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ABSTRACT 
 

Accounting for over a third of all emerging and re-emerging infections, viruses represent a 

major public health threat, which researchers and epidemiologists across the world have been 

attempting to contain for decades. Recently, genomics-based surveillance of viruses through 

methods such as virus phylogeography has grown into a popular tool for infectious disease 

monitoring. When conducting such surveillance studies, researchers need to manually retrieve 

geographic metadata denoting the location of infected host (LOIH) of viruses from public sequence 

databases such as GenBank and any publication related to their study. The large volume of semi-

structured and unstructured information that must be reviewed for this task, along with the ambiguity 

of geographic locations, make it especially challenging. Prior work has demonstrated that the 

majority of GenBank records lack sufficient geographic granularity concerning the LOIH of viruses. 

As a result, reviewing full-text publications is often necessary for conducting in-depth analysis of 

virus migration, which can be a very time-consuming process. Moreover, integrating geographic 

metadata pertaining to the LOIH of viruses from different sources, including different fields in 

GenBank records as well as full-text publications, and normalizing the integrated metadata to 

unique identifiers for subsequent analysis, are also challenging tasks, often requiring expert domain 

knowledge. Therefore, automated information extraction (IE) methods could help significantly 

accelerate this process, positively impacting public health research. However, very few research 

studies have attempted the use of IE methods in this domain.  

This work explores the use of novel knowledge-driven geographic IE heuristics for extracting, 

integrating, and normalizing the LOIH of viruses based on information available in GenBank and 

related publications; when evaluated on manually annotated test sets, the methods were found to 

have a high accuracy and shown to be adequate for addressing this challenging problem. It also 

presents GeoBoost, a pioneering software system for georeferencing GenBank records, as well as 

a large-scale database containing over two million virus GenBank records georeferenced using the 

algorithms introduced here. The methods, database and software developed here could help 

support diverse public health domains focusing on sequence-informed virus surveillance, thereby 

enhancing existing platforms for controlling and containing disease outbreaks. 
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1 INTRODUCTION 

Information extraction (IE) is a rapidly growing domain within text mining which addresses the 

challenge of extracting structured information about entities, relations, or events from unstructured 

or semi-structured textual data. In recent years, IE methods have been used to help accelerate 

research in different biomedical domains such as clinical decision support, pharmacogenomics and 

adverse drug reaction (ADR) monitoring [1]–[9]. However, relatively few works in IE have explored 

supporting biomedical research that utilizes geospatial metadata representing the sampling 

location of taxa, which in case of infectious pathogens refer to the location of their infected host 

(LOIH). Some examples of such research areas include phylogeography [10], spatial epidemiology 

[11] and infectious disease surveillance [12]. Currently, researchers typically retrieve this 

information through manual review of nucleotide sequence databases, such as GenBank [13], and 

relevant biomedical publications. However, the process of manually extracting this information is 

slow and challenging and represent a major bottleneck for studies incorporating this information 

[14]. Therefore, an automated system for geo-referencing genetic sequences could help 

significantly accelerate this process, positively impacting a wide range of biomedical research.  

This work explores the use of knowledge-driven heuristics for geo-referencing genetic 

sequences based on metadata available in GenBank and related full-text publications. It specifically 

focuses on supporting the domain of virus phylogeography, which analyzes the geographic 

distribution and genetic variation of viruses and has the potential to play a significant role in 

infectious disease surveillance, vaccine design and distribution, and viral epidemiology [15]. 

However, the methods, datasets, and software presented here would also benefit diverse research 

studies outside the domain of virus phylogeography that require the sampling sites of genetic 

sequences.  

This chapter introduces the problem addressed through this thesis, discusses related work and 

main contributions, and outlines the thesis organization.  Section 1.1 explains the background and 

motivation for the specific focus of this research – extracting, integrating and normalizing the LOIH 

of viruses based on information available in GenBank and related full-text articles to help support 
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virus phylogeography; section 1.2 discusses related work in this field; and section 1.3 summarizes 

the specific contributions of this dissertation.  

1.1 Background and Motivation 

Phylogeography is the study of the geographical distribution of genealogical lineages. It allows 

researchers to model the migration patterns and genetic variation of genetic sequences over time 

and has recently grown into a popular means of studying pathogens such as viruses [16]. As one 

of the major causes of infectious diseases across the world, viruses represent a potent threat to 

population health, and have resulted in several pandemic and epidemic diseases over the past few 

decades [17]. Some examples include the 2003 SARS epidemic, the 2009 H1N1 influenza A 

pandemic, and the 2014 Ebola outbreak in West Africa. In fact, it has been estimated that viruses 

with RNA genomes account for a third of all emerging and re-emerging infections [18], and factors 

such as rising population density and increased global travel are expected to further increase the 

frequency and severity of such disease outbreaks. Therefore, understanding the evolutionary 

dynamics and geographical transmission of viruses, through diverse methods of analysis, including 

virus phylogeography, is of critical importance. By allowing researchers to estimate the origins and 

drivers of viral diseases, virus phylogeography plays a key role in infectious disease surveillance 

and virus epidemiology with the potential to significantly impact public health outcomes.  

To construct phylogeographic models of virus diffusion, researchers require genetic sequence 

data, date of collection, and location of infected host (LOIH) of each virus included in the analysis. 

Phylogeographic models may be discrete [19] or continuous [20]. In continuous phylogeographic 

approaches, the specific latitude and longitude coordinates of the LOIH of each virus is included in 

the model. For instance, Brunker et al. [21] collected rabies virus (RABV) sequences from rabid 

animals in the Serengeti district of Tanzania, along with their GPS location, and applied a 

continuous phylogeography framework to study the effect of landscape attributes on RABV diffusion 

within this district. In discrete phylogeographic approaches, the LOIH of each virus is represented 

as a discrete state in the model and its required level of granularity depends on the scope of the 

study. For instance, Raghwani et al. [22] applied a discrete phylogeographic framework 

incorporating district-level geographic data to analyze the distribution of dengue virus within Ho Chi 
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Minh City in Vietnam. Such an analysis would not have been feasible using only country-level 

geographic data. Although discrete phylogeography studies may be performed at different levels of 

geospatial specificity (country-level, state-level, county-level etc.), Magee et al. [23] demonstrated 

that the most precise sampling locations available should be used in virus phylogeographic models 

to enable accurate analysis of virus diffusion predictors [23]. 

To retrieve the LOIH of viruses at their desired level of granularity, phylogeography researchers 

often start with reviewing the geographic metadata in sequence databases such as GenBank. 

GenBank is a popular database, developed and maintained by the National Center for 

Biotechnology Information (NCBI), for the submission and analysis of nucleotide sequences. It is 

part of the International Nucleotide Sequence Database Collaboration (INSDC), and includes 

genetic sequences submitted by researchers worldwide [24]. At the time of writing, GenBank 

contains over two million nucleotide sequences of virus origin along with predefined metadata 

containing information about each sequence. This includes geographic metadata denoting the 

location of infected host (LOIH) of the virus. 

The designated field for storing the LOIH of a virus within a GenBank entry is called the country 

field which, despite its name, does not simply contain the name of the country from which the 

genetic sequence was isolated. Depending on the level of detail the submitter of the sequence 

chose to include, it may contain locations with varying degrees of granularity, or may be blank and 

contain no geographic information. For instance, in GenBank record with accession number 

AB520868 [25] this field contains city-level geographic information: “Japan: Miyagi, Sendai”; in 

CY000071 [26], it contains county-level geographic information: “USA: Greene County, NY”; in 

AB518493 [27] it contains the country name “Brazil”; in M63769  [28] it only contains the place 

name, “Cambridge”, which is highly ambiguous and can refer to one of many locations across the 

world; and in M63757 [29] it is blank, containing no geographic information.  Due to the specific 

nature of virus nomenclature, additional geographic metadata may sometimes be found in other 

fields of the record such as the strain and isolate fields.  For instance, the strain field of GenBank 

record JQ714202 [30] contains “A/Tianjinheping/SWL313/2009” while the country field contains 

“China,” thereby implying that the sequence was isolated from the Heping District within the Tianjin 
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province of China. Therefore, to retrieve adequate information about the LOIH of a virus from 

GenBank, researchers often need to integrate geographic metadata from multiple fields in the 

record. This can be a time-consuming and challenging process, especially when a researcher is 

not very familiar with the geographic region in which the study is being conducted.   

Depending on the type and scope of phylogeographic analysis being performed, a researcher 

may require more specific geographic information about the LOIH of a virus than what is available 

in GenBank. For instance, it has been estimated that over 80% of GenBank records pertaining to 

RNA viruses within tetrapod hosts do not have geographic metadata more specific than the 

Administrative Division 1-level (ADM1), which is the state or province level [14]. Therefore, 

researchers developing precise phylogeographic models would consider the geographic metadata 

in the vast majority of GenBank records to be insufficient.  

When the geographic metadata in GenBank is found to be insufficient for an analysis, 

researchers often search full-text publications linked to the records for more specific information. If 

available, the more specific metadata from the related article is incorporated within their analysis. 

However, a manual survey of articles is a time-consuming and tedious process and presents a 

major bottleneck for data collection. Moreover, since each publication typically represents a study 

related to multiple GenBank records, it may only include a generic sentence listing the different 

locations where the study was performed, without including a one-to-one-mapping between the 

locations and the related records. In such cases, it may be beneficial to test multiple models using 

the different possible LOIHs of each virus.  

After retrieving the LOIH of all viruses being analyzed, phylogeography researchers need to 

normalize the LOIH of each virus based on the requirements of their specific model. Continuous 

phylogeographic models require the specific latitude/longitude coordinates of the LOIH of all viruses 

included in the model. Therefore, when developing such models, researchers need to manually 

map the LOIH of each virus to its correct geospatial coordinates using an online resource such as 

GeoNames [31], which lists over 10 million geospatial locations across the world. This is a highly 

challenging task, since some locations can be very ambiguous and possibly map to many different 

geospatial coordinates. For instance, according to GeoNames, “Bristol, USA,” can refer to a town 
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or county in one of over 15 states in the USA [32], and therefore, choosing the correct “Bristol” for 

GenBank record KX029319 [33] which simply contains “USA: Bristol” in its country field, with no 

additional geographic metadata in the other record fields, is not easy. Different researchers may 

choose to resolve the ambiguities in different ways, and this may lead to the use of different 

geospatial coordinates for the same record in different studies. 

Discrete phylogeographic models require each unique location to be represented as a discrete 

state in the model. Therefore, the string representation of the LOIH of each virus in the discrete 

model must be normalized by creating identical string representations for identical locations, and 

non-identical string representations for mutually exclusive locations.  For instance, the US state of 

New York cannot be represented by “New York” in one case and “New York State” in another. This 

can be a problem when different spelling variants are used to represent the same location in 

different sources. For instance, in an analysis involving 706 GenBank records, we found over five 

different spelling variations of the Egyptian governorate of “Beni Suef” in GenBank and they each 

needed to be normalized to the same string representation. Another possible problem may arise if 

a model includes two different places with the same name. For instance, “Paris” may denote the 

capital city of France or a city in Texas, USA, and if both of these locations are included in a model, 

it is important to ensure that two different string representations are used for the two locations.  

Given the wide range of challenges involved in manually extracting, integrating, and 

normalizing the LOIH of viruses from GenBank record metadata and related full-text articles, an 

automated framework for performing these tasks could significantly accelerate this process and 

make it more systematic. The work described here represents the most comprehensive effort to 

address the construction of such a framework and has the potential to have a notable impact on 

public health research. Our study led to the development of a freely accessible system called 

GeoBoost for georeferencing virus GenBank records, as well as a publicly available database 

containing over two million virus GenBank records that were georeferenced using the methods 

introduced here.  
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1.2 Related Work 

A considerable volume of work has been published in related research areas of genetic 

sequence annotation, bacteria location extraction, and toponym resolution (detection and 

disambiguation) in full-text articles related to GenBank. However, as we described, none have 

developed an end-to-end pipeline for geospatial metadata enrichment of viruses as we propose in 

this work.   

Genetic sequence annotation is an active research problem which has been the focus of many 

research efforts in recent years [36]–[42]. Researchers have attempted to enhance the quality of 

genetic sequence metadata, such as the date, host and site of collection of taxa, in existing 

sequence repositories using both manual and automated curation efforts. This has led to the 

development of several structured databases and bioinformatics pipelines such as PATRIC [40], 

Virus Variation Resource [41], Virus Pathogen Resource [42], and SeqenV [43]. However, few 

works have focused specifically on normalizing the geographic metadata of GenBank records. The 

research studies included here represent the only efforts to apply an automated approach for geo-

referencing all virus-related GenBank records. 

The Bacteria Biotope task of the BioNLP Shared Tasks 2011, 2013 and 2016 [44]–[46] 

introduced the challenge of extracting events between bacteria entities and their locations (either 

habitat or geographical entities) from scientific web pages and PubMed abstracts, providing a fairly 

large manually annotated corpus for this task. Researchers have applied different machine learning 

models, including state-of-the-art neural network models, to address this challenge. However, 

similar work has not been reported for viruses using full-text PMC articles. 

Recently, the research problem of toponym resolution (detection and disambiguation) in full-

text articles related to GenBank records has attracted a lot of attention, especially following the 

SemEval-2019 Shared Task 12  [47]. Many of the teams participating in this task achieved a high 

f-score for toponym detection in a corpus of GenBank-related full-text articles with the top 

performing system [48] achieving a strict micro-averaged f-score of 0.9161.  Also, Magge et al. [49] 

recently applied a bi-directional neural network model for toponym detection in a subset of the 

corpus provided for this task and achieved an f-score of 0.94. This represents a significant 
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improvement of 0.24 over the f-score of the primarily dictionary-based NER system used in 

GeoBoost  for toponym detection, as described by Weissenbacher et al. [50]. However, since 

GeoBoost applies various knowledge-based constraints prior to linking geographic locations 

extracted from full-text articles to their corresponding GenBank records, to account for the low 

precision of its NER component, it is unclear whether this performance improvement in toponym 

detection would also lead to a notable improvement in GeoBoost’s performance.  

Magge et al. also achieved a slightly higher disambiguation accuracy (91%) than what was 

reported for GeoBoost (88%) in full-text articles by adopting the approach taken by Tamames et al. 

[51] of including information about parent locations, when present in contiguous text following a 

place name, in addition to incorporating the features used by GeoBoost’s toponym disambiguation 

algorithm. However, this might not have a significant impact on GeoBoost’s accuracy given the way 

the system is currently designed. Since GeoBoost extracts and integrates toponyms linked to 

GenBank records from different information sources, it only disambiguates the final integrated 

geographic metadata after all extraction and integration steps have been performed to maximize 

accuracy. Therefore, although GeoBoost provides users the option of using its NER system to 

disambiguate the names of places in full-text articles, it does not utilize the disambiguation results 

to complete its primary objective of normalizing the LOIH of viruses in GenBank and it is not clear 

whether incorporating lexical context from the paper would help boost its disambiguation accuracy. 

GeoBoost’s disambiguation techniques are based on established knowledge-based methods of 

named entity linking [52]–[54] but, to the best of my knowledge, other studies have not evaluated 

these methods within this specific domain. 

1.3 Specific Contributions 

This dissertation is a compilation of the following three published works describing knowledge-

driven methods for geographic information extraction in the biomedical domain which we developed 

to address the primary research objective of geo-referencing GenBank records for supporting virus 

phylogeography: 
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• Tahsin, T., Weissenbacher, D., Rivera, R., Beard, R., Firago, M., Wallstrom, G., Scotch, M. 

and Gonzalez, G., 2016. A high-precision rule-based extraction system for expanding 

geospatial metadata in GenBank records. Journal of the American Medical Informatics 

Association, 23(5), pp.934-941 

This work, which constitutes Chapter 2 of this dissertation, describes and evaluates the 

knowledge-driven heuristics we used to develop the basic infrastructure of GeoBoost, a 

system for extracting, integrating, and normalizing the geographic metadata of virus 

GenBank records based on information present in the records and related full-text articles. 

My specific contributions in this publication include composing the initial draft of the article, 

revising its content and performing additional experiments based on reviewer feedback, 

and developing and evaluating all components of the geographic information extraction 

system described there aside from the Text Parser, which was responsible for toponym 

detection in full-text articles linked to GenBank.  The components I developed and 

evaluated include: 1) Record Location Extractor which extracted and integrated geographic 

metadata from the “country”, “strain” and “isolate” fields of GenBank records, 2) Sufficiency 

Analyzer which detected whether the existing geographic metadata in a GenBank record 

satisfied a pre-defined sufficiency criteria of geographic granularity, 3) Table Linker which 

linked names of places in the tabular content of relevant full-text articles to their respective 

GenBank records, 4) Text Linker which linked toponyms extracted by the Text Parser to 

their corresponding GenBank records, 5) Data Integrator which integrated all the 

geographic locations linked to each GenBank record by the Record Location Extractor, 

Table Linker and Text Linker to output the most probable LOIH of each virus based on 

knowledge-driven heuristics, and 6) Location Disambiguation Module which mapped the 

integrated geographic metadata produced by Data Integrator to its corresponding 

latitude/longitude coordinates.  

• Tahsin, T., Weissenbacher, D., Jones-Shargani, D., Magee, D., Vaiente, M., Gonzalez, G. 

and Scotch, M., 2017. Named entity linking of geospatial and host metadata in GenBank 

for advancing biomedical research. Database, 2017. 
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This work, which constitutes Chapter 3 of this dissertation, describes the development and 

evaluation of a publicly available database containing the normalized geographic and host 

metadata of all virus-related GenBank records downloaded at the time of publication by our 

research team. We normalized the geographic metadata for the GenBank records using an 

updated version of the Record Location Extractor introduced in Chapter 2 and the research 

methods used for this purpose form a central component of this thesis. My specific 

contributions in this publication include composing the initial draft of the article, assisting 

with content revision and additional experiment completion based on reviewer feedback, 

developing and applying the pipeline for normalizing the geographic metadata of GenBank 

records to help build the database presented in the paper, calculating pertinent database 

statistics related to geographic metadata normalization in the database, calculating the 

annotation statistics for the manually-annotated test set, and evaluating the normalized 

host and geographic metadata in the database using this test set.  

• Tahsin, T., Weissenbacher, D., O’connor, K., Magge, A., Scotch, M. and Gonzalez-

Hernandez, G., 2017. GeoBoost: accelerating research involving the geospatial metadata 

of virus GenBank records. Bioinformatics, 34(9), pp.1606-1608.  

This work, which constitute Chapter 5 of this dissertation, introduces GeoBoost, a publicly 

available desktop application for automatically extracting, integrating, and normalizing the 

LOIH of viruses based on information present in GenBank records and related full-text 

articles, and assigning confidences estimates to each possible LOIH of the virus. It 

describes the knowledge-driven heuristics used by GeoBoost to complete the research 

objectives of this dissertation and presents its performance on a manually annotated test 

set. My specific contributions in this publication include composing the initial draft of the 

article, performing content revision based on reviewer feedback, and developing and 

evaluating the entire GeoBoost framework presented there. It includes enhanced versions 

of the modules described in Chapter 2, including a more efficient implementation of the 

Text Parser, and incorporates additional modules to improve the pipeline. The different 

modules I developed in GeoBoost can be divided into three layers: 1) Data Acquisition 
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Layer which is responsible for downloading relevant data, 2) Knowledge Layer which is 

responsible for maintaining a Lucene index of geographic locations containing knowledge 

derived from the GeoNames database and performing spatial reasoning based on 

knowledge-driven heuristics, and 3) Logic Layer which is responsible for utilizing the 

geographic knowledge provided by the Knowledge Layer, and the data downloaded by the 

Data Acquisition layer to output: i) the most probable, integrated, normalized location of 

infected host (LOIH) of each virus and ii) the probability scores of each possible LOIH of 

each virus (confidence estimate output).  

