ∈ O : xn,o ≤
∑
d∈NE

zn,o,d (3.8)

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 63

Table 3.2: Summary of the algorithm-specific notations.

Notation Description
λ ∈ [0; 1] Reactive ratio.
cpron ∈ N+ Proactive capacity of node n ∈ NISP .
ro,d ∈ N Nr. of requests for o ∈ O from d ∈ NE .
No ⊆ NE Edge nodes requesting o ∈ O.
Xn ⊆ O Content items stored at node n ∈ N .

xn,o ∈ {0, 1} o ∈ O placed on n ∈ N .
zn,o,d ∈ {0, 1} o ∈ O placed on n ∈ N for d ∈ NE .
wl ∈ [0; 1] Weight of link l ∈ L.

A valid solution to the optimization problem is so that the caching space re-
served for each content provider p ∈ P is at most equal to the part of the leased
capacity assigned for proactive content placement, while satisfying the storage
capacity limitations. These constraints are modeled in equation (3.9) and equa-
tion (3.10), respectively.

∀p ∈ P :
∑

n∈NISP

∑
o∈Op

so × xn,o ≤ (1− λ)dp (3.9)

∀n ∈ NISP :
∑
o∈O

so × xn,o ≤ cpron (3.10)

Finally, constraint equation (3.11) ensures that every request is served from
exactly one location.

∀o ∈ O,∀d ∈ No :
∑
n∈N

zn,o,d = 1 (3.11)

Periodically solving the ILP results in a storage profile represented by the val-
ues of xn,o and a server selection strategy represented by the values of zn,o,d,
which minimizes the objective function in equation (3.4) or equation (3.6), while
satisfying the constraints in equations (3.9 – 3.11). Every request from edge node
d ∈ NE for content o ∈ O is served from node n ∈ N where zn,o,d = 1, using the
shortest path Rn,d.

For the reader’s reference, the algorithm-specific notations are summarized in
Table (3.2).

3.5 Evaluation setup
To thoroughly evaluate the performance of the proposed approach, a topology
based on the GÉANT network3 is used, consisting of 23 nodes. As described

3GÉANT Project - http://www.geant.net

64 CHAPTER 3

in Section 3.3.2, the considered VoD request trace contains 12 cities, which are
mapped on 12 edge nodes (NE = {E1, ..., E12}). One node is selected as the ex-
ternal server node S, storing all content of all content providers. The 10 remaining
nodes are modeled as core nodes (NC = {C1, ..., C10}). The resulting topology
is shown in Figure 3.6. In this topology, shortest path routing based on hop count
is applied.

C1

C4

C7C8

C9

C3

C5

C6
C2

S

E1
E2

E3

E5

E6

E7 E8

E9

E10

E12

E4

E11

C10

500Mbit/s
1Gbit/s

Figure 3.6: Evaluated GÉANT-based topology.

As preliminary evaluations have shown that the node capacities have limited
influence on the performance of the approach, unless otherwise stated, the storage
capacity of each core node was set high enough to be able to accommodate the
leased capacity of all tenants throughout the evaluations. Concretely, for every
core node n ∈ VC , the capacity is defined as cn =

∑
p∈P dp. The capacity

of the edge nodes is fixed to half of the capacity of the core nodes, i.e., cn =

0.5 ×
∑
p∈P dp,∀n ∈ VE . The bandwidth capacity of the links interconnecting

core nodes and links connected to the server node is set to 1Gbit/s while all other
links have a bandwidth capacity of 500Mbit/s.

Throughout the evaluations, the performance of the proposed approach is com-
pared to a purely reactive approach. For the reactive approach, the LRU replace-
ment strategy is applied, while the leased capacity is uniformly spread across the
network, proportional to the node capacities. All requests are sent to the origin
server S, applying reactive caching. Consequently, the reactive approach can re-
sult in a configuration where only parts of a movie are available at a given node.
In contrast, the proactive approach either places an entire movie at a specific node
or does not store it there at all.

Experiments have been performed for all of the 30 days in the VoD trace, while
only evaluating the last 23 days (from February 13, 2010 to March 7, 2010). The
first 7 days of the trace were used for obtaining the request prediction used in the

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 65

proactive approach and serve as a cache-warming phase for the reactive approach.
To periodically determine the proactive placement configuration, the ILP is solved
using the IBM ILOG CPLEX Optimization Studio 12.4 solver.

3.6 Evaluation results
To characterize the performance of the proposed approach, multiple performance
indicators are evaluated:

• Hit ratio: the relative amount of segment requests that could be served from
within the ISP network (in %).

• Average bandwidth usage: the average bandwidth usage in the entire ISP
network (in Mbit/s), including both the video streaming bandwidth and the
content migration bandwidth induced by the proactive placement.

• Migration overhead: the total amount of data transfer induced by the proac-
tive content placement (in Gbyte).

• Average hop count: the average number of links a segment crosses between
its storage location and the requesting client. This metric indicates how close
the relevant movies are stored to the end-users.

First, the different aspects of the proposed hybrid cache management approach
are evaluated in Section 3.6.1. Next, the performance of our approach is com-
pared to a purely proactive and a purely reactive cache management approach in
Section 3.6.2.

3.6.1 Influence of the system parameters

In this section, the optimal configuration of the proposed approach is determined,
starting from a purely proactive approach (λ = 0) using the basic objective func-
tion (3.4) without blockbuster movie knowledge and gradually evaluating the added
value of more complexity. Unless stated differently, in all of the evaluations, the
content catalog has been uniformly distributed between two content providers,
each leasing storage capacity to accommodate 2.5%, 5% or 10% of their total
movie catalog.

3.6.1.1 Proactive placement frequency

The frequency at which a new proactive placement configuration is computed de-
fines a trade-off between optimality and overhead. While more frequent reconfigu-
rations allow the system to be more reactive with respect to changes in the request
pattern, this comes at the cost of more frequent content migrations. Figure 3.7

66 CHAPTER 3

shows the influence of the length of the time interval between subsequent content
placements on multiple performance indicators. For these evaluations, a purely
proactive approach has been applied using the basic objective function without
blockbuster movie knowledge. As could be expected, Figure 3.7a shows that the
content migration overhead strongly increases when more frequent reconfigura-
tions are performed, independently of the leased capacity.

Remarkably however, less frequent reconfigurations also result in a higher per-
formance in terms of hit ratio and average bandwidth usage, as can be seen in
Figure 3.7b and Figure 3.7c, respectively. This counter-intuitive result can be ex-
plained by the characteristics of the VoD request trace and the applied prediction
strategy, discussed in Section 3.3.3. As was shown in Figure 3.4a, the prediction
accuracy significantly decreases when predictions are made for shorter periods of
time. In the case of more frequent reconfigurations, the low prediction accuracy
results in more requests that have to be fetched from the origin server, resulting
in longer routing paths, which lead to higher bandwidth usage and lower hit ratio.
Similar observations can be made for the average hop count, which is on aver-
age 4.87% lower when placements are performed every 24h compared to every
6h (graphs omitted due to space limitations). Given the performance degrada-
tion in terms of prediction accuracy for periods longer than 24h (as described in
Section 3.3.3) and the strong diurnal pattern in the request trace, reconfiguration
frequencies lower than once every 24h have not been considered in the analysis.

6h 12h 24h
Content placement interval

0

10

20

30

40

50

60

70

T
o
ta

l
m

ig
ra

ti
o
n
 o

v
e
rh

e
a
d
 (

T
b
y
te

)

Leased capacity

2.5%
5%

10%

(a) Influence of the proactive
placement frequency on the
total migration overhead.

6h 12h 24h
Content placement interval

0

5

10

15

20

25

30

H
it

 r
a
ti

o
 (

%
)

Leased capacity

2.5%
5%

10%

(b) Influence of the proactive
placement frequency on the hit
ratio.

6h 12h 24h
Content placement interval

0

100

200

300

400

500

600

700

A
v
e
ra

g
e
 b

a
n
d
w

id
th

 u
sa

g
e
 (

M
b
it

/s
)

Leased capacity

2.5%
5%

10%

(c) Influence of the proactive
placement frequency on the
average bandwidth usage in
the network.

Figure 3.7: Influence of the proactive placement frequency in a purely proactive scenario
using the basic objective function without blockbuster movie knowledge.

The influence of the proactive placement frequency on the average time needed
by the CPLEX solver to solve the ILP is presented in Figure 3.8. The error bars
show the standard deviation. It can be seen that the execution time significantly
increases with the content placement interval, as an increasing number of requests
results both in a higher number of decision variables and constraints and an in-
creased complexity for the objective function of the ILP. The high standard de-
viation values are due to the high fluctuation of the request intensity over time

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 67

as shown in Figure 3.3. However, it can be seen that in the considered scenario,
the average time needed to solve the ILP is reasonable compared to the placement
interval (e.g., 15s every 24h on average for a leased capacity of 10%).

6h 12h 24h
Content placement interval

0

5

10

15

20

25

A
v
e
ra

g
e
 I
LP

 s
o
lv

in
g
 t

im
e
 (

s)

Leased capacity

2.5%
5%
10%

Figure 3.8: Influence of the proactive placement frequency on the average time needed to
solve the ILP.

In the remainder of this chapter, we assume that the proactive placement is
performed every 24h given that this frequency results in the best performance.
Furthermore, this allows the ISP to perform content migrations in off-peak hours
(e.g., at night).

3.6.1.2 Overhead-aware placement

The benefits of adding overhead-awareness to the proactive placement are eval-
uated in a purely proactive scenario without blockbuster movie knowledge. Fig-
ure 3.9 shows the relative performance of the approach using the overhead-aware
objective function compared to the performance of the approach using the basic
objective function. It can be seen that taking into account the migration overhead
in the placement decisions drastically reduces the migration overhead by 37.49%
on average. Furthermore, the reduction in terms of migration overhead results in
3.33% less bandwidth usage on average. Given that, on average, the bandwidth
introduced by the content migration only amounts to about 10% of the total band-
width usage, this bandwidth reduction can be fully attributed to the reduced migra-
tion bandwidth. The deviation of the bandwidth usage introduced by the streaming
sessions is limited to less than 1%. With a relative gain of 1.37% and 0.3% respec-
tively, the influence on the performance in terms of hit ratio and average hop count
is negligible. Furthermore, due to its higher complexity, using the overhead-aware

68 CHAPTER 3

Table 3.3: Stability of the content popularity.

Amount∗ Stability
2.5% 61.28%
5% 57.41%
10% 53.89%
20% 51.41%
100% 37.30%

∗Relative to the total number of requested con-
tents on given day.

objective function results in a (limited) increase of 6.99% in terms of the average
time needed to solve the ILP.

Migration overhead Avg. bandwidth Hit ratio Avg. hopcount
Criteria

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
l.
 p

e
rf

o
rm

a
n
ce

 c
o
m

p
a
re

d
 t

o
 m

ig
ra

ti
o
n
-u

n
a
w

a
re

 p
la

ce
m

e
n
t

Leased capacity

2.5%
5%

10%

Figure 3.9: Influence of overhead-awareness in proactive content placement on different
evaluation criteria.

As can be observed in Figure 3.9, the benefits of introducing overhead aware-
ness to the system increase when more capacity is leased. The explanation for this
observation can be found in the shifting characteristics of the VoD request trace.
Based on Figure 3.5, we can calculate the average percentage of the xmost popular
content on a given day that still belongs to the x most popular content on the next
day with x being equal to 2.5%, 5%, 10%, 20% or 100% of the total number of
content requested on a given day. The resulting values, referred to as the stability
of the content popularity, are shown in Table 3.3. It can be seen that the stability
of the popularity decreases when a higher amount of content is considered.

When more capacity is leased, content items with a lower popularity can also

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 69

be cached proactively. However, as demonstrated, these items change more fre-
quently than the popular ones. By adding overhead-awareness to the system, the
placement algorithm can balance the bandwidth gain of placing the less popular
content in the network against the cost of migrating the content. For popular con-
tent, the streaming bandwidth reduction exceeds the migration cost, while this may
no longer be the case for less popular content. Therefore, overhead-awareness adds
more value when less popular content can be placed in the network.

In the remainder of the evaluations, the overhead-aware objective function is
used to calculate the proactive placement configuration.

3.6.1.3 Blockbuster movie knowledge

As was shown in Section 3.3.3, the accuracy of the popularity prediction can be
increased based on the availability of exogenous information about blockbuster
movies. The influence of this information on the performance of the proposed ap-
proach in terms of hit ratio is shown in Figure 3.10. As expected, the perceived hit
ratio increases with the number of known blockbuster movies. It is also interest-
ing to see that the performance increase in terms of hit ratio exceeds the increased
prediction accuracy. For example, when the leased capacity is equal to 5% of the
total content catalog, knowledge about 5 blockbuster movies leads to a relative
increase of 3.97% in terms of prediction accuracy (Figure 3.4b), while the relative
improvement in terms of perceived hit ratio amounts to 17.22% (i.e., an absolute
increase of 4.18% compared to the original hit ratio of 24.27%, see Figure 3.10).

0 2 4 6 8 10 12 14
Number of known blockbuster movies

0

5

10

15

20

25

30

35

40

H
it

 r
a
ti

o
 (

%
)

Leased capacity

2.5%
5%
10%

Figure 3.10: Influence of blockbuster movie knowledge on the performance in terms of hit
ratio.

To clarify this observation, it is important to note that the goal of the proac-
tive placement is to minimize the bandwidth usage. Therefore, storing duplicates

70 CHAPTER 3

of popular content can be preferred over storing as much unique content items as
possible, causing the perceived hit ratio to be lower than what could be achieved
based on the prediction accuracy. This means that some of the less popular con-
tent items are not selected by the placement algorithm, even though they could be
cached given the value of the prediction accuracy metric. The information about
blockbuster movies can be used to derive the real popularity of some of these con-
tent items, resulting in a higher hit ratio and this without affecting the prediction
accuracy.

In terms of average bandwidth usage and average hop count, a relative perfor-
mance increase of 5.79% and 5.65% is achieved respectively, while the migration
overhead is rather unaffected (decrease of 0.12%). In what follows, unless oth-
erwise stated, it is assumed that the system is informed about the 5 most popular
blockbuster movies by an external source, as described in Section 3.3.3.

3.6.1.4 Hybrid cache division

0.0 0.2 0.4 0.6 0.8 1.0
Reactive ratio λ

0

10

20

30

40

50

H
it

 r
a
ti

o
 (

%
)

Leased capacity

2.5%
5%

10%

(a) Influence of the reactive ratio λ
on the hit ratio.

0.0 0.2 0.4 0.6 0.8 1.0
Reactive ratio λ

0

50

100

150

200

250

300

350

400

450

A
v
g
.
b
a
n
d
w

id
th

 u
sa

g
e
 (

M
b
it

/s
)

Leased capacity

2.5%
5%

10%

(b) Influence of the reactive ratio
λ on the average bandwidth
usage.

0.0 0.2 0.4 0.6 0.8 1.0
Reactive ratio λ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 h

o
p
co

u
n
t

Leased capacity

2.5%
5%

10%

(c) Influence of the reactive ratio λ
on the average hop count.

Figure 3.11: Influence of the reactive ratio λ on the performance of the hybrid caching
approach.

Up to now, a purely proactive approach has been followed. In Section 3.4,
it was argued that applying a hybrid caching approach can significantly improve
the performance of the system. To evaluate the influence of the cache division, the
reactive ratio λ has been varied between λ = 0.0 (i.e., a purely proactive approach)
and λ = 1.0 (i.e., a purely reactive approach) in a scenario where knowledge about
5 blockbuster movies is available for the request prediction and the overhead-aware
objective function is used. The proactive placement configuration is recalculated
every 24h.

Figure 3.11 shows the influence of the reactive ratio λ on the hit ratio, the
average bandwidth usage and the average hop count of the proposed approach. It
can be seen that, in the majority of the cases, both the purely proactive and the
purely reactive approach are outperformed by the hybrid scheme in terms of hit
ratio, average bandwidth usage and average hop count (i.e., for 79%, 94% and

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 71

78% of the λ values, respectively). Given that the lease constraint (3.9) of the
placement ILP limits the amount of placed content to the size of (1 − λ)dp for
each provider p ∈ P , the migration overhead decreases linearly with increasing
reactive ratio λ (graph omitted due to space limitations).

The reactive ratio that gives the optimal performance in the considered scenario
depends on the considered metric. However, as can be seen in Figure 3.11, a wide
range of ratios has a performance close to the performance of the optimal ratio
for each of the metrics. To be able to select a single ratio, the different metrics
should be optimized simultaneously. Therefore, for each evaluated metric M and
each reactive ratio λ, we define the deviation from the optimum δMλ as shown in
equation (3.12). It is calculated as the ratio between the performance of reactive
ratio λ in terms of metric M , denoted as φMλ , and the optimal performance for that
metric, ωM . ωM is defined as the maximum or minimum value φMλ′ ,∀λ′ ∈ [0; 1],
depending on whether metric M should be maximized or minimized respectively.

δMλ =

∣∣∣∣1− φMλ
ωM

∣∣∣∣ (3.12)

For each reactive ratio λ the average value of δMλ for the considered metrics
(M1: hit ratio, M2: average bandwidth usage and M3: average hop count) can be
calculated as ∆λ = 1

3

(
δM1

λ + δM2

λ + δM3

λ

)
, representing how close the perfor-

mance is to the optimal performance on average. Figure 3.12 shows the average
deviation from the optimum for different amounts of leased capacity. It can be
seen that the optimal ratio slightly increases with an increasing amount of leased
capacity. This can be explained by the growing performance of LRU for bigger
caches and the reduced stability of the content popularity for less popular content.
On average, the optimal performance is achieved with a reactive ratio λ = 0.41.

3.6.1.5 Reactive ratio adaptation

As described in Section 3.1, the performance of the proactive placement approach
strongly depends on the quality of the popularity prediction. Given that the pre-
diction accuracy fluctuates over time, the optimal reactive ratio λ is also subject to
change. Therefore, changing the reactive ratio over time might be considered. For
example, Figure 3.13 shows the optimal reactive ratio λ over time at a granularity
of 6h for different amounts of leased capacity in order to maximize the hit ratio.
It can be seen that the optimal ratio indeed strongly fluctuates over time without
following any well-defined pattern.

Figure 3.14 shows the relative hit ratio when using a fixed reactive ratio λ =

0.41 compared to using the optimal ratios shown in Figure 3.13 at a granularity of
6h. It can be seen that the hit ratio using a fixed reactive ratio is close to the optimal
adaptive performance, with an average deviation of only 2.90%. Furthermore, it is

72 CHAPTER 3

0.0 0.2 0.4 0.6 0.8 1.0
Reactive ratio λ

0

5

10

15

20

25

A
v
e
ra

g
e
 d

e
v
ia

ti
o
n
 f

ro
m

 t
h
e
 o

p
ti

m
u
m

 ∆
λ
 (

%
)

Leased capacity

2.5%
5%
10%

Figure 3.12: Influence of the reactive ratio λ on the average deviation from the optimum.

0 5 10 15 20 25 30

Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

O
p
ti
m

a
l
re

a
c
ti
v
e
 r

a
ti
o
 λ

fo
r

h
it
 r

a
ti
o

Leased capacity

2.5%

5%

10%

Cache warming phase

Figure 3.13: Optimal reactive ratio λ over time.

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 73

important to note that the optimal performance is a theoretical optimum that would
require to be able to determine the optimal reactive ratio at any point in time.

0 5 10 15 20 25 30

Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
v
e
 h

it
 r

a
ti
o

Leased capacity

2.5%

5%

10%

Cache warming phase

Figure 3.14: Relative hit ratio with λ = 0.41 compared to an adaptive reactive ratio.

Adaptively changing the reactive ratio λ would introduce a lot of added com-
plexity to the system, as it requires to be able to monitor the accuracy of the re-
quest prediction. Furthermore, given the noisy pattern shown in Figure 3.13, the
accuracy of predicting the optimal ratio would be limited, resulting in a lower per-
formance gain than theoretically possible. In addition, changing the reactive ratio
demands a reconfiguration of both the reactive and the proactive cache at every sin-
gle node in the network, again introducing additional migration overhead. Given
this high level of complexity and the limited theoretical performance increase that
could be achieved in the considered scenario, a fixed reactive ratio is proposed in
practice.

3.6.1.6 Number of tenants

Up to now, all the evaluations have been performed for two content providers. To
show the applicability of the proposed approach in the general case, evaluations
have been performed for multiple tenants leasing storage capacity from the ISP.
For this purpose, the VoD movie catalog of 5644 movies has been uniformly split
amongst the tenants (i.e., each movie in the catalog has been randomly assigned to
one of the tenants with equal probability). Even though the characteristics of the
request trace and the content catalog are unchanged and the total amount of leased
capacity across the tenants remains the same in all the evaluations (i.e., indepen-
dent of the number of tenants), the results of the proactive placement approach
are influenced by the multi-tenancy. Given the leased capacity constraint (3.9) for
each provider, a fixed amount of content items has to be stored for each provider

74 CHAPTER 3

to meet their capacity requirements, even though other providers might have more
popular content. In contrast, in a scenario with a single content provider, only
the globally most popular content will be proactively placed. Figure 3.15 shows
the influence of the number of tenants on the hit ratio, the average bandwidth us-
age and the average hop count. It can be seen that the influence of increasing the
number of tenants from 1 to 10 is limited to a relative performance degradation of
4.54%, 2.78% and 2.72%, respectively. These values are in line with the degree of
performance degradation obtained in both the purely proactive and reactive cases.
The results show that the proposed approach can be applied with a fixed parame-
ter configuration which is independent of the number of tenants, without incurring
any significant performance degradation.

0 2 4 6 8 10
Num.of content providers

0

10

20

30

40

50

H
it

 r
a
ti

o
 (

%
)

Leased capacity

2.5%
5%

10%

(a) Influence of the number of
content providers on the hit ra-
tio.

0 2 4 6 8 10
Num. of content providers

0

100

200

300

400

500

A
v
g
.

b
a
n
d
w

id
th

 u
sa

g
e
 (

M
b
it

/s
)

Leased capacity

2.5%
5%

10%

(b) Influence of the number of
content providers on the aver-
age bandwidth usage.

0 2 4 6 8 10
Num. of content providers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
t

Leased capacity

2.5%
5%

10%

(c) Influence of the number of
content providers on the aver-
age hop count.

