367 research outputs found

    On the Load Balancing of Edge Computing Resources for On-Line Video Delivery

    Get PDF
    Online video broadcasting platforms are distributed, complex, cloud oriented, scalable, micro-service-based systems that are intended to provide over-the-top and live content to audience in scattered geographic locations. Due to the nature of cloud VM hosting costs, the subscribers are usually served under limited resources in order to minimize delivery budget. However, operations including transcoding require high-computational capacity and any disturbance in supplying requested demand might result in quality of experience (QoE) deterioration. For any online delivery deployment, understanding user's QoE plays a crucial role for rebalancing cloud resources. In this paper, a methodology for estimating QoE is provided for a scalable cloud-based online video platform. The model will provide an adeptness guideline regarding limited cloud resources and relate computational capacity, memory, transcoding and throughput capability, and finally latency competence of the cloud service to QoE. Scalability and efficiency of the system are optimized through reckoning sufficient number of VMs and containers to satisfy the user requests even on peak demand durations with minimum number of VMs. Both horizontal and vertical scaling strategies (including VM migration) are modeled to cover up availability and reliability of intermediate and edge content delivery network cache nodes

    Resource management for power-constrained HEVC transcoding using reinforcement learning

    Get PDF
    The advent of online video streaming applications and services along with the users' demand for high-quality contents require High Efficiency Video Coding (HEVC), which provides higher video quality and more compression at the cost of increased complexity. On one hand, HEVC exposes a set of dynamically tunable parameters to provide trade-offs among Quality-of-Service (QoS), performance, and power consumption of multi-core servers on the video providers' data center. On the other hand, resource management of modern multi-core servers is in charge of adapting system-level parameters, such as operating frequency and multithreading, to deal with concurrent applications and their requirements. Therefore, efficient multi-user HEVC streaming necessitates joint adaptation of application- and system-level parameters. Nonetheless, dealing with such a large and dynamic design space is challenging and difficult to address through conventional resource management strategies. Thus, in this work, we develop a multi-agent Reinforcement Learning framework to jointly adjust application- and system-level parameters at runtime to satisfy the QoS of multi-user HEVC streaming in power-constrained servers. In particular, the design space, composed of all design parameters, is split into smaller independent sub-spaces. Each design sub-space is assigned to a particular agent so that it can explore it faster, yet accurately. The benefits of our approach are revealed in terms of adaptability and quality (with up to to 4x improvements in terms of QoS when compared to a static resource management scheme), and learning time (6 x faster than an equivalent mono-agent implementation). Finally, we show that the power-capping techniques formulated outperform the hardware-based power capping with respect to quality

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    SoC-Cluster as an Edge Server: an Application-driven Measurement Study

    Full text link
    Huge electricity consumption is a severe issue for edge data centers. To this end, we propose a new form of edge server, namely SoC-Cluster, that orchestrates many low-power mobile system-on-chips (SoCs) through an on-chip network. For the first time, we have developed a concrete SoC-Cluster server that consists of 60 Qualcomm Snapdragon 865 SoCs in a 2U rack. Such a server has been commercialized successfully and deployed in large scale on edge clouds. The current dominant workload on those deployed SoC-Clusters is cloud gaming, as mobile SoCs can seamlessly run native mobile games. The primary goal of this work is to demystify whether SoC-Cluster can efficiently serve more general-purpose, edge-typical workloads. Therefore, we built a benchmark suite that leverages state-of-the-art libraries for two killer edge workloads, i.e., video transcoding and deep learning inference. The benchmark comprehensively reports the performance, power consumption, and other application-specific metrics. We then performed a thorough measurement study and directly compared SoC-Cluster with traditional edge servers (with Intel CPU and NVIDIA GPU) with respect to physical size, electricity, and billing. The results reveal the advantages of SoC-Cluster, especially its high energy efficiency and the ability to proportionally scale energy consumption with various incoming loads, as well as its limitations. The results also provide insightful implications and valuable guidance to further improve SoC-Cluster and land it in broader edge scenarios

    A selective approach for energy-aware video content adaptation decision-taking engine in android based smartphone

    Get PDF
    Rapid advancement of technology and their increasing affordability have transformed mobile devices from a means of communication to tools for socialization, entertainment, work and learning. However, advancement of battery technology and capacity is slow compared to energy need. Viewing content with high quality of experience will consume high power. In limited available energy, normal content adaptation system will decrease the content quality, hence reducing quality of experience. However, there is a need for optimizing content quality of experience (QoE) in a limited available energy. With modification and improvement, content adaptation may solve this issue. The key objective of this research is to propose a framework for energy-aware video content adaptation system to enable video delivery over the Internet. To optimise the QoE while viewing streaming video on a limited available smartphone energy, an algorithm for energy-aware video content adaptation decision-taking engine named EnVADE is proposed. The EnVADE algorithm uses selective mechanism. Selective mechanism means the video segmented into scenes and adaptation process is done based on the selected scenes. Thus, QoE can be improved. To evaluate EnVADE algorithm in term of energy efficiency, an experimental evaluation has been done. Subjective evaluation by selected respondents are also has been made using Absolute Category Rating method as recommended by ITU to evaluate EnVADE algorithm in term of QoE. In both evaluation, comparison with other methods has been made. The results show that the proposed solution is able to increase the viewing time of about 14% compared to MPEG-DASH which is an official international standard and widely used streaming method. In term of QoE subjective test, EnVADE algorithm score surpasses the score of other video streaming method. Therefore, EnVADE framework and algorithm has proven its capability as an alternative technique to stream video content with higher QoE and lower energy consumption
    corecore