The three publications listed above progressively advance the central objective of this 

dissertation – researching knowledge-driven geographic information extraction methods for geo-

referencing virus GenBank records based on information present in the record and related full-text 

articles. In addition to these publications, I have also contributed significantly to additional published 

work relevant to this thesis. In [55], I evaluated state-of-the-art NER tools for extracting species, 

gene, and temporal mentions from full-text articles linked to virus GenBank records and measured 

their performance using annotations performed by our research team. Additionally, since existing 

NER tools for extracting geographic mentions from text were previously found to perform poorly in 

this domain, I also developed and tested a new, efficient, lexicon-based approach with promising 

results. In [50], I developed the “metadata heuristic”, a knowledge-based method for disambiguating 

names of places in full-text articles linked to GenBank records which was found to notably increase 

the performance of existing toponym disambiguation heuristics when evaluated within this specific 

biomedical domain, and estimated that this heuristic can potentially impact toponym disambiguation 

in over 200,000 PubMed articles. A few other works I co-authored which are related to the research 

objectives of this dissertation include [56] and [34].  

  



11 

 

2 A HIGH-PRECISION RULE-BASED EXTRACTION SYSTEM FOR EXPANDING 

GEOSPATIAL METADATA IN GENBANK RECORDS 

Authors: Tasnia Tahsin, Davy Weissenbacher, Robert Rivera, Rachel Beard, Mari Firago, 

Garrick Wallstrom, Matthew Scotch, and Graciela Gonzalez 

2.1 Abstract 

Objective: The metadata reflecting the location of the infected host (LOIH) of virus sequences 

in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more 

specific geographic information from related full-text articles and mapping them to their 

latitude/longitudes using knowledge derived from external geographical databases. 

Materials and Methods: We developed a rule-based information extraction framework for 

linking GenBank records to the latitude/longitudes of the LOIH of viruses. Our system first extracts 

existing geospatial metadata from GenBank records and attempts to improve it by seeking 

additional, relevant geographic information from text and tables in related full-text PubMed Central 

articles. The final extracted locations linked to the records, based on data assimilated from these 

sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated 

our approach on a manually annotated dataset comprising of 5728 GenBank records for the 

influenza A virus. 

Results: We found the precision, recall, and f-measure of our system for linking GenBank 

records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. 

Discussion: Our system had a high level of accuracy for linking GenBank records to the geo-

coordinates of the LOIH of viruses. However, it can be further improved by expanding our database 

of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. 

Conclusion: Our system performs reasonably well for linking GenBank records for the influenza 

A virus to the geo-coordinates of their LOIH based on record metadata and information extracted 

from related full-text articles. 
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2.2 Background and Significance 

Information extraction (IE) involves the use of natural language processing techniques for 

automated extraction of structured information about entities, relations, or events from unstructured 

textual data. In recent years, the rapidly expanding field of IE has been applied to accelerate 

research in various biomedical domains. For instance, IE methods are currently being used to 

automatically extract relations between drugs, genes, and diseases from PubMed articles in order 

to populate the structured PharmGKB database [1], which in turn can be used for advancing 

personalized medicine. 

Much less work in IE has explored supporting public health applications that heavily rely on 

detailed geospatial information about the sampling sites of genetic sequences. One example of 

such an application is phylogeography, which has recently grown into a popular means of tracking 

the spread of infectious pathogens and enhancing their epidemiological analysis [2]– [4]. For 

instance, Hovmöller et al [5] used multiple phylogenetic trees to estimate the geographical 

transmission routes of a highly pathogenic strain of H5N1 virus and developed a web application 

for visualizing the estimated routes. Similarly, Janies et al. [6] combined phylogenetic analyses with 

visualization techniques to study the global spread of H7 influenza A viruses. In addition to 

advancing the surveillance of infectious diseases, such forms of sequence-based analysis, 

incorporating the location of the infected host (LOIH) from which the pathogen sequence was 

isolated, can also assist the design and distribution of vaccines, and help clinical researchers better 

understand the etiology of various diseases [2], [7], [8]. 

The geographic metadata required for studies involving the spatial modeling of sequences are 

often obtained from public databases such as GenBank [9], which is part of the International 

Nucleotide Sequence Database Collaboration and includes data deposited by researchers all over 

the world. Each GenBank record contains separate fields for holding various forms of sequence-

related metadata such as strain name, date of collection, LOIH, and the type of host. The LOIH is 

typically present in the country field of the record. Despite its name, this field does not simply 

contain the name of the country in which the host was found; it may include locations with varying 

levels of specificity or may not contain any location at all. For instance, in GenBank 
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record AY282759 (of note, this is the accession number of the record, not the GenBank identifier), 

this field does not contain any geographic metadata; in M63769 it contains a single ambiguous 

place name, “Cambridge” without indicating the specific country in which it resides; in GU332632 it 

contains the name of a state “USA:Iowa”; and in CY024354 it contains the name of a city 

“China:Shantou.” Since building precise spatial models often requires very specific information 

about the LOIH of the sequences being studied, the geospatial metadata in GenBank, even when 

available, may not be sufficient for the researcher. For instance, Raghwani et al. [10] used district-

level phylogeographic analysis to study dengue virus migration within Ho Chi Minh City in Vietnam. 

With only country-level or province-level geospatial metadata, such an analysis would not have 

been feasible. 

Because of the absence or inadequacy of geospatial metadata in GenBank records, 

researchers might need to search full-text publications linked to the records for more specific 

information. If found, the more specific metadata from the paper is incorporated within their study. 

However, a manual survey of articles is a time-consuming and tedious process and presents a 

major bottleneck for data collection. Moreover, many studies may require the specific 

latitude/longitude coordinates of the sampling sites; thus, simply finding the name of the locations 

may not be enough. For instance, for continuous phylogeography studies [11] and disease spread 

visualization tools [12], obtaining the specific geo-coordinates is crucial. In this case, researchers 

wishing to use the information would need to perform an additional step of mapping each location 

to its correct geospatial coordinates using a database such as GeoNames [13], which lists 10 

million geospatial locations across the world. This is not a trivial process, since some locations can 

be highly ambiguous and possibly map to a large number of unique coordinates. Consider, for 

example, “Malang, Indonesia,” which is mapped in GeoNames to 23 distinct locations. An additional 

problem ancillary to the manual process is that, depending on how the ambiguities are resolved, it 

is possible that different coordinates would be derived for the same study by different researchers. 

Therefore, an automated system for the extraction of geospatial metadata from GenBank 

records and related full-text articles can help make this process faster and more systematic, 

positively impacting public health research. To the best of our knowledge, no such system currently 
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exists. The Bacteria Biotope Task of BioNLP Shared Task 2013 [14] included the extraction of 

localization relations between bacterial species and geographical entities, but participants were not 

required to map the geo-entities to their latitude/longitude coordinates and the task corpus 

consisted of web documents rather than full-text scientific articles. Additionally, Tamames and 

Lorenzo [15] performed toponym (location name) resolution (detection and disambiguation) in full-

text articles mentioning the sampling sites of bacterial sequences, and achieved a precision and 

recall of 0.92 and 0.86, respectively, for this task. However, their work did not focus on linking the 

sequences to their collection sites in the articles. Other studies have analyzed or used GenBank 

metadata, often in combination with other resources, for various applications [16]– [20] but none 

specifically attempted the enhancement of geospatial metadata in GenBank using information 

extracted from full-text articles. 

2.3 Objective 

The objective of the present study was to provide an IE framework for automatically linking 

GenBank record sequences to the latitude and longitude coordinates of their LOIH in order to help 

advance public health research. Our system attempted to make this location as specific as possible 

by extracting geospatial metadata from GenBank record fields and related full-text PubMed Central 

(PMC) articles. As our primary case study, we present a detailed evaluation of our system on a set 

of manually annotated GenBank records for the influenza A virus. We chose this virus because of 

the large sample of influenza A sequences in GenBank as well as its significance in public health 

research. In addition, to test the generalizability of our system, we also report its accuracy on a 

smaller sample of GenBank records for St. Louis Encephalitis (SLE), Eastern equine encephalitis 

(EEE), Western equine encephalitis (WEE), West Nile virus (WNV), rabies, and hantavirus, which 

are some of the most widely studied zoonotic viruses (viruses transmittable between animals and 

humans) by public health, agricultural, and wildlife state departments in United States [21]. 
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2.4 Materials and Methods 

Our methodology for conducting this study can be divided into three broad stages: selection 

and download of GenBank records and related PMC articles, development of the IE system, and 

evaluation of the IE system. Each of these stages are described in detail below.  

2.4.1 Selection and Download of GenBank Records and Related PMC Articles 

For the influenza case study, we used stratified random sampling to select ∼10% of all PMC 

articles linked to GenBank records for the influenza A virus (stratification was performed based on 

the number of records linked to each article; further details given in Appendix A). This produced a 

corpus of 60 PMC articles corresponding to 5728 GenBank records. We manually downloaded the 

PDF versions of these papers and used Xpdf [22] to convert them into text files (of note, we chose 

to use the PDF version of each article instead of parsing its HTML version or searching for its XML 

version in PMC Open Access because not all articles have an HTML version and only a limited 

subset of PMC articles are available through PMC Open Access). In addition, we used the National 

Center for Biotechnology Information (NCBI) Entrez Utilities application programming interface 

(API) [23] to download relevant metadata fields from the selected GenBank records, 

including: country , strain , organism , isolate, date, and host . 

For our secondary study, we first gathered a list of PMC articles linked to at least 10 GenBank 

records associated with the remaining six viruses (SLE, EEE, WEE, WNV, rabies, and hantavirus) 

and randomly selected two PMC articles for each virus. For each selected article, we randomly 

selected 10 records for inclusion within our evaluation sample. This resulted in a total of 120 records 

from 12 articles, equally distributed among the 6 viruses. 

2.4.2 IE System Development 

Our geospatial information extraction (IE) system is largely dependent on the GeoNames [13] 

database, a large collection of over 10 million geospatial locations across the world which has been 

effectively used in several existing systems for toponym resolution [15], [24], [25]. In addition to 

location names, GeoNames also contains several useful features about each entry in the database 

such as population data, country code and the latitude and longitude coordinates of the location’s 
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centroid. For the purpose of this project, we downloaded the GeoNames data available online and 

imported it into a local database. In addition, we also imported data from the Socrata dataset [26], 

which contains geospatial data  for 243 countries, since several country names were too ambiguous 

in GeoNames. For instance, the results from the query “Italy” in GeoNames does not include the 

country “Italy” – it contains populated places in other countries. One needs to query for “Repubblica 

Italiana” to retrieve this country. France, on the other hand, is listed as “Republic of France” and not 

“Republique francaise”. If we include alternate names for these countries we obtain names such as 

“Farani” for France, which are not as likely to be referring to the country in a scientific article written 

in the English language and may generate more false positives. Therefore, we opted to include the 

Socrata dataset which focuses solely on countries. 

 

In order to introduce a stopping criterion for our system, we defined any location more specific 

than ADM1 (first order administrative division) level as “sufficient” based on our prior study [27]. 

This includes counties, districts, cities, towns or any other form of populated place within a country 

which is less specific than states and provinces. As illustrated in Figure 1, if a record already 

Figure 1. System pipeline for a GenBank record with sufficient geospatial metadata 
(location of infected host more specific than state or province level). 
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contains sufficient geographic metadata within the record, our system directly proceeds to 

assigning geo-coordinates to the locations present in the record metadata instead of processing 

the related paper. For records with insufficient geographic metadata, it attempts to extract more 

specific information from the related article, if available, until it finds a LOIH that is considered 

sufficient (see Figure 2). Therefore, our system is capable of finding locations more specific than 

ADM1 (such as districts and cities) but does not necessarily search for more specific geospatial 

information once it finds such a location. To ensure retrieval of even more specific locations, when 

available, the stopping criterion would need to be altered.  

Figure 2: System pipeline for a GenBank record with insufficient geospatial metadata 
(location of infected host not more specific than state or province level). 
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For our current study, we integrated data from the strain, isolate and organism fields of 

GenBank records, in addition to the country field, for extracting existing geospatial metadata from 

the records. This is because virus nomenclature often includes the unique practice of incorporating 

the LOIH of sequences within their taxon names. For instance, the strain field of GenBank record 

JF340084 contains “A/St.Petersburg/14/2010” while the country field contains “Russia”, thereby 

implying that the sequence was isolated from “St. Petersburg, Russia”. The individual steps in the 

system pipeline are described below. 

2.4.2.1 Record Location Extractor 

The first step in our system pipeline involves the integration of existing geospatial metadata 

present within the country, strain, isolate, and organism fields of the GenBank record in order to 

identify the most specific LOIH available within the record itself. For instance, if the country field 

contains the location “China” while the strain field contains the location “Guangdong,” then the most 

specific LOIH for this record based on record data will be “Guangdong, China.” The record location 

extractor module uses our integrated database of geospatial locations for detecting location names 

mentioned within the record, determining the administrative level of each location detected and 

pairing extracted location names with any mention of their parent ADM1-level location and/or parent 

country in the record. 

2.4.2.2 Sufficiency Analyzer 

Depending on the final output produced by the record location extractor, a GenBank record 

may be classified as either sufficient or insufficient. To be considered sufficient, the GenBank 

record must either contain a location name more specific than ADM1-level along with the name of 

the country in which it resides; e.g., “San Diego, USA” or a location name more specific than ADM1-

level that can only be present in a single country; e.g., “Beijing,” which can only be present in 

“China.” A record classified as insufficient may contain no location information, only country-level 

information; e.g., “China,” ADM1-level information along with associated country name; e.g., 

“Guangdong, China” or ambiguous location information for which no matching country name could 

be found within the record; e.g., “Osaka,” which is a place that can be present in Japan, USA, South 
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Africa, or the Solomon Islands. For all records that are classified as insufficient, our system 

searches the related full-text PMC article for more specific geospatial information using our table 

linker, text parser, and text linker modules. 

2.4.2.3 Table Linker 

The purpose of the table linker module is to identify possible LOIHs using table data (if 

available) in referenced PMC articles. Since the conversion from PDF to text does not allow the 

tables in the document to retain their defined structure, we directly parsed the HTML content of the 

articles in PMC to extract table information. For every table in each article related to at least one 

insufficient record, the table linker analyzes the table headers to determine whether or not it 

possesses relevant information that could be used to link a GenBank record to a geographic 

location. A table is considered relevant if one of its headers contains the word location or any of its 

synonyms (location column) and another contains the words accession, strain, date, host, or one 

of their synonyms (GenBank metadata column). We manually compiled a list of synonyms for each 

of these words. If the data from the GenBank metadata column of one of the rows of a relevant 

table matches the metadata of the record, the table linker links data from the location column of the 

row to that record (see Figure 2). Aside from date metadata, we used exact match as our means of 

establishing equivalency between table data and GenBank record data. For dates, we first 

normalized the data before comparing them. Here, we used Stanford SUTime [28] along with a 

separate rule-based program that we wrote for normalizing date metadata in GenBank records, 

presented in formats such as “12-May” and “12-Jun-2007,” which Stanford SUTime was unable to 

parse, into TIMEX expressions. 

2.4.2.4 Text Parser 

To allow effective IE from the textual content of the article, we first used the text parser module 

to extract all sentences, tokens, and toponyms and stored them in a local database. For toponym 

detection, we used our system presented by Weissenbacher et al. [29], which was found to have a 

precision, recall, and f-score of 0.599, 0.904, and 0.72, respectively, for this task. For sentence 
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segmentation, we used the ANNIE module from the GATE platform [30], while for word 

segmentation, parts-of-speech tagging, and chunking, we used the Genia tagger [31].  

2.4.2.5 Text Linker 

The text linker module links the geospatial entities identified by our toponym detection system 

within an article to relevant GenBank records using a rule-based approach. A geospatial location 

extracted from an article is linked to a record referencing the article if the sentence containing the 

location also mentions other record metadata, such as strain name and accession number, or fits 

a few simple patterns that we developed. In Appendix B, we list the patterns used by our system. 

For every geospatial entity identified by our toponym detection system in an article related to a 

specific insufficient record, our text linker first determines whether the entity is present in a relevant 

section of the article (of note, the Author Affiliation, Acknowledgment, and Reference sections are 

considered to be the only “irrelevant” sections of an article) and for those that are, it proceeds to 

analyze the sentence containing the entity to check if it fits any of the utilized patterns; if it does, the 

entity is considered to be a possible candidate for the location of the virus. 

2.4.2.6 Data Integrator 

The data integrator module assimilates information extracted by the record location extractor, 

table linker, and text linker modules for a given GenBank record to produce a coherent set of 

geographical locations that are possible LOIHs for the record. This set of locations is referred to as 

final locations in the remainder of the article. The first step in this process involves the elimination 

of all locations extracted by the text linker and table linker which are inconsistent with the output 

produced by the record location extractor. A location is said to be inconsistent if one of the following 

is true: 1) It does not belong to the same country as the record location 2) It does not belong to the 

same ADM1-level location as the record location (e.g. “Philadelphia” is inconsistent with “Arizona, 

USA”). Once all the inconsistent locations have been removed, the data integrator uses output from 

the table linker and text linker to increase the specificity of the record location until a sufficient 

location is found; if no sufficient location is found, it outputs the most specific location retrieved. In 

case of locations with the same level of specificity, preference is given to table-derived locations 
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over text-derived locations. This is because tables tend to link each individual record to its precise 

LOIH (one-to-one mapping) whereas paragraphs in the article typically provide a list of locations 

related to all records referenced in them (see Figure 2). Therefore, adding information from the text 

linker, when sufficient table data is present, may reduce system precision. The final output from this 

module consists of distinct, non-overlapping locations considered by the system to be the set of 

most specific LOIHs available for the record based on the sources analyzed. This may include more 

than one location if the heuristics fail to narrow it down to a single LOIH. For every location, the 

parent country name and ADM1-level location is also included in the output, if found by the system.  

2.4.2.7 Location Disambiguation Module 

The location disambiguation module links each final location to its specific latitude and 

longitude coordinates. First, it queries our geospatial database to retrieve all possible 

latitude/longitudes for the location. Next, it sorts them based on their feature codes (code in 

GeoNames denoting the type of the location e.g. country, state, city etc.) and chooses the group of 

coordinates belonging to the least specific feature codes. For instance, in GeoNames, “Arizona” 

can be both a state in USA with feature code of ADM1 and a populated place in the state of Texas, 

USA with feature code of PPL but our system will only select the former since it has a less specific 

feature code. This heuristic is based on the assumption that in the majority of cases, when an author 

mentions a location name which can refer to multiple places on earth with varying levels of 

specificity, he/she is referring to the one which is more widely known across the world and the less 

specific a place is, the more widely known it tends to be. Lastly, the module sorts the group of 

coordinates selected in the previous step based on their population, and outputs the set with the 

highest population. This is a popular heuristic [32] within the field of toponym disambiguation since 

it is generally assumed that places which have higher populations are better known among people 

and are more likely to be mentioned. When querying the database for the latitude/longitudes of a 

given location, we included the country code and ADM1 code of the location, if known.  