Figure 3.15: Influence of the number of content providers on the performance of the hybrid
caching approach.

3.6.1.7 Server link weight

In all of the above evaluations, the server link weight α has been fixed to 0.5 in
order to optimize the bandwidth usage. As explained in Section 3.4.3, the value of
α can be used to steer the placement decisions between optimizing the bandwidth
usage and optimizing the hit ratio. For the sake of completeness, the influence of
the server link weight α on the performance of the proposed approach is evaluated.

Figure 3.16 shows the influence of the server link weight α on the perfor-
mance of the hybrid caching approach with a reactive ratio of λ = 0.41, using the
overhead-aware objective function and a request prediction without knowledge of
blockbuster movies. The proactive placement is performed every 24h. Using a
value of α > 0.5 steers the ILP to minimize the bandwidth usage on the server
ingress link. Minimizing the server link usage directly results in a higher hit ratio,
as can be seen in Figure 3.16a. In terms of bandwidth usage, Figure 3.16b shows a
clear increase for the values of α > 0.5. When the focus is given to the ingress link
bandwidth, the algorithm prefers storing more unique movies in the network in-
stead of duplicating the most popular ones. This results in longer routing paths for

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 75

0.0 0.2 0.4 0.6 0.8 1.0
Server link weight α

0

10

20

30

40

50

H
it

 r
a
ti

o
 (

%
)

Leased capacity

2.5%
5%

10%

(a) Influence of the server link
weight α on the hit ratio.

0.0 0.2 0.4 0.6 0.8 1.0
Server link weight α

360

380

400

420

440

460

480

500

A
v
g
.
b
a
n
d
w

id
th

 u
sa

g
e
 (

M
b
it

/s
)

Leased capacity

2.5%
5%

10%

(b) Influence of the server link
weight α on the average band-
width usage.

0.0 0.2 0.4 0.6 0.8 1.0
Server link weight α

0

2

4

6

8

10

12

T
o
ta

l
m

ig
r.

 o
v
e
rh

e
a
d
 (

T
b
y
te

)

Leased capacity

2.5%
5%

10%

(c) Influence of the server link
weight α on the migration
overhead.

Figure 3.16: Influence of the server link weight α on the performance of the hybrid caching
approach.

the popular content, introducing additional bandwidth usage. Finally, Figure 3.16c
shows that for large values of α, the migration overhead is significantly reduced.
This behavior is due to the fact that the overhead-aware objective function is used.
As all migrated content originates from the server node, all migration overhead
is routed over a server ingress link, having a strong impact on the objective of the
ILP. Placing content inside the ISP network can decrease the streaming bandwidth
usage, but for large values of α, the bandwidth inside the ISP network is not de-
cisive. Consequently, large values of α will steer the algorithm to migrate less
content items.

3.6.1.8 Capacity limitations

Up to now, all evaluations have been performed using over-provisioned node ca-
pacities, i.e., sufficiently high to allocate all of the leased capacity on a single core
node. This gave the algorithm complete freedom on how to distribute the capacity.
To demonstrate the general applicability of the proposed approach, simulations
have been performed in a scenario where the total storage capacity available in the
network is equal to the capacity leased by all of the tenants. As with the previous
evaluations, the capacity of the edge nodes is set to half of the capacity of the core
nodes. In this configuration, the algorithm has less freedom to decide how to place
the content given that the space available at each node is limited.

Figure 3.17 shows the performance of the proposed approach when two tenants
lease storage capacity in a scenario with limited node capacities, relative to the
scenario with over-provisioned nodes. It can be seen that, due to the restricted
freedom of the algorithm, the average bandwidth usage is slightly increased by
2.67%. Furthermore, the limited capacity causes the content to be stored further
away from the end-user, resulting in a slight increase of 3.85% in terms of average
hop count. However, it is interesting to note that the number of duplicated content
items is reduced, resulting in the average hit ratio being increased by 2.85%.

76 CHAPTER 3

Avg. bandwidth Hit ratio Avg. hopcount
Criteria

0.90

0.95

1.00

1.05

1.10
R

e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

 c
o
m

p
a
re

d
 t

o
 o

v
e
rp

ro
v
is

io
n
e
d
 c

a
p
a
ci

ty
Leased capacity

2.5%
5%
10%

Figure 3.17: Relative performance of the proposed approach in a scenario with limited ca-
pacity compared to the scenario with over-provisioned capacity.

3.6.2 Performance comparison

In this section, we compare the performance of the proposed approach to a purely
proactive and reactive scheme based on the preferred parameter configuration (i.e.,
the one that optimizes the performance of the hybrid scheme) derived from the
analysis in Section 3.6.1:

• Reconfiguration interval of 24h

• Overhead-aware objective function

• Fixed reactive ratio λ = 0.41

In this section, we consider a scenario where no knowledge about blockbuster
movies is available and a scenario where 5 blockbuster movies are known a priori.
In these evaluations, two content providers lease some caching capacity from the
ISP with over-provisioned node capacities.

Figure 3.18 shows the performance of the proposed approach, relative to a
purely reactive approach in a scenario where no information about blockbuster
movies is available. It can be seen that the benefits of the proposed approach are
higher for lower amounts of leased capacity. This can be explained by the com-
bination of the increasing performance of the LRU cache replacement strategy for
larger cache sizes and the decreasing stability of the popularity for higher amounts
of leased capacity, as described in Section 3.6.1.2. For the evaluated VoD scenario
and topology, the relative performance increase on average amounts to 5.35%,
42.96% and 8.15% in terms of average bandwidth usage, hit ratio and average hop
count respectively.

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 77

Avg. bandwidth Hit ratio Avg. hopcount
Criteria

0.0

0.5

1.0

1.5

2.0

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

 c
o
m

p
a
re

d
 t

o
 L

R
U

Leased capacity

2.5%
5%
10%

Figure 3.18: Relative performance of the proposed approach compared to a purely reactive
approach when no blockbuster knowledge is available.

In the same scenario, the performance of the proposed approach is compared
to a purely proactive approach in Figure 3.19. As opposed to the comparison
with a reactive approach, the performance gain compared to a proactive approach
increases with the amount of leased capacity. Again, this can be explained by
the increasing performance of the LRU replacement strategy and the decreasing
stability of the content popularity: the reactive part of the hybrid cache covers
the decreasing performance of the proactive placement strategy in these scenarios.
The average performance increases amount to 7.36%, 18.78% and 5.63% in terms
of average bandwidth usage, hit ratio and average hop count, respectively, with
39.19% less migration overhead.

When information about 5 blockbuster movies is available on a daily basis, the
same trends can be seen (graphs omitted due to space limitations). Compared to
a purely reactive approach, the average performance increase in terms of average
bandwidth usage, hit ratio and average hop count is equal to 9.26%, 44.34% and
8.46%, respectively. Compared to a purely proactive approach, relative perfor-
mance increases of 5.89%, 10.58% and 3.94% are achieved in terms of average
bandwidth usage, hit ratio and average hop count, respectively, with 39.63% less
migration overhead.

3.7 Conclusions

In this chapter, we presented a hybrid cache management approach for ISP net-
works in a scenario where multiple content providers lease caching capacity. In
the proposed approach, a part of the leased capacity is uniformly allocated across

78 CHAPTER 3

Migration overhead Avg. bandwidth Hit ratio Avg. hopcount
Criteria

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

e
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

 c
o
m

p
a
re

d
 t

o
 p

u
re

 p
ro

a
ct

iv
e
 p

la
ce

m
e
n
t

Leased capacity

2.5%
5%
10%

Figure 3.19: Relative performance of the proposed approach compared to a purely proactive
approach when no blockbuster knowledge is available.

the network and equipped with a reactive cache replacement strategy to handle in-
herent inaccuracies when predicting the content popularity. The allocation of the
remaining caching capacity is periodically reconfigured based on predictions of
the content popularity and the geographical distribution of requests.

To characterize the performance of the proposed approach in a realistic sce-
nario, a request trace of the VoD service of a leading European telecom operator
has been applied. While general characteristics of this trace, such as its popularity
curve and diurnal pattern, are comparable to generally accepted popularity mod-
els, it contains real-life information about the geographical distribution of content
popularity and underlying relationships between multiple content items, which is
often nonexistent in synthetic models.

Thorough evaluations have shown that a hybrid cache management approach
can combine the benefits of both a reactive approach and the purely proactive
management approach proposed in previous work [1, 4], outperforming both ap-
proaches in terms of multiple performance indicators for a wide range of reactive
ratios. After optimizing the reactive ratio over multiple scenarios for the eval-
uated VoD use-case and topology, the hybrid cache management approach can
increase the hit ratio by 18.78% and 42.96% on average, compared to the purely
proactive and the purely reactive approach using the LRU cache replacement strat-
egy, respectively. In terms of average bandwidth usage, the reduction amounts to
7.36% and 5.35%, respectively. Furthermore, content is shown to be stored closer
to the end-users, indicated by the average hop count being reduced with 5.63%
and 8.15%, respectively. Compared to the purely proactive approach, the hybrid
caching approach introduces 39.19% less migration overhead.

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 79

Finally, the potential benefits of adaptively changing the cache division ratio
over time in order to react to changes in the prediction accuracy have been inves-
tigated. It was shown that the theoretical performance gain with respect to a static
reactive ratio in terms of hit ratio is negligible compared to the required level of
added complexity.

Acknowledgment
Maxim Claeys is funded by grant of the Agency of Innovation by Science and
Technology in Flanders (IWT). This work was partly funded by Flamingo, a Net-
work of Excellence project (318488) supported by the European Commission un-
der its Seventh Framework Programme.

80 CHAPTER 3

References
[1] M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latré, G. Pavlou, and

F. De Turck. Proactive multi-tenant cache management for virtualized ISP
networks. In Proceedings of the International Conference on Network and
Service Management (CNSM), pages 82–90, 2014.

[2] Cisco. Cisco Visual Networking Index: Forecast and methodology, 2014-
2019. Technical report, Cisco, 2015.

[3] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang. Cooperative content
distribution and traffic engineering in an ISP network. In Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pages 239–250, 2009.

[4] M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latré, F. De Turck,
and G. Pavlou. Towards multi-tenant cache management for ISP networks. In
Proceedings of the European Conference on Networks and Communications
(EuCNC), pages 1–5, 2014.

[5] S. Asur and B. A. Huberman. Predicting the future with social media. In
Proceedings of the IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technology, volume abs/1003.5, pages 492–
499, 2010.

[6] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakrish-
nan. Optimal content placement for a large-scale VoD system. In Proceedings
of the International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), pages 1–12, nov 2010.

[7] A. Sharma. Distributing content simplifies ISP traffic engineering. In Pro-
ceedings of the ACM International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS), pages 229–242, 2013.

[8] V. Sourlas, P. Flegkas, L. Gkatzikis, and L. Tassiulas. Autonomic cache
management in information-centric networks. In Proceedings of the IEEE
Network Operations and Management Symposium (NOMS), pages 121–129,
2012.

[9] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis. Distributed
selfish replication. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 17(12):1401–1413, 2006.

[10] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for content
distribution networks. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), pages 1–9, 2010.

HYBRID CACHE MANAGEMENT FOR VIRTUALIZED ISP NETWORKS 81

[11] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li. Collaborative hierarchical caching
with dynamic request routing for massive content distribution. In Proceed-
ings of the IEEE International Conference on Computer Communications
(INFOCOM), pages 2444–2452, 2012.

[12] T. Wauters, J. Coppens, F. De Turck, B. Dhoedt, and P. Demeester. Replica
placement in ring based content delivery networks. Computer Communica-
tions, 29(16):3313–3326, 2006.

[13] M. R. Korupolu and M. Dahlin. Coordinated placement and replacement for
large-scale distributed caches. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 14(6):1317–1329, 2002.

[14] V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren. Quantifying the
benefits of joint content and network routing. In Proceedings of the ACM In-
ternational Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), pages 243–254, 2013.

[15] B. Frank, I. Poese, G. Smaragdakis, S. Uhlig, and A. Feldmann. Content-
aware traffic engineering. ACM SIGMETRICS Performance Evaluation Re-
view, feb 2012.

[16] I. Baev and R. Rajaraman. Approximation algorithms for data placement
problems. SIAM Journal on Computing, pages 1–18, 2008.

[17] T. Bekta, J.-F. Cordeau, E. Erkut, and G. Laporte. Exact algorithms for the
joint object placement and request routing problem in content distribution
networks. Computers & Operations Research, 35(12):3860–3884, dec 2008.

[18] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. Joint object placement
and node dimensioning for Internet content distribution. Information Pro-
cessing Letters, 89(6):273–279, 2004.

[19] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. On the optimization of
storage capacity allocation for content distribution. Computer Networks,
47(3):409–428, 2005.

[20] N. Kamiyama, T. Mori, R. Kawahara, S. Harada, and H. Hasegawa. ISP-
operated CDN. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM) Workshops, pages 49–54, 2009.

[21] K. Cho, H. Jung, M. Lee, D. Ko, T. Kwon, and Y. Choi. How can an ISP
merge with a CDN? IEEE Communications Magazine, 49(October):156–
162, 2011.

82 CHAPTER 3

[22] M. Wichtlhuber, R. Reinecke, and D. Hausheer. An SDN-based CDN/ISP col-
laboration architecture for managing high-volume flows. IEEE Transactions
on Network and Service Management (TNSM), 12(1):48–60, mar 2015.

[23] D. Tuncer, M. Charalambides, R. Landa, and G. Pavlou. More control over
network resources: an ISP caching perspective. In Proceedings of the Inter-
national Conference on Network and Service Management (CNSM), pages
26–33, 2013.

[24] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang. Prac-
tical, real-time centralized control for CDN-based live video delivery. ACM
SIGCOMM Computer Communication Review, 45(5):311–324, 2015.

[25] N. Garg and J. Konemann. Faster and simpler algorithms for multicommod-
ity flow and other fractional packing problems. SIAM Journal on Computing,
37(2):630–652, 2007.

[26] Y. Koren. Factorization meets the neighborhood: a multifaceted collabora-
tive filtering model. In Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pages 426–434, 2008.

[27] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu. Video popularity dynam-
ics and its implication for replication. IEEE Transactions on Multimedia,
17(8):1273–1285, 2015.

[28] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior
in large-scale video-on-demand systems. ACM SIGOPS Operating Systems
Review, 40(4):333–344, 2006.

4
Cooperative Announcement-based

Caching for Video-on-Demand
Streaming

M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck,
S. Latré and F. De Turck.

Published in Transactions on Network and Service Management, June 2016.
? ? ?

In the previous chapter it was shown that a hybrid cache management ap-
proach can outperform purely proactive content placement by providing reactivity
to unexpected changes in the request pattern. However, to further reduce the net-
work load, the design of appropriate cache replacement algorithms is of utmost im-
portance. Based on the fact that, typically, a video stream is temporally segmented
into smaller chunks that can be accessed and decoded independently, cache re-
placement strategies have been developed that take advantage of this temporal
structure in the video. In this chapter, two caching strategies are proposed that ad-
ditionally take advantage of the phenomenon of binge watching, where users watch
multiple consecutive episodes of the same series, which is reported by recent user
behavior studies to become the everyday behavior. Taking into account this infor-
mation allows us to predict future segment requests, even before the video playout
has started. Two strategies are proposed, both with a different level of coordination
between the caches in the network. Using a Video-on-Demand (VoD) request trace

84 CHAPTER 4

based on binge watching user characteristics, the presented algorithms have been
thoroughly evaluated in multiple network topologies with different characteristics,
showing their general applicability. It was shown that in a realistic scenario, the
proposed election-based caching strategy can outperform the state-of-the-art by
20% in terms of cache hit ratio while using 4% less network bandwidth.

4.1 Introduction

Traditionally, channel-based networks (e.g., satellite, cable networks) were used to
distribute linear TV, benefiting from the broadcast nature of these networks. How-
ever, while in linear TV the amount of video traffic is proportional to the number
of channels, in an on-demand system the traffic is proportional to the number of
users. This leads to a major increase in capacity requirements for on-demand
video delivery on the backbone. By deploying intermediary caches, closer to the
end-users, popular content can be served faster and without increasing backbone
traffic. Since video interests are shared between users and their viewing interests
overlap in time, deploying these caches can substantially reduce the required ca-
pacity by taking advantage of these overlapping sessions. Caching networks (e.g.,
Content Delivery Networks (CDNs)) were traditionally used to deliver web content
in a scalable way and reduce latency by temporally storing part of the content in a
network of caches close to the end-users. However, the use of caching in a stream-
ing environment differs from the traditional web-based caching, since the objects
are typically much larger and are to be consumed directly after they have been re-
quested. Therefore, video delivered over caching networks is typically temporally
segmented into smaller chunks that can be accessed and decoded independently.

Designing an appropriate replacement strategy for such caching networks is
of utmost importance to achieve high caching efficiency and reduce the network
load. Most caching algorithms are based on observations and take into account
the recency or frequency of requests to calculate the rank of each of the cached
objects. When caching temporally segmented video, as is the case in HTTP-based
streaming systems, the caching algorithm can also take into account the temporal
structure of the video. That is, when the streaming application requests the n-th
segment at a specific point in time, the caching strategy can take advantage of the
knowledge that with high likelihood the (n+1)-th and subsequent segments will be
consumed shortly after this segment. Therefore, when multiple streaming sessions
request the same segmented content, the caching strategy can take advantage of
this knowledge to keep the segments in cache that are to be consumed in the near
future.

Caching strategies can be further improved by taking into account additional
information, such as content popularity and regional differences. The optimal
caching algorithm for an isolated cache (known as Belady’s MIN [1]) takes ad-

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 85

vantage of the knowledge on future requests to discard the objects for which the
next request occurs the furthest in the future. In a real system, this information on
future requests is not directly available. However, studies1 on user behavior for
Over-The-Top (OTT) streaming services report that respectively 88% and 70% of
the Netflix and Hulu Plus users stream three or more consecutive episodes of the
same TV show (referred to as binge watching). Furthermore, binge watching is
reported to become the everyday behavior with users streaming on average 2.32

episodes per sitting, resulting in about 57% of the streaming sessions that could
be announced in advance [2]. Taking into account these announcements allows us
to predict future segment requests and thus approximating the theoretical optimal
caching strategy. Furthermore, service providers could give incentives (e.g., dis-
counts, higher resolution video (4K)) to users when they announce their streaming
sessions in advance.

In this chapter, a novel caching strategy is proposed that takes advantage of the
inferred knowledge of future segment requests when streaming segmented video
and additionally exploits the added knowledge when streaming clients announce
the videos that will be streamed in the near future. Using this additional infor-
mation, we are able to estimate the future reuse times of the segmented content.
This allows us to increase the caching efficiency compared to using only reuse
time predictions based on the structure of the segmented video. Two caching
strategies are proposed, each applying a different type of cooperation inside the
caching network. The first approach, based on the strategy presented in our pre-
vious work [3], applies a simple threshold-based cascading strategy to provide
a basic level of coordination. The second proposal elaborates on this approach
by adding a more advanced election-based coordination strategy. Furthermore,
compared to our previous work, experiments have been performed using different
network topologies and request traces, based on recent analysis of user behavior
in a Video-on-Demand (VoD) scenario.

The main contributions of this chapter are threefold. First, we propose a novel
election-based caching strategy that outperforms the current state-of-the-art strate-
gies by including knowledge on segmented video streaming and announced future
video requests. Second, we use user behavior models to emulate video interrup-
tions and evaluate their impact on the proposed and state-of-the-art caching strate-
gies. Finally, the proposed strategy is thoroughly evaluated in a distributed caching
scenario on two types of network topology.

1Nielsen - http://www.nielsen.com/us/en/insights/news/2013/binging-is-the-new-viewing-for-
over-the-top-streamers.html

http://www.nielsen.com/us/en/insights/news/2013/binging-is-the-new-viewing-for-over-the-top-streamers.html
http://www.nielsen.com/us/en/insights/news/2013/binging-is-the-new-viewing-for-over-the-top-streamers.html

86 CHAPTER 4

4.2 Related work

4.2.1 Cache replacement strategies

Web caching was introduced as a way to save traffic and minimize the perceived
delay on the Internet by storing data closer to the end-user. Many cache replace-
ment algorithms have been proposed in the past and stem from replacement strate-
gies for both web proxy caching and CPU caching. Least Recently Used (LRU)
is based on the recency of the cached objects and discards the least recently used
items first. This type of caching algorithms is known to attach too much impor-
tance to unpopular objects, awarding them the highest rank upon a single request.
Least Frequently Used (LFU) determines the number of requests for an object
over a period of time and discards the least frequently used objects first. This
type of caching algorithms is known to attach as much importance to ancient as
to recent history. To account for this, dynamic aging factors are introduced to im-
prove the performance in LFU Dynamic Aging (LFU-DA). Adaptive Replacement
Cache (ARC) balances between LRU and LFU by using more complex algorithms
to determine the rank [4].

The aforementioned replacement strategies are widely used in web caches.
Caching for video streaming differs from caching web content in a number of
ways. First, video objects are typically much larger than traditional web objects.
Second, there is a difference in popularity evolution for streaming videos com-
pared to web content. Furthermore, in contrast to web objects, having only the
beginning of a video allows a video application to already start playout while the
download continues [5]. This has led to the adoption of segment-based caching
of multimedia streams. These segments can have variable size, e.g., smaller seg-
ments at the start of the video to decrease start-up delays. Wu et al. define three
segmentation approaches for proxy caching: fixed length segments, pyramid with
exponentially increasing segment sizes and skyscraper where sizes increase slower
compared to the pyramid scheme by repeating each layer n times [6, 7]. The au-
thors conclude that segmentation approaches are particularly effective when the
cache size is limited, media popularity changes over time, requests are spread over
a large number of media objects and when the media file size and library is large.

Chen et al. propose a streaming proxy system called Hyper Proxy, which uses
active prefetching for in-time delivery of uncached segments to address the proxy
jitter problem [8]. This work was extended by adding segmentation strategies
based on object popularity and by using predictions of future segment requests to
preload uncached segments [9]. In previous work, a proactive cache management
system for multi-tenant CDNs was proposed that optimizes content placement and
server selection based on content popularity and geographical distribution of re-
quests [10]. In this chapter we focus on reactive caching approaches leveraging
video structure and request announcements rather than proactively placing content

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 87

into network caches. Other approaches use a two-tier cache that distinguishes be-
tween to-be-played and possibly played segments, partitioning the cache in two
layers that are dynamically scaled [11]. The approach of dynamic cache partition-
ing has also been applied by Wauters et al., where caching decisions in a time-
shifted television service are based on content popularity metrics [12]. Popularity-
based caching approaches have also been proposed by De Vleeschauwer et al. [13].

