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Tautimainintojen normalisoinnilla on tärkeä rooli BioNLP-alan (Biomedical Natural
Language Processing) sovelluksissa, kuten esimerkiksi biolääketieteellisten tietokantojen
rakentamisessa. Tautimainintojen normalisointiin on ehdotettu useita menetelmiä, mutta
ne joko pohjautuvat ehdokaskonseptien tuottamiseen tai eivät yleisty uusiin konsepteihin,
jotka eivät esiinny opetusdatassa.

Tässä pro gradu-tutkielmassa tutkitaan, onko mahdollista kehittää tautimainintojen
normalisointijärjestelmää, joka yleistyy opetuksessa näkymättömiin konsepteihin ilman
ehdokaskonseptien tuottamiseen luottamista. Tätä varten oletetaan, että nykyaikaiset
neuroverkot ovat tarpeeksi monimutkaisia tämän ongelman ratkaisemiseen. Tätä oletusta
testataan rakentamalla normalisointijärjestelmä syväoppimismenetelmillä ja arvioimalla
tämän järjestelmän tarkkuutta käyttämällä NCBI:n (National Center for Biotechnology
Information) tautikorpusta. Tämä järjestelmä hyödyntää biolääketieteellisissä aineis-
toissa olevaa semanttista tietoa käyttämällä jatkuvan vektoriavaruuden representaatioita
esittämään tautimainintojen ja konseptien merkkijonoja. Neuroverkkoa opetetaan muo-
dostamaan merkkijonojen vektorirepresentaatiot. Teoriassa tämä opetettu neuroverkko
mahdollistaa mallin opetuksen aikana näkymättömiin konsepteihin yleistämistä. Muo-
dostettuja merkkijonoja käytetään vertaamaan konseptien ja tarkasteltavan maininnan
samankaltaisuutta. Konsepti, jonka laskettu samankaltaisuus on korkeinta, valitaan
ennustetuksi konseptiksi.

Kun järjestelmää kehitetään, synteettistä dataa käytetään helpottamaan mallin ope-
tusta esiopetuksen aikana. Lisäksi tutkitaan eri neuroverkkoarkkitehtuureja. Vaikka
malli onnistuu ennustamaan ilman ehdokaskonseptien tuottamista, sen suorituskyky ei
kuitenkaan ole viimeisimpien vastaavien menetelmien tasolla. Tautimainintojen normal-
isointi ilman ehdokkaiden tuottamista samalla säilyttäen mallin yleistyvyys entuudestaan
näkemättömiin konsepteihin ei ole triviaalia. Tuleva tutkimus voisi keskittyä esimerkiksi
muiden neuroarkkitehtuurien testaamiseen ja monimutkaisempien sanarepresentaatioiden
käyttämiseen.

Asiasanat: Biolääketieteellinen tekstinlouhinta, BioNLP, bioinformatiikka, nimettyjen

entiteettien normalisointi, konvoluutioneuroverkot, syväoppiminen, tauti-

maininnat
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Normalization of disease mentions has an important role in biomedical natural language
processing (BioNLP) applications, such as the construction of biomedical databases.
Various disease mention normalization systems have been developed, though state-of-
the-art systems either rely on candidate concept generation, or do not generalize to new
concepts not seen during training.

This thesis explores the possibility of building a disease mention normalization
system that both generalizes to unseen concepts and does not rely on candidate genera-
tion. To this end, it is hypothesized that modern neural networks are sophisticated enough
to solve this problem. This hypothesis is tested by building a normalization system using
deep learning approaches, and evaluating the accuracy of this system on the NCBI disease
corpus. The system leverages semantic information in the biomedical literature by using
continuous vector space representations for strings of disease mentions and concepts. A
neural encoder is trained to encode vector representations of strings of disease mentions
and concepts. This encoder theoretically enables the model to generalize to unseen
concepts during training. The encoded strings are used to compare the similarity between
concepts and a given mention. Viewing normalization as a ranking problem, the concept
with the highest similarity estimated is selected as the predicted concept for the mention.

For the development of the system, synthetic data is used for pre-training to facili-
tate the learning of the model. In addition, various architectures are explored. While
the model succeeds in prediction without candidate concept generation, its performance
is not comparable to those of the state-of-the-art systems. Normalization of disease
mentions without candidate generation while including the possibility for the system
to generalize to unseen concepts is not trivial. Further efforts can be focused on, for
example, testing more neural architectures, and the use of more sophisticated word
representations.

Keywords: biomedical text mining, BioNLP, bioinformatics, entity linking, normaliza-

tion, convolutional neural networks, deep learning, disease mentions
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1 Introduction

The amount of information available on the web grows rapidly. This vast amount of in-

formation has led to the creation of knowledge bases (KB), or collections of structured

information regarding different entities. KBs usually contain not only entities but also

how they relate to one another, which can take on forms such as hierarchies. There are a

wide variety of KBs, both in the general domain and in specialized domains (e.g. biomed-

ical). The most widely known KB is perhaps Wikipedia1, while there are other notable

KBs more familiar to communities that work with them, such as the general domain KBs

DBpedia (Auer et al., 2007) and YAGO (Suchanek, 2007), and the biomedical domain

KBs Ensembl (Hubbard et al., 2002) and UniProt (Apweiler et al., 2004). To populate the

KBs with knowledge, it is beneficial to extract information related to entities of interest

from unstructured data. This can be done by first detecting the spans of entities, or named

entity recognition (NER), and then assigning these concepts in KBs to spans. This assign-

ment of spans of entities to KB concepts is known as entity linking, entity grounding, or

normalization 2. In essence, the normalization task resolves semantic ambiguity caused

by synonymy and polysemy.

An example of normalization would be the establishment of linkage between the tex-

tual mention “Burma” and the Wikipedia concept Myanmar in the sentence “Burma is a

1https://en.wikipedia.org/wiki/Main\_Page

2This task is usually referred to in the general domain as entity linking, while in the biomedical domain

the term “normalization” is often used instead.
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tropical country”. This example is illustrated in Figure 1.13. To perform normalization,

the mention of the location “Burma” is first identified in the NER step. Subsequently, in

the normalization step, the mention “Burma” is to be mapped to the concept identifier of

the country Myanmar in a given KB such as Wikipedia, instead of other concept identi-

fiers that bear similar surface forms such as the Indian film Burma. As can be illustrated

by this example, normalization is not always trivial because multiple concepts may have

similar or identical surface form(s): in this case, “Burma” may refer to a country name, a

film, and also the name of villages in other parts of the world, depending on the context. In

addition, one concept may have multiple surface forms, such as “Myanmar” and “Burma”

referring to the same country. Furthermore, a mention may not have any corresponding

concept in a given KB to begin with.

Figure 1.1: Normalization of ‘Burma’ to the concept ‘Myanmar’.

3https://en.wikipedia.org/wiki/Burma (disambiguation). Accessed May 7 2019.
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Normalization and its related tasks, such as Word Sense Disambiguation4, have been stud-

ied by different research communities. These communities include that of Natural Lan-

guage Processing, Data Mining, and Semantic Web. The fact that normalization is of

interest to a variety of research communities is unsurprising, as resolving ambiguities in

text benefits research areas such as Information Extraction, Information Retrieval, and

Machine Translation. For example, in the biomedical domain, normalization can be used

to link mentions of entities of interest (e.g. genes and proteins) in the literature to identi-

fiers in databases. This facilitates the extraction of information of scientific interest (e.g.

protein phosphorylation). In this thesis, special attention is given to normalization in the

biomedical domain, specifically normalization of disease mentions. However, normaliza-

tion as a research area is briefly covered in Chapter 2.

In the biomedical domain, various biomedical entities have become the focus of normal-

ization: disease names, gene names, chemicals, bacteria biotopes, etc. However, some

challenges appear more frequently in this domain of normalization than in the general

domain. Among these challenges are term variation and acronym resolution. Term varia-

tion refers to one concept having multiple surface forms, some of which are very different

from one another. For example, “carcinoma” and “cancer” both refer to abnormal growth

of body cells that may metastasize. Acronym resolution refers to the disambiguation pro-

cess when different concepts share the same surface form. For instance, “KMS” can refer

to Kabuki make up syndrome or Kallmann syndrome, which are completely

unrelated disorders. For disease mention normalization, various systems have been devel-

oped to cope with these challenges.

4In computational linguistics, Word Sense Disambiguation (WSD) is a task that aims to identify the

sense of a word. For example, for the word “spring” in the sentence “Spring is around the corner”, WSD

tries to determine which sense of “spring”, the sense of a season, that of a helical metal coil, or that of a

sudden movement forward, is referred to.
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In the following chapter (Chapter 2), an overview of related work on the topic of nor-

malization is presented. This overview includes recent work on general domain normal-

ization, as well as biomedical normalization, with a special focus on disease names. After

the current research involving normalization has been described, the motivation and ob-

jectives behind building a disease mention normalization system are further explained in

Chapter 3. The data and the main methods behind the implementation are covered in

Chapter 4, while the implementation details of the model architecture are described in

Chapter 5. For the experiments carried out in this study, the experimental settings are

described in Chapter 6. The reasoning behind the experimental settings, the results, and

the analysis are provided in Chapter 7. In Chapter 8, conclusions are drawn and further

research directions are suggested.

Throughout this thesis, the term “normalization” refers to the task of assigning a con-

cept identifier to a textual mention. The term “mention” refers to a textual mention of an

entity from a corpus. An entry in a controlled vocabulary is called a “concept identifier”,

which can have multiple “names”, or terms that refer to it.



2 Related work

Due to its various applications in different domains, diverse types of systems have been

developed for the task of normalization. These systems are often dependent on the do-

mains they have been built for. Examples of these domains include the news domain,

such as normalization of persons, locations, and organizations, and the biomedical do-

main, such as normalization of disease mentions and chemicals.

This chapter is divided into three sections. In the first section, the normalization research

area is presented by briefly describing common normalization approaches and introduc-

ing selected systems. In the second section, the most recent studies on disease mention

normalization are introduced. In the third section, selected normalization systems for

mentions of biomedical entities other than diseases are introduced.

2.1 Normalization

As a result of substantial research on normalization from different research communities,

diverse normalization data sets, systems, evaluation methods, and KBs have been cre-

ated. This section does not attempt to cover all of these in detail, but tries to give a brief

overview. This overview covers the categorization of KBs and approaches employed by

normalization systems. No data sets are introduced, but a publicly available framework

for normalization system evaluation which includes data sets is mentioned. In addition,

selected normalization systems which employ remotely related approaches to this study
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are introduced.

Knowledge bases can be categorized into entity-centric KBs and document-centric KBs

(Zwicklbauer et al., 2015). Entity-centric KBs, such as DBpedia (Auer et al., 2007)

and YAGO (Suchanek, 2007), have a set of entities with identifiers and attribute fields.

Document-centric KBs, such as Wikipedia, contain a set of natural language documents,

each focused on one concept, with links of mentions to other concepts.

Zwicklbauer (2017) gives a detailed review on normalization approaches. Briefly, nor-

malization approaches are divided into three components according to the order they are

used in a typical normalization system (Table 2.1): (1) candidate entity generation, (2)

disambiguation, and (3) abstaining. In the candidate generation step, candidate concepts

from KBs are generated to reduce the number of concepts to be processed subsequently.

Methods common to this step include the use of dictionaries, acronym expansion, and the

use of search engines. For disambiguation of mentions, traditional machine learning ap-

proaches often use hand-crafted features. These features can be, for example, the name,

popularity, and type of entities, as well as their textual context, the coherence of topic, etc.

Algorithms commonly used for disambiguation include vector space model approaches,

information retrieval approaches, learning to rank (LTR) approaches, graph-based ap-

proaches, probabilistic approaches, classification approaches, and ensembles thereof. The

abstaining step determines whether there is a concept in the given KB that maps to the

mention in question in the first place. In practice, this step is often integrated into the

disambiguation step by adding in a pseudo-concept identifier NIL, which signifies that

there is no concept identifier in the given KB that can be assigned to the mention.

Dredze et al. (2010) view normalization as ranking and engineer features for the rank-

ing of candidate concepts. They use a KB-independent approach to generate candidate
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Table 2.1: Common entity linking approaches (Zwicklbauer, 2017).

Component Approaches

Candidate entity generation Name dictionary, surface form expansion, search

engine

Disambiguation - features Entity name, entity popularity, entity type, textual

context, topical coherence, joint feature modeling

Disambiguation - algorithms Approaches based on vector space model,

information retrieval, learning to rank, graph-based

approaches, probabilistic approaches, classification

approaches, and ensemble approaches

Abstaining Considering NIL as additional entity

concepts based on morphological information of entities. A variety of features are ex-

tracted from candidates for disambiguation. These features include string-based features

(e.g. string equality, partial string match), Wikipedia-derived features (e.g. Wikipedia

page length), concept popularity (i.e. how frequently a concept is used), and document

features (i.e. the context of mentions). The training of the ranking model maximizes the

difference in scores assigned to positive and negative training instances. For abstaining,

NIL is included as a candidate concept. Its prediction depends on NIL features, which

include statistics of the prediction scores, and external information such as Google match.

Francis-Landau et al. (2016) use a convolutional neural network (CNN) to extract topic

vectors from three granularities of text (i.e., mention, sentence, and document) and com-

pare these vectors with those of concepts by cosine similarity. These cosine similarities

are then used, along with other features, for logistic regression to predict the concept iden-

tifier for a given mention.
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Inan and Dikenelli (2018) propose a two-fold neural model for domain-specific nor-

malization. They represent mentions and concepts by Resource Description Framework

(RDF) embeddings, embeddings of entities learned in RDF graphs where each entity is

represented by a node (Ristoski and Paulheim, 2016). Their model first matches easy

mention-concept pairs, whose domain information is then used to generate candidates for

mentions in the vicinity. The more ambiguous pairs are subsequently resolved by bidi-

rectional long short-term memory (Schuster and Paliwal, 1997) and conditional random

field (CRF) (Wallach, 2004) models. Their sequence learning model views normalization

as a translation task, where a mention is translated into a concept using a sequence-to-

sequence model. This system achieves state-of-the-art performance on the Disambiguate

to Knowledge Base (D2KB) task (Usbeck et al., 2015), a domain-specific normalization

evaluation.