The location disambiguation module links each final location to its specific latitude and 

longitude coordinates. First, the system queries our geospatial database to retrieve all possible 

latitude/longitudes for the location. Next, it sorts them based on their feature codes (code in 
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GeoNames denoting the type of the location, e.g., country, state, city, etc.) and chooses the group 

of coordinates belonging to the least specific feature codes. For instance, in GeoNames, “Arizona” 

can be both a state in United States with feature code of ADM1 and a populated place in the state 

of Texas, United States with feature code of PPL but our system will only select the former since it 

has a less specific feature code. This heuristic is based on the assumption that in the majority of 

cases, when an author mentions a location name that can refer to multiple places on earth with 

varying levels of specificity, he/she is referring to the one that is more widely known across the 

world and the less specific a place is, the more widely known it tends to be. Lastly, the module sorts 

the group of coordinates selected in the previous step based on their population, and outputs the 

set with the highest population. This is a popular heuristic [32] within the field of toponym 

disambiguation since it is generally assumed that places that have higher populations are better 

known among people and are more likely to be mentioned. When querying the database for the 

latitude/longitudes of a given location, we included the country code and ADM1 code of the location, 

if known. 

2.4.3 System Evaluation 

In order to evaluate our system for the influenza case study, three annotators manually 

annotated the 5728 GenBank records linked to the 60 related papers. The annotators followed a 

set of guidelines created prior to development of the corpus and documented relevant data for 

evaluating each individual module within the system pipeline (see Appendix C for annotation details 

and Figure 3 for example). We calculated the inter-rater agreement (IRR) for “sufficiency” 

annotation of 2017 records related to six randomly selected PMC articles and the final location 

(defined in the Data Integrator section) annotation of 1477 records related to 36 randomly selected 

PMC articles. We used the traditional IRR metric of Cohen’s kappa statistic as our measure of IRR 

for “sufficiency” annotation. However, for the other annotations, we used f-score as our measure of 

IRR, holding one annotator as the gold standard each time. This is because Cohen’s kappa 

calculation requires well-defined negative cases, which we lack for these annotations, and f-score 

has been shown to be a reliable IRR measure for information retrieval tasks [33]. After calculation 

of the IRR, the annotators performed multiple rounds of annotation for all records to ensure that the 
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guidelines were followed, and any mistakes corrected before creation of the gold-standard corpus 

(included as supplementary file in Appendix D). 

 

We evaluated the different components of our system for the influenza case study using Exact 

Match per record-location linkage criteria. In this case, a true positive indicates that a given record-

location linkage extracted by our system is equivalent to one annotated in the gold standard. For 

the final locations, we normalized the country codes to allow for fairer comparison but partial 

matches were not allowed. For instance if the annotated final location for a record is “New York 

City, New York, USA” and our program simply outputs “New York, USA,” then we count this linkage 

as both a FP and a false negative. When evaluating the disambiguation module, we considered 

two geo-coordinates of non-country locations to be equivalent if they were within 10 miles of each 

other; geo-coordinates of country-level locations were considered equivalent if they were within 200 

miles of each other. We used a larger margin for country mentions since our annotators used the 

GeoNames website online to annotate these locations while our system used the Socrata dataset 

and there were slight discrepancies between the two sources. 

For our secondary study, we annotated only the final location for each record and manually 

verified whether the final location extracted by our program matched our annotated location for 

each record. If any part of the correct location was missing or additional FPs were present within 

Figure 3. Example of annotated GenBank records for the influenza case study. 
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the final location for a record, then we counted it as a single error. This allowed us to estimate the 

accuracy of our system for other viruses. 

2.5 Results 

2.5.1 Corpus Statistics 

According to the results from our gold standard annotation, 75% of the 5728 GenBank records 

selected for our influenza case study were found to be insufficient using data from all four fields in 

the GenBank records. The specificity of the LOIH of 38% of insufficient records was increased using 

information from the PMC articles. For 90% of these records, it was necessary to read the full-text 

content of the articles, rather than the abstract only, to make the LOIH more specific. 

The percentage of insufficient records in our secondary study was 61%. The specificity of 70% 

of the insufficient records was increased using information from the full-text content of the PMC 

articles, primarily tables. 

2.5.1.1 Inter-rater Agreement 

The IRR for the sufficiency annotation of 2,017 GenBank records from the Influenza case study 

was found to be 0.984 on average, using Cohen’s Kappa statistics as a measure of agreement. 

Table 1 presents the IRR between each pair of annotators for this task. 

 
A;B A;C B;C 

Sufficient;Sufficient 1329 1312 1316 

Insufficient;Insufficient 683 684 683 

Sufficient;Insufficient 0 17 18 

Insufficient;Sufficient 5 4 0 

Kappa Value 0.994 0.977 0.980 

 
Table 1: Inter-rater agreement for sufficiency annotation based on Kappa Statistic. A, B and C 

represent the three annotators respectively 
 

For the final location annotation of 1477 GenBank records from the influenza case study, the 

IRR was found to be 0.755 on average, using f-score for exact match per record-location linkage 
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as a measure of agreement between each pair of annotators (the individual f-scores were 0.677, 

0.699, and 0.888, respectively). 

2.5.1.2 Performance Statistics of the IE System 

For determination of the sufficiency of records, our system had a Cohen’s kappa value of 0.988 

when compared to the gold standard annotation. 

Of the 5728 GenBank records used for the influenza case study, our system was able to 

correctly link 5011 records to the correct final location. For two of the records, neither our system 

nor our annotators were able to find any geospatial information about their LOIH. For the remaining 

715 records, the final location extracted by our system did not exactly match the final location 

identified by our annotators. However, for 604 of these records, our system output for final location 

included true positive matches in addition to FPs. For instance, for record GQ463225, our system 

output for final location was “Guangdong China; Fujian China” while the annotated final location 

was “Guangdong, China.” 

Task Recall Precision F-score 

Extraction of the location of infected host from 
GenBank record metadata 

  

0.996 0.953 0.974 

Linkage of consistent, text-derived locations of 
infected host (locations extracted from textual 
content of related article and consistent with record 
metadata) to GenBank records 

  

0.800 0.847 0.823 

Linkage of consistent, table-derived locations of 
infected host (locations extracted from tabular 
content of related article and consistent with record 
metadata) to GenBank records 

  

0.838 1.0 0.912 

Linkage of final locations of infected host 
(locations produced after integrating geospatial data 
from record, text and tables) to GenBank records  

  

0.980 0.876 0.925 

Mapping of correctly identified final locations of 
infected host to their correct latitude and longitude 
coordinates (disambiguation) 

  

0.984 0.948 0.965 

Linkage and disambiguation of final locations  
  

0.967 0.832 0.894 

 
Table 2: Recall, Precision and F-score for individual tasks performed by the system 
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The precision, recall, and f-score of individual tasks performed by the system based on the 

evaluation criteria described in The Materials and Methods section for the influenza case study is 

given in Table 2. 

The accuracy of our system for linking the 120 records used in our secondary study to their 

correct final location was found to be 75% (90 records had correct final location). 

2.6 Discussion 

The results indicate that our system is capable of linking GenBank records to the correct 

location of sequence collection with a high level of recall and precision. However, since our system 

evaluation was primarily performed on GenBank records related to the influenza A virus, the results 

may not be a true reflection of its performance level for GenBank records related to other 

pathogens. Using the remaining 120 records allowed us to obtain a rough estimate of its accuracy 

for other viruses but the generalizability of this secondary study is limited by its small sample size. 

Moreover, at its current state our system is only capable of analyzing records related to PMC 

articles and therefore, we were limited in our selection of the GenBank records for this study. 

Our IRR for sufficiency annotation was very high and matched by the performance of our 

automated module for this task. However, for final location, we had a relatively low IRR due to 

misinterpretation of annotation guidelines and missed locations in linked articles, illustrating the 

difficulty of this task. For instance, one of our annotators listed “New York City, New York, USA” as 

the final location while the second annotator simply listed “New York, USA” due to missed 

information in the article. Through repeated annotations, we minimized these mistakes in our gold 

standard. 

For the majority of records whose specificity was increased using information from a related 

article, it was necessary to retrieve data from the full-text content of the article, including tables. 

This supports our decision to parse full-text PMC articles rather than PubMed abstracts for this 

study. 

Although we presented evaluation results for the various tasks performed by our system for the 

influenza case study, we will only present a detailed discussion of its performance in the extraction 

and disambiguation of final locations, which is the principal objective of the system. Upon 
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conducting a thorough error analysis for the task of final location extraction, we found that 613 of 

the 715 records with incorrect final locations were caused by the system’s failure to correctly identify 

the parent ADM1 code of the locations. A total of 605 of these errors were a direct result of the 

ambiguity of the location “Philadelphia, USA” in GeoNames. Philadelphia was one of the several 

locations mentioned in a paper linked to over 600 records and our system produced locations such 

as “Philadelphia, Virginia, USA” and “Philadelphia, New York, USA,” respectively, for records 

containing “Virginia” or “New York” in the GenBank metadata fields. Since we are evaluating the 

system on a per record-location linkage basis, a single paper associated with a large number of 

records can have a substantial effect on the system performance. However, by collecting a stratified 

random sample of papers from the list of all PMC articles related to GenBank records for the 

influenza A virus, based on the number of records linked to them, we attempted to prevent this from 

skewing the results significantly (see Appendix D for table showing the distribution of GenBank 

records and final location errors across the articles) 

For 72 records (linked to 8 papers), our system failed to correctly identify the final location due 

to errors produced by the text linker. Forty-one of these errors (representing 4 papers) were due to 

the text linker missing relevant relations in the related paper since they did not fit any of the utilized 

patterns while the remaining resulted from its lack of precision. Although the system’s failure to 

correctly identify the parent ADM1 code of the locations accounted for a significantly greater number 

of errors in our current evaluation set, the limitations of the text linker, by leading to errors in a larger 

number of articles, has the potential to be a greater problem in the future depending on the number 

of records linked to the affected articles. 

Spelling errors in the GenBank metadata (e.g., “Jilangsu” recorded in JN804364 instead of 

“Jiangsu”) and missing location names in GeoNames (e.g., “Pasteur Institute, France”) accounted 

for incorrect final locations in 17 records, none of which had more specific information in the paper. 

The remaining errors were primarily caused by locations missed by the table linker due to the 

presence of split cells in the relevant table of a single paper and the failure of the disambiguation 

module to select the correct candidate for a single ambiguous toponym mention (e.g., 

“Cambridge”). 



28 

 

The coordinates chosen by our disambiguation module were incorrect for a total of seven 

correctly identified final locations (corresponding to 90 GenBank records) because of the rule-based 

nature of our program. For five of these locations, the population recorded in GeoNames was 0 and 

hence our population heuristic had no effect. 

The errors in our secondary study primarily resulted from two papers. One of the papers 

contained more specific information within a table but our program was unable to parse this table 

since an HTML version of the paper was not available. The second paper utilized two-letter codes 

to describe the city and state in Brazil from which the virus sample was isolated and our annotator 

was able to use this data to infer the LOIH of the related sequences. For example, based on the 

isolate field “CA_SP_P1/0” for record EU170195, our annotator was able to deduce that the LOIH 

for the sequence was Cássia dos Coqueiros, Sao Paolo, Brazil. Our program was unable to make 

such inferences. The majority of remaining errors were a result of missing locations in GeoNames. 

2.7 Conclusion  

Our system is capable of linking genetic sequences in GenBank records to the coordinates of 

their LOIH, using data from the record itself or related PMC articles, with reasonably high accuracy. 

However, as our error analysis showed, even a single error type can lead to a significant reduction 

in system performance if a large number of records happen to be affected by this error type. 

Therefore, as future work, we will attempt to address the different limitations of our system by 

incorporating additional databases for geographic data such as the Wikipedia dictionary, adding a 

spell check component to the record location extractor module, and modifying the table linker so 

that it is capable of parsing more complex tables. In addition, since the rule-based nature of the text 

linker was a major cause of errors produced by the system, we will test the use of machine learning 

approaches in this module. Finally, to determine the extensibility of the system, we will evaluate it 

on other corpora including different species of viruses and other pathogens. 
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2.12 Appendix A: Detailed description of corpus selection 

The first step in this study involved downloading 309,807 GenBank records related to the 

Influenza A virus (NCBI taxonomy id of 197911) using the following query:  

http://www.ncbi.nlm.nih.gov/nuccore/?term=txid197911%5BOrganism:exp.  

Since a major objective of our project is to improve the specificity of the location metadata of 

GenBank records by extracting information from related full-text PubMed articles, we filtered these 

records based on whether they had a PMID linked to them. This produced a set of 102,949 records 

which were linked to 1424 unique PMIDs. For the scope of this project, we concentrated specifically 

on papers that were part of the PMC database and used the PMID to PMCID convertor online (to 

narrow down the list of related articles to 598 papers with valid PMCIDs, corresponding to 62,103 

GenBank records. 10% of this set of papers, representing 60 PMC full-text articles, were selected 

via stratified random sampling to create our evaluation corpus. The stratified random sampling was 

performed by first dividing the 598 papers into 6 strata based on the number of GenBank records 

related to them and using the Excel rand() function for randomly selecting 10% of the papers from 

each strata for inclusion in our study; this was done since the number of GenBank records related 

to a given article may vary widely, ranging from just 1 to over a 1000. The first stratum contained 

papers with 1-4 records, the second 5-8, the third 9-24, the fourth 25-76, the fifth 76-500 and the 

sixth 501+. The final set of 60 papers were linked to 5,728 GenBank records. We manually 

downloaded the PDF versions of each of these 60 papers from the PubMed website and wrote a 

script utilizing the freely available pdf-to-text tool to convert each of them into text files. For 

downloading relevant fields from the selected GenBank records, we used the NCBI Entrez Utilities 

API. The following fields were downloaded for each record: ‘Country’, ‘Strain’, ‘Organism’, ‘Isolate’, 

‘Date’, ‘Gene’, and ‘Host’. 

2.13 Appendix B: Patterns used for text linkage 

For every toponym detected by our toponym detector, our text linkage extraction algorithm first 

checks whether the sentence containing the toponym matches the very general “Location Pattern” 
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rule in Table 3. If it matches the pattern, then our algorithm proceeds to analyze the sentence to 

determine whether it can be extracted using any of the remaining patterns listed in Table 3.  

 

“Isolation” Pattern “.* (isolated|collected) .* (in|from) .*”+location+”.*” 

“.* we .* (collect|isolate) .* (in|from) .*”+location+”.*” 

“.* (isolation|collection) .* (in|from) .*”+location+”.*” 
  

“Location” Pattern 
  

“.* (in|from|at) .* ”+location+”.*” 

“Our study” Pattern “.*we used.*” 

“.*current study.*” 

“.*in this study.*” 

“.*our study.*” 

“.*we examined.*” 

".*we studied.*" 

“Metadata” Pattern “.* ”+host+”.*” 

“.* ”+date_of_collection+”.*”   (either year,  month or entire 
date) 

“.* ”+strain+”.*” 
“.* ”+virus_name+”.*” 

“..* ”+accession+”.*”  
 

Table 3: Rules used for linkage of locations detected in textual content of related article to 
Genbank records 

 

2.14 Appendix C: annotation  

The annotation of the 5.728 GenBank records was performed in an excel sheet with columns 

labeled “Sufficient?”, “Record Locations”, “Final Record Locations”, “Text Locations”, “Table 

locations”, “Final Location”, “Latitude” and “Longitude”. The approach used for annotating each of 

these columns, along with the purpose of each annotation, are given below: 

1. Sufficient: This indicates whether or not a record is sufficient based on geospatial data from 

all relevant fields of the GenBank records and was used to evaluate the sufficiency 

determination task. We looked at the ‘Country’ field, the ‘Strain’ field, and the ‘Organism’ 

field, in the order stated, for more specific geographic information, until the combined 
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information made the record sufficient or the information from all four fields failed to make 

it sufficient. It can have a value of either ‘Yes’ or ‘No’. To determine sufficiency, we retrieved 

the feature codes of geospatial locations using the GeoNames website. If a place could 

have several different feature codes, we erred on the side of caution and chose the less 

specific feature code. For instance, the metadata of GenBank record CY053893 contained 

‘Buenos Aires, Argentina’ and although Buenos Aires can be either a province or city in 

Argentina, we assumed that it referred to the province and labeled the record as insufficient. 

2. Record Locations: This includes a list of all locations mentioned within the ‘Country’, 

‘Strain’, and ‘Organism’ fields of the record, separated by semi-colons. It was used to 

evaluate the record location extraction task. 

3. Text Locations: This lists all unique mentions of geospatial locations related to a record 

which the annotators found in the paragraphs of linked papers. It was used to evaluate the 

set of locations extracted by the Text Linker and found to be consistent with record location 

by the Data Integrator. This column was only annotated for insufficient records. The listed 

locations were often redundant (e.g. New York and USA will be listed as two separate 

locations although New York is a part of USA) and not useful (they may have already been 

present in the metadata of the records).  However, they represent the unique location 

mentions which we expect our system to be able to find in the textual content of the paper. 

4. Table locations: This lists all unique mentions of geospatial locations related to a record 

which the annotators found in the tables contained within linked papers. It was used to 

evaluate the set of locations extracted by the Table Linker and found to be consistent by 

the Data Integrator. As in case of the text annotation, this column was only annotated for 

insufficient records. 

5. Final location: This states the final location (s) for a record based on combined information 

from all fields in the GenBank record and the textual and tabular content of the related 

paper, and was used to evaluate the final location output from the data integrator module 

of our system. This column may contain more than one distinct location in cases where a 

paper was associated with multiple records and it was not possible to identify which of the 
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locations of isolation mentioned in it belonged to the specific record. Each distinct location 

can include either a single country name (e.g. ‘China’); an ADM1 location and its parent 

country, separated by commas (e.g. ‘California, USA’); a location more specific than ADM1 

along with its parent ADM1 location and parent country location, separated by commas 

(e.g. Sydney, New South Wales, Australia); or a location more specific than ADM1 along 

with its parent country location (e.g. ‘Shantou, China’), separated by commas. Individual 

locations are separated by semi colons. 

6. Latitude and Longitude: This states the latitude and longitude coordinates of the final 

location of isolation extracted for a record. It was used to evaluate both the location 

disambiguation task as well as the ability of our system to link each record to the correct 

set of latitude and longitude coordinates. We searched the GeoNames website for these 

coordinates and chose the one with the least specific feature code. In cases where 

GeoNames did not a find a match for our query, we used Google Maps. 