Marinca et al. use an analysis of the clients’ request over passed time intervals
to predict the content that will be requested in the near future [14]. By using a
history window of the past 24 hours allows reducing the traffic with about 30%.
Others evaluate the impact of dynamic sizing between prefix and suffix caching
for segmented video [15]. Hong et al. propose a ranking scheme that follows the
dynamicity of the video library [16]. The rank is based on the linearity of the video
that if a chunk is requested, the next chunk will be requested with high probability
in the near future. To this end each segment is assigned a value based on the num-
ber of viewers who are watching the video and will probably request the segment
in the future. This value reflects the number of hits that this particular segment
will receive in the future. Based on this value a rank is calculated that evicts the
segments with the least chance of being reused in the future. In this chapter, we
additionally take into account the timing information of future requests by consid-
ering video request announcements to further increase the cache performance.

The MIN cache replacement algorithm proposed by Belady et al. is an offline
eviction strategy that has been proven to be optimal [1]. It requires advanced
knowledge of the requested content, and based on this information, chooses to
evict the item in the cache whose next request occurs furthest in the future. Van
Roy et al. propose a proof of optimality for the MIN cache replacement algorithm
based on a dynamic programming argument [17]. Wu et al. make use of the natural
linear time structure of segmented video to propose a caching algorithm based on
the exact reuse time [18]. This reuse time indicates when a cached segment will be
reused and allows the eviction strategy to determine the segment request that will
occur the furthest in the future. The authors do not take into account the delivery
times between the different nodes in the network, only a single cache is assumed
and the sessions are never interrupted. Our proposed approach not only uses the
temporal structure of segmented video but also includes information of announced
sessions. Furthermore, we also use interruption models to simulate user churn and
use a hierarchy of caches where the delivery times between the different nodes are
taken into account.

Recently, protocols have been proposed that support the announcement of
deadlines, applied in this work. Shared Content Addressing Protocol (SCAP) is a
transport protocol aimed at optimizing the delivery process that allows in-network
intermediary elements to participate in delivering the content [19]. Furthermore
it offers support for intermediary caches, multicast-like delivery of shared content

88 CHAPTER 4

requests and announcing deadlines for the delivery of the content. Similar features
are also provided by Information-Centric Networking (ICN) architectures [20].
These architectures allow content to be duplicated everywhere in the network, en-
abling in-network caching at a fine granularity [21].

4.2.2 Cache coordination strategies

In traditional hierarchical web caching systems there is no cooperation between the
different nodes which deploy a replacement algorithm locally (e.g., LRU). Unsat-
isfied requests are forwarded up the hierarchy, resulting in copies of the requested
objects being placed in every cache along the return path to the requester. This
data replication leads to a poor utilization of the global cache storage capacity.
Che et al. propose a cooperative hierarchical caching strategy where caching an
object in a certain node is based on the access frequency for the document at this
level [22, 23]. Furthermore, a document that is replaced at a certain level is fur-
ther cached at the upper level cache, if not already. This ensures both that popular
items reside closer to the end-user, while avoiding that documents with decreasing
popularity are completely removed from the cache hierarchy.

Tang et al. investigated cache management strategies for en-route web caching
and proposed a caching scheme that integrates both object placement and replace-
ment policies [24]. In the proposed scheme, the cache status information along the
routing path of a request is used to dynamically determine where to cache the ob-
ject and which objects to replace. Jiang et al. extend upon this work and argue that
previous solutions only solved restricted partial problems. The authors propose a
dynamic programming approach which computes the global optimal solution with
and without prefetching [25]. Previous work on hierarchical and en-route caching
focused on web caching, which is substantially different compared to the caching
of multimedia objects. In more recent work, Poularakis et al. focus on the delivery
of VoD content in hierarchical cache topologies such as Internet Protocol televi-
sion (IPTV) networks tend to have [26]. A heuristic approach is taken in which
items are iteratively replaced by other items at the caching nodes if this yields a
reduction in access cost, which is impacted by both latency and bandwidth con-
sumption. The authors assume unit size objects which allows them to calculate an
optimal solution to the content placement problem in polynomial time.

Also in CDN research, cooperative caching has been a subject of interest over
the past years. Ni et al. propose a hierarchical overlay architecture for CDNs
where different servers cooperate through intracluster and intercluster coopera-
tive caching schemes [27]. For intracluster cooperation a portion of each cache is
assigned to cooperate in a hashing based system, while for intercluster coopera-
tion a query-based scheme is proposed where each cluster representative queries
its neighboring clusters for missing content. The time-shifted and VoD nature of

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 89

new and emerging video services defies the broadcast paradigm of the underly-
ing conventional TV networks. To cope with the increased bandwidth demands
these services incur, Borst et al. formulate the content placement problem as a
linear program in order to benchmark the globally optimal performance [28]. A
lightweight cooperative content placement algorithm is proposed in which each
nodes modifies its local content store to achieve the maximum gain in global util-
ity. Zhang et al. performed a survey on cooperative caching in CDNs and conclude
that increased cooperation between caches is required to decrease the bandwidth
requirements and caching redundancy [29]. This is also confirmed by Li et al.
who propose a genetic algorithm implemented on the MapReduce framework for
the placement of video chunks [30]. The authors achieve similar hit ratios as with
LRU, but are able to reduce the workload on the congested links.

In ICN, one of the simplest non-cooperative caching strategies is called Leave
Copy Everywhere (LCE), which copies the object at each node along the down-
loading path. In a recent survey, different strategies for both explicit and implicit
cache coordination are discussed [31]. Li et al. propose a cooperative caching
strategy which aims at decreasing the cross-domain traffic for on-demand video
streaming. They propose a hashing-based neighborhood caching strategy in which
each node only stores chunks of which the hash of the id matches their assigned
range [32]. Another proposed approach is to use age-based caching algorithms
where replicas closer to the edge and with higher popularity are assigned with a
higher age [33]. The routers adjust the contents age field as it travels along the
path. The paper claims that it is straightforward to use the scheme for chunk-level
caching, however no measures are proposed to take advantage of the temporal
structure of these chunks. Sourlas et al. propose to put distributed autonomic
managers in the cache-enabled nodes which decide on the information items to
cache. The authors propose different levels of autonomicity, each with a different
degree of communication overhead [34]. Li et al. propose an optimal strategy for
provisioning storage capacity which optimizes the overall network performance
and cost [35]. A routing-aware content placement algorithm is proposes which
runs on a centralized server and assigns content to store to each Content-Centric
Networking (CCN) router. There exists a trade-off between the content coordi-
nation cost (provisioning storage) and network routing performance in CCN. In
non-coordinated caching, less distinct contents are stored and reduce the efficiency
of the caching ”cloud”.

4.3 Client messaging behavior

In the approaches that will be presented in the next section, the caching nodes
keep track of the start times of video streaming sessions. To this end, the caches
rely on messaging from the video clients. The clients can send information in the

90 CHAPTER 4

form of three types of messages: (i) session announcements, (ii) session initiation
notifications and (iii) session finishing/canceling notifications. In this section, the
messaging behavior of the video client is described. The client sends each message
to the first cache on the path to the content server. How the messaging is handled
inside the network depends on the caching algorithm and will be described in
Section 4.4. To enhance the clarity of the remainder of this work, it should be
emphasized that a streaming session is referred to as consuming a single video
while a sitting consists of multiple consecutive streaming sessions of the same
user.

4.3.1 Session announcements

As described earlier, users often watch multiple consecutive episodes of the same
series in a single sitting. This phenomenon is often referred to as binge watching.
Therefore, when a user watches an episode of a specific series, there is a significant
probability that the user will watch the next episode of the same series once the
current episode finishes. The client can use this information to generate a session
announcement. When the client starts streaming episode i of a specific series at
time ti, the predicted start time of episode i+1 can be calculated as ti+1 = ti+di,
where di denotes the duration of episode i. The announcement for episode i + 1

contains the video ID of the next episode and its estimated start time ti+1. This
announcement message can be sent into the caching network anywhere between
time ti and ti+1, based on the relative announcement delay parameter β ∈ [0; 1].
Concretely, the announcement will be send at time ai+1 = ti + β × di. It is
important to note that no prior announcements are made for the first episode of a
sitting. Furthermore, for episodic content, this strategy introduces exactly one false
announcement per sitting (i.e., the announcement made for the episode after the
current one when the current one is abandoned). For movies, no announcements
are made.

4.3.2 Session initiations

When the playout of a video is initiated, the client informs the caching network
about the video that is started and the actual start time of the streaming session.
It is important to note that this messaging could also be performed implicitly by
interpreting the first segment request of a specific video. For clarity reasons how-
ever, explicit messaging of session initiation is assumed in the remainder of this
work.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 91

4.3.3 Session expiration

At the end of a streaming session, the video client informs the caching network that
the current video playout is finished. When an announcement was made earlier for
the next episode of a series being watched, this announcement can optionally be
canceled. The message used to finish a streaming session or to cancel an announce-
ment contains the ID of the finished or canceled video and the (announced) start
time of the video.

4.4 Session-aware cache replacement

The knowledge about start times of video streaming sessions can be used by the
caching algorithms to infer the future request times of individual video segments.
Based on this information, replacement decisions can be made. In this work,
two different caching strategies are proposed. First, Section 4.4.1 describes an
announcement-based caching strategy with a basic form of communication in the
caching network, as proposed in our previous work [3]. Next, additional coor-
dination between the caches is added in the form of an election strategy, as will
be described in Section 4.4.2. For both caching strategies, the message handling
process and the segment replacement strategy will be discussed.

The goal of both coordination strategies is to find a node in the caching network
that will take the responsibility of caching the video for each streaming session.
In the remainder of this chapter, a node taking responsibility of caching a specific
video will be denoted as that node accepting the streaming session.

4.4.1 Threshold-based caching strategy

As described in Section 4.3, streaming session can either be announced prior to
playout or be advertised at the moment the session starts. In the threshold-based
caching strategy, sessions that were announced in advance play a different role
in the replacement strategy than sessions that were only advertised at their start.
Therefore, each caching node keeps track of two sets of streaming sessions. The
set of announced sessionsAnnwill be maintained in such a way that it contains all
announced sessions that were accepted by the local caching node. These sessions
can either be active sessions or future sessions. Similarly, the set of perceived
sessions Per will at any time contain all active streaming sessions that the cache is
aware of. These sessions can either have been announced but not accepted locally
or not have been announced at all. For Per, no future sessions are considered.
For each session in Ann and Per, the streamed video v and its start time tv is
recorded.

92 CHAPTER 4

C2

C1

C3

C4

E3

E4

E5

E1

E2

S

Start time
for video v

Edge node

Core node

Server node

Cache

Cascade
announcement

α

α

Figure 4.1: Illustration of the session announcement handling process in the threshold-
based caching strategy.

4.4.1.1 Message handling

To keep track of the session information, a basic form of communication exists
between the different caches in the network. This communication is implemented
as a threshold-based cascading strategy.

Session announcements When a caching node receives a session announcement
message, it decides autonomously whether to accept the session locally or to cas-
cade it to the next hop on the path to the content server. A node will only decide to
accept the announced session, and add it to the set of accepted announced sessions
Ann, if it estimates to be able to serve at least a relative part α of the video from its
local cache. This estimation is based on the number of segments of the considered
video that are already present in the cache, combined with the segments that are
estimated to arrive before the new session starts, based on known earlier sessions
for the same video. The value of α serves as a session acceptance threshold and
provides a basic form of coordination between the caches. If the node is not able to
meet the threshold α, it does not accept the session and cascades the announcement
to the next hop. This cascading process continues until either the announcement is
accepted or the last hop on the path to the server is reached. An illustration of this
process is given in Figure 4.1. A client sends a session announcement for video v
to the edge node E2. As the number of cached segments for video v is below the
session acceptance threshold α, E2 cascades the announcement to the next hop
C2 where it is accepted and the cascading process is terminated.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 93

Session initiations Upon arrival of a session initiation message for video v, the
cache checks if it already has an accepted announced session for that video with the
current time as start time (i.e., ifAnn already contains a start time t for video v). If
this is not the case, the session information is added to the set of perceived sessions
Per. In this way, Ann and Per are fully distinct. However, it is important to note
that even though Ann and Per are fully distinct, both sets can contain different
start times tv for the same video v. Furthermore, a single set can contain multiple
start times for the same video. Next, the session initiation message is sent to the
next hop on the path to the server until the last hop is reached.

Session expiration When a streaming session ends, the session information can
be removed from the caching nodes. When a cache receives a session expiration
message for an announced start time t of video v, it removes the session from the
set of accepted announced sessions Ann. If the session was not accepted locally,
the expiration message is cascaded to the next hop. Otherwise, the cascading pro-
cess is finished. Perceived sessions sv ∈ Per are only removed when the session
is known to have ended, even if it was interrupted prematurely. For a session sv
with start time tv , this is the case when t > tv + Lv , with t and Lv denoting the
current time and the total length of video v respectively.

4.4.1.2 Replacement strategy

Using the information contained in the start times of the announced and perceived
sessions, each node can decide which segments to keep in its cache, and which
can be removed. For this purpose, the concept of earliest reuse times is applied.
For each start time tv for a specific video v, the reuse time rtvvx of each segment
vx of that video can easily be calculated using (4.1), where x and lv respectively
denote the sequence number of segment vx and the segment length for video v.
If rtvvx < t, with t denoting the current time, the reuse time is set to infinity. The
earliest announced reuse time eAvx is then obtained as the lowest reuse time rtvvx of
all start times tv of accepted announced sessions Ann for video v, as expressed
in (4.2). Similarly, the earliest perceived reuse time is obtained using (4.3). When
there are no accepted announced or perceived sessions for video v, respectively
eAvx or ePvx are said to be equal to infinity for every segment vx of that video.

rtvvx = tv + x× lv (4.1)

eAvx = min
tv∈Ann

rtvvx (4.2)

ePvx = min
tv∈Per

rtvvx (4.3)

When a segment vx of video v arrives at a node, the node has to decide
whether or not to add it to its local cache C, if it is not already cached. If the

94 CHAPTER 4

remaining available caching capacity is insufficient to store the new segment vx,
another segment can be selected for removal. This procedure is outlined in Al-
gorithm 4.1. First, the earliest announced and perceived reuse times eAvx and ePvx
of the newly arrived segment are calculated as described above (line 1). Next,
a segment s′ ∈ C ∪ {vx} is selected as a candidate for eviction. This segment
s′ is selected as the segment with the maximal earliest announced reuse time:
s′ = arg maxv′i∈C∪{vx} e

A
v′i

(lines 4-6). It is important to keep in mind at this
point that when there are no accepted sessions for the video v′ of a segment v′i,
the earliest announced reuse time eAv′i is equal to infinity. In this way, when there
are cached segments for which no session was accepted locally, these are always
preferred for eviction. When multiple segments with the same maximal earliest
announced reuse time exist, the segment with the maximal earliest perceived reuse
time is selected: s′ = arg maxv′i∈C∪{vx} e

P
v′i

(lines 7-9). The LRU order is used as
a final tiebreaker (lines 10-13). When the evicted segment s′ is a cached segment
(s′ ∈ C), it is removed from the cache and replaced by the new segment vx (lines
18-20).

1: Calculate eAvx and ePvx
2: s′ ← vx
3: for v′i ∈ C do
4: Calculate eAv′i and ePv′i
5: if eAv′i > eAs′ then
6: s′ ← v′i
7: else if eAv′i = eAs′ then
8: if ePv′i > ePs′ then
9: s′ ← v′i

10: else if ePv′i = ePs′ then
11: Calculate LRU ranks LRUv′i

and LRUs′

12: if LRUv′i
> LRUs′ then

13: s′ ← v′i
14: end if
15: end if
16: end if
17: end for
18: if s′ 6= vx then
19: Remove s′ from C
20: Add vx to C
21: end if

Algorithm 4.1: Outline of the eviction strategy of the threshold-based caching approach on
arrival of a new segment vx.

The rationale behind this approach is to keep the segments in the cache that
will be needed in the nearest future. However, accepted announced sessions are

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 95

always prioritized, even if another segment has an earlier perceived reuse time.
This is done to ensure that the cache will not violate the intent expressed when
accepting the sessions and ending the cascading chain. It is important to note that
when no sessions are announced, the algorithm behaves as a purely reuse time-
based replacement strategy without coordination between the caches, comparable
to the approach proposed by Wu et al. [18], only taking into account the temporal
structure of videos in the form of earliest perceived reuse times.

4.4.2 Election-based caching strategy

To further increase the performance of the caching approach, the influence of the
level of additional coordination between the different caches is investigated. The
goal of this election-based caching approach is to select the optimal location to
cache a specific video and avoid unnecessary duplicates on the shared network
path. In this caching strategy, each caching node keeps track of both a set of known
sessionsKno and a set of accepted sessionsAcc. In contrast to the threshold-based
caching strategy, Kno will contain both active sessions and announced future ses-
sions andAccwill contain accepted sessions for both sessions that were announced
and that were only reported at the start.

4.4.2.1 Message handling

To achieve coordination in the caching network, an election-based strategy has
been applied.

Session announcements When the video client sends a session announcement
message to the first cache, an election process is initiated between all caches along
the path to the server. When a caching node receives the announcement, the session
is added to the set of known sessionsKno. Next, the cache calculates the estimated
increase in number of cache hits that would be achieved when the announced video
would be cached locally. This calculation takes into account the segments that are
already present in the cache and the sessions that are known up to know. To clarify
this calculation, assume there is an announcement at time t for streaming video v,
consisting of 100 segments of 1 second, with start time tx > t. After adding this
session to the set of known sessions, Kno contains 3 sessions for video v, with
start times tx (the newly announced session), ty = t−30 (a streaming session that
has already started) and tz > t (a future session that was announced earlier). At the
moment, suppose that 10 segments of video v are present in the cache. Given the
session information, one can estimate that 270 segment requests for v will arrive in
the future: as tx > t and tz > t, two sessions still have to start while 30 segments
have already been streamed in the session with start time ty . As the cache only
contains 10 out of 100 segments at the moment, 90 segments will still have to be

96 CHAPTER 4

Figure 4.2: Illustration of the session announcement handling process in the election-based
caching strategy.

cached, resulting in 90 cache misses. In total, we can estimate 180 future cache
hits when video v would be cached.

Similarly, when there is not sufficient available capacity to store the entire
video, the minimum amount of lost cache hits due to the removal of cached content
is calculated. By subtracting this hit loss from the estimated additional future hits,
the expected local gain can be calculated. Next, this potential local gain is passed
to the next hop on the path to the server, where the same process is performed.
When the last hop on the path is reached, the node with the highest potential gain
is selected as the winner of the election process. When none of the caches has a
positive potential gain, the election has no winner. The result of the election is
cascaded back along the reverse path. When the result arrives at the winner, the
announced session is added to the set of accepted sessions Acc. When segments
of a video v′ for which the node had accepted a session have to be removed from
the cache to be able to accommodate for the newly announced session, all sessions
for v′ are removed from Acc. In this way, the caching capacity is guaranteed to be
always sufficient to store all segments of the videos for which sessions are accepted
inAcc. An illustration of the election process is given in Figure 4.2. A client sends
a session announcement for video v to the edge node E2. The potential gain δ is
calculated locally and forwarded to the next hop C2. There, the potential gain ε is
calculated and forwarded to the last hop C3 as the gain is higher that the previous
maximal gain (ε > δ). At node C3, the potential local gain is calculated as ζ,
which is lower that the previous gain ε. As C2 has the highest potential gain, C2

is selected as the winner of the election and the result is cascaded back to the first
node E2.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 97

Session initiations Upon arrival of a session initiation message for video v, the
caches behave similarly as for session announcements. In this case, an election is
started for an implicit announcement for video v with start time t being the current
time. The details of the election process are described above.

Session expiration When a streaming session ends, the session information can
be removed from the caching nodes. When a cache receives a session expiration
message for a streaming session of video v with start time t, the session informa-
tion is removed from both the set of known sessions Kno and the set of accepted
sessions Acc.

4.4.2.2 Replacement strategy

For the segment replacement strategy, a reuse time-based algorithm is applied,
similar to the one presented earlier for the threshold-based strategy. However, as
reuse times are calculated based on all known sessions, no distinction is made
between announced or perceived reuse times. The earliest reuse time evx of a
segment vx of video v is obtained as the lowest reuse time rtvvx of all start times
tv of known sessions Kno for video v, as expressed in (4.4). When there are no
known sessions for video v, evx is said to be equal to infinity for every segment vx
of that video.

evx = min
tv∈Kno

rtvvx (4.4)

The cache replacement procedure is outlined in Algorithm 4.2. First, the ear-
liest reuse time evx is calculated as described above (line 1). Next, a segment
s′ ∈ C ∪ {vx} is selected as a candidate for eviction. However, segments are
only considered for eviction if they do not belong to a video for which a session
was accepted (line 4). The segment s′ is selected as the segment with the max-
imal earliest reuse time: s′ = arg maxv′i∈C∪{vx} ev

′
i

(lines 5-7). When multiple
such segments exist, the LRU order is used as a tiebreaker (lines 8-11). When the
evicted segment s′ is a cached segment (s′ ∈ C), it is removed from the cache and
replaced by the new segment vx (lines 16-18).

The rationale behind this approach is again to keep the segments in the cache
that will be needed in the nearest future. However, by not considering segments for
removal when a session for that video was accepted, we ensure that the cache will
always keep the segments that it intended to store when the session was accepted.
In contrast to the threshold-based caching strategy, the election-based strategy pro-
vides coordination between the caches, even when no sessions are announced.

98 CHAPTER 4

1: Calculate evx
2: s′ ← vx
3: for v′i ∈ C do
4: if @ start time tv′ ∈ Acc for video v′ then
5: Calculate ev′i
6: if ev′i > es′ then
7: s′ ← v′i
8: else if ev′i = es′ then
9: Calculate LRU ranks LRUv′i

and LRUs′

10: if LRUv′i
> LRUs′ then

11: s′ ← v′i
12: end if
13: end if
14: end if
15: end for
16: if s′ 6= vx then
17: Remove s′ from C
18: Add vx to C
19: end if

Algorithm 4.2: Outline of the eviction strategy of the election-based caching approach on
arrival of a new segment vx.

