83 research outputs found

    Normalization of Disease Mentions with Convolutional Neural Networks

    Get PDF
    Normalization of disease mentions has an important role in biomedical natural language processing (BioNLP) applications, such as the construction of biomedical databases. Various disease mention normalization systems have been developed, though state-of-the-art systems either rely on candidate concept generation, or do not generalize to new concepts not seen during training. This thesis explores the possibility of building a disease mention normalization system that both generalizes to unseen concepts and does not rely on candidate generation. To this end, it is hypothesized that modern neural networks are sophisticated enough to solve this problem. This hypothesis is tested by building a normalization system using deep learning approaches, and evaluating the accuracy of this system on the NCBI disease corpus. The system leverages semantic information in the biomedical literature by using continuous vector space representations for strings of disease mentions and concepts. A neural encoder is trained to encode vector representations of strings of disease mentions and concepts. This encoder theoretically enables the model to generalize to unseen concepts during training. The encoded strings are used to compare the similarity between concepts and a given mention. Viewing normalization as a ranking problem, the concept with the highest similarity estimated is selected as the predicted concept for the mention. For the development of the system, synthetic data is used for pre-training to facilitate the learning of the model. In addition, various architectures are explored. While the model succeeds in prediction without candidate concept generation, its performance is not comparable to those of the state-of-the-art systems. Normalization of disease mentions without candidate generation while including the possibility for the system to generalize to unseen concepts is not trivial. Further efforts can be focused on, for example, testing more neural architectures, and the use of more sophisticated word representations

    Knowledge-Driven Methods for Geographic Information Extraction in the Biomedical Domain

    Get PDF
    abstract: Accounting for over a third of all emerging and re-emerging infections, viruses represent a major public health threat, which researchers and epidemiologists across the world have been attempting to contain for decades. Recently, genomics-based surveillance of viruses through methods such as virus phylogeography has grown into a popular tool for infectious disease monitoring. When conducting such surveillance studies, researchers need to manually retrieve geographic metadata denoting the location of infected host (LOIH) of viruses from public sequence databases such as GenBank and any publication related to their study. The large volume of semi-structured and unstructured information that must be reviewed for this task, along with the ambiguity of geographic locations, make it especially challenging. Prior work has demonstrated that the majority of GenBank records lack sufficient geographic granularity concerning the LOIH of viruses. As a result, reviewing full-text publications is often necessary for conducting in-depth analysis of virus migration, which can be a very time-consuming process. Moreover, integrating geographic metadata pertaining to the LOIH of viruses from different sources, including different fields in GenBank records as well as full-text publications, and normalizing the integrated metadata to unique identifiers for subsequent analysis, are also challenging tasks, often requiring expert domain knowledge. Therefore, automated information extraction (IE) methods could help significantly accelerate this process, positively impacting public health research. However, very few research studies have attempted the use of IE methods in this domain. This work explores the use of novel knowledge-driven geographic IE heuristics for extracting, integrating, and normalizing the LOIH of viruses based on information available in GenBank and related publications; when evaluated on manually annotated test sets, the methods were found to have a high accuracy and shown to be adequate for addressing this challenging problem. It also presents GeoBoost, a pioneering software system for georeferencing GenBank records, as well as a large-scale database containing over two million virus GenBank records georeferenced using the algorithms introduced here. The methods, database and software developed here could help support diverse public health domains focusing on sequence-informed virus surveillance, thereby enhancing existing platforms for controlling and containing disease outbreaks.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances

    Knowledge-driven entity recognition and disambiguation in biomedical text

    Get PDF
    Entity recognition and disambiguation (ERD) for the biomedical domain are notoriously difficult problems due to the variety of entities and their often long names in many variations. Existing works focus heavily on the molecular level in two ways. First, they target scientific literature as the input text genre. Second, they target single, highly specialized entity types such as chemicals, genes, and proteins. However, a wealth of biomedical information is also buried in the vast universe of Web content. In order to fully utilize all the information available, there is a need to tap into Web content as an additional input. Moreover, there is a need to cater for other entity types such as symptoms and risk factors since Web content focuses on consumer health. The goal of this thesis is to investigate ERD methods that are applicable to all entity types in scientific literature as well as Web content. In addition, we focus on under-explored aspects of the biomedical ERD problems -- scalability, long noun phrases, and out-of-knowledge base (OOKB) entities. This thesis makes four main contributions, all of which leverage knowledge in UMLS (Unified Medical Language System), the largest and most authoritative knowledge base (KB) of the biomedical domain. The first contribution is a fast dictionary lookup method for entity recognition that maximizes throughput while balancing the loss of precision and recall. The second contribution is a semantic type classification method targeting common words in long noun phrases. We develop a custom set of semantic types to capture word usages; besides biomedical usage, these types also cope with non-biomedical usage and the case of generic, non-informative usage. The third contribution is a fast heuristics method for entity disambiguation in MEDLINE abstracts, again maximizing throughput but this time maintaining accuracy. The fourth contribution is a corpus-driven entity disambiguation method that addresses OOKB entities. The method first captures the entities expressed in a corpus as latent representations that comprise in-KB and OOKB entities alike before performing entity disambiguation.Die Erkennung und Disambiguierung von EntitĂ€ten fĂŒr den biomedizinischen Bereich stellen, wegen der vielfĂ€ltigen Arten von biomedizinischen EntitĂ€ten sowie deren oft langen und variantenreichen Namen, große Herausforderungen dar. Vorhergehende Arbeiten konzentrieren sich in zweierlei Hinsicht fast ausschließlich auf molekulare EntitĂ€ten. Erstens fokussieren sie sich auf wissenschaftliche Publikationen als Genre der Eingabetexte. Zweitens fokussieren sie sich auf einzelne, sehr spezialisierte EntitĂ€tstypen wie Chemikalien, Gene und Proteine. Allerdings bietet das Internet neben diesen Quellen eine Vielzahl an Inhalten biomedizinischen Wissens, das vernachlĂ€ssigt wird. Um alle verfĂŒgbaren Informationen auszunutzen besteht der Bedarf weitere Internet-Inhalte als zusĂ€tzliche Quellen zu erschließen. Außerdem ist es auch erforderlich andere EntitĂ€tstypen wie Symptome und Risikofaktoren in Betracht zu ziehen, da diese fĂŒr zahlreiche Inhalte im Internet, wie zum Beispiel Verbraucherinformationen im Gesundheitssektor, relevant sind. Das Ziel dieser Dissertation ist es, Methoden zur Erkennung und Disambiguierung von EntitĂ€ten zu erforschen, die alle EntitĂ€tstypen in Betracht ziehen und sowohl auf wissenschaftliche Publikationen als auch auf andere Internet-Inhalte anwendbar sind. DarĂŒber hinaus setzen wir Schwerpunkte auf oft vernachlĂ€ssigte Aspekte der biomedizinischen Erkennung und Disambiguierung von EntitĂ€ten, nĂ€mlich Skalierbarkeit, lange Nominalphrasen und fehlende EntitĂ€ten in einer Wissensbank. In dieser Hinsicht leistet diese Dissertation vier HauptbeitrĂ€ge, denen allen das Wissen von UMLS (Unified Medical Language System), der grĂ¶ĂŸten und wichtigsten Wissensbank im biomedizinischen Bereich, zu Grunde liegt. Der erste Beitrag ist eine schnelle Methode zur Erkennung von EntitĂ€ten mittels Lexikonabgleich, welche den Durchsatz maximiert und gleichzeitig den Verlust in Genauigkeit und Trefferquote (precision and recall) balanciert. Der zweite Beitrag ist eine Methode zur Klassifizierung der semantischen Typen von Nomen, die sich auf gebrĂ€uchliche Nomen von langen Nominalphrasen richtet und auf einer selbstentwickelten Sammlung von semantischen Typen beruht, die die Verwendung der Nomen erfasst. Neben biomedizinischen können diese Typen auch nicht-biomedizinische und allgemeine, informationsarme Verwendungen behandeln. Der dritte Beitrag ist eine schnelle Heuristikmethode zur Disambiguierung von EntitĂ€ten in MEDLINE Kurzfassungen, welche den Durchsatz maximiert, aber auch die Genauigkeit erhĂ€lt. Der vierte Beitrag ist eine korpusgetriebene Methode zur Disambiguierung von EntitĂ€ten, die speziell fehlende EntitĂ€ten in einer Wissensbank behandelt. Die Methode wandelt erst die EntitĂ€ten, die in einem Textkorpus ausgedrĂŒckt aber nicht notwendigerweise in einer Wissensbank sind, in latente Darstellungen um und fĂŒhrt anschließend die Disambiguierung durch