Many metrics have been used for the evaluation of normalization systems due to the

wide spectrum of research. Among these metrics are accuracy and recall, precision, and

F1-score. This difference in evaluation methods poses a challenge to the comparison

of normalization systems. To facilitate normalization system comparison, Usbeck et al.

(2015) propose the General Entity Annotator Benchmarking Framework (GERBIL). This

framework is publicly available, and allows users to submit prediction results from their

own systems on the supported data sets. The GERBIL platform computes the evaluation

scores for its users.

2.2 Disease mention normalization

This section reviews disease mention normalization-related work. Commonly used cor-

pora created to facilitate the development of such systems with machine learning ap-

proaches are briefly introduced here. The NCBI disease corpus and the ShARe/CLEF
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corpus are described further in Section 4.1.1. After these corpora have been introduced, a

review of selected recent work follows. The approaches adopted by selected systems and

their results on the NCBI disease corpus are also organized into a table.

The NCBI disease corpus was constructed by the National Center for Biotechnology In-

formation (NCBI) for the development of disease entity recognition and normalization

systems (Dogan et al., 2014). The corpus contains 793 fully annotated PubMed abstracts.

The disease entities are annotated with their spans and the corresponding concept identi-

fiers from the MErged DIsease voCabulary (MEDIC) (Davis et al., 2012).

The ShARe/CLEF corpus was originally constructed for the ShARe/CLEF eHealth Eval-

uation Lab 2013 (ShARe/CLEF 2013) (Suominen et al., 2013), though its test set was ex-

panded in the follow-up shared task SemEval-2014 Task 7 (Pradhan et al., 2014). The vi-

sion of ShARe/CLEF 2013 was to facilitate patients’ and their next of kin’s access to med-

ical information. The corpus consists of 300 de-identified clinical reports with annotation

of disease mention spans and identifiers. The disease mentions are annotated with concept

identifiers from the controlled vocabulary (i.e. the KB), namely, the SNOMED-CT sub-

set of the Unified Medical Language System (UMLS) Metathesaurus (Schulz and Cornet,

2009). There are two evaluation metrics used for this corpus: strict accuracy and relaxed

accuracy. Strict accuracy requires both the predicted spans and concepts to match with the

gold standard, while relaxed accuracy allows for overlapping spans with correct predicted

concepts.

The BioCreative V Chemical-Disease Relation (BC5CDR) corpus was constructed for

the shared task of the same name (Li et al., 2016). The shared task aimed to advance the

relation extraction of chemical-induced diseases. The BC5CDR corpus contains 1,500

articles where the disease and chemical entities are annotated with spans and identifiers



CHAPTER 2. RELATED WORK 10

from Medical Subject Headings (MeSH), National Library of Medicine’s controlled vo-

cabulary for literature indexing (Lipscomb, 2000).

Taking advantage of these corpora, various normalization systems for disease mentions

have been developed over the past decade. These systems have deployed a variety of

approaches, including rule-based approaches, non-neural machine-learning approaches,

deep learning approaches, and combinations thereof. While the rule-based approaches

were developed earlier, neural networks are the methods featured in the latest publications

at the time of writing this thesis. In addition, since normalization is conducted subsequent

to NER, and its accuracy is limited by the results of NER, there are also systems that

combine these two steps.

MetaMap was developed by the National Library of Medicine (NLM) for biomedical

text indexing purposes (Aronson, 2001). It maps biomedical mentions to UMLS concepts

by (1) generating lexical and morphological variances of the mentions, (2) retrieving can-

didate concepts in UMLS containing the variances, and then (3) scoring the candidates

using metrics designed based on linguistic principles. MetaMap is a tool of the Medical

Text Indexer, which is used for semiautomatic and automatic biomedical literature index-

ing.

Dogan and Lu (2012b) propose addressing the normalization task from an information

retrieval perspective, i.e. disease mentions are regarded as input queries, concept identi-

fiers search results. They built a search engine for disease mentions using the information

retrieval software library Lucene1. The search results are further processed and ranked;

abbreviations are resolved, and candidates are inferred using a set of rules based on their

similarity to the control vocabulary terms and the Lucene search scores. This method

1http://lucene.apache.org/
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achieved an F-score of 0.783 on the NCBI disease corpus.

D’Souza and Ng (2015) apply a multi-pass sieve approach to normalization. Their sys-

tem features ten sieves, each consisting of heuristic rule(s), ordered at different priorities

according to their precisions. These sieves include exact match, abbreviation expansion,

number replacement, etc. The system obtained accuracy scores of 0.908 and 0.847 for the

ShARe/CLEF corpus and the NCBI disease corpus, respectively.

AuDis is a pipeline architecture for NER and normalization (Lee et al., 2016). NER is

performed using CRF model with post-processing steps, and normalization is performed

using a dictionary-lookup approach. The system achieved the best performance with an

F-score of 0.865 on the disease normalization task in the official evaluation of the CDR

task in BioCreative V.

Ghiasvand and Kate (2014) were the second best performing team for the disease normal-

ization sub-task in the SemEval-2014 Task 7 (Pradhan et al., 2014). Their normalization

system searches for exact matches and, whenever those are unavailable, considers varia-

tions in disorder mentions and learns them using an edit distance pattern-based method.

The system achieved a strict accuracy of 0.66 for normalization on the ShARe/CLEF cor-

pus.

While the above mentioned methods achieve reasonable results for disease mention nor-

malization, they rely heavily on complete specialist lexicons and/or heuristics. This is

time- and labor-consuming, and makes the application of these systems rather restricted

to the given domain and the specific language. These restrictions are alleviated with the

use of word embeddings (introduced in Section 4.3.2), which became a popular method

for text representation following the research of Mikolov et al. (2013a). At the same time,
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machine learning-based approaches were developed with the aim of relying less on such

resource-demanding processes. The following systems introduced are examples of re-

search in the wake of this increased popularity in machine learning-based approaches.

The top-ranking system in ShARe/CLEF 2013 uses Term Frequency-Inverse Document

Frequency (TF-IDF) vector representation (introduced in Section 4.3.1) for disease men-

tions and concept names, and selects the normalized concept according to the cosine

similarity of the vector representations (Tang et al., 2013). The system achieves a strict

accuracy of 0.514 and a relaxed accuracy of 0.729. The same research group again ob-

tained top-ranking results in Sem-Eval 2014 Task7. The cosine similarity of vector space

representations was used again for disease normalization, and the team achieved a best

strict accuracy of 0.741, and a relaxed accuracy of 0.873 (Zhang et al., 2014).

Kaewphan et al. (2014) also use the cosine similarity of the vector space representation

of mentions and concept names as their normalization measure. They use the word2vec

method (Mikolov et al., 2013a) to train word embeddings on billions of tokens from un-

labelled biomedical texts on PubMed and PubMed Central (Mikolov et al., 2013b). The

resulting embedding (referred to as emb-Kaewphan) is further described in 4.3.2. This

system achieved a strict accuracy of 0.601 and a relaxed accuracy of 0.783 in Sem-Eval

2014 Task 7, ranking fifth in the normalization sub-task.

While cosine similarity of vector representations was used in some of the entries of

ShARe/CLEF 2013 and Sem-Eval 2014 Task7 to measure the similarity of mentions and

concept names, Leaman et al. (2013) use a trainable scoring function to calculate the

similarity of vector representations. Their system, DNorm, was the first to apply the IR

machine-learning approach pairwise learning to rank (further described in Section 4.4)

to the normalization task. It uses the NCBI disease corpus and the MEDIC vocabulary.
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DNorm represents mentions and concept names by TF-IDF vectors within a defined vec-

tor space (Manning et al., 2008). During training, a scoring function that scores a given

mention and a concept name is modelled by a linear function whose weights are con-

tained in a matrix, which is optimized using stochastic gradient descent (Burges et al.,

2005). This matrix is subsequently used to rank the concept names with the mentions

in a pairwise fashion. DNorm achieves a micro-averaged F-score of 0.782 and a macro-

average F-score of 0.809, which are higher than their best baselines by 0.121 and 0.098,

respectively.

DNorm’s vector representation is based on mentions and concept names, and thus relies

heavily on the quality of the labelled data and that of the predefined dictionary. Cho et al.

(2017) use a method similar to that of Kaewphan et al. (2014) for disease normalization,

except that they use both unlabelled PubMed data and the detected mention spans for the

training of word2vec word embeddings. Their system obtained an F-score of 0.808 on the

NCBI disease corpus, and 0.690 on their manually constructed plant corpus. In addition,

the system was reported to outperform the best disease mention normalization system in

the BioCreative V challenge.

DNorm, as well as some of the abovementioned entries of ShARe/CLEF 2013 and Sem-

Eval 2014 Task7, suffers from cascading of NER error to normalization. To handle this

issue, joint models for NER and normalization were proposed. Leaman and Lu (2016)

introduce a joint model using a machine learning approach during both training and pre-

diction on biomedical text. Their model, non-restricted to any entity types, features a

semi-Markov structured linear classifier. The classifier has features for NER and uses

vector space representation similar to that of DNorm for normalization. Their Java im-

plementation of the model, TaggerOne, obtains F-scores of 0.829 and 0.807 for NER and

normalization respectively on the NCBI disease corpus.
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TaggerOne, however, does not use context features due to the use of exact inference and

dynamic programming. Lou et al. (2017) propose a transition-based joint model that is

able to leverage context features. This is done by using previous predictions from the

same document as features. This model, trained on the BC5CDR corpus, achieves an

F-score of 0.826 for normalization on the NCBI disease corpus without corpus-specific

fine-tuning.

ter Horst et al. (2017) use undirected graphical models to build a probabilistic system

that jointly handles NER and normalization. Their system, JLink, achieves F-scores of

0.859 and 0.884 on disease and chemical mentions respectively on the BC5CDR corpus,

out-performing D-Norm and TaggerOne on disease mentions and achieving comparable

performance on chemical mentions.

With the rise of popularity of deep learning methods, several neural network-based sys-

tems have been developed for disease normalization. Liu and Xu (2018) propose a model

incorporating deep learning into the generation of word representations. They train dis-

tributed representations on large, unlabelled literature using word2vec and integrate indi-

vidual tokens of a disease mention into the representation of the disease mention using

tree-structured long short-term memory (Tree-LSTM) (Tai et al., 2015). The similarity

score for a given pair of mention and concept name is calculated by a single perceptron,

and the final decision is made using a pairwise learning to rank approach. When trained

on the NCBI disease corpus, the system achieves accuracy scores of 0.853 and 0.765 on

the NCBI disease corpus and the BC5CDR corpus respectively.

Li et al. (2017), similarly, use the pairwise learning to rank method for the ranking of

concepts. Their system generates candidates using modified rules from D’Souza and Ng

(2015). Candidates are then represented by word vectors and encoded by a CNN ar-
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chitecture. The encoded mentions and candidates are subsequently ranked according to

their morphological and semantic information (as described in detail in Section 5.2.1) .

The system obtains accuracy scores of 0.861 and 0.903 on the NCBI disease corpus and

the ShARe/CLEF corpus, respectively. This system views normalization as a zero-shot

(Socher et al., 2013) multi-class classification2 problem.

NormCo is a deep coherence model for disease mention normalization (Wright et al.,

2019). This model is trained to map disease mentions to a disease concept space, with

the goal of minimizing the distance between the vector representation of a mention and

its corresponding concept. To achieve this, the model takes into account the semantics of

mentions by using phrase embeddings (Hill et al., 2016), and considers topical coherence

at the document level. To deal with data sparsity, distantly supervised and synthetic data

are used. Compared with existing state-of-the-art systems, the model is more efficient

and achieves comparable results with regard to accuracy and F-score. In addition, the

falsely predicted concepts are closer in semantic meaning to the gold standard. However,

this model, unlike the systems of Li et al. (2017) and Liu and Xu (2018), do not have

the potential to generalize to unseen concepts. This is because NormCo does not have

an encoder for concepts, and thus views disease normalization as a standard multi-class

rather than a zero-shot multi-class classification problem.

Table 2.2 shows selected systems, their approaches, and results on the NCBI disease

corpus. It can be seen from this table that the latest state-of-the-art systems are neural

network-based.

2In supervised machine learning, a classification task involves assigning a category for a data point.

Depending on the number of categories, classification can be divided into binary classification and multi-

class classification. Whereas binary classification has only two categories, multi-class classification has

more than two categories.
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Table 2.2: Selected systems, their approaches, and results on the NCBI disease corpus.