4.5 Scenario description

To evaluate the proposed approaches, a VoD request trace has been constructed
based both on a request trace of the VoD service of a leading European telecom
operator and on statistics provided by Conviva2. In October 2015, Conviva opened
access to viewer experience data, based on the analysis of 4 billion video streams
per month spread across 180 countries3. The dataset contains statistics about the
last year, ranging from Q4 2014 to Q3 2015. Section 4.5.1 describes the main
characteristics of the constructed request trace, while the applied session duration
model, simulating the session interruption behavior, is described in Section 4.5.2.
Finally, the considered network topologies are described in Section 4.5.3.

4.5.1 VoD trace characteristics
4.5.1.1 Content type

A wide variety of streaming services is monitored by Conviva, with video content
consisting of 4 categories: live videos, short videos (≤ 15 minutes), episodic con-
tent and movies. As this chapter focuses on a VoD scenario, only episodic content
and movies are considered. In the remainder of this chapter, we will use the terms

2Conviva - http://www.conviva.com
3Conviva dataset - http://www.conviva.com/industry-data-portal/

http://www.conviva.com
http://www.conviva.com/industry-data-portal/

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 99

episodic content and series interchangeably. According to the Conviva dataset,
over the last year, 82.28% of the monitored streaming sessions was for episodic
content while 17.72% was for movies.

However, while the Conviva dataset contains information about the streaming
sessions, it has no statistics about the content catalog. To identify a realistic ratio
between series and movies in a VoD content catalog, the Netflix catalog in the
USA has been analyzed4. At the time of the analysis, the USA Netflix catalog
contained about 7720 movies and 2920 seasons of series.

4.5.1.2 Content characteristics

According to the Conviva dataset, the average bit rate amounts to 2.53Mbps and
1.92Mbps for movies and episodic content respectively. As no information about
the catalog is available, the average video duration and the number of episodes per
series season were set based on natural values. The duration of a movie was set
to be between 60min and 150min while an average series episode has a duration
of 20min to 50min. All videos are considered to have a segment duration of 1s.
Each season of a series consists of 10 to 30 episodes and the popularity of a series
is uniformly distributed across the episodes.

4.5.1.3 Binge watching behavior

In August 2015, Conviva released the results of a survey on binge watching [2].
Figure 4.3 shows the distribution of binge watching durations as published in this
report. It can be seen that on average, 2.32 consecutive episodes of a series are
watched in a single sitting. The binge watching session can start with any episode
of the series.

4.5.1.4 Global content popularity

Given the long-tailed nature of content popularity, the global popularity distri-
bution is commonly represented by the Zipf law [36]. When the content catalog
consists ofN videos and the videos are ranked according to decreasing global pop-
ularity, the relative number of requests rn for the video with rank n is calculated
according to (4.5), where µ is the scaling-law coefficient of the Zipf distribution.
Based on an analysis of a request trace of the VoD service of a leading European
telecom operator, in this work, the value of µ was set to 0.9 for both movies and
episodic content.

rn =
n−µ∑N
k=1 k

−µ
(4.5)

4iStreamguide - http://usa.istreamguide.com

http://usa.istreamguide.com

100 CHAPTER 4

1 2 3 4-7 8-9 10+
of episodes watched in one session

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
e
la

ti
v
e
 n

u
m

b
e
r

o
f

u
se

rs

Figure 4.3: Distribution of the duration of binge watching sessions as reported by Con-
viva [2].

4.5.1.5 Geographical distribution of requests

While the Zipf law models the global popularity distribution, it does not account
for the geographical distribution of requests. In this work, the requests are consid-
ered to be distributed geographically according to the model proposed by Tuncer
et al. [37]. When the content catalog consists of N videos and requests originate
from L locations, the video with rank n is requested from ln locations, as defined
in (4.6). In this equation, σ is a strictly positive parameter that defines the char-
acteristics of the distribution. Again based on an analysis of a request trace of the
VoD service of a leading European telecom operator, the value of σ was identified
to be 2.43.

ln = 1 + (L− 1)×
(
N − n
N − 1

)σ
(4.6)

4.5.1.6 Request pattern

In order to distribute the video requests over time, we analyzed a request trace
of the VoD service of a leading European telecom operator, collected between
Saturday February 6, 2010 and Sunday March 7, 2010. Based on this analysis, the
weekly request pattern shown in Figure 4.4 has been extracted. This graph shows
the distribution of requests during the week, starting in Monday 00h00min (day 0)
up to Sunday 23h59min (day 7), and the average daily trend.

Using the above characteristics, a VoD request trace of 7 days has been gener-
ated, consisting of 125,000 requests spread across 12 locations. The main charac-
teristics of the resulting VoD request trace are summarized in Table 4.1. The total
content catalog size amounts to about 4.25Tbyte.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 101

0 1 2 3 4 5 6 7
Time (days)

0.0

0.5

1.0

1.5

2.0

2.5

N
u
m

b
e
r

o
f

re
q
u
e
st

s
(%

 o
f

w
e
e
kl

y
 r

e
q
u
e
st

s)

Trace
Daily trend

Figure 4.4: Relative distribution of the weekly requests starting from Monday 00h00min
(day 0) up to Sunday 23h59min (day 7).

Table 4.1: Summary of resulting VoD trace characteristics.

Characteristic Movies Series
Units 700 265
Episodes/unit 1 10-30
Rel. nr. of requests 17.72% 82.28%
Avg. bit rate 2.53Mbps 1.92Mbps
Duration 60-150min 20-50min
Avg. binge watching duration 1 2.32
Popularity distribution Zipf(µ = 0.9) Zipf(µ = 0.9)
Geographical distribution ln(σ = 2.43) ln(σ = 2.43)

102 CHAPTER 4

4.5.2 Session duration

In contrast to most other related work, we take into account the fact that users do
not necessarily stream a video entirely, but may interrupt the session mid-stream.
Multiple models have been presented in literature to represent the session dura-
tion in video streaming services. Ullah et al. provide a survey of user behavior
measurements in several types of video streaming services [38]. According to
this survey, the session duration of most VoD services can be modeled using an
exponential distribution. To deal with the fixed content length in this work, a nor-
malized exponential distribution was used to model the session duration in our
experiments. The cumulative probability p(x) of a session to last at most a relative
part x ∈ [0; 1] of the video is calculated as shown in (4.7), where the value of λ
depends on the video type.

p(x) =
1− e−λx

1− e−λ
(4.7)

For movies, this session duration model is applied to every streaming session.
On the contrary, given the binge watching behavior for episodic content, the du-
ration model is only applied to the last episode of a binge watching session. The
previous episodes in the session are considered to be watched completely. Ac-
cording to Conviva, the average session duration amounts 52.23% and 68.43% of
the total video length for movies and series respectively. Taking into account the
binge watching characteristics, only 26.75% of the last episode of a binge watch-
ing session is watched on average. This results in the parameter of the normalized
exponential duration model set to λ = −0.21 for movies and to λ = 3.34 for
series.

4.5.3 Network topology

To evaluate the performance of the proposed algorithm in a distributed scenario,
two network topologies with different characteristics have been used. In both
topologies, a distinction is made between core nodes and edge nodes. All requests
are introduced at the edge nodes, while the core nodes interconnect the entire net-
work. Caching capacity is available both at the core nodes and edge nodes. As
described in Section 4.5.1, the employed VoD request trace contains 12 cities,
which we map onto 12 edge nodes in both topologies.

The first topology represents a three-level tree topology, consisting of 12 edge
nodes, 5 core nodes and 1 server node S, hosting all video content. The caching
capacity at core nodes C2-C5 is twice as high as the capacity at the edge nodes,
while the capacity of the root core node C1 is twice as high as the capacity of the
other core nodes. The resulting topology is shown in Figure 4.5.

The second topology represents a general network, based on the GÉANT topol-

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 103

S

E2 E5E3 E4 E8E6 E7E1 E9 E10 E11 E12

C1

C2 C3 C4 C5

Figure 4.5: Evaluated tree topology.

C1

C4

C7C8

C9

C3

C5

C6
C2

S

E1
E2

E3

E5

E6

E7 E8

E9

E10

E12

E4

E11

C10

Figure 4.6: Evaluated GÉANT-based topology.

ogy5, consisting of 12 edge nodes, 10 core nodes and 1 server node S, hosting all
video content. The caching capacity at the core nodes is twice as high as the ca-
pacity at the edge nodes. The resulting topology is shown in Figure 4.6.

In each experiment, the total caching capacity in the network is expressed rel-
ative to the total video catalog size. The capacity is spread uniformly across the
network, taking into account the capacity ratios described above.

5GÉANT Project - http://www.geant.net

http://www.geant.net

104 CHAPTER 4

4.6 Evaluation results

To characterize the performance of the proposed approaches, multiple performance
indicators are evaluated:

• Hit ratio: the relative amount of segment requests that could be served from
within the Internet Service Provider (ISP) network (in %).

• Average bandwidth usage: the average bandwidth usage in the entire ISP
network (in Mbit/s), introduced by the video streaming sessions.

• Average hop count: the average number of links a segment crosses between
its storage location and the requesting client. This metric indicates how close
the relevant content is stored to the end-users.

In all of the evaluations, the performance of the proposed approaches is com-
pared to both the LRU caching strategy and a purely reuse time-based strategy
without session announcements and cache coordination, comparable to the ap-
proach proposed by Wu et al. [18].

4.6.1 Influence of the session acceptance threshold α

As described in Section 4.4.1, the session acceptance threshold α is used in the
threshold-based caching approach to decide whether to accept an announced ses-
sion locally or to cascade it to the next hop. To evaluate the impact of this param-
eter, the scenario where all announcements are made without delay (i.e., β = 0.0)
is considered first.

Figure 4.7 shows the influence of the session acceptance threshold α on the
hit ratio of the proposed threshold-based caching strategy for various amounts of
caching capacity in the tree topology. It can be seen that the best results can be
achieved with a session acceptance threshold α of 25%. Similar results are ob-
tained for the general topology and for the other performance indicators.

However, it can be seen that for smaller amounts of caching capacity, the per-
formance of the approach with acceptance threshold α = 0% comes closer to the
performance with acceptance threshold α = 25%. This behavior can be explained
by the semantics of the acceptance threshold. With an acceptance threshold of
0%, all sessions are accepted at the edge nodes, without cascading information in
the network. This clearly is a suboptimal situation. However, when for example
the acceptance threshold amounts 25%, sessions will only be accepted when at
least 25% of the segments of that session are expected to be present in the cache.
For small caches, chances strongly decrease that a significant amount of segments
will be cached at once when multiple sessions are active in parallel. Therefore,

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 105

2.5% 5% 10% 20%
Total caching capacity (% of catalog size)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

H
it

 r
a
ti

o
0%
25%
50%
75%

Figure 4.7: Impact of the session acceptance threshold α on the hit ratio of the threshold-
based caching strategy in the tree topology when all announcements are made
without delay.

only very few sessions will be accepted inside the network and most of the an-
nouncement information will be unused. In this case, better results are achieved
by accepting all sessions at the network edge, rather than not accepting them at all.

The impact of the threshold α on the session acceptance in the network is
shown in Figure 4.8 for a caching capacity of 5% of the total content catalog in
the tree topology. The results for α = 0% are omitted for visibility reasons, as
in this case all sessions are accepted at the edge nodes. As expected, the number
of accepted sessions decreases with higher values of α. Furthermore, when α

increases, a bigger part of the accepted sessions was accepted in the network core
nodes. This can be explained by the fact that core nodes simultaneously perceive
requests of multiple edge nodes, such that cached segments can be reused across
geographical locations. Similar results are obtained for the general topology.

Given the above analysis, the session acceptance threshold of α = 25% can
generally be selected as the best configuration for the threshold-based caching
strategy.

4.6.2 Influence of the relative announcement delay β

As introduced in Section 4.3, the relative announcement delay parameter β de-
fines at what time in a streaming session of a series episode, the next episode will
be announced. Naturally, the value of β serves as a tradeoff. When announce-
ments are made in an early stage (low values of β), the caching network is given
a larger future request window, based on which more accurate decisions can be
made. On the other hand, when delaying the announcements (larger values of

106 CHAPTER 4

25% 50% 75%
Session acceptance threshold α

0.00

0.05

0.10

0.15

0.20

R
a
ti

o
Acceptance
Edge nodes

Figure 4.8: Impact of the session acceptance threshold α on the session acceptance in the
network for the threshold-based caching strategy in the tree topology when all
announcements are made without delay and with a total capacity of 5% of the
catalog size.

β), false announcements are avoided given that some streaming sessions will have
ended before an announcement was made.

The generated VoD trace contains 44091 sittings for series, in total stream-
ing 102627 episodes. In theory, when all announcements are made immediately,
44091 false announcements will be made when announcing the next episode dur-
ing the last episode of the sitting (neglecting the situation when the last episode of
a season is being watched and no future announcement can be made). Figure 4.9
shows the number of false announcements, relative to the maximal number of false
announcements, for the relative announcement delay β ∈ {0.0, 0.25, 0.50, 0.75}.
As expected, the number of false announcements decreases with higher values
of β. Furthermore, the number of false announcements clearly follows the the-
oretical trend that can be calculated based on the session duration model. More
specifically, the theoretical number of false announcements for a given value of β
is the number of streaming sessions that have not finished after a relative part β of
its total duration.

The influence of the relative announcement delay parameter β on the perfor-
mance of the proposed caching strategies in terms of hit ratio is shown in Fig-
ure 4.10, using the tree topology and a total caching capacity of 5% of the total
catalog size. It can be observed that while the number of false announcements
significantly decreases with increasing values of β, better performance is achieved
for lower values of β for both the threshold-based and the election-based caching
strategies. As shown in Table 4.2, the same influence can be perceived on the
average hop count and the average total bandwidth usage. Similar results are ob-

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 107

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Relative announcement delay β

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 n

u
m

b
e
r

o
f

fa
ls

e
 a

n
n
o
u
n
ce

m
e
n
ts

False announcements
Theoretical trend

Figure 4.9: Impact of the relative announcement delay β on the relative number of false
announcements and its theoretical trend.

Table 4.2: Impact of the relative announcement delay β on the average hop count and the
average total bandwidth usage in the tree topology with a total caching capacity
of 5% of the catalog size.

Threshold-based Election-based
β Hop count Bandwidth Hop count Bandwidth
0 2.48 2057Mbps 2.41 2002Mbps
0.25 2.48 2061Mbps 2.43 2016Mbps
0.5 2.49 2068Mbps 2.45 2034Mbps
0.75 2.51 2077Mbps 2.48 2055Mbps

tained in the general topology and for different cache sizes. As the LRU and the
reuse time-based strategies do not take into account session announcements, their
performance is not influenced by the value of β.

Based on the above analysis, it can be concluded that in the considered sce-
nario, the benefits of the earlier availability of future request information exceed
the negative impact of the false announcements for both of the proposed caching
strategies. Therefore, the clients are configured to immediately announce an episode
of a series once the previous episode is started, i.e., β = 0.0.

4.6.3 Distribution of accepted sessions

The cooperation strategy within the caching approach defines how sessions are ac-
cepted in the caching network. Figure 4.11 shows the relative amount of sessions
that were accepted in the tree topology for different amounts of caching capacity.
As in the threshold-based approach only announced session can be accepted, the

108 CHAPTER 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Relative announcement delay β

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

H
it

 r
a
ti

o

LRU
Reuse time-based
Threshold-based
Election-based

Figure 4.10: Impact of the relative announcement delay β on the hit ratio of the proposed
caching strategies in the tree topology with a total caching capacity of 5% of
the catalog size.

acceptance ratio is calculated based on the number of announcements. In contrast,
in the election-based strategy, sessions can be accepted, independent of whether
or not they were announced. Therefore, the acceptance ratio is based on the num-
ber of announcements and the number of unannounced sessions. As expected, an
increasing trend can be observed with the amount of caching capacity for both
approaches. However, for the election-based strategy, significantly more sessions
are accepted. This difference can be explained by the nature of the communica-
tion in both approaches. For the threshold based approach, sessions will only be
accepted when at least a local hit ratio of 25% can be expected. In contrast, in the
election-based strategy, sessions can be accepted as soon as a hit can be expected
for at least 1 segment of the video.

The cooperation strategy not only influences the session acceptance ratio, but
also impacts the distribution of the accepted session across the network. Fig-
ure 4.12 shows the distribution of the accepted sessions for the threshold-based
caching strategy across the edge nodes (nodesE1−E12), the core nodes C2−C5

and the root node C1 of the tree topology. It can be seen that for small amounts
of caching capacity, the majority of the accepted sessions are accepted deep in the
tree network. Given the threshold of α = 25%, most announcements are cascaded
in the edge nodes. In the core nodes, however, caching space can be shared be-
tween sessions streaming the same content from different geographical locations.
In this way, more sessions can reach the acceptance threshold in the core nodes
and at the root node. When the capacity increases, more sessions are accepted di-
rectly at the edge nodes as the number of segments from a single video that can be
cached grows. Relatively less announcements are cascaded all the way to the root

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 109

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.2

0.4

0.6

0.8

1.0

S
e
ss

io
n
 a

cc
e
p
ta

n
ce

 r
a
ti

o
Threshold-based
Election-based

Figure 4.11: Session acceptance ratio for both of the proposed caching strategies in the tree
topology for different amounts of caching capacity.

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

tr
ib

u
ti

o
n
 o

f
a
cc

e
p
te

d
 s

e
ss

io
n
s

Edge nodes
Core nodes
Root node

Figure 4.12: Distribution of accepted sessions in the tree topology for the threshold-based
caching strategy.

of the tree network, decreasing the relative amount of sessions that are accepted
there. However, most of the accepted sessions are still accepted at the core nodes
or at the root of the tree.

The distribution of accepted sessions in the tree network for the election-based
caching strategy is shown in Figure 4.13. Compared to the threshold-based strat-
egy, accepted sessions are more evenly distributed across the network for small
amounts of caching capacity. When the caching capacity increases, more locally
popular content can be cached in the edge nodes, increasing the relative amount
of accepted sessions at the edge nodes. However, when the caching capacity in-

110 CHAPTER 4

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

tr
ib

u
ti

o
n
 o

f
a
cc

e
p
te

d
 s

e
ss

io
n
s

Edge nodes
Core nodes
Root node

Figure 4.13: Distribution of accepted sessions in the tree topology for the election-based
caching strategy.

creases, relatively more sessions are accepted in the root of the tree network as
well. All sessions cross the root C1 of the tree network, which thus has knowledge
about all active requests in the network. Caching globally popular content in the
root of the network can increase local hits for sessions originating from multiple
locations. Therefore, the expected gain for globally popular content is the high-
est in the root node. As the capacity increases, the estimated hit loss decreases,
resulting in more sessions accepted in the root node.

4.6.4 Performance comparison

Finally, the performance of the proposed approaches can be compared to the LRU
approach and a purely reuse time-based approach. For the threshold-based ap-
proach, based on the analysis in Section 4.6.1, the session acceptance threshold
was set to α = 25%. The client messaging behavior was configured to immedi-
ately send out announcements for subsequent episodes (β = 0.0), based on the
results of Section 4.6.2.

4.6.4.1 Tree topology

Figure 4.14 provides a comparison in terms of hit ratio between the proposed ap-
proaches and the reference approaches in the tree topology. It can be seen that
both proposed approaches significantly outperform the state-of-the-art for each of
the evaluated caching capacities. However, the performance gain compared to the
reuse time-based approach increases for larger capacities. When more caching
capacity is available, the proposed strategies can benefit more from the available

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 111

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.1

0.2

0.3

0.4

0.5

H
it

 r
a
ti

o

LRU
Reuse time-based
Threshold-based
Election-based

Figure 4.14: Performance comparison in terms of hit ratio in the tree topology.

session announcements. However, it can be seen that the performance increase
compared to the LRU approach decreases for larger capacities, even for the purely
reuse time-based approach. This demonstrates that the advantage of taking into
account the temporal structure in the video is stronger for smaller caches. Com-
paring the threshold-based approach to the election-based approach shows that the
advanced level of coordination in the caching network yields a constant perfor-
mance increase, independent of the leased capacity.

The performance in terms of hit ratio, average hop count and average total
bandwidth usage inside the tree network is summarized in Table 4.3. It can be
seen that when the caching capacity amounts to 5% of the content catalog, using
the election-based coordination can relatively increase the hit ratio with 10% while
using 3% less bandwidth by bringing the content 3% closer to the end-user on
average, compared to the threshold-based coordination. The proposed approach
results in a hit ratio increase of 20% compared to the state-of-the-art while using
4% less bandwidth. Compared to the LRU approach, the performance increase
amounts to 157%, 14% and 14% in terms of hit ratio, average hop count and
average total bandwidth usage respectively.

4.6.4.2 General topology

As can be seen in Figure 4.15, similar results can be obtained in the general
GÉANT-based topology as in the tree topology, showing the general applicabil-
ity of our proposed approach. However, it can be seen that each of the evaluated
approaches yield better performance in the tree topology. This can be explained
by the hierarchical structure in the tree topology. As each node in the tree has an
aggregated view of the streaming sessions in its child nodes, the same caching ca-

112 CHAPTER 4

Table 4.3: Performance comparison in the tree topology.

Approach Hit ratio Hop count Bandwidth
(%) (Mbps)

2.5%

LRU 6.51 2.89 2415
Reuse time-based 21.74 2.61 2161
Threshold-based 22.93 2.58 2145
Election-based 25.35 2.52 2092

5%

LRU 12.13 2.79 2335
Reuse time-based 26.08 2.53 2092
Threshold-based 28.44 2.48 2057
Election-based 31.21 2.41 2002

10%

LRU 20.72 2.62 2197
Reuse time-based 30.85 2.43 2007
Threshold-based 33.88 2.36 1957
Election-based 37.20 2.30 1905

20%

LRU 32.13 2.36 1981
Reuse time-based 36.65 2.28 1887
Threshold-based 39.90 2.21 1827
Election-based 42.95 2.16 1790

pacity can be used more efficiently compared to the general topology, lacking any
hierarchical structure. Furthermore, the fact that the caching capacity is distributed
across a higher number of nodes in the GÉANT-based topology compared to the
tree topology results in lower absolute cache sizes, negatively influencing the hit
ratio for all of the considered approaches.

