147 research outputs found

    BSSRDF estimation from single images

    Get PDF
    We present a novel method to estimate an approximation of the reflectance characteristics of optically thick, homogeneous translucent materials using only a single photograph as input. First, we approximate the diffusion profile as a linear combination of piecewise constant functions, an approach that enables a linear system minimization and maximizes robustness in the presence of suboptimal input data inferred from the image. We then fit to a smoother monotonically decreasing model, ensuring continuity on its first derivative. We show the feasibility of our approach and validate it in controlled environments, comparing well against physical measurements from previous works. Next, we explore the performance of our method in uncontrolled scenarios, where neither lighting nor geometry are known. We show that these can be roughly approximated from the corresponding image by making two simple assumptions: that the object is lit by a distant light source and that it is globally convex, allowing us to capture the visual appearance of the photographed material. Compared with previous works, our technique offers an attractive balance between visual accuracy and ease of use, allowing its use in a wide range of scenarios including off-the-shelf, single images, thus extending the current repertoire of real-world data acquisition techniques

    A Dual-Beam Method-of-Images 3D Searchlight BSSRDF

    Full text link
    We present a novel BSSRDF for rendering translucent materials. Angular effects lacking in previous BSSRDF models are incorporated by using a dual-beam formulation. We employ a Placzek's Lemma interpretation of the method of images and discard diffusion theory. Instead, we derive a plane-parallel transformation of the BSSRDF to form the associated BRDF and optimize the image confiurations such that the BRDF is close to the known analytic solutions for the associated albedo problem. This ensures reciprocity, accurate colors, and provides an automatic level-of-detail transition for translucent objects that appear at various distances in an image. Despite optimizing the subsurface fluence in a plane-parallel setting, we find that this also leads to fairly accurate fluence distributions throughout the volume in the original 3D searchlight problem. Our method-of-images modifications can also improve the accuracy of previous BSSRDFs.Comment: added clarifying text and 1 figure to illustrate the metho

    A Frequency Analysis and Dual Hierarchy for Efficient Rendering of Subsurface Scattering

    Get PDF
    International audienceBSSRDFs are commonly used to model subsurface light transport in highly scattering media such as skin and marble. Rendering with BSSRDFs requires an additional spatial integration, which can be significantly more expensive than surface-only rendering with BRDFs. We introduce a novel hierarchical rendering method that can mitigate this additional spatial integration cost. Our method has two key components: a novel frequency analysis of subsurface light transport, and a dual hierarchy over shading and illumination samples. Our frequency analysis predicts the spatial and angular variation of outgoing radiance due to a BSSRDF. We use this analysis to drive adaptive spatial BSSRDF integration with sparse image and illumination samples. We propose the use of a dual-tree structure that allows us to simultaneously traverse a tree of shade points (i.e., pixels) and a tree of object-space illumination samples. Our dual-tree approach generalizes existing single-tree accelerations. Both our frequency analysis and the dual-tree structure are compatible with most existing BSSRDF models, and we show that our method improves rendering times compared to the state of the art method of Jensen and Buhler

    Light Simulation with Participating Media

    Get PDF
    In this project we address the problem of light scattering in participating materials. We create a complete simulation of this phenomenon in a more general case than previous work. We analyse the directional part of light, in order to install a clear basis for future work. We derive two models from this analysis: the spherical Gaussians approximation and the double exponential approximation. These models are placed in the scope of the planned development of an improved method for scattering. We also code a custom ray tracer to have a complete pipeline of rendering and to understand the underneath concepts. The validation of our simulation is done by comparing against the results of Eugene d'Eon in his article of Quantized-diffusion.Dans ce projet, nous abordons le problème de la diffusion de la lumière dans des matériaux participant. Nous créons une simulation complète de ce phénomène dans un cas plus général que les travaux précédents. Nous analysons la partie directionnelle de la lumière, dans le but d'installer une base claire à de futurs travaux. Nous tirons deux modèles de cette analyse : l'approximation de gaussiennes sphériques et l'approximation de double exponentielle. Ces modèles sont placés dans le cadre de l'élaboration prévue d'une méthode amélioré pour la diffusion. Nous codons également un lanceur de rayons dans le but d'avoir un pipeline complet de rendu et de comprendre les concepts sous-jacents. La validation de notre simulation est effectuée en comparant avec les résultats de Eugene d'Eon dans son article Quantized-diffusion

    Practical Measurement and Reconstruction of Spectral Skin Reflectance

    Get PDF
    We present two practical methods for measurement of spectral skin reflectance suited for live subjects, and drive a spectral BSSRDF model with appropriate complexity to match skin appearance in photographs, including human faces. Our primary measurement method employs illuminating a subject with two complementary uniform spectral illumination conditions using a multispectral LED sphere to estimate spatially varying parameters of chromophore concentrations including melanin and hemoglobin concentration, melanin blend-type fraction, and epidermal hemoglobin fraction. We demonstrate that our proposed complementary measurements enable higher-quality estimate of chromophores than those obtained using standard broadband illumination, while being suitable for integration with multiview facial capture using regular color cameras. Besides novel optimal measurements under controlled illumination, we also demonstrate how to adapt practical skin patch measurements using a hand-held dermatological skin measurement device, a Miravex Antera 3D camera, for skin appearance reconstruction and rendering. Furthermore, we introduce a novel approach for parameter estimation given the measurements using neural networks which is significantly faster than a lookup table search and avoids parameter quantization. We demonstrate high quality matches of skin appearance with photographs for a variety of skin types with our proposed practical measurement procedures, including photorealistic spectral reproduction and renderings of facial appearance