Name of system Approach Results on the

and/or authors NCBI disease corpus

Dogan and Lu (2012b) Search engine for disease 0.783 (F-score)

mentions

D’Souza and Ng (2015) Rule-based 0.847 (accuracy)

DNorm TF-IDF vector representations, 0.782 (micro-averaged

(Leaman et al., 2013) a trainable scoring function F-score) and 0.809

for similarity measurement (macro-average F-score)

Cho et al. (2017) word2vec word embeddings, 0.808 (F-score)

cosine similarity

TaggerOne TF-IDF vector representations, 0.807 (F-score)

(Leaman and Lu, 2016) semi-Markov structured linear

classifier

Lou et al. (2017) Transition-based joint model 0.826 (F-score)

Liu and Xu (2018) word2vec word embeddings, 0.853 (accuracy)

Tree-LSTM

Li et al. (2017) Heuristics for candidate 0.861 (accuracy)

generation, word embeddings,

CNN

NormCo Neural networks, phrase 0.878 (accuracy)

(Wright et al., 2019) embeddings, and topical

coherence

In summary, disease mention normalization systems can roughly be categorized into rule-

based systems and machine learning-based systems. Rule-based systems suffer from the

limitations of rules not being directly transferable across different types of mentions, and
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the impossibility of an exhaustive collection of rules (Li et al., 2017). Existing machine

learning-based systems, on the other hand, use various strategies such as candidate con-

cept generation by heuristics, considering both semantic and morphological information,

using vector representations of text, leveraging silver standard corpus to overcome data-

sparsity, taking into account document-level coherence, etc. Many of the systems, both

rule-based and machine-learning based, also rely on the completeness of domain-specific

ontologies, which restricts the effective application of such systems to only languages and

domains with more complete ontologies. That is, they require a comprehensive collection

of concepts to which the mentions can be normalized.

2.3 Normalization of other types of biomedical mentions

Apart from disease normalization, various other types of mentions have been the focus of

normalization. For example, several systems have been developed for the normalization

of gene names as entries to the BioCreative series (Morgan et al., 2008; Lu et al., 2011).

These gene normalization (GN) shared tasks have focused on gene detection and normal-

ization to the standard database NCBI Gene (Maglott et al., 2011). In the most recent GN

shared task, the evaluation metrics Threshold Average Precision at a median of k errors

per query is used. This measure relates to average precision, and reflects how reliable a

GN system is by its output score (Lu et al., 2011).

GNAT Java library is used to process gene and protein mentions (hereafter gene men-

tions) in biomedical text (Hakenberg et al., 2011). It supports text retrieval, NER, and

normalization of gene mentions. It can be used for integration with other systems, be the

framework for integration, or as a stand-alone application.

GenNorm ranked top three in the GN task of BioCreative III (Wei and Kao, 2011). It
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recognizes genes by dictionary lookup and predicts the species they belong to based on

a combination of heuristics that takes into account the gene name and associated species.

Its stand-alone module, SR4GN, compares favorably to the top-performing systems when

evaluated on the benchmark experiments of the BioCreative series (Wei et al., 2012).

GNormPlus handles both NER and gene normalization by integrating multiple biomedical

text mining systems, viz., Ab3P (abbreviation resolution), GNR (gene name recognition),

SR4GN (species recognition and species assignment), SimConcept (composite mention

simplification), and GenNorm (gene name normalization) (Wei et al., 2015).

The normalization of bacteria to taxa and their locations to habitats is another normal-

ization task spurred by shared tasks. The Bacteria Biotope tasks of the BioNLP Shared

Task focused on the recognition and normalization of bacteria and their habitats, as well

as the extraction of related events (Deléger et al., 2016). The best performing system in

the latest edition of this task, BOUN, uses string matching methods for bacterial name

normalization, and information retrieval techniques, such as TF-IDF scoring and cosine

similarity, for habitat name normalization (Tiftikci et al., 2016). This system achieved

an overall precision of 0.679, and precision of 0.801 and 0.620 for bacterial name nor-

malization and habitat name normalization, respectively. Adopting a similar approach as

that of Tiftikci et al. (2016) for habitat name normalization, Mehryary et al. (2017) use

the cosine similarity of TF-IDF vector space representations for both bacteria and habitat

normalization, and obtained precision of 0.816 for bacteria normalization, and 0.630 for

habitat normalization, resulting in an overall precision of 0.691.

Ferré et al. (2018) use a combination of rule-based and embedding-based approaches

for bacterial habitat normalization. The rule-based approach, ToMap, assumes that the

syntactic head of an entity is its most informative token, and maps the entity based on its
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head (Golik et al., 2011). The embedding-based approach, CONTES, creates an ontolog-

ical space that takes into account the hierarchical information of the ontology. CONTES

then computes embedding representations for mentions and concepts, and minimizes their

distance in the ontological space (Ferré et al., 2017). CONTES is used to complement

ToMap by using it to predict mentions which cannot be normalized by ToMap. As distant

supervision, ToMap is used to generate additional training data from unlabelled biomedi-

cal text for CONTES because it is rule-based and has high precision. The supervised and

distantly supervised setups achieved precision of 0.73 and 0.72 respectively.

Karadeniz and Özgür (2019) represent biomedical entities by forming representations

from word embeddings where the representation of each token is weighted by their syn-

tactic role. The ontological concepts are ranked according to the cosine similarity of their

representation with the mentions. This approach, unlike that of Ferré et al. (2017), is un-

supervised because the representation of mentions and concepts are computed the same

way, eliminating the need to transform the vectors before computation of similarity. This

approach attained a precision score of 0.659 for habitat name normalization for the Bac-

teria Biotope data set, and a macro-average precision score of 0.687 on an adverse drug

reaction data set from the Text Analysis Conference 2017 (Roberts et al., 2017).

Apart from gene names, bacterial taxa and habitats, and adverse drug reactions, other

biomedical named entities, such as chemicals and organisms, have also been the focus

of normalization systems. The tmChem system is an NER system for chemicals formed

by the ensemble of two CRF models. The system is paired with a normalization sys-

tem, which uses a dictionary lookup approach to assign chemical mentions to MeSH or

ChEBI3 (de Matos et al., 2010) identifiers (Leaman et al., 2015). OrganismTagger is a hy-

brid rule-based and machine-learning system that detects mentions of organisms (Naderi

3Chemical Entities of Biological Interest (ChEBI) is a database for chemical compounds.
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et al., 2011). In addition, it resolves abbreviations and acronyms, and normalizes men-

tions to the NCBI Taxonomy database. The system achieves high normalization accuracy

scores of 0.975 on the authors’ own manually annotated corpus, the OT corpus, and 0.974

on the Linnaeus-100 corpus (Gerner et al., 2009).

Various approaches, supervised and unsupervised have been devised for normalization

of different types of biomedical named entities. These approaches can be dictionary-

or vector space representation-based. In comparison with the systems that have been

proposed for disease mention normalization, the systems that have been developed for

bacteria habitat normalization are the most similar in terms of the strategy of using vector

space representations and measuring similarity between mentions and concepts. This is

perhaps due to the fact that both of these types of mentions share semantic similarity with

their corresponding ontological concepts, whereas other types of biomedical mentions,

such as gene names4 and chemicals, require different flavors of normalization that are not

captured by biomedical word embeddings.

4Gene normalization requires tailored solutions mainly due to systematic species ambiguity.



3 Motivation and objectives

As introduced in Section 2.2, state-of-the-art systems for disease mention normalization

are based on neural networks. There are, however, some shortcomings to the existing sys-

tems that we would like to address in this study. One shortcoming is the use of candidate

generation, i.e., pre-selection of candidates from the controlled vocabulary by heuristics.

This is the approach adapted by Li et al. (2017). Another shortcoming concerns the abil-

ity of the model to generalize to unseen concepts during training. This shortcoming is

present in the system of Wright et al. (2019), which learns a space for disease mentions

and concepts.

This thesis explores the possibility of building a normalization system that generalizes

to unseen concepts and does not rely on candidate generation. This is done by postulating

that modern neural networks have the computational power to serve as building blocks for

such normalization systems. More specifically, the following three hypotheses are made:

(1) Given the baseline method of averaging the word embeddings (introduced in Sec-

tion 4.3.2) from each token in a given multi-token string as the representation of mentions

and concept names, neural networks, such as convolutional neural networks, are suffi-

ciently sophisticated to learn to encode entities in a way that leads to better normalization

performance than this baseline method.
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(2) The encodings from the aforementioned neural encoder allow ranking of identifier

concepts in a way that does not lead to performance degeneration of the normalization

system when given the whole set of possible concepts to rank, as opposed to being given

only a small number of generated candidates.

(3) A normalization architecture containing the aforementioned neural encoder that is

able to generalize to previously unseen concepts is possible.

To test these hypotheses, an entity linking system is built and evaluated on a corpus for

disease name recognition and normalization, the NCBI disease corpus. The following

chapter introduces the main methods used for constructing the normalization system.



4 Methods

The theoretical background underlying the proposed normalization system is introduced

in this chapter. It includes vector space representation for word representation, pairwise

learning to rank for ranking, and neural network as the backbone of the model. In addition,

the corpus and the controlled vocabulary used are introduced.

4.1 Data

As the benchmarking data set of the system, the NCBI disease corpus and the controlled

vocabulary it uses, MEDIC, are selected. This section describes these data and some of

their general statistics.

4.1.1 The NCBI disease corpus

The NCBI disease corpus was created to provide resources for the development of dis-

ease NER and normalization systems (Dogan and Lu, 2012a). The corpus consists of

793 PubMed titles and abstracts, where all the spans of disease names are annotated and

mapped to identifier concepts in MEDIC. In total, there are 6,900 disease mentions in the

corpus, and 2,161 of them are unique.

An example sentence extracted from this corpus is shown in Figure 4.1. This sentence

has four annotations of mention spans, namely, “colon cancers’, “adenomatous polyposis
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Figure 4.1: A sentence with annotations from the NCBI disease corpus.

coli”, “APC”, and “colon and some other cancers”. Each of these mentions is mapped to

one or multiple concept identifiers. For example, the mention “colon cancers” is mapped

to the concept with the identifier D003110 and the preferred term “Colonic Neoplasms”.

As shown in the example, some mentions are mapped to multiple concept identifiers.

There are not many of them in the corpus; only 71 mentions, or 9% of the mentions,

are mapped to more than one concept identifier. Of these, 52 are composite mappings, or

mappings to multiple concepts due to sentence structure, and the concepts are separated by

“|” in the annotation. For example, “breast and ovarian cancer” is annotated as D001943

| D010051, where D001943 is the concept identifier for Breast Neoplasms and

D010051 that of Ovarian Neoplasms. The other ones are multiple concept map-

pings, or mappings to multiple concepts due to the inherent meaning of the disease men-

tion, and these concepts are concatenated with “+”. For instance, “inherited muscle disor-

der” is annotated as D009135 + D030342, where D009135 is the concept identifier

for Muscular Diseases and D030342 that of Genetic Diseases, Inborn

(Dogan et al., 2014; Davis et al., 2017). In terms of the distribution of these multi-concept

mentions in the training, development, and test sets, they occur 115, 30, and 15 times in
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these three sets, accounting for 2.24%, 3.81%, and 1.56% of the mentions respectively.

4.1.2 The MEDIC disease vocabulary

MEDIC is maintained for curational purposes by Comparative Toxicogenomics Database

(CTD), an organization that facilitates understanding of the effect of environmental expo-

sure on human health. To achieve this, CTD provides a manually curated, publicly avail-

able database of chemical-gene/protein interactions, gene-disease and chemical-disease

relationships (Davis et al., 2017). MEDIC was created by merging Online Mendelian

Inheritance in Man (OMIM), a controlled vocabulary for human genetic diseases, and

some parts of MeSH. OMIM is a flat list of genetic disease-related concepts that in-

cludes phenotypes, phenotype descriptions, genes with phenotypes, etc. MeSH is a con-

trolled vocabulary thesaurus organized hierarchically into 16 branches. Of these branches,

the Disease branch and the Mental Disorders sub-branch of the Psychiatry

and Psychology branch contain disease concepts relevant for the MEDIC construc-

tion. The creation of MEDIC saw the mapping of concepts in OMIM into the Disorders

and Mental Disorders (sub)branches of MeSH. OMIM concepts with synonyms in

MeSH were merged with their synonyms, and those without were made leaves of appro-

priate MeSH concepts. This use of the MeSH hierarchy as the backbone allows users to

navigate through broader and narrower concepts (Nelson et al., 2001; Davis et al., 2012).

MEDIC is updated monthly. The version of MEDIC disease vocabulary used in this

study is the one used by DNorm1 (Davis et al., 2012; Leaman et al., 2013). In this version

used, there are 9,664 disease concepts, with a total of 67,782 names. That is, on average,

every disease concept has 7.01 names, including the preferred term and their synonyms.

91% of disease concepts have synonym(s) in addition to their preferred terms, and 47%

1There are two MEDIC versions that come with downloaded DNorm, one has 9,664 disease concepts,

the other 11,885. The larger one was used for the ShARe/CLEF 2013 shared task.
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of the concepts have definitions, or descriptions of these concepts.

An example concept from MEDIC is shown in Figure 4.2. This concept has the iden-

tifier MESH:D009369, which shows that it originally comes from MeSH. The concept

has the preferred term Neoplasms and nine other terms listed as synonyms. It can be

seen that the synonym terms can be alternative names of the preferred term, morphologi-

cal variants of the preferred term and other synonyms, as well as syntactic variants, such

as Neoplasm, Benign and Benign Neoplasm. In some cases, it can also be the

acronym of other names of the concept, or names with adjective modifiers.

Figure 4.2: A MEDIC concept with its identifier, preferred term, and synonyms.

4.2 Artificial neural networks

Artificial neural networks (ANNs) are computing systems that approximate other func-

tions. They were initially created to simulate nervous activity (McCulloch and Pitts,

1943), though nowadays, in the field of artificial intelligence, the biological nervous sys-

tem is merely an inspiration to ANNs, instead of something they attempt to imitate. This

section briefly introduces artificial neurons, the building units of ANNs, and two types of

artificial neural networks. In addition, the activation and loss functions used in the neural

networks in this study are also described.
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4.2.1 Artificial neurons

As with the biological network of neurons, ANNs consist of inter-connected artificial

neurons. Figure 4.3 shows an artificial neuron. The inputs of artificial neurons can be

from other connected neurons, or from the input of the neural network. These inputs are

multiplied with the weights of the neurons, which can be adjusted during the training

stage. A neuron also has a bias term, which is a constant that is added to the sum of

the weighted inputs. Before the result is output, an activation function is applied to the

calculated number. The activation function can be linear or non-linear. Non-linear activa-

tion functions that are commonly used include the hyperbolic tangent function (tanh), the

Rectified Linear Unit (ReLU), as well as the sigmoid function and the softmax function

for the decision layers (Epelbaum, 2017). The output of one neuron can become the input

of other neurons, or it can be the output of the network.