Table 4.4 shows the performance in terms of the different performance metric
for the general topology. It can be seen that in a scenario where the total caching
capacity amounts to 5% of the content catalog, the election-based approach out-
performs the threshold-based approach with 13%, 2% and 2% in terms of hit ratio,
average hop count and average total bandwidth usage respectively. Compared to
the state-of-the-art, the proposed approach results in a hit ratio increase of 22%
while using 3% less bandwidth by bringing the content 4% closer to the end-user
on average.

4.7 Conclusions

In this chapter, two cooperative announcement-based caching strategies for Video-
on-Demand (VoD) systems were presented. These strategies not only take into ac-
count the temporal structure of videos, but also take advantage of the phenomenon
of binge watching where users watch multiple consecutive episodes of the same
TV show. This allows a significant part of the streaming sessions to be announced

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 113

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.1

0.2

0.3

0.4

0.5

H
it

 r
a
ti

o

LRU
Reuse time-based
Threshold-based
Election-based

Figure 4.15: Performance comparison in terms of hit ratio in the GÉANT-based topology.

Table 4.4: Performance comparison in the general topology.

Approach Hit ratio Hop count Bandwidth
(%) (Mbps)

2.5%

LRU 3.16 2.70 2251
Reuse time-based 14.35 2.49 2067
Threshold-based 14.82 2.48 2060
Election-based 17.33 2.42 2016

5%

LRU 6.21 2.64 2204
Reuse time-based 17.55 2.44 2017
Threshold-based 18.99 2.41 1996
Election-based 21.46 2.35 1953

10%

LRU 11.84 2.53 2111
Reuse time-based 21.26 2.36 1952
Threshold-based 23.47 2.31 1919
Election-based 26.24 2.26 1879

20%

LRU 20.29 2.34 1956
Reuse time-based 25.76 2.25 1862
Threshold-based 28.46 2.19 1817
Election-based 31.47 2.15 1784

114 CHAPTER 4

in advance of the actual playout. While both of the proposed approaches apply a
reuse time-based replacement strategy, they fundamentally differ in the coordina-
tion process inside the caching network. Both approaches have been thoroughly
evaluated using a VoD request trace in two network topologies with different char-
acteristics and with different amounts of caching capacity, showing the general
applicability of the proposed approach. It was shown that the proposed approach,
applying an election-based coordination strategy, can outperform the state-of-the-
art with more than 20% in terms of cache hit ratio in a realistic scenario, while
simultaneously using 3% less network bandwidth.

Acknowledgment
M. Claeys and N. Bouten are funded by a grant of the Agency for Innovation by
Science and Technology in Flanders (IWT). The research was performed partially
within the ICON SHIFT-TV project (under grant agreement no. 140684). This
work was partly funded by Flamingo, a Network of Excellence project (318488)
supported by the European Commission under its Seventh Framework Programme.

4.8 Addendum: GÉANT-based topology graphs
As the influence of the different parameters, evaluated in Sections 4.6.1-4.6.3, is
comparable in both the tree topology and the GÉANT-based topology, graphs were
only presented for the tree topology. For sake of completeness, the graphs for the
GÉANT-based topology are presented below in this addendum. The considered
scenarios were identical for both topologies.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 115

2.5% 5% 10% 20%
Total caching capacity (% of catalog size)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

H
it

 r
a
ti

o

0%
25%
50%
75%

Figure 4.16: Impact of the session acceptance threshold α on the hit ratio of the threshold-
based caching strategy in the GÉANT-based topology when all announcements
are made without delay.

25% 50% 75%
Session acceptance threshold α

0.00

0.05

0.10

0.15

0.20

R
a
ti

o

Acceptance
Edge nodes

Figure 4.17: Impact of the session acceptance threshold α on the session acceptance in the
network for the threshold-based caching strategy in the GÉANT-based topol-
ogy when all announcements are made without delay and with a total capacity
of 5% of the catalog size.

116 CHAPTER 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Relative announcement delay β

0.00

0.05

0.10

0.15

0.20

0.25

H
it

 r
a
ti

o

LRU
Reuse time-based
Threshold-based
Election-based

Figure 4.18: Impact of the relative announcement delay β on the hit ratio of the proposed
caching strategies in the GÉANT-based topology with a total caching capacity
of 5% of the catalog size.

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.2

0.4

0.6

0.8

1.0

S
e
ss

io
n
 a

cc
e
p
ta

n
ce

 r
a
ti

o

Threshold-based
Election-based

Figure 4.19: Session acceptance ratio for both of the proposed caching strategies in the
GÉANT-based topology for different amounts of caching capacity.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 117

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
is

tr
ib

u
ti

o
n
 o

f
a
cc

e
p
te

d
 s

e
ss

io
n
s

Edge nodes
Core nodes

Figure 4.20: Distribution of accepted sessions in the GÉANT-based topology for the
threshold-based caching strategy.

0.00 0.05 0.10 0.15 0.20
Total caching capacity (% of catalog size)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
is

tr
ib

u
ti

o
n
 o

f
a
cc

e
p
te

d
 s

e
ss

io
n
s

Edge nodes
Core nodes

Figure 4.21: Distribution of accepted sessions in the GÉANT-based topology for the
election-based caching strategy.

118 CHAPTER 4

References
[1] L. Bélády. A study of replacement algorithms for a virtual-storage computer.

IBM Systems Journal, 5(2):78–101, 1966.

[2] Conviva. Binge watching: the new currency of video economics. Technical
report, Conviva, 2015.

[3] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. Latré,
and F. De Turck. An announcement-based caching approach for video-on-
demand streaming. In Proceedings of the International Conference on Net-
work and Service Management (CNSM), pages 1–8, 2015.

[4] N. Megiddo and D. S. Modha. Outperforming LRU with an adaptive replace-
ment cache algorithm. Computer, 37(4):58–65, 2004.

[5] N. Färber, S. Döhla, and J. Issing. Adaptive progressive download based
on the MPEG-4 file format. Journal of Zhejiang University SCIENCE A,
7(1):106–111, 2006.

[6] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segment-based proxy caching of multime-
dia streams. In Proceedings of the International Conference on World Wide
Web, pages 36–44, 2001.

[7] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segmentation of multimedia streams for
proxy caching. IEEE Transactions on Multimedia, 6(5):770–780, 2004.

[8] S. Chen, B. Shen, S. Wee, and X. Zhang. Segment-based streaming me-
dia proxy: modeling and optimization. IEEE Transactions on Multimedia,
8(2):243–256, 2006.

[9] S. Chen, B. Shen, S. Wee, and X. Zhang. SProxy: A caching infrastructure
to support internet streaming. IEEE Transactions on Multimedia, 9(5):1062–
1072, 2007.

[10] M. Claeys, D. Tuncer, J. Famaey, M. Charalambides, S. Latré, G. Pavlou, and
F. De Turck. Proactive multi-tenant cache management for virtualized ISP
networks. In Proceedings of the International Conference on Network and
Service Management (CNSM), pages 82–90, 2014.

[11] K.-C. Liang and H.-F. Yu. Adjustable two-tier cache for IPTV based on seg-
mented streaming. International Journal of Digital Multimedia Broadcasting,
2012(1):1–8, 2012.

[12] T. Wauters, W. Van de Meerssche, F. De Turck, B. Dhoedt, P. Demeester,
T. Van Caenegem, and E. Six. Co-operative proxy caching algorithms for

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 119

time-shifted IPTV services. In Proceedings of the EUROMICRO Conference
on Software Engineering and Advanced Applications, pages 379–386, 2006.

[13] D. De Vleeschauwer and K. Laevens. Performance of caching algorithms for
IPTV on-demand services. IEEE Transactions on Broadcasting, 55(2):491–
501, 2009.

[14] D. Marinca, A. Hamieh, D. Barth, K. Khawam, D. De Vleeschauwer, and
Y. Lelouedec. Cache management using temporal pattern based solicita-
tion for content delivery. In Proceedings of the International Conference on
Telecommunications (ICT), pages 1–6, 2012.

[15] Z. Xu, X. Guo, Y. Pang, and Z. Wang. The transmitted strategy of proxy cache
based on segmented video. In Proceedings of the IFIP International Confer-
ence on Network and Parallel Computing (NPC), pages 502–507, 2004.

[16] D. Hong, D. De Vleeschauwer, and F. Baccelli. A chunk-based caching al-
gorithm for streaming video. In Proceedings of the Workshop on Network
Control and Optimization, pages 1–8, 2010.

[17] B. Van Roy. A short proof of optimality for the MIN cache replacement
algorithm. Information Processing Letters, 102(2):72–73, 2007.

[18] T. Wu, K. De Schepper, W. Van Leekwijck, and D. De Vleeschauwer. Reuse
time based caching policy for video streaming. In Proceedings of the IEEE
Consumer Communications and Networking Conference (CCNC), pages 89–
93, 2012.

[19] K. De Schepper, B. De Vleeschauwer, C. Hawinkel, W. Van Leekwijck,
J. Famaey, W. Van de Meerssche, and F. De Turck. Shared Content Ad-
dressing Protocol (SCAP): Optimizing multimedia content distribution at the
transport layer. In Proceedings of the IEEE Network Operations and Man-
agement Symposium (NOMS), pages 302–310, 2012.

[20] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A
survey of information-centric networking. IEEE Communications Magazine,
50(7):26–36, 2012.

[21] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-network caching
for information-centric networks. In Proceedings of the ICN workshop on
information-centric networki, pages 55–60, 2012.

[22] H. Che, Z. Wang, and Y. Tung. Analysis and design of hierarchical web
caching systems. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), pages 1416–1424, 2001.

120 CHAPTER 4

[23] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems: mod-
eling, design and experimental results. IEEE Journal on Selected Areas in
Communications (JSAC), 20(7):1305–1314, 2002.

[24] X. Tang and S. T. Chanson. Coordinated en-route web caching. IEEE Trans-
actions on Computers, 51(6):595–607, 2002.

[25] A. Jiang and J. Bruck. Optimal content placement for en-route web caching.
In Proceedings of the IEEE International Symposium on Network Computing
and Applications, pages 9–16, 2003.

[26] K. Poularakis and L. Tassiulas. Optimal cooperative content placement al-
gorithms in hierarchical cache topologies. In Proceedings of the Annual
Conference on Information Sciences and Systems (CISS), pages 1–6, 2012.

[27] J. Ni and D. H. K. Tsang. Large-scale cooperative caching and application-
level multicast in multimedia content delivery networks. IEEE Communica-
tions Magazine, 43(5):98–105, 2005.

[28] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for content
distribution networks. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), pages 1–9, 2010.

[29] J. Zhang. A literature survey of cooperative caching in content distribution
networks. Computing Research Repository, 1210(71):1–5, 2012.

[30] Z. Li and G. Simon. In a Telco-CDN, pushing content makes sense. IEEE
Transactions on Network and Service Management (TNSM), 10(3):300–311,
2013.

[31] G. Zhang, Y. Li, and T. Lin. Caching in information centric networking: A
survey. Computer Networks, 57(16):3128–3141, 2013.

[32] Z. Li and G. Simon. Time-shifted TV in content centric networks: The case
for cooperative in-network caching. In Proceedings of the IEEE International
Conference on Communications (ICC), pages 1550–3607, 2011.

[33] Z. Ming, M. Xu, and D. Wang. Age-based cooperative caching in
information-centric networks. In Proceedings of the IEEE International Con-
ference on Computer Communications (INFOCOM) Workshops, pages 268–
273, 2012.

[34] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas. Distributed cache man-
agement in information-centric networks. IEEE Transactions on Network
and Service Management (TNSM), 10(3):286–299, 2013.

COOPERATIVE ANNOUNCEMENT-BASED CACHING FOR VOD STREAMING 121

[35] Y. Li, H. Xie, Y. Wen, C.-Y. Chow, and Z.-L. Zhang. How much to co-
ordinate? Optimizing in-network caching in content-centric networks. IEEE
Transactions on Network and Service Management (TNSM), 12(3):420–434,
2015.

[36] D. Rossi and G. Rossini. Caching performance of content centric networks
under multi-path routing (and more). Technical report, Telecom ParisTech,
2011.

[37] D. Tuncer, M. Charalambides, R. Landa, and G. Pavlou. More control over
network resources: an ISP caching perspective. In Proceedings of the Inter-
national Conference on Network and Service Management (CNSM), pages
26–33, 2013.

[38] I. Ullah, G. Doyen, G. Bonnet, and D. Gaı̈ti. A survey and synthesis of user
behavior measurements in P2P streaming systems. IEEE Communications
Surveys and Tutorials, 14(3):734–749, 2012.

5
Deadline-aware TCP Congestion

Control for Video Streaming Services

M. Claeys, N. Bouten, D. De Vleeschauwer, K. De Schepper,
W. Van Leekwijck, S. Latré and F. De Turck.

In proceedings of the IEEE International Conference on Network and
Service Management, November 2016.

? ? ?

This chapter focuses on the fact that Transmission Control Protocol (TCP),
transporting the vast majority of the video traffic, is far from minimizing the num-
ber of deadline-missing streams. However, for each byte in a video streaming
session, strict delivery deadlines are known at the application layer. By intro-
ducing deadline-awareness at the transport layer, video delivery can be optimized
by prioritizing specific flows. This chapter proposes a deadline-aware congestion
control mechanism, based on a parametrization of the traditional TCP New Reno
strategy. By taking into account the available deadline information, the modula-
tion of the congestion window is dynamically adapted to steer the aggressiveness
of a considered stream. The proposed approach has been thoroughly evaluated in
both a Video-on-Demand (VoD)-only scenario and a scenario where VoD streams
co-exist with live streaming sessions and non-deadline-aware traffic. It was shown
that in a video streaming scenario the minimal bottleneck bandwidth can be re-
duced by 16% on average when using deadline-aware congestion control. In co-
existence with other TCP traffic, a bottleneck reduction of 11% could be achieved.

124 CHAPTER 5

5.1 Introduction

Over the past decades, multimedia services have gained a lot of popularity. This
growth is largely due to video streaming services, accounting for about 70% of
all consumer Internet traffic in 2016 [1]. For delivery of video streaming ser-
vices, HTTP Adaptive Streaming (HAS) has become the de facto standard. These
HTTP-based techniques come with some important advantages. Not only is the
video content delivered reliably over Transmission Control Protocol (TCP), HAS
also allows seamless interaction through firewalls. On the downside however, as
the delivery is based on best-effort Internet, HTTP-based techniques are prone to
network congestion and large bandwidth fluctuations due to cross traffic. These
influences can be detrimental for the Quality of Experience (QoE).

TCP streaming sessions use a congestion control strategy to avoid congestive
collapse. For this purpose, the total number of unacknowledged packets that may
be in transit is limited by means of a congestion window at the sender side. It
was shown that using this congestion control strategy, multiple flows with sim-
ilar Round-Trip Times (RTTs) eventually converge to using equal amounts of a
contended link [2]. However, different types of services can have different re-
quirements. Considering a video streaming service, hard deadlines are associated
with each packet in the video stream once the playout is started. When these dead-
lines are violated, the playout is temporarily interrupted, negatively impacting the
QoE. However, fair bandwidth sharing as introduced by TCP is known to be far
from minimizing the number of deadline-missing streams [3].

In general, the client applications are aware of the deadlines associated with
the requested content. By introducing these deadlines in the network, multime-
dia delivery can be optimized by prioritizing specific flows. While DiffServ [4]
techniques have been proposed for this purpose in the past, this chapter focuses on
a best effort networking scenario by proposing a deadline-aware congestion con-
trol strategy for video streaming services, based on the traditional TCP New Reno
congestion control mechanism. The proposed strategy only requires changes at
the sender side and reduces to TCP New Reno congestion control in absence of
deadline information. Furthermore, for deadline-missing streams, the proposed
approach falls back to the TCP New Reno congestion control mechanism to avoid
congestive collapse. In the proposed approach, deadline information is passed to
the transport layer in the request to send data, as is commonly assumed in related
work [5–7]. This information provides details about (i) the deadline of the current
packet, (ii) the final deadline of the stream and (iii) the bit rate of the streamed con-
tent. Based on the deadline information and the current throughput measurement,
the algorithm dynamically changes the behavior of the congestion window adapta-
tions. In this way, urgent flows can occasionally achieve a higher throughput than
their fair share, while other, less urgent flows back off to allow other sessions to

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 125

increase their throughput.
The contributions of this chapter are threefold. First, a parametrization of the

congestion avoidance phase of the TCP New Reno congestion control mechanism
is proposed. Furthermore, the feasibility of prioritizing streams by changing the
configuration of these parameters is demonstrated. Second, a deadline-aware con-
gestion control strategy is introduced, dynamically adapting the parameter config-
uration of the congestion avoidance phase based on the deadlines of streaming ses-
sions. Third, the performance of the proposed approach is thoroughly evaluated,
both using conceptual examples and large scale packet-based simulations in NS-3.
For this purpose, both general traffic configurations and Video-on-Demand (VoD)-
only scenarios are considered.

The remainder of this chapter is organized as follows. First, Section 5.2 gives
an overview of related work on transport protocol optimizations for multimedia
delivery. Next, the feasibility of the proposed approach is demonstrated in Sec-
tion 5.3. The proposed algorithm is introduced in Section 5.4, while its perfor-
mance is evaluated in Section 5.5. Finally, Section 5.6 presents some final conclu-
sions.

5.2 Related work

Multiple transport protocols that offer novel delivery models to improve the sup-
port for multimedia applications have been presented in literature, including Stream
Control Transmission Protocol (SCTP) [8], Datagram Congestion Control Proto-
col (DCCP) [9] and Shared Content Addressing Protocol (SCAP) [10]. However,
ossification of the transport layer limits the deployability of new transport pro-
tocols. Furthermore, these approaches require changes both at the sending and
receiving side, as well as in the network.

TCP-RTM proposes extensions to TCP that improve performance of multime-
dia applications by allowing a minimal amount of packet re-ordering and loss in
the TCP stack [11]. This approach modifies the interaction between the application
and the receiver buffer, rather than proposing modifications to TCP itself. Selective
negative acknowledgments are used to allow senders to be informed of segments
that were skipped by the application, preventing retransmission. Similarly, TCP
Hollywood is a protocol offering an unordered, partially reliable message-oriented
transport service that is well suited for multimedia applications [12]. While this
approach is focused on deployability, the inconsistent retransmission mechanism
is visible to middleboxes performing deep packet inspection, which might disrupt
these connections. Furthermore, TCP Hollywood requires changes at both the
sender and receiver side. While the above approaches focus on flow-based opti-
mization, media-TCP-friendly congestion control (MTCC) takes into account the
deadlines for each packet [13]. Furthermore, additional complexity is added to this

126 CHAPTER 5

solution by introducing a packet-based multimedia model, considering distortion
impacts as well as inter-dependencies between multiple packets, using directed
acyclic graphs.

In the area of data center services, multiple transport protocols have been pro-
posed with the main objective of minimizing deadline misses. D3 introduced the
idea of including deadline awareness into data center networks by proactively al-
locating bandwidth before data transmission [5]. PDQ further improves flow com-
pletion times compared to D3 [14]. However, both protocols are incompatible
with TCP. Deadline-aware data center TCP (D2TCP) is a TCP-friendly protocol
implementing deadline-aware delivery [6]. Similar to our work, deadline-aware
congestion avoidance is implemented by changing the adaptation of the conges-
tion window. In D2TCP, the window size is modulated based on the deadlines and
the extent of congestion in the network. However, as the approach heavily relies
on Explicit Congestion Notification (ECN) feedback and is specifically aimed at
data center topologies and services, the applicability for video streaming over pub-
lic Internet is limited. DSTCP builds on the ideas introduced in D2TCP, adjusting
the congestion window size of a flow based on its deadline, its size and the degree
of network congestion [7]. As was the case with D2TCP, DSTCP heavily relies on
ECN feedback. L2DCT has been presented as a TCP-friendly protocol, reducing
completion times of short flows in data center networks [15]. As opposed to these
works, the focus in this chapter is on multimedia delivery in public Internet, rather
than data center networks.

5.3 Feasibility study

As a starting point for the proposed approach, TCP New Reno [16], an improved
version of the traditional TCP Reno congestion control mechanism, is used. For
a detailed description of the TCP New Reno congestion control mechanism, the
reader is referred to literature. In this work, we specifically focus on the congestion
avoidance phase of TCP New Reno while the slow start phase, the fast retransmit
behavior and the reaction to timeouts are unchanged. This section proposes a
parametrization of the congestion avoidance phase and demonstrates the feasibility
of steering the aggressiveness of a TCP stream using this parametrized scheme.

5.3.1 Parametrized congestion avoidance

In the congestion avoidance phase, TCP (New) Reno follows an Additive In-
crease/Multiplicative Decrease (AIMD) scheme to adapt the congestion window
size. With AIMD, a linear growth of the congestion window is combined with an
multiplicative reduction when a congestion event takes place, resulting in the well
known TCP sawtooth behavior. More concretely, with TCP (New) Reno, the con-

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 127

gestion window cwnd is increased as shown in equation (5.1) for every incoming
non-duplicate acknowledgment, where MSS represents the maximum segment
size [17]. This adjustment provides an acceptable approximation to the underlying
principle of increasing the congestion window with one full-sized segment every
RTT. When congestion is detected in the form of triple duplicate acknowledg-
ments, the congestion window is halved (i.e., cwnd = 0.5 ∗ cwnd).

cwnd = cwnd+
MSS ∗MSS

cwnd
(5.1)

It was shown that multiple flows with similar RTTs using the same AIMD
congestion control, eventually converge to using equal amounts of a contended
link [2]. However, this only holds when these flows use the same AIMD scheme.
In this work, we propose to parametrize the AIMD scheme, resulting in an increase
of the congestion window as expressed in equation (5.2) for every incoming non-
duplicate acknowledgment. Using this equation approximates the increase of the
congestion window with one full-sized segment every α ∈ R+ RTTs. Upon recep-
tion of the third duplicate acknowledgment, the congestion window size is reduced
as shown in equation (5.3), for β ∈]0; 1[. For α = 1.0 and β = 0.5, this AIMD
scheme corresponds to the scheme used in TCP (New) Reno.

cwnd = cwnd+
MSS ∗MSS

α ∗ cwnd
(5.2)

cwnd = (1− β) ∗ cwnd (5.3)

5.3.2 Parameter influence

Intuitively, lower values for α or β, causing a faster increase or slower decrease
of the congestion window size respectively, result in more aggressive behavior
and corresponding higher throughput. However, to study the influence of these
parameters in detail, simulations have been performed to compare the throughput
of a client using TCP New Reno congestion control to a client using different
parameter values.