2.15 Appendix D: Distribution of records and program errors for final location across PubMed 

articles used in the influenza case study 

PubMed ID Number of related records Number of related records for which the extracted 
final locations contained error(s) 

20943966 627 610 

24244615 64 25 

22470427 24 24 

23458714 30 8 

23441208 52 7 

2041090 39 7 

18704172 7 7 

20167132 5 5 

21645421 5 5 

21930918 12 4 

23285143 761 2 

16333111 146 2 

21490925 4 2 

6296449 2 2 
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18214200 2 2 

22718569 28 1 

2349225 1 1 

6253883 1 1 

17652402 1648 0 

21047959 440 0 

23029335 296 0 

20975994 267 0 

20610681 240 0 

20592108 176 0 

22050764 114 0 

18394282 96 0 

16824249 88 0 

20202225 70 0 

20875285 64 0 

22012020 53 0 

11371620 37 0 

21637809 36 0 

16306617 28 0 

20631138 24 0 

21900171 24 0 

23920350 24 0 

23650608 20 0 

22984519 17 0 

18032512 16 0 

19359528 16 0 

17881439 13 0 

24086762 11 0 

21392430 9 0 

19380727 8 0 

22279582 8 0 

22709385 8 0 

22733885 8 0 

22879613 8 0 

23087121 8 0 

23580714 8 0 

23950136 8 0 

21173241 7 0 

1731092 6 0 



37 

 

12857911 4 0 

11158130 3 0 

20202440 3 0 

2780295 1 0 

6828387 1 0 

20220153 1 0 

23042757 1 0 

 
Table 4: Distribution of records and program errors for final location across PubMed articles used 

in the influenza case study. 
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3 NAMED ENTITY LINKING OF GEOSPATIAL AND HOST METADATA IN GENBANK FOR 

ADVANCING BIOMEDICAL RESEARCH   

Authors: Tasnia Tahsin*, Davy Weissenbacher*, Demetrius Jones-Shargani, Daniel Magee, 

Matteo Vaiente, Graciela Gonzalez, Matthew Scotch 

*The two authors contributed equally and are co-first authors. Ordering is based on the 

alphabetical ordering of their last names 

3.1 Abstract 

GenBank is a popular NCBI database for submission and analysis of DNA sequences for 

biomedical research. The resource is part of the Entrez environment which enables for cross-linking 

of concepts and entries in other participating NCBI databases such as Taxonomy, PubMed, and 

Protein. For example, a GenBank record of an influenza A hemagglutinin gene DNA sequence 

might have a link to the Taxonomy database for the organism, a link to the related article in PubMed 

(if published), and a link to the Protein entry for the hemagglutinin protein. Despite its importance 

in biomedical research such as population genetics, phylogeography, and public health 

surveillance, the host and geospatial metadata of genetic sequences in GenBank are not linked to 

any database. Therefore, to facilitate biomedical research based on georeferenced DNA 

sequences and/or DNA sequences with normalized host names, we designed and developed a 

framework that enriches GenBank entries by linking their host metadata to the NCBI Taxonomy 

database and their geospatial metadata to a comprehensive knowledge base of geographic 

locations called GeoNames. Here, we introduce a database created through the application of this 

framework to virus sequences in GenBank and evaluate our normalization algorithms on a set of 

manually annotated records pertaining to viruses. Although currently applied to viruses, our 

framework can be easily extended to other organisms, and we discuss the potential utilization of 

our resource for biomedical research. The developed database is available for download at 

https://tinyurl.com/GeoHostDB. An online interactive version of the database is also available at 

https://zodo.asu.edu/zoophydb/. The github repository for the source code of our framework is 

available at https://tinyurl.com/GenbankFactory. 
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3.2 Introduction 

GenBank is a public database of nucleotide sequences developed and maintained by the 

National Center for Biotechnology Information (NCBI), which is part of the U.S. National Library of 

Medicine (NLM) of the National Institutes of Health (NIH) [1]. With its participation in the 

International Nucleotide Sequence Database Collaboration (INSDC), NCBI exchanges sequences 

with international institutes such as the European Nucleotide Archive (ENA) [2] and the DNA Data 

Bank of Japan (DDBJ) [3]. At the time of writing, GenBank contains a total of 200,877,884 

sequences [4], along with pre-defined metadata describing each sequence. Over two million of 

these sequences are of virus origin, and include metadata such as the name of infected host of the 

virus, the location of infected host of the virus (LOIH), and the name of the gene the sequence 

corresponds to. 

Viruses represent one of the principal causes of emerging and re-emerging infectious diseases 

across the world [5], and, therefore, understanding their evolutionary dynamics and geographical 

transmission, through diverse methods of analysis, is of critical importance. As one of the most 

comprehensive sources of virus sequence information, GenBank presents an invaluable resource 

for a wide range of virus-related research. It is frequently used in fields such as phylogenetics, 

phylogeography, molecular epidemiology, evolutionary biology, and environmental health for 

studying viruses through a variety of different approaches. In addition to genetic sequence data, 

the rich metadata present in many GenBank records are vital for analysis and comparison. For 

instance, when mapping the global spread of each type of Dengue viruses across a time span of 

70 years, Messina et al. extracted the type and geographical coordinates of 1,070 GenBank records 

pertaining to Dengue viruses from their respective metadata fields [6].  Similarly, Scotch et al. also 

utilized the geospatial metadata available for GenBank records when conducting a 

phylogeographic analysis of Influenza A H5N1 viruses isolated from Egypt [7]. 

One significant challenge faced by researchers in their efforts to incorporate GenBank 

metadata within their study, is the task of appropriately normalizing the data so that it is usable. 

Although GenBank contains distinct fields for storing sequence-related metadata, it does not place 

strict constraints on values that an author may enter for each field. As a result, many of the metadata 
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fields in GenBank are semi-structured in nature and must be processed before being utilized by a 

researcher. For instance, the host field of GenBank records with accession numbers AB618040 [8], 

AB618529 [9] and AJ312308 [10] contains the values “Homo sapiens”, “Homo sapiens 54 years 

old female” and “Man”, respectively, to denote the same species. Therefore, if a researcher intends 

to focus on virus sequences infecting, for example, humans and chimpanzees, they would first have 

to guess the different possible ways of denoting human and chimpanzee hosts, then query the 

GenBank website for each such possibility, and finally normalize each host field manually to allow 

grouping based on its value.  

When extracting geographic metadata denoting the location of the infected host (LOIH) of a 

virus sequence, researchers may frequently have to perform an additional step of integrating 

geographic information from different fields in the GenBank record, prior to normalization. The 

designated field for storing the LOIH of sequences in GenBank is called the country field. Despite 

its name, the country field may contain geographic metadata of varying degrees of specificity, rather 

than only country-level information. For instance, the annotated data in the country field of the 

GenBank record with accession number CY045959 is "Canada: Ontario" [11]. Due to the specific 

nature of virus nomenclature, additional geographic information may often be found in the strain 

field and isolate field of GenBank records. For instance, the annotated data in the strain field of this 

record is "A/Toronto/T5294/2009(H1N1)" [11]. Combined with the information in the country field, it 

can be inferred that the LOIH of the virus is "Toronto, Ontario, Canada". This process of extracting, 

integrating and normalizing the LOIH of sequences from GenBank record metadata can be highly 

challenging, especially when a researcher is not very familiar with the geographic region in which 

the study is being conducted. The ambiguous nature of many locations can make this process even 

more difficult. For instance, the location “Malang, Indonesia” may be mapped to 20 distinct geo-

coordinates based on GeoNames [12], a comprehensive database of geographic locations across 

the world. In 2005, GenBank introduced the lat_lon field [13] which, in the case of viruses, may be 

used to store the specific latitude and longitude coordinates of their LOIH. However, in our review, 

we found that this field is missing in over 99% of all GenBank records pertaining to viruses. 
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Therefore, for the large majority of GenBank records, the task of geocoding is left to each individual 

researcher. 

In this study, we describe the design and development of an integrated framework for 

normalizing host and location metadata in GenBank records pertaining to viruses. We applied a 

rule-based framework to map the name and location of the infected hosts of viruses to their 

corresponding NCBI taxonomy IDs [14] and GeoNames IDs [12] respectively. Our algorithm 

successfully linked 1,971,328 GenBank records to the GeoNames database, and 1,592,541 

GenBank records to the Taxonomy database based on their host names. Prior to normalizing the 

LOIH of virus sequences in GenBank, we first used an automated approach to integrate data from 

different fields in the record which may contain geographic metadata. Therefore, our database 

includes the most comprehensive geographic metadata denoting the LOIH of each virus sequence 

in GenBank, which our algorithm is capable of extracting. To the best of our knowledge, this is the 

first framework that normalizes these two types of GenBank metadata for all virus-related GenBank 

records.  

Given the significance of normalized GenBank metadata in a wide range of virus-related 

studies, our framework would help support a variety of different approaches used for understanding 

and/or analyzing virus epidemiology, migration patterns, and evolutionary dynamics. This, in turn, 

may lead to major advances in infectious disease surveillance, and vaccine design and distribution, 

thereby enhancing our ability to control and contain disease outbreaks. In addition, our 

normalization algorithms linked each GenBank metadata to widely used and well-managed 

databases. This would facilitate cross-database queries, allowing the conduction of many new 

analytical studies. Moreover, the methods of normalization described here may also be easily 

applied to create similar databases for organisms such as bacteria or eukaryotes. Therefore, the 

work presented in this paper has the potential to considerably accelerate research in diverse 

biomedical fields.  

3.3 Related Work 

Over the past few years, NCBI has undertaken several large-scale efforts to add more structure 

to its data, resulting in the development of valuable resources such as BioSample [15], [16], Refseq 
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[17], [18], NCBI Virus Variation [19], [20] and NCBI Viral Genomes [21], [22]. These resources 

facilitate curation of GenBank metadata and are crucial for advancing biomedical research. 

However, we believe that our framework is distinctly different from each of them and serve a 

purpose not yet satisfied by any existing resource that we are aware of. The BioSample project 

represents a significant attempt by NCBI to integrate data across different resources, and provides 

an intuitive interface to facilitate submission of rich and consistent metadata. However, it relies on 

manual submission of metadata and is not linked to a large section of virus GenBank records. The 

Refseq database is a widely used resource within the research community which includes non-

redundant, well-annotated genetic sequences but it requires manual curation of data, and, once 

again, a large portion of virus GenBank records do not have Refseq links. The NCBI Virus Variation 

project, which is part of the NCBI Viral Genomes project, utilizes a semi-automated pipeline for 

mapping GenBank metadata, including host and geographic metadata, to a controlled vocabulary. 

However, the pipeline is currently applied to newly-released GenBank records pertaining to seven 

viruses only. In contrast, we have successfully applied our automated system to over two million 

GenBank records pertaining to viruses. Moreover, the pipeline used by the NCBI Virus Variation 

project appears to map the geographic metadata of virus records to their corresponding 

countries/continents/regions only to allow recognition of up-to country-level hierarchy, while our 

framework normalizes the metadata to specific GeoNames entries (which includes their geographic 

coordinates) and is capable of recognizing up-to state/province-level hierarchy. Also, unlike our 

system, the NCBI Virus Variation pipeline appears to map host names to a controlled vocabulary 

of taxonomic host groups rather than specific taxonomy ids.  

Although this work represents the first effort to create a comprehensive database including the 

normalized forms of the infected host and LOIH of all virus sequences in GenBank, several attempts 

have been previously made to normalize different GenBank metadata fields for different organisms. 

In our prior work [23], we used a rule-based approach similar to the one described here to extract, 

integrate, and normalize the LOIH of virus sequences in GenBank. However, instead of applying 

our approach to develop a database of virus-related GenBank records with normalized LOIH, we 

used it to develop a system for enhancing existing geographic metadata in “insufficient” virus-
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related GenBank records by extracting additional information from linked full-text publications. We 

defined “Insufficiency” as geographic metadata which was not more specific than Administrative 

Division 1 (ADM1) level i.e. state or province level. For instance, “Arizona, USA” would be 

categorized "insufficient" while “Maricopa County, Arizona, USA” would be categorized "sufficient". 

Therefore, once our system found “sufficient” geographic metadata in a GenBank record, it would 

stop searching. For instance, if the geographic metadata in a record was “Tempe, Maricopa County, 

Arizona, USA”, our system would stop searching once it found “Maricopa County”, thereby missing 

the more specific location “Tempe”. Here, we updated our algorithm so that it finds the most specific 

geographic location, along with its parent ADM1 and country-level location, if present, for semantic 

context. Therefore, in the previous example, our current system would extract, and subsequently 

normalize, “Tempe, Arizona, USA”.  Moreover, the rules for LOIH extraction in the system 

developed through our prior work were primarily designed for GenBank records pertaining to only 

the influenza virus. For this study, we added rules to optimize geographic metadata extraction for 

non-influenza viruses as well, and introduced additional features, such as a simple Lucene-based 

spell corrector, to minimize errors for all organisms. Furthermore, in our prior work, we used an 

SQL database for storing and querying the GeoNames knowledge base. Here, we migrated to a 

Lucene index representation of the knowledge base to enable faster queries.  

In another recent work, Gratton et al. [13] utilized an automated approach for geocoding all 

previously un-geocoded GenBank records associated with tetrapods. However, they did not extend 

their study to include viruses, and limited the extraction of geographic metadata from the country 

field only, while we integrated geographic metadata from different fields in virus-related GenBank 

records for this study. Furthermore, they mapped the extracted geographic metadata to their 

respective latitude and longitude coordinates, while we mapped sequences to their corresponding 

GeoNames IDs, whenever possible, in addition to their geo-coordinates. This would enable cross-

database studies involving the GeoNames database and the GenBank database, and provide a 

unique, normalized string representation of each LOIH to facilitate studies such as discrete 

phylogeography, where each LOIH is represented as a discrete character state [24].  
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Recent efforts have also been made to extract and normalize non-geographic metadata in 

GenBank. For instance, Sarkar [25] extracted the anatomical source of microbiome bacteria in ten 

mammalian hosts from the isolation_source and note fields in GenBank records, and normalized 

them using existing ontologies and annotation services available through the National Center for 

Biomedical Ontologies (NCBO) [26]. In a separate work, Chen and Sarkar [27] conducted a 

feasibility study for normalizing the host and isolation_source fields in GenBank. They applied an 

automated approach to normalize host fields to their corresponding Taxonomy IDs, and used the 

NCBO web service annotator for normalizing the isolation_source field based on different 

ontologies. However, their work only involved an exploratory analysis of GenBank records, and no 

datasets including the normalized fields was made publicly available. Another related work by 

Sinclair et al. [28] introduced Seqenv, a software for linking genetic sequences to the Environmental 

Ontology [29]. However, Seqenv takes genetic sequences as input instead of GenBank records, 

and the linking is performed based on the isolation_source field in GenBank. Therefore, it is 

specifically geared towards assisting researchers specializing in environmental genomics while our 

framework serves as a general framework for normalizing GenBank metadata, which may address 

the needs of diverse research areas.    

Research in the emerging domain of viroinformatics has also lead to the development of many 

computational tools and databases to support the work of virologists. Sharma et al. [30] provided 

an exhaustive list of such resources, and included key features and functions of each resource. 

However, none of the listed resources were reported to have used computational methods for 

normalizing the host and geospatial metadata of all virus sequences in GenBank. 

Outside of GenBank and viral genomics, different normalization methods have been utilized in 

a wide range of studies to normalize mentions found in free-text articles [31]–[35], tables and lists 

in web documents [36], [37], social media [38] and other databases/knowledgebases [39]. Although 

we exploited the basic principles involved in some of these normalization techniques, which are 

commonly used by researchers, the exact heuristics applied here remain unique to our study.   
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3.4 Methods 

Our study can be divided into three distinct stages: 1) Database Design and Development 2) 

Entity Normalization 3) Evaluation. Below, we describe each stage in detail. 

Database Design and Development 

3.4.1.1 Database Design 

For this study, we designed an efficient and flexible database schema. In Figure 1 we illustrate 

the portion of the schema relevant to the task of entity linking. Within our database, the GenBank 

accession number is the main identifier used to connect all related metadata for each virus 

sequence. We organized the database around the “Sequence_details” table which includes 

sequence metadata extracted from important fields in GenBank records such as the organism field, 

isolate field, strain field, collection_date field, etc. We stored the data extracted from the host field, 

along with their normalized forms, in the “Host” table. We stored the data from the country field, 

Figure 1: Database Schema 
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along with the latitude and longitude coordinates (which we derived from the lat_lon field), in the 

“Location_GenBank” table. In the table “Location_Geoname”, we saved the integrated LOIH which 

we extracted from the relevant fields in each GenBank record. In this table, we also stored its 

corresponding GeoNames ID and latitude and longitude coordinates. We chose to use separate 

tables for storing the normalized host name and LOIH of each virus sequence to facilitate updating 

and/or analyzing the novel pieces of information derived through this study. We stored additional 

metadata from the “Features” section of each GenBank record in the “Features” table. Here, we 

utilized a flexible structure by using “Key” and “Value” columns to store each feature. Finally, we 

stored the entire nucleotide sequence included in each GenBank record in the “Sequence” table.  

3.4.1.2 GenBank Data Download 

NCBI offers several web-based services to access or download the entire GenBank database. 

Here, we used the anonymous ftp server located at https://www.ncbi.nlm.nih.gov/genbank/ftp/ to 

acquire all GenBank records pertaining to viruses listed in the gbvrl files (excluding laboratory 

strains). Using a parser written in Java, we sequentially downloaded all GenBank flat files 

corresponding to virus nucleotide sequences from the anonymous ftp server. After downloading 

each file, we ran our parser to automatically extract relevant data for each sequence contained in 

the file and stored them in our SQL database. 

3.4.2 Entity Normalization 

The task of normalization aims to map the mention of a concept to its corresponding ID in a 

predefined knowledge base (KB) [40]. For example, in the sentence "one SOR strain that was also 

isolated from a human in Germany" [41], p. 2052, the mention "human" can be linked to the concept 

Homo sapiens (ID:9606) in the NCBI Taxonomy [42] and the mention "Germany" to the concept of 

Federal Republic of Germany (ID:2921044) in the GeoNames database [43]. The normalization 

task is also known as "concept mapping", "concept grounding" or, as in our study, "entity linking" 

when the concepts are only limited to entities. In entity linking, the mention of concepts, such as 

quality, process, or events, are excluded from normalization.  
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Normalizing concepts in documents is made difficult due to the presence of various linguistic 

phenomenon. An intuitive approach to normalize the mention of a concept appearing in a document 

is to compare the mention with each entry in the chosen KB. If an entry matches exactly with the 

mention, the ID of the entry is linked to the mention. However, synonyms, polysemy, acronyms, and 

spelling variations render a search by exact match ineffective [40].  

When exploring the feasibility of normalizing concepts in the semi-structured host and 

isolation_source fields of the GenBank database, Chen et al. [27] noted that the host field often 

included the common names of the host, rather than their scientific names, in a wide range of 

different formats, along with additional information about the host, such as its age and gender (e.g. 

for accession CY138679 [44], the field host is "American black duck; gender M; age L - Local").  

The isolation_source field presented an even richer syntactic and semantic diversity since its values 

varied based on the anatomy of the hosts. Therefore, in both cases, complex methods are required 

to successfully normalize the fields, and a simple search by exact match would likely be ineffective. 

Complex approaches of entity normalization rely on the exploitation of the properties of mentions 

and concepts, along with the contexts in which they appear [45]. Below, we list some of the common 

features used in such complex approaches for entity normalization: 

• Names similarities: The most intuitive and commonly used property to link a concept 

to a mention is the similarity between their names. When a strict string matching is not 

directly applicable, a distance of some sort may be computed between the string of the 

mention and the names of different concepts in the KB, to search for the closest 

concept.  

• Concept popularities: Some concepts are more frequently used than others. For 

example, if the name “Marie Currie” is mentioned in a document, it is more likely to 

refer to the famous Polish physicist than the less famous American rock singer, “Marie 

Michelle Currie”. A simple metric to confirm this claim may be derived by comparing 

the number of Wikipedia articles referring to the physicist with the number of articles 

referring to the rock singer. An a-priori probability can model this likelihood and be used 

to bias the default choice of a concept for a given mention.  
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• Lexical Context: When normalizing the mentions in a document, it may often be 

possible to exploit the lexical context around each mention (e.g. the words in the 

paragraph containing the mention) by comparing it with the lexical context of all 

possible concepts in the KB (e.g. the words describing the concept in the KB). The 

lexical context of the concept which corresponds to the mention is expected to be more 

similar to that of the mention in the document. However, when normalizing concepts in 

the fields of a database, such context may not always exist or be very informative. For 

instance, the host name entered in the GenBank record with accession KR349276 [46] 

is "mouse". This mention is ambiguous with the taxonomy concepts Shrew mouse (ID: 

10093) [47], House mouse (ID:10090) [48], and Western Wild Mouse (ID:10096) [49]. 