Figure 4.3: An example of an artificial neuron, with inputs (x1-xn from con-

nected neurons, weights (w1-wn, bias b, the activation function f applied to

the weighted sum of the inputs, and output o that can in turn be the in-

put of other neurons. Adapted from https://medium.com/coinmonks/

the-mathematics-of-neural-network-60a112dd3e05.
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4.2.2 Feedforward neural networks

Artificial neurons connect to one another to form a neural network. Figure 4.4 shows

a feedforward neural network, a type of network formed by artificial neurons. During

training, a loss function is chosen to evaluate the error between the expected output and

the actual output of the network. Examples of common loss functions include the mean

squared error loss used for regression, and the cross-entropy loss for classification (Epel-

baum, 2017). To train a neural network, its weights are updated according to the error

calculated from the loss function using the backpropagation technique (Rumelhart et al.,

1986). The loss function is chosen so that minimizing the loss helps the function repre-

sented by the neural network to approximate a real function the network is intended to

learn during training.

Figure 4.4: An example fully connected feedforward neural network consisting of N + 1

layers, and ni neurons in each layer.
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4.2.3 Convolutional neural networks

Convolutional neural network (CNN) is a type of ANN (LeCun, 1998). CNNs contain

convolutional layers and, optionally, pooling layers. Convolutional layers consist of filters

(or kernels) which contain parameters that are learned during training. Figure 4.5 shows

an operation of a filter. When the filters operate, or convolve, across the input, the dot

products of the input and the filter are taken. The outputs of a filter form a feature map,

which becomes the input of the pooling layer (e.g. max-pooling). The number and size of

filters, and the stride at which filters move across the inputs are all hyperparameters that

can be adjusted for CNNs. CNNs are best known for computer vision algorithms, though

they have also been applied to text processing (Severyn and Moschitti, 2015; Li et al.,

2017).

Figure 4.5: An operation of a CNN filter, where the dot product of the selected input

vectors (in blue) and the filter is calculated .

4.2.4 Activation functions

Activation functions are applied to the sum of the weighted inputs of a neuron before

output. There are three activation functions that are used in this study: ReLU, tanh, and
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the sigmoid activation function (Figure 4.6). The ReLU function is defined as

f(x) =


x, x ≥ 0

0, x < 0

.

ReLU zeros out neurons whose sum of input weights is negative, and returns the positive

sums of input weights as they are. It is a widely used activation function and has the

advantage of fast computational speed (Ramachandran et al., 2018).

The tanh function is defined as

f(x) =
ex − e−x

ex + e−x
.

The hyperbolic tangent function has its output between -1 and 1. It is not as popular as it

used to be due to the gain in popularity in ReLU (Epelbaum, 2017).

The sigmoid function here refers to the logistic function, which is defined as

f(x) =
1

1 + e−x
.

Its output is between 0 and 1. When x = 0, the function outputs 0.5 (Figure 4.6). It is

used, for example, in binary classification.

Figure 4.6: ReLU, tanh, and sigmoid activation functions.
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4.2.5 Binary cross-entropy

Binary cross-entropy (BCE) is a loss used for binary classification. It is given by

BCE = − 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi),

where N is the total number of instances, xi is one given input, yi ∈ 0, 1 is the label, or

gold standard, of the input, and ŷi is the estimated value, or prediction, for the input. For

a set of observed events (e.g. training instances), the BCE loss measures the difference

between the true distribution of the data and the distribution of the data approximated by

a function (a neural network, in this case) (de Boer et al., 2005; Epelbaum, 2017).

4.3 Vector representations of text

Text is represented as vectors to be input into the model. This derivation of vectors from

text can be explained by the distributional hypothesis, which states that the meaning of

linguistic items such as words can be derived from their contexts (Harris, 1954). Fol-

lowing this line of thought, words with similar distributions, i.e., occurring under similar

contexts, are semantically alike. Various methods have been developed to induce vectors

from distributional information of words from large amount of unstructured text (Mikolov

et al., 2013a; Pennington et al., 2014; Basirat, 2017). The collection of induced word vec-

tors is also called word embeddings. This section introduces two types of methods for

the induction of word vectors from text: (1) TF-IDF word representations, which are used

for the baselines, and (2) word2vec word embeddings, which are used both to establish

baselines and to represent text in the proposed disease mention normalization system.
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4.3.1 Term frequency-inverse document frequency word representa-

tions

The numerical statistic TF-IDF, short for term frequency-inverse document frequency,

is used to estimate the importance of a given word to a document from a collection of

documents (Salton and Buckley, 1988). It is the product of the statistics term frequency

and inverse document frequency. Term frequency counts the occurrence of a term in

a document. There are several common weighting scheme variants for term frequency,

with the simplest being a raw count of term occurrence. Inverse document frequency

measures the amount of information a given word provides based on the assumption that,

the fewer documents a word appears in, the more information it carries when it appears

in a document. As with term frequency, inverse document frequency also has various

formulations. An intuitive one is calculated as the logarithm of the inverse of the ratio of

the number of documents a word appears in to the total number of documents:

idf
(
t, N

)
= log

N

nt

where t is the term, N is the total number of documents, and nt is the number of docu-

ments that contain the term. The TF-IDF value increases as the number of times a term

appears in a document increases, and decreases as the term appears in more documents.

In information retrieval, TF-IDF is used for weighting how relevant a document is to a

query; it lowers the weight commonly seen terms that may appear in a query carry while

ranking the retrieved documents. For example, given a query “the Bible”, documents with

the word “the” are less likely to be relevant than those with the word “Bible”, since “the”

appears extremely frequently in English text.

4.3.2 word2vec word embeddings

word2vec is a software developed by Mikolov et al. (2013a) to create word embeddings

using neural networks. There are two model architectures used by word2vec, the Contin-
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(a) CBOW (b) Skip-gram

(c) Example sentence

Figure 4.7: Example sentence and its use when training on CBOW and

skip-gram models. Adapted from https://towardsdatascience.com/

word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

uous Bag-of-Words (CBOW) architecture, and the skip-gram architecture, as illustrated

in Figures 4.7a and 4.7b. Briefly, each model has an input layer of the vocabulary size,

a hidden layer of linear neurons of a given size, and an output layer of the same size as

the input layer. The size of vocabulary depends on the training text, and is affected by

the minimum-count hyperparameter, which excludes words whose number of occurrences

does not exceed the threshold. The size of the hidden layer is a hyperparameter to be de-

termined for training. The models are trained to reconstruct the context of words. During

training, the CBOW architecture (Figure 4.7a) takes in the context of a word and predicts

the word, whereas the skip-gram architecture (Figure 4.7b) takes in a word and predicts

its context. An example of a training instance is given in Figure 4.7c. For the phrase “A
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dog barking at the moon”, the word “dog” is selected to be the focus word. The context

of the focus word consists of a given number of words (in this case 1) that come before

and after it. At the end of the training, the weights from the hidden layer are extracted as

word embeddings.

Word embeddings, or continuous word representations, have also been demonstrated to

capture linguistic regularities to some extent (Mikolov et al., 2013b). As a result of this

property, word vectors can be added to and subtracted from one another. For example,

in the experiments conducted by Mikolov et al. (2013b), operations from vectors “King -

Man + Woman” yields a vector closest to “Queen” among all other word vectors.

4.4 Learning to rank

Learning to rank (LTR) (Li, 2011) are supervised approaches to building ranking mod-

els. In information retrieval, given a query and a set of documents, LTR aims to retrieve

a subset of documents relevant to the query. Based on the number of documents taken

into account in the loss function, LTR approaches can be categorized into pointwise, pair-

wise, or listwise approaches (Liu, 2010). The pointwise approach assumes LTR to be a

regression problem. This approach associates every query-document with a score during

training, and assigns a score for every query-document pair during prediction. The pair-

wise approach views LTR as a classification problem. This approach takes two documents

at a time and uses a binary classifier to determine which one is more relevant to the query.

Listwise approaches directly take into account a whole list of documents and attempt to

optimally order this list of document. This class of approach is computationally more

complex than pointwise and pairwise approaches.
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LTR approaches have been applied in Natural Language Processing field. LTR in the

context of normalization views mentions as queries and concept names as documents.

For example, pairwise learning to rank (PLTR) has been used for disease mention nor-

malization (Leaman et al., 2013; Li et al., 2017). PLTR used for normalization counts

positive mention-concept name pairs as relevant and negative ones as irrelevant during

training. During prediction, a binary classifier outputs a score for each mention-concept

pair, and the concept with the highest predicted score for each mention is selected.

In this chapter, the corpus and the controlled vocabulary used in this study have been intro-

duced. In addition, the theoretical background for the system described in this study has

been covered. This includes the topics continuous vector space representation, pairwise

learning to rank, and neural networks. In the next chapter, this background knowledge is

integrated to build the disease mention normalization system.



5 Model architecture

In this chapter, the implementation of the disease mention normalization system is de-

scribed. The model is developed based on the neural network architecture in Li et al.

(2017) (hereafter termed CNN-Li), with the aim of removing the candidate generation

step. The strings of the mentions from the corpus and the concepts from the controlled vo-

cabulary are preprocessed and converted into vector representations. These vector space

representations are then encoded by neural network architectures. The encoded string

representations of concepts are ranked according to their similarity with that of a men-

tion under examination, and the highest ranking concept is predicted as the normalized

concept for the mention. The model is evaluated according to its accuracy. This chapter

covers (1) the details of data preprocessing, (2) the model architectures and the reasoning

behind their design, (3) the selection of training instances, and (4) how the models are

evaluated.

5.1 Data preprocessing

For the NCBI disease corpus, the mention spans and their gold standards are read in

from the .txt files for each set, which can be downloaded from the NCBI disease cor-

pus website1. For the MEDIC dictionary, all concept names, including preferred terms

and synonyms, are read in along with their corresponding identifiers from the .tsv file,

1https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
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which is included in the DNorm download2. After reading in the mention spans and

concept terms, these strings are first lowercased and tokenized. The tokenizer used is

word tokenize from the nltk library, which splits the terms at punctuation other

than periods (Bird et al., 2009). The maximum number of tokens the terms contain after

tokenization for each set of the corpus and for the controlled vocabulary is tabulated in

Table 5.1. For model development, the cutoff length chosen is 10, at which level over

98% of entities are completely represented when vectorized for all sets of data. For vec-

torization, the best performing embedding according to our extrinsic evaluation is used

(detailed in Section 7.2). The embedding is described in Section 4.3.2. Tokens that are

not in the vocabulary are represented with the vector for <UNK>, the unknown token. The

vectorized strings are the inputs of the models.

Table 5.1: The maximum length of tokenized entities for the controlled vocabulary and

the training, development, and test sets of the NCBI disease corpus. At the cutoff length

of 10, over 98% of terms from all sets of data have all of their tokens represented by the

vectorized representations.

Data Length of Ratio of entities completely

longest entity covered at length=10

MEDIC 33 0.9878

NCBI (training set) 16 0.9986

NCBI (development set) 10 1.0000

NCBI (test set) 11 0.9990

2DNorm can be downloaded at https://www.ncbi.nlm.nih.gov/research/bionlp/

Tools/. The file name of the MEDIC version used is CTD diseases.tsv.



CHAPTER 5. MODEL ARCHITECTURE 38

5.2 Model architecture

The model architecture of CNN-Li is altered in search for better performing architectures

with the potential of not relying on candidate generation. The model is implemented using

the Python deep learning library Keras (Chollet et al., 2015). This section explains the

reasoning behind the design of the model, and introduces the model architectures that

have been tested.

5.2.1 Model design

Figure 5.1 shows the model architecture of CNN-Li. It consists of two modules: the

semantic representation module, and the similarity-based ranking module. The seman-

tic representation module trains an encoder to encode the strings represented by word

vectors. A schematic representation of the encoder used is shown in Figure 5.2. This

encoder consists of an embedding layer, through which the strings are represented by

word vectors. On top of this embedding layer, a convolutional layer is applied to ex-

tract feature vectors. The number of feature vectors extracted is the number of filters

used. The max-pooling layer extracts the largest element from each feature vector. Since

a given filter yields a higher number when the feature searched for by this filter is in a

string, this max-pooling operation examines if a given feature is present in an examined

string. The encoded representation of a string is the concatenation of the information of

whether the string contains the set of features screen by the filters. CNN-Li has separate

encoders for encoding mentions and concept names. The encoded strings are passed into

the similarity-based ranking module. This module first concatenates the encoded strings

and their similarity as measured by a trainable matrix. The concatenated information is

then input into a fully connected hidden layer and a prediction layer for ranking. The top

ranking concept is selected as the normalized concept for a given mention.
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The architecture around which the experiments in this thesis is carried out is shown in Fig-

ure 5.3c. It differs from CNN-Li in that the mentions and the concepts share an encoder.

This architecture is determined by comparing between shared and separate encoder(s), as

well as ablation studies of the shared encoder architecture.

Figure 5.1: Architecture of CNN-Li

Figure 5.2: Architecture of the CNN-based encoder.
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5.2.2 Tested architectures

For the comparison of models with a shared encoder with that with separate encoders, the

four architectures shown in Figure 5.3 are tested. These architectures are: full model with

separate encoders (CNN-Li), full model with a shared encoder, and ablation models of

these two full models where the ranking is directly based on the output of the similarity

matrix.