For this purpose, two scenarios have been considered where respectively two
and ten clients simultaneously try to send data at a rate of 10Mbps over a bottleneck
link with a capacity equal to half of the sum of requested rates (i.e. 10Mbps and
50Mbps in the two and ten client scenario respectively). To estimate the influence
of the value of α, for one of the clients α is varied between 0.05 and 5.0 with a
fixed value of β = 0.5, while the other client(s) use TCP New Reno congestion
control (i.e. α = 1.0, β = 0.5). Similarly, the influence of β is evaluated by
varying its value between 0.01 and 0.99 while keeping a fixed value of α=1.0. Due
to the probabilistic nature of the applied Random Early Detection (RED) queuing

128 CHAPTER 5

0 1 2 3 4 5
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 T

h
ro

u
g
h
p
u
t

ra
ti

o

2 clients
10 clients

Figure 5.1: Influence of the AIMD parameter α on the average achieved relative throughput
on the contended link. The areas represent the 95% confidence interval.

discipline [18], all experiments have been performed for five iterations, presenting
the average results.

Figure 5.1 shows the influence of the value of α on the ratio between of the
throughput achieved by the client using varied parameters and the average through-
put achieved by the other clients, using TCP New Reno congestion control. As
expected, both in the two and ten client scenario, for low values of α (< 1.0) the
achieved throughput is significantly higher than the fair share throughput while
the opposite is true for high values of α (> 1.0). It can be seen that for very small
values of α (< 0.10), the client becomes too aggressive, resulting in decreased
performance. By increasing the congestion window too fast, the client perceives
a lot of timeouts, resulting the stream to execute in the slow start phase very of-
ten. Furthermore, the throughput ratio converges and the influence is limited when
increasing α above 4.0.

Furthermore, Figure 5.2 shows the influence of the value of α on the total
throughput on the contended link when all clients use this specific value, relative
to the throughput achieved with TCP New Reno congestion control. It can again
be seen that for very small values of α (< 0.1), the clients become too aggressive,
causing a fallback to the slow start phase too often. As a result, the flows are not
able to fill the link. For values above α >= 0.5, the general performance is within
1% of the TCP New Reno performance.

Similarly, the influence of the value of β is presented in Figure 5.3 and Fig-
ure 5.4. It can again be seen that, as expected, a flow is able to achieve a signifi-
cantly higher or lower throughput than its fair share by respectively using a value

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 129

0 1 2 3 4 5
α

0.6

0.7

0.8

0.9

1.0

1.1
 R

e
la

ti
v
e
 t

o
ta

l
th

ro
u
g
h
p
u
t

2 clients
10 clients

Figure 5.2: Influence of the AIMD parameter α on the total throughput achieved on the con-
tended link, relative to the throughput achieved with TCP New Reno congestion
control.

of β < 0.5 or β > 0.5. As was the case with α, a general performance degradation
can be perceived when all streams become too aggressive (i.e. β < 0.1). Further-
more, a performance drop of about 10% can be noticed when all streams use high
values of β. As this situation only occurs when all streams voluntarily back off,
indicating that the available bandwidth is higher than required for all flows, it is
unlikely to occur in practice.

Based on the above analysis, it can be summarized that the aggressiveness of
a stream can effectively be influenced by varying the value of α between 0.1 and
4.0 or varying the value of β between 0.1 and 0.95.

5.4 Algorithm
As shown in Section 5.3, the throughput can be increased or decreased by using
different values for α or β. In this section, an algorithm is proposed to dynamically
adapt the parameter values based on the deadlines of a streaming session. For this
purpose, the concept of deadline margin is introduced. Consider a video stream s

with a bit rate rs and a total length of ls seconds. When this stream has a begin
deadline d0, for every byte b ∈ [0; rs∗ls8 [the corresponding deadline db can be
calculated as shown in equation (5.4). The deadline of the last byte of the stream
is called the end deadline of the stream, denoted as de = d0 + ls.

db = d0 +
b ∗ 8

rs
(5.4)

130 CHAPTER 5

0.0 0.2 0.4 0.6 0.8 1.0
β

0

1

2

3

4

5

 T
h
ro

u
g
h
p
u
t

ra
ti

o

2 clients
10 clients

Figure 5.3: Influence of the AIMD parameter β on the average achieved relative throughput
on the contended link. The areas represent the 95% confidence interval.

0.0 0.2 0.4 0.6 0.8 1.0
β

0.6

0.7

0.8

0.9

1.0

1.1

 R
e
la

ti
v
e
 t

o
ta

l
th

ro
u
g
h
p
u
t

2 clients
10 clients

Figure 5.4: Influence of the AIMD parameter β on the total throughput achieved on the con-
tended link, relative to the throughput achieved with TCP New Reno congestion
control.

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 131

When at time t the next byte to be sent is b, the current deadline margin is
denoted as m = db − t. The general goal of the proposed approach is to keep
this deadline margin between a lower and upper bound, denoted as ml and mu re-
spectively. Both ml and mu are parameters of the algorithm which are configured
a priori. In order to keep the deadline margin within the predefined bounds, the
value of α or β can be changed within their respective ranges [αl;αu] and [βl;βu],
with a granularity of αg and βg respectively. As discussed in Section 5.3, it is
suggested to vary α between 0.1 and 4.0 at a granularity of 0.1, or to vary β be-
tween 0.1 and 0.95 at a granularity of 0.05. To avoid too much fluctuation in the
parameter values and to reduce the computational overhead, it is suggested to only
perform parameter updates at fixed time intervals, indicated by the reactivity time
tr. Based on preliminary evaluations, a reactivity time of tr=1s will be used in the
remainder of this chapter.

Algorithm 5.1 presents the pseudo-code of the proposed algorithm to dynami-
cally adapt the parameter value α. In an identical way, the algorithm can be applied
to dynamically change the value of β. This algorithm is executed every tr seconds,
as long as no deadlines were missed for the considered stream. To avoid conges-
tive collapse and to maintain a degree of fairness with other TCP flows, a streaming
session permanently falls back to TCP New Reno congestion control (i.e. α=1.0,
β=0.5) when a deadline was missed. Based on the current time t and the deadline
db for the next byte to send b, the current margin m is calculated (line 1). When
the current margin is out of the predefined bounds, the value of α is directly up-
dated to the highest (αu) or lowest (αl) value to drastically decrease or increase
the aggressiveness of the stream respectively (lines 2-5). When the current margin
is between the bounds, the upper and lower threshold of the required throughput,
Tu and Tl, are calculated (lines 7-10). Tu and Tl respectively denote the highest
and lowest required throughput that allows to finish the remainder of the stream
without leaving the deadline margin bounds. Their calculation is based on the re-
maining time rt until the final deadline and the remaining number rb of bytes to
send. When the current throughput measurement T is above Tu or below Tl, the
deadline margin is expected to grow above mu or shrink to less than ml before the
end of the stream is reached. To avoid this, the difference mδ between the current
deadline margin and the approaching bound is calculated, as well as the remaining
part α∆ of the range of α values that allows us to change the aggressiveness in
the required direction (lines 11-20). Based on these values, the critical time period
C by which leaving the margin bounds is expected, can be calculated (line 21).
In combination with the remaining range α∆ and the time between consecutive
parameter changes tr, this critical time period is used to calculate the degree to
which the value of α should be changed, rounded to the change granularity αg
(lines 22-23).

To clarify the rationale behind the algorithm, an illustrative example is pre-

132 CHAPTER 5

Input:
t: current time
T : current throughput measurement
db: deadline of next byte to send
de: end deadline of the stream
rs: bit rate of the stream

1: m = db − t
2: if (m < ml) then
3: α = αl
4: else if (m > mu) then
5: α = αu
6: else
7: rt = de − t
8: rb = (de − db) ∗ rs
9: Tu = rb

rt−mu
10: Tl = rb

rt−ml
11: if (T > Tu) then
12: mδ = mu −m
13: α∆ = αu − α
14: else if (T < Tl) then
15: mδ = m−ml

16: α∆ = αl − α
17: else
18: mδ =∞
19: α∆ = 0
20: end if
21: C = mδ∗rs

|rs−T |
22: αδ = round(α∆∗tr

C ;αg)
23: α = α+ αδ
24: end if

Algorithm 5.1: Outline of the proposed algorithm to dynamically adapt the parameter value
α based on the current deadline margin. This update is performed every tr
seconds.

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 133

0 20 40 60 80 100 120

Time (s)

0

20

40

60

80

100
S
e
n
t

d
a
ta

 (
M

b
it
)

Deadline

Lower margin

Upper margin

Sending curve

Predicted curve

21.74s

Figure 5.5: Graphical illustration of the rationale behind the proposed approach.

sented in Figure 5.5. In this example, we consider a video streaming session s
with begin deadline d0=30s, a total duration ls=100s and a bit rate bs=1Mbps. The
presented sending curve and deadline curve respectively show the time when each
byte is sent and when it is required. The streaming session started at 20s, the mar-
gin bounds are configured to mu=20s and ml=5s and the reactivity interval tr is
set to 1s. At time t=35s, 20Mbit has been sent already and the deadline margin
amounts to aboutm=15s. At this point in time, rb=80Mbit remains to be sent in the
next rt=95s. To be able to finish the stream without exceeding the margin bounds,
the required throughput should be between Tl = 80Mbit

90s = 0.89Mbps and Tu =
80Mbit

75s = 1.07Mbps. Given the current throughput measurement T=1.23Mbps and
the current distance from the upper bound mδ=5s, the deadline margin is expected
to exceed the margin upper bound in C = 5Mbit

0.23Mbps = 21.74s. Given the reac-
tivity interval tr=1s, the current estimate results in 21 remaining chances to adapt
α to reduce the aggressiveness. When currently α = 1.0, α will be increased by
αδ = round((4.0−1.0)∗1.0

21.74 ; 0.1) = 0.1, resulting in α to be set to 1.1. When the
difference between the current throughput and the required throughput would be
higher, the change in α value would be more significant as the time to react would
be shorter.

5.5 Evaluation
To evaluate the performance of the proposed approach, we first demonstrate the
effectiveness of dynamically changing the AIMD parameters in a scenario with
two sessions in Section 5.5.1. Next, Section 5.5.2 will evaluate the proposed ap-

134 CHAPTER 5

0 100 200 300 400 500 600
Time (s)

0

50

100

150

200

250

300

S
e
n
t

d
a
ta

 (
M

B
y
te

)

Sending curve 1
Sending curve 2
Deadline curve 1
Deadline curve 2

(a) Performance of two VoD
streaming clients using TCP
New Reno congestion control.

0 100 200 300 400 500 600
Time (s)

0

50

100

150

200

250

300

S
e
n
t

d
a
ta

 (
M

B
y
te

)

Sending curve 1
Sending curve 2
Deadline curve 1
Deadline curve 2

(b) Performance of two VoD
streaming clients using
deadline-aware congestion
control.

0 100 200 300 400 500 600
Time (s)

0

1

2

3

4

5

α

Stream 1
Stream 2

(c) Adaptive behavior of the value
of α over time based on the
current deadline information.

Figure 5.6: Conceptual demonstration of the proposed deadline-aware congestion control
mechanism in a scenario with two VoD streaming sessions.

proach in larger scenarios using real-world characteristics. All simulations have
been performed in NS-3 using a setup where all considered streams share a com-
mon bottleneck link on which RED queue management is applied.

5.5.1 Conceptual demonstration

To show the benefits of using deadline-aware congestion control, a small-scale
scenario is considered where two VoD streaming sessions share a bottleneck link
with a capacity of 10Mbps and a delay of 30ms. The first stream has a bit rate of
3Mbps, has a begin deadline of 15s after the initial request and a total duration of
600s. After 100s, the second stream with a bit rate of 5Mbps is initiated with a
begin deadline of 115s relative to the experiment start and a total duration of 500s.

Figure 5.6a shows the sending curves and the corresponding deadline curves
of both video streams in a scenario where TCP New Reno congestion control is
applied (α=1.0, β=0.5). It can be seen that during the first 100s, the first stream
can use the full capacity of the link and can deliver all bytes long before their
deadline. After 100s, the second stream starts and both streams get an equal share
of the link capacity. However, this bandwidth share is not sufficient for the second
stream to deliver its data before the deadline, resulting in deadline misses for over
70% of the data. In the worst case, the data is delivered only 50s after its deadline.
However, the throughput for the first stream exceeds the required bit rate, causing
the entire stream to be delivered about 200s earlier than the final deadline.

Figure 5.6b shows the performance of the proposed deadline-aware congestion
control where the α parameter is dynamically changed for the same scenario, with
the deadline margin bounds set to ml=5s and mu=20s. The resulting behavior of
α is shown in Figure 5.6c. It can again be seen that during the initial 100s, the first
stream can use the full capacity of the link and can deliver all bytes long before
their respective deadlines. As the achieved throughput of that stream is signifi-

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 135

cantly higher than the bit rate of the video, the α value quickly increases to its
maximum value of 4.0 to become less aggressive and free up bandwidth for other
streams if required. When the second stream starts, its fair share bandwidth part
does not suffice to deliver the stream in time. Therefore, the second stream be-
comes more aggressive by lowering its α value. To keep the throughput within the
predefined margin without using more bandwidth than required, α starts fluctuat-
ing between 0.1 and 1.5. When the first stream finishes, the second stream can use
the entire capacity, resulting in a higher throughput than required. Therefore, the
second stream backs off by increasing its α value. In this scenario, using deadline
aware congestion control allows both streams to deliver all bytes in time.

5.5.2 Larger scale evaluations

To evaluate the impact of the proposed approach in a scenario with multiple (dead-
line-aware) streams, several scenarios have been generated using realistic network
traffic compositions. In each of these scenarios, the minimum bottleneck band-
width, required to finish all streams without deadline misses, is established for both
TCP New Reno congestion control and the deadline-aware congestion control. For
this purpose, a binary search strategy has been applied to find the bottleneck band-
width with a granularity of 100kbps. Given the probabilistic nature of the RED
queue management, all simulations have been performed for 3 iterations. First,
Section 5.5.2.1 considers a setup with only deadline-aware VoD streams, while
more general setups, including deadline-aware live and VoD streaming sessions as
well as non-deadline-aware traffic, are considered in Section 5.5.2.2.

5.5.2.1 VoD-only scenarios

To evaluate the performance of the proposed approach, VoD request traces have
been constructed based on statistics provided by Conviva. In October 2015, Con-
viva opened access to viewer experience data, based on the analysis of 4 billion
video streams per month spread across 180 countries1. According to this dataset, in
the first quarter of 2016, the average bit rate of a VoD stream amounts to 2.4Mbps.
Taking into account general adaptive streaming characteristics, each streaming ses-
sion in the constructed request traces was assigned a uniformly distributed bit rate
between 0.9Mbps and 3.9Mbps. The duration (in minutes) of each session can be
modeled using a log-normal distribution with µ=2.2 and σ=1.5 [19, 20]. While
the number of sessions is varied between 25 and 100, in each scenario the start
times of the video streams are uniformly distributed over a period of 60minutes.
In this way, different levels of load are considered. For each session, the sending
of data can be started at mostm0 seconds before the begin deadline d0 (i.e. at time
t = d0 −m0). All flows share a bottleneck link with a delay of 30ms.

1Conviva dataset - http://www.conviva.com/industry-data-portal/

136 CHAPTER 5

Table 5.1: Evaluated parameter configurations.

Parameter Values
Number of sessions 25, 50, 75, 100
ml 0, 5, 10
mu 10, 20
m0 0.5, 5, 10, 20

Multiple parameters have been evaluated, as presented in Table 5.1. For each
configuration, the approach has been evaluated in 10 scenarios, randomly gener-
ated according to the above characteristics. To assess the performance of the pro-
posed approach, in each of the scenarios the minimal bottleneck bandwidth Bda
that is required to deliver all streaming sessions without deadline misses using
deadline-aware congestion control is defined by simulation and compared to the
same bottleneck bandwidth Bnr required when using TCP New Reno congestion
control. Furthermore, the theoretical lower bound for the bottleneck bandwidth
Bedf when using the Earliest Deadline First (EDF) policy, scheduling the data
with the earliest deadline amongst all flows at any point in time, is calculated. It
is important to note that this optimal solution cannot be achieved in practice and
does not take into account TCP overhead. Therefore, the actual lower bound will
be significantly higher than Bedf , which serves as a benchmark. Based on these
values, the metric µ is defined as shown in equation (5.5), representing the ratio
between the achieved gain and the optimal achievable gain.

µ =
Bnr −Bda
Bnr −Bedf

(5.5)

The influence of the number of streaming sessions on the performance of the
proposed deadline-aware congestion control mechanism, dynamically adapting the
value of α, is presented in Figure 5.7 for different configurations of ml and mu. It
can be seen that for each configuration of the deadline margin bounds, the perfor-
mance of the proposed approach increases with the number of streaming sessions.
As the contention is limited with fewer streams, the benefits of using deadline-
aware congestion control are narrow. However, when the number of streaming ses-
sions increases, the performance of the proposed approach significantly increases
as well, saturating around µ=0.60. While the performance difference between the
configurations is limited, ml=5s and mu=20s yields the best performance on aver-
age. When margin bounds are set closer to the deadline, the reaction time for the
algorithm increases, resulting in a slightly lower performance.

Similarly, Figure 5.8 shows the performance of the proposed deadline-aware
congestion control mechanism dynamically adapting the value of β. It can be seen
that for each configuration, the performance is lower compared to when dynami-
cally adapting α. The explanation behind this finding is in the role of both param-

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 137

0 20 40 60 80 100
Number of sessions

0.0

0.2

0.4

0.6

0.8

1.0

 µ
ml=0s;mu=10s

ml=0s;mu=20s

ml=5s;mu=10s

ml=5s;mu=20s

ml=10s;mu=20s

Figure 5.7: Performance of the deadline-aware congestion control mechanism by dynami-
cally adapting the value of α for multiple parameter configurations in a VoD-
only scenario.

eters in the congestion control mechanism. While the value of α has an impact for
every received acknowledgment, the value of β only impacts the behavior upon
receiving triple duplicate acknowledgments in the event of congestion. Therefore,
the impact of dynamically adapting β on the congestion window is perceived less
frequently. Furthermore, the effect of changing the value of β cannot be perceived
immediately, but only at the next congestion event. Based on this analysis, in the
remainder of this chapter the focus will be on the adaptation of the α parameter.

The results presented in Figure 5.7 show that for higher network loads, the
proposed approach can yield around 60% of the theoretical upper bound for the
achievable gain (i.e. µ=0.60) by dynamically adapting the value of α. To compare
the performance of the deadline-aware congestion control with the TCP New Reno
congestion control, Figure 5.9 presents the ratio between the minimal bottleneck
bandwidth required to streams all sessions without deadline misses, i.e. Bda

Bnr
, and

the corresponding standard deviation. Based on the above evaluation, the deadline
margin bounds were set to ml=5s and mu=20s, considering multiple initial dead-
line margins m0. It can be seen that for a low number of sessions, the minimal
bottleneck bandwidth required to stream all sessions without deadline misses is
8% lower compared to using TCP New Reno congestion control on average, while
for short initial deadline margins (m0=0.5s) no gain can be achieved. For a higher
number of sessions, the bottleneck bandwidth reduction amounts to between 15%
and 23%. Furthermore, it can be seen that the influence of the initial deadline mar-
ginm0 on the average performance is insignificant for a higher number of sessions.
However, higher initial margins result in a more consistent performance increase,
as presented by the decreasing standard deviations. In general, an average bottle-

138 CHAPTER 5

0 20 40 60 80 100
Number of sessions

0.0

0.2

0.4

0.6

0.8

1.0

 µ
ml=0s;mu=10s

ml=0s;mu=20s

ml=5s;mu=10s

ml=5s;mu=20s

ml=10s;mu=20s

Figure 5.8: Performance of the deadline-aware congestion control mechanism by dynami-
cally adapting the value of β for multiple parameter configurations in a VoD-
only scenario.

neck bandwidth reduction of 16% is achieved.

5.5.2.2 General scenarios

In a general scenario, besides VoD streaming sessions, other types of traffic are
present in the network as well. According to Cisco, in 2016 70% of all consumer
Internet traffic consists of video streaming [1]. Out of the Conviva dataset it can
be deduced that 36% of all streamed video data consists of live video, while the
remaining 64% can be considered as VoD. Combining this information results in
a traffic pattern where 44% of the network traffic consists of VoD, 26% consists
of live streaming and the remaining 30% is considered as non deadline sensitive
traffic. Given the size difference between the different types of streams, it is im-
portant to note that this division accounts to the amount of data streamed for each
type, rather than the number of sessions for each type.

For the VoD sessions, the same characteristics as in the previous section have
been used. To generate the live streaming sessions, a uniformly distributed bit
rate between 1.1Mbps and 4.1Mbps has been used, based on the average bit rate
of 2.6Mbps as reported by Conviva. Based on the literature, the duration (in sec-
onds) of these sessions is modeled using a log-normal distribution with µ=5.19 and
σ=1.44 [20, 21]. As the playout of the live stream is considered to be 10s behind
of the live signal, data can only be send at most 10s before its deadline. There-
fore, the deadline margin m can never exceed 10s for live streaming sessions. For
the non deadline sensitive traffic, regular file transfers with a uniformly distributed
size between 0.5 and 600Mbyte have been generated.

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 139

25 50 75 100
Number of sessions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 B
d
a

B
n
r

m0=0.5s

m0=5s

m0=10s

m0=20s

Figure 5.9: Relative performance of the deadline-aware congestion control by dynamically
adapting α for ml=5s, mu=20s and multiple initial deadline margins m0 in a
VoD-only scenario.

Given the absence of deadline information for file transfers, the theoretical
optimal gain when using EDF can not be defined. All non-deadline aware traffic
has an infinite deadline, causing them to only be scheduled by EDF when no other
deadline-aware traffic is present. As this does not allow a fair comparison, for the
general scenarios the performance of the deadline-aware congestion control will
be compared only to the TCP New Reno congestion control mechanism.