However, it is not possible to exploit lexical context to disambiguate this mention since 

it is not surrounded by any other word in this field.  

• Semantic Context: The concepts discovered in a document are rarely independent of 

each other, and the chosen concept for a mention should be coherent with the concepts 

chosen for other mentions in the document. In our previous example, if the name “Marie 

Currie” is found in a document mentioning the names “Cherie Currie” and “Steve 

Lukather”, which match the names of the American rock singer Marie Michelle Currie's 

sister and husband respectively, it is more likely to refer to the American rock singer 

rather than the more famous Polish physicist. Therefore, the semantic context of a 

mention may often be used to successfully disambiguate the entities in a document.  

In this study, we used several of the entity linking strategies listed above for normalizing 

GenBank metadata, in addition to using search by exact match. When normalizing the host field, 

we exploited the name similarities between mentions and concepts, as well as the popularity of the 

concepts. In case of geospatial metadata normalization, we exploited the semantic context of the 

mentions along with the name similarity and concept popularity features. Geographic locations are 

hierarchical in nature and GenBank metadata often includes hierarchical information for the location 

of infected host of a virus, which we refer to here as semantic context. For instance, if the “country” 

field of a GenBank record contains “Paris, Texas, USA”, our algorithm would use “Texas” and “USA” 
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as semantic context when disambiguating “Paris”. As a result, “Paris”, in this specific case, would 

be mapped to the GeoNames ID of 4717560 [50], representing the city of Paris in Texas, USA, 

rather than the GeoNames ID of 2988507 [51] representing the capital city of France, which is the 

more widely known of the two locations. Without taking the semantic context of “Texas,USA” into 

consideration, our algorithm would have mapped Paris to the capital city of France. We did not 

utilize lexical context in either of the two normalization algorithms presented here since the 

description included in GenBank for each metadata is too short to benefit from this normalization 

strategy. Further details about each normalization method are described below.  

3.4.2.1 Host Normalization 

 

Figure 2: Host metadata extraction and normalization algorithm 
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We normalized the host field in GenBank records by applying a set of matching rules in 

sequence (see Figure 2). First, we isolated the name of the host from any additional information the 

field may contain using a series of handwritten regular expressions. The regular expressions we 

applied were designed to recognize several formats followed by authors when entering this field 

during the sequence submission process. For example, based on one of our rules, we discarded 

any text in the field which followed the occurrence of the first punctuation mark, if the punctuation 

was not a period, and kept only the remaining phrase. For example, in GenBank record KT390491: 

"Abelmoschus angulosus; IC-140156" [52], we only kept Abelmoschus angulosus.  

Once we isolated the names of the hosts, we applied a set of rules to map the mention of 

common host names, such as mouse and human, to their corresponding IDs in the Taxonomy 

database. If none of these rules matched, then we implemented a second set of rules to search for 

regular patterns against the entire taxonomy tree, instead of a small set of common hosts. If no 

matching host name was found, we tokenized the name and checked if the head token matched 

any of the rules included in the second set. If a match was still not found, then we assigned the host 

field a Taxonomy ID of 0, to indicate that the host name of the record was unknown.  

Although several NLP tools currently exist for the generic task of species normalization [34], 

[53], we opted to develop our own algorithm for this domain instead of adopting one of the existing 

tools. Most GenBank records pertaining to viruses contain very short descriptions of the infected 

host within the host field. In many cases the included host name is a scientific name which can be 

directly mapped to an NCBI Taxonomy entry. Non-scientific host names used typically fall within a 

limited set of common host names. Therefore, we attempted to use a simple rule-based approach 

for normalizing the host names in GenBank records rather than applying more complex NLP tools.  

This allowed us to keep our methods as simple and efficient as possible while still having complete 

flexibility to make any changes needed to enhance performance specifically for this domain.  

3.4.2.2 Geospatial Metadata Normalization 

To extract and normalize the geospatial metadata of virus sequences in GenBank, we 

constructed a Lucene index of geographic locations, based on the GeoNames database, to serve 

as our knowledge base of location names. The GeoNames database, which encodes the properties 
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and hierarchical structure of over 10 million geographic locations, is a widely-used resource for 

geographic information extraction. However, it contains many entries such as “rat” and “fox” which 

may generate many false positives. Therefore, we collected different lists of commonly used words 

from different sources to filter them out. This includes a list of the names of common virus hosts 

and a list of English stop words [23]. GeoNames also includes the alternate names of each location 

in different languages. We included these alternate names in our knowledge base for all ADM1-

level locations to maintain a high recall. For country-level locations we manually added commonly 

used country names and considered the Socrata dataset [54], which includes geospatial data for 

243 countries, when adding these alternate names [23]. For all other locations, we did not include 

any alternate name to minimize false positives. The choice of whether to add the alternate names 

in each case was based on a preliminary analysis we performed on a small set of records to 

determine the ideal configuration for minimizing false positives and false negatives.     

We used the developed knowledge base, along with a set of rule-based heuristics, to 

automatically extract, integrate, and normalize geospatial metadata from multiple fields in virus-

related GenBank records (see Figure 3). We analyzed the following GenBank metadata fields of all 

virus sequences: country, strain and isolate. As mentioned earlier, the country field is the 

designated field in GenBank for storing information about the LOIH of virus sequences but 

additional geographic information may often be found in the strain field or the isolate field of 

GenBank records. In case of GenBank records pertaining to influenza viruses, the strain name of 

the virus sequence may also be recorded in the organism field of the record, which, therefore, 

presents another potential source of information for the LOIH of the virus, especially when the strain 

field is empty. However, many species of viruses, such as the Puumala virus, contain location 

mentions (in this case Puumala) within their species name which do not refer to the LOIH of the 

specific virus sequence. Therefore, to avoid the possibility of including erroneous locations, and for 

simplicity, our system only analyzed the organism field for influenza viruses.  

For each GenBank record included in our database, our system first segmented the string in 

each pertinent field of the record based on simple delimiters, and considered each segment to be 

a possible candidate location. It then searched our developed knowledge base to find possible 
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matches for each candidate location. In case of overlapping locations, it chose the location with the 

greater number of tokens. For instance, if the content of the country field in a GenBank record is 

“Sierra Leone”, our system would extract “Sierra Leone” [55] as a single location although 

GeoNames includes separate locations named “Sierra” [56] and “Leone” [44] respectively. To avoid 

false positives, our system discarded any candidate location which consisted of only three letters, 

unless it corresponded to a US state postal code (e.g. NY for New York). If no match was found, 

our system removed words such as “state”, “county”, “region”, “east”, “west” from the candidate 

location name and re-initiated the search. If still no match was found, our system applied a simple 

Lucene-based spell corrector to check for misspellings. The spell corrector first checked if a match 

could be found by inserting a space after each character in the query string to handle cases like 

“NewYork”. If no match was found, it retrieved the top ten Lucene matches within two edit distance 

of the string if its length was greater than seven characters, and within one edit distance of the string 

if its length was greater than five characters but less than seven characters. Our system prioritized 

matches with the same phonetic representation as that of the query string (via the phonetic 

algorithm in Double Metaphone [57]) over those that did not have the same representation, and 

selected the top ranked match as the corrected spelling. It then integrated extracted location 

mentions to produce a coherent set of locations.  

Our location integration algorithm functioned under the assumption that country-level locations 

are more likely to have been extracted correctly by our system than ADM1-level locations, which in 

turn are more likely to have been extracted correctly than locations less specific than ADM1. For 

instance, if our system extracted the locations “Grebe” and “Russia”, it would disregard “Grebe” 

since, according to the GeoNames KB, there is no location called “Grebe” in Russia, and so it would 

assume that “Grebe” was extracted incorrectly. Similarly, if it extracted the locations “Grebe”, 

“California’ and “USA”, it would once again disregard the location “Grebe”, even though one exists 

in the state of Oregon in USA, since none can be found in California, USA. Before integrating any 

location more specific than ADM1-level, we ensured that it was contained within any ADM1-level 

or country-level location extracted from GenBank. We did not control the coherence between 

locations beyond the ADM1-level since we considered hierarchical data in GeoNames to be 
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adequately complete up to ADM1 level. For instance, we are confident that the GeoNames KB 

would include the parent country name and ADM1-level location name for all locations named 

“Grebe”. Therefore, our coherence checking process is more likely to lower false positives, than 

introduce false negatives. However, we are not as confident that GeoNames would correctly include 

the parent ADM2-level location and beyond for all locations, and so we chose not to check 

coherence beyond ADM1-level, to minimize the risk of missing valid locations. If multiple sets of 

coherent locations were found, our algorithm chose the set that provided more information. For 

instance, if our system extracted “Connecticut, USA”, and “Summit, New Jersey, USA”, it would 

choose the latter since that includes a larger set of coherent locations. After selecting a coherent 

set of locations, our algorithm outputted the most specific location in the set, along with its parent 

country and ADM1-level location, if available. For instance, if the selected set included “Chicago”, 

“Illinois”, and “USA”, our system would produce the integrated metadata “Chicago, Illinois, USA”. 

We included the parent country and ADM1-level locations to provide semantic context for our 

normalization algorithm, as we detail next. 

When performing normalization, our system first searched our knowledge base of geographic 

locations to retrieve all possible GeoNames entries for the location, using the most comprehensive 

information available. For instance, if the integrated geographic metadata was "Chicago, Illinois, 

USA", a search was performed to retrieve all matches for "Chicago" in the state of Illinois in the 

country of USA and, thus, the locations “Illinois” and “USA” were used as semantic context by the 

normalization algorithm. Next, it narrowed the search results to the group of entries which 

possessed the least specific feature code (code in GeoNames denoting the type of the location, 

e.g., country, state, city, etc.). For instance, in GeoNames, “Arizona” can be both a state in United 

States (with a feature code of ADM1) and a populated place in the state of Texas, United States 

(with a feature code of PPL) but our system would only select the former entry since it has a less 

specific feature code. This heuristic is based on the assumption that the less specific a location is, 

the more widely known it tends to be, and authors typically tend to refer to more widely known 

locations [23]. Our system then further narrowed down the search to the set of entries with the 

highest population. This heuristic is based on the assumption that geographic locations that have 
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higher populations tend to be referenced more often by authors [23], [32]. If the system still failed 

to uniquely identify the location, it randomly selected one of the possible entries. In case of records 

for which our system was unable to extract any location from any of the fields analyzed, the LOIH 

was listed as “Unknown” with a GeoNames ID of “-1”, and the latitude and longitude fields were 

populated with “0”. 

 

As we outline in Related Work, our geospatial metadata extraction and normalization algorithm 

expands upon our prior work [23] in this area. However, we made a significant number of changes 

Figure 3. Geospatial metadata extraction and normalization. 
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to the pipeline to enhance its efficiency and accuracy, so that it may be more easily applied for the 

large-scale project undertaken here. Important updates include the following: 1) migration from 

MySQL database to Lucene index for storing the knowledge base of geographic locations in order 

to enable faster queries, 2) addition of rules to parse strain and isolate fields of non-influenza 

viruses, which tend to be less structured than those of influenza viruses, 3) addition of a simple 

spell-corrector to account for spelling errors in GenBank 4) addition of rules to allow the system to 

extract the most specific LOIH of the virus, instead of simply extracting any location more specific 

than ADM1-level (e.g. if the complete geospatial metadata was “Chicago, Cook County, Illinois, 

USA”, our prior algorithm may not extract “Chicago” since it would stop searching once it found 

“Cook County”), and 5) normalization to GeoNames IDs rather than latitude and longitude 

coordinates (this was a not a significant change with respect to implementation, but has important 

implications in supporting GenBank-related research by enabling cross-database queries).  

3.4.3 Evaluation 

To evaluate the accuracy of our normalization algorithms, we randomly selected 100 GenBank 

accession numbers among those included within our database, for manual annotation. Two 

annotators, whose biomedical specialties required them to work extensively with GenBank records 

pertaining to viruses, annotated and normalized the LOIH and infected host of each selected 

GenBank record. In both cases, the annotators used the GenBank website to acquire pertinent 

GenBank metadata for completing their annotation tasks. For each virus sequence, they tried to 

find the most comprehensive information available in GenBank concerning its LOIH and host name, 

using all fields present in GenBank, regardless of if our program used the field. In addition, in case 

of host metadata, our annotators also used domain knowledge to annotate host names even when 

they were not included in GenBank. For instance, they automatically assigned "host=human" to any 

HIV record. Also, the strain name of the influenza virus typically includes the name of its infected 

host, unless the host is human. Therefore, with the absence of any host metadata included in the 

strain field, it is reasonable to infer that the host was human for any non-laboratory strains.  

After retrieving each relevant GenBank metadata, our annotators normalized it based on the 

selected knowledge base. For normalizing geospatial metadata, they searched each location in the 
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GeoNames website [12] to retrieve their corresponding GeoNames ID. Like our program, when 

multiple GenBank entries were available for a given location, they selected the one with the least 

specific feature code. For normalizing host names, our annotators used the NCBI Taxonomy 

website [58] to determine the Taxonomy ID of the host. In cases where they were unable to link a 

GenBank metadata to the selected knowledge base, they inserted ‘0’ in the ID field.  

Once the annotations were complete, we computed percentage agreement between our 

annotators for each annotation type to serve as a measure of inter-rater reliability. We chose to use 

percentage agreement, rather than Kappa statistic, because the number of possible categories in 

each annotation is over a million. The Kappa statistic is used to take into account agreement by 

chance [59]. However, given the number of possible categories in each annotation, the possibility 

of agreement by chance is negligible. Other studies in information retrieval have used f-score as a 

measure of agreement [23], [60]. However, in this study, each annotation simply involves entering 

a single value; therefore, the calculation of f-score would be redundant and a simple percentage 

agreement calculation is justified.  

Once we completed the calculation of percentage agreement between our two annotators, a 

third annotator went through each case where they differed and selected the correct annotation to 

create our gold standard dataset. If it was unclear which annotation should be chosen, all 

annotators discussed the reason for the difference in annotation and mutually decided on one. Once 

the gold standard was created, we compared the annotations in the gold standard with the 

corresponding content in our database for measuring accuracy. In addition, to obtain a baseline 

performance measure for the host normalization task, we also computed the accuracy of the 

MetaMap [53] tool for this task on our gold standard dataset. When running MetaMap, we restricted 

sources to the NCBI Taxonomy vocabulary and retrieved the UMLS concept id with the highest 

score in each case. We then used the UMLS MRCONSO.RRF file to map the concept ids to their 

corresponding NCBI Taxonomy IDs. We applied the bias-corrected and accelerated (BCa) 

bootstrap method [61] with 10,000 iterations using the ‘boot’ package [62] in R to calculate the 95% 

confidence intervals (CI) for each accuracy value. 
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3.5 Results and Discussion 

3.5.1 Database statistics  

We provide key statistics pertaining to our database, which currently contains 2,244,971 

GenBank records corresponding to 162,043 distinct virus organisms. We successfully mapped: 

• The LOIH of 2,014,269 (89.7%) records to their respective GeoNames IDs by our LOIH 

normalization algorithm. Only 18,525 (0.8%) of these records originally had values in their 

“lat_lon” field.  

• The infected hosts of 1,583,989 (70.6%) records to their respective NCBI Taxonomy ID by 

our host normalization algorithm. None of the GenBank records contained a formal link 

between the host field and an entry in the NCBI Taxonomy database. 

3.5.2 Host Normalization Analysis 

Rule-based methods are known to fail to capture the infinite variety of the human language, 

and consequently, our approach is expected to be imperfect. The host names of 29.4% of the 

GenBank records in our database were not normalized and were assigned the Taxonomy ID of 0. 

27.4% were not normalized simply because the value in the host field was left empty. However, for 

2.2%, 49,644 instances with instances repeated corresponding to 6803 unique instances, the host 

field contained a value but our rules failed to find the corresponding Taxonomy ID. We randomly 

selected 100 unique instances from this set and analyzed the reasons for the failure of the rules. 

For 41 instances, the presence of an abbreviation made the exact matching impossible, e.g. C. 

tantalus didn't match with Chlorocebus tantalus (ID: 60712) [63], and tantalus alone is not a concept 

in the taxonomy. For 35 instances, the host field contained the host name but also included 

additional information which was often not separated by delimiters from the host name, making the 

search difficult, e.g. marine Heterobranchia species where Heterobranchia is found in the taxonomy 

(ID: 216305) [64] but the presence of marine and species leads our algorithm to fail. The last 24 

instances were not found in the taxonomy due to misspellings like Lepus europeaus for Lepus 

europaeus (ID:9983) [65], and missing entries in the Taxonomy database for alternative names of 

species such as isard for Pyrenean chamois (ID: 72545) [66], or species such as Paradoxurus 



58 

 

musangus. These reasons can also be found together in the same name of host making its 

normalization even more difficult. Further research is needed to design dedicated strategies to 

discover the reasons for the failure of the rules and finalize the normalization. 

3.5.3 Geospatial Metadata Normalization Analysis 

In case of geospatial metadata normalization, our system analyzed data from multiple fields in 

each GenBank record, and when running the pipeline, we recorded the number of locations 

extracted from each field. We found that our system extracted a total of 2,968,570 locations from 

the GenBank record fields analyzed. This count simply represents all unique locations extracted by 

our system per record, and includes duplicate locations, in cases where they were extracted from 

different records. For instance, given a sample of two records, one having the location “Chicago” in 

the strain field and “USA” in the country field, and the other having the location “USA” in both the 

strain and country fields, the total number of extracted locations, counted through this method, 

would be three. The percentage of the 2,968,570 locations that were extracted from the country, 

strain, organism, and isolate fields was 87.3% (2,594,402 locations), 17.3% (514,282 locations), 

14.7% (434,931 locations), and 4.75% (141,064) respectively (the percentages do not add up to 

one since many of the locations were extracted from multiple fields e.g. if a location in a given record 

was collected from both the strain and country fields, it would be included in the count for both 

fields). Therefore, 12.7% of the locations were extracted from GenBank fields other than the country 

field. This indicates the importance of analyzing GenBank fields other than the country field for 

extracting geospatial metadata.  

A comparison of the percentage of GenBank records in our database having missing values in 

the country field, with the percentage our algorithm failed to normalize, also illustrates the 

significance of integrating geospatial metadata from multiple GenBank record fields rather than only 

the country field. In 12.4% (278,350 records) of all GenBank records in our database, we did not 

find any data in the country field. However, we were unable to normalize the geospatial metadata 

of only 10.3% of the GenBank records in our database. This means that for at least 2.1% of the 

GenBank records, we added additional information from GenBank record fields other than the 

country field.  
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To obtain an estimate of the frequency with which our algorithm failed to extract geospatial data 

from the country field, we counted the number of records our algorithm failed to normalize despite 

the presence of geographic information in the country field. For a total of 2,310 records (0.1% of all 

records), representing 13 unique LOIH and 14 unique locations, the country field contained 

geospatial metadata which our algorithm was unable to extract. Of the 14 locations missed, seven 

were missed because we did not include the alternate names of all locations from GeoNames. For 

instance, GeoNames lists “British Guiana” as an alternate name for the main entry “Guyana”, but 

since we are not analyzing alternate names, our system failed to extract it. For four of the missed 

locations (e.g. “Kpokhankro”), we did not find any match in the GeoNames website when we 

manually searched for them. Therefore, the locations are most likely missing in GeoNames. Two of 

the locations were missed due to the presence of the word “the” before the geographic location 

mention e.g. “The Netherlands”. Although, as described in Methods, we used a list of stopwords to 

remove every GeoNames entry from our database which was an exact match for one of the 

stopwords in our list (such as “but”), we did not remove stop words from within GeoNames entries 

which were composed of multiple words. For instance, we did not remove the string “but” from within 

the GeoNames entry called “Ban Nong Yai But” [67], which represents a city/town in Thailand. 