To evaluate the efficacy of the similarity matrix, ablation models where the matrix is

substituted with cosine similarity or completely removed (as shown in Figure 5.4) are

tested. Cosine similarity is used because the similarity matrix is a generalization of the

cosine similarity operation, i.e., cosine similarity matrix is a special case of the similarity

matrix, where the matrix is an identity matrix.

5.3 Selection of training pairs

In total, there are 5,145 mentions in the training set of the NCBI disease corpus and 67,782

concept names in the MEDIC version used. This makes 348,738,390 possible mention-

concept name training pairs. It is not feasible to train the model on all pairs of mention and

concept name. In addition, preliminary experiments suggest that the model does not learn

well, probably because nearly all of the mention-concept name pairs it is trained on are

negatives. Thus, training instances are sampled for the training of the model. To estimate

the loss on the development set during training, mention-candidate pairs are sampled the

same way as the training data are sampled.

In the NCBI disease corpus, some of the mentions are mapped to more than one con-

cept identifier. There are 115 and 30 such cases in the training and development sets

respectively. In addition, there are 142 and 35 occurrences of mentions in the training and
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(a) Separate encoder with join layer and fully

connect hidden layer.

(b) Separate encoder without join layer and fully

connected hidden layer.

(c) Shared encoder with join layer and fully con-

nected hidden layer.

(d) Shared encoder without join layer and fully

connected hidden layer.

Figure 5.3: Architectures used for testing pre-training.



CHAPTER 5. MODEL ARCHITECTURE 42

(a)

(b)

(c)

Figure 5.4: Architectures used for testing the performance of the similarity matrix. The

similarity matrix is replaced with cosine similarity or removed.
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development sets respectively with concept identifiers that are not included in the MEDIC

version used. This is because, during the construction of the NCBI corpus, the disease

mentions are annotated if there is a suitable concept in the UMLS Metathesaurus. How-

ever, not all of the concepts used are present in the MEDIC version used by DNorm. The

version provided by DNorm is used for easier comparison with existing systems, though it

is possible to use newer versions of MEDIC, which contain more concepts. The mentions

whose concept identifiers are not in the MEDIC version used are excluded for the training

of the model.

5.3.1 Selection of positive training pairs

For each mention in the training corpus, one positive mention-concept name pair is used

for training. Since some concepts have synonyms, and therefore multiple concept names,

the concept name for training has to be selected. The selection is based on string similarity

as measured by the ratio of the number of matching characters to the number of characters

in two examined strings. Matching characters are the longest matching substrings of

the two strings, and, recursively, those in the flanking unmatched regions3 (Ratcliff and

Metzener, 1988). The concept name with the highest similarity to the mention is chosen

as the positive training instance.

5.3.2 Selection of negative training pairs

For each pair of positive mention and concept name, a given number of pairs of negatives

are randomly sampled. The negatives are re-sampled every epoch. The random sampling

of negatives ensures that the model is presented with a non-biased sample of negatives

during training, as opposed to sampling only hard negatives (i.e. concept names that

pass heuristic filters) for the training of the model. Preliminary experiments suggest that,

3Implemented using the ratio method of the SequenceMatcher class from the difflib library.

Documentation available at https://kite.com/python/docs/difflib.SequenceMatcher
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when the model is trained on only hard negatives and is to predict on all concept names,

the performance of the model may drop because the training data does not represent the

test data.

5.4 Evaluation

The development set of the NCBI corpus has 787 mentions, of which 363 are unique.

Since evaluation of model performance on the whole development set is time- and memory-

consuming, 100 unique mentions are randomly sampled to form the sampled NCBI de-

velopment set. This sampled set is used for evaluation during model development.

The metric used for evaluation is accuracy. It calculates the percentage of correct pre-

diction out of all predictions. A prediction is considered correct if the concept ranked the

highest for a mention is the same as its gold standard. Mentions whose gold standard are

not included in the MEDIC version used are always falsely predicted. In addition, the

system described in this thesis is not able to predict multiple concepts for a single men-

tion, because the system always predicts the highest ranking concept as the normalized

concept. Thus, the prediction for mentions with composite mappings or multiple concept

mappings is always counted as false, even if one of the concepts in the gold standard is

predicted4.

4This evaluation standard follows those of related studies using the NCBI disease corpus



6 Experimental evaluation

The workflow of the experiments described in this thesis is shown in Figure 6.1. Briefly,

the baselines are established and the embedding selected through evaluation. For ini-

tial evaluation of the model, the neural architecture of CNN-Li with the same hyperpa-

rameters (except for using tanh instead of ReLU as the CNN activation function and no

dropout) is used1. However, the results (not reported) showed that the model with the

initial setup does not outperform even the exact match baseline. Pre-training tasks are

thus designed to try to improve the ability of the network to at least predict exact matches.

During the pre-training experiments, different model architectures, i.e., models with a

shared encoder or separate encoders, are tested. The results from the pre-training exper-

iments show that synonym pair pre-training with the shared encoder architecture works

best. This experimental setting is then used in the subsequent set of experiments, where

different similarity measures for the ranking module are tested. The results indicate that

cosine similarity of encoded strings works best as the similarity measure. The architec-

ture with a shared encoder and the cosine similarity measurement is used to conduct a

hyperparameter search. The best performing models from this search are evaluated on the

full NCBI development set. The top-performing model from this evaluation is evaluated

on the NCBI test set.

This chapter describes the the experimental setup for the experiments reported in this

1The difference in the hyperparameters used is a result of adjusting hyperparameters in preliminary

experiments not included in this thesis.
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thesis. These experiments (1) establish baselines, (2) select the word embedding, (3)

compare models trained without pre-training and with either exact match or synonym

pair pre-training, and (4) compare different similarity measures. The next chapter reports

the results of experiments and discusses about them. In the discussion, the reasoning be-

hind these experimental design is provided, as the design of one experiment often depends

on the results from a previous one.

Figure 6.1: Experimental workflow.

6.1 Baselines

The experimental setups of three types of baselines, the exact match baselines, the neural

word embedding baselines, and the TF-IDF embedding baselines are described in this

section.
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6.1.1 Exact match baselines

For the exact match baseline, a concept is predicted for a given mention if the surface

form of any of its concept names is exactly the same as that of the mention. If multiple

concepts have the matching form for a mention, all of these concepts are predicted for the

given mention.

For the lowercase exact match baseline, a concept is predicted for a mention if the lower-

case version of the two forms are identical.

6.1.2 Word embedding baselines

To take into account the semantics of the mentions, cosine similarity of word vectors are

used to predict the concept for a given mention. Similar to the method used by Kaew-

phan et al. (2014), word embeddings are used to represent the mentions and the concepts.

For each name of a mention or a concept, the name is first changed to lower case and

tokenized. Taking advantage of the linguistic regularities of word embeddings shown by

Mikolov et al. (2013b), the vector representation of a name is then taken as the mean of

all the vector representations of its tokens. The cosine similarity is computed for every

pair of mention and concept, and the concept with the highest cosine similarity is then

chosen as the prediction for a given mention. For the word embedding baseline, the pub-

licly available word embeddings described below are tested:

(1) The word2vec embeddings trained on PubMed abstracts and PubMed Central open

access (PMCOA) full-text articles2 (Pyysalo et al., 2013) (emb-Pyysalo),

(2) The embeddings from Chiu et al. (2016)3, also trained on Pubmed abstracts and PM-

2http://bio.nlplab.org/

3https://github.com/cambridgeltl/BioNLP-2016
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COA full text articles using the word2vec algorithm. There are two embedding models

available, one trained with context window size 2 (emb-Chiu-2), and the other context

window size 30 (emb-Chiu-30),

(3) The embeddings provided by Li et al. (2017) (emb-Li) used in the previous state-of-

the-art system4, and

(4) The embeddings trained on PubMed abstracts with more than 28 million biomedi-

cal publications. The word2vec algorithm was used, with a context window size set to 5

(emb-Brokos) (Georgios-Ioannis, 2018).

Since word embeddings trained on non-biomedical text do not necessarily underperform

those trained on biomedical text in various bioNLP tasks (Wang et al., 2018), two word

embeddings trained on general-domain text were also included:

(5) The embedding trained on part of the Google News data set with about 100 billion

words (emb-GoogleNews)5. The embedding was trained on part of the Google News

data set with about 100 billion words using the word2vec architecture and the negative

sampling algorithm, and

(6) The embedding trained on Wikipedia 2017, the UMBC webbase corpus, and the news

data sets from statmt.org, with 16 billion tokens in total (emb-Mikolov) (Mikolov

et al., 2018).

4https://github.com/wglassly/cnnormaliztion, no detail information could be found

for this embedding
5https://code.google.com/archive/p/word2vec/
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6.1.3 TF-IDF baselines

To measure how similar a document is to a query, vector representations are created based

on the TF-IDF values of the words contained in the query and the document. The similar-

ity is calculated as the cosine similarity of these vectors.

TF-IDF sparse vector space representation of disease names has previously been used

for normalization (Leaman et al., 2013; Mehryary et al., 2017). As the TF-IDF baseline,

a similar approach to that taken by Mehryary et al. (2017) is adopted. That is, the men-

tions are seen as queries and concepts as documents. The “words” are ngrams, or more

specifically, unigrams, bigrams, and trigrams, of the mentions and concepts. For the ex-

perimental setup, TF-IDF sparse matrix representations are built using both stemmed and

original mentions and concepts after they are lowercased. Stemming is tested because it

may help to improve performance depending on the mention type (Mehryary et al., 2017).

The stemming is carried out using the nltk6 implementation of Porter stemmer (Porter,

1980). The TF-IDF vector representations of mentions and candidates are built using the

scikit-learn library (Pedregosa et al., 2011). For each mention, the concept whose vector

representation has the highest cosine similarity with that of the mention is selected as the

predicted term.

6.2 Selection of embeddings

To determine the word embedding to be used for experiments, an extrinsic evaluation is

carried out on the top performing embeddings in Section 7.1.2. The extrinsic evaluation

uses the architecture shown in Figure 5.3c to test how well models perform on the NCBI

development set when trained on the synonym pairs of the controlled vocabulary using

the evaluated embeddings. This architecture is chosen because preliminary experiments

6https://www.nltk.org/
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indicate that it is one of the architectures worth further experimentation. For the represen-

tation of disease mentions and concept names, the model encodes vectorized strings by a

shared CNN encoder (as shown in Figure 5.2). The ranking of concept names takes into

account the similarity as measured by a matrix, and the encoded strings. The hyperparam-

eters used are: padding length of 10 for vectorized disease mentions and concept names,

dropout rate of 0.5 for the embedding layer, 50 filters and kernel size of 3 with the stride

of 1 for the CNN encoder, binary cross-entropy as loss, and adam optimizer with learning

rate set to 5× 10−5. During training, for every positive mention-concept name pair, 29

negatives are sampled. The vocabulary size of the embedding is limited to 1,000,000.

6.3 Pre-training

Pre-training tasks are designed in an attempt to improve the performance of the model

in predicting at least exact matches, or cases where the mention and the concept name

share an identical string. Two pre-training tasks, the exact match prediction task, and the

synonym prediction task, are tested. The implementation details of these two pre-training

tasks are described in this section.

6.3.1 Exact match prediction

The exact match pre-training trains the model to identify identical strings. For each string

of mention from the training set of the NCBI corpus, or concept name from the MEDIC

dictionary, the model is given two candidates to rank. One is an identical string, the other

is another random string. The model is expected to rank the identical string over the ran-

dom one.

The initial pre-training setup assumes that the vector representation of a randomly se-

lected candidate is different from that of a given term. However, using the vocabulary
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size of one million for the word embedding, approximately 0.2% of the randomly se-

lected candidates have the same vector representation as the mention. This is because

some acronyms or rare terms have the UNK token as their representation, which results

in the same vector representation from the word-level embedding used. With the initial

experimental setup, there are 18, 10 and 3270 terms represented by UNK from the training

corpus, the development corpus, and the controlled vocabulary respectively. By coinci-

dence, one of these terms may be paired up with another. Consequently, for the creation

of the pre-training data, negative candidates are selected in a way so that they do not co-

incidentally have identical vector representations to the mentions.

To evaluate how well the model predicts on exact matches, a set of synthetic validation

data is created. This set of data contains 7293 synthetic mentions, taken either from the

mentions of NCBI training set or the MEDIC concept names. For each of these mentions,

two candidates are given. One is identical to the mention, and the other is a random men-

tion or concept name. The model is expected to predict the exact match.

For the exact match pre-training, the four architectures shown in Figure 5.3 are tested:

architectures with a shared encoder or separate encoders, each with or without the join

and fully connected hidden layer. The separate encoder architecture is tested because it is

the architecture used by Li et al. (2017). The shared encoder architecture is tested because

the task of exact match prediction amounted to predicting candidates with vectors whose

cosine similarity with that of the mention is one. Consequently, it is intuitively easier

for networks with a shared encoder to learn the exact match prediction task, since the

encoded representations of a string on the mention and the candidate sides are always the

same. This use of shared encoder also halves the number of trainable parameters at the

encoding stage. In addition, ablation architectures for the separate encoder architecture

and the shared encoder architecture are also tested. These ablation architectures are tested
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to measure how well the models perform with only similarity information, without any

further information about the encoded strings. The ablation architectures have the same

semantic representation module as their full architecture counterparts. However, for the

similarity-based ranking module, these architectures have the prediction layer directly on

top of the similarity layer. That is, they do not contain a join layer nor a dense layer on

top of the similarity layer.

The word embedding used is emb-Brokos-200 with vocabulary limit set to 1,000,000.

Other hyperparameters are the same as in other experiments. The number of epochs for

pre-training is set to 100, with an early-stopping tolerance7 of 15 epochs. During pre-

training, the model is evaluated on both synthetic validation data and the sampled NCBI

development set. When the pre-training finishes, the training continues on the NCBI

training set. The hyperparameters are kept the same8. As with pre-training, the number of

epochs for pre-training is set to 100, with an early-stopping tolerance of 15 epochs. The

model is evaluated on the sampled NCBI development set.

