8,140 research outputs found

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Security Issues in Vehicular Ad Hoc Networks

    Get PDF

    Analysis of cyber risk and associated concentration of research (ACR)ÂČ in the security of vehicular edge clouds

    Get PDF
    Intelligent Transportation Systems (ITS) is a rapidly growing research space with many issues and challenges. One of the major concerns is to successfully integrate connected technologies, such as cloud infrastructure and edge cloud, into ITS. Security has been identified as one of the greatest challenges for the ITS, and security measures require consideration from design to implementation. This work focuses on providing an analysis of cyber risk and associated concentration of research (ACR2). The introduction of ACR2 approach can be used to consider research challenges in VEC and open up further investigation into those threats that are important but under-researched. That is, the approach can identify very high or high risk areas that have a low research concentration. In this way, this research can lay the foundations for the development of further work in securing the future of ITS

    Federated Platooning: Insider Threats and Mitigations

    Get PDF
    Platoon formation is a freight organization system where a group of vehicles follows a predefined trajectory maintaining a desired spatial pattern. Benefits of platooning include fuel savings, reduction of carbon dioxide emissions, and efficient allocation of road capacity. While traditionally platooning has been an exclusive option limited to specific geographical areas managed by a single operator, recent technological developments and EU initiatives are directed at the creation of an international, federated market for platooning, i.e., a consortium of platoon operators that collaborate and coordinate their users to constitute freights covering international routes. In this paper, we look at federated platooning from an insiders\u27 perspective. In our development, first we outline the basic elements of platooning and federation of platooning operators. Then, we provide a comprehensive analysis to identify the possible insiders (employees, users, operators, and federated members) and the threats they pose. Finally, we propose two layered, composable technical solutions to mitigate those threats: \emph{a}) a decentralized overlay network that regulates the interactions among the stakeholders, useful to mitigate issues linked to data safety and trustworthiness and \emph{b}) a dynamic federation platform, needed to monitor and interrupt deviant behaviors of federated members

    A Secure Mechanism for Big Data Collection in Large Scale Internet of Vehicle

    Get PDF
    As an extension for Internet of Things (IoT), Internet of Vehicles (IoV) achieves unified management in smart transportation area. With the development of IoV, an increasing number of vehicles are connected to the network. Large scale IoV collects data from different places and various attributes, which conform with heterogeneous nature of big data in size, volume, and dimensionality. Big data collection between vehicle and application platform becomes more and more frequent through various communication technologies, which causes evolving security attack. However, the existing protocols in IoT cannot be directly applied in big data collection in large scale IoV. The dynamic network structure and growing amount of vehicle nodes increases the complexity and necessary of the secure mechanism. In this paper, a secure mechanism for big data collection in large scale IoV is proposed for improved security performance and efficiency. To begin with, vehicles need to register in the big data center to connect into the network. Afterwards, vehicles associate with big data center via mutual authentication and single sign-on algorithm. Two different secure protocols are proposed for business data and confidential data collection. The collected big data is stored securely using distributed storage. The discussion and performance evaluation result shows the security and efficiency of the proposed secure mechanism

    A privacy-aware reputation-based announcement scheme for VANETs

    Get PDF
    Abstract—An announcement scheme is a system that facilitates vehicles to broadcast road-related information in vehicular ad hoc networks (VANETs) in order to improve road safety and efficiency. In this paper, we propose a privacy-aware reputation-based announcement scheme that provides message reliability evaluation, auditability, and robustness. I
    • 

    corecore