Figure 5.10 shows the relative performance of the deadline-aware congestion
control compared to the TCP New Reno congestion control. Based on the results
presented in Section 5.5.2.1, the value of α was dynamically adapted, using dead-
line margin bounds set to ml=5s and mu=20s. It can be seen that on average, a
bandwidth reduction of between 5% and 18% can be achieved. As the file transfers
cannot benefit from the deadline-awareness, the relative performance gain is lower
compared to a VoD-only scenario. Furthermore, as the live streaming sessions can
at most be 10s ahead of their deadlines, the potential benefits of deadline-aware
congestion control are limited as well. However, even though only 44% of the
traffic can fully take advantage of the deadline-aware congestion control, the min-
imal bottleneck bandwidth can be reduced by 11% on average compared to using
TCP New Reno congestion control.

To analyze the impact of the deadline-aware congestion control strategy on the
performance of regular TCP traffic, the notation Fda is introduced representing
the sum of the throughput achieved by each of the regular file transfers in a sce-
nario where deadline-aware congestion control is used. Similarly, the sum of the
throughput of all regular file transfers when using TCP New Reno congestion con-
trol in the same scenario is denoted as Fnr. Based on these values, the ratio Fda

Fnr

140 CHAPTER 5

25 50 75 100
Number of sessions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 B
d
a

B
n
r

m0=0.5s

m0=5s

m0=10s

m0=20s

Figure 5.10: Relative performance of the deadline-aware congestion control by dynamically
adapting α for ml=5s, mu=20s and multiple initial deadline margins m0 in a
general traffic scenario.

shows the relative increase (> 1) or decrease (< 1) in throughput for non-deadline-
aware traffic. In Figure 5.11, this value is compared to Bda

Bnr
. In this graph, a ratio

of 1 indicates that the change in throughput for the non-deadline-aware traffic is
of the same relative magnitude as the change in bottleneck bandwidth. As a result,
the relative bandwidth share of the non-deadline-aware traffic is unchanged. It can
be seen that only in the scenarios with 50 sessions, the relative bandwidth share of
the non-deadline-aware traffic is significantly reduced. In general however, with
an average ratio of 1.00, the fairness with regular TCP traffic is maintained.

5.6 Conclusions
In this chapter, a deadline-aware congestion control strategy was presented based
on the congestion avoidance phase of the TCP New Reno congestion control mech-
anism. By introducing deadline information at the transport layer, the modulation
of the congestion window can be dynamically adapted to minimize the number
of deadline-missing flows. The proposed approach only requires changes at the
sender side and is fully transparent in the network. The deadline-aware congestion
control mechanism has been thoroughly evaluated in both a VoD-only scenario
and in co-existence with live streaming sessions and regular non-deadline-sensitive
TCP traffic. It was shown that in a VoD scenario, the minimum bottleneck band-
width required to finish all streaming sessions without deadline misses could be
reduced by 16% on average. When considering more general scenarios, an aver-
age bottleneck reduction of 11% was achieved while maintaining a fair bandwidth
share for regular TCP traffic.

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 141

25 50 75 100
Number of sessions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 F
d
a

F
n
r
/B

d
a

B
n
r

m0=0.5s

m0=5s

m0=10s

m0=20s

p

Figure 5.11: Impact of the deadline-aware congestion control mechanism by dynamically
adapting α for ml=5s, mu=20s on the performance of non-deadline-aware
traffic in a general traffic scenario.

Acknowledgment
M. Claeys and N. Bouten are funded by a grant of the Agency for Innovation
and Entrepreneurship in Flanders (VLAIO). The research was performed partially
within the ICON SHIFT-TV project (under grant agreement no. 140684). This
work was partly funded by FLAMINGO, a Network of Excellence project (318488)
supported by the European Commission under its Seventh Framework Programme.

142 CHAPTER 5

References
[1] Cisco. Cisco Visual Networking Index: Forecast and methodology, 2014-

2019. Technical report, Cisco, 2015.

[2] D. M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Computer Networks and ISDN
Systems, 17(1):1–14, 1989.

[3] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling. In Proceed-
ings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), volume 29, pages 279–290, 2001.

[4] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated
Services field (DS field) in the IPv4 and IPv6 headers. Network Working
Group RFC 2474, pages 1–20, 1998.

[5] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better Never than
Late: Meeting Deadlines in Datacenter Networks. In Proceedings of the
ACM International Conference on Communications Architectures, Protocols
and Applications (SIGCOMM, pages 50–61, 2011.

[6] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter TCP
(D2TCP). ACM SIGCOMM Computer Communication Review, 42(4):115–
126, 2012.

[7] G. Li, Y. Xu, and D. Cui. A deadline and size aware TCP scheme for dat-
acenter networks. In Proceedings of the IEEE International Conference on
Communication Technology (ICCT), pages 366–371, 2013.

[8] R. Stewart. Stream Control Transmission Protocol. Network Working Group
RFC 4960, pages 1–152, 2007.

[9] E. Kohler, M. Handley, S. Floyd, and J. Padhye. Datagram Congestion Con-
trol Protocol (DCCP). Network Working Group RFC 4340, pages 1–130,
2006.

[10] K. De Schepper, B. De Vleeschauwer, C. Hawinkel, W. Van Leekwijck,
J. Famaey, W. Van de Meerssche, and F. De Turck. Shared Content Ad-
dressing Protocol (SCAP): Optimizing multimedia content distribution at the
transport layer. In Proceedings of the IEEE Network Operations and Man-
agement Symposium (NOMS), pages 302–310, 2012.

[11] S. Liang and D. Cheriton. TCP-RTM: Using TCP for real time applications.
In Proceedings of the IEEE International Conference on Network Protocols
(ICNP), pages 1–20, 2002.

DEADLINE-AWARE TCP CONGESTION CONTROL FOR VIDEO STREAMING 143

[12] S. McQuistin, C. Perkins, and M. Fayed. TCP goes to Hollywood. In Pro-
ceedings of the ACM International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), pages 1–6, 2016.

[13] H. P. Shiang and M. Van Der Schaar. A quality-centric TCP-friendly conges-
tion control for multimedia transmission. IEEE Transactions on Multimedia,
14(3):896–909, 2012.

[14] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with pre-
emptive scheduling. In Proceedings of the ACM International Conference on
Applications, technologies, architectures, and protocols for computer com-
munications, pages 127–138, 2012.

[15] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal, and
B. Khan. Minimizing flow completion times in data centers. In Proceedings
of the IEEE International Conference on Computer Communications (INFO-
COM), pages 2157–2165, 2013.

[16] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The New Reno modifica-
tion to TCP’s fast recovery algorithm. Internet Engineering Task Force RFC
6582, pages 1–16, 2012.

[17] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. Network
Working Group RFC 2581, pages 1–14, 1999.

[18] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[19] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior
in large-scale video-on-demand systems. ACM SIGOPS Operating Systems
Review, 40(4):333–344, 2006.

[20] I. Ullah, G. Doyen, G. Bonnet, and D. Gaı̈ti. A survey and synthesis of user
behavior measurements in P2P streaming systems. IEEE Communications
Surveys and Tutorials, 14(3):734–749, 2012.

[21] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin. A hierarchical
characterization of a live streaming media workload. IEEE/ACM Transac-
tions on Networking, 14(1):133–146, 2006.

6
Conclusions and Perspectives

In this dissertation, multiple contributions in the area of management of video
streaming services have been presented. The proposed management solutions op-
timize the quality of the delivered service by focusing on different locations in
the delivery chain. The optimizations aim at improving the quality as perceived
by the end-users, denoted as Quality of Experience (QoE), as well as at reducing
the strain imposed on the underlying network resources. This concluding chapter
summarizes how this dissertation addressed multiple problems currently observed
in video streaming services and identifies interesting challenges to be addressed
by the research community.

6.1 Review of problem statements
Each of the solutions proposed in the previous chapters addressed one of the prob-
lem statements presented in Chapter 1 as follows:

1. Existing HTTP Adaptive Streaming (HAS) rate adaptation heuristics are tai-
lored to specific network configurations. Therefore, these algorithms are un-
able to cope with a vast range of highly dynamic network settings. In Chap-
ter 2, a novel Reinforcement Learning (RL)-based HAS client is proposed
that is able to dynamically adjust its behavior to the perceived networking
environment. By introducing the current buffer filling level and the avail-
able bandwidth as the state of the Q-learning technique, the client is able to
continuously optimize the delivered service quality.

146 CHAPTER 6

A frequency-adjusted extension of the Q-learning technique was proposed
to further increase the performance of the proposed approach. Furthermore,
by incorporating HAS domain knowledge in the initial model, the learning
phase can be significantly reduced. Since previously obtained knowledge
can be reused when learning on a new video sequence, the learning agent
can be trained offline in a vast range of scenarios before being applied in
an online HAS client. Thorough evaluations have shown that using the self-
learning approach, the QoE can be increased by 11% to 18% in terms of es-
timated Mean Opinion Score (eMOS) in different bandwidth environments,
compared to traditional deterministic algorithms. Furthermore, the average
video freezing time could be reduced by up to 67%.

2. Current video delivery over Content Delivery Networks (CDNs) exerts a lot
of pressure on Internet Service Provider (ISP) networks. As this results in
increasing operating costs and decreasing revenues, ISPs have started to de-
ploy so-called telco-Content Delivery Networks (telco-CDNs), given them
more control over their network resources. In Chapter 3, a scenario was pro-
posed where the telco-CDN infrastructure is virtualized, allowing the stor-
age capacity to be leased to multiple third parties such as content or service
providers.

Based on this scenario, a hybrid multi-tenant cache management system was
proposed, combining proactive capacity allocation and content placement
with traditional reactive caching strategies. By periodically changing the
capacity allocation and content placement based on the predicted content
popularity and its geographical distribution, the system is able to reduce the
bandwidth usage inside the ISP network while simultaneously reducing the
load on the origin server. On top of that, the reactive caching capacity is
able to react to unexpected changes in the request pattern.

Using a request trace of the Video-on-Demand (VoD) service of a leading
European telecom operator, it was shown that the number of requests server
from within the ISP network could be increased by 19% and 43% compared
to purely proactive and reactive approaches, respectively. Simultaneously,
the load on the underlying network resources could be reduced by up to 7%.
However, this bandwidth reduction also considers the migration overhead
during off-peak hours. When considering only the video streaming traffic, a
bandwidth reduction of more than 10% can be achieved, significantly reduc-
ing the server load and backhaul traffic. Furthermore, the proposed approach
was shown to store the content up to 8% closer to the end-user, positively
influencing the perceived service quality by reducing the total delay.

3. The management of video streaming services does not fully take into account
the changing user behavior. Chapter 4 focused on the phenomenon of binge

CONCLUSIONS AND PERSPECTIVES 147

watching, where users frequently watch multiple consecutive episodes of
the same series in one sitting. By taking into account this recent trend in
user behavior, with a significant probability it can be assumed that when a
user is watching a specific episode of a series, the following episode will be
watched thereafter. Based on this assumption, the accuracy of future reuse
times estimates for video segments can be significantly increased.

Two cache replacement strategies for segmented video content have been
proposed, based on these reuse time estimates. It was shown that by an-
nouncing future video streaming sessions based on the binge watching phe-
nomenon, the cache hit ratio could be increased by up to 10%. Addition-
ally, coordination within the caching network has been introduced using an
election-based strategy. It was shown that this results in an additional hit
ratio increase of up to 12%. Combining these factors results in a hit ratio in-
crease of 22% compared to the state-of-the-art. This hit ratio increase leads
to a reduction of 7% in terms of server load and backhaul traffic.

4. Fair bandwidth sharing introduced by Transmission Control Protocol (TCP)
is known to be far from minimizing the number of deadline misses. How-
ever, deadline misses are known to have a detrimental impact on the QoE
for video streaming services. In Chapter 5, it was proposed to introduce the
deadline information associated with video streams, currently only known
at the application layer, into the network. A parametrization of the TCP
New Reno congestion control strategy has been presented, based on which
a deadline-aware congestion avoidance algorithm was proposed. By dy-
namically adapting the modulation of the congestion window, the number
of deadline-missing flows can be reduced. Evaluations have shown that in a
non-adaptive VoD-only scenario, the bottleneck bandwidth required to finish
all video streams without deadline misses can be reduced by 16% on aver-
age. In a scenario where non-video traffic is considered as well, a bottleneck
bandwidth reduction of 11% can be achieved, without negatively influenc-
ing other traffic. This bandwidth reduction can significantly decrease the
investment frequency for a network operator.

Appendix A elaborated on this work by introducing a congestion-aware ex-
tension of the deadline-aware algorithm. By taking into account the current
level of congestion, the performance of the algorithm can be further im-
proved. Furthermore, the performance gain in terms of QoE has been eval-
uated for both of the proposed algorithms. It was shown that, depending on
the level of congestion, an the eMOS could be increased by up to 11% on
average, mainly caused by a reduction of 94% in terms of video freezes.

148 CHAPTER 6

6.2 Future perspectives

This dissertation proposed multiple solutions to deal with different problems that
are currently perceived when delivering video streaming services. However, given
the vast popularity of video streaming services, the strong trend of continuous
innovations over the last decade is expected to continue in the years to come, both
in terms of service offerings and the underlying technology. This will result in new
challenges to be faced by the research community. In this section, four important
future research perspectives are identified and discussed.

6.2.1 Mobile video streaming

Over the last years, mobile devices such as smartphones and tablet have been in-
creasingly used to access the Internet. In 2015, the global mobile data traffic has
grown with 74%. Importantly, 55% of that traffic was accounted to mobile video
streaming. While most of the approaches proposed in this dissertation can be
applied to mobile video streaming as well, some additional challenges are intro-
duced. For example, the strong mobility causes the mobile devices to commonly
shift between access points and access technologies (e.g., 3G, 4G, WiFi) while the
user is moving. To avoid impacting the QoE, these handovers should be seamless
and not interrupting the video playout. Furthermore, research in this area would
greatly benefit from the availability of realistic network characteristics models or
measurement studies in terms of mobile connectivity. Within the research group,
some first initiatives in this area have already been reported [1].

Additionally, these mobile devices typically have a limited battery capacity.
Furthermore, multiple variables such as the used access technology and the played
video quality can significantly influence the battery usage of the video stream-
ing session. Therefore, novel QoE estimation models are required to evaluate the
influence of battery depletion on the user experience, as well as rate adaptation
algorithms taking into account this information.

6.2.2 QoE fairness between HAS clients

As in HAS the video segments are delivered over TCP, network-level fairness be-
tween multiple streaming sessions is achieved by using congestion control strate-
gies. However, fairness in terms of bandwidth consumption does not necessarily
correspond to fairness in perceived QoE. For example, consider a scenario where
two HAS clients compete for bandwidth. The first client is close to running into
a buffer starvation, the second client has a well-stocked buffer. While the TCP
fair-share paradigm would result in an equal bandwidth share for both clients, the
total perceived QoE could strongly benefit from temporarily increasing the band-
width share for the first client in order to avoid a buffer starvation. Therefore,

CONCLUSIONS AND PERSPECTIVES 149

scalable coordination between multiple HAS clients is required to further improve
the fairness in terms of QoE.

6.2.3 Network protocol evolutions

Alongside the developments in video streaming services, underlying technologies
and protocols are evolving as well. To be able to continuously increase the de-
livered service quality, it is important to embrace technology changes and fully
exploit the offered advantages, both at the application layer and the transport
layer. For example, transport protocols such as TCP are continuously being op-
timized. At the application layer, HTTP/2 was standardized in 2015, providing
a set of novel features that could greatly improve the efficiency of HAS deliv-
ery. For instance, HTTP/2 allows a server to push content to the client, allowing
to deliver more data than is initially requested. Pushing video segments to the
client could strongly increase the efficiency in scenarios with high Round-Trip
Times (RTTs) [2].

However, besides new possibilities, new challenges arise with changing tech-
nology. Even though the HTTP/2 standard itself does not require encryption, most
client implementations only support HTTP/2 over Transport Layer Security (TLS),
making encryption de facto mandatory. This trend towards mandatory encryption
can also be seen in novel protocols at the transport layer, such as Quick UDP In-
ternet Connections (QUIC). While this can strongly improve the security, it intro-
duces some big challenges when it comes to caching and in-network optimizations
in general.

6.2.4 Network virtualization and SDN

In Chapter 3 it was demonstrated how virtualization of storage and networking
resources can open up new business models to the ISPs by enabling them to simul-
taneously lease their telco-CDN infrastructure to multiple third parties. Periodi-
cal capacity reallocation and content placement have been proposed to reduce the
load on the ISP network resources. Alongside network virtualization, Software-
Defined Networking (SDN) has gained a lot of attention in recent years. With this
networking paradigm, the control plane is decoupled from the forwarding plane,
allowing delivery paths to be dynamically rerouted based on the current require-
ments. For example, an SDN-based approach could be applied to prioritize specific
video streams in the network, for example based on the current buffer filling level.
In this way, the number of video freezes could be significantly reduced. However,
it is clear that routing and content placement decisions are closely coupled as there
is a mutual influence between the results of both decisions. Therefore, we argue
that both decisions should be considered simultaneously, significantly increasing

150 CHAPTER 6

the problem complexity. Furthermore, in the light of Network Function Virtual-
ization (NFV) and SDN, the work presented on dynamic cache capacity allocation
can be extended to consider dynamic placement of middleboxes.

CONCLUSIONS AND PERSPECTIVES 151

References
[1] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. Alface,

T. Bostoen, and F. De Turck. HTTP/2-based adaptive streaming of HEVC
video over 4G/LTE networks. IEEE Communications Letters, 20(11):2177–
2180, 2016.

[2] R. Huysegems, J. van der Hooft, T. Bostoen, P. Alface, S. Petrangeli,
T. Wauters, and F. De Turck. HTTP/2-based methods to improve the live
experience of adaptive streaming. In Proceedings of the ACM International
Conference on Multimedia, pages 541–550, 2015.

A
Controlling the AIMD Behavior of

Deadline-aware TCP Congestion
Control Algorithms in HAS

In Chapter 5, a deadline-aware Transmission Control Protocol (TCP) con-
gestion control strategy was proposed, based on a parametrization of TCP New
Reno. Evaluations showed that performance gain could be achieved by dynam-
ically changing both parameters α and β, respectively influencing the Additive
Increase/Multiplicative Decrease (AIMD) of the congestion window. However,
the best results are generally achieved by focusing on the parameter α. In this
appendix, we extend the work presented in that chapter by introducing a novel
congestion control strategy that is able to adjust both the α and β parameters si-
multaneously, depending on the perceived congestion state. Furthermore, while
in Chapter 5 it was shown how the bottleneck link bandwidth could be reduced in
a non-segment-based video streaming scenario over TCP, this appendix demon-
strates the performance of both proposed algorithms in an HTTP Adaptive Stream-
ing (HAS) scenario over access networks. It is shown that using the proposed ap-
proach, the average estimated Mean Opinion Score (eMOS) can be increased by
up to 11% while reducing the total video freezing time with as much as 94%.

154 APPENDIX A

A.1 Introduction

In Section 5.3.1 of this dissertation, a parametrization of the Transmission Control
Protocol (TCP) New Reno congestion control strategy was proposed. Introducing
two parameters α and βallows to tune the modulation of the congestion window
in case of a packet acknowledgment or a congestion event, respectively. Based
on this parametrization, a deadline-aware congestion control strategy that dynam-
ically adapts the value of one of both parameters, based on the available deadline
information, was proposed in Section 5.4. The evaluation results presented in Fig-
ure 5.7 and Figure 5.8 showed that in general higher performance can be achieved
by dynamically changing the value of α. This finding could be explained by the
role of both parameters in the congestion control mechanism. While the value of α
has an impact for every received acknowledgment, the value of β only impacts the
behavior in the event of congestion. Therefore, the impact of dynamically adapting
β on the congestion window is perceived less frequently. However, when conges-
tion is perceived, the value β still has a significant impact on the aggressiveness
of the stream. To further clarify this issue, a conceptual example is presented in
Figure A.1, showing the typical sawtooth behavior of the TCP congestion window
size. Assume that at time 0.4 it is detected that the throughput of the stream is
too low and the aggressiveness should be increased, either by lower the value of
α or by decreasing β. It can be seen that lowering α immediately results in an in-
creased aggressiveness while initially no effect is perceived for adjusting the value
of β. However, at the next congestion event, the lowered value of β results in a
limited reduction of the congestion window, significantly increasing the aggres-
siveness of the stream. While no immediate effect could be perceived, adjusting
the value of β is very efficient on the long term. Therefore, in this appendix, a
modified deadline-aware congestion control strategy is proposed that estimates the
likeliness of perceiving a congestion event and takes this information into account
to simultaneously modify the value of α and β. It is important to emphasize again
that the proposed approach only requires server-side adaptations at the TCP level
and is fully transparent in the rest of the network, strongly benefiting deployabil-
ity. In Section A.2, the details of this algorithm are presented. In the remainder of
this appendix, the algorithm presented in Chapter 5 will be referred to as margin-
based while the new algorithm will be denoted as congestion-aware. The impact
of both algorithms is evaluated in terms of Quality of Experience (QoE) in an
HTTP Adaptive Streaming (HAS) scenario and reported in Section A.3.

A.2 Algorithm

The most relevant notations introduced in Chapter 5 are summarized in Table A.1.
The goal of the proposed congestion control algorithm is to keep the achieved

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 155

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

TCP New Reno

Adjusting α
Adjusting β

Figure A.1: Conceptual demonstration of the delayed influence of adjusting β.

Table A.1: Notation summary for deadline-aware congestion control.