6.3.2 Synonym prediction

The synonym pair prediction task trains a model to predict the synonyms or exact match

of a concept. The synthetic training data is generated from the MEDIC dictionary. The

training instances that would be generated for a hypothetical concept with the preferred

term NEOPLASM and the synonyms TUMOR and CANCER is illustrated in Figure 6.2.

During training, the model would be given all combinations of the name pairs of this

concept (e.g. NEOPLASM and TUMOR), as well as the duplicate of each of these names

7Early-stopping tolerance keeps track of how many epochs has passed since there is an improvement in

the model performance. If the threshold of early-stopping tolerance is exceeded, the training is terminated.
8The learning rate is kept the same because (1) the performance of the model does not drop after switch-

ing to the real training data, and (2) it is easier to compare the results obtained to those from models trained

without pre-training.
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Figure 6.2: Synonym pair training instances generated for a hypothetical concept.

(e.g. CANCER and CANCER), as the positive instances. In this case, 6 positive instances

would be generated for this concept. The negative instances are randomly chosen, as

described in Section 6.3.1. In addition, for comparison to the results of exact-match pre-

training, the experimental settings are the same as those for the exact match pre-training

as described in the same section.

6.4 Similarity measures

To evaluate the effect of the similarity measure on the performance of the system, different

measures of similarity are experimented with. These architectures, as illustrated in Fig-

ure 5.4, are (1) shared encoder architecture with join and fully connected hidden layers,

with the similarity matrix replaced by cosine similarity, (2) shared encoder architecture

with only cosine similarity, and (3) shared encoder architecture with join and fully con-

nected hidden layers, with the similarity matrix completely removed. These architectures

are pre-trained with the synonym pair prediction task before formal training on the NCBI

training set. For comparison purposes, a set of experiments without any pre-training is

also performed. All the experimental hyperparameters and settings are otherwise identical
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to those in Section 6.3.1.

6.5 Hyperparameter optimization

A hyperparameter search is done on the best performing architecture from Section 6.4.

The hyperparameters that are tuned are mostly the ones from the encoder. These include

embedding layer dropout rates of 0, 0.1, 0.25, 0.5, and 0.75, filter numbers of 25, 50, 100,

150, kernel sizes of 1,2,3, and ReLU or tanh as the CNN activation function. In addition,

the number of negative instances sampled for each positive instance is adjusted: Negative

sample numbers 1, 9, 29, 99, and 999 are tested. During the hyperparameter tuning, not

all combinations of the above hyperparameters are tested. Instead, choices of hyperpa-

rameters that lead to better results are fixed while other hyperparameters are continually

adjusted. Where there is no result to suggest a better value for a given hyperparameter, or

the results are not clear enough to do so, hyperparameter values that are computationally

less expensive are used. Finally, selected top performing models in the hyperparameter

search are evaluated on the full NCBI development set.

6.6 Evaluation on held-out data

To evaluate the performance of the model on held-out data, the top performing model on

the full NCBI development set is evaluated on the NCBI test set.



7 Results and discussion

In the previous chapter, the experimental setup has been described. These experiments

include (1) baseline experiments, (2) extrinsic evaluation of word embeddings, (3) pre-

training experiments, and (4) similarity measure evaluations. In this chapter, the results

from these experiments are reported and discussed. In the discussion, the reasoning for

the design of the subsequent experiments are presented taking into account the results

from the experiment under analysis.

7.1 Baselines

Three types of baselines are used: the exact match baselines, the neural word embedding

baselines, and the TF-IDF embedding baselines, as described in Section 6.1. This section

describes the reasoning behind their usage, and establishes these baselines for this study.

7.1.1 Exact match baselines

Using exact match without case normalization results in an accuracy of 0.165 on the devel-

opment set, and 85% of the correctly mapped mentions are acronyms. While acronyms

can be successfully mapped to their corresponding concepts because they are usually

in upper case, mentions such as “colorectal cancer” are not mapped to Colorectal

Cancer simply due to the case difference. The effect of this difference is especially no-

ticeable for the NCBI disease data set because, while the mentions in the corpus tend to
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be in lowercase except for proper names, the MEDIC concepts tend to have the first letter

of every token of a concept name in uppercase if the name originally comes from MeSH,

and the whole name in uppercase if it comes from OMIM.

Table 7.1: Accuracy scores for different methods on the NCBI development, and sampled

development sets.

Method Development set Development set (Sampled)

Exact match 0.165 0.10

Lowercase matching 0.529 0.39

This difference in case is taken into account by case normalization before comparison in

the lowercase matching baseline. This method yields an accuracy of 0.529 on the develop-

ment set, an improvement of 0.364 from the exact match baseline. The only false predic-

tion made on the test set with this method, which the exact match method does not make,

is the prediction of the mention “Aniridia”, whose gold standard is MESH:D015783.

While this symptom is mapped to the correct concept Aniridia (AMESH:D015783)

by the exact match, the lowercase matching method also yields Aniridia, type 2

(MESH:C536372), a child concept of the correct concept, because one of its alternative

names is ANIRIDIA.

These two string matching methods, however, cannot predict the correct concept when

the matching string is not listed as a name of the concept in the controlled vocabulary.

For example, acronyms of diseases used by authors, such as “FAP” for “Familial Adeno-

matous Polyposis” and “DM” for “Dystrophia Myotonica”, cannot be correctly mapped

because these acronyms are not listed as alternative names of the respective concepts in

the controlled vocabulary. Correct mapping of these concepts would require information

from the context where these mentions are in, or the use of an acronym expansion method,
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such as incorporating results from Google search. Apart from acronyms not listed in the

controlled vocabulary, disease mentions without exact matching concept names cannot

be predicted correctly, either. For example, the correct concept for the mentions “inher-

ited disorder” and “allelic disorders” is Genetic Diseases, Inborn. These two

mentions, however, are not correctly predicted despite being semantically similar to the

concept.

7.1.2 Word embedding baselines

The accuracy scores obtained using the embeddings introduced in Section 6.1.2 are shown

in Table 7.2. The highest accuracy on the development set 0.714 is obtained using the em-

beddings from Georgios-Ioannis (2018). More dimensions does not necessarily result in

better accuracy scores on this task. The embeddings trained on biomedical texts outper-

form those trained on general domain texts, possibly due to their ability to better capture

the semantics of biomedical terms (Wang et al., 2018).

Table 7.2: Accuracy scores obtained by taking the concept with the highest cosine simi-

larity with a given mention for the development set of the NCBI disease corpus.

Embedding Dimension Vocabulary Development

size set accuracy

emb-Pyysalo 200 1,000,000 0.557

emb-Chiu-2 200 1,000,000 0.596

emb-Chiu-30 200 1,000,000 0.600

emb-Li 50 309,058 0.652

emb-Brokos-200 200 1,000,000 0.714

emb-Brokos-400 400 1,000,000 0.710

emb-GoogleNews 300 1,000,000 0.374

emb-Mikolov 300 1,000,000 0.525
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7.1.3 TF-IDF baselines

The accuracy scores obtained using the TF-IDF based methods are shown in Table 7.3.

Using ngrams (n=1-3) of un-stemmed mentions and concepts resulted in better perfor-

mance than stemmed ones. The higher accuracy score obtained was 0.711.

Table 7.3: Accuracy scores obtained using cosine similarity of TF-IDF weighted sparse

vector representations. All results averaged over five random seeds.

Stemming Development set accuracy

Yes 0.668

No 0.711

The best performing exact match and vector space representation methods on the NCBI

development set are evaluated on the NCBI test set. The results are shown in Table 7.4.

The baselines used in this study are established as the following: For exact match, the

accuracy score of 0.460 obtained using the lowercase exact match method on the test set

is used. For the word embedding baseline, the accuracy score of 0.628 on the test set is

used.

Table 7.4: Accuracy scores on the NCBI test set obtained using selected baseline methods.

Baseline Test set accuracy

Exact match 0.460

Word embedding 0.628

7.2 Selection of embeddings

The accuracy score obtained by models trained using the top three performing word

embeddings from Section 7.1.2 is plotted in Figure 7.1. The three embeddings used
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are emb-Li, emb-Brokos-200, and emb-Brokos-400. The highest accuracy at-

tained within 45 epochs for these embeddings respectively are 0.294, 0.423, and 0.417.

While the model trained with 50-dimensional embedding does not outperform the ones

trained with 200-dimensional or 400-dimensional embeddings, models trained with 200-

dimensional embedding and that with 400-dimensional embedding do not differ much in

performance. These results are in line with those from Section 7.1.2. Besides, the ob-

servation that results obtained using emb-Brokos-400 do not differ noticeably from

those obtained using emb-Brokos-200 agrees with the result from Georgios-Ioannis

(2018), the creator of these embeddings. Thus, emb-Brokos-200 is selected as the

word embedding used for further experiments.

Figure 7.1: Extrinsic evaluation of word embeddings: Accuracy over epochs for models

trained using the embeddings emb-Brokos-200, emb-Brokos-400, and emb-Li.

7.3 Pre-training

Preliminary experiments indicated that pre-training on synthetic data may be beneficial to

the performance of the models. In the preliminary experiments without any pre-training,

accuracy was around 0.03, which was much lower than the lowercase matching baseline
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0.4601. This indicated that the neural network was not even able to identify exact matches

between pairs of mention and candidate. Thus, the first step to improving the performance

of the network is to ensure that it is able to predict exact matches. To do this, pre-training

of the network is carried out. As introduced in Section 6.3, two different settings of pre-

training are tested: (1) pre-training with the task of predicting identical strings, and (2)

pre-training with the task to predict both identical strings and synonymous names.

7.3.1 No pre-training

For comparison purposes, a set of experiments with otherwise identical settings as the

ones conducted for the exact match pre-training and synonym pair pre-training (described

in Section 6.3.1) is carried out without any pre-training. The highest accuracy scores

obtained for each architecture are tabulated in Table 7.5. The training loss and validation

accuracy on the sampled NCBI development set over epochs is shown in Figure 7.2. The

ablation architectures fail to work (highest accuracy obtained 0.04 and 0.00 for separate

and shared encoder architectures) without any pre-training, while the full models have

performance similar to each other at the end of the training after 100 epochs. The full

models could potentially reach even higher accuracy, if the training had not ended due to

finishing 100 epochs.

Table 7.5: Highest accuracy obtained on the sampled NCBI development set for different

architectures when directly trained on the NCBI training set.

Full model Ablation model

Separate Encoders 0.27 0.04

Shared Encoder 0.30 0.00

1Since the tokens are lowercased in the preprocessing step, the lowercase matching baseline is in effect

an exact match baseline for models with preprocessed input
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(a) (b)

(c) (d)

Figure 7.2: Training loss and validation accuracy on the sampled NCBI development set

over epochs for different architectures (separate encoders or a shared encoder, with or

without join and hidden layers) directly trained on the NCBI training set.

7.3.2 Exact match prediction

Table 7.6 shows the highest accuracy scores reached on the sampled NCBI development

set for each of the architecture tested in the pre-training and training stages. The shared

encoder architectures achieve higher accuracy than the separate encoder architectures.

Both of the full models outperform their ablation counterparts, indicating that the encoded

representations of strings carry information useful for similarity ranking not captured by

the similarity layer. Interestingly, the exact match pre-training task only seems to benefit

the full model with a shared encoder. For the other models, the pre-training may either

have been terminated before any effect was seen, or have not worked. This may be due to
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the pre-training task being too easy, or the pre-training data being too small.

Table 7.6: Highest accuracy obtained during pre-training / after the training completes

on the sampled NCBI development set for different architectures when pre-trained on the

exact match task.

Full model Ablation model

Separate Encoders 0.02 / 0.19 0.01 / 0.12

Shared Encoder 0.13 / 0.35 0.00 / 0.20

The accuracy and training loss over epochs for all the architectures are shown in Fig-

ure 7.3. Figures 7.3a and 7.3b show the accuracy and training loss on sampled NCBI

development set over epochs for the full and ablation models with separate encoders. For

both of these models, the increase in accuracy score mainly happens after the pre-training,

which indicates that pre-training for separate encoder architectures probably does not help

with model performance. On the other hand, it could also be the case that the hyperpa-

rameters used are not suitable for these architectures, or that more iterations of training

are required. Figures 7.3c and 7.3d show the accuracy and training loss on the sampled

NCBI development set over epochs for the full and ablation models with a shared encoder.

While the accuracy reached by the ablation model with a shared encoder is on par with

that of the full model with separate encoders, the latter attained the performance faster.

The highest accuracy of 0.20 was reached at epoch 70 (54 epochs after the training on

the NCBI training set started) for the ablation model with a shared encoder, whereas the

highest accuracy of 0.19 was reached at epoch 40 (21 epochs after switching to the NCBI

training set) for the full model with separate encoders. The best performing architecture

on this task, however, is the full model with a shared encoder. During the pre-training

stage, an accuracy score of 0.13 was reached on the sampled NCBI development set. The

highest accuracy of 0.35 was reached at epoch 110 (80 epochs after switching to the NCBI

training set).
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(a) (b)

(c) (d)

Figure 7.3: Training loss and validation accuracy on the sampled NCBI development set

over epochs for different architectures (separate encoders or a shared encoder, with or

without join and hidden layers) pre-trained on synthetic exact-match data before training

on the NCBI training set.
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To further compare these models, the weights from the similarity layer from the best

models are visualized in Figure 7.4. The weights taken from the shared encoder architec-

tures clearly display a diagonal pattern characteristic of an identity matrix. This can be

explained by the fact that identical strings have cosine similarity of one, and the cosine

similarity operation is equivalent to the operation carried out by the similarity layer when

the matrix is an identical matrix. In comparison, the weights taken from the similarity

layer of the separate encoder architectures do not display a diagonal pattern. This is prob-

ably due to the fact that separate encoders do not generate identical representations for

identical strings. When learned by the networks with separate encoders, the equivalence

of a cosine similarity operation is thus distributed throughout the layers, if this opera-

tion is learned. This may require more training than that required by architectures with

a shared encoder, where the learning of the similarity operation is restricted to only the

similarity-based ranking module. The grid patterns observed in the ablation architectures

may imply that some positions either accept matches in any other positions, or has a high

tendency not to accept non-matches. The reason why these patterns are formed is unclear,

but it may be related to the positive instances being always exact matches. The two shared

encoder models have an inversion of positives and negatives. This is due to the decision

layer being one binary classifier, so that positives and negatives can be inverted.

