531 research outputs found

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    UAV-enabled wireless-powered Iot wireless sensor networks

    Get PDF
    Future massive internet of thing (IoT) networks will enable the vision of smart cities, where it is anticipated that a massive number of sensor devices, in the order of tens of millions devices, ubiquitously deployed to monitor the environment. Main challenges in such a network are how to improve the network lifetime and design an e cient data aggregation process. To improve the lifetime, using low-power passive sensor devices have recently shown great potential. Ambient backscattering is a novel technology which provides low-power long-range wireless communication expanding the network lifetime signi cantly. On the other hand, in order to collect the sensed data from sensor devices deployed over a wide area, unmanned aerial vehicles (UAVs) has been considered as a promising technology, by leveraging the UAV's high mobility and line-of-sight (LOS) dominated air-ground channels. The UAV can act as data aggregator collecting sensed data from all sensors. In this thesis, we consider medium-access control (MAC) policies for two sensor data collection scenarios. First, the objective is to collect individual sensor data from the eld. The challenge in this case is to determine how a large number of sensors should access the medium so that data aggregation process performed in a fast and reliable fashion. Utilizing conventional orthogonal medium access schemes (e.g., time-division vi multiple access (TDMA) and frequency-division multiple access (FDMA)), is highly energy consuming and spectrally ine cient. Hence, we employ non-orthogonal multiple access (NOMA) which is envisaged as an essential enabling technology for 5G wireless networks especially for uncoordinated transmissions. In Chapter 2, we develop a framework where the UAV is used as a replacement to conventional terrestrial data collectors in order to increase the e ciency of collecting data from a eld of passive backscatter sensors, and simultaneously it acts as a mobile RF carrier emitter to activate backscatter sensors. In the MAC layer, we employ uplink power-domain NOMA scheme to e ectively serve a large number of passive backscatter sensors. Our objective is to optimize the path, altitude, and beamwidth of the UAV such that the network throughput is maximized. In Chapter 3, we consider the scenario where there are a separate data collector and RF carrier emitter such that the former is a gateway on the ground and the latter is a single UAV hovering over the eld of backscatter sensors. Secondly, we consider a case where only a function of sensed data is of interest rather than individual sensor values. A new challenge arises where the problem is to design a communication policy to improve the accuracy of the estimated function. Recently, over-the-air computation (AirComp) has emerged to be a promising solution to enable merging computation and communication by utilizing the superposition property of wireless channels, when a function of measurements are desired rather than individual in massive IoT sensor networks. One of the key challenges in AirComp is to compensate the e ects of channel. Motivated by this, in Chapter 4, we propose a UAV assisted communication framework to tackle this problem by a simple to implement sampling-then-mapping mechanism

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    NOMA Enhanced Backscatter Communication for Green IoT Networks

    Get PDF
    Backscatter communication has recently emerged as a promising technology to enable the passive sensing-based Internet-of-things (IoT) applications. In a backscatter communication network, uplink transmissions of multiple nodes are usually multiplexed in time- or frequency-domain to avoid collisions, yet it is desirable to improve the uplink capacity further. In this paper, we study a wireless-powered backscatter communication system, where the sensors use a hybrid channel access scheme by combining time division multiplexing access (TDMA) with power-domain non-orthogonal multiple access (PD-NOMA) to enhance the system performance in terms of outage probability and throughput. Our analysis shows that the proposed PD-NOMA increases both the spectrum efficiency and the throughput of the system

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication
    corecore