Notation Definition
s Video stream
t Current time
rs Current bit rate of stream s
ls Total video length in stream s
d0 Begin deadline of a stream

de = d0 + ls Last deadline of a stream
db = d0 + b∗8

rs
Deadline of byte b in a stream

m = db − t Deadline margin of byte b
ml Lower bound for deadline margin
mu Upper bound for deadline margin
αl, βl Lower bound for α, β
αu, βu Upper bound for α, β
αg , βg Granularity of α, β adaptations
tr Reactivity time

156 APPENDIX A

throughput and the deadline margin as close as possible to the current bit rate rs of
the video stream and a predefined target margin mt, respectively. Therefore, the
algorithm will adjust the value of α based on the ratio between the current through-
put and the bit rate of the stream and the difference between the current and the
target deadline margin. These adaptations try to keep the throughput and deadline
margin as close possible to the target values in the current congestion state. How-
ever, when the level of congestion changes, the achieved throughput is impacted.
As explained in the previous section, changing the value of β can be very effec-
tive to change the aggressiveness of a stream in case of congestion. Therefore, the
value of β is adjusted based on the likeliness of congestion to occur. If a conges-
tion event is unexpected, the stream should become more aggressive to maintain
the current throughput level. To be able to do so, the algorithm continuously keeps
track of the average time µc between consecutive congestion events. When con-
gestion is perceived at time t while the previous congestion event occurred at time
tc, µc is updated as an Exponentially Weighted Moving Average (EWMA) with
parameter ε, as defined in (A.1).

µc = ε ∗ (t− tc) + (1− ε) ∗ µc (A.1)

Algorithm A.1 presents the pseudo-code of the proposed algorithm. This al-
gorithm is executed every tr seconds, as long as no deadlines were missed for
the considered stream. To avoid congestive collapse and to maintain a degree of
fairness with other TCP flows, a streaming session falls back to TCP New Reno
congestion control (i.e. α=1.0, β=0.5) when a deadline was missed. As a first esti-
mate of α the throughput ratio Rt between the current throughput estimate T and
the current bit rate rs of the video is calculated (line 1). When the current through-
put matches the video bit rate, this results in a default value of 1. When the current
throughput is insufficient, a more aggressive value is obtained (i.e. Rt < 1.0).
Next, based on the current time t and the deadline db for the next byte to send b,
the current deadline margin m is calculated (line 2) and its relative deviation Rm
from the target margin mt is defined (line 3). Based on this relative deviation, the
urgency factor u is calculated using a shaped sigmoid function ssigm as defined
in (A.2) (line 4). This urgency factor u is then used as a multiplier for Rt to cal-
culate the final value of α (line 5). The final value is rounded to a multiple of αg
between the predefined bounds [αl;αu]. The rationale behind the urgency factor u
is to decrease the value of α compared to Rt when the deadline margin is too low,
and to increase it when the margin is too high. As shown in Figure A.2, the exact
shape of the function ssigm, used to calculate the urgency factor, depends on the
shape factor σ, while its range is limited to [0.5; 2.0].

ssigm(x, σ) =
1.5

1 + exp(−1 ∗ σ ∗ (x− ln(2)
σ))

+ 0.5 (A.2)

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 157

Input:
t: current time
T : current throughput measurement
db: deadline of next byte to send
rs: current bit rate of the stream
tc: last congestion event
µc: average time between consecutive congestion events

1: Rt = T
rs

2: m = db − t
3: Rm = m−mt

mt
4: u = ssigm(Rm, σ)
5: α = roundBetweenBoundsα(Rt ∗ u)
6: β = roundBetweenBoundsβ(t−tc2∗µc)

Algorithm A.1: Outline of the proposed algorithm to dynamically adapt the parameter value
α and β based on the current deadline margin and congestion state. This
update is performed every tr seconds.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

ss
ig
m
(x
,σ
)

σ=2
σ=4
σ=6
σ=8

Figure A.2: Example of the shaped sigmoid function ssigm, used to calculate the urgency
factor, for 4 different values of σ.

158 APPENDIX A

Figure A.3: Evaluated tree-based topology.

Finally, the current time since the last congestion event (i.e. t−tc) is compared
to the average time between consecutive congestion events. When the current time
is above average, the level of congestion is decreasing and more back-off can be
afforded in case of congestion (i.e. β > 0.5). When the level of congestion
is increasing, the current stream should back-off less to be able to maintain its
current throughput level (i.e. β < 0.5). Based on this rationale, the value of β is
calculated as t−tc

2∗µc . The final value is again rounded to a multiple of βg between
the predefined bounds [βl;βu] (line 6).

A.3 Scenario description

To evaluate the congestion-aware and margin-based deadline-aware congestion
control strategies, a typical tree-based network topology is considered. This topol-
ogy consists of 1 HAS server S, 2 distribution nodes T1,x, 4 aggregation nodes
T2,x, 20 delivery nodes T3,x and 200 client nodes Cx. The structure of this topol-
ogy is presented in Figure A.3. Two topologies, denoted as tree 1 and tree 2, with
different bottleneck locations are considered. The different link capacities C and
delays d in both topologies are listed in Table A.2, where the bottleneck location
is marked with 3.

Over these topologies, multiple Video-on-Demand (VoD) sessions are streamed.
The number of active clients is varied throughout the evaluations, with activation
levels ranging from 20% to 80% of active clients. All sessions have a fixed dura-
tion of 30min, streaming a video available in 4 bit rate representations (560kbps,
1050kbps, 2350kbps, 4300kbps), based on the quality representations provided by

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 159

Table A.2: Notation summary for deadline-aware congestion control.

Tree 1 Tree 2
CS 200Mbps 200Mbps
dS 20ms 20ms
CT1 100Mbps

3
100Mbps

dT1 10ms 10ms
CT2 3

20Mbps 40Mbps
dT2 5ms 5ms
CC 10Mbps 10Mbps
dC 2ms 2ms

Table A.3: Considered parameter configurations for the margin-based algorithm.

Parameter Values
Adjusted parameter α, β
ml-mu 0-10s, 0-20s, 5-10s, 5-20s, 10-20s

Netflix1. A fixed segment duration of 2s is assumed, as is commonly the case in
Dynamic Adaptive Streaming over HTTP (DASH). The start times of the different
clients are uniformly distributed over a period of 30min, while the video playout is
started 5s after the start of the stream. All clients use the FINEAS rate adaptation
heuristic [1]. These assumptions allow us to analyze the results in terms of level
of link contention. Under these conditions, with an activation level of x%, x% of
the clients will be active simultaneously at the peak moment, while 0.5*x% of the
clients will be active simultaneously on average. When variable session durations
would be considered, no conclusions can be drawn about the peak level utilization
and the corresponding link contention. The size of the buffer available at the client
side is varied between 20s, 60s and 600s. Due to the randomization in the session
start times, for each configuration, 5 different request traces are generated. This
results in a total of 120 evaluation scenarios (3 buffer sizes * 4 activation levels * 2
topologies * 5 request traces). All of these scenarios are simulated in NS-3 using
TCP New Reno as well as both of the proposed congestion control algorithms. The
considered parameter configurations for the margin-based and congestion-aware
algorithms are presented in Table A.3 and Table A.4, respectively.

To assess the quality of the proposed approaches, the QoE is considered as a
performance metric. In literature, it is commonly assumed that the factors influenc-
ing the QoE of a HAS service are the average quality level, the quality switching
behavior and the video freezes [2, 3]. Therefore, for each client the average played
quality level, its standard deviation, the number of video freezes and the total time
of the video freezes is calculated. Based on these values, an estimated Mean Opin-

1Netflix Tech Blog - http://techblog.netflix.com/2015/12/per-title-encode-optimization.html

160 APPENDIX A

Table A.4: Considered parameter configurations for the congestion-aware algorithm.

Parameter Values
ε 0.3
mt 5s, 10s, 20s
σ 2.0, 4.0, 6.0, 8.0

ion Score (eMOS) can be calculated using equation (2.11), presented in Chapter 2.
This model has been slightly redefined to consider an arbitrary number of avail-
able quality levels. The resulting formula can be found in (A.3), where µ and σ
represent the normalized average quality level and its standard deviation, respec-
tively [4]. The value of φ can be calculated using equation (2.10) and estimates the
impact of the video freezes. To evaluate the achieved gain compared to standard
TCP congestion control, all results will be presented relatively to the performance
of TCP New Reno in the same scenario, unless stated differently.

eMOS = max (5.67 ∗ µ− 6.72 ∗ σ − 4.95 ∗ φ+ 0.17, 0) (A.3)

A.4 Evaluation results

To keep the analysis of the results of the wide range of simulations manageable,
in Section A.4.1, the influence of the algorithm parameters is evaluated, averaged
over all scenarios. Next, using the selected optimal parameter configurations, the
influence of the scenario characteristics is investigated in Section A.4.2.

A.4.1 Parameter analysis

To identify the best parameter configuration of both algorithms, we compare the
performance of the margin-based and congestion-aware algorithm to the perfor-
mance of TCP New Reno in terms of eMOS. To be able to manage the analy-
sis, results are averaged over the different scenarios (topology, activation interval,
buffer size, request trace). As a result, the presented values are averaged over 120
scenarios.

Figure A.4 shows the average relative eMOS for the different parameter config-
urations of the margin-based algorithm. It can be seen that the best performance is
obtained for higher deadline margin bounds (i.e. 5-20s and 10-20s). This matches
the findings presented in Chapter 5. When the margin bounds are set closer to
the deadline, the algorithm has less time to react, resulting in a slight performance
degradation. Furthermore, it can be seen that, as opposed to the results presented in
Chapter 5, the best performance is achieved when dynamically changing the value
of β. This seeming mismatch of results can be attributed to the fact that Chapter 5

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 161

0s-10s 0s-20s 5s-10s 5s-20s 10s-20s
Margin bounds (ml-mu)

0.80

0.85

0.90

0.95

1.00

1.05

1.10
 A

v
e
ra

g
e
 r

e
la

ti
v
e
 e

M
O

S

Dynamically changing α

Dynamically changing β

Figure A.4: Average performance of the margin-based congestion control algorithm for dif-
ferent parameter configurations.

focused on bottleneck bandwidth reduction to allow video streaming without inter-
ruptions. In the current evaluations, the best results in terms of video freezing are
obtained by adapting the value of α as well. However, the performance in terms
of average quality level and switching behavior is significantly higher when con-
sidering the β parameter, resulting in a higher eMOS. Based on these evaluations,
dynamically changing the value of β with deadline margin bounds configured to
ml=5s and mu=20s generally yields the best performance for the margin-based
algorithm.

Similarly, the average relative eMOS for the different parameter configurations
of the congestion-aware algorithm is presented in Figure A.5. It can immediately
be seen that the performance of this algorithm is less sensitive to the specific pa-
rameter configuration compared to the margin-based algorithm, with an average
performance increase of more than 5% for all configurations. However, it can also
be seen that on average, the best performance is obtained with a target margin of
mt=10s. When a lower target margin is used, the algorithm has less time to react to
approaching deadline misses. On the other hand, with higher target margins, a flow
will back-off later, leaving less bandwidth for other flows. In terms of the sigmoid
shape factor, a value of σ=6.0 appears to be the best trade-off on average. Based
on these findings, the average optimal parameter settings for the congestion-aware
algorithm are chosen as mt=10s and σ=6.0.

162 APPENDIX A

2.0 4.0 6.0 8.0
Sigmoid shape factor σ

1.00

1.02

1.04

1.06

1.08

1.10

 A
v
e
ra

g
e
 r

e
la

ti
v
e
 e

M
O

S

mt=5s

mt=10s

mt=20s

Figure A.5: Average performance of the congestion-aware congestion control algorithm for
different parameter configurations.

20% 40% 60% 80%
Activation level

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

 A
v
e
ra

g
e
 r

e
la

ti
v
e
 e

M
O

S

20s buffer
60s buffer
600s buffer

Figure A.6: Average performance of the margin-based congestion control algorithm using
optimal parameter configurations in tree topology 1 for multiple activation lev-
els and client buffer sizes.

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 163

20% 40% 60% 80%
Activation level

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
 A

v
e
ra

g
e
 r

e
la

ti
v
e
 e

M
O

S

20s buffer
60s buffer
600s buffer

Figure A.7: Average performance of the margin-based congestion control algorithm using
optimal parameter configurations in tree topology 2 for multiple activation lev-
els and client buffer sizes.

A.4.2 Influence of scenario characteristics

Based on the optimal parameter configurations described above, in this section, the
influence of the scenario characteristics on the performance of both algorithms is
evaluated. Figure A.6 and Figure A.7 show the average relative performance and
its standard deviation in terms of eMOS for the margin-based algorithm in differ-
ent scenarios, using topology tree 1 and tree 2, respectively. For each scenario,
the results are averaged over the 5 request traces to cover the randomness in the
session start times. It immediately becomes clear that for both topologies and for
all activation levels, the influence of the client buffer size is negligible. This can
be explained by the fact that we are dealing with congested scenarios. Using HAS,
only in over-provisioned scenarios where a client is able to continuously stream
the highest quality, significant buffers can be built up. However, these results show
that using the proposed congestion control algorithm, fairness is maintained be-
tween the different clients. When a video client starts earlier and switches to a
higher quality level, one could expect that trying to maintain the current through-
put would limit the bandwidth available for newly starting video streams, resulting
in a lower average eMOS. However, by taking into account the deadline margin to
back-off when the buffer filling becomes too large, this is not the case.

Furthermore, even though it is most clear for topology tree 2, it can be seen that
for both topologies, the performance gain grows with the activation level. When
more video streaming sessions are simultaneously active, the level of congestion
increases. In this case, more benefit can be achieved by implicit coordination be-

164 APPENDIX A

20% 40% 60% 80%
Activation level

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
 A

v
e
ra

g
e
 r

e
la

ti
v
e
 e

M
O

S

20s buffer
60s buffer
600s buffer

Figure A.8: Average performance of the congestion-aware congestion control algorithm us-
ing optimal parameter configurations in tree topology 1 for multiple activation
levels and client buffer sizes.

tween the different streams, as is the case in the proposed approach. This also
explains why, for high activation levels, higher performance is obtained in topol-
ogy tree 2. As can be seen in Table A.2, in this topology, the bottleneck links are
located higher in the tree, causing more streaming sessions to share a common bot-
tleneck link. This again allows for more benefit by implicit stream coordination.

In a scenario with high activation levels (i.e. 80%) in topology tree 1, using the
proposed margin-based congestion control algorithm results in a slight increase
of 1.73% in terms of average quality level and a decrease of 2.48% in terms of its
standard deviation, compared to TCP New Reno. Furthermore, the total number of
freezes is reduced by 22.11%, while the total freeze time is reduced with 25.09%.
Combining these factors results in an increase of 6.55% in terms of eMOS. In
topology tree 2, the average performance gains in terms of average quality level,
its standard deviation, the total number of freezes and the total freeze time amount
to 2.95%, 4.63%, 47.98% and 55.92%, respectively. This results in an average
eMOS increase of 11.07%.

Similarly, Figure A.8 and Figure A.9 show the performance of the congestion-
aware algorithm in both topologies. In terms of the client buffer size, the same
conclusions can be drawn as for the margin-based algorithm. Furthermore, it can
be seen that, as opposed to the margin-based algorithm, the difference in perfor-
mance gain between medium and high activation levels is limited in both topolo-
gies. This can be explained by the fact that this algorithm adapts the value of both
the α and β parameters simultaneously, while the margin-based algorithm focuses

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 165

20% 40% 60% 80%
Activation level

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
 A

v
e
ra

g
e
 r

e
la

ti
v
e
 e

M
O

S

20s buffer
60s buffer
600s buffer

Figure A.9: Average performance of the congestion-aware congestion control algorithm us-
ing optimal parameter configurations in tree topology 2 for multiple activation
levels and client buffer sizes.

on the value of β only. When there is limited congestion, the value of β only
has a limited impact, restricting the performance gain for the margin-based algo-
rithm. However, in these scenarios with limited congestion, the congestion-aware
algorithm can already benefit from the adaptation of α, which has a more fine-
grained impact frequency. In the scenarios with low activation levels (i.e. 20%),
the congestion level is negligible, limiting the possibility of performance gain for
both algorithms. It can be seen that the congestion-aware algorithm always out-
performs the margin-based algorithm, except in a scenario with high activation
levels and a high number of clients sharing a common bottleneck link (i.e. topol-
ogy tree 2 and 80% activation level). In this scenario, combining adaptations of
α and β yields a slight increase in the number of congestion events, resulting in a
limited performance reduction compared to the margin-based algorithm.

With an increase of 0.10%, using the proposed congestion-aware congestion
control algorithm has an negligible influence on the average quality level in a sce-
nario with high activation levels (i.e. 80%) in topology tree 1. However, the stan-
dard deviation of the quality level is reduced with 3.51% on average. Most impor-
tantly, the total number of video freezes is reduced by as much as 92.65% while
the total freeze time is decreased with 94.34%. Combining these factors yields
an increase of 10.13% in terms of eMOS. In the same scenario over topology
tree 2, the average performance gains amount to 0.42%, 2.68%, 91.62%, 93.72%
and 8.26% in terms of average quality level, its standard deviation, total number
of freezes, total freeze time and eMOS respectively.

166 APPENDIX A

Table A.5: Average performance gain of the margin-based (MB) and congestion-
aware (CA) algorithm compared to TCP New Reno in a scenario with high
activation levels of 80%.

QL Switches # freezes Freeze time eMOS

Tree 1 MB 1.73% 2.48% 22.11% 25.09% 6.55%
CA 0.10% 3.51% 92.65% 94.34% 10.13%

Tree 2 MB 2.95% 4.63% 47.98% 55.92% 11.07%
CA 0.42% 2.68% 91.62% 93.72% 8.26%

The performance gain in scenarios with high activation levels is summarized
in Table A.5. It can be seen that the congestion-aware algorithm is able to achieve
a significantly higher video freeze reduction, while having limited impact on the
displayed quality level. For the margin-based algorithm, the gain in terms of video
freezes is more limited, but the increase in terms of eMOS is compensated by a
higher average quality level.

A.5 Conclusions
This appendix has built on the work presented in Chapter 5 by introducing a
deadline-aware congestion control strategy that dynamically adapts both param-
eters of the parametrized TCP New Reno algorithm. This algorithm takes into
account the role of both parameters in the modulation of the congestion window
size to optimize the adaptations to the perceived congestion state. Furthermore,
while the evaluations presented in Chapter 5 focused on reducing the bottleneck
link bandwidth, new evaluations have been presented in this appendix, targeting
the optimization of the QoE. It was shown that, depending on the level of conges-
tion, the average eMOS was increased by up to 11%. Furthermore, by using the
proposed approach, the total video freezing time was reduced by as much as 94%.
These results show that by dynamically adjusting the modulation of the conges-
tion window, the number of deadline misses can significantly be reduced without
impacting the average video quality.

DEADLINE-AWARE TCP CONGESTION CONTROL IN HAS 167

References
[1] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck. QoE-driven

rate adaptation heuristic for fair adaptive video streaming. ACM Transactions
on Multimedia Computing, Communications, and Applications, 12(2):1–24,
2015.

[2] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. Model for estimating
QoE of video delivered using HTTP adaptive streaming. In Proceedings of
the IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 1288–1293, 2013.

[3] R. Mok, E. Chan, and R. Chang. Measuring the quality of experience of HTTP
video streaming. In Proceedings of the IFIP/IEEE International Symposium
on Integrated Network Management (IM), pages 485–492, 2011.

[4] M. Claeys, S. Latré, J. Famaey, and F. De Turck. Design and evaluation of a
self-learning HTTP adaptive video streaming client. IEEE Communications
Letters, 18(4):716–719, 2014.

	Title page
	Dankwoord
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	The Internet video streaming evolution
	Problem statement
	Dissertation outline
	Research contributions
	Publications
	A1: Journal publications indexed by the ISI Web of Science ``Science Citation Index Expanded''
	P1: Proceedings included in the ISI Web of Science ``Conference Proceedings Citation Index - Science''
	C1: Other publications in international conferences

	References

	Design and Optimization of a (FA)Q-Learning-based HTTP Adaptive Streaming Client
	Introduction
	HTTP Adaptive Streaming
	Related work
	HAS client algorithms
	Learning in adaptive streaming
	Learning in QoS/QoE optimization

	Reinforcement learning-based HAS client
	Approach
	Q-Learning
	Frequency Adjusted Q-Learning
	Exploration policy
	State & reward definition
	Action definition

	Initial Q-value estimation
	Rationale
	Estimation algorithm

	Performance evaluation
	Experimental setup
	Evaluation metrics
	Results discussion
	Parameter analysis
	Frequency Adjusted Q-Learning
	Initial Q-value estimation
	Results summary

	Conclusions
	References

	Hybrid Multi-tenant Cache Management for Virtualized ISP Networks
	Introduction
	Related work
	Experiment description
	Caching scenario
	VoD trace characteristics
	Request prediction
	Popularity prediction limitations

	Hybrid cache management
	General notations
	Cache division
	Proactive placement
	Input values
	Decision variables
	Objective function
	Constraints

	Evaluation setup
	Evaluation results
	Influence of the system parameters
	Proactive placement frequency
	Overhead-aware placement
	Blockbuster movie knowledge
	Hybrid cache division
	Reactive ratio adaptation
	Number of tenants
	Server link weight
	Capacity limitations

	Performance comparison

	Conclusions
	References

	Cooperative Announcement-based Caching for VoD Streaming
	Introduction
	Related work
	Cache replacement strategies
	Cache coordination strategies

	Client messaging behavior
	Session announcements
	Session initiations
	Session expiration

	Session-aware cache replacement
	Threshold-based caching strategy
	Message handling
	Replacement strategy

	Election-based caching strategy
	Message handling
	Replacement strategy

	Scenario description
	VoD trace characteristics
	Content type
	Content characteristics
	Binge watching behavior
	Global content popularity
	Geographical distribution of requests
	Request pattern

	Session duration
	Network topology

	Evaluation results
	Influence of the session acceptance threshold a
	Influence of the relative announcement delay b
	Distribution of accepted sessions
	Performance comparison
	Tree topology
	General topology

	Conclusions
	Addendum: GÉANT-based topology graphs
	References

	Deadline-aware TCP Congestion Control for Video Streaming
	Introduction
	Related work
	Feasibility study
	Parametrized congestion avoidance
	Parameter influence

	Algorithm
	Evaluation
	Conceptual demonstration
	Larger scale evaluations
	VoD-only scenarios
	General scenarios

	Conclusions
	References

	Conclusions and Perspectives
	Review of problem statements
	Future perspectives
	Mobile video streaming
	QoE fairness between HAS clients
	Network protocol evolutions
	Network virtualization and SDN

	References

	Controlling the AIMD Behavior of Deadline-aware TCP Congestion Control Algorithms in HAS
	Introduction
	Algorithm
	Scenario description
	Evaluation results
	Parameter analysis
	Influence of scenario characteristics

	Conclusions
	References