    Upgrade of goniospectrophtometer GEFE for near-field scattering and fluorescence radiance measurements

    Get PDF
    Proceedings of SPIE 9398; San Francisco, California, United States | February 8-9, 2015The goniospectrophotometer GEFE, designed and developed at IO¿CSIC (Instituto de ¿ Optica, Agencia Estatal Consejo Superior de Investigaciones Cient¿¿ficas), was conceived to measure the spectral Bidirectional Reflectance Distribution Function (BRDF) at any pair of irradiation and detection directions. Although the potential of this instrument has largely been proved, it still required to be upgraded to deal with some important scattering features for the assessment of the appearance. Since it was not provided with a detector with spatial resolution, it simply could not measure spectrophotometric quantites to characterize texture through the Bidirectional Texture Function (BTF) or translucency through the more complex Bidirectional Scattering¿Surface Reflectance Distribution Function (BSSRDF). Another requirement in the GEFE upgrading was to provide it with the capability of measuring fluorescence at different geometries, since some of the new pigments used in industry are fluorescent, which can have a non¿negligible impact in the color of the product. Then, spectral resolution at irradiation and detection had to be available in GEFE. This paper describes the upgrading of the goniospectrophotometer GEFE, and its new capabilities through the presentation of sparkle and goniofluorescence measurements. In addition, the potential of the instrument to evaluate translucency by the measurement of the BSSRDF is briefly discussed.Authors are grateful to EMRP for funding the project “Multidimensional reflectometry for industry”. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Authors are also grateful to Comunidad de Madrid for funding the project SINFOTON-CM: S2013/MIT-2790.Peer Reviewe

    Directional Dipole Model for Subsurface Scattering

    Get PDF

    The Impact of Surface Normals on Appearance

    Get PDF
    The appearance of an object is the result of complex light interaction with the object. Beyond the basic interplay between incident light and the object\u27s material, a multitude of physical events occur between this illumination and the microgeometry at the point of incidence, and also beneath the surface. A given object, made as smooth and opaque as possible, will have a completely different appearance if either one of these attributes - amount of surface mesostructure (small-scale surface orientation) or translucency - is altered. Indeed, while they are not always readily perceptible, the small-scale features of an object are as important to its appearance as its material properties. Moreover, surface mesostructure and translucency are inextricably linked in an overall effect on appearance. In this dissertation, we present several studies examining the importance of surface mesostructure (small-scale surface orientation) and translucency on an object\u27s appearance. First, we present an empirical study that establishes how poorly a mesostructure estimation technique can perform when translucent objects are used as input. We investigate the two major factors in determining an object\u27s translucency: mean free path and scattering albedo. We exhaustively vary the settings of these parameters within realistic bounds, examining the subsequent blurring effect on the output of a common shape estimation technique, photometric stereo. Based on our findings, we identify a dramatic effect that the input of a translucent material has on the quality of the resultant estimated mesostructure. In the next project, we discuss an optimization technique for both refining estimated surface orientation of translucent objects and determining the reflectance characteristics of the underlying material. For a globally planar object, we use simulation and real measurements to show that the blurring effect on normals that was observed in the previous study can be recovered. The key to this is the observation that the normalization factor for recovered normals is proportional to the error on the accuracy of the blur kernel created from estimated translucency parameters. Finally, we frame the study of the impact of surface normals in a practical, image-based context. We discuss our low-overhead, editing tool for natural images that enables the user to edit surface mesostructure while the system automatically updates the appearance in the natural image. Because a single photograph captures an instant of the incredibly complex interaction of light and an object, there is a wealth of information to extract from a photograph. Given a photograph of an object in natural lighting, we allow mesostructure edits and infer any missing reflectance information in a realistically plausible way

    AirCode: Unobtrusive Physical Tags for Digital Fabrication

    Full text link
    We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily produced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.Comment: ACM UIST 2017 Technical Paper

    Perception based heterogeneous subsurface scattering for film

    Get PDF
    Many real world materials exhibit complex subsurface scattering of light. This internal light interaction creates the perception of translucency for the human visual system. Translucent materials and simulation of the subsurface scattering of light has become an expected necessity for generating warmth and realism in computer generated imagery. The light transport within heterogenous materials, such as marble, has proved challenging to model and render. The current material models available to digital artists have been limited to homogeneous subsurface scattering despite a few publications documenting success at simulating heterogeneous light transport. While the publications successfully simulate this complex phenomenon, the material descriptions have been highly specialized and far from intuitive. By combining the measurable properties of heterogeneous translucent materials with the defining properties of translucency, as perceived by the human visual system, a description of heterogeneous translucent materials that is suitable for artist use in a film production pipeline can be achieved. Development of the material description focuses on integration with the film pipeline, ease of use, and reasonable approximation of heterogeneous translucency based on perception. Methods of material manipulation are explored to determine which properties should be modifiable by artists while maintaining the perception of heterogenous translucency
    corecore