A reason for pre-training failing to improve the performance for the separate encoder full

architecture may be related to the number of trainable parameters for the model. The num-

ber of trainable parameters for each of the tested architectures are tabulated in Table 7.7.

Theoretically, separate encoder architectures have more capacity to learn more complex

relationships, as they have twice the amount of trainable parameters at the encoding stage.

However, the separate encoder full model fails to do so perhaps because it does not get

more training that is required with the increase of number of parameters.
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(a) (b)

(c) (d)

Figure 7.4: Visualization of weights from the similarity layers of pre-trained models. The

weights are taken from the best models for each architecture as judged by the accuracy on

the NCBI development set.

For error analysis, the predictions made by the best performing architecture (the full

model with a shared encoder) at the end of the pre-training and training stages are an-

alyzed. At the end of the pre-training stage, the accuracy reached on the sampled NCBI

development set is 0.13. All of the correctly mapped mentions are exact matches to the

predicted names, with the only exception being the mention “eye abnormalities”, which

is correctly normalized to Eye Abnormality. This level of performance accounts for

only 30% of the total number of exact matches in the set. A reason for the model to fail to
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Table 7.7: Number of trainable parameters in each of the architectures tested for exact

match pre-training.

Architecture No. of parameters No. of parameters Total

in the semantic in the similarity- no. of

representation based ranking parameters

module module

Separate, Full 60,100 9,093 69,193

Separate, Ablation 60,100 2,502 62,602

Shared, Full 30,050 9,093 39,143

Shared, Ablation 30,050 2,502 32,552

predict exact matches may lie in the way the synthetic data was generated; the negatives

in the synthetic training data are sampled only once at the beginning of the training. Con-

sequently, during training, the model does not see the “hard negatives”, or the pairs it may

predict incorrectly. This is supported by some of the false predictions the model makes at

the end of the pre-training stage. Some of the falsely predicted concepts have completely

different surface forms as the mention, e.g., the name Echo Virus Infections is

predicted for the mention “familial breast cancer”.

At the end of training, the model attained an accuracy of 0.35, which is still lower than the

exact match baseline 0.39. Most of the correct predictions are exact matches, except for

a couple of common cases of acronyms in the training set. The most common case is the

acronym span “APC”, which occurs 96 times in the training set. With this frequent oc-

currence in the training set, the model correctly maps it to the concept with the preferred

name Adenomatous Polyposis Coli, even though the acronym is not listed as a

synonym in the MEDIC dictionary.
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A shared encoder with join and fully connected hidden layer works better than the other

architectures under the experimental settings. However, one potential weakness of using

the exact match pre-training method on this architecture is that the encoder may not be

required to learn to encode the strings. This is because, once the weights of the similar-

ity layer resemble an identity matrix enough, exact matches can be predicted regardless

of how the strings are encoded.One solution to this is to pre-train on synthetic data con-

structed not only using exactly matching pairs, but also synonyms of a concept. Alterna-

tively, the encoder weights could be untied after initial training with tied weights.

7.3.3 Synonym prediction

Table 7.8: Highest accuracy obtained during pre-training / after the training completes

on the sampled NCBI development set for different architectures when pre-trained on the

synonym pair prediction task.

Full model Ablation model

Separate Encoders 0.46 / 0.62 0.19 / 0.48

Shared Encoder 0.43 / 0.62 0.32 / 0.50

The model is pre-trained on synthetic data constructed on exact match pairs and syn-

onyms. Table 7.8 shows the highest accuracy scores achieved for each of the architec-

tures in the pre-training and training stages. The training loss and validation accuracy on

the sampled NCBI development set over epochs for each of the architectures is shown in

Figure 7.5. Both full models, with either a shared encoder or separate encoders, achieve

the same accuracy of 0.62 at the end of the training. This implies that both of these archi-

tectures are capable of learning the mapping of the data to the same degree. The shared

encoder architecture, however, is able to learn quicker, as it takes fewer epochs to achieve

this performance than the separate encoder full model. This again shows that shared en-

coder architecture takes less amount of training, possibly due to (1) having half of the
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Figure 7.5: Training loss and validation accuracy on the sampled NCBI development set

over epochs for different architectures (separate encoders or a shared encoder, with or

without join and fully connected hidden layers) pre-trained on synthetic synonym-pair

data before training on the NCBI training set.

amount of trainable parameters for the semantic representation module, and (2) a shared

encoder will always encode the same string the same way, thus eliminating the need for

the similarity ranking module to learn a mapping of strings encoded by one encoder to

those encoded by the other, so that the module can focus instead on learning the mapping

of synonyms.

For the ablation models, the shared encoder architecture also achieves better performance

than the separate encoder architecture. Unlike the exact match pre-training results for

the ablated architectures, which fail to train in the pre-training stage (highest accuracy
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obtained was 0.01 and 0.00 for the separate and shared encoder architectures, as shown

in Table 7.6), the ablated models obtain accuracy scores of 0.19 and 0.32 at the end of

synonym pair pre-training. This may be because there is a larger amount of synthetic

training data for the synonym pair pre-training than the exact match pre-training. In other

words, the similarity matrix alone requires more training data, as there is no join layer

to provide more information from the encoded strings. Both ablated models, like the full

models, reach about the same level of performance at the end of the training. This shows

that, with the join and fully connected hidden layers ablated, the shared and separate en-

coder architectures are also able to approximate the mapping of the mentions to concepts

to about the same level, although the shared encoder architecture requires less training.

The weights from the similarity matrix at the end of the synonym pair pre-training are

visualized in Figure 7.6. Similar to the weights at the end of exact match pre-training,

the weights from the shared encoder architectures display a diagonal pattern characteris-

tic of an identity matrix, whereas the weights from the shared encoder architectures do

not. Comparing the weights of the ablation models from the synonym pair pre-training

to those from the exact match pre-training (Figure 7.4), the synonym-pair pre-training

weights do not have obvious horizontal or vertical streaks as the exact match ones do.

This may be because the effect of the streaks cannot be cancelled out for synonym pair

pre-training where the positive training examples contain non-identical strings.

The predictions made by the full model with a shared encoder at the end of the pre-

training and training stages are analyzed. At the end of the pre-training, the accuracy

reaches 0.43, which is higher than 0.39, the exact match baseline on the sampled NCBI

development set. Most of the correct predictions have exact matches in the controlled vo-

cabulary. However, some mentions with exact match names in the controlled vocabulary

are still incorrectly mapped. For example, the span “cancers” is mapped to Cancers,

Second, instead of the correct concept Cancers. The model also successfully pre-
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Figure 7.6: Visualization of weights from the similarity layers of models at the end of syn-

onym pair pre-training. The weights are taken from the best models for each architecture

as judged by the accuracy on the sampled NCBI development set.

dicts, for some concepts, correct names with shuffled word order from the mention. For

example, the mention “cystic kidney disease” is successfully normalized to Kidney

Disease, Cystic. Interestingly, an exact match alternative exists, but is ranked low-

ered than the name with shuffled word order. This may be because, in the training data

synthesized from synonym pairs, there are more positive instances of shuffled word order

than exact matches. This tendency to predict names with shuffled word order decreases as

the training data switches to the NCBI training set. This is because, for the real training
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data, the gold standards of the positive samples shown are selected to be the name with the

highest string similarity to the mentions (described in Section 5.3.1). The model, in a cou-

ple of instances, correctly predicts correct concept names with partially identical spans.

For example, “von Hippel-Lindau disease-associated and sporadic RCCs” is correctly

mapped to von Hippel-Lindau Disease. This is not always the case, though, as

the model fails to map a similar span “von Hippel-Lindau tumor”. Apart from complete/-

partial lexical match, the model also shows evidence of being able to predict based on

semantic meaning. For example, the span “inherited breast cancer” is correctly mapped to

the concept name BREAST CANCER, FAMILIAL BREAST CANCER, FAMILIAL

MALE, INCLUDED, though there is no mention of “inherited” in this name or the syn-

onyms of this concept, nor is this instance in the training set.

At the end of the training, more exact matches are successfully predicted as compared

with the predictions at the end of the pre-training. However, not all mentions with exact

match concepts are successfully mapped. The model also seems less likely to predict

for concepts with shuffled word order. For example, the mention “bacterial infections”

is normalized correctly to the concept name Infections, Bacterial at the end of

the pre-training, though it has an exact match alternative Bacterial Infections.

At the end of the training, however, the model seems to have forgotten some of its pre-

training and incorrectly normalizes the mention to Opportunistic Infections.

Another instance of the model forgetting its pre-training is the incorrect assignment of

Canavan Disease to “Krabbe disease” at the end of the training whereas this mention

is correctly mapped to Leukodystrophy, Globoid at the end of pre-training. This

is also a case of the model forgetting about its pre-training, as both Krabbe Disease

and Leukodystrophy, Globoid are listed as synonyms for the concept with the

preferred term Leukodystrophy, Globoid Cell. One potential solution to this

problem of the model forgetting its pre-training would be to mix the pre-training data with



CHAPTER 7. RESULTS AND DISCUSSION 72

the NCBI training set. This, however, remains future work.

In comparison to the exact match pre-training results, the model with separate encoders

performs better without pre-training, possibly because (1) the pre-training does not really

work for this architecture because it has separate encoders. To predict exact matches,

the architecture has to learn to either encode strings identically, or to map two different

encodings to each other. This is reflected by the accuracy of only 0.20 obtained by the

model at the end of the exact match. (2) The exact match pre-training may have brought

the weights to an unfavorable position at the start of training on the NCBI training set.

The full model with the shared encoder performs better with pre-training with the current

experimental setting of 100 epochs with 15 epochs of early-stopping tolerance. However,

there is a chance that the non-pretrained model might have performed better if the training

had continued.

Synonym pair pre-training works better than exact match pre-training or no pre-training

at all, both in terms of time required to attain a given level of performance for the model

and the accuracy the model attains at the end of training. The synonym pair pre-training

has three advantages over exact match pre-training. One advantage is that the positive

instances contain non-identical pairs, which potentially avoids not properly training the

encoder for the shared encoder architecture as discussed in Section 7.3.2. Another ad-

vantage is that, with the same number of concepts in the controlled vocabulary, more

pre-training instances can be generated: For the exact match prediction task, the number

of positive training instances for a concept is equal to the number of concept names listed

for the concept; for the synonym pair prediction task, the number of positive training in-

stances for a concept is the combinations of 2-elements with replacement. For example,

if a concept has two synonyms in addition to the preferred term, three positive training

instances can be generated for the exact match pre-training. For the synonym pair pre-
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training, however, 6 positive training instances can be generated. This larger amount of

pre-training data allows the model to be trained on more instances per epoch, and thus a

smaller chance of overfitting at the pre-training stage, which is reflected in the results. In

total, with the version of MEDIC vocabulary used, there are 131,270 training instances

for exact match pre-training, whereas the synonym pair pre-training has an order of mag-

nitude (1,363,072) more training instances2. The third advantage is that synonym pair

pre-training provides the encoder with information about abbreviations if those are listed

as synonyms, and it also establishes connections between synonyms that have completely

different surface forms.

Since models that train more easily are preferred, further experiments will focus on the

shared model with the join and fully connected hidden layers pre-trained using synonym

pair pre-training. A strategy similar in spirit to the synonym pair pre-training is used by

Cho et al. (2017), who augment the training data with different word forms and synonyms

in the dictionary. The system of Cho et al. (2017), however, make predictions based on the

cosine similarity of the word representations of mentions and concept names, and does

not consist of neural network for ranking.

7.4 Similarity measures

In this section, the effect of the similarity measure in the ranking module is investigated.

The similarity matrix used for measurement of similarity is replaced with the cosine sim-

ilarity score of the encoded strings, or completely removed. In addition, an ablation ar-

chitecture with cosine similarity as similarity measurement that does not have a join layer

and fully connected hidden layer is tested. The models are trained under two conditions:

either no pre-training or pre-trained on the synonym pair prediction task.

2The exact match pre-training data is generated from both the MEDIC dictionary and the training set of

the NCBI disease corpus. The synonym pair pre-training data is generated from only the MEDIC dictionary.
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The highest accuracy scores obtained by these models are shown in Figure 7.7. For ease

of comparison, the accuracy obtained by models with a similarity matrix as the similarity

measure (from Sections 7.3.1 and 7.3.3) are also included. The training and validation

loss, as well as the accuracy on the sampled NCBI development set over epochs for each

of the models tested in this section are plotted in Figure 7.8. The validation data is sam-

pled in a similar fashion as the training data, which is described in Section 5.3. Due to

this re-sampling of the validation data for every epoch, the validation loss fluctuates more

than the training loss.

Figure 7.7: Highest accuracy obtained on the sampled NCBI development set for archi-

tectures with different similarity measures when directly trained on the NCBI training set

or pre-trained on the synonym pair prediction task.

Similar to the results from Section 7.3.3, the comparison of the results from the full model

and the ablation model (prediction based only on similarity measure) with cosine similar-

ity as similarity measurement suggests that the encoded strings carry information impor-

tant to prediction which is lost during similarity score measurement. In Section 7.3.3, the

full model with similarity matrix obtains the highest accuracy of 0.62, and the ablation

model obtains the highest accuracy of 0.50, while in this experiment, the cosine similarity
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Figure 7.8: Accuracy, training and validation losses over epochs for different ablation

models with shared encoders (model with join and fully connected hidden layer with

cosine similarity measurement, model without join and fully connected hidden layer with

cosine similarity measurement, or model without any similarity measure but with join and

fully connected hidden layer) under different training conditions (either no pre-training or

pre-training with synonym pairs).
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counterparts of these models obtain accuracy scores of 0.65 and 0.53. Therefore, under

the current experimental settings, cosine similarity is a better similarity measure than the

similarity matrix.

In terms of the effect of pre-training, the architecture without any string similarity mea-

surement obtains an accuracy of only 0.11 without pre-training, while the same architec-

ture achieves an accuracy of 0.63 with synonym pair pre-training. This again shows that

synonym pair pre-training is beneficial to the training of architectures that are harder to

train. In addition, all of the models that are pre-trained take less time to achieve their

highest score than the non-pretrained ones with the same architecture. This is in agree-

ment with the results from Section 7.3.

Interestingly, the ablation architecture without any similarity measure (illustrated in Fig-

ure 5.4c) obtains an accuracy of 0.63, which is only 2 percentage points below the full

model with cosine similarity measurement. Since the similarity measure is the only place

in the model where word order makes a difference (for CNN filter sizes larger than 1),

this small difference in the accuracy scores obtained by these two models may suggest

that word order does not make too much of a difference for this particular data set, or that

the models do not learn it successfully. This may be due to the fact that, in MEDIC, a lot of

names that belong to a concept are just token-shuffled versions of one another, such as the

Neoplasm, Benign and Benign Neoplasm example described in Section 4.1.2.

On the other hand, this result is not completely surprising, as bag-of-word models gener-

ally work sufficiently well on many tasks. The ablation model, however, takes more than

twice the time to train than the full model, so it is much more time-efficient to explic-

itly use a similarity measure in the ranking module, instead of letting the network take a

longer time to learn a similar operation.
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Since cosine similarity measure leads to higher accuracy and takes less time to train than

the similarity matrix does, further experiments will use this architecture instead of archi-

tectures with the similarity matrix.

7.5 Hyperparameter optimization

Hyperparameters are tuned for the selected architecture shown in Figure 5.4a. This archi-

tecture has a shared encoder, uses cosine similarity as the similarity measure, concatenates

encoded strings and their cosine similarity score, and has a fully connected hidden layer

before the decision layer. Several hyperparameters are tuned, viz., the dropout rate of

the embedding layer, the number and the sizes of the CNN filters, the activation function

used in the CNN layer, and the number of negative samples for each positive instance.

Hyperparameter values that lead to better results are fixed while other hyperparameters

are further tuned. In this section, the results of this hyperparameter search are reported.

All accuracy scores reported are for the best-performing epoch.

7.5.1 Effect of the CNN activation function

The accuracy obtained for models with the tanh or the ReLU function in the CNN layer

are plotted in Figure 7.9. For these experiments, 10 filters are used in the CNN layer, 29

negative instances are sampled per positive instance, the dropout rate is set to 0, 0.1, or

0.25, and the size of the CNN filters is set to 2, 3, or 4. From Figure 7.9, it can be seen

that there is a trend that the accuracy scores obtained by models with the tanh activation

function for the CNN layer are slightly higher than those obtained by models with the

ReLU activation. However, due to the small size of the sample, no definitive conclusions

can be drawn about the relative performance of these two activation functions. In the

following experiments to tune other hyperparameters, the ReLU function is used because

it is more computationally efficient. After the values for these other hyperparameters are
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narrowed down, both the tanh and the ReLU functions are used in the final experiments

(reported in Section 7.5.5) to search for better combinations of all the hyperparameters

explored.

Figure 7.9: Highest accuracy obtained when using the tanh or the ReLU as the CNN

activation function.

7.5.2 Effect of the dropout rate and the CNN filter number

The accuracy obtained for varying dropout rates and filter numbers are plotted in Fig-

ure 7.10. For these experiments, the CNN filter size is fixed at 1, the ReLU activation is

used for the CNN layer, and 29 negative instances are sampled per positive instance. Fig-

ure 7.10a shows the change in accuracy as the dropout rate increases for different number

of filters. It can be seen that, in the range explored, more filters tend to result in higher

accuracy scores, though accuracy scores obtained with 100 and 150 filters do not differ

much from one another. This trend may be explained by the fact that filters extract fea-

tures from the embeddings of strings, and the more filters used in the encoder, the more

features extracted in the encoded strings. Consequently, filter number directly relates to

how much information is passed on from the semantic representation module to the rank-

ing module.
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(a) (b)

Figure 7.10: Highest accuracy scores obtained for varying dropout rates and filter num-

bers.

The same data is used to plot Figure 7.10b, which shows the change in accuracy as the

filter number increases for varying embedding layer dropout rates. It can be seen that

lower dropout rates tend to yield better results, especially for larger filter numbers. This

may be because smaller dropout rates allow more information to be passed on from the

embedding layer to the CNN layer, and this additional information is better processed

with more filters.

Under the current experimental settings, higher CNN filter numbers and lower embed-

ding layer dropout rate yield better results. Thus, filter numbers of 100 and 150, and

dropout rates of 0 and 0.1, are chosen for further hyperparameter tuning.

7.5.3 Effect of the CNN filter size

The accuracy obtained by models with varying CNN filter numbers (1, 2, 3, and 4) are

plotted in Figure 7.11. For these experiments, the CNN filter number is either 100 or

150, the embedding layer dropout rate is either 0 or 0.1, the ReLU activation function

is used in the CNN layer, and 29 negative instances are sampled per positive instance.

From the figure, it can be seen that no dropout yields slightly better performance than the
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dropout rate of 0.1. For models with no dropout and 100 filters, performance decreases

as the size of the filter increases, whereas for models with the same dropout rate but 150

filters, models with larger filters slightly outperform those with smaller ones. This might

be because different filter sizes capture different types of features of the input string, and

the data does not contain enough of a certain type of feature, which results in noise or

overfitting for larger filter numbers. Along this line of thought, it may be beneficial to use

a combination of filter sizes in one single model. However, this may also be just noise, as

the numbers are close to one another and only one random seed is used for each model

due to limited computational resources. Generally speaking, no visible difference can be

inferred about the size and number of filters. Thus, for further experiments, varying CNN

filter sizes and numbers are still tested.

Figure 7.11: Highest accuracy scores obtained for varying filter sizes.

7.5.4 Effect of the number of negative samples

The accuracy obtained for negative sample numbers of 1, 9, 29, 99, and 999 are plotted in

Figure 7.12. For the training of these models, no dropout is used for the embedding layer,

the CNN layer contains 100 filters of the size of either 1 or 2, and the ReLU activation

function is used in the CNN layer. The figure shows that, within the range of negative

sample number tested, there is a trend of higher sample number yielding better results.
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This trend is more visible for filter size of 2 compared with that of 1. The trend may be

due to the fact that larger negative sample numbers better represent the true distribution

of the data during training, because the model is given close to 70,000 concept names

as candidates during prediction. Although the results show that larger negative sample

numbers result in higher accuracy, negative sample number of 99 in addition to that of

999 is used for completeness in further experiments detailed in Section 7.5.5 because the

accuracy scores are close to one another.

Figure 7.12: Highest accuracy scores obtained for varying number of negative instances.

7.5.5 Evaluation of selected models

Results from the previous sections in this chapter suggest that a larger negative sample

number, more filters in the CNN layer, lower dropout rates, and the tanh activation func-

tion in the CNN layer may lead to better performing models. The size of the CNN filter,

however, does not seem to effect the model performance much. Taking this informa-

tion into account, another hyperparameter search is conducted, with the negative sample

number set to 99 or 999, the size of the CNN filters set to 1, 2, 3, or 4, the number of

filters in the CNN set to 100 or 150, and the tanh function used in the CNN layer. The

results from this search, along with those from the previous sections in this chapter, are

used to select for top performing models for evaluation on the full NCBI development set.
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Table 7.9 shows the hyperparameters used for the selected models, as well as the ac-

curacy they obtained on the NCBI development and set. The top performing model has

CNN layer with 150 filters of size 3 using the ReLU activation function, and 999 negative

instances are sampled per positive instance.

Table 7.9: Hyperparameters of and accuracy obtained by selected models on the NCBI

development set.

Number of Filter Number of negative CNN Development

filters size instances sampled activation set

100 1 999 tanh 0.802

100 2 999 ReLU 0.832

100 3 99 tanh 0.806

100 4 99 tanh 0.837

100 4 999 tanh 0.837

150 1 999 tanh 0.841

150 3 99 tanh 0.818

150 3 999 tanh 0.811

150 3 999 ReLU 0.844

150 4 999 tanh 0.836

150 4 999 ReLU 0.836

7.6 Evaluation on held-out data

The top performing model from Section 7.5.5 is evaluated on the NCBI test set. For com-

parison, the performance of the second-, third-, and fourth-best models are also reported.

Table 7.10 shows the accuracy achieved on the NCBI test set by the top performing mod-
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els on the development set. The top performing model achieves an accuracy of 0.785

on the test set, outperforming the word embedding baseline of 0.628. This performance,

however, is not comparable to the accuracy of 0.861 achieved by CNN-Li, or that of

0.878 achieved by the system of Wright et al. (2019).

Table 7.10: Hyperparameters of and accuracy obtained by selected models on the NCBI

test set. The accuracy on the development set is included for reference.

Number of Filter Number of CNN Development Test set

filters size negative instances activation set accuracy

sampled accuracy

100 4 99 tanh 0.837 0.729

100 4 999 tanh 0.837 0.781

150 1 999 tanh 0.841 0.782

150 3 999 ReLU 0.844 0.785

In this chapter, the baseline of 0.628 was first established by selecting the concept name

whose sum of the vector representation of the individual tokens has the highest cosine

similarity score with that of a given mention. The embedding used in the rest of the

experiments is then selected by an extrinsic evaluation. Due to suboptimal preliminary

experiment results that fail to outperform the exact match baselines, pre-training methods

are investigated. The synonym pair pre-training task is found to be beneficial to model

performance, both in terms of training time required and accuracy attained. In terms of

model architecture, a shared encoder architecture is found to outperform a separate one.

In addition, taking the cosine similarity score of the encoded strings is found to be a better

similarity measure than using a similarity matrix. Finally, with several hyperparameters

tuned, a model that outperforms the baseline by 15.7 percentage points is built.



8 Conclusions and future work

This study focused on developing a disease mention normalization system that does not

rely on candidate generation and is able to generalize to unseen concepts. To this end,

three hypotheses are made with regard to (1) the ability of neural networks to outperform

word embedding baselines on this task, (2) the possibility for the normalization system to

predict correctly when given the full set of possible concepts, rather than only a heuristi-

cally selected subset, and (3) the ability of the neural encoder of the system to generalize

to unseen concepts. In light of the experimental results, the following conclusions are

drawn:

(1) Neural network-based systems can outperform word embedding baselines. However,

with the big number of parameters in neural networks, considerable experimentation and

hyperparameter tuning is required for these systems to work better than the baseline meth-

ods. Methods such as pre-training using synthetic data can help to improve model perfor-

mance and shorten the training time required.

(2) The performance of the normalization system does not degenerate when the full set of

concepts are given, but is not comparable to those of state-of-the-art systems.

There are some other limitations to this study. The normalization system can predict

when given previously unseen concepts. However, the performance of the system under
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this setting has not been evaluated.

The current implementation of the system is experimental, making prediction on a large

set of concepts time-consuming. A substantial speed-up could be achieved by changing

some of the operations into Tensorflow tensor operations and executing them on the GPU,

where calculating the prediction on a set of concepts can be as efficient as calculating the

prediction on a single concept, due to the inherent parallelism.

The system does not have an abstaining mechanism; if there is no correct concept in

the given set of concepts, the system does not have the option to output no concept at all.

One potential way of addressing this problem is setting a threshold to the predicted value

of the selected concept; if the value is low, it suggests a low confidence on the prediction.

This solution, however, would require a decision to be made with regard to the threshold

value, which requires more experiments.

The system does not predict multiple concepts for one single mention. Multi-concept

prediction is challenging because the normalization system assumes that only one correct

concept exists in the set of concepts it is given. One potential way of implementing multi-

concept prediction would be to set a threshold where any concepts with higher estimated

scores are predicted as correct concepts. Another option would be to output the combi-

nation of concepts that, when combined, best semantically represent the mention. Both

of these two options, however, would require considerable further effort because these

approaches of selecting predicted concepts are very different from that used in this study.

There are also more feasible directions for future work. With regard to the current model,

hyperparameters can be further tuned, such as using even more negative samples and/or

CNN filters, and using a combination of different sizes of filters so that the model captures



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 86

different types of features. In addition, more architectures can be explored, such as using

LSTM as encoders, or using semi-shared encoders for mentions and concepts. With re-

gard to training method, the synonym pair pre-training data can be mixed with the NCBI

training set. With regard to the data used, newer versions of MEDIC with more con-

cepts can be used for the NCBI disease corpus. Other normalization data sets, such as the

ShARe/CLEF corpus and the Bactria Biotopes data set, could also be used. With regard

to string representation, newer text representation methods, such as the Bidirectional En-

coder Representations from Transformers (BERT) (Devlin et al., 2018), could be tested.

In addition, mention contexts and concept definitions could be included as inputs to the

model, as the model only considers mentions and concept names at the moment.

The system described in this thesis is open-source under Apache License 2.0 at https:

//github.com/fshdnc/disease_normalization.
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