    Neural information extraction from natural language text

    Get PDF
    Natural language processing (NLP) deals with building computational techniques that allow computers to automatically analyze and meaningfully represent human language. With an exponential growth of data in this digital era, the advent of NLP-based systems has enabled us to easily access relevant information via a wide range of applications, such as web search engines, voice assistants, etc. To achieve it, a long-standing research for decades has been focusing on techniques at the intersection of NLP and machine learning. In recent years, deep learning techniques have exploited the expressive power of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance in a wide range of NLP tasks. Being one of the vital properties, Deep Neural Networks (DNNs) can automatically extract complex features from the input data and thus, provide an alternative to the manual process of handcrafted feature engineering. Besides ANNs, Probabilistic Graphical Models (PGMs), a coupling of graph theory and probabilistic methods have the ability to describe causal structure between random variables of the system and capture a principled notion of uncertainty. Given the characteristics of DNNs and PGMs, they are advantageously combined to build powerful neural models in order to understand the underlying complexity of data. Traditional machine learning based NLP systems employed shallow computational methods (e.g., SVM or logistic regression) and relied on handcrafting features which is time-consuming, complex and often incomplete. However, deep learning and neural network based methods have recently shown superior results on various NLP tasks, such as machine translation, text classification, namedentity recognition, relation extraction, textual similarity, etc. These neural models can automatically extract an effective feature representation from training data. This dissertation focuses on two NLP tasks: relation extraction and topic modeling. The former aims at identifying semantic relationships between entities or nominals within a sentence or document. Successfully extracting the semantic relationships greatly contributes in building structured knowledge bases, useful in downstream NLP application areas of web search, question-answering, recommendation engines, etc. On other hand, the task of topic modeling aims at understanding the thematic structures underlying in a collection of documents. Topic modeling is a popular text-mining tool to automatically analyze a large collection of documents and understand topical semantics without actually reading them. In doing so, it generates word clusters (i.e., topics) and document representations useful in document understanding and information retrieval, respectively. Essentially, the tasks of relation extraction and topic modeling are built upon the quality of representations learned from text. In this dissertation, we have developed task-specific neural models for learning representations, coupled with relation extraction and topic modeling tasks in the realms of supervised and unsupervised machine learning paradigms, respectively. More specifically, we make the following contributions in developing neural models for NLP tasks: 1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent neural network based architecture for table-filling in order to jointly perform entity and relation extraction within sentences. Then, we have further extended our scope of extracting relationships between entities across sentence boundaries, and presented a novel dependency-based neural network architecture. The two contributions lie in the supervised paradigm of machine learning. Moreover, we have contributed in building a robust relation extractor constrained by the lack of labeled data, where we have proposed a novel weakly-supervised bootstrapping technique. Given the contributions, we have further explored interpretability of the recurrent neural networks to explain their predictions for the relation extraction task. 2. Neural Topic Modeling: Besides the supervised neural architectures, we have also developed unsupervised neural models to learn meaningful document representations within topic modeling frameworks. Firstly, we have proposed a novel dynamic topic model that captures topics over time. Next, we have contributed in building static topic models without considering temporal dependencies, where we have presented neural topic modeling architectures that also exploit external knowledge, i.e., word embeddings to address data sparsity. Moreover, we have developed neural topic models that incorporate knowledge transfers using both the word embeddings and latent topics from many sources. Finally, we have shown improving neural topic modeling by introducing language structures (e.g., word ordering, local syntactic and semantic information, etc.) that deals with bag-of-words issues in traditional topic models. The class of proposed neural NLP models in this section are based on techniques at the intersection of PGMs, deep learning and ANNs. Here, the task of neural relation extraction employs neural networks to learn representations typically at the sentence level, without access to the broader document context. However, topic models have access to statistical information across documents. Therefore, we advantageously combine the two complementary learning paradigms in a neural composite model, consisting of a neural topic and a neural language model that enables us to jointly learn thematic structures in a document collection via the topic model, and word relations within a sentence via the language model. Overall, our research contributions in this dissertation extend NLP-based systems for relation extraction and topic modeling tasks with state-of-the-art performances

    Proceedings Ocean Biodiversity Informatics: International Conference on Marine Biodiversity Data Management, Hamburg, Germany 29 November to 1 December, 2004

    Get PDF
    The International conference on Marine Biodiversity Data management ‘Ocean Biodiversity Informatics’ was held in Hamburg, Germany, from 29 November to 1 December 2004. Its objective was to offer a forum to marine biological data managers to discuss the state of the field, and to exchange ideas on how to further develop marine biological data systems. Many marine biologists are actively gathering knowledge, as they have been doing for a long time. What is new is that many of these scientists are willing to share their knowledge, including basic data, with others over the Internet. Our challenge now is to try and manage this trend, avoid confusing users with a multitude of contradicting sources of information, and make sure different data systems can be and are effectively integrated

    User-centered semantic dataset retrieval

    Get PDF
    Finding relevant research data is an increasingly important but time-consuming task in daily research practice. Several studies report on difficulties in dataset search, e.g., scholars retrieve only partial pertinent data, and important information can not be displayed in the user interface. Overcoming these problems has motivated a number of research efforts in computer science, such as text mining and semantic search. In particular, the emergence of the Semantic Web opens a variety of novel research perspectives. Motivated by these challenges, the overall aim of this work is to analyze the current obstacles in dataset search and to propose and develop a novel semantic dataset search. The studied domain is biodiversity research, a domain that explores the diversity of life, habitats and ecosystems. This thesis has three main contributions: (1) We evaluate the current situation in dataset search in a user study, and we compare a semantic search with a classical keyword search to explore the suitability of semantic web technologies for dataset search. (2) We generate a question corpus and develop an information model to figure out on what scientific topics scholars in biodiversity research are interested in. Moreover, we also analyze the gap between current metadata and scholarly search interests, and we explore whether metadata and user interests match. (3) We propose and develop an improved dataset search based on three components: (A) a text mining pipeline, enriching metadata and queries with semantic categories and URIs, (B) a retrieval component with a semantic index over categories and URIs and (C) a user interface that enables a search within categories and a search including further hierarchical relations. Following user centered design principles, we ensure user involvement in various user studies during the development process
    • 

    corecore