Similarly, we did not remove stop words from within strings extracted from GenBank metadata such 

as “The Netherlands”. In case of locations for which our algorithm failed to find a match in 

GeoNames, it removed words such as “state”, “county”, “south” etc. and attempted to find a match 

again. However, stopwords such as “the” were not included in this list since their presence may 

possibly provide valuable context (as in the case of “But” in ““Ban Nong Yai But”). Moreover, our 

spell correction algorithm only searched for matches within 1 or 2 edit distance of the candidate 

string, depending on the string length. Addition of “the” represents an insertion of 4 additional 

characters (including space) and, therefore, our spell correction algorithm failed to find a match as 

well. The remaining location was missed due to the failure our algorithm to correctly identify the 

abbreviation “USSR” standing for the former Union of Soviet Socialist Republic, now dissolved.  
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3.5.3.1 Annotation statistics 

Our gold standard annotation dataset includes 100 GenBank records with 64 distinct LOIH and 

20 distinct host names. The percent agreement between our annotators for host and LOIH 

normalization was 95 and 83 respectively (Table 1). Differences in host annotation resulted from 

either of the two annotators missing a host name present in GenBank, erroneously adding a host 

name not present, not selecting the most specific host name available (e.g. deer instead of roe 

deer) or not annotating the host name of a record with missing host metadata even when it could 

be inferred based on the virus organism. In case of geospatial metadata annotation, our annotators 

annotated the same location in seven of the 17 instances where their final ID annotation differed. 

However, they disambiguated the locations differently. The remaining differences arose from 

missed locations. 

Task 
  

Inter-rater Agreement (%) System Accuracy (%) 

Host metadata normalization 
  

95 70 

LOIH metadata normalization 
  

83 87 

 
Table 1: Inter-rater agreement and accuracy of normalization tasks based on manually 

created gold standard of 100 GenBank records 
 

3.5.4  Accuracy Statistics 

We found that the accuracy of our normalization algorithms for host and geospatial metadata 

to be 70% (95% CI [0.60-0.77]) and 87% (95% CI [0.78-0.92]) respectively when evaluated on the 

manually annotated gold standard (Table 1). The baseline performance for host normalization using 

MetaMap was found to be 63% (95% CI [0.52-0.71]). 

Of the 30 errors in host normalization, 28 were from lack of domain knowledge, 27 of which 

were specifically the result of the program not knowing that certain viruses affected only a single 

species of organism. One error resulted from the inability of the system to extract the host ‘bar-

headed goose’ and in case of the remaining error, the program correctly extracted the host name 

but incorrectly normalized it to the ID of its parent organism.  
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MetaMap’s accuracy was found to be 7% lower than that of our system. As expected, MetaMap 

missed all host names where domain knowledge was required. In addition, in many cases it mapped 

the entities to higher level concepts than what was annotated by our annotators. For instance, 

MetaMap normalized the host “duck” to the concept id corresponding to the genus “Anas”[68] while 

our annotators normalized it to the taxonomy id corresponding to the specific species “Anas 

platyrhynchos” [69]. 

Of the 13 errors in LOIH geospatial metadata normalization, eight were due to disambiguation 

errors (same string representation of locations but different GeoNames IDs), three were due to 

missed locations, and the remaining two were due to the detection of locations not annotated by 

our annotators. The disambiguation errors resulted from the inability of our algorithm to choose the 

correct location based on exact string match. For instance, based on our annotation guidelines, the 

annotators normalized the location “Ningbo, Zhejiang, China” to the GeoNames ID “1799395” [70]  

which corresponds to the second order administrative division (ADM2) named “Ningbo Shi” in 

GeoNames. Since “Ningbo Shi” is not an exact match for “Ningbo”, our program incorrectly 

normalized it to the GeoNames ID “1799397” [71] instead, which corresponds to the capital city of 

Ningbo Shi, and is named “Ningbo” in GeoNames. Among the missed location errors, one was a 

result of GeoNames including a different spell variant of the location, which our system was not 

able to recognize. The remaining locations were missed because they were annotated based on 

the title field in GenBank (a field containing the title of a publication linked to the record) but our 

program does not extract metadata from the title field. Both of the locations extracted by our 

program but not annotated in our gold standard were valid locations. We chose to not include one 

of them in our gold standard because it was too ambiguous and it was not possible to correctly 

normalize it based on available information. The other was most likely missed by both of our 

annotators. 

3.6 Conclusion 

In this study, we developed an automated framework for extracting and normalizing two 

different types of GenBank metadata which are widely used in different domains of biomedical 

research. We applied our framework to retrieve the host and geospatial metadata of over two million 



62 

 

GenBank records pertaining to viruses, and link them to the NCBI Taxonomy database and the 

GeoNames database respectively. We have made the database including the normalized metadata 

publicly available to allow researchers to easily integrate them within their works and help 

accelerate biomedical discovery. In addition, we also created a manually annotated gold standard 

dataset consisting of 100 randomly selected GenBank records for evaluating the normalization 

algorithms. The percent agreement between our annotators was over 80% for the annotation of the 

two GenBank metadata types, which is adequately high. It was higher (95%) for host annotation 

than for geospatial metadata annotation (83%), illustrating the latter to be the more challenging of 

the two tasks when performed manually.  

When evaluated on the gold standard set, our host and LOIH normalization algorithms achieved 

accuracies of 70% (95% CI [0.60-0.77]) and 87% (95% CI [0.78-0.92]) respectively. The majority of 

the errors in host normalization resulted from lack of domain knowledge, indicating the need to 

incorporate additional rules within our system to account for cases where a virus organism may 

only infect a single type of host organism. However, our current lack of such rules should not in any 

way reduce the applicability of our released dataset, since researchers are more likely to utilize it 

for GenBank records where the host name is not definitively known based on the nature of the virus 

organism. Our system correctly normalized the host name in all but two records, where specific 

domain knowledge was not required. In case of geospatial metadata normalization, the accuracy 

of our system was in fact higher than the inter-rater agreement calculated for its annotation. The 

systematic nature of our algorithm made it more suitable for this difficult task which requires 

extensive efforts when done manually.  

Our gold standard dataset is relatively small and, since it was randomly selected, it often 

included duplicates of the most common hosts or geographic locations included in GenBank, 

leading to an even lower number of distinct metadata annotations. This is especially true for host 

metadata annotation, since the infected host in most records included within our dataset was 

‘human’. Therefore, our measured performance may not be reflective of the average performance 

of the algorithms in other datasets.  
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In addition to evaluating our normalization algorithms on the gold standard dataset, we also 

performed supplementary analysis to investigate the completeness of the normalized host and 

geospatial metadata in our database. Our analysis showed that our normalization algorithms could 

normalize nearly all GenBank records for which the host and country fields were not empty. 

Although this does not necessarily mean that the extraction and normalization of metadata was 

performed correctly in each case, it nevertheless provides a simple measure of our system’s ability 

to extract metadata whenever available. In addition, our analysis also revealed the importance of 

including geospatial metadata from different GenBank record fields rather than only the country 

field. 

Although various large-scale efforts are currently being made by NCBI to facilitate curation of 

rich and consistent GenBank metadata, we believe that the framework and database presented in 

this manuscript would continue to remain highly useful to researchers, both in the present time and 

in the near future. Manual annotation of millions of GenBank records could take years and is an 

expensive process. In contrast, our normalization algorithms take only a few seconds to process 

each record and could help considerably accelerate this process. Moreover, it also provides a 

standardized method for disambiguating metadata and may even help correct some errors made 

by humans. We have already applied our framework to create a comprehensive database including 

the normalized host and geospatial metadata of over two million GenBank records, which is easily 

accessible online. Our database has the potential to support a wide range of large-scale analyses 

involving viruses and would greatly benefit researchers working with virus GenBank records. 

Furthermore, by providing a thorough description and analysis of the geospatial and species 

metadata normalization methods we developed through our project, we hope to assist researchers 

working with similar normalization problems in any field.  

We have made the source code for our framework available through github and it can be easily 

extended to other pathogens as well. The country and host field of all entries in GenBank are 

similarly formatted, regardless of which organism it pertains to. Therefore, it should be possible to 

use our framework, as it is, for extracting metadata from these fields for any pathogen. However, 

unlike viruses, most pathogens do not contain additional information pertaining to their location of 
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collection in the other GenBank record fields analyzed by our algorithm, such as the strain field and 

organism field. Therefore, the inclusion of such fields would be unnecessary for other pathogens. 

As future work, we plan to evaluate our existing algorithms on larger datasets, and work on 

improving their accuracy by including additional features such as a more sophisticated spell 

corrector. We also intend to use information extraction techniques to extract additional information 

about the locations of the infected host often mentioned in the unstructured texts of the notes and 

comments metadata fields. Our future work would also include exploring additional resources 

containing species information, such as Interagency Taxonomic Information System [72], 

Encyclopedia of Life [73], and Catalogue of Life [74], for host name normalization instead of relying 

solely on the NCBI Taxonomy database, which has missing entries for the alternative names of 

some organisms. In addition, we intend to modify our host normalization algorithm so that it is 

capable of recognizing varying degrees of taxonomy hierarchy, thereby allowing normalization to 

different levels of the taxonomy tree based on user needs. Addition of this feature would facilitate 

the normalization of host names which cannot be mapped to a single organism, since they could 

instead be mapped to higher nodes in the taxonomy tree, and would be highly useful in case of 

viruses which may live in different host organisms. Further important steps we plan to take through 

future work include developing normalization algorithms for other metadata in GenBank and 

extending our normalization algorithms to other non-virus organisms.   
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4 GEOBOOST: ACCELERATING RESEARCH INVOLVING THE GEOSPATIAL METADATA 

OF VIRUS GENBANK RECORDS 

Authors: Tasnia Tahsin, Davy Weissenbacher, Karen O’Connor, Arjun Magge, Matthew Scotch, 

and Graciela Gonzalez-Hernandez 

4.1 Abstract 

Summary: GeoBoost is a command-line software package developed to address sparse or 

incomplete metadata in GenBank sequence records that relate to the location of the infected host 

(LOIH) of viruses. Given a set of GenBank accession numbers corresponding to virus GenBank 

records, GeoBoost extracts, integrates and normalizes geographic information reflecting the LOIH 

of the viruses using integrated information from GenBank metadata and related full-text 

publications. In addition, to facilitate probabilistic geospatial modeling, GeoBoost assigns 

probability scores for each possible LOIH. 

Availability and implementation: Binaries and resources required for running GeoBoost are packed 

into a single zipped file and freely available for download at https://tinyurl.com/geoboost. A video 

tutorial is included to help users quickly and easily install and run the software. The software is 

implemented in Java 1.8 and supported on MS Windows and Linux platforms. 

4.2 Introduction  

Locations of infected hosts (LOIH) are critical pieces of metadata required for exploring the 

spread and evolutionary dynamics of pathogens such as viruses. This information is often retrieved 

from GenBank, a public database of nucleotide sequences which is maintained by the National 

Center of Biotechnology Information (NCBI) [1]. Researchers have used the geospatial metadata 

in virus GenBank records for a wide range of public health studies. For instance, the LOIH of viruses 

based on GenBank metadata have been used to map the global spread of viruses [2], investigate 

the environmental predictors of virus diffusion [3], and trace the origin of infectious disease 

outbreaks [4].  

Currently, the extraction of the LOIH of viruses is performed manually and requires a significant 

investment of time and effort. The designated field for storing the LOIH of viruses in GenBank 
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records is the country field, which despite its name, may contain geospatial metadata of varying 

degrees of specificity. For instance, the country field of the GenBank record with accession no. 

CY058987 (https://www.ncbi.nlm.nih.gov/nuccore/CY058987) contains the province-level 

metadata “China: Hubei”. Due to the nature of virus nomenclature, additional geospatial metadata 

may often be found in the strain and isolate fields of GenBank records. In the aforementioned 

GenBank record, the strain field contains the location “Wuhan” embedded in the strain name 

“A/Wuhan/390/2005”. Thus, researchers often need to manually integrate locations from different 

GenBank record fields to retrieve the most specific spatial resolution. Other times, the geospatial 

metadata available in GenBank is not sufficient for a given study [5]. For instance, a researcher 

modeling the spread of the rabies virus within an US state would likely need at least the county-

level LOIH of all virus samples, but GenBank may not contain such precise information. In such 

cases, researchers often search full-text publications linked to GenBank for more specific 

information. Moreover, depending on the type of study, they may also need to normalize each 

extracted LOIH to its latitude/longitude coordinates (e.g. for continuous phylogeography) or to a 

standardized string representation (e.g. for discrete phylogeography). The ambiguity of locations 

(e.g. Paris can be in France or Texas, USA) makes this task especially challenging.   

We present GeoBoost, a knowledge-driven framework for automatically extracting, integrating 

and normalizing the LOIH of viruses from GenBank records and related full-text articles. It builds 

upon our prior work in this area [6], including additional features to enhance its usability and 

performance. To the best of our knowledge, this is the only publicly accessible software available 

for this task. Related work has been performed to extract, and often normalize, different forms of 

GenBank metadata [7]–[10]. For instance, the Tempus et Locus (TeL) software was developed to 

extract GenBank sequences containing the date of collection and/or location of sampling of the 

sequence [10]. However, GeoBoost is the only software we know of which attempts to enhance 

existing geographic metadata in GenBank by extracting and integrating geographic information 

from related full-text publications.  

In addition to outputting the most specific and most probable LOIH of a virus, GeoBoost also 

assigns a probability score to each possible LOIH of the virus based on its specificity (e.g. Phoenix 
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is more specific than Arizona) and likelihood of being correct. Researchers can then use these 

scores for selection of geographic locations to build precise models of virus spread. Additionally, if 

no further location information can be found, it will also indicate this “failure”, saving researchers 

additional time in ruling out locations. GeoBoost is easy to install and run, and could accelerate 

bioinformatics research that incorporates the LOIH of viruses.  

4.3 Materials and Methods 

GeoBoost (see Figure 1) is a knowledge-driven framework and central to its function is a 

knowledge base (KB) of geographic locations. Our KB is primarily based on the GeoNames.org 

database, which contains geospatial data for over 10 million geographic locations. Given a list of 

GenBank accession numbers, GeoBoost uses the Entrez Programming Utilities [11] to download 

relevant metadata from the corresponding GenBank records. It also downloads all PubMed Central 

(PMC) Open Access articles linked to each record in both PDF and XML format, if available, and 

converts the PDF files to text files using the pdf-to-text software 

(http://www.foolabs.com/xpdf/home.html). It then uses knowledge-driven heuristics to extract and 

integrate geospatial metadata from relevant fields in each GenBank record, until a user-provided 

sufficiency criterion is satisfied. For instance, if the sufficiency criterion is “ADM1” (i.e. states or 

provinces of a country), GeoBoost will stop searching once it finds ADM1-level or more specific 

geographic information. If GeoBoost fails to find sufficient geospatial metadata for a record even 

after analyzing all relevant fields, it proceeds to search the free-text and tabular content of linked 

articles. If GeoBoost is not given a sufficiency criterion, it searches all available sources for the 

most specific LOIH. 

When searching the tabular content of an article associated with a GenBank record, GeoBoost 

uses simple rules to analyze the structure and content of each table and extract possible links 

between GenBank records and geographic locations. When searching the free-text content of a 

related article, GeoBoost applies a Named Entity Recognition system [12] for detecting geographic 

location mentions in text and uses rule-based heuristics to determine which of the extracted 

locations are more likely to be linked to the record.  
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Figure 1 GeoBoost System Architecture. Given a user-provided list of GenBank 
accession numbers corresponding to viruses, the Logic Layer uses the geographic 
knowledge provided by the Knowledge Layer, and the GenBank metadata and PMC 
OA articles downloaded by the Data Acquisition layer to output: 1) the most probable, 
integrated, normalized location of infected host (LOIH) of each virus (integrated and 
normalized output), and 2) the probability scores of each possible LOIH of each virus 
(confidence estimate output) 
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After extracting locations from all possible sources, GeoBoost integrates and normalizes them, 

and outputs the most probable and most specific LOIH of each virus (P location | GenBank record). 

For instance, if it extracted “USA” from the GenBank record, “Paris” from the free-text content of a 

related article, and “Texas” from the tabular content of a related article, it would output “Paris, 

Texas, USA”, given there is more evidence for the later than for “Paris, France”. GeoBoost 

normalizes each LOIH to its corresponding GeoNames ID and latitude/longitude coordinates based 

on rule-based heuristics. It also assigns probability scores to each possible LOIH of a virus using a 

complex set of heuristics that assigns higher scores to more accurate and more specific locations. 

The probability score assignment process is performed in two stages. In the first stage, GeoBoost 

assigns probability scores to every location extracted by the pipeline from either the GenBank 

record or linked article. In the next stage, it assigns probability scores to all possible 

latitude/longitude pairs associated with each candidate location in GeoNames. Probability scores 

assigned in both steps add up to 1.0.   

To estimate the performance of GeoBoost, we used two different manually annotated sets of 

GenBank records, created through our prior work [6]. The first set (Flu) included 5728 GenBank 

records corresponding to influenza viruses. We annotated the LOIH of the viruses in this set based 

on information in the GenBank records and 60 full-text PMC articles linked to these records. The 

second set (Non-Flu) included 100 GenBank records corresponding to six different non-influenza 

viruses. We annotated the LOIH of the viruses in this set based on information in the GenBank 

records and 10 full-text PMC articles linked to these records. For accuracy, we calculated the 

percentage of the records for which the top ranked latitude/longitude coordinates outputted by 

GeoBoost was within 50 miles of the manually annotated latitude/longitude coordinates. We also 

calculated the time taken by GeoBoost to process each record using a JVM heap size of 1GB, a 

download speed of ~100 Mbps, and the Windows 10 Operating System. We measured the accuracy 

and time taken by GeoBoost for each dataset under two different settings: 1) when configured to 

download and extract information from related PMC OA articles along with GenBank metadata 

(default configuration), 2) when configured to use GenBank metadata only. This allowed us to 
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assess the added benefit of extracting and integrating information from related articles, in addition 

to using GenBank metadata 

4.4 Results 

In Table 1 we show the results of our evaluation. Under default configuration, GeoBoost had a 

high level of accuracy for both test sets (81% for Flu and 80% for Non-Flu), and took less than 5 

seconds to process each record (1.59s for Flu and 4.65s for Non-Flu). When configured to exclude 

information from related PMC OA articles, GeoBoost’s accuracy fell by 11% for the Flu set and 25% 

for the Non-Flu set, demonstrating the value of extracting and integrating additional information 

from related articles.  

 
Table 1. Performance evaluation of GeoBoost relative to manually annotated gold standard 
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Test Set Accuracy (%) Time per record (s) 

Including PMC 
OA 
 

Excluding PMC 
OA 

Including PMC 
OA 

Excluding PMC 
OA 

Flu_Set 81 70 1.59 1.01 
 

Non-Flu_Set 80 55 4.65 1.40 
 

  Average 80.5 62.5 3.12 1.21 
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4.8 Appendix A. GeoBoost Architecture Description 

The GeoBoost system architecture may be broadly divided into three layers: Knowledge Layer, 

Data Acquisition Layer and Logic Layer. Below, we provide detailed descriptions of each of these 

layers.  

4.8.1 Knowledge Layer 

The knowledge layer is primarily based on the GeoNames database downloaded from 

http://download.geonames.org/export/dump/ on June 13, 2017. GeoNames contains over 10 

million place names in the world. In addition, each entry in GeoNames also includes features such 

as the population, latitude/longitude and type (e.g. state, country, city etc.) of the location. The type 

of the location is represented using a field called feature code. GeoNames has over 645 feature 

codes to indicate the type of a location. Moreover, GeoNames also contains information about the 

hierarchical structure of locations by including the parent country and administrative division of 

every entry. 

Two major challenges associated with using GeoNames for detecting place names in text are: 

1) it contains many place names (such as But, David etc.) which are used to denote English stop 

words or other named entities, such as names of people, more frequently than names of places, 

and 2) it is a very large database and traditional methods for representing dictionaries in Named 

Entity Recognition (NER) systems require too much memory. For instance, the use of Patricia trees 

for representing GeoNames required over 9 GB of memory.  

To address the first challenge, we filtered out place names in GeoNames based on manually 

created lists of English stop words such as “but”, frequently used words in the biomedical domain 

such as “gene”, frequently used names of people etc. To address the second challenge, we stored 

the GeoNames database as a Lucene Index which enabled very fast queries. 

In addition to the Lucene index of geographic locations, the Knowledge Layer also includes a 

Reasoning Engine for enabling spatial reasoning such as checking whether two place names are 

coherent or not. Coherency between place names is checked by exploiting information about the 

hierarchical structure of locations in GeoNames. For instance, the place names “Grebe” and 
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“China” would be considered incoherent since there is no location called Grebe in the country China 

while the place names “Guangdong” and “China” would be considered coherent since Guangdong 

is a province in China. The Reasoning Engine also enables coherence checking between a place 

name and a set of coherent place names. For instance, “Texas, USA” and “Paris” would be 

considered coherent since Texas, USA has a city called Paris. However, “Texas, USA” and 

“Seattle” would be considered incoherent since there is no location called “Seattle” in Texas, USA. 

4.8.2 Data Acquisition Layer 

Given a list of accession numbers, the Data Acquisition Layer downloads the following 

GenBank record fields using the Entrez Programming Utilities (E-Utilities): definition, strain, isolate, 

organism, country, date of collection, host and gene. The downloaded metadata is stored as a tab-

separated text file. In addition, the Data Acquisition Layer also uses the E-Utilities to retrieve 

PMCIDs for all PMC articles linked to each GenBank accession. It then uses the PMC FTP Service 

to download the subset of the linked PMC articles which are available through PMC Open Access 

(OA). PMC OA articles are available in XML and PDF format. The pdf-to-text software from XPDF 

(https://www.xpdfreader.com/download.html) is used to convert the PDF files to raw text files.   

4.8.2.1 Logic Layer  

The Logic Layer uses the geographic knowledge provided by the Knowledge Layer, and the 

GenBank metadata and PMC OA articles downloaded by the Data Acquisition layer to output: 1) 

the most probable, integrated, normalized location of infected host (LOIH) of each virus (integrated 

and normalized output), and 2) the probability scores of each possible LOIH of each virus 

(confidence estimate output). The individual steps performed in this process are described below: 

1. Extract coherent set of locations from GenBank metadata: The first step in the Logic Layer 

involves using the Record Processor to extract and integrate a coherent set of locations from the 

downloaded GenBank metadata until a user-provided sufficiency criterion is satisfied. The 

GenBank metadata fields analyzed includes the country, strain, and isolate fields. In case of 

influenza viruses (the definition field is used to determine whether or not a GenBank record 
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represents an influenza virus), the Record Processor also analyzes the organism field which often 

contains the complete strain name of the virus even when the strain field is missing. The organism 

field is not analyzed for other viruses since their organism names often contain place names which 

do not refer to the LOIH of the virus (e.g. the organism name “Puumala virus” contains the place 

name “Puumala” which does not necessarily represent the LOIH of the virus).  

To extract locations, the Record Processor first segments the string in each GenBank record 

field analyzed based on a set of delimiters, and considers each segment to be a possible candidate 

location. It then uses the Knowledge Layer to search for possible matches for each candidate 

location. If no match is found, the Record Processor applies a domain-specific spell corrector to 

check for misspellings.  

When integrating locations, the Record Processor once again relies heavily on the Knowledge 

Layer. Location integration is performed through coherency checking. For instance, if the strain field 

of a record contained the place name “Guangdong” and the country field contained the place name 

“China”, the Record Processor would extract “Guangdong, China”, since Guangdong is a province 

in China. However, if the strain field contained the place name “Grebe” and the country field 

contained the place name “China”, the Record Processor would only output “China” since there is 

no location called “Grebe” in “China” (hence they are incoherent). In case of inconsistent locations, 

preference is given to locations extracted from the country field over those extracted from other 

fields since the former is more straightforward and likely to result in fewer errors. Preference is also 

given to less specific place names over more specific place names e.g. if the country field of a 

record contained the two place names “China” and “Grebe”, the country name “China” would be 

selected instead of the place name “Grebe”, which can be a populated place in Bosnia and 

Herzegovina, a lake in Canada or a park in USA (all instances are less specific than country). This 

is because less specific place names are typically more widely known than more specific place 

names, and therefore referenced more often.  

After extracting and integrating locations from each field, the Record Processor checks if a 

user-provided sufficiency criterion is satisfied before analyzing remaining fields. For instance, if the 

user only needs country-level or state-level locations for his/her study and the Record Processor 
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extracts “Guangdong, China” from the country field, it would not analyze any other field in the 

GenBank record since Guangdong is a province in China, and therefore the extracted metadata 

already satisfies the sufficiency criterion. If the sufficiency criterion is set to “none”, GeoBoost 

extracts all available geographic metadata for each record. The Record Processor analyzes the 

GenBank record fields in the following order: country, strain, isolate, organism (note: organism field 

is analyzed for the influenza virus only). 

2. Extract and link locations from related PMC OA articles: If the geographic metadata extracted 

and integrated from all analyzed fields in GenBank is found to be insufficient, the Logic Layer 

searches for more specific information in related PMC OA articles. To perform this task, it first pre-

processes the raw text files (obtained through conversion of PDF files to text files) and XML files of 

the related PMC OA articles. The raw text files are used for extracting information from the 

unstructured content of the articles. The XML files are used for extracting information from the 

tabular content of the articles (the corresponding text files are not used for this purpose since the 

tables do not retain their structure after PDF-to-text conversion). When preprocessing the XML files, 

the XML structure is exploited to extract all relevant tables in each file. A table is considered to be 

relevant if one of its columns contains geographic information (location column) while another 

contains either the strain name, date of collection or name of host of GenBank sequences 

(GenBank metadata column). Table headers are used to determine the type of information 

contained in each column. For instance, a table column is considered to possess geographic 

information if its header contains the word “location” or any of its synonyms such as "province", 

"state", "origin", "country", "place", "region", "district", "area" etc. The Table Processor compares 

the data in the GenBank metadata column of each row in each preprocessed relevant table with 

the corresponding data in the GenBank record being analyzed until a match is found. Places names 

present in the location column of the matching row are then linked to the record. The Knowledge 

Layer is used to detect place names in the location column.  

The raw text files obtained through PDF-to-text conversion are preprocessed using a Natural 

Language Processing (NLP) Pipeline based on the Stanford CoreNLP package for tagging 

sentences, tokens, and parts-of-speech. A Named Entity Recognition (NER) system, which utilizes 
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the Lucene index in the Knowledge Layer as its dictionary of place names, is then applied to detect 

place names in text. The Text Processor analyzes every sentence corresponding to each place 

name detected by the NER to see if it matches any one of a set of manually defined rules for linking 

GenBank record to geographic location mentions in text. The rules were derived through analysis 

of 27 articles in a preliminary study. Given a sentence containing a place name, the Text Processor 

first checks if the sentence matches the very general “Location Pattern”, given in Table 2. If it 

matches this pattern, then the Text Processor proceeds to check if the sentence matches any of 

the rules in the Very High, High, Mid, Low or Very Low rule levels (see Table 3), in the order 

specified. For instance, if the GenBank record corresponding to a H1N1 virus indicates that the 

virus was isolated in the year 2009 from ducks, and the location under consideration is China, then 

the sentence “We collected H1N1 viruses from ducks in China in the year 2009” will match one of 

the rules in the “Very High” rule level, while the sentence “We collected H1N1 viruses from China” 

will only match one of the rules in the “Low” rule level. The level of a rule is based on its 

discriminatory power for establishing GenBank record-location linkages.  

3. Assign Confidence Estimates to Extracted Locations: After extracting locations from 

GenBank metadata and the tabular and textual content of related articles, the Logic Layer uses the 

Confidence Estimator to generate confidence estimates to every GeoNames entry corresponding 

to the locations extracted by Record Processor, Table Processor and Text Processor. The 

Confidence Estimator applies a heuristic algorithm to perform this task in two steps. In the first step, 

it assigns confidence estimates to every place name extracted (including those extracted by the 

NER which did not match any of the linkage rules used by the Text Processor); next, it assigns 

confidence estimates to all possible GeoNames entry associated with each place name. We do not 

directly assign confidence estimates to all possible GenBank record-GeoNames entry pairs since 

that would unfairly penalize locations that are more ambiguous. That is, some locations in 

GeoNames have over a hundred candidates and this might result in a diluted, very low confidence 

for each candidate for these locations if we were to treat them all “equally”. Instead, we process 

these locations through our linkage analysis, and end up with a set of “reasonable” linkages with a 
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specific confidence assigned to them. Thus, the algorithm for our linkage analysis, which serves as 

the first phase in our confidence assignment process, is based on the following principles: 

• Every location extracted should be assigned some confidence estimate, however small 

• The confidence estimates assigned should reflect both the likelihood of the location being 

correct as well as the specificity of the location since more specific and more probable 

locations are likely to produce more precise geospatial models of virus spread 

• Separate confidence estimates should be assigned to overlapping locations since there is 

a chance one is correct while the other is not. For instance, if we extract two locations, Paris 

and France, we should assign separate confidence estimates to each because there is a 

chance Paris is correct but France is not (it may be from Paris, Texas, USA) and there is 

also a chance that France is correct but Paris is not (it may be from a different location in 

France). Moreover, since the aim of this system is to increase the specificity of insufficient 

GenBank records, we would also want the more specific location to be given a higher 

weight.  

• The confidence estimate assigned to a location mention should depend on the precision of 

its source of extraction. Table 3 lists the precision of the major sources of locations used 

by our system. The precision of each source was calculated by evaluating it against a small 

manually annotated test set. Since a few of the sources had a precision of 1, we subtracted 

a small value of 0.02 from the measured precision of every source when using it for 

confidence estimate generation of locations in order to satisfy condition 1.  

• Locations extracted from the geospatial metadata of the GenBank records with greater 

specificity should be given priority over those with lower specificity by being assigned a 

higher confidence estimate. For instance, if a record contains both country-level locations 

and ADM1-level locations consistent with the country (i.e. present inside the country), then 

the ADM1-level location should be prioritized since it is of greater interest to the user.  

• Locations which are extracted from either the textual or tabular contents of the paper should 

be assigned higher confidence estimates if they increase the specificity of existing locations 

in the GenBank Record.  
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• Locations which are extracted from either the textual or tabular contents of the paper should 

be penalized if they are inconsistent with the locations already present in the GenBank 

record.  An extracted location is inconsistent if it cannot be present in the same country and 

ADM1-level location mentioned in the GenBank record.  

• The confidence estimate generated for locations extracted from the unstructured textual 

content of related PMC OA articles should take into account the precision of the rule-level 

used to extract the location. We calculated the precision and recall of each rule level using 

a manually annotated set of GenBank records (see Table 4).  

• The (normalized) individual confidence estimates should add up to 1 

The final implementation of this stage is largely dependent on the number of unique sources 

analyzed by our system for determining the location of collection and uses a complex set of 

heuristics.  

In the second phase of the confidence assignment process, the Confidence Estimator assigns 

confidence estimates to every GeoNames entry corresponding to every location mention. If a place 

name is associated with only a single entry in GeoNames, then the corresponding GeoNames entry 

is assigned 100% confidence. The second phase of the confidence assignment process is based 

on the following principles: 

• A candidate which is consistent with existing geospatial metadata should be assigned 

higher confidence over inconsistent candidates. For instance, the place name Paris 

can have a candidate in both USA and France but if the geospatial metadata says 

‘France’, the GeoNames entry associated with Paris in France should be assigned the 

highest confidence estimates. 

• A less specific candidate should be assigned higher confidence over more specific 

candidates. For instance, Texas can refer to either the state of Texas in USA or a 

populated place in New York, USA. The former is assigned higher confidence estimate 

since it is less specific.  

• A more populated candidate should be assigned higher confidence estimate over a 

less populated candidate. This is a popular, widely used heuristic for disambiguation 
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which assumes that locations with higher populations tend to be more popular and 

therefore appear more frequently in textual sources of information. 

4. Integrate and normalize linked locations: The Data Integrator and Normalizer applies a 

heuristic algorithm to integrate and normalize locations extracted from the GenBank record and the 

unstructured and tabular content of related PMC OA articles. Like the Record Processor, it checks 

the coherence between locations to integrate them. Locations inconsistent with geographic 

metadata extracted from GenBank are discarded. Higher preference is given to locations linked to 

a GenBank record based on the tabular content of related PMC OA articles than to locations linked 

to a GenBank record based on the unstructured textural content of related PMC OA articles since 

the former has higher precision. The Data Integrator attempts to output the most specific and most 

likely LOIH of each virus based on a set of heuristics and includes ADM1-level and country-level 

information for the location, when available, for semantic context e.g. if the system extracts “USA” 

from the GenBank metadata, “Paris” from the tabular content of a related article, and “Texas" from 

the unstructured textual content of a related article, it would output “Paris, Texas, USA”. The 

Normalizer attempts to disambiguate the location extracted by the Data Integrator. To perform this 

task, the Normalizer first retrieves all GeoNames entries corresponding to the integrated location 

produced by the Data Integrator. For instance, if the integrated location is “Cambridge, USA”, it 

would retrieve all GeoNames entries corresponding to the place name “Cambridge” which has a 

country code of “US”.  The Normalizer then sorts the retrieved GeoNames entries based on their 

feature codes and chooses the group of entries belonging to the least specific feature codes. For 

instance, as mentioned earlier, Texas can refer to either the state of Texas in USA or a populated 

place in New York, USA. The Normalizer would prioritize the GeoNames entry corresponding to 

the state of Texas in USA. Lastly, the Normalizer sorts the group of entries selected in the previous 

step based on their population, and outputs the set with the highest population.  
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Location Pattern ".* (in|from|at) .*"+location+".*"; 
 

Isolated pattern ".* (isolated|collected) .* (in|from) .*"+location+".*" 
".* we .* (collect|isolate) .* (in|from) .*"+location+".*” 
".* (isolation|collection) .* (in|from) .*"+location+".*” 
  

We Rule ".* we used .*" 
".* in this study .*" 
".* our study .*” 
".* we examined .*" 
".* we studied .*" 
".* current study .*" 

 
Table 2: General patterns applied by different levels of rules used in the Text Processor for linking 

place names in unstructured textual content of related PMCOA articles to GenBank records 
 
 

Rule level  Rules present 
 

Precision, 
Recall 

Very High allPresent(strain, date, host) && sentence.contains(strain) && 
sentence.contains(year) && sentence.contains(host) && 
hasIsolatedPattern(sentence, location)==1 
 

1.0, 0.024 

allPresent(accession) && sentence.contains(accession) && 
sentence.contains("isolated”) 

allPresent(date, host, virusName) && sentence.contains(year) && 
sentence.contains(host) && sentence.contains(virusName) && 
(sentence.contains("strain") || sentence.contains("isolate")) && 
hasIsolatedPattern(sentence, location)==1) 
 
 

High allPresent(strain, date) && sentence.contains(strain) && 
sentence.contains(year) && hasIsolatedPattern(sentence, 
location)==1 
  

0.995, 0.047 

allPresent(strain, host) && sentence.contains(strain) && 
sentence.contains(host) && hasIsolatedPattern(sentence, 
location)==1 
 

allPresent(accession) && sentence.contains(accession))  

allPresent(date, virusName) && sentence.contains(year) && 
sentence.contains(virusName) && (sentence.contains("strain") || 
sentence.contains("isolate")) && hasIsolatedPattern(sentence, 
location)==1 
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allPresent(host, virusName) && sentence.contains(host) && 
sentence.contains(virusName) && (sentence.contains("strain") || 
sentence.contains("isolate")) && hasIsolatedPattern(sentence, 
location)==1) 
 
 

Mid allPresent(strain, date) && sentence.contains(strain) && 
sentence.contains(year) 
  

1.0, 0.21 

allPresent(strain, host) && sentence.contains(strain) && 
sentence.contains(host) 
 

allPresent(date, host) && sentence.contains(year) && 
sentence.contains(host)&&weRule(sentence)==1)  
 

allPresent(date, virusName)==1 && sentence.contains(year) && 
sentence.contains(virusName) && (sentence.contains("strain") || 
sentence.contains("isolate")) 
 

allPresent(host, virusName)==1 && sentence.contains(host) && 
sentence.contains(virusName) && (sentence.contains("strain") || 
sentence.contains("isolate”) 
 

Low allPresent(date, host)==1 && sentence.contains(year) && 
sentence.contains(host))  
 
 

0.884, 0.278 

sentence.contains(year) && date.length()>0) || 
(sentence.contains(host) && host.length()>0)) && 
weRule(sentence)==1 
 

allPresent(virusName) && sentence.contains(virusName) && 
weRule(sentence)==1 
 

allPresent(strain) && sentence.contains(strain)  

allPresent(virusName) && sentence.contains(virusName) && 
(sentence.contains("strain") || sentence.contains("isolate")) && 
hasIsolatedPattern(sentence, location)==1  
 

sentence.contains(virusName) && ((sentence.contains(host) && 
host.length()>0) || (sentence.contains(year) && date.length()>0)))  
  
 

Very Low 
Very Low 

 

sentence.contains(year) && date.length()>0 
 
sentence.contains(host) && host.length()>0  
 
sentence.contains(virusName) && virusName.length()>0 

0.643, 0.541 
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weRule(sentence)==1  
 
hasIsolatedPattern(sentence, location)==1 
 

 
Table 3: Rules used by the Text Processor for linking place names in unstructured textual content 
of related PMCOA articles to GenBank records. The rules are organized into different levels based 
on their discriminatory power. Please note that the AllPresent(String[] args) method returns true if 
the GenBank record has non-null entries for the argument fields. E.g. AllPresent(strain, date, host) 
means that the strain field, date field and host fields are not null or blank in the record. 
 
 
 

Source  Precision  Confidence  
(precision -0.02) 

Recall 

Record Processor 
  

0.954 0.934 0.996 

Table Processor 
(consistent subset only) 
  

1.0 0.980 0.838 

Text Processor Linkage  
Extraction Algorithm 
(consistent subset only) 
  

0.847 0.827 0.799 

Very High 1.0 0.980 0.033 

High 0.999 0.979 0.111 

Mid 1.0 0.980 0.129 

Low 0.962 0.942 0.537 

Very Low 
  

0.836 0.816 0.717 

Text Processor NER 
(consistent subset only) 
  

0.599 0.579 0.904 

Overall Extraction  0.876 0.856 0.978 

 
Table 4: Confidence of Each Source of Extraction 
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5 DISCUSSION 

The results achieved through the works presented in this dissertation illustrate knowledge-

driven methods to be highly effective for geo-referencing virus GenBank records. Chapter 2 

introduced the basic framework of a system for extracting, integrating, and normalizing the LOIH of 

viruses based on information present in GenBank records and related full-text articles. It found the 

knowledge-driven methods used in this framework to have an f-score of 0.894 for linking GenBank 

records of influenza viruses to the specific latitude and longitude coordinates of their LOIH. To test 

the generalizability of this framework to other viruses, we performed a crude evaluation using a 

smaller test set incorporating GenBank records pertaining to six other viruses, and the system was 

found to have an accuracy of 0.75 for identifying the correct LOIH of viruses in this set.  

The work described in Chapter 3 enhanced the system’s Record Location Extractor module, 

which is the system component responsible for extracting geographic metadata from different fields 

in virus GenBank records. It then applied this enhanced version of the module to geo-reference all 

virus GenBank records available at the time of the study. The resulting database, consisting of over 

two million virus GenBank records, was made freely accessible to the public both as a 

downloadable file and as a navigable website. When evaluated on a manually annotated test set, 

the database was found to have a high accuracy of 87% for linking virus GenBank records to the 

correct GeoNames ID of their sampling location. The system was modified to link GenBank records 

to specific GeoNames IDs instead of only mapping them to the latitude and longitude coordinates 

of their sampling sites (as in Chapter 2) because this enabled a more uniform normalization, linking 

two well-known databases, and the resulting unique IDs could be directly used in discrete 

phylogeography or easily translated to geo-coordinates for use in continuous phylogeography. In 

addition to describing the development and evaluation of this normalized database, Chapter 3 also 

presented a thorough analysis of the database demonstrating the significance of integrating 

geographic metadata from different fields in GenBank records instead of simply using the 

designated “country” field for storing the LOIH of the viruses.  

Chapter 4 presented GeoBoost, the final integrated system for geo-referencing GenBank 

records which was made publicly available for download along with a video tutorial providing step-
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by-step instructions to facilitate its use among researchers. GeoBoost had a more structured 

architecture than the system introduced in Chapter 2, and automated tasks, such as data download, 

which had to be performed separately in the earlier system. In addition, it introduced a new 

Confidence Estimator module which assigned confidence estimates to every possible GeoNames 

entry corresponding to the locations extracted by GeoBoost from GenBank records and the textual 

and tabular content of related articles. These confidence estimates served as a measure of the 

specificity of the extracted location (e.g. Phoenix is more specific than Arizona) as well as its 

likelihood of being correct, enabling researchers to use these estimates for choosing the correct 

geographic locations when building precise models of virus spread. When evaluated on the same 

test sets used in Chapter 2, GeoBoost was found to have an accuracy of 81% and 80% for the 

influenza set and the non-influenza set respectively. 

 Please note that the results are not directly comparable between Chapter 2 and Chapter 4 

because we used different evaluation criteria. The system described in Chapter 2 did not assign 

confidence estimates to different locations. Instead, it used a heuristic algorithm to extract and 

disambiguate all locations that it deemed to have a high likelihood of being linked to the record, 

and, as described in Chapter 2, when estimating its performance on the influenza dataset, the f-

score of the system was computed by counting the number of false positives, true positives and 

false negatives it produced. On the non-influenza test set, a simpler estimate of system accuracy 

was manually calculated by considering each record to be correctly processed or incorrectly 

processed based on whether the location extracted by the system, prior to being mapped to its 

latitude/longitude coordinates, was the same as the annotated location. We did not measure the 

disambiguation performance of the system for the non-influenza test. In contrast to the earlier 

version of the system, GeoBoost utilized the Confidence Estimator module to assign confidence 

estimates to the GeoNames IDs of all possible linked locations. As a measure of its performance, 

we calculated Geoboost’s accuracy in Chapter 4 by considering a given record to be correctly 

processed if the latitude/longitude coordinates of the GeoNames entry ranked highest by the 

system was within 50 miles of the annotated latitude/longitude coordinates in the gold standard (the 

gold standard contained the latitude/longitude coordinates of the sampling site of each GenBank 
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record without including the GeoNames ID of the selected entry and so directly matching 

GeoNames IDs, as we did in Chapter 3, was not possible without additional annotation).  

In addition to demonstrating the ability of GeoBoost to accurately and efficiently geo-reference 

virus GenBank records, Chapter 4 also established the importance of incorporating information 

from related full-text articles when attempting to extract the most precise LOIH of viruses. 

GeoBoost’s accuracy fell by 11% and 25% for the influenza dataset and the non-influenza dataset 

respectively when configured to exclude information from related full-text articles and use the 

GenBank data alone. Being, to the best of my knowledge, the only system to-date capable of 

integrating geographic information pertaining to the LOIH of viruses from different fields in GenBank 

records as well as the textual and tabular content of related articles, this illustrates the value of 

using GeoBoost in the phylogeography research community where, as shown by Magee et al. [23], 

the incorporation of precise geographic information in the phylogeographic models could be very 

useful in understanding the predictors of viral spread.  

Despite its recent release, GeoBoost has been used in several research studies analyzing virus 

migration patterns. For instance, Scotch et al [34] utilized GeoBoost in our study investigating the 

effect of incorporating sampling uncertainty of the LOIH of taxa in virus phylogeography. Also, Fisk 

[35] utilized GeoBoost in her study analyzing the global transmission patterns of the Respiratory 

Syncytial Virus (RSV). As a unique system addressing a significant challenge, GeoBoost has the 

potential to accelerate many other research studies involving the extraction of the LOIH of viruses. 

In addition, the knowledge-driven methods used in GeoBoost could be easily extended to non-virus 

taxa as well to help analyze their evolution and geographic distribution through time. 

The works described in this dissertation have also helped guide several research studies 

involving the more general task of toponym resolution (detection and disambiguation) in full-text 

articles linked to GenBank records. For instance, one of my contributions in [57] involved the 

development of the “metadata heuristic” for toponym disambiguation, which extended the 

knowledge-driven method for disambiguating the geographic metadata of GenBank records, as 

described in Chapter 2, to assist the disambiguation of every geographic location mentioned in full-

text publications linked to GenBank, thereby significantly broadening its applicability in biomedical 



91 

 

research. Magge et al [49] further extended this algorithm by adopting the approach taken by  

Tamames et al. [51] of including parent locations, if present in contiguous text following the place 

name mention, when performing the disambiguation, and reported a 3% increase in accuracy. 

However, as discussed in Chapter 1, it is not clear whether this increase in the toponym 

disambiguation accuracy in full-text articles linked to GenBank would help boost GeoBoost’s 

accuracy. GeoBoost’s primary objective is to geo-reference GenBank records and the extraction of 

geographic locations from related articles is one of the many tasks it performs to help it complete 

this objective. Currently, GeoBoost only performs disambiguation of locations after extracting and 

integrating information from the different textual sources it analyzes. For instance, if it extracts 

“USA” from the country field of a GenBank record, “Wisconsin” from the free-text content of the 

related article based on a high-precision sentence such as “All samples were collected from the 

state of Wisconsin.”, and “Madison” from the tabular content of the article, it will consider the 

integrated location “Madison, Wisconsin, USA” to be a highly likely candidate for the sampling 

location of the record. Given the number of sources GeoBoost analyzes for performing this 

integration, it needs to apply a complex set of knowledge-driven heuristics and, currently, these 

heuristics do not take into account how individual locations within related articles were 

disambiguated. After producing the integrated locations, GeoBoost searches GeoNames for 

possible matches and ranks the GeoName IDs associated with each match. For instance, 

“Madison” in Wisconsin, USA can refer to a park in Milwaukee or the city of Madison, and GeoBoost 

will consider the latter to be the more likely candidate as it is a more widely referenced place. 

Therefore, given the way GeoBoost is currently designed, the toponym disambiguation accuracy in 

full-text articles does not affect its disambiguation accuracy for the LOIH of viruses and it is not 

clear whether incorporating the additional information will yield significant benefit.  

The simple, primarily dictionary-based algorithm used in GeoBoost for toponym detection in 

full-text articles linked to GenBank was found have an f-score of 0.698 in [50] but recent work in 

this area, involving state-of-the-art neural network models, have reported significantly higher f-

scores with Magge et al. [49] achieving an f-score of 0.94 for this task. However, the precise effect 

of the increase in performance of these toponym detection algorithms in GeoBoost is still unclear 
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as they have not been integrated into GeoBoost yet. For instance, these toponym detection 

methods achieved significantly higher precision than GeoBoost’s NER but since GeoBoost already 

uses many knowledge-driven heuristics for filtering out false positive locations prior to linking place 

names extracted from related articles to GenBank records, to account for the low precision of its 

NER component, it is not clear whether this increase in precision will lead to a notable increase in 

GeoBoost’s accuracy. Moreover, the rule-based NER in GeoBoost continues to maintain the 

highest recall for the task of toponym resolution (detection and disambiguation) in full-text articles, 

even though higher recall has been reported for toponym detection alone [49]. This illustrates that 

the rule-based NER method utilized in GeoBoost is still the most effective method for minimizing 

any false negatives for which GeoNames contains a matching entry. For instance, a sophisticated 

ML method might be able to correctly label “Monofeya” in the sentence “The study was performed 

in Monofeya” as a toponym. However, GeoNames currently does not have a match for Monofeya, 

which is precisely why the dictionary-based NER is unable to extract it. Therefore, GeoBoost will 

be unable to integrate it with existing geographic metadata in GenBank records related to the article, 

and despite an increase in recall of the NER system a corresponding increase in accuracy will not 

be seen in GeoBoost. To be able to harness the increase in NER recall, a spell-correction method 

will need to be applied to any toponyms extracted by the NER which does not have a match in 

GeoNames. Although GeoBoost utilizes such an algorithm to extract names of places mentioned 

in the GenBank record fields which do not produce a direct match in GeoNames, at its current state 

it does not use spell correction on the results of the NER system. Future work might involve adding 

this feature in GeoBoost in addition to enhanced NER systems for toponym detection.  

  The NER component in GeoBoost is not the only module that would benefit from additional 

improvements. It is important to address the limitations of other modules in the system as well. One 

of the limitations of the Record Location Extractor module in GeoBoost is its inability to extract 

individual locations from compounded strings. For instance, the strain field of GenBank record 

JQ714202 [30] contains “A/Tianjinheping/SWL313/2009” which includes two separate locations 

from China – the Tianjin province and the Heping district of the Tianjin province. Although GeoBoost 

utilizes different spell-correction heuristics to enhance its location extraction performance, which 
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enables it to extract, for instance, “New York” from “NewYorrk” and “Qalyubiya” from the spell 

variant “Qalyoubeya”, it is still not capable of extracting the two separate locations “Tianjin” and 

“Heping” from the compounded string “Tianjinheping”. Also, in many GenBank records, airport 

codes in the country, strain or isolate fields are used to indicate the LOIH of the virus e.g. the isolate 

field of Genbank record LC071961 [58] contains “BKK-TH-171”, where BKK is the airport code for 

Bangkok. The Record Location Extractor module in GeoBoost can expand acronyms of US states 

(e.g. CA for California) but is currently not capable of correctly mapping airport abbreviations.  

On updating the Record Location Extractor to enable it to extract locations from compounded 

strings and map airport codes to locations, it achieved an accuracy of 0.95 on a manually annotated 

set of 5901 virus-related GenBank records for linking each GenBank record to a GeoNames ID 

based on geographic metadata present across the different fields in the records. However, the 

updated Record Location Extractor was not included in the version of GeoBoost released to the 

public because processing compounded strings for toponym extraction significantly slowed down 

GeoBoost. Future work may involve including a more efficient algorithm for extracting locations 

from compounded strings and evaluating the precise effect of the addition of these features more 

thoroughly.  

The extent to which airport codes are used in GenBank to indicate the LOIH of viruses also 

needs further investigation. In the manually annotated test set, place names were only extracted 

from obvious airport codes, e.g. Bangkok from BKK. The updated Record Location Extractor was 

able to use it for less well-known airport codes as well but to adequately verify whether the increase 

in false positives this might possibly lead to is compensated by the increase in true positives and 

decrease in false negatives, our annotation schema will need to be changed to include more in-

depth look into these abbreviations. For instance, the strain name of the virus represented by 

GenBank record JX262205 [59] is “A/India/GWL01/2011”. Since GWL is the airport code for the 

city of Gwalior in India, the updated Record Location Extractor mapped this record to “Gwalior, 

India”. However, the annotators only mapped the record to the country of India based on record 

metadata alone and so this instance was counted as an error of the system during the evaluation 

process since the system result did not match the annotated gold standard. A review of the related 
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article [60] reveals that the sampling site of this record is highly likely to be Gwalior, India. Therefore, 

this specific case was most probably wrongly labeled as an error during the evaluation process.  

Currently the entire GeoBoost infrastructure relies primarily on handwritten knowledge-driven 

heuristics which requires a lot of time and effort to maintain and update. The incorporation of 

machine learning methods could allow the system to self-learn and adapt to different domains with 

minimal changes to its framework. The Text Linker module in GeoBoost, which is responsible for 

linking place names extracted from related full-text publications to GenBank records, is probably 

most likely to benefit from such a shift. Currently, the Text Linker module uses very simple patterns 

for linking GenBank records to locations detected in related articles. Although, as described in 

Chapter 2, it still managed to achieve an f-score of 0.823 in our influenza test set; its high 

performance was significantly boosted by a knowledge-driven heuristic which filtered out locations 

that are inconsistent with existing locations in the GenBank record. For instance, if a GenBank 

record contained “Arizona, USA”, and the textual patterns applied by the Text Linker found “Italy”, 

“Wisconsin” and “Tempe” to be possibly linked to the record, the application of the coherency-

checking heuristic would filter out “Italy” and “Wisconsin”, leaving behind only “Tempe”, as the 

others are inconsistent with the record location of “Arizona, USA”. Since over 99.9% of the influenza 

records analyzed in our study contained some form of geographic metadata, the use of this heuristic 

played a major role in improving the performance of the Text Linker. In cases where the geographic 

metadata in GenBank is absent, the Text Linker tends to struggle considerably more, and the use 

of more sophisticated methods is needed to help it achieve higher accuracy. Recent works have 

demonstrated the potential of distance supervision and deep learning methods for enhancing 

toponym detection in full-text articles related to GenBank records [61]. Similar methods could also 

be applied for text linkage. 

One of the most significant breakthroughs in NLP technology in recent years has been the 

creation of  word embeddings [62] which could be used to represent individual words within machine 

learning models. Word embeddings are vector representations of words and phrases which can 

capture their semantic properties, allowing for better language modeling. In order to create word 

embeddings specifically for our research domain, we developed a Word2Vec model by 
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downloading and parsing all PMC Open Access articles linked to GenBank. We then utilized the 

resulting word embeddings to build a convolutional neural network (CNN) incorporating different 

knowledge-based features. We trained the CNN model using a learning rate of 0.001 on training 

examples that we generated through distant supervision, instead of manual annotation. The 

positive training examples were generated based on existing GenBank metadata. For example, if 

a GenBank record contained the geographic metadata “Tempe, AZ, USA”, all sentences 

mentioning "Tempe" and "Arizona" in articles related to the record were assumed to be positive. 

USA and other country level-locations were not included to minimize noise. The negative training 

examples were generated by assuming that all sentences mentioning locations inconsistent with 

existing GenBank metadata must be negative. For instance, if a GenBank record contained the 

geographic metadata, "AZ, USA", then sentences mentioning "Alaska" were considered negative 

while those mentioning "Tempe" were considered neither positive, nor negative. We performed 

training using all ~50,000 positive examples, and a randomly down-sampled set of ~100,000 

negative examples. When tested on a manually annotated test set of 916 GenBank records linked 

to 21 PMC articles, the trained CNN model achieved a precision, recall, and f-score of 0.51, 0.85 

and 0.64 respectively. The rule-based module currently utilized in GeoBoost achieved a precision, 

recall, and f-score of 0.48, 0.54, and 0.50 respectively on the same set. Please note that these 

results were obtained without the use of the knowledge-based constraints which limited the output 

to locations that were consistent with existing GenBank metadata, in contrast to previous 

evaluations of the Text Linker in GeoBoost. In addition, annotation was also performed in the test 

set without taking into account existing geographic metadata in GenBank. This allowed us to assess 

the performance of the two different methods specifically for the task of extracting the LOIH of 

viruses from full-text publications, without possessing any prior knowledge about the LOIH from 

GenBank. 

Although the CNN model demonstrated promising results on the test set, especially when 

compared to the rule-based method currently being applied, more rigorous evaluation is needed 

prior to integrating it within the GeoBoost software. When evaluating the Test Linker, it is important 

to have an adequately large sample of linked articles in addition to having a large sample of 
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GenBank records. While the test set contained a fairly large set of 916 GenBank records, the 

included records were linked to 21 articles only, and therefore it did not provide sufficient insight 

into the performance of the model. Also, neural network models need to be fine-tuned for optimal 

performance by adjusting parameters such as the learning rate. Therefore, it is possible that better 

results, more closely resembling the high performance achieved by state-of-the-art deep learning 

models for event extraction, could be achieved through different parameter combinations. 

Moreover, the automatically generated training set contained a fair amount of noise and additional 

techniques for noise reduction could also help boost performance.  

To summarize, future work might include expanding upon the preliminary work done to-date for 

enhancing the Record Location Extractor and Text Linker and integrating the updated modules 

within the GeoBoost framework. Also, additional experiments may be performed to evaluate 

whether existing deep learning models for toponym detection in this domain could add significant 

value to the GeoBoost system. Moreover, the GeoBoost framework could be adjusted to make it 

more easily adaptable to GenBank records related to species other than viruses.  
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6 CONCLUSION 

Over the past few decades, we have seen a proliferation of large-scale databases and 

knowledge-bases, both within and outside the biomedical domain, which provide novel directions 

for addressing challenging biomedical information extraction tasks. This work presents innovative 

methods of exploiting the knowledge derived from different resources for geographic information 

extraction within the biomedical domain, specifically for geo-referencing GenBank records of 

viruses. Different experiments performed for evaluating these methods consistently demonstrate 

them to be highly effective for this task.  

We used the knowledge-driven geographic IE methods described in this dissertation to develop 

a publicly available SQL database containing over two million geo-referenced virus GenBank 

records which could help significantly accelerate public health studies which require the LOIH of 

virus sequences. In addition, we used these methods to build a command-line program called 

GeoBoost for extracting, integrating and normalizing the LOIH of viruses based on information 

present in GenBank and related full-text articles. The GeoBoost framework has been utilized in 

several research studies by phylogeography researchers and could prove to be a useful tool within 

the public health domain.  

Although developed specifically for processing virus GenBank records, GeoBoost may be 

easily extended to work with GenBank records related to other species as well and, therefore, has 

the potential to benefit a wide range of biomedical studies. Moreover, the success of GeoBoost 

demonstrate the ability of simple knowledge-driven heuristics for addressing complex biomedical 

problems and underscores the importance of harnessing knowledge from different information 

sources for biomedical IE. However, GeoBoost, like all other automated systems, is not a perfect 

system and the integration of state-of-the-art machine learning methods, along with incorporation 

of additional knowledge-bases, could help further enhance its